Using Blossoms to Find Maximum Matchings on Graphs |
Harold Gabow

CU-CS-056-74 September 1974

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION.

USING BLOSSOMS TO FIND MAXIMUM MATCHINGS ON GRAPHS

by Harold Gabow

University of Colorado

Abstract

A matching on a graph is a set of edges, no two of which share a
vertex. The problem discussed is to find a matching with the greatest
number of edges possible. An algorithm is presented that implements
the concept of blossoms, as developed by Edmonds, completely and
efficiently. The computation time is proportional to V3. The algorithm
can be used in an algorithm that computes maximum weighted matchings

efficiently.

1. Introduction

Finding a maximum matching on a graph is an interesting representa-
tive of a class of integer programming problems that can be solved
efficiently [5]. It has applications in operations research. For
example, the following is a maximum matching problem: A squadron
commander must divide his men into teams of two. Certain teams are not
acceptable because the two men do not get along. Choose the greatest
number of acceptable teams.

A number of algorithms have been given for computing maximum
matchings [1,2,3,6,10,11]. The most successful follow the basic approach
given by Edmonds [3]. 1In that approach, the notion of blossoms is
central. This paper describes a maximum matching algorithm that takes
advantage of the complete theoretical significance of blossoms, in an
efficient manner. Because of this, the algorithm generalizes easily to
weighted matching and other problems [7,8].

The algorithm has a worst-case computation time that is 0(V3), where
V is the number of vertices. This bound is the best currently known.

The bound has been achieved by several algorithms [1,6,101. However,
these algorithms implement restricted aspects of blossoms, and so do not
- generalize easily.

Sections 2 and 3 of this paper present background material: defini-
tions from graph theory, and a summary of Edmonds' method for matching
with blossoms. The next three sections describe the algorithm: Section
4 presents a data structure for matching with blossoms; its use is
illustrated in Section 5, which describes blossom expansion; Section 6

presents a data structure for choosing edges. The algorithm is not

described in complete detail because of its length. Instead, examples
and sample Algol procedures are given. The entire algorithm can be
reconstructed from these. Also, a complete description of the algorithm
can be found in [7].

Finally in Section 7, the efficiency and applications of the

algorithm are discussed.

2. Prelimindries

This section summarizes some well-known definitions and results. A
graph consists of a finite set of vertices and a finite set of edges. An
edge is an unordered set of two distinct vertices. The edge containing
vertices v and w is denoted (v,w) or (w,v). Vertices v and w are ‘adjacent,
and edge (v,w) is incident to v and to w.

If the order of vertices in edge (v,w) is significant, it is a

directed edge. The directed edge (v,w) goes from v to w; the head of

(v,w) is w, and the tail is v.

Throughout this paper, G denotes a given graph; V denotes the number
of vertices in G; E denotes the number of edges in G.

A path in G is an ordered list of vertices (Vl,vz,...,vn), such that
no vertex occurs more than once in the list, and (Vi’vi+l) is an edge,
for 15 i < n, The path Joins v, to v .

A matching M on G is a set of edges, no two of which share a vertex.
A vertex is matched if it is in some edge of the matching; otherwise it

is unmatched. M is a maximum matching if no matching on G contains more

edges than M. Figure 1 shows two matchings on a graph Gl (Matched edges
are drawn wavy). In Fig. 1(a) there are two unmatched vertices, 17 and
18; in Fig. 1(b) the matching is maximum, as all vertices are matched.

An glternating path is a path (Vl,...,vn) such that one of every two

consecutive edges (vi_l,vi) and (Vi,vi) is matched, for 1 < i< n. An

+1

augmenting path is an alternating path that joins two unmatched vertices.

If (vl,...,vzn) is an augmenting path, a new matching M' is obtained

1<

. < .
i’VZi+l)’ < i< n, with the

from M by replacing the matched edges (v2
. . 1]
unmatched edges (VZi_l,VZi), l £ i< n. We say M is augmented to M',

since M' contains one more edge than M. In Fig. 1(a), (17,16,15,12,7,8,

9,13,14,18) is an augmenting path. Augmenting gives the matching in
Fig. 1(b).

A fundamental fact is this: A matching M has an augmenting path if
and only if M is not maximum. (For a proof, see [2] or [3]). As a
result, a maximum matching can be found by repeatedly searching for an
augmenting path and augmenting the matching.

A tree T is a graph with a distinguished vertex r, such that there
is a unique path P(v,r) joining any vertex v to r. Vertex r is the root
of T. If path P(v,r) contains vertex w, then vertex v is a descendent
of w.

An equivalent, recursive way to define a tree is as follows: A
tree T is a finite set of vertices, with a distinguished root vertex r,
such that the other vertices of T (if any) are partitioned into dis-
joint trees Tl’TZ”"’Tm’ where m > 0. There are edges (r,ri), where r;

is the root of Ti’ for 1 < i < m. The trees Ti are the subtrees of r.

In an ordered tree, the order of subtrees Tl”"’Tm is significant.

In a labeled tree each vertex contains some information, called its label,

This section describes the basic algorithm for computing a maximum
matching using blossoms. The algorithm was discovered by Edmonds [3].
The algorithm is illustrated by showing how it constructs the maximum
matching in Figure 1 for graph Gl.

The algorithm begins with all vertices in the given graph G
unmatched. It searches for an augmenting path. When such a path
is found, the matching is augmented. Then a new search begins, for an
augmenting path in the new matching. The search-augment process is
repeated, until finally no augmenting path is found. At this point the
algorithm halts with a maximum matching.

The search is complicated by the fact that the graph is repeatedly
transformed. Under certainconditions, a collection of vertices is
replaced by a single vertex, called a blossom. This forms a new graph.
A blossom can be absorbed, along with other vertices and blossoms, into
a new blossom, adding further complexity. Also, under certain condi-
tions, a blossom is replaced by its constituent vertices and blossoms.
This forms a new graph, perhaps different from any previously used.

Throughout this paper, we call the graph currently being searched

the working graph. We refer to vertices of the working graph as either

vertices or blossoms.

Figure 2 shows the augmenting paths found in constructing the
maximum matching on graph Gl. A blossom bl forms in search S5; it
belongs to the augmenting path found in this search. Blossoms b2, b3,
and b4 form in subsequent searches. In search S9, blossoms b4 and b3

are expanded into their constituent vertices.

A search works by constructing a number of trees made up of

alternating paths. An alternating tree is defined as a tree such that

(1) the root is an unmatched vertex u, and (ii) any path in the tree,
P(v,u), from a vertex v to the root u, is an alternating path. A
vertex v is called outer if either v is the root u or path P(v,u)
starts with a matched edge. Otherwise, if P(v,u) starts with an un-
matched edge, vertex v is called inner.

A search constructs an alternating tree for each unmatched vertex
u. This is done by scanning edges, and adding edges and vertices to the
tree. Eventually, the search scans an edge joining two outer vertices vl,
v, that are in different trees. The alternating paths P(Vl,ul) and P(vz,uz),
together with edge (vl,vz), form an augmenting path between vertices u

1

and U, At this point, the search terminates by augmenting the matching.
Figure 3 shows the alternating trees grown in search S9. The tree
in Figure 3(f) contains five outer and four inner vertices. In Figure
3(g), an edge joining the two trees, (9, 13), is scanned, and an aug-
menting path is found.
A search constructs alternating trees in four different steps.

Now we describe these steps, called initialize, grow, blossom, and

expand.

Initialize: A search begins by making every unmatched vertex the root

of an alternating tree. Figure 3(a) illustrates this step for search S9.

Grow: Suppose the search scans an edge (x,y), where vertex x is outer

in some alternating tree, and vertex y is not in any alternating tree.

$hen a grow step is executed. The alternating tree containing x is
extended by two edges, (x,y) and (y,v). Here (y,v) is the matched edge
containing vertek y. (Edge (y,v) exists, since otherwise y is the root
of an alternating tree.) Vertex y is made an inner vertex, and v is
made outer.

Figure 3(e)-(f) illustrates a grow step. In Figure 3(e), vertex
12 is outer, and vertex 8 is not in any tree. When edge (12,8) is

scanned, a grow step is executed, as shown in Figure 3(f).

Blossom: Suppose the search scans an edge (x,y), where x and y are
outer vertices in the same alternating tree. Then a blossom step is
executed. Figure 4 illustrates this step. The paths P(x,u) and
P(y,u) join at an outer vertex j. In the blossom step, all vertices
up to and including j in paths P(x,u) and P(y,u) are replaced by a
single vertex b. This new vertex is called a blossom. Blossom b is
adjacent to any vertex that was previously adjacent to a constituent
vertex of b. In the new working graph, b is an outer vertex.

The four blossoms steps executed in searches S1-S9 are shown in
Figure 5. For example in Figure 5(b), edge (7,bl) is scanned. This
edge comes from edge (7,3) in the original graph. (This is indicated by
the "3" at the end of edge (7,bl)). Blossom b2 is formed, and replaces

vertices 7, 6, bl, 4, and 5.

e

The rationale for blossom steps is that any matching on the new
working graph gives a matching on the original working graph; Suppose in
the new working graph, the matched edge incident to b corresponds to
(v,v'). Here v is a vertex in b, and v' is not in b. Referring to Fig.

4, there is anm alternating path P(v,j) from v to j, that starts with a

matched edéé. (If v is an outer vertex, path P(v,j) is the beginning of
P(v,u). If v is inner, path P(v,j) consists of a path from v to x (or
y), plus P(x,j) (or P(y,j)). For example, P(Xl,j) consists of edges
(xl,x), (x,y), and path P(y,j).) If we rematch the edges in P(v,j)
(switching the matched and unmatched edges), then v is no longer matched
with a vertex in b. This allows edge (v,v') to be matched. It gives the

desired matching on the original working graph.

When a search terminates by augmenting, the next search begins in
the current working graph. The blossoms are not "undone"; they remain

as vertices. Blossoms do get "undone" in the fourth type of step.

Expand: Suppose a blossom b is made inner in a grow step of some
search. (Note this search is not the one in which blossom b is formed.
Blossom b is outer when it forms.) Blossom b may be expanded during
this search.

The expand step replaces b by its constituent vertices., This
necessitates two changes. First, the matching on the constituent
vertices 1s changed. This accounts for the augments done since the
formation of blossom b. Second, some constituent vertices are placed
in the tree to replace b. This prevents losing the portion of the tree
"hanging" from b.

Figure 3(b)-(c) shows the expansion of blossom b4. The matching
is not changed; the three constituent vertices of b4 are placed in the
tree. Figure 3(d)-(e) shows the expansion of blossom b3. The matching
is changed from the original one (see Figure 5(c)) to reflect the
augment in search S7 (see Figure 2). Also, vertex b2 is placed in the

tree.

Expand steps are necessary to make sure inner blossoms do not
"hide" augmenting paths from the search. For example, in the working
graph of Figure 3(d), the augmenting path in Figure 3(g) corresponds to
(17, 10, 11, b3, 12, b3, 13, 14, 18). This path is not detected as an
augmenting path. When blossom b3 is expanded, the augmenting path is
no longer hidden.

An inner blossom can be expanded at any point in the search.

There are two situations where expansion is unnecessary. In the first
case, an augmenting path is found before expanding; clearly expansion
is unnecessary. In the second case, the inner blossom gets absorbed
in a new outer blossom, in a blossom step; expansion is unnecessary
since no augmenting paths are "hidden." If neither case'occurs, the
blossom gets expanded in the search.

This cencludes our description of the basic algorithm. A complete
discussion of the underlying theory is given in [3]. The flowchért in
Fig. 6 summarizes the search procedure. The rest of the paper describes

an efficient implementation of the flowchart.

-10-

4. A Data Structure for Blossoms

This section presents a data structure that allows blossoms to be
formed, manipulated, and expanded efficiently. Data specifying blossoms
is stored in five parallel arrays, called BLOSSOM, MATE, LABEL, NEXT,
and LAST. We begin with some general remarks. Then we describe each
array and illustrate its use.

The algorithm begins by numbering the vertices and edges of the
given graph G. The vertices are numbered from 1 to V. Each of the five
arrays in the data structure has V entries, one for each vertex. A
vertex number is used as an array index, designating the entry for that
vertex., Usually we identify a vertex and its number.

The edges of G are numbered from 1 to 2E. Each edge (x,y) is given
two consecutive numbers. The first number is associated with the directed
edge (x,y), the second number with the directed edge (y,x). (Note the
edges of G themselves have no associated direction.) Edge numbers are
stored in the MATE and LABEL arrays. The direction associated with an
edge number allows additional information to be saved. Usually we
identify an edge and its number.

We givé a method for extending the numbering of the vertices to
include blossoms. The blossom index, defined below, identifies a
blossom, and is used as an array index.

Definition 1: The blossom index for a blossom b, denoted i(b), is

an integer between 1 and V, defined recursively as follows:
(i) Suppose b is a vertex in G, the original graph. Then
i(b) is the number of vertex b.

(ii) Suppose b is a blossom formed from vertices x, Hys eee s

~11~

Xpb1? o Yio wee s Yoouts j, as in Fig. 4. Then i(b) = i(j).

(Note j is the vertex where paths P(x,u) and P(y,u) join together.)
For example, in Fig. 5, i(b4) = i(b3) = 9.

These indices can be used to identify blossoms, since in a given
working graph, distinct blossoms have distinct indices. This gives the
first use for blossom indices. It is illustrated by the BLOSSOM array.
This array specifies which blossom contains a given vertex in the
current working graph.

Definition 2: Let v be a vertex in G. The entry BLOSSOM[v] is the

index of the blossom containing v in the current working

graph. So for the blossom b with v € b, BLOSSOM[v] = i(b).
For example, in the working graph of Fig. 5(d), vertices 1-11 are con-
tained in blossom b4, so their BLOSSOM value is 9.

The second use for blossom indices is as array indices. This
is illustrated by the MATE and LABEL arrays. These arrays are main-
tained as follows. When the algorithm begins, every vertex is a blossom
index. MATE and LABEL information for a vertex v is stored in entry
number v. When a blossom b forms, MATE and LABEL information for b is
stored in entry number i(b). The information about the vertex numbered
i(b) is no longer needed.

Now we describe the MATE array in detail. It specifies the matching
on the current and previous working graphs.

Definition 3: Let v be a vertex in G. Entry MAIE[V] is the number

of a directed edge (x,y), defined as follows. Let W be the last
working graph in which v is the index of a blossom b. Then vertex
x ¢ b, and (x,y) corresponds to the matched edge incident to b in

W. (If b is unmatched, then MATE[v]=0).

-12~

As an example, consider vertex 1 in Fig. 5. It is a blossom index in
Fig. 5(a)=(b). 1In Fig. 5(a), MATE[1] = (1,9); in Fig. 5(b), MATE[1] =
(3,4). This entry does not change in Fig. 5(c)-(d), since vertex 1 is
no longer a blossom index. Table 1 gives the MATE entries for the
vertices in blossom b4,
Now we describe the LABEL array. It specifies the structure of the

alternating trees in the current working graph, and of blossoms in
previous working graphs.

Definition 4: Let v be a vertex in G. Entry LABEL[V! is the

number of a directed edge (x,y), defined as follows. Let W be the
last working graph in which v is the index of a blossom b.
(i) Suppose b is an outer vertex in W. Then (x,y) corres-
ponds to the first unmatched edge in path P(b,u): More precisely,
if P(b,u) = (b, bl’ b2, ... , u), then edge (x,y) corresponds to
(bl’bz)' Also, vertex x ¢ bl' (If b is an unmatched outer vertex,
P(b,b) has no edges. In this case LABEL[v] = 0).
(ii) Suppose b is an inner vertex in W. If b is absorbed in a
new blossom in the next working graph, then (x,y) corresponds to the first
unmatched edge in path P'(b,u). Otherwise, b is an inner vertex in the

current working graph; LABEL[v] is an arbitrary negative number.

~(iii) Suppose b is neither outer nor inner in W. Then b is
a vertex in the current working graph that is not in a tree. Entry
LABEL[V] is an arbitrary negative number.
For example, consider Fig. 5(b). Blossom bl is outer, so LABEL[1] =
(4,5). Vertex 4 is inner. Before the blossom step, LABEL[4] < 0;
after it, LABEL[4] = (3,7). Table 1 gives the LABEL entries for

vertices in blossom b4.

-13-

The following pseudo-Algol code illustrates the use of the MATE

and LABEL arrays. It shows how the matching is updated when an aug-

menting path is formed.

procedure augment (integer value ea);

comment Parameter ea is an edge that completes an augmenting path.
Thus ea joins two outer vertices Vi Vo and an augmenting
path is formed by paths P(Vl’ul)’ P(vz,uz), and edge ea;
for side := 1,2 do
comment Rematch two "sides" of the augmenting path;
begin
bl := BLOSSOM[tail of ea]; comment The tail of a directed edge
(x,y) is x, and the head is y;
MATE[b1] := ea; comment Match one end of es;
e := LABEL[b1]; comment e steps through the edges to be matched;
while e # 0 do
comment Get the two ends of edge e;
bl := BLOSSOM[head of e];
b2 := BLOSSOM[tail of e];
comment Match edge e;
MATE[b2] := e;
MATE[b1] := edge opposite to e;
comment Advance e along the path;

e LABEL[bl];

[

end;
ea = edge opposite to ea;

end;

14~

Now we describe the NEXT and LAST arrays. These arrays keep track
of which vertices belong to which blossoms in the current and previous
working graphs. They are best described in terms of a tree corres-
ponding to a blossom, defined as follows.

Definition 5: The blossom tree of a blossom b, T(b), is a labeled,

ordered tree, defined recursively as follows:

(i) Suppose b is a vertex in G. Then T(b) consists of a root
only. The root is labeled with the number of b.

(ii) Suppose b is a blossom formed from vertices x, Xiseees

Xop1> ¥o Tyoeres Yoougo j, as in Fig. 4. For blossom tree T(j),

let T(j) denote the subtrees of the root, in order. Then the

blossom tree T(b) has a root labeled i(b). The subtrees of the
root, in order, are
T, TCe)seens T(xy 1)y T(), Tly)see, Ty, 1), T(D.
The vertices of T(b) are labeled by the vertices {(of G) in b. (Since
i(b) = i(j), no vertex is lost by replacing T(j) with T(3).) The trees
for blossoms bl-b4 are illustrated in Fig. 7.

The NEXT and LAST arrays derive from the preorder lists of blossom
trees. The preorder list of an ordered tree is a list of its vertices,
defined recursively as follows: the root of the tree is listed first;
next come the preorder lists for the subtrees of the root, in subtree
order [9]. Thus the preorder list L(b) for the blossom tree
T(b) is

1(b), L(x), LGxp)senn, Llxy 1)y LD, LDy, Ly, q)s LG,
where the notation is analogous to that of Definition 5.

The NEXT array stores the preorder lists of all blossom trees.

~15-

Definition 6: Let v be a vertex in G. Entry NEXT[v] contains the

vertex after v in the preorder list of T(b), where b is the blossom

containing v in the current working graph. (If v is last in the

list, NEXT[v] = 0.) /
Thus the preorder list for T(b) is
i(b),NEXT[i(b)],NEXTz[i(b)],...,NEXTm[i(b)],

where m is such that NEXTm+l

[i(b)] = 0. Table 1 gives the NEXT entries
for blossom b4.

The LAST array indicates the ends of preorder lists.

Definition 7: Let v be a vertex in G. Entry LAST[v] contains the
last vertex (in the preorder list of T(b)) that is a descendent
(in T(b)) of v. Here b is the blossom containing v in the current
working graph.

Thus the subtree of v in T(b), in preorder, is

v,NEXT[v], ... ,NEXT"[v],

where NEXTm[v] = TAST[v]. Table 1 gives the LAST entries for blossom bé.

The following code illustrates the use of NEXT and LAST, by showing

how these arrays are updated when a new blossom is formed.

procedure set N L (integer value x,y,j);

comment Parameters x and y are vertices in the original graph, and j is
a blossom index. As in Fig. 4, edge (x,y) completes the new
blossom, and j is the blossom where the two paths join together;
rear := j; comment rear indicates the end of the part of the preorder
list constructed so far. Initially, only j is in the

list;

-16-

save := NEXT[j]; comment Save the preorder list of j, for later inser-
tion in the list;
for side := BLOSSOM[x], BLOSSOM[yldo
‘comment Process the vertices in both paths;
bl := side; comment bl steps through the indices of the outer
vertices of the path,
while bl#j do
b2 := BLOSSOM[head of MATE[b1]]; comment b2 steps through the
indices of the inner
vertices of the path;
NEXT[rear] := bl; comment Add bl's list;
NEXT[LAST[b1]] := b2; comment Add b2's list;
rear = LAST[bZ];
bl := BLOSSOM[head of LABEL[b1]];
end;
end;
comnent Now add j's list;
if save = 0 EbggﬁLAST[j] i= rear g&ggLNEXT]rear := save;

end;

-17-

5. 'Expanding Blossoms

This section discusses expand steps in greater detail. A method for
expanding blossoms is described. The use of the blossom arrays in ex-
panding is illustrated.

We consider an example that is representative of the general case:

A blossom b forms, as shown in Fig. 4, in the search S This blossom

1°
is rematched in one or more augments. Then in the search Sz, blossom b
is expanded. Before expansiony; b is an inner vertex. The two edges
incident to b in the alternating tree are the unmatched edge (yl,yl'),

and the matched edge (Xl,xl'). Vertices x, and y, are shown in Fig. 4;

1

vertices xl' and yl' are not in blossom b.

As noted in Section 3, the expand step changes the MATE and LABEL
arrays. Now we discuss these changes.

Before expanding, the MATE array stores the original matching on
the constituent vertices of b (this matching is shown in Fig.‘4, ig-
noring vertex j). The expand step must change the matching on b, so
vertex Xy is no longer matched with a vertex of b. (This allows edge
(xl,xl') to be matched.) This can be done by rematching the path P(Xl,j).
The MATE array must be changed so these edges are matched:

(£5), (v7575)s (359,500 (3, 4153)-

The LABEL array must be changed so blossom b is replaced in the
alternating tree. To do this, vertices vy and Xy in the tree must be
joined by an alternating path. This can be done since in the new
matching on blossom b, every vertex is joined to X by an alternating
path., 1In the example, the desired path is

(71595 +e0s Togqnads Fopyqs vovs Xpo¥p)-

Adding this path to the tree makes alternate vertices outer, starting

-18-

with Y, and ending with x New LABEL entries must be made for these

9
vertices.

Now we give a method for expanding blossoms that accomplishes these
changes. It consists of’the three procedures described below.

The first procedure computes the new vertices in the working graph,

KoXps ees Fopgns TaVpe cees Vogyn0d

These vertices may themselves be blossoms, so their constituent vertices
are computed. The procedure also gives a negative sign to all LABEL
entries for new vertices. This effectively removes these vertices from
the tree (see Definition 4). However, the previous LABEL information is
preserved (as negative edge numbers), for the two remaining procedures.

The second procedure updates MATE, by rematching path P(Xl,j). It
resembles the augment procedure in Section 4, although the negative edge
numbers in LABEL are used. There is another addition: Entries in LABEL
are changed to be compatible with the new matching. When the procedure
is finished, the updated LABEL array defines alternating paths (in the

new matching) from the new vertices to x (However, the LABEL entries

1°
are still negative.)

The third procedure updates the LABEL array, adding the alternating
path between vy and 3 to the tree. This path is computed from the LABEL
array, as in the augment procedure, using negative edge numbers. Alternate
vertices along this path are made outer by assigning new (positive) LABEL
values.

Complete details of the expand procedures can be found in [7]. Below,

we give code for the first procedure. Tt illustrates how several blossom

arrays are used together.

-19-

procedure start-expand (integer value b);

comment Parameter b is the index of the blossom to expand;

comment The procedure consists of two main loops. In each loop,
variables bl and b2 step through the indices of the constituent
vertices of blossom b. This two-pass organization is not re-
quired - the two loops can be combined into one. This is not
done here for the sake of clarity;

comment Pass l:‘ Step through the constituent vertices of b, to find the
last one (in the preorder list);

bl := NEXT[b];

b2 := NEXT[LAST[b1]];

comment b2 is always one blossom ahead of bl;

e := eb := LABEL[bZ];

comment Referring to Fig. 4, eb is the edge (x,y) that formed blossom b.
Variable e steps through the wmatched edges in blossom b,

for side := 1, 2 do

comment Step through both "sides" of by

begin

while LABEL[b2] = e do

comment bl and b2 are in the current side. Advance;

begin
e := edge opposite to LABEL[b1l];

bl := NEXT[LAST[b2]];
b2 := NEXT[LAST[b1]];
end;

comment bl is not in the current side. Try the other one;

e := edge opposite to eb;
end;
first := bl;

comment first is now the vertex following b in the preorder list for

blossom j (see Fig. 4). If no such vertex exists, first = 0;
bl := NEXT[b]; comment Return bl to the first constituent vertex of b;
comment Now update arrays for blossom j;
NEXT[b] := first;
if first = 0 then LAST[b] := b;
LABEL[b] := -LABEL[b];
comment Pass 2: Update arrays for the other constituent blossoms bl of b;
while bl # first do
begin
b2 := NEXT[LAST[b1]];
NEXT[LAST[b1]] := 0;
LABEL[b1] := -LABEL[bl];
comment Update BLOSSOM for all vertices in blossom blj
i = bl;
while 1 # 0 do
BLOSSOM[1] := bl;

i := NEXT[i];

end;
bl := b2; comment Advance;
end;

end;

-2] =

We conclude this section by mentioning another way the expand
procedures are used. After the final search of the algorithm, a maximum
matching has been constructed. However, the working graph may contain
unexpanded blossoms. These blossoms must be expanded so the MATE array
is correct. The last step of the algorithm does this, using the first
two expand procedures.

For example, after the final search S9 in Fig. 3, the working graph
contains a blossom b2. This blossom is expanded into its constituent
vertices, 7,6,bl,4,5; then blossom bl is expanded. The final matching

obtained is shown in Fig. 1(b).

-22-

H

6. A Data Structure for Scanned Edges

This section describes a data structure for choosing edges in the
search. (This step of the algorithm is shown in the flowchart of Fig. 6.)
The EDGE data structure allows edges to be recorded, and later, chosen,
efficiently.

We say a blossom b gets labeled when it is made outer in an
initialize, grow, blossom, or expand step (The term derives from making
a new LABEL entry for b). A label step is one of these four steps.

Inside the flowchart box for a label step, the edges incident to a
newly labeled blossom are examined. If an edge can be used in a sub-
sequent label step, it is recorded in the EDGE data structure. Later
it is chosen (in the choose box) for processing.

Below we classify the edges that must be recorded. The notation of
the flowchart is used: (x,y) is an edge; vertex x is in a newly labeled
blossom b; vertex y is in a blossom c. The tree types of edges are

characterized as follows.

Type 1: Blossom c is outer. Edge (x,y) can be used in a subsequent
blossom or augment step. Hence it must be recorded. In Fig. 3(d),

(16,17) is a Type 1 edge, as is (9,13) in Fig. 3(f).
Type 2: Blossom ¢ is not in a tree. Edge (x,y) can be used in a sub-
sequent grow step, so it must be recorded. In Fig. 3(b), (12,15) is a

Type 2 edge.

Type 3: Blossom c is inner, and contains more than one vertex of G.

—23—

Edge (x,y) cannot be used in a label step, as long as blossom c¢ is not
expanded. Suppose blossom c gets expanded. Then vertex y is contained
in a new blossom c', and edge (x,y) may now be Type 2, So this edge
must be recorded. 1In Fig. 3(d), (12,8) and (13,8) are Type 3 edges.

Figure 3(e) shows how (12,8) becomes a Type 2 edge.

If vertex x is in a newly labeled blossom, then all edges (x,y) that
can be used in subsequent label steps (in the current search) are of
Types 1-3. This motivates the following definition of EDGE. The EDGE

array has an entry for each vertex of G.

Definition 8: Let y be a vertex in G, Entry EDGE[XJ is either a

directed edge (x,y), or a list of directed edges (x,y), defined as
follows. 1In the current working graph, let y be in blossom c.
(i) Suppose either ¢ is not in a tree, or ¢ is inner and
contains more than one vertex of G (as in Types 2-3). Then EDGE[y]
is a directed edge (x,y), where vertex x is in an outer blossom.
(If no such edge exists, EDGE[y] = 0).
(ii) Suppose c is outer (as in Type 1). Then EDGE[y] is a
list of directed edges (x,y), where vertex x is in an outer blossom.
(iii) Suppose c is inner and consists of one vertex (y) of G.
Then EDGE[y] = 0.
For example, in Fig. 5(b) before blossom b2 forms, EDGE[7] is the list
of edges (10,7), (3,7).

This definition is a slight simplification of the actual data
structure. A list of edge numbers (x,y) cannot be stored in one word

of a random access machine. Actually, EDGE[y] is the head of a list of

—2lm

edges, and each word of the list contains one edge. For convenience,
we overlook this point.

When vertex y is in Type 2 or 3, entry EDGE[y] is a single edge.
Sometimes several edges (xl,y), (xz;y),..., qualify as EDGE[y]. (For
example, in Fig. 3(d), (13,8) and (12,8) both qualify as EDGE[8]). All
candidate edges are equivalent: After any sequence of grow, blossom,
and expand steps, either all or none of the edges (Xi,y) are Type 2.
The choice of EDGE[y] is arbitrary. The important fact is that some
edge (xi,y) exists.

The following code illustrates how the EDGE data structure is used

to implement the main loop of the algorithm, shown in the flowchart.

procedure search;

comment Search calls these procedures: dinitialize, grow, blossom and
expand. Comments to a procedure statement describe the operation

of that procedure;

begin
found := false; comment Boolean variable found is set true if an aug-

menting path is found;
initialize; comment Make each unmatched vertex the (outer) root of an
alternating tree. No other vertex is in a tree.
Scan the new outer vertices and make EDGE entries;
while EDGE contains a non-zero entry do
begin
y := an entry index with EDGE[y] # 0; comment If there are several
candidates for y, choose

arbitrarily;

-25-

c := BLOSSOM[y];
if LABEL[c]¢ O then

begin comment ¢ is not outer;

d := BLOSSOM[head of MATE[c]]; comment d is the blossom matched
with c;
if LABEL[d] < 0 then

begin comment ¢ and d are not in a tree;

e 3= EDGE[y]; comment e is a Type 2 edge;

grow(e); comment Make c¢ inner and d outer. If blossom c
contains only vertex y (LAST[c] := c),
set EDGE[y] := 0. Scan edges from vertices
of d, and make EDGE entries;

end

else begin comment c is inner and d is outer. EDGE[y] is Type 3;

expand (c); comment Update the five blossom arrays. For
new inner blossoms containing only one
vertex y', ser EDGE[y'] := 0. For new
outer blossoms, scan edges and make
EDGE entries;
end;
end

else begin comment ¢ is outer;

for each edge e in the list EDGE[y] do

begin comment e is Type 1;

blossom (e); comment Compute the join blossom j (see Fig. 4).

If j = ¢ (e is contained in blossom c),

do nothing. TIf j does not exist

~26-

(e completes an augmenting path)
augment the matchine and reset found.
Otherwise (e forms a new blossom b),
update the five blossom arrays, scan
edges from the vertices of b that
were previously inner, and make EDGE
entries;
if found then go to exit;
end;
EDGE[y] := 0; comment Delete the list of edges for y;
end;
end;
comment If the while loop is exhausted,no augmenting path exists;

exit : end;

Note how the steps illustrated in Fig. 3(b)-(c) are executed by the
search procedure. When vertex 17 is labeled and scanned, (Fig. 3(a)),
entry EDGE[10] is set to (17,10). The first time through the while
loop, entry EDGE[10] is chosen, and the grow step of Fig. 3(b) is done.
The second time through the loop, EDGE[10] is chosen again, and blossom
b4 is expanded (Fig. 3(c)). In the expand step, EDGE[10] is set to O.

In general, an edge can be chosen many times in the while loop,
causing a sequence of grow and expand steps. The sequence of steps
done for an edge has the following form: =zero or more expand steps,

followed by a grow step, followed by zero or more expand steps.

-27-

7. Efficiency and Applications

This section discusses the efficiency of the algorithm; from
theoretical and practical points of view. It also indicates applications
and extensions of the method.

The execution time of the algorithm is bounded by 0(V3). This bound
results from doing at most V/2 searches, each requiring time 0(V2). We
briefly discuss how the most time-consuming portions of the search, the
blossom and expand steps, achieve the 0(V2) time bound.

In the search procedure of Section 6, the blossom procedure is
called (at most) once for each edge. At most V/2 of these calls form a
new blossom (since a new blossom decreases the number of vertices in the
working graph by at least two). At most one call does an augment. The
remaining calls take no action (as the Type 1 edge chosen is not in the
working graph). Thus the blossom procedure requires at most time

(V/2) * 0(V) + O(V) + 0(V2) = 0(v?).

The expand procedure is called at most V/2 times in a search. (Only
blossoms formed in previous searches can be expanded, and there are at
most V/2 of these.) Thus the expand procedure requires at most time

(V/2) * o(V) = 0(V?).

The other portions of the search procedure can be done in time 0(V).
Thus a search requires at most time 0(v2), and the algorithm executes in
time 0(V3).

Experiments were made to compare the blossom algorithm with a
simpler method for maximum matching in time o3) [7]. The two algorithms
were implemented in Algol W on the IBM 360/165. TFor "random" graphs with
up to 1000 edges, the simpler algorithm was one to two orders of magnitude

faster. This factor could be reduced by more careful programming of some

—28~

0(v3) portions of the algorithm. However, the blossom algorithm does
not appear to be best for practical matching problems.
The main application of the blossom algorithm is in computing

maximum matchings on weighted graphs. In a weighted graph, each edge

has a numerical weight. The problem is to find a matching with maximum
weight. An algorithm has been developed that takes time 0(V3) [7,8,10].
This algorithm incorporates the blossom algorithm. It works by maintain-
ing numerical quantities that indicate when grow, blossom, and expand
steps should be done. (In the special case where all edges have equal
weight, the weighted matching algorithm is identical to the blossom
algorithm,)

The data structure for blossoms extends to related graph problems.
An example is the problem of computing a minimum edge cover on a graph.
Here a cover is defined as a set of edges meeting every vertex of the
graph at least once. An 0(V3) algorithm incorporating the data structure

for blossoms is being developed.

-29-

10 17 16 15 12

(a)

171815,

(b)

Figure 1. Matchings on Gl.

-30-

T,
s e— 3
Y
N ey
. 4 b1 q 13
“) ba i1 10
- 18 b3 13 14
@ N
0 10 4 b 14 B 9 13

A

Figure 2. Augmenting paths found in GI.

-31-

MNe & i 1
bH — 104
18 511 E
th3 g
ia
(a) Initialize (b) Grow (c) Expand
14 mn 4 1 "
i 10 D i
13 i PR SRR - 1
b3 —p b | ba
Ty ER A R
15 15 5. 3
it ¢ ib o q
(d) CGrow (e) Expand (f) Grow
" 18
o} L
i 13
ba
12
5 ¢ g
e q
(g) Augment

Figure 3. Search S9.

-32-

- T e e o e - o .-

a
>—

- i S P

~
A

1

-~

- W e e - e mr e e e e e

Blossom Step.

Figure 4.

1%
q
‘\‘—-—_ﬂ bi l
4 (a)
1o
1
“\::——-nn-—-’ ba Y
"
!
3 by
’ (b)
14 ¥
3 13
R S b 8
s !
: :
U |]
tha /]
S (@)
15
13
Wi F1
et (@)

Figure 5. Formation of blossoms bl-b4.

no more exist

-3

(Search)

Initialize

Make each unmatched
blossom a root.

< Return)

Maximum
matching

N

Choose edge (x,y), with
X in an outer blossom.

4

c¢blossom containing y.

AJ//iIs ¢ outer?

d<blossom matched
with c.

A

<< Is d outer?:>—“———

Grow,

N

to

tree.

Add ¢ and d

AN

<<f Are x and \\\
in same tree%J//

y

Augment

Y E
\

Y

Replace ¢ by

constituent vertices

Blossom

| Return }

Form new
outer blossom.

1'%

Figure 6.

>
P

Basic flowchart

N

~35-

3 & (a) bl

3 R “ (b) b2

(c) b3

(d) b4

Figure 7. Blossom trees for bl-b4.

-36~-

Vertex MATE LABEL NEXT . LAST
1 (3,4) (4,5) 3 2
2 (2,5) (3,1) 4 2
3 (3,2) (2,1) 2 3
4 (4,3) (3,7) 8 4
5 (7,8) (8,9) 7 4
6 (6,7) (7.3) 1 6
7 (7,6) (6,5) 6 7
8 (8,7) (2,9) 0 8
9 (7,12) (12,15) 10 8

10 (10,11) (11,5) 11 10
11 (11,10) (10,7) 5 11
Table 1.

Array entries for blossom bé4.

[1]

[2]

[3]

[4]

[5]

[e]

(7]

(8]

[9]

[10]

[11]

-37-

" ‘Refearences

Balinski, M.L., 1967. '"Labelling to obtain a maximum matching," in
R.C. Bose and T.A. Dowling, ed., Combinatorial Mathematics
" and Tts Applications, University of North Carolina Press,
North Carolina, pp. 585-602, 1967.

Berge, C., 1957. "Two theorems in graph theory,'" Proceedings of the
National Academy of Science, Vol. 43, pp. 842-844, 1957.

Edmonds, J., 1963. '"Paths, trees and flowers," Canadian Journal of
Mathematics, Vol. 17, pp. 449-467, 1965,

Edmonds, J., 1965. 'Maximum matching and polyhedron with 0,1 -
vertices," Journal of Research of the Natural Bureau of
Standards, Vol. 69B, pp. 125-130, 1965.

Edmonds, J. and Johnson, E.L. 1970. '"Matching: A well-solved class
of integer linear programs," Proceedings of the Calgary
International Conference on Combinatorial Structures and
their Applications, Gordon and Breach, N.Y., pp. 89-92,
1970.

Gabow, H., 1972. "An efficient implementation of Edmonds' algorithm,
algorithm for maximum matching on graphs," Submitted for
publication.

Gabow, H., 1973. '"Implementations of algorithms for maximum
matching on non-bipartite graphs,' Ph.D. dissertation,
Stanford University, 1973.

Gabow, H. and Lawler, E.L., 1973. '"An efficient algorithm for
maximum matching on weighted graphs,'" in preparation.

Knuth, D., 1968. The Art of Computer Programming, Vol. 1, '"Funda-
mental Algorithms," Addison-Wesley, Reading, Mass., 1968.

Lawler, E.L., 1973. Combinatorial Optimization Theory, to be pub-
lished.

Witzgall, D. and Zahn, C.T. Jr., 1964. "Modification of Edmonds'
algorithm for maximum matching of graphs," Journal of
Research of the National Bureau of Standards, Vol. 69B,
pp. 91-98, 1965.

