EXTENDING POLYMORPHISM TO MODULES
by

Jon Shultis

CU~-CS-280-~84 August, 1984

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

University of Colorado Technical Report No. CU-CS5-280-84.

Extending Polymorphism to Modules

Jon Shultis
Department of Computer Science
University of Colorado
Boulder, CO B0309

Abstract

The capsule facility extends the notion of type polymorphism to program
modules. “Modules” are identified with data algebras, and capsules form a
polymorphic calculus of algebras with polymorphic signatures. An innovation of
capsules is the addition of a "type structure” to capsule variables, in contrast to
the more familiar polymorphic type schemes in which type variables are unres-
tricted. The details of capsule abstraction and instantiation are discussed, along
with an algorithm for inferring the structure of capsules.

1. Introduction

iCapsules are an extension of the concept of type polymorphism to
modules. A capsule is a program unit supplying a set of operations and pos-
sibly depending on other capsules. Capsules are polymorphic in the sense
that the structures of parameter capsules are only minimally constrained by
the capsule which uses them. For example, a "sorted list" capsule might
require only that the element capsule have a binary boolean operation. Cap-
sule structures can be inferred using a variant of the usual procedure for
inferring principal type schemes. Capsules can be separately compiled,

using a type-checking linker [7], without the need for header files.

‘A potential drawback of capsules is that they are sometimes less restric-
tive than one would like. This is because the signature of a capsule does not
spec’ifjr any properties of the operations other than their arities. For exam-
ple, the "sorted list" capsule would accept an element capsule whose boolean
comparison is not a linear order, though the programmer may not have
intended it to be used in this way. This cuts two ways, however; a capsule
may be useful in ways that the author did not foresee when it was written. In
any event, checking that a program segment in any language satisfies an

intent is properly the programmer’s task, not the compiler’s.

§2 defines capsules and their rules of composition. §3 discusses the kind
of problems that capsules were invented to solve, and compares capsules to
related language facilities. §4 describes the process of capsule instantiation,
emphasizing the use of constrained substitutions te determine the compati-
bility of a particular capsule with a polymorphic specification. Constrained
substitutions appear again in the constrained unification used in the capsule
structure inference algorithm of §5. §6 summarizes our results and indicates

directions for further research.

2. Definitions

Capsules form a calculus of algebras. A ground capsule is an algebra; it
consists of a set of values and a set of (possibly polymorphic) operations. An
abstract. capsule is an operation taking a fixed number of parameter cap-

sules and resulting in a new capsule, which may be either ground or abstract.

A capsule system is characterized by a set of ground capsuleé called
primitive capsules, and a set of abstract capsules called elementary con-
structors. For example, int and bool are primitives, whereas product and list

are elementary constructors.

A capsule system has one operation, viz. application of an abstract cap-
sule to a list of arguments, also known as instantiation. Capsule terms (also
known as arities) are composed from capsule constant and variable symbols

via application in the usual way.

New capsules are formed in one of three ways: instantiation, abstraction,
or encapsulation. "Any capsule can be abstracted on any capsule variable, in
the manner of a A-calculus. (In fact, in the absence of encapsulation, to be

described presently, capsules simplify to the second-order A-calculus [12].)

An encapsulation consists of a capsule specification called the represen-
tation part and a list of function definitions called the operation part.
Semantically, the representation capsule is first extended by the definitions,

and then the native operations of the representation part are deleted.

The operation part may contain expressions which use operations of
parameter capsules, resulting in restrictions on the structures of the actual
arguments in an instantiation. A local environment for each capsule records
these restrictions for each of its formal parameters. The restrictions take

the form of a signature, indicating the operations that the actual argument

is expected to supply, and, if the formal is treated as an abstract capsule,

any necessary restrictions on ifs formal parameters.

Two restrictions apply to encapsulations. First, the representation part
must not contain any free occurrences of capsule variables. More precisely,
any capsule symbol appearing in the representation part must be either a
parameter of the current capsule or an enclosing capsule, or it must be one
of the primitive capsules or elementary constructors. As this implies, cap-
sules may be nested, and they obey the usual scope rules of a A-calculus.
This restriction does not prohibit free occurrences of capsule variables in the

arities of operators.

The second restriction is that every operation or constant symbol occur-
ring free in the operation part must be statically bound to one of the param-
eters of the representation part. An occurrence of an operation or constant
symbol is said to be free if it is not defined in the surrounding environment.
(If a capsule contains free occurrences of operation or constant symbols and
the representation part has no parameters, the encapsulation is ill-formed.)
The capsule structure inference algorithm described in §5 makes a default
association of an operation to the leftmost capsule appearing in that
operation’s arity. The programmer can explicitly override this association
with a clause of the form (op of cap). If the leftmost capsule is a free capsule

variable, an explicit association is required.

Any well-formed capsule can be abstracted on any capsule variable, and
the stated restrictions will always be satisfled. Instantiation of a capsule is
well-formed iff the arguments to the capsule are compatible with the struc-
tures indicated in the local environment. The details of instantiation will be

elaborated in §4. Within these constraints, the calculus of capsules satisfies

o- and f-convertibility. We have not yet investigated the properties of this
calculus in much detail, but we conjecture that every capsule system is

strongly normalizable [3].

3. Motivation and History

In many respects, capsules resemble ML's abstract types [4], and the
syntax used ‘here for capsule specifications is based on ML. Semantically,
however, capsules are closer to types in Hope [2]. Oné main difference is
that capsule variables are "typed", i.e. they range over classes of algebras
instead of indiscriminately ranging over the class of all value sets as in ML or
the second-order A-calculus. Consequently, encapsulations can use opera-
tions that are supplied by their argument capsules. The structure (or
"type") of a capsule variable indicates the minimal capsule structure
required by the capsule speciﬁcaﬁion in which it is used. The structure of a
capsule (variable) consists of a signature and a formal parameter environ-
ment which indicates the capsule structure of each of the capsule’'s formal

parameters.

A second main difference between capsules and ML types is the uniform
treatment of abstract and ground capsules. In ML, an "abstract type" is not
treated as a type at all, but as a macro for generating a type; only fully
instantiated abstract types are treated as types. This view of types is main-
tained in [10] by treating signatures as quasi-first-class objects. Due to the
uniform semantic status of capsules the following declarations make per-
fectly good sense in a capsule system, provided that "list" and 'tree” are

defined with operations "new”, "put"”, etc., with the proper arities.]

A signature mapping mechanism is provided for making explicit associations between actu-
al end formal operations. A more realistic declaration of capsule “bar” in the example might be:
let capsule bar <=> set int (tree using newtree for new, tree insert for put, ...).

let capsule set *elt *store <=> *store *elt
with create = absset new

and insert x,s = absset (put x s)

and ...;;

let capsule foo <=> set int list;;
let capsule bar <=> set int tree;;

Note that this allows a uniform view of the abstract concept "set” which is, to

alarge extent, independent of the implementation of the "store".

Historically, capsules grew out of our need for a more powerful data
abstraction facility to support the construction of multi-language software
engineering tools. As an elementary example of the kind of problem we

encountered, consider the following functional update function:

let update eq fun value point = \x.eq(x,point) => value | fun x;;
update = \ :(*a # *a -> bool) -> (*a -> *b) -> *b -> *a -> (*a -> *b)

The parameter "eq" is required in this ML declaration, because there is no
way to restrict the domain of fun (*a) to range over varieties {types with
equality). In a capsule system, the "eq" parameter can be dropped, resulting

in a restriction to the domain of fun.

let update fun value point = \x. x = point => value | fun x;;

update =\ :(*a -> *b) -> *b -> *c -> (*a -> *b)

*a must have:

infix = :(*a # *c -> bool)
The programmer’s likely intent that "point"” be of capsule *a is not inferred,
but this could always be specified by an explicit restriction of the form

oint:*a). (In this example, we assume that the parser has been instructed,
p P

either explicitly or by default, to treat "=" as an infix operator symbol.)

4. Compatibility and Instantiation

A capsule specification cspec is said to be compatible with a second cap-

sule specification cspec’ if the signature of cspec is compatible with that of

cspec', and the capsule environment of cspec is compatible with that of
ecspec’.

A signature sig is said to be compatible with a second signature sig’ if,
for each operator symbol in sig’', there is a corresponding operator symbol in
sig, and the arity of the operator in sig is compatible with the corresponding
arity in sig’.

An arity ar is compatible with a second arity ar’ if ar is a constrained
substitution instance of ar'. The :constraints arise from the properties
specified for bound capsule variables. In ordinary ML, there are only type
constants and free type variables. Here, however, an arity may include an
instance of a bound capsule variable. In checking compatibility of arities,
therefore, it is necessary to ensure that any term (arity) which is substituted
for a bound capsule variable be consistent with the constraints on that cap-

sule variable.

It is important to note in this connection that the arity of any operator
is always found in the context of a defining capsule specification, so that the
constraints (if any) on bound capsule variables are always known. If we did
not require that every operation be associated unambiguously with a single
capsule in any given context, this checking would be more complicated, but
could be done using well-known methods for operator identification a la Ada,T
[1] in which each operator is ascribed a set of possible arities as opposed to a
single arity; an entire expression is acceptable if the sets of possibilities are
eventually narrowed to singletons by mutual constraint. Allowing such ran-
dom overloading might well turn out to be useful; in fact, we would like to

include it in our future capsule-ml compiler, with the provision that operator

TAda is & trademark of the DOD.

identification be complete for any compilation unit. Including it here would,

however, needlessly complicate our discussion and algorithms.

An arity is a syntactic term denoting an instantiation. An important
part of checking the compatibility of arities is the computation of the struc-
ture of the denoted instantiation. The semantics of instantiation is a slight
variation on f-reduction in the simply-typed A-calculus. First, the actual

Aparameters are checked for compétibility with the corresponding forméls.
When this succeeds the actuals are substituted for the formals in the signa-
ture, and the environment is cleared, since the structures of the actuals are
recorded in the surrounding environment. The resulting capsule

specification is the specification for the term.

A capsule environment cenv in compatible with a second capsule
environment cenv’ if the number of capsule parameters recorded in the two
formal parameter environments'is the same, and they are pairwise compati-
ble. Note that corresponding capsule parameters need not have the same
name; capsule parameter matching is done positionally. This is consistent
with the view of abstract capsules as capsule operators, the alpha-conversion
rule of lambda-calculi, and the use of positional parameter association in the
rest of ML. Of course, name association in'the style of Ada would be a viable

alternative.

It is heuristically useful to note that, throughout, x is compatible with z’
if z is a specialization of z’. In some cases, this means that =z may be more

elaborate than z', but the converse never obtains.

5. Capsule Inference and Separate Compilation

The process of inferring the structure of an instantiation was described

in the preceding section. Inferring the structure of an encapsulation from

its declaration involves inferring both a signature for the declaration part
and the capsule sstructures of each of its formal parameters, if any. Simple
capsule abstractions are similar to encapsulations, except that the signature
consists of the native operations of the body, which corresponds to the

representation part of an .encapsulation.

The algorithm for inferring the arity of an operation is eésentially the
same as that used for inferring principal type schemes [5, 11,8]. There are
only two real differences. First, an extra check is needed before a capsule
variable can be unified with a term, to ensure compatibility. Two variables
can be unified, provided that their structures do not conflict. That is, their
formal parameter environments must be mutually compatible, and their sig-
natures must have isomorphic arities for any operation that is common to
both. Given two non-conflicting variables, the structure of their unification is
the union of their structures. Any additional structure that is thus imposed
on a variable is necordediin the appropriate formal parameter environment.
This implies that a formal;parameter may be required to supply operations
that are never expliditly:mentioned in the scope of its definition! It is an

error for constraints to be imposed on free occurrences of capsule variables.

The second idifference between the algorithms is that free operation
identifiers are treated as implicit parameters. Once an arity has been com-
puted for an operation, the free operation identifiers and their arities are
included in the signatures of the appropriate capsule parameters. Although
these are the only apparent differences, the details of arities and their mani-

pulation are quite different, as described above.

Capsules can be compiled separately by storing the inferred capsule

structure with the object'module as a link table. The linker resolves refer-

ences in the usual way, but should use the compatibility algorithm to check

the interfaces between capsules.

Levy has recently described a system for separate compilation of Pascal
modules which also infers the arities of free operation identifiers and uses a
type-checking linker [9]. The major differences between capsule structure
inference and Levy’'s system are due more to the differences between cap-
sules and Pascal types than to the basic strategies for inference, compila-

tion, and linking.

6. Summary

The capsule compatibility and inference algorithms have been coded in
ML and are currently being tested and refined. Our work so far has focussed
on the syntactic aspects of capsules and capsule inference as described in
this paper. Our next concern is to explore issues in the implementation and
use of capsule systems. In the area of implementation, we are particularly
interested in measuring the amount of extra overhead incurred by capsule
inference, and the production of efficient code for capsules. Our plan is to
modify Johnsson's lazy ML compiler [8] to use capsules, and to compare his
statistics with ours for similaf programs, as well as to compare programs
written using capsules with their corresponding non-polymorphic instances.
In the area of usage, we have already found capsules to be more expressive
than we had initially anticipated, and it is as yet difficult to distinguish
between the limits of our inexperience as capsule programmers and the limi-
tations of capsules themselves. For example, we found it easy enough to
define a capsule category, and a capsule functor mapping categories to
categories, but were unable to define an operation mkfunctor that would

construct a functor directly from the usual mathematical data, viz. the

10

object and morphism mappings. At first we suspected a weakness of cap-

sules, but later realized that the problem is that there is no general way to

construct the identities and composition of the target category directly from

these data.

References

1. ANSI, MIL-STD-1815A Ada Programming Language, U. S. Government
(Ada Joint Program Office) {Jan. 1983).

2. Burstall, R. M., D. B. MacQueen, and D. T. Sannella, “HOPE: An Experi-
mental Applicative Language,” Proc. 1980 LISP Conference, pp. 136-143
(August 1980).

3. Fortune, S., D. Leivant, and M. O0'Donnell, “The Expressiveness of Simple
and Second-Order Type Structures,” J. ACH 80(1) pp. 151-185 (Jan.
1983).

4. Gordon, M. J., A. J. Milner, and C. P. Wadsworth, ““Edinburgh LCF,” in Lec-
ture Notes in Computer Science, no. 78, Springer-Verlag, Berlin (1979).

5. Hindley, R., “The Principal Type Scheme of an Object in Combinatory
Logic,” Trans. Amer. Hath. Society 146 pp. 29-80 (1969).

6. Johnsson, T., “Efficient Compilation of Lazy Evaluation,” Proc. ACM Sig-
plan '84 Symp. on Compiler Construction, pp. 58-89 (June 1984).

7. Kieburtz, R. B.,, W. Barabash, and C. Hill, “A Type-checking Program Link-
age System for Pascal,’”” Proc. 3rd Intl. Conf. on Software Fngineering,
pp. 23-28 {1978).

8. Leivaent, D., “Polymorphic Type Inference,” Proc. 10th ACM Symp. on

Principles of Programming Languages, pp. 88-98 (Jan. 1983).

10.

11.

12.

11

Levy, M. R., “Type Checking, Separate Compilation and Reusability,"
Proc. ACHM Sigplan '84 Symp. on Compiler Construction, pp. 285-289

(June 1984).

MacQueen, D., “‘Modules for Standard ML, Proc. 1984 ACH Symp. on
LISP and FPunctional Programming, p. ? (Aug. 1984).

Milner, R., **A Theory of Type Polymorphism in Programming,” J. Comp.
& Sys. Sci. 17 pp. 348-375 (1978).

Reynolds, J. C., *‘Towards a Theory of Type Structure,” Systems an Infor-

mation Science, Syracuse University (April, 1974).

