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 Organic electronic materials offer several advantages when compared to inorganic 

materials, but they suffer from low charge carrier mobility.  Two major factors hindering 

effective charge transport in organic materials are: 1) effective wavefunction overlap in 

organic crystals and 2) the domain morphology of thin films.  Charge transport in organic 

materials occurs via a hopping mechanism along the conjugated π system.  Often, rigid, 

aromatic organic materials crystallize in a herringbone, edge-to-face orientation, limiting 

π-π stacking and decreasing charge carrier mobility.  Face-to-face orientation of aromatic 

rings decreases intermolecular π-π distances and increases wavefunction overlap.  

Control of the crystal structure can be achieved to some extent by tuning structural 

features of the molecule, like increasing the ratio of carbon atoms to hydrogen atoms in 

the aromatic rings; this is often achieved by introducing heteroatoms like sulfur and 

oxygen into the aromatic ring structure.   

 Thin films of organic materials often contain many unaligned domains; this is 

caused by rapid crystallization.  Control of the domain morphology of thin films has been 

shown to increase charge carrier mobility by 6 orders of magnitude for thin films of the 

same material.  Liquid crystal phases allow a slow process of crystallization, whereby the 

molecules in a thin film can be slowly aligned into a monodomain before crystallization.  

The crystal-smectic phases, like smectic E, are particularly attractive for this strategy due 

to their high degree of intermolecular order. 
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 This project describes the synthesis and characterization of organic 

semiconductors designed to exhibit short π-π distances and highly ordered crystal-

smectic phases to obtain thin films with high charge carrier mobility.  The n,2-OBTTT 

series contains 15 newly designed and synthesized mesogens.  The liquid crystal and 

solid crystal structures of these mesogens are examined and deposition conditions are 

optimized for the production of highly ordered, monodomain thin films. 
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Chapter I: Introduction 
 
 
1.1 Motivation 
 
 Organic materials offer several advantages when compared to inorganic materials 

for electronic applications: 1) less expensive to manufacture, 2) potential for rapid, large 

area production using high-throughput methods, 3) tuning and tailoring of material 

properties, 4) lower environmental impact, and 5) decreasing foreign dependence on 

imports of rare-Earth metals.  However, organic materials suffer from low charge carrier 

mobilities and short device lifetimes. 

 Charge carrier mobility is affected by the intermolecular arrangement within the 

crystal structure of organic semiconductors, as well as the degree of disorder within the 

morphology of thin films.  Both of these obstacles can be overcome by careful molecular 

design.  Although by no means completely understood, organic molecular structure / 

material property relationships have been widely established for many properties.  It is 

possible to control the intermolecular π-stacking distance within crystals, as well as 

control the morphology of thin films by utilizing focused molecular design. 

 In this work, a bottom-up approach is employed to achieve this nanoscale control.  

A bottom-up approach to materials engineering begins with designing molecules that will 

self-assemble to induce certain bulk phase features of the material.  This is opposed to a 

top-down approach, wherein the surface of a material can be manipulated by utilizing 

photolithography or other microfabrication techniques.  A bottom-up approach relies on 

the self-assembly of molecules into larger macrostructures.  Liquid crystal phases provide 

a mechanism for this molecular self-assembly.  This study describes the design and 

synthesis of a series of molecules exhibiting liquid crystal phases to achieve nanoscale 
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ordering in thin-films organic electronics applications.  The liquid crystal behavior, 

crystal morphology, thin film morphology, and charge carrier mobilities of thin-films of 

the newly synthesized semiconductors are examined.   

 
 
1.2 Overview of Dissertation 
 
 This dissertation is organized into two parts: 1) progress toward the design of 

liquid crystalline materials for highly ordered thin films and 2) research involving the 

incorporation of computer models into the undergraduate organic chemistry lecture.  Part 

1 begins with an introduction to liquid crystals for organic electronics and the prior work 

done in this area (chapter 2).  Also included, in partial fulfillment of a Graduate 

Certificate in Science and Technology Policy from the Center for Science and 

Technology Policy Research at the University of Colorado at Boulder, is a discussion of 

the socioeconomic impacts and political issues surrounding organic electronics (chapter 

3).  Chapter 4 describes the design and synthesis of a series of liquid crystal mesogens for 

organic electronic materials, the n,2-OBTTT series.  It has previously been shown that 

charge mobility varies in different liquid crystal (LC) phases and that the "soft 

crystal/liquid crystal" phases have charge mobilities comparable to crystal phases.  

Further, thin films processed from materials that exhibit the soft-crystal liquid crystal 

phases can be aligned to avoid the formation of grain boundaries.  A series of mesogens 

was designed to induce these soft-crystal phases with varied tail lengths to study the 

factors that affect formation of these soft-crystal LC phases, the n,2-OBTTT series.   

Synthesizing the target molecule required the development of a novel procedure for 

obtaining 2-alkoxythiophenes, a species that until recently was not described in the 
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literature.  Chapters 5 describes the characterization of the liquid crystalline behavior of 

the n,2-OBTTT series.  Only short chain and long chain members of the series exhibited 

the soft-crystal smectic phases, not the medium chain members, indicating an effect of 

alkoxy chain length on liquid crystal phase formation.  Further, all but one member of the 

series (4,2-OBTTT) exhibited paramorphic phase transitions, ideal for creating highly 

ordered thin films.  Chapter 6 presents the solid-state material properties of the n,2-

OBTTT series, including crystal structure and thin-film morphology.  Part 2 describes 

work performed in the area of chemistry education.  Chapter 7 presents the results of a 

study designed, performed, and published solely by the author of the present work, 

investigating the incorporation of computer models into the undergraduate organic 

chemistry lecture.  A significant improvement in students' scores was observed as a result 

of the experimental treatment, suggesting an economical method of achieving significant 

gains in students' conceptual understanding of molecular structure. 
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Chapter II: Liquid Crystals for Organic Electronics 
 
 
 
2.1 Introduction: Organic Materials 
 
 Organic chemistry is a mature discipline.  It is now possible to synthesize and 

characterize nearly any organic molecule that can be imagined.  Computational strategies 

have aided in the design of molecules with new and unique properties.  New catalysts, 

synthetic procedures, and purification techniques have afforded access to a wide variety 

of functionally unique and ultra-pure organic materials.  Ubiquitous access to powerful 

molecular characterization techniques like NMR and high-resolution mass spectrometry 

has become routine.  Many structure/property relationships have been established, 

enabling precise tailoring of molecular features to maximize or minimize material 

properties at will.  Organic materials are typically much cheaper, more flexible, and take 

less energy to process than inorganic materials.  Organic materials are essential 

components of next-generation applications in nanotechnology and biotechnology.  The 

modern versatility of organic synthesis and the virtually infinite variations of organic 

compounds surely indicate that organic materials will soon replace many inorganic 

materials and infiltrate nearly every facet of human existence.  The 2000 Nobel Prize in 

Chemistry was awarded to Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa for 

their discovery of intrinsically conductive polymers.  With distinctly appropriate timing, 

the 21st century has given birth to the organic electronics industry.   
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2.2  Organic Materials for Electronics 
 
 Organic materials for electronics offer several advantages: 1) they are inexpensive 

to manufacture, 2) there is potential for rapid, large area production using high-

throughput methods1, 3) tuning and tailoring of material properties by utilizing organic 

synthesis2, 4) a lower environmental impact3, and 5) a potential decrease in foreign 

dependence on imports of rare-Earth metals.4  However, organic materials currently 

suffer from much lower values of charge carrier mobility than inorganic materials.5  

Inorganic materials have a much larger dielectric constant than organic materials, which 

facilitates efficient charge transfer.  The relatively weak intermolecular forces that exist 

in solid organic materials hinder the movement of charges.  Further, the chemical bonds 

of organic materials are weaker than inorganic crystalline lattices, so devices constructed 

from organic materials often have much shorter lifetimes and are subject to degradation 

under environmental conditions.5  Environmental degradation of organic materials is a 

double-edged sword, since it decreases effective device lifetime, but presents 

opportunities for recycling.  Low charge carrier mobility and short device lifetimes are 

two of the major obstacles to overcome before organic electronics can become a 

commercially competitive industry.   

 

2.3  Charge Transport in Organic Materials 

 Charge transport is the movement of electrons and holes across a material.  Two 

of the most important factors affecting charge transport in organic materials are: 1) 

intermolecular distance between and alignment of the conjugated π-systems and 2) the 

degree of order in the morphology of the thin film.6  Charge transport in organic materials 
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is often described as having contributions from a tunneling mechanism, as well as a 

hopping mechanism.6,7  The extent to which each mechanism contributes to the overall 

mobility is a function of temperature, electron-phonon coupling, electronic and phonon 

bandwidths, and phonon energy.  In organic materials, electron-phonon couplings have 

been shown to be comparable to, or even greater than, electron-electron interactions.5   

 An electron on a molecule has some probability of tunneling through the space 

between 2 molecules to "appear" on the other molecule.  Quantum mechanical tunneling 

occurs as a coherent process, where there is no energy transfer out of the electron system 

and all phase information is retained upon the transfer.7  Electron tunneling is highly 

dependent on intermolecular distance and temperature; when the temperature is low, the 

charge mobility in organic materials is dominated by the tunneling mechanism.8,9  

However, for most device applications, the temperature is likely to be much higher, 

decreasing the tunneling contribution to the overall charge mobility in organic materials.  

In the temperature range of most practical applications, charge mobility in organic 

materials is dominated by the hopping mechanism.8  This is certainly true for materials 

that operate in a liquid crystal phase, as well, since these phases seldom occur below 

room temperature. 

 In addition to tunneling, electrons may hop from molecule to molecule along 

overlapping π-systems.  Though both processes move an electron from one molecule to 

the next, the physical mechanisms are significantly different.  The tunneling mechanism 

is a coherent process, during which phase information is retained and occurring without 

the transfer of energy.  Tunneling often involves the delocalization of eigenstates over an 

entire system, spreading every atom or molecular in the material.10  The hopping 
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mechanism, conversely, is incoherent, requires the transfer of energy either to or from the 

electron, and is highly localized.  The hopping mechanism is thought to involve Frenkel 

excitons that typically exhibit a maximum radius of only about 10 Å.  Consequently, the 

charge is typically localized within 1-2 molecular radii.  The phonon system supplies the 

energy required or absorbs the energy emitted upon electron transfer.6  A phonon is a 

particle-like, quantized mode of vibrational energy arising from the collective oscillations 

of atoms within a material.  These electron-phonon interactions dominate charge 

transport in organic materials and induce the formation of quasi-particles called polarons.  

A polaron is a system of electron-phonon interactions: when an electron moves through a 

material, the atoms or molecules shift from their equilibrium positions to screen the 

charge, creating a lattice vibration.  Charge mobility in organic materials is often limited 

by the dynamic disorder arising from polaron formation.11,12 

 In materials, charge carrier mobility is affected by several factors including 

molecular packing, molecular disorder, and temperature.6,11,12  Conjugated molecules 

often exhibit the highest charge mobilities because of the delocalized nature of the π-

system.  In many cases, conjugated molecules with rigid aromatic cores crystallize into a 

layered herringbone structure (figure 2-2a).  Such packing gives rise to 2D charge 

transport within the layers, while transport between layers is less efficient.13  This makes 

sense, as the π-system extends orthogonally to the plane of the aromatic rings, in which 

the long axis of the molecule often lies and this distance is often much shorter than the 

distance between π-systems interlayer.  Depending on the arrangement of the electrodes 

(for photovoltaic or transistor applications), the anisotropic character of charge transport 

in most organic materials requires molecules to orient appropriately to facilitate the 
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hopping of electrons between molecules.  Figure 2-1 shows two device architectures: a) 

an organic field-effect transistor (OFET) and b) a thin-film organic photovoltaic (OPV) 

device.  Charge moves between electrodes (or from source to drain in an OFET).  

Different devices require different molecular orientations to facilitate charge transport: 

the molecules either must align parallel or perpendicular to the electrode surface. 

 

Figure 2-1.  (a) The device architecture for an organic field-effect transistor (OFET); (b) 
the device architecture for an organic photovoltaic device (OPV).  The anisotropic nature 
of charge transport through organic materials necessitates different molecular orientations 
for different devices. [Source: Macromol. Rapid Commun. 2009, 30, 1179–1202] 

 
 

 Electron-electron coupling can change by a factor of 3-4 between 3.4 and 4.0 Å, 

intermolecular distances typically found in organic conjugated crystals and thin films.14  

The herringbone orientation of the aromatic rings does not seem to provide the most 

efficient path for electron transport since the π-system is rolled off of the stacking axis.  

Face-to-face (cofacial) contacts would seem to facilitate charge transport and increase 

charge carrier mobility (figure 2-2b).  It is possible to alter molecular structure to induce 

these co-facial orientations: this approach has been investigated for pentacene 

derivatives15 and for tetrathiafulvalene (TTF) derivatives.16  One strategy is to maximize 

the ratio of carbon atoms to hydrogen atoms in the conjugated π-system since hydrogen 
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atoms often align with the electron density of an aromatic ring, inducing edge-to-face 

orientations.  In practice, this is often achieved by the addition of heteroatoms into the 

aromatic ring structure like sulfur and oxygen, since they do not have open valences to 

accommodate hydrogen atoms.  However, despite the fact that a more cofacial orientation 

would seem to increase π-overlap, there is no evidence that achieving a more cofacial 

orientation in thin films can actually improve charge carrier mobility.6 

 

(a)   (b)  
Figure 2-2.  (a)  Herringbone structure of aromatic rings; (b) face-to-face structure of 
aromatic rings.   
 

One possible explanation for the observation that increasing the degree of cofacial 

arrangment doesn't improve charge carrier mobility is that perfect face-to-face alignment 

of aromatic rings is energetically unfavorable, as this arrangement maximizes 

electrostatic repulsion between the rings.  This is precisely why the cofacial arrangement 

is not typically seen in organic crystals.  Further, it is not necessarily spatial alignment of 

the aromatic rings that maximizes electronic coupling; it is the degree of wavefunction 

overlap.  Crystal packing certainly does affect charge carrier mobility16, but to maximize 

wavefunction overlap, the pattern of the bonding-antibonding orbitals on adjacent 
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molecules must be complimentary.17  This is not necessarily as simple as maximizing 

spatial overlap, since asymmetric molecules can often have asymmetric frontier orbitals. 

 To improve charge carrier mobility, it is important that the local molecular 

interactions within a thin film be favorable, like the molecule-to-molecule orientation of 

the π-systems just discussed.  It is also important that the bulk structure of the film be 

ordered, on a global scale, throughout the entirety of the material.6  When an organic 

material is deposited onto a substrate to create a thin film, crystallization is typically 

nucleated at several sites simultaneously, leading to the formation of several domains 

separated by grain boundaries.  Although the molecules in each grain may be well-

ordered, the grains themselves are randomly aligned.  Charge transport is severely 

affected by these grain boundaries (figure 2-3).18  Materials that exhibit universal 

molecular alignment are said to contain only one domain, a monodomain, like the 

morphology seen in figure 2-3a.  Conversely, materials that crystallize very quickly often 

form thin films with grain boundaries (figure 2-3b).    

 

(a)        (b)  
Figure 2-3.  (a) Charge transport via a hopping mechanism is uninterrupted in a material 
without grain boundaries; (b) charge transport in a material with grain boundaries limits 
charge carrier mobility.  [Source: Macromol. Rapid Commun. 2009, 30, 1179–1202] 
 

Avoiding the creation of grain boundaries has enormous implications for charge carrier 

mobility, improving the mobility in pentacene films by 6 orders of magnitude.19  Thus, 



 11 

even molecules designed to yield a crystal structure perfectly suited for charge mobility 

(maximum wavefunction overlap) still need to be deposited into thin films that lack grain 

boundaries, a process that is not straightforward.  The rate of crystallization upon film 

deposition is enormously important. 

 

 
2.4  Liquid Crystal Phases for Highly Ordered Thin Films 
 
 Two of the major obstacles facing organic electronic materials are low charge 

carrier mobilities and short device lifetimes resulting from environmental degradation.  A 

major factor affecting the charge carrier mobility of organic electronic materials is the 

difficulty associated with achieving highly ordered thin films free of grain boundaries.  

Controlling crystal growth and morphology is incredibly difficult.  Liquid crystal phases 

offer a route a control the morphology of thin films, achieving films free of grain 

boundaries.  Further, because they self-assemble, defects in liquid crystal structures 

usually self-heal, presenting an opportunity to increase the useful lifetime of organic 

electronic materials by simply heating into a mesophase and cooling back into a solid 

phase.   

 Liquid crystal phases exist in some materials as intermediate phases between 

crystalline solids and isotropic liquids.  Some typical liquid crystal phases for different 

shapes of molecules are depicted in figure 2-4.   
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Figure 2-4.  Some typical liquid crystal phases; cholesteric and smectic phases of 
calamitic mesogens and a columnar phase of discotic liquid crystals.  [source: 
http://cnx.org/content/m46154/1.2/] 
 
 
Though liquid crystals are intermediate between liquid and solid phases, their properties 

do not necessarily follow this same trend.  For example, an electric field of about 100 

mV/m is enough to align the molecules in a liquid crystal phase, but fields 5 orders of 

magnitude larger are unable to affect the molecules in a liquid or solid phase.20  One 

benefit of liquid crystal phases is that their properties are often unique: they can be 

aligned and, in some cases, that order can be maintained throughout cooling and 

crystallization, creating thin films free of defects.   

 Although charge carrier mobility in liquid crystal phases can be considerably 

higher than in amorphous organic materials, it is not typically as high as in ordered, 

single organic crystals (figure 2-5). 



 13 

 

Figure 2-5.  Charge carrier mobility as a function of intermolecular order. [Source: 
Macromol. Rapid Commun. 2009, 30, 1179–1202] 
 
 

This same trend is followed within the liquid crystal regime: charge carrier mobility is 

improved as intermolecular order within the phase increases, from fluid-smectic phases 

(like SmA and SmC) to crystal-smectic phases (like SmE and SmG).  The molecular 

distance intra-smectic layer is typically between 3.5 to 6 Å20, whereas the intermolecular 

distances in crystals (and thin films) are typically between 3.4 to 4 Å.15 Charge carrier 

mobility is a function of intermolecular distance and these relatively small differences 

can have drastic effects.16  For this reason, although liquid crystal phases are useful to 

align thin films, organic crystals are still the end goal to maximize charge carrier 

mobility.  Even though a material will not be operated in a liquid crystal phase, it is still 

desirable for a material to exhibit liquid crystal phases, especially the highly ordered 

crystal-smectic phases.  This is because the order conferred upon the material during self-

assembly in a liquid crystal phase can be maintained upon cooling into a crystal phase.  

In summary, the structure of the crystal is important to maximize charge carrier mobility 

by maximizing π-overlap.  Similarly, the structure of the liquid crystal phases of a 

material are an important design consideration, as well, to maximize processability and 

order in thin films. 
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 The strategy employed in the present dissertation to address the shortcomings 

associated with organic electronic materials utilizes liquid crystal phases to obtain highly 

ordered thin films.  Charge mobility is affected by: 1) intermolecular π-stacking distance 

and 2) domain morphology of thin films.  Intermolecular π-stacking distance can be 

minimized by designing a molecule with specific functionalities and a high C/H ratio and 

the domain morphology of thin films can be controlled by utilizing highly ordered, 

crystal-smectic, liquid crystal phases.  This project contains several separate parts:  

• The design of molecules exhibiting close intermolecular pi-stacking and liquid 

crystal phases to maximize charge carrier mobility,  

• The characterization of liquid crystalline behavior of the synthesized mesogens, 

• The deposition and alignment of thin films utilizing liquid crystal phases, 

• The measurement of charge carrier mobility in highly aligned thin films. 
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Chapter III: Organic Electronics for U.S. Energy Independence 
 
[submitted in partial fulfillment of a certificate in Science and Technology Policy] 
 
 
3.1  Introduction: Material Dependence of the Modern US Economy 
 
 Today, society is very dependent on different materials and elements to enable 

our vast array of technologies.21  Fossil fuels are essential to power our economy.  A 

modern computer is made of more than 60 elements.22   

 

 

 Figure 3-1.  Historical evolution of the elements necessary to make a computer chip. 
[Source: Intel.com] 
 

The availability of the materials necessary for our modern society can't always be 

ensured.  Some of the materials are quite scarce and there is only a limited supply on 

Earth.  Other materials necessary for important technologies are more abundant, but they 

are not mined domestically and the countries that control these essential resources may or 

may not have a political or trade relationship with the United States.   
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3.1.1  U.S. Dependence on Foreign Oil  

 The U.S. is the world's largest petroleum consumer, at 18.6 million barrels per 

day.23  The U.S. imported about 40% of the oil it consumed in 2012 and although more 

than half of these imports were from the Western Hemisphere (53%), the remaining 

sources of imported oil products into the U.S. were the Persian Gulf (28%) and Africa 

(16%).  The top five sources of imported crude oil and petroleum products in 2012 were: 

Canada (28%), Saudi Arabia (13%), Mexico (10%), and Venezuela (9%), and Russia 

(5%).   

 

 Figure 3-2.  Sources of U.S. net petroleum imports for 2012.  [Source: U.S. Energy 
Information Administration] 
 
 



 17 

 Our dependence on importing foreign petroleum has declined since peaking in 

2005.  The U.S. is currently the world's third largest produced of crude oil and petroleum 

products and is predicted to surpass Saudi Arabia is production by 2015.  Although much 

of the decline is from increases in domestic production of crude oil and natural gas, a 

decline in consumer consumption resulting from economic downturn after the 2008 

financial crisis is also a major factor. 

 Much of the crude oil and petroleum products imported by the U.S. are from 

unstable or dangerous countries.24  A recent report from the Center for American 

Progress states that the in 2012, the U.S. imported 4 million barrels of oil a day from the 

State Department's list of "dangerous or unstable" countries.  That is nearly 22% of the 

oil consumed every day in the U.S. is from politically unstable regions.  10 of the 

countries are on the State Department's Travel Warning List: Algeria, Chad, Colombia, 

the Democratic Republic of the Congo, Iraq, Mauritania, Nigeria, Pakistan, Saudi Arabia, 

and Syria.  Further, the 22% figure doesn't even include the imports that come from 

Venezuela, which although not on the State Department's list, has maintained a strong 

anti-American political stance.  This reliance on unstable nations has been said to be 

compromising our national security and tethering us to hostile regimes.25 

 

3.1.2  U.S. Dependence on Foreign Rare Earth Minerals 

 Many electronic devices, including many advanced photovoltaic devices, are 

composed of materials and elements that are not found domestically and the U.S. must 

rely on foreign imports.  For example, China currently enjoys a near-monopoly on rare 

Earth materials, necessary components of most modern electronic devices.26  The United 
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States receives nearly all of its supply of rare Earth metals from China.  The United 

States does not have a strong relationship with China and the future availability of this 

resource is not guaranteed.  In fact, in 2010, China briefly halted exportation of rare Earth 

minerals to Japan resulting from an unrelated international dispute.  This episode has 

forced the U.S. to assess its dependence on China for importation of rare Earth minerals 

since it seems that China may use its control of rare Earth materials to attain its political 

and economic goals. 

  Rare Earth elements are essential components of many of today's electronic 

devices like cell phones and computers.  Further, rare Earth elements are essential 

components of many military weapons systems.  Although the U.S. used to be the major 

producer of these materials, China is currently the only exporter of commercial quantities 

of rare Earth elements.  In 2010, the U.S. Government Accountability Office (GAO) 

reported on the world's production of rare Earth minerals and stated that China produced 

97% of rare Earth ore, 97% of rare Earth oxides, 89% of rare Earth alloys, 75% of 

neodymium iron boron magnets (NdFeB), and 60% of samarium cobalt magnets (SmCo).  

In fact, the U.S. currently lacks the refining, fabricating, and manufacturing capacity to 

process rare Earth elements.   So even if U.S. production of rare Earth minerals was to 

increase, most of the processing and metal fabrication would have to occur in China.  

Many members of the U.S. congress have expressed concern that the complete reliance of 

the U.S. on China for importing rare Earth elements could pose a national security risk.   
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3.2  Photovoltaics for Energy Production 

 Worldwide energy consumption is currently estimated to be 15 terawatts (TW) 

per year and is expected to double by 2050 and more than triple by 2100.27  The burning 

of fossil fuels releases greenhouse gases that are largely responsible for global climate 

change, including an increase in average surface temperatures, increasing frequency of 

extreme floods and droughts, and more powerful storms.  Although fossil fuel reserves 

are finite, many suggest that the devastating effects of climate change will prompt a pivot 

to clean energy long before we deplete our reserves.28  Further, many regions that supply 

fossil fuel resources are mired in conflict and political instability.  As a result, it is 

necessary for the U.S. to begin researching alternative sources of energy.   

 More than 120,000 TW of energy from the sun strikes the surface of the Earth 

every year (nearly 10,000 times more energy than we currently use) and its utilization by 

photovoltaic devices is emission free.29  Energy from the sun is abundant, likely lasting 

for tens to hundreds of thousands of future years, and is found everywhere on Earth, 

precluding the need to secure the resource from politically instable regions.  This makes 

solar energy an attractive alternative to fossil fuels. 

 

3.2.1  Obstacles to Further Deployment of PV 

 Despite the natural abundance of solar energy and the availability of the several 

technologies designed to capture this energy, in 2011, solar power only accounted for 

0.2% of energy generated in the U.S. and 0.5% of global electricity demand.30  Why is 

the U.S. so slow to adopt a virtually unlimited and free source of energy?  There are 
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several obstacles to further development and deployment of solar power in the U.S. 

including the cost, intermittency, and transmission of the electricity generated.   

 Certainly, cost is one of the most important factors affecting the further 

development and deployment of PV.  Electricity generated from solar technologies is still 

more expensive than many other forms of electricity.  In 2012, the cost of electricity 

generated from PV in the U.S. was $4.44 per installed watt compared to $2.10 per 

installed watt of coal-generated electricity.31  The price/installed watt has certainly 

decreased substantially in recent years; in 2011, the price of silicon wafer panels 

decreased from $1.85/watt to $0.97/watt.  As such, although cost has been and continues 

to be an obstacle to PV, it is likely that the reaching parity with conventional fossil fuels 

will occur in the very near future.  By some estimates, solar power will be able to 

compete against fossil fuels without subsidies in half of the world by 2015.32,33 

 Another potential issue with power generated from PV is intermittency issues.  

Factors like unpredictable weather and limited daylight hours affect how electricity from 

PV is utilized in the U.S.  Further, solar energy is not evenly distributed in the U.S., 

making it difficult to fully rely on solar energy for our needs.  These issues are being 

addressed by developing storage technologies that allow energy produced during peak 

daylight hours to be stored for use during low-production hours.  Energy could also 

potentially be stored in the form of chemical bonds by using the PV-generated electricity 

to reduce carbon dioxide into methanol or other chemical fuels.34   

 Lastly,  there is a lack of transmission infrastructure.  Solar energy must be 

collected in sunny areas and transported to areas where it is needed.  Often the areas that 

have the most potential for solar energy collection, like deserts, are very isolated and 



 21 

remote, with no nearby infrastructure.  Thus, not only would large-scale solar collection 

facilities need to be built, but so too would the transmission infrastructure to connect the 

solar power systems to the grid.  One potential solution to this issue is to generate the 

solar electricity where it will ultimately be used, obviating the need for transmission 

lines.  Rather than using large solar farms in the desert to collect solar energy and 

subsequently transmit the energy to where it is needed, the electricity could be generated 

on-site.  Although it is true that more electricity would be produced in sunnier areas, it is 

also true that much of that energy would be wasted as heat during the transmission.35    

 

3.2.2  Policy Options to Help Promote Solar Power 

 Although some of the obstacles to further deployment of PV are technical, many 

more are political.  It has been mentioned that the cost of PV is still much more than the 

cost of fossil fuel generated power.  However, the end cost of fossil fuel generated power 

is decreased through several political mechanisms.  The global subsidies of fossil fuels 

total nearly $523 billion per year.36  That is six times the amount of money spent on 

renewable energy.( http://www.odi.org.uk/subsidies-change-the-game)  In the U.S. alone, 

it is estimated that as much as $52 billion per year is spent on fossil fuel subsidies.37  It is 

much more difficult for PV-generated electricity to reach grid parity when the cost of 

fossil fuels is artificially deflated.  One potential political solution to promote solar power 

is to spend the estimated $52 billion per year that is currently spent on fossil fuel 

subsidies on renewable energy subsidies instead.   

 Another way in which the cost of fossil fuel generated electricity is artificially 

deflated is that there is no economic accountability for the greenhouse gases that are 
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generated.  The damage from climate change is estimated to be $150 billion per year in 

the U.S. alone.38  Who is to pay for this annual damage?  It certainly makes sense that the 

producers of the greenhouse gases responsible for climate change should pay for the 

damage.  Two potential political mechanisms that could hold companies financially 

accountable for the greenhouse gases that they emit are carbon taxes or cap-and-trade 

programs.  Both of these mechanisms would make energy generated from fossil fuels 

more expensive and more illustrative of the true cost of this type of electricity.  As a case 

in point, voters in Boulder, Colorado in 2006 approved the first municipal carbon tax.  

The Boulder Climate Action Plan tax generated $1.8 million in 2010.39 

 Renewable energy portfolio standards are regulations that require a certain portion 

of a utility's power plant capacity or power generation to come from renewable energy 

sources like wind, biomass, solar, and geothermal.  16 U.S. states and the District of 

Colombia have adopted mandatory renewable energy portfolio standards (RPS).40  The 

RPS mechanism has been very successful in promoting investment in renewable energy 

investment and deployment of renewable energy resources in the U.S.  In a report 

released by the Lawrence Berkeley National Laboratories (LBNL), the benefits generated 

from RPS policies range from $28-$103/MWh compared to costs ranging from a savings 

of $4/MWh to costs of $48/MWh. Though, in some cases utilities have seen an extra cost 

for compliance with RPS regulations, others have seen a decrease in cost.  Further, the 

human health benefits calculated in the study ranged from $28-103/MWh, fair 

outweighing any additional costs imposed by compliance.41   

 As seen from the previous examples, the development and deployment of 

renewable resources is significantly affected by policy and financial incentives.  In 2011, 
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Europe had 51 GW of installed solar capacity, primarily because of policy incentives.  In 

comparison, the U.S. only had 4.4 GW.  In 2013, however, the U.S. had tripled its 

installed solar capacity to more than 13 GW, resulting from the combined effects of 

several policies to promote solar energy.42 

 

3.3  Organic Materials for Photovoltaics and Electronics  

 Although PV-generated electricity would free the U.S. from reliance of foreign 

sources of oil, many of the current photovoltaic technologies require materials that are 

not produced in the U.S.  Many of the necessary components of silicon-based and rare 

Earth metal-based technologies are not mined in the U.S. and, as a result, we are 

becoming more reliant on China for the importation of these materials. It does not make 

sense for the U.S. to pursue energy options for the purpose of decreasing our reliance on 

fuel imports from unstable nations if those energy options require materials that we must 

simply import from other unstable nations.  In essence, it does not make sense to make a 

pivot from the Near-East to the Far-East.  Most organic materials for photovoltaics and 

electronics applications are composed of relatively few elements (C, H, N, O, S, and 

halogens) all of which are very abundant on Earth and more or less equally distributed 

among the world's countries. 

  

3.3.1  Benefits of Low-Cost Organic PV 

 Organic photovoltaics offer several advantages when compared to silicon-based 

technologies, but they are still much less efficient.  Does this mean that one technology or 

the other should be favored?  Photovoltaic technologies are expected to become a 
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sustainable source of terawatt energy.  Producing this amount of energy will require vast 

amounts of raw materials.  It doesn't make sense to favor just one technology; it is too 

risky to rely on just one set of materials since some materials are limited and future 

access to others is uncertain.  For the benefit of sustainability, it makes sense to create a 

varied portfolio of solar energy technologies, so that if some materials become 

unavailable in the future, production of other technologies can be increased to mitigate 

the potential shortfalls in energy production.  Surely, one technology in this portfolio will 

be organic photovoltaics since organic materials are incredibly cheap and abundant.   

 What is necessary to develop the photovoltaic industry into a source of terawatt 

energy?  Dennler and Brabec outline several important factors: 1) cost, 2) availability of 

raw materials, 3) scalable, high-volume and low-cost production processes, 4) available 

land area, 5) energy storage systems, 6) distribution and grid efficiency for the energy 

mix, 7) centralized versus decentralized energy production.43  Organic materials have the 

potential to make significant headway in several of these areas.   Roll-to-roll 

manufacturing processes allow OPV modules to be produced at significantly lower unit 

costs than any other solar technology, with the added benefit that the printing and coating 

facilities already exist worldwide with huge capacities, relics of the photographic film, 

magnetic tape, and compact disc industries.  As such, OPV technologies can outcompete 

most silicon-based technologies in terms of cost, availability of raw materials, and 

scalable, high-volume, low-cost production processes.   
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3.3.2  Organic Materials as Rare Earth Substitutes 

 Among other applications, rare Earth elements are used for batteries, magnets, 

and catalysts.  Could organic materials ever replace rare Earth elements in these 

applications?  The versatility of organic materials allows for a wide range of properties.  

For example, pure carbon can be an insulator (diamond) and a superconductor (carbon 

nanotubes).44  Organic synthesis allows the tuning of material properties, such that we 

can tailor materials for certain applications.  There are examples of organic batteries45 

and organic magnets.46  This versatility will certainly create a new era of organic 

electronics, where many electronic materials will be organic.   

 

3.4  Conclusions 

 The U.S. is dependent on foreign sources of oil for energy and rare Earth minerals 

for many electronics and weapons applications.  Organic materials for photovoltaic and 

other electronic devices could relieve our dependence on foreign oil and rare Earth 

minerals.  Energy independence is an attractive goal, both economically and in terms of 

national security, and organic materials offer a path to achieve this goal.  The U.S. should 

invest in R&D for organic electronic materials and develop policies that promote their 

use and integration. 
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Chapter IV: Smectic E Mesogens for OFET: n,2-OBTTT Series 
 
 
 
4.1 Introduction: The Smectic E Phase for OFETs 

 Small molecule, organic semiconductors have reached charge carrier mobilities 

equivalent to amorphous silicon, and even beyond in some cases.47  In addition to 

equivalent or better device performance than amorphous silicon, organic materials are 

solution-processable, low-cost, and flexible, spawning the development of a new plastic 

electronics industry.20  An essential component of many plastic electronic devices is the 

organic field effect transistor (OFET).13  The most important property of OFETs is charge 

carrier mobility, the velocity of the electron and/or hole through the organic 

semiconductor material.  There are many factors affecting charge carrier mobility, but 

from a device perspective, two of the most important are intermolecular π-stacking 

distance (a function of molecular structure) and the degree of molecular order within thin 

films (a function of processing conditions).48  Liquid crystal mesophases offer a route to 

enable close intermolecular π-stacking distances, as well as create thin films with highly 

ordered morphologies.20   

 

Figure 4-1.  A homeotropically aligned smectic phase.  The arrow indicates the direction 
of charge transport in an OFET. [Source: Macromol. Rapid Commun. 2009, 30, 1179–1202] 
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 The direction of charge transport within an OFET is from source to drain, parallel 

to the surface of the device.20,49  The nature of charge transport in liquid crystalline 

materials is still unclear, but many researchers believe that charge transport occurs via a 

hopping mechanism, from molecule to molecule.14,17,49,50  In this model, the electron/hole 

pairs are localized onto single molecules and electron-phonon interactions create small 

polarons to drive charge transport.51  Thus, a homeotropically aligned smectic mesophase 

would present an ideal morphology for charge transport (figure 4-1).20  The charge could 

potentially move in two dimensions through a homeotropically aligned smectic layer, 

presenting an advantage over discotic liquid crystal phases.  However, not all smectic 

mesophases display equivalent charge carrier mobility.49  Table 4-1 shows some typical 

values of charge carrier mobility for calamitic organic materials in different smectic 

mesophases.  As can be seen from the table, smectic mesophases have charge carrier 

mobilities spanning three orders of magnitude!   
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Table 4-1.  Charge Carrier Mobility of Calamitic Mesogens in Smectic Phases 

 
[Source: Macromol. Rapid Commun. 2009, 30, 1179–1202] 

 

 It is not surprising that smectic A (SmA) has the lowest mobility of the smectic 

phases; in SmA and SmC (the fluid-smectic phases), the molecular packing in the layers 

is fluid-like and there is significant translational and rotational motion.48,49  As the 

calamitic molecule rotates around its long axis, the π-orbital overlap is significantly 

diminished, potentially decreasing charge transport.  On the other end of scale of 

thermodynamic stability lie the crystal-smectic phases.  Compared to SmA and SmC, 

these phases are much more highly ordered and solid-like; included among the crystal-

smectic phases are SmE, SmG, SmF, and SmB.20,52 

 These highly ordered crystal smectic phases have no fluidity and are the closest to 

ordered crystals.53,54  The SmE phase, in particular, has generated much interest in the 
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field of small molecule semiconductors.  In the SmE phase, the calamitic mesogens are 

packed so densely that free rotation around the long axis no longer occurs.53  The rigid 

aromatic cores, then, are better approximated by boards than rods, since they are flat and 

no longer rotating.  The resulting herringbone packing within the layers can potentially 

yield strong π-π interactions among the aromatic cores (figure 4-2).  The very short π-

stacking distance of 4 Å or less in the SmE phase can facilitate the hypothesized hopping 

mechanism of charge transport in liquid crystal systems.49,51 

 

 
Figure 4-2.  Herringbone array of rigid aromatic cores in SmE phase, [Source: J. Phys. 
Chem. B 2013, 117, 8293−8299] 
 

 Unlike most smectic mesophases, where separate layers are uncorrelated, XRD 

studies of the SmE phase have discovered three-dimensional periodicity.53,54  The SmE 

phase displays a much more ordered structure than other smectic mesophases.  Studies 

suggest that the structure of the SmE phase for an asymmetric, aromatic mesogen with a 

long alkyl chain contains nanosegregated domains with alkyl sublayers consisting of 

alkyl chains from both upper and lower sublayers (figure 4-3).56  This alkyl chain 
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interdigitation is one potential source of interlayer correlation in the SmE phase.  The 

anisotropy of the interaction among the cores in this up-down arrangement stabilizes the 

herringbone structure of the mesophase.  This proposed structure for the SmE phase is 

further corroborated with evidence from various crystal structures presented in chapter 6 

of this thesis. 

 
Figure 4-3.  New model of SmE structure of asymmetric mesogen with long, 
interdigitated alkyl chains. [Source: J. Phys. Chem. B 2013, 117, 8293−8299] 
 

 What, then, is the difference between a bona fide crystal and a material in the 

SmE phase?  The entropies of transitions calculated from the DSC results were plotted 

against the alkyl chain length for a series of SmE mesogens.57  It was found that upon 

heating, during the crystal phase-SmE phase transition, the entropy of transition directly 

correlated to alkyl chain length, but for the SmE-Isotropic transition, no such correlation 

existed.  The authors concluded that the alkyl chains in the SmE phase are fully melted, 

as it were.57  This result is seen even in the mesophase closest in structure to an ordered 
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crystal, suggesting that the alkyl chains are fully melted in all mesophases.56,57  However, 

disorder in the alkyl chains should not affect charge transport along the π-system, which 

is the preferred direction of charge transfer in conjugated organic materials, as already 

discussed.  Further, judging from the high mobility values achieved in the SmE phase, the 

conformational disorder in the alkyl chains seems to have no effect.  The SmE phase, 

then, seems to be a good platform for conferring a high degree of molecular order upon a 

thin film before cooling into a solid phase. 

 

4.2 Design of SmE Mesogens with High Charge Carrier Mobility 

 Inducing short π-π distances can be achieved by designing molecules with 

specific structural features.  General formation of smectic phases is a function of 

intermolecular nano-segregation of rigid, aromatic cores and flexible alkyl chains.  But 

what subtle molecular features are responsible for the formation of specific mesophases is 

unclear.  For example, although all of the members of the n-alkyl series of mesogens 

shown in figure 4-4 display some smectic phase or phases, certain members displayed the 

SmE phase, while others did not.55,58-60  As such, one strategy employed when attempting 

to synthesize new mesogens with a specific mesophase is to synthesize a series that varies 

only by alkyl (or alkoxy) chain length.  Different members of the series will display 

different mesophases and, with more homologs, the odds of obtaining the desired 

mesophase are increased. 
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 Figure 4-4.  Calamitic mesogens displaying the SmE liquid crystal phase. 
 

4.2.1  Molecular Features Affecting Short π-π Distances  

 Maximizing charge carrier mobility is the most important consideration for OFET 

semiconductors.  Several factors affect charge mobility, including intermolecular distance 

and π-π overlap.14,17,49,61  It makes intuitive sense that rigid systems of conjugated π-

orbitals would maximize intermolecular π-π overlap.  The degree of π-π overlap and the 

distance between molecules is a function of the crystal structure of a molecule, which is 

notoriously difficult to predict based on molecular structure alone.  A material with 

particularly high charge carrier mobility is the polymer, poly[2,5-bis(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (pBTTT, figure 4-5a), a thiophene-based 

material.62  Figure 4-5b shows a potential morphology for the pBTTT mesophase; it can 

be seen that the alkyl chains interdigitate to create flat lamellar sheets.  The π-π spacing 

in C14-pBTTT has been measured at d = 3.63 Å.63  This π-π distance is relatively short.  

The pBTTT aromatic core is nicely suited for short π-π distances. 
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Figure 4-5.  (a) Repeating structure of a semiconducting polythiophene (pBTTT) that 
was designed to self-assemble into large crystalline domains and to possess an extended, 
planar π-electron system. (b) Interdigitated alkyl chains in highly ordered mesophase of 
pBTTT. [Source: nature materials VOL 5 APRIL 2006, 328-333] 
 
 
 
4.2.2  Molecular Features Affecting Formation of the SmE Phase 

 It is speculated that the sanidic mesophase, characterized by lamellar sheets of 

conjugated polymer backbones (figure 4-6), is responsible for the highly ordered 

morphologies of thin films of pBTTT and other thiophene-based polymer materials.  The 

thin films are often annealed into a mesophase above room temperature, where it is 

believed that a favorable alkyl side-chain density allows for alkyl interdigitation, 

increasing charge carrier mobility.50,62  Much like the interdigitation responsible for the 

interlayer correlation in the SmE phase (figure 4-3), the alkyl chains of pBTTT allow 

correlations between polymer chains (figure 4-5b).  This alkyl chain interdigitation 

creates a very ordered structure.  The mesophase exhibited by pBTTT is characterized as 

a highly-ordered sanidic phase of stacked polymer backbones.  This morphology allows 

very close π-π interactions in the aromatic cores, similar to SmE (figure 4-6).  When the 

material cools from this mesophase, the alkyl chains recrystallize, maintaining the highly 

ordered morphology achieved during annealing.62  Alkyl chains can potentially increase 

the order observed in thin films of polymer materials. 
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Figure 4-6.  Comparison of the molecular packing in the SmE and sanidic phases.  Both 
mesophases possess close π-stacking of aromatic cores. [Source: Macromol. Rapid Commun. 
2009, 30, 1179–12] 
 
 
 The desired material for OFET devices is a small molecule mesogen that exhibits 

the SmE phase and close π-π interactions.  The previously reported studies suggest that 

mesogens with a rigid, aromatic core and asymmetric alkyl chains of varying length will 

often induce the SmE phase.56,57  Further, the aromatic core of pBTTT has been shown to 

exhibit very close π-π interactions, attributing to its high charge carrier mobility.62  A 

series of mesogens was designed with these considerations in mind (figure 4-7).  

 
 

 
Figure 4-7.  A calamitic mesogen designed to display the SmE phase for improvements 
in thin film processing and close π-stacking of aromatic cores to maximize charge carrier 
mobility: the n,2-OBTTT series. 
 
 
 
 The electron-rich thiophene rings of the desired compound contribute to a low 

ionization potential and also help to induce smectic phases through nanosegregation.  The 

aromatic core is flat, similar to pBTTT, with very little inter-annular twisting because of 

the fused thieno[3,2-b]thiophene moiety.  The aromatic core contains a high C/H ratio, 
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which facilitates close π-π stacking and helps to induce a cofacial arrangement.  This 

morphology is believed to provide significant orbital overlap, which increases charge 

carrier mobility.  The n,2-OBTTT series will exhibit varying alkoxy chain length to 

investigate how this affects the formation of highly ordered liquid crystal phases, as well 

as the crystal structure.  

 
 
4.3 Synthesis of the n,2-OBTTT Series 
 
 The synthesis of the series of target mesogens (figure 4-7) required a thieno[3,2-

b]thiophene unit.  The synthesis was carried out according to previous literature methods 

(scheme 4-1).64 

 

Scheme 4-1.  (i) 1) LDA, THF, 0°C; 2) N-formylpiperidine; (ii) Ethyl thioglycolate, 
K2CO3, DMF; (iii) 1) LiOH, THF, reflux; 2) Quinoline, Cu, reflux 
  
 
 
 The synthetic pathway to the n,2-OBTTT series is illustrated in schemes 4-2 and 

4-3.  The final product (3) can be seen as a central thieno[3,2-b]thiophene core flanked by 

an electron-rich thiophene (2) and an electron-poor thiophene (the ester).  Kirsch et al.65 

studied coupling reactions of thieno[3,2-b]thiophene and aryl halides and found that 

organozinc compounds coupled with aryl iodides (Negishi coupling) provided higher 

yields than the corresponding Suzuki or Stille reactions.  Accordingly, Negishi coupling 

with aryl iodides was the coupling method employed in the current study. 
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Scheme 4-2:  (i) 1) n-BuLi, THF, −78°C, 2) ZnCl2, THF, rt, 3) Pd(dba)2, PPh3, NMP, 
ethyl 5-iodo-2-thiophenecarboxylate, 70°C, 4) N-iodosuccinimide, CHCl3:AcOH, rt 
 

 Coupling reactions of aryl halides and organometallic reagents are promoted by 

electron withdrawing groups on the aryl halide; as such, ethyl 5-iodothiophene-2-

carboxylate was prepared and coupled to thieno[3,2-b]thiophene.  Thieno[3,2-

b]thiophene was prepared and treated with n-BuLi and anhydrous ZnCl2 in dry and 

degassed THF to generate an organozinc compound in situ that was coupled to ethyl 5-

iodothiophene-2-carboxylate via a Pd-mediated Negishi coupling.  The resulting product 

was iodinated with NIS to yield compound (1).   

 

 

Scheme 4-3:  (ii) HCl (5 mol%), ROH (excess), toluene, reflux; (iii) 1) n-BuLi, THF, 
−78°C, 2) ZnCl2, THF, rt, 3) Pd(dba)2, PPh3, NMP, 1, 70°C  
 
 

 Until recently, an efficient route to 2-alkoxythiophenes has not been reported.  

The method reported by Tietz et al.66 utilizes a two-step procedure: an oxidation of a 2-

thienyltrifluoroborate, followed by a Mitsunobu etherification, for an overall yield of 
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68% or less.  Our group has recently developed an improved route to 2-alkoxythiophenes 

from 2-methoxythiophene utilizing a one-step procedure: an acid-catalyzed nucleophilic 

aromatic substitution.  2-methoxythiophene was prepared according to literature 

methods67, dissolved in toluene, and treated with the appropriate alcohol and catalytic 

HCl.  The reaction was heated and methanol was distilled to drive the reaction forward.  

The corresponding 2-alkoxythiophene 2 was produced in 50-70% yield.  Compounds 1 

and 2 were coupled via a Negishi reaction to afford compound 3 (scheme 4-3).  

 

4.3.1 Synthesis of 2-Alkoxythiophenes 

 A necessary component of the desired target structure 1 is a 2-alkoxythiophene 

unit 2.  An exhaustive search of the literature revealed only one method to obtain 2-

alkoxythiophenes and this method was only recently published, in 2012.66  The only 

members of the 2-alkoxythiophene series that appeared in the literature prior to 2012 

were 2-methoxythiophene and 2-ethoxythiophene.  These two compounds were 

synthesized using a basic, nucleophilic aromatic substitution reaction with 2-

bromothiophene, the appropriate alkoxide ion, and catalytic CuBr (scheme 4-4).   

 

 

Scheme 4-4.  (i) NaOMe, MeOH, CuBr, reflux. 

 

 However, this is not a viable route to 2-alkoxythiophenes with longer alkoxy 

chains because the longer chain alkoxides are not commercially available and are 

cumbersome to work with.  It is difficult to prepare the alkoxide separately and add it to 
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the starting material later because the longer chain alkoxides are very insoluble in all 

aprotic solvents that were tried.  It is difficult to make the alkoxide ions in-situ because 

sodium hydride will reduce the thiophenes.  This synthesis proved to be an ineffective 

route to general 2-alkoxythiophenes due to the low yield, difficulty synthesizing long-

chain alkoxide ions, and the large mixture of products.  Further, the increasing 

insolubility of longer chain alkoxide ions precluded any product from being obtained for 

alcohols of 6 carbons and longer.   

 A procedure was located in an old German patent that describes an acid-catalyzed 

trans-etherification reaction utilizing 2-methoxythiophene, the appropriate alcohol, and 

catalytic p-toluenesulfonic acid in refluxing toluene (scheme 4-5).  As the reaction 

progresses, methanol is distilled from the mixture to drive the equilibrium forward 

according to Le Chatlier's principle.  The yield of the reaction is usually around 50%, but 

this value often varied quite dramatically and could be as low as 20%.   

 

 

Scheme 4-5.  (i) ROH (excess), TsOH (catalytic), toluene, reflux. 

 

 Due to the varying nature of the yield, an investigation was conducted as to the 

cause and to attempt to improve the yield.  The final color of the reaction mixture usually 

varied from light yellow to dark red.  After several iterations of the reaction, a correlation 

was noted between the final color of the reaction and the overall yield of desired product: 

the darker the color, the lower the yield.  It was also noted that the order in which the 

reactants were added attributed to the generation of the color: if p-toluenesulfonic acid 
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was added directly to 2-methoxythiophene, an intensely dark red color was generated 

almost immediately, whereas if p-toluenesulfonic acid was first dissolved in toluene, 

followed by addition of 2-methoxythiophene, the generation of color was delayed and 

never became as intensely red, but rather stayed a lighter yellow-orange color.  This 

suggested that perhaps 2-methoxythiophene was somehow reacting with p-

toluenesulfonic acid, although a reasonable mechanism could not be elucidated.  Since 

the identity of the acid was unimportant to affect the desired transformation and it was 

hypothesized that the electrophilicity of the TsOH was responsible for undesired side 

reactions, the TsOH was replaced with a non-electrophilic acid.  It was discovered that 

the yield could be improved to 50-70% and the generation of red color could be avoided 

by replacing the TsOH with catalytic concentrated HCl (scheme 4-6).  Using this new 

synthetic route to 2-alkoxythiophenes, 13 novel 2-alkoxythiophenes have been produced. 

 

 

Scheme 4-6.  (i) ROH (excess), HCl (catalytic), toluene, reflux. 

 

4.3.2  Nomenclature of the n,2-OBTTT Series 

 The designation of the n,2-OBTTT series was arrived at in the following manner: 

1) the core of the mesogen is based on the polymer pBTTT, but the mesogen is not a 

polymer, so the 'p' is dropped; 2) there is an alkoxy linkage from the alkyl chain to the 

aromatic core, so an 'O' is added; and 3) there are two potential alkyl chains, one on the 

ester side and one on the ether side, so the prefix n,n is denoting the lengths of the alkyl 
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tails, ether first, then ester.  Since all of the homologs in this thesis have an ester tail 

length of two, the series is designated: n,2-OBTTT. 

 
 
4.3.3 Experimental Procedures 
 
 All chemicals were purchased from Sigma-Aldrich and were used as received. 

Starting Materials thieno[3,2-b]thiophene65 and 2-methoxythiophene67 were prepared 

according to literature methods.  1H and 13C NMR spectra were recorded on a Bruker 

Avance-III 300 spectrometer and are reported in ppm relative to residual solvent.  Mass 

Spectra were recorded on a Waters Synapt G2 spectrometer; compounds were analyzed 

in either positive or negative mode ESI by direct infusion of compounds in acetonitrile or 

methanol at approximately 10 pmol/ µL.  In cases where ionization efficiency was low, 

LiCl was added to the compound solution in order to promote Li+ adducts.  Accurate 

mass measurements were provided by lockmass correction using the +1 charge state of 

leucine enkephalin.  

 

 

Ethyl thiophene-2-carboxylate 

To a solution of 2-thiophene carboxylic acid (30 g, 0.234 mol) in ethanol (250 mL) in a 

1000-mL round bottom flask was added concentrated sulfuric acid (1.3 mL, 10 mol%).  

The solution was refluxed for 24 hours and then cooled to room temperature.  150 mL of 

dichloromethane was added to the solution and the organic layer was washed with 

saturated sodium bicarbonate (3 x 50 mL), then saturated sodium chloride (3 x 50 mL).  

The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent 
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removed in vacuo to yield the product as a pale yellow oil (35 g, 96%); the product did 

not require further purification and was used as obtained in the next step.  δH(300 MHz; 

CDCl3) 1.40 (3 H, t, J 7.1 Hz), 4.37 (2 H, q, J 7.1 Hz), 7.12 (1 H, dd, J 5.0, 3.8 Hz), 7.56 

(1 H, dd, J 5.0, 1.3 Hz), 7.82 (1 H, dd, J 3.7, 1.3 Hz); δC(75 MHz, CDCl3) XXX; m/z 

(TOF-ES+) 157.0315 [MH+] (calcd. 157.0323). 

 

 

Ethyl 5-iodothiophene-2-carboxylate 

N-iodosuccinimide (50.5 g, 0.224 mol) was added to a solution of ethyl thiophene-2-

carboxylate (35 g, 0.224 mol) in a 1:1 mixture of chloroform (115 mL) and glacial acetic 

acid (115 mL) in a 1000-mL round bottom flask covered with aluminum foil.  The 

solution was refluxed for 48 hours in the dark and then cooled to room temperature.  The 

solution was washed with saturated sodium thiosulfate (3 x 100 mL), 1.0M sodium 

hydroxide (3 x 100 mL), and saturated sodium chloride (3 x 100 mL).  The organic layer 

was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed in 

vacuo.  The resulting mixture, containing product (~85%) and starting material (~15%), 

was placed into a freezer at −20°C overnight.  The product solidifies at this temperature 

and the starting material remains a liquid and can be removed by pipette to yield pure 

product (pale yellow solid, 51.8 g, 82%).  δH(300 MHz; CDCl3) 1.40 (3 H, t, J 7.1 Hz), 

4.37 (2 H, q, J 7.1 Hz), 7.12 (1 H, dd, J 5.0, 3.8 Hz), 7.56 (1 H, dd, J 5.0, 1.3 Hz), 7.82 (1 

H, dd, J 3.7, 1.3 Hz); δC(75 MHz, CDCl3) XXX; m/z (TOF-ES+) 282.9286 [MH+] 

(calcd. 282.9290). 
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Ethyl 5-(thieno[3,2-b]thiophen-2-yl)thiophene-2-carboxylate 

A three-neck, 1000-mL round bottom flask was flame dried and placed under high 

vacuum.  The flask was vacuum purged for 10 minutes under high vacuum, then back-

filled with argon; this process was repeated three times.  The flask was charged with 

thieno[3,2-b]thiophene (20 g, 0.143 mol) and anhydrous tetrahydrofuran (150 mL) that 

was degassed using the freeze-pump-thaw method.  The solution was cooled to −78°C 

using an acetone/dry ice bath and n-butyllithium (1.6M, 90 mL, 0.143 mol) was slowly 

added, dropwise.  The solution was stirred at −78°C for 30 minutes, then stirred at room 

temperature for 30 minutes, at which time anhydrous zinc (II) chloride (19.45 g, 0.143 

mol) was added in small portions and stirred at room temperature for 30 minutes.  

Degassed N-methyl-2-pyrrolidone was added (100 mL) and the solution was stirred at 

room temperature for an additional 30 minutes.  Ethyl 5-iodothiophene-2-carboxylate 

(40.33 g, 0.143 mol), bis(dibenzylideneacetone)palladium(0) (1.67 g, 2 mol%), and 

triphenylphosphine (1.52 g, 4 mol %) in degassed N-methyl-2-pyrrolidone (50 mL) was 

added and the solution was stirred at 70°C for 2 hours.  The solution was then poured into 

cold, distilled water (1000 mL), and filtered.  The filtered solids were purified by silica 

gel column chromatography (dichloromethane) to yield the product (yellow solid, 32.4 g, 

77%).  δH(300 MHz; CDCl3) 1.41 (3 H, t, J 7.1 Hz), 4.39 (2 H, q, J 7.1 Hz), 7.18 (1 H, d, 

J 3.9 Hz), 7.25 (1 H, dd, J 5.3, 0.7 Hz), 7.43 (1 H, d, J 5.3 Hz), 7.47 (1 H, d, J 0.6 Hz), 
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7.72 (1 H, d, J 3.9 Hz); δC(75 MHz, CDCl3) 14.37, 61.28, 117.21, 119.46, 123.94, 

128.28, 132.09, 134.06, 137.95, 139.12, 139.82, 144.27, 162.01; m/z (TOF-ES+) 

594.9851 [2MLi+] (calcd. 594.9846). 

 

 

Ethyl 5-(5-iodothieno[3,2-b]thiophen-2-yl)thiophene-2-carboxylate (1) 

N-iodosuccinimide (17.6 g, 0.078 mol) was added to a solution of ethyl 5-(thieno[3,2-

b]thiophen-2-yl)thiophene-2-carboxylate (23 g, 0.078 mol) in a 1:1 mixture of 

chloroform (100 mL) and glacial acetic acid (100 mL) in a 1000-mL round bottom flask 

covered with aluminum foil.  The solution was stirred at room temperature, in the dark, 

for 24 hours.  The solution was washed with saturated sodium thiosulfate (3 x 100 mL), 

then 1.0M sodium hydroxide (3 x 100 mL), then saturated sodium chloride (3 x 100 mL).  

The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent 

was removed in vacuo.  The residue was purified by silica gel column chromatography 

(dichloromethane) to yield the product (pale yellow solid, 27.5 g, 84%).  δH(300 MHz; 

CDCl3) 1.41 (3 H, t, J 7.1 Hz), 4.38 (2 H, q, J 7.1 Hz), 7.16 (1 H, d, J 3.9 Hz), 7.36 (1 H, 

d, J 0.6 Hz), 7.38 (1 H, d, J 0.6 Hz), 7.71 (1 H, d, J 3.9 Hz); δC (75 MHz, CDCl3) 14.38, 

61.35, 76.04, 116.29, 124.15, 128.39, 132.41, 134.07, 137.84, 139.11, 143.63, 144.45, 

161.93; m/z (TOF-ES+) 846.7768 [2MLi+] (calcd. 846.7780). 
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2-Alkoxythiophene (2) 

The general procedure reported here for the synthesis of 2-butoxythiophene was used for 

the synthesis of all of the 2-alkoxythiophenes.   

A 250-mL round bottom flask was equipped with a fractional distillation head.  The flask 

was charged with a solution of 2-methoxythiophene (10 g, 0.088 mol) in toluene (100 

mL).  To the solution was added 1-butanol (25 mL) and concentrated HCl (0.36 mL, 5 

mol%).  The solution was stirred at room temperature for 30 minutes and then slowly 

heated to 70°C.  The temperature of the distillate was carefully monitored and when it 

exceeded the boiling point of methanol, the reaction was stopped and cooled to room 

temperature.  The solution was washed with saturated sodium bicarbonate (3 x 50 mL) 

and saturated sodium chloride (3 x 50 mL).  The solution was dried over anhydrous 

magnesium sulfate, filtered, and the solvent was removed in vacuo.  The residue was 

purified by silica gel column chromatography (hexanes) to yield the product (10.02 g, 

73%).  δH(300 MHz; CDCl3) 1.00 (3 H, t, J 7.3 Hz), 1.51 (2 H, m), 1.80 (2 H, m), 4.06 

(2 H, t, J 6.5 Hz), 6.23 (1 H, ddd, J 3.7, 1.4, 0.6 Hz), 6.56 (1 H, ddd, J 5.7, 1.4, 0.6 Hz), 

6.74 (1 H, ddd, J 5.7, 3.7, 0.6 Hz); δC (75 MHz, CDCl3) 13.78, 19.11, 31.23, 73.66, 

104.50, 111.65, 124.67, 165.87; m/z (TOF-ES+) 157.0692 [MH+] (calcd. 157.0682). 
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Ethyl 5-(5-(5-alkoxythiophen-2-yl)thieno[3,2-b]thiophen-2-yl)thiophene-2-

carboxylate (3) 

The general procedure reported here for the synthesis of 4,2-OBTTT was used for the 

synthesis of all of the members of the n,2-OBTTT series.   

A three-neck, 100-mL round bottom flask was flame dried and placed under high 

vacuum.  The flask was vacuum purged for 10 minutes under high vacuum, then back-

filled with argon; this process was repeated three times.  The flask was charged with 2-

butoxythiophene (0.78 g, 5 mmol) and anhydrous tetrahydrofuran (15 mL) that was 

degassed using the freeze-pump-thaw method.  The solution was cooled to −78°C using 

an acetone/dry ice bath and n-butyllithium (1.6M, 3.13 mL, 5 mmol) was slowly added, 

dropwise.  The solution was stirred at −78°C for 30 minutes, then stirred at room 

temperature for 30 minutes, at which time anhydrous zinc (II) chloride (680mg, 5 mmol) 

was added in small portions and stirred at room temperature for 30 minutes.  Degassed N-

methyl-2-pyrrolidone was added (10 mL) and the solution was stirred at room 

temperature for an additional 30 minutes.  Compound 1 (2.10 g, 5 mmol), 

bis(dibenzylideneacetone)palladium(0) (58 mg, 2 mol%), and triphenylphosphine (52 

mg, 4 mol %) in degassed N-methyl-2-pyrrolidone (5 mL) was added and the solution 

was stirred at 70°C for 2 hours.  The solution was then poured into cold, distilled water 

(150 mL), and filtered.  The filtered solids were purified by silica gel column 

chromatography (dichloromethane) to yield the product (bright yellow solid, 32.4 g, 
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77%).  δH(300 MHz; CDCl3) 1.00 (3 H, t, J 7.4 Hz), 1.41 (3 H, t, J 7.1 Hz), 1.51 (2 H, 

m), 1.81 (2 H, m), 4.09 (2 H, t, J 6.5 Hz), 4.38 (2 H, q, J 7.1 Hz), 6.16 (1 H, d, J 4.0 Hz), 

6.88 (1 H, d, J 4.0 Hz), 7.12 (1 H, d, J 0.4 Hz), 7.16 (1 H, d, J 3.9 Hz), 7.38 (1 H, d, J 0.6 

Hz), 7.71 (1 H, d, J 3.9 Hz); δC(75 MHz, CDCl3) 13.75, 14.37, 19.07, 31.12, 61.26, 

73.76, 105.43, 113.90, 117.22, 122.16, 123.41, 123.64, 131.73, 134.10, 136.82, 137.45, 

139.65, 141.12, 144.31, 162.03, 165.53; m/z (TOF-ES+) 903.0731 [2MLi+] (calcd. 

903.0751). 

 

4.4  Conclusions 

 A series of small molecule semiconductors was designed to exhibit the SmE 

liquid crystal phase in order to achieve highly ordered materials for organic electronics.  

Several other mesogens with a rigid, aromatic core attached to at least one alkyl chain 

exhibit the SmE phase, so the design of the target molecule included at least one alkyl 

chain of varying length.  The liquid crystalline, semiconducting polymer, pBTTT, has 

among the highest charge carrier mobility of any organic material and it is hypothesized 

that this is due to the short distance of the intermolecular π-π overlap in the aromatic 

core.  The thiophene-based aromatic core of pBTTT was also included in the design of 

the target molecule to maximize intermolecular π-π overlap and charge carrier mobility.   
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Figure 4-8.  The n,2-OBTTT series (and 8,2-SBTTT); 15 mesogens synthesized as a 
series of small molecule semiconductors designed to exhibit the SmE phase and close 
intermolecular π-π overlap. 
 

 

 The synthetic route required synthesis of a new class of molecules not previously 

(before 2012) reported in the literature, 2-alkoxythiophenes.  A recent paper describes a 

2-step route to general 2-alkoxythiophenes utilizing a Mitsunobu etherification reaction.66  

The overall yield of the two-step Mitsunobu reaction is about 65%.  The synthetic route 

to 2-alkoxythiophenes described here employs only one step with an overall yield of 50-

70%.  The synthesis of the target series of molecules was successful.  Figure 4-8 displays 

the 15 mesogens that were synthesized as part of this series. 
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Chapter V: Liquid Crystal Behavior of the n,2-OBTTT Series 

 

5.1  Introduction: Paramorphosis as a Route to Monodomain Films 

 Often, one factor that limits charge carrier mobility in OFETs is poor molecular 

alignment throughout the bulk of the organic semiconducting thin film, the presence of 

grain boundaries.13,18,19,20  Although crystalline, organic semiconductors typically have 

higher charge carrier mobilities than materials in liquid crystal mesophases, it is difficult 

to prepare highly ordered thin films with good molecular alignment from crystalline 

organic materials.  This is because of the formation of crystal grain boundaries in 

polycrystalline materials (figure 2-3) and the difficulty of aligning solid materials.  

Although the molecules within a single grain are aligned, the grains are not necessarily 

aligned with each other.  In polycrystalline samples, this creates several crystal grain 

boundaries that act as trap sites for charges moving through a material.   

 Liquid crystal phases offer a route to achieve large-area, highly ordered, 

semiconducting films.5,20,49,68,69  Liquid crystal phases respond to shear, electric fields, 

temperature gradients, alignment layers, etc., so they are easier to align than solid and 

isotropic phases.20  Assuming that the bulk morphology of the film changes very little 

upon crystallization from a highly ordered, aligned smectic phase (a process called 

paramorphosis (figure 5-1)), then the formation of crystal grain boundaries can be 

avoided.68,69,72   
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Figure 5-1.  Textures exhibiting paramorphosis upon cooling.  (A) SmA phase, (B) SmE 
phase, (C) Sm3 phase, (D) crystal. [source: Chem. Commun., 2005, 2921–2923] 
 

 Paramorphosis is the term applied when a material cooled from one smectic phase 

(SmA) into a more highly ordered smectic phase (SmE) exhibits the optical texture of the 

smectic phase above it rather than its own, more thermodynamically stable, texture.53,68,73  

This indicates that the defects in the lower temperature phase were inherited from the 

higher temperature phase.  Thus, if there are few or no defects in the higher temperature 

phase, then this order will be maintained in the lower temperature phases, including the 

crystal, upon cooling.  This strategy has been used to control the morphology of thin 

films of organic semiconductors.68,69,72 

 New research into the SmE phase has elucidated structural features of the phase 

that make it a good platform for charge transport, like close intermolecular π-π 

overlap.70,71  The SmE phase is the mesophase closest in structure to an ordered crystal, 
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exhibiting three-dimensional interlayer correlation.53  Conversely, the SmA phase is the 

most fluid-like smectic phase and can be aligned into a monodomain from an isotropic 

melt.72  The ideal phase sequence would be I - SmA - SmE - crystal.  Utilizing this phase 

sequence, a material could be deposited onto a substrate, heated and annealed into the 

SmA mesophase, aligned into a monodomain72, and cooled into first the SmE mesophase, 

then the crystal phase.  The gradual increase in order as the material passes through the 

smectic phases is expected to suppress the formation of a multidomain structure.  

Materials that exhibit paramorphosis could potentially retain the monodomain alignment 

conferred in the SmA phase all the way throughout cooling, into the crystal phase, 

without the formation of crystal grain boundaries.  A similar strategy has been used to 

create a 150mm in diameter monodomain of thin film, liquid crystalline semiconductor.69    

 

5.1.1  Liquid Crystal Characterization of n,2-OBTTT 

 The experimental methods used to characterize the liquid crystal behavior of the 

n,2-OBTTT series are: 1) differential scanning calorimetry (DSC); 2) polarized light 

microscopy (PLM); and 3) x-ray diffraction (XRD).  Phase diagrams for all the 

compounds in the series are presented at the end of this chapter (Table 5-1).   

 

5.2  Differential Scanning Calorimetry 

 Differential scanning calorimetry is a thermoanalytical technique that measures 

the heat capacity of a substance as a function of temperature, allowing phase transitions 

to be located.  Phase transitions were determined with a Mettler Toledo DSC823e and a 

heating and cooling rate of 10° C/min.  The compounds were weighed into aluminum 
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crucibles (1-5 mg of material).  The DSC data for the n,2-OBTTT series indicate that all 

of the members of the series are liquid crystalline and have at least one mesophase, even 

the compound with only a methoxy tail: 1,2-OBTTT.    In fact, 1,2-OBTTT has at least 

two distinct mesophases (figure 5-2).  This is surprising considering that formation of 

liquid crystalline phases is said to be driven by nanosegregation of alkyl and aromatic 

sub-regions and a chain length of one does not provide much substance for 

nanosegregation.  This is a subject for future investigation.  The DSC data divide the 

mesogens into two distinct groups: compounds with at least two mesophases (figure 5-2) 

and compounds with only one mesophase (figure 5-3).  Of course, it is possible that there 

are subtle second order phase transitions that do not appear on the DSC data.  The 

compounds with short alkoxy chains (# of carbons = 1-3) and long alkoxy chains (# of 

carbons = 10-13) seem to exhibit at least two mesophases, whereas the compounds with 

medium alkoxy chains (# of carbons = 4-9) seem to exhibit only one mesophase, as 

shown by the DSC spectrum of 4,2-OBTTT (figure 5-3). 
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Figure 5-2.  Differential scanning calorimetry data for 1,2-OBTTT obtained at 10°C/min. 
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Figure 5-3.  Differential scanning calorimetry data for 4,2-OBTTT obtained at 10°C/min. 
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5.2.1  Trends in Transition Temperatures 

 The clearing points of all the compounds in the series but one are quite high: 

between 210-270°C.  This is not surprising; the structure of the aromatic core was chosen 

to allow close, and therefore strong, π-π overlap.  These strong π-π interactions hold the 

molecules together and increase the clearing point.  The clearing points decrease slightly 

with increasing alkoxy tail length.  Again, this is to be expected; alkyl chains are non-

polar and so the intermolecular forces between them are much weaker than the π-π 

interactions of the cores.  The longer the chain gets, the weaker are the intermolecular 

forces holding the molecules together.  For device applications, these temperatures are 

likely too high to be cost effective or amenable to certain industrial deposition 

techniques. 

 Three isomers with 8 carbons in their alkyl chains were synthesized as part of this 

series: 8,2-OBTTT, (R)8,2-OBTTT (enantiomerically pure), and 8,2-SBTTT (a thioether 

linkage replacing the alkoxy linkage) (figure 4-7).  The compound (R)8,2-OBTTT that 

possesses a branched alkoxy tail with and a stereocenter has a much lower clearing point 

than the n-alkoxy homolog, though this is not surprising.  Mesogens with branched tails 

often have lower clearing points resulting from an inability to pack closely, causing 

disorder in the crystal structure.  The compound 8,2-SBTTT also has lower transition 

temperatures than the corresponding 8,2-OBTTT by about 20°C.  Figure 5-4 displays the 

minimum energy conformations, as determined by a Merck molecular force field energy 

minimization (MMFF), of the isomers in the n,2-XBTTT series with eight carbons in 

their tails.  The n-alkoxy linkage of 8,2-OBTTT allows a very straight, unkinked 

conformation with a dihedral angle between the plane of the thiophene ring and the plane 
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of the alkoxy tail of virtually zero, an all anti conformation (figure 5-4a).  Conversely, 

when the octyl tail is connected to the oxygen at the 2-position (an iso connection), the 

preferred dihedral angle between the plane of the thiophene ring and the plane of the 

alkoxy tail is gauche, with a dihedral angle of about 30° (figure 5-4b).  Lastly, replacing 

the alkoxy linkage with a thioether linkage creates a serious kink in the alkyl chain, as 

seen in the minimum energy conformation of 8,2-SBTTT (figure 5-4c).  The C-S-C bond 

lengths of the thioether are much longer than the C-O-C bond lengths of the alkoxy 

linkage.  Similarly, the C-S-C bond angle is more compressed than the corresponding 

alkoxy, causing the tail to kink to avoid steric repulsion between hydrogen atoms.  The 

measured dihedral angle between the plane of the thiophene ring and the plane of the 

alkyl chain in 8,2-SBTTT is 60°, a fully gauche conformation. 

 

 

 

Figure 5-4.  (a) MMFF energy minimization of 8,2-OBTTT.  The dihedral angle between 
the plane of the core and that of the alkoxy tails is nearly zero, an all anti conformation. 
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(b) MMFF energy minimization of (R)8,2-OBTTT.  The branched tail shifts the dihedral 
angle between the plane of the core and that of the alkoxy tails to about 30°, a partial-
gauche conformation. 
 
 

 

(c) MMFF energy minimization of 8,2-SBTTT.  The sulfur atom in the thioether shifts 
the dihedral angle between the plane of the core and that of the thioether tails to about 
60°, a fully-gauche conformation. 
 
 

 The transition temperatures as a function of alkoxy tail length are plotted in figure 

5-5.  The temperatures of the transitions (Iso - SmA; blue) and (SmA - SmX/crystal; red) 

seem to be inversely correlated to alkyl chain length, as previously discussed.  There are 

a couple of interesting anomalies, however.  First, the presence of a smectic phase below 

the SmA phase in short-chain mesogens and again in long-chain mesogens and puzzling 

absence from the medium-chain mesogens.  Second, the long-chain mesogens 10,2-

OBTTT and 12,2-OBTTT do not fall on the trendline (figure 5-5).  10,2-OBTTT has 
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transition temperatures slightly lower and 12,2-OBTTT, slightly higher, than would be 

expected from the effects of the alkyl chain length alone.  This behavior is unexpected 

and, presently, unexplainable, except to say that there is possibly some odd-even effect of 

alkyl chain length at longer lengths.  This behavior warrants future investigation.   

 

 
Figure 5-5.  Transition temperatures as a function of alkoxy (or thioether) chain length. 

 

5.2.2  Formation of Crystal Smectic Phases as a Function of Chain Length  

 The possession of an alkyl chain length attached to a rigid, aromatic core has 

previously been discussed as potential driving forces of the SmE phase.  However, it does 

not seem to be as simple as the mere possession of an alkyl chain of any length.  One 

possible explanation for this behavior has to do with the asymmetry of the alkyl chains as 

well as the possession of a molecular dipole.  The ester chain length is constant, at about 
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4 atoms long (C-O-C-C), whereas the length of the alkoxy chain varies.  In the short-

chain compounds (# of carbons = 1-2), the ether chain is shorter than the ester chain.  In 

medium-chain compounds (# of carbons = 3-9), the ether chain is between 1-2 times the 

length of the ester chain.  In long-chain compounds (# of carbons = 10-13), the ether 

chain is more than 2 times the length of the ester chain.  In the medium-chain 

compounds, the tails are nearly of equal length.  This alone should not affect the 

formation of the SmE phase, since many mesogens with symmetric chains display the 

SmE phase (C8-BTBT, for example; figure 4-4).  However, C8-BTBT is a completely 

symmetric mesogen, so there is no difference between head and tail, whereas n,2-OBTTT 

is asymmetric.  Even though the chains may be of similar length in some members of the 

n,2-OBTTT series, there is a definite difference between the head and tail of the 

mesogens.  When there is a large mismatch between the lengths of the ester and ether 

chains, the chains between smectic layers must interdigitate; this is the case for both 

short-chain compounds and long-chain compounds (figure 5-6a), but not for medium-

chain, nearly symmetric compounds (figure 5-6b).   

 

(a)  

(b)  

Figure 5-6.  (a) Asymmetric calamitic mesogens must interdigitate their alkyl chains 
between layers to maintain a nanosegregated structure with sublayers of cores and 



 59 

sublayers of alkyl chains; (b) symmetric calamitic mesogens do not interdigitate their 
alkyl chains.   
 

 Thus, maybe the mesogens with two, nearly symmetric chains must be completely 

symmetric, like C8-BTBT (figure 4-4), in order to form low temperature, crystal smectic 

phases.  This could be a function of the point group symmetry of the mesogens relative to 

the direction (and magnitude) of the molecular dipole.  This hypothesis could be tested 

further to examine the effect of molecular dipole moments on smectic phase formation.   

 

5.3  Polarized Light Microscopy 
 
 Liquid crystal mesophases can be identified by examining the optical textures 

they produce through a polarized light microscope.  Each phase has a characteristic 

texture and defect structures when viewed through crossed polarizers that change during 

a phase transition, allowing identification of the type of phase.  Liquid crystal cells were 

produced and the optical textures analyzed using PLM to identify the mesophases.  

Liquid crystal cells were prepared by heating on a hotplate a small amount of material at 

the junction of a cover slip and microscope slide so that as the material melted, it was 

drawn into the cavity between the cover slip and slide by capillary force to form a thin 

film without air bubbles.  Liquid crystal cells were heated to an isotropic melt and cooled 

at a rate of 10°C/min to examine the optical textures produced.  Cells were examined 

using a Nicon-HCS400 microscope with an Instec-STC200 temperature-controlled stage. 
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5.3.1  Assignment of Mesophases by Texture Analysis 
 
 DSC data confirmed that all of the compounds in the n,2-OBTTT series exhibit at 

least one mesophase.  Careful examination of the textures produced upon cooling from an 

isotropic melt at a cooling rate of 10°C/min allowed the following phase determinations 

to be made for the n,2-OBTTT series: 

 

Smectic A 

 The high temperature mesophase that appears directly below the isotropic melt is 

remarkably similar for all members of the n,2-OBTTT series.  Although there are subtle 

differences in the textures of this high temperature phase, these differences have been 

attributed to differences in alignment (planar vs. homeotropic) and/or second order phase 

transitions that are not apparent from the DSC data but have subtle effects on texture.  As 

such, the high temperature mesophase that appears directly beneath the isotropic liquid 

has been identified as the smectic A phase for all members of the series.   

 Figure 5-7A displays a texture exhibited by 8,2-OBTTT at 230°C upon cooling 

from the isotropic at a rate of 10°C/min and figure 5-7B displays an image of the 

anisotropic growth of batonnets, a feature associated with the formation of the SmA 

phase from an isotropic melt.  The images are incredibly similar and, as such, the 

structures from 8,2-OBTTT have been identified as SmA batonnets.  Although only 8,2-

OBTTT is shown here, all members of the n-2-OBTTT series exhibited similar batonnets 

upon cooling from an isotropic melt. 
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(A)      (B) 

  
Figure 5-7.  (A) Texture exhibited by 8,2-OBTTT at 230°C upon cooling from an 
isotropic melt at the rate of 10°C/min.; (B) growth of batonnets associated with the SmA 
phase. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
 
 
Figure 5-8A displays a texture of 8,2-OBTTT at 215°C upon cooling at a rate of 

10°C/min.  This texture is representative of the textures exhibited by the other mesogens 

in the series, as well.  Figure 5-8B displays a texture of the focal conic defect associated 

with the SmA phase.  The dark lines that form a '+' in the image result from the alignment 

of molecules along the direction of the crossed polarizer and analyzer.  When the optic 

axis (slow axis) of the birefringent sample is parallel or perpendicular to the polarizers, 

dark lines known as extinction brushes result.  The presence of extinction brushes in the 

textures exhibited by the n,2-OBTTT series (figure 5-8A) is further support for an 

assignment of SmA. 
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(A)       (B) 

   
Figure 5-8.  (A) Texture exhibited by 8,2-OBTTT at 212°C upon cooling from an 
isotropic melt at the rate of 10°C/min.; (B) typical focal conic texture associated with the 
SmA phase. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
 

 

Finally, figure 5-9B displays another typical texture resulting from the SmA phase, the 

fan texture.  Figure 5-9A displays a texture exhibited by 9,2-OBTTT (and typical of the 

other members of the n,2-OBTTT series) at 212°C upon cooling at a rate of 10°C/min.  

Again, the image in figure 5-9A is taken to be the same texture as that in figure 5-9B, 

providing more evidence that the high temperature mesophase of the n,2-OBTTT series 

is, indeed, the SmA phase. 
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(A)      (B) 

   
Figure 5-9.  (A) Texture exhibited by 9,2-OBTTT at 215°C upon cooling from an 
isotropic melt at the rate of 10°C/min.; (B) typical fan texture associated with the SmA 
phase. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
 
 

Smectic C 

 Although not apparent from the DSC data, the textures exhibited by some of the 

members of the n,2-OBTTT series indicated that a smectic C (SmC) phase may be 

formed upon cooling from the SmA.  Figure 5-9A shows the texture of 1,2-OBTTT at 

202°C upon cooling from an isotropic melt at a rate of 10°C/min.  The texture has been 

assigned as belonging to the SmA phase.  Figure 5-9A contains regions of planar-aligned 

SmA (the golden focal conic and fan textures), as well as regions of homeotropically-

aligned SmA (the dark regions interrupting the focal conic texture).  During the 

paramorphic phase transition from SmA to a lower temperature smectic phase shown in 

figure 5-9B, the regions of homeotropically aligned aligned mesogens that appeared dark 

in the SmA phase have become bright and exhibit what looks like a mosaic texture.  

Thus, 1,2-OBTTT seems to transition from SmA to a more highly ordered, low 

temperature smectic phase without passing through a SmC phase.  The phase transition is 

first-order and is apparent from the DSC data (figure 5-2). 
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(A)              

   
(B) 

 
Figure 5-10.  PLM textures of 1,2-OBTTT produced on cooling from an isotropic melt at 
10°C/min; (A) SmA texture at 202°C, dark homeotropically aligned regions interrupting 
fan texture; (B) SmA - SmE transition at 174°C, dark homeotropic regions forming a 
mosaic texture and planar regions forming a striated fan texture with concentric arcs. 
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 Figure 5-10 displays several textures exhibited by 10,2-OBTTT upon cooling 

from an isotropic melt at a rate of 10°C/min.  Similar to what was seen in figure 5-9A, 

the image in figure 5-10A displays a texture containing regions of planar-aligned SmA 

(the golden focal conic and fan textures) and regions of homeotropically-aligned SmA 

(the dark regions spotted throughout the focal conic texture).  However, markedly 

different from the behavior of 1,2-OBTTT, as the cell is further cooled through the SmA 

phase, 10,2-OBTTT develops a subtle texture in the homeotropically-aligned regions 

(figure 5-10B, C, and D).  The texture becomes brighter as the cell cools until it is just as 

bright (or more) than the planar-regions. 

(A)       (B) 

    
(C)       (D) 

    
Figure 5-11.  PLM textures of 10,2-OBTTT produced on cooling from an isotropic melt 
at 10°C/min; (A) SmA texture at 205°C; (B) beginning of second-order SmA-SmC 
transition at 195°C; (C) SmA-SmC transition at 185°C; (D) SmC texture at 175°C. 
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Though this behavior is indicative of a phase transition, there is no evidence of any such 

transition in the DSC data across the series, suggesting that the transition is second-order. 

 Closer examination of the homeotropically-aligned regions of the texture 

produced by 10,2-OBTTT revealed a Schlieren texture (figure 5-11).  Although 

homeotropically aligned SmA would appear dark between crossed polarizers, 

homeotropically aligned SmC would appear as a Schlieren texture and this is precisely 

what is seen. 

 

(A)      (B) 

    
Figure 5-12.  PLM textures of 10,2-OBTTT produced on cooling from an isotropic melt 
at 10°C/min; (A) SmC texture with planar regions (golden) and homeotropic regions 
(green); (B) increased magnification of homeotropic regions reveals a Schlieren texture. 
 
 
Further evidence of a SmC phase was obtained by examining the textures produced by 

9,2-OBTTT (figure 5-12).  Figure 5-12A is presumed to be the SmA phase at 220°C 

obtained upon cooling from an isotropic melt at a rate of 10°C/min.  The literature states 

that the fan texture of SmA exhibits well-formed extinction brushes (figure 5-13A), but 

the broken fan texture of SmC has softened edges and lightened extinction brushes due to 

the different tilt directions of the director with respect to the layer normal (figure 5-13B).  
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The textures exhibited by 9,2-OBTTT in figure 5-12 greatly resemble the textures 

indicative of a SmA-SmC transition, as reported in the literature (figure 5-13). 

 
(A)        (B) 

    
Figure 5-13.  PLM textures of 9,2-OBTTT produced on cooling from an isotropic melt; 
(A) SmA texture at 205°C; (B) beginning of second-order SmA-SmC transition at 195°C, 
broken fan texture. 
 
 
(A)       (B) 

   
Figure 5-14.  (A) literature report of SmA fan texture; (B) literature report of SmC 
broken fan texture. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
 
 
  
 Most of the mesogens in the n,2-OBTTT series displayed the second-order SmA-

SmC transition proposed above.  An examination of the optical textures of the series 

revealed that only 1,2-OBTTT and 2,2-OBTTT do not indicate the appearance of some 
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degree of tilt upon cooling from the SmA phase.  The tilt of the director is potentially 

driven by alkyl chain length since it is absent only in the short-chain mesogens. 

 

Smectic E 

 In the short-chain mesogens (# of carbons = 1-3) and the long-chain mesogens (# 

of carbons = 10-13), there is DSC evidence (figure 5-5) of a lower-temperature liquid 

crystal phase below the SmA (for short-chains) or the SmC (for long-chains).  DSC 

evidence for this lower-temperature phase is absent for the medium-chain compounds (# 

of carbons = 4-9).  The texture of the lower-temperature phase is different for long-chain 

compounds than for short-chain compounds, presumably because the long-chain 

compounds are tilted relative to the layer normal and the short-chain compounds are not.  

As such, the two phases will be assigned separately.   

 The texture of the phase that appears directly beneath the SmA phase of 2,2-

OBTTT upon cooling retains the structural features of the SmA phase above it (figure 5-

13).  The new texture contains striated focal conics and fans, with equally spaced, 

concentric arcs across the fans (figure 5-13B).  The arcs are not transition bars, as they 

remain long after the transition.   
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(A)      (B) 

    
Figure 5-15.  PLM textures of 2,2-OBTTT produced on cooling from an isotropic melt; 
(A) SmA texture at 205°C; (B) beginning of second-order SmA-SmC transition at 195°C, 
broken fan texture. 
 
 
The textures in figure 5-15 are literature reports depicting a SmA-SmE transition.  The 

fan texture of the SmA phase is apparent in figure 5-15A and the striated fan with equally 

spaced concentric arcs seen in figure 5-15B is typical of the SmE phase.  The textures in 

figure 5-14 are consistent with the literature reports of the SmA-SmE transition seen in 

figure 5-15.  The evidence is consistent with a phase assignment of SmE for the short-

chain mesogens: 1,2-OBTTT and 2,2-OBTTT.   

 
(A)       (B) 

 
Figure 5-16.  (A) literature report of SmA fan texture; (B) literature report of SmC 
broken fan texture. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
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Smectic G 

 There is DSC evidence of a lower-temperature liquid crystal phase in both the 

short-chain mesogens and the long-chain mesogens and the textures indicate that these 

are two distinct phases.  The textures in figure 5-16, although similar to the textures 

exhibited by the short-chain mesogens, were distinctly different.  First, the edges of the 

homeotropic domains were spherical when the sample was in the SmA phase; however, 

when the sample cooled into the lower-temperature phase, the edges of the homeotropic 

domains changed into "snowflake" shapes (figure 5-16A).  The formation of snowflake 

domains is indicative of the SmG phase (figure 5-17A).  Second, although the broken fan 

texture of the SmC texture yielded to the lower-temperature phase while retaining 

structural features of the phase above it, similar to the transition seen in the short-chain 

mesogens (figure 5-14), the striated bands seem to make interconnected paths between 

what were once distinct focal conic structures, blurring the boundaries (figure 5-16B).  

This behavior was not seen in the short-chain mesogens and is similar to what is seen in 

the SmG tilted hexatic crystal phase (figure 5-17B). 

(A)      (B) 

   
Figure 5-17.  PLM textures of 12,2-OBTTT produced on cooling from an isotropic melt 
at a rate of 10°C/min; (A) SmG "snowflake" texture at 185°C; (B) striated band structure 
of SmG texture at 185°C. 
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(A)      (B) 

     
Figure 5-18.  (A) Literature report of SmG "snowflake" texture; (B) literature report of 
SmG striated band texture. [Source: Textures of Liquid Crystals, Ingo Dierking, 2003, Wiley-Verlag] 
 
 

The assignment of SmG to the long-chain mesogens is consistent with the observation 

that the long-chain mesogens seem to exhibit a second-order SmA-SmC transition.  It has 

been noted that tilted smectic phases typically yield to lower-temperature tilted phases 

and that non-tilted smectic phases typically yield to non-tilted smectics.  Definitive phase 

assignment of the crystal smectic phases is not possible by DSC and PLM alone.  X-ray 

data need to be collected to gather more information about the three dimensional 

structure of these lower-temperature phases. 

 

5.3.2  Materials that Exhibit Paramorphic Smectic Transitions 

 Paramorphic phase transitions are those that occur while retaining the structural 

features and defects of the preceding phase.  Paramorphic phase transitions can occur in 

either direction, while heating or cooling.  Figure 5-18 displays two paramorphic phase 

transitions occurring in 2,2-OBTTT: 1) from SmA-SmE (figure 5-18B and C) and 2) 
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from SmE-crystal (figure 5-18C and D).  This designation is consistent with the literature 

example of paramorphic phase transitions described at the beginning of this chapter 

(figure 5-1).  

 

(A)      (B) 

   
(C)      (D) 

   
Figure 5-19.  PLM textures of 2,2-OBTTT produced on cooling from an isotropic melt at 
10°C/min; (A) SmA texture at 200°C; (B) SmA - SmE transition at 185°C; (C) SmE 
texture at 145°C, paramorphic with SmA; (D) crystal texture at 70°C, paramorphic with 
SmE.   
 
 
 Figure 5-19 displays paramorphic phase transitions in both short-chain (1,2-

OBTTT) and long-chain (10,2-OBTTT) mesogens from a more fluid smectic phase (SmA 

or SmC) to a highly ordered smectic phase (SmE or SmG).  The paramorphic transition 

from SmA-SmE is ideal for a strategy involving the alignment of a material while in the 
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SmA phase and the retention of that structure throughout crystallization.  In both images, 

the transition occurs while retaining the boundaries of the homeotropic and planar 

domains, as well as the general structural features of the smectic focal conic and fan 

textures.  Although the medium-chain mesogens don't seem to display a low-temperature, 

highly ordered smectic phase (like SmE or SmG), they do exhibit what are taken to be 

paramorphic SmC-crystal transitions.  The assignment of paramorphic crystal transitions 

in the medium-chain mesogens is made based on the transition pictured in figure 5-20.  

This type of transition is representative of all of the medium-chain mesogens.   

 
(A)      (B) 

   
Figure 5-20.  Paramorphic transitions produced on cooling from an isotropic melt at 
10°C/min; (A) SmA-SmE transition of 1,2-OBTTT at 174°C; (B) SmC-SmG transition of 
10,2-OBTTT at 153°C.  
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(A)       (B) 

   
(C)      (D) 

   
Figure 5-21.  PLM textures of 5,2-OBTTT produced on cooling from an isotropic melt at 
10°C/min; (A) SmA texture at 215°C, fan texture; (B) SmA-SmC transition at 195°C, 
broken fan texture; (C) SmC texture at 185°C, paramorphic with SmA; (D) SmC-crystal 
transition at 183°C, paramorphic with SmC.   
 
 
 In fact, the only member of the series that does not seem to exhibit paramorphic 

phase transitions is 4,2-OBTTT.  Figure 5-21 displays the textures exhibited during the 

SmC-crystal phase transition in 4,2-OBTTT.  Clearly, the incoming crystal texture does 

not retain any of the structural features of the smectic phase preceding it.  The formation 

of crystal lancets disrupts the focal conic texture.  Paramorphosis does not occur if the 

crystal structure is significantly different than the structure of the mesophases.(LC 

semiconductors book)  As such, 4,2-OBTTT does not seem particularly well suited to 

form highly ordered thin films using the presently employed strategy. 
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(A)      (B) 

   
 
(C)      (D) 

    
Figure 5-22.  Non-paramorphic transitions exhibited by 4,2-OBTTT produced on cooling 
from an isotropic melt at 10°C/min; (A) SmA texture at 180°C; (B) SmA - crystal 
transition at 179°C; (C) SmA - crystal transition at 178°C; (D) crystal texture at 80°C. 
 

5.4.3  X-Ray Diffraction 

 X-ray experiments were temperature-controlled with an Instec STC200 hotstage, 

and data were collected using a point detector mounted on a Huber four-circle 

goniometer and utilizing synchrotron radiation at beamline X10A of the National 

Synchrotron Light Source (NSLS), Brookhaven National Laboratory.  The data were 

collected by Dr. Yongqiang Shen of the Liquid Crystal Materials Research Center at the 

University of Colorado at Boulder.  Due to time constraints, it was not possible to obtain 
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x-ray data for all members of the series across the entire temperature range of 

mesogenicity.  

 

4,2-OBTTT 

 Figure 5-22 is a plot of layer thickness (measured by XRD) as a function of 

temperature for 4,2-OBTTT.  This is the only member of the series that does not exhibit 

paramorphic phase transitions.  The plot shows that the thickness of the smectic layers (d 

= 24.92 Å) is slightly less than the molecular length of the mesogen in the lowest energy 

conformation (d = 25.03 Å), as determined using a MMFF calculation.  This suggests that 

the mesogens in the smectic layers are un-tilted and fully stretched out, indicating a SmA 

phase.  However, the texture of 4,2-OBTTT clearly shows the presence of a Schlieren 

texture in co-existence with a planar region of focal conic texture.  A Schlieren texture in 

homeotropically aligned SmA is not possible, presenting the possibility that this is some 

orthogonal phase besides SmA and SmE.  The only other possibilities are SmBhex and 

SmBcrys.  The mesogen crystallizes around 180°C, as seen in the PLM data of figure 5-21 

and the DSC data of figure 5-3.  At 180°C, the x-ray signal for 4,2-OBTTT exhibits three 

dimensional order, indicating crystallization (figure 5-23).  It is unclear why 4,2-OBTTT 

would deviate from the series.  The ether tail (d = 7.005 Å) of 4,2-OBTTT is slightly 

longer than the ester tail (d = 5.650 Å).  This behavior is a topic for future investigation. 
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Figure 5-23.  XRD generated plot of smectic layer thickness (Å) of 4,2-OBTTT as a 
function of temperature (°C).  Molecular length = 25.03 Å (MMFF calculation).   
 
 
 
 

 
Figure 5-24.  Diffractogram of 4,2-OBTTT showing scattering from the three-
dimensionally ordered crystal structure. 
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Medium Chain Mesogens 

 The medium chain mesogens in the n,2-OBTTT series exhibited similar behavior.  

The layer spacing of the phase observed immediately upon cooling from an isotropic melt 

is nearly the same as the molecular length for each of the compounds reported (figure 5-

24).  This is consistent with an orthogonal phase and since the PLM data already 

indicated a SmA phase, this seems to be a reasonable phase assignment.  It is also 

apparent that the layer spacing decreases with decreasing temperature.  Again, the PLM 

data indicated a second-order SmA-SmC transition for the medium chain mesogens and 

the XRD data support this hypothesis.   

 

 

 
Figure 5-25.  Layer thickness of medium chain members of the n,2-OBTTT series as a 
function of temperature.  Molecular length (MMFF) is also reported. 
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Long Chain Mesogens 

 The layer spacing of the phase directly beneath the isotropic of both 12,2-OBTTT 

and 13,2-OBTTT is significantly shorter than the molecular length, as determined by 

MMFF calculation (figure 5-25).  There are at least two possible explanations for this 

behavior: 1) the molecules are tilted relative to the layer normal or 2) the alkoxy chains 

are somewhat interdigitated.  If the molecules are tilted relative to the layer normal, then 

this should be evident in the PLM texture of the material: tilted phases should not have 

dark homeotropically aligned domains.  Upon re-visiting the PLM data, it was discovered 

that, indeed, the phase directly beneath the isotropic does not contain dark homeotropic 

domains (figure 5-26).  In light of this new discovery, the mesophase observed upon 

cooling from an isotropic melt in the long chain mesogens was re-designated as one of 

the tilted, fluid-smectic phases, either SmI or SmF.  Another interesting feature of this 

data is the increase in layer spacing as the temperature decreases below 150°C.  

Typically, a tilted mesophase will stay tilted as the temperature is decreased, though it is 

not unheard of for a tilted phase to stand back up upon cooling.   
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Figure 5-26.  Layer thickness of long chain members of the n,2-OBTTT series as a 
function of temperature.  Molecular length (MMFF) is also reported. 
 

 

 
Figure 5-27.  PLM texture of 12,2-OBTTT produced at 225°C upon cooling from an 
isotropic melt at a rate of 10°C/min.  The lack of dark homeotropic domains indicates a 
tilted, fluid mesophase, SmI perhaps. 
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5.5  Conclusions 

 The DSC, PLM, and XRD data presented in this chapter have allowed the 

tentative phase assignment of the n,2-OBTTT series (table 5-1).  Without more extensive 

x-ray studies, definitive phase assignments cannot be made.  There is certainly a 

significant effect of mesogen tail length on transition temperature and formation of 

mesophases.  The short chain compounds are untilted; this is consistent with the Boulder 

Model for mesogen tilt.  This model proposes that the cores tilt to maximize enthalpic 

interactions among the aromatic rings while giving more space to the melted alkyl tails.  

This might explain why these short chain mesogens didn't tilt.  The medium chain 

compounds did not seem to exhibit any of the highly ordered, crystal smectic phases.  

This could have something to do with chain asymmetry: the medium chain compounds 

have two chains of similar length.  This hypothesis is supported by the formation of 

crystal smectic phases in the long chain compounds; as one chain increases in length as 

the other stays constant, they become more asymmetric.  Perhaps some threshold is 

reached starting with compound 10,2-OBTTT, since it exhibits an ordered, crystal 

smectic phase and 9,2-OBTTT does not.  This is a topic for future investigation. 

 Ultimately, at least some of the mesogens of the n,2-OBTTT series exhibited low-

temperature, crystal-smectic phases.  As such, the approach of designing a molecule to 

exhibit a certain phase based on the structure of other mesogens that also exhibit that 

phase seems to be successful.  Further, most of the mesogens exhibited paramorphic 

phase transitions.  Perhaps more importantly, one mesogen did not; this suggests that the 

crystal structure of 4,2-OBTTT is significantly different than not only the structures of its 

own mesophases, but also the structures of the crystals for other members of the series.  It 



 82 

would be useful to know what structural features affect paramorphic phase transitions.  A 

potential strategy for lowering transition temperatures was discovered: substituting the 

alkoxy linkage for a thioether linkage.  This strategy potentially retains the liquid 

crystalline behavior of the series while lowering transition temperatures by about 20°C 

Table 5-1.  Phase Assignments and Paramorphic Behavior of the n,2-OBTTT Series. 

Compound	   W#	   Phase	  Transitions	  Upon	  Cooling	   Paramorphic	  

1,2-‐OBTTT	   W785	   Iso	  →	  SmA	  →	  SmE	  →	  crystal	   Yes	  

2,2-‐OBTTT	   W786	   Iso	  →	  SmA	  →	  SmE	  →	  crystal	   Yes	  

3,2-‐OBTTT	   W787	   Iso	  →	  SmA	  →	  SmC	  →	  SmG	  →	  crystal	   Yes	  

4,2-‐OBTTT	   W759	   Iso	  →	  SmA	  →	  SmB?	  →	  crystal	   No	  

5,2-‐OBTTT	   W760	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

6,2-‐OBTTT	   W761	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

7,2-‐OBTTT	   W762	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

8,2-‐OBTTT	   W763	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

8,2-‐SBTTT	   W768	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

(R)8,2-‐OBTTT	   W769	   Iso	  →	  SmA*	  →	  SmC*	  →	  crystal	   Yes	  

9,2-‐OBTTT	   W756	   Iso	  →	  SmA	  →	  SmC	  →	  crystal	   Yes	  

10,2-‐OBTTT	   W764	   Iso	  →	  SmA	  →	  SmC	  →	  SmG	  →	  crystal	   Yes	  

11,2-‐OBTTT	   W765	   Iso	  →	  SmA	  →	  SmC	  →	  SmG	  →	  crystal	   Yes	  

12,2-‐OBTTT	   W766	   Iso	  →	  SmA	  →	  SmC	  →	  SmG	  →	  crystal	   Yes	  

13,2-‐OBTTT	   W767	   Iso	  →	  SmA	  →	  SmC	  →	  SmG	  →	  crystal	   Yes	  
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Chapter VI:  Solid-State Characterization of n,2-OBTTT Series 

 

6.1  Introduction: Short Contacts and Monodomain Thin Films 

 As charges hop across molecules in a material, charge mobility is significantly 

affected by even small molecular displacements.74  The nature of molecular packing 

within the crystal phase of organic semiconductors with very similar aromatic cores can 

affect charge mobility values by more than 5 orders of magnitude.16  Typically, 

molecules with rigid aromatic cores crystallize in a herringbone structure (figure 6-1a); 

the herringbone structure offers little or no intermolecular π overlap.  A better 

arrangement would be a cofacial π-stack (figure 6-1b).74,75  Even in cofacial π-stacks, the 

charge mobility is greatly affected by intermolecular distance.  Figure 6-2 is a plot of 

charge mobility as a function of the distance between π systems.6,75  The typical 

intermolecular distance between π-stacks in organic molecules that exhibit this cofacial 

arrangement is between 3.5 - 4.0 Å.  As can be seen from the plot, charge mobility is 

affected significantly even at these relatively short distances. 

 

 
Figure 6-1.  (a)  Herring bone structure of pentacene; (b) cofacial π-stack structure of 
hexathiapentacene, π-stack distance = 3.54 Å.  [Source: J. Mater. Chem.,2011, 21, 1329-1337] 
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Figure 6-2.  Charge carrier mobility as a function of the intermolecular distance in 
cofacial π-stacks.  [Source: Chemical Reviews, 2007, Vol. 107, No. 4, 951] 

 

 It is incredibly difficult to predict a crystal structure based on a molecular 

structure.  Subtle effects of conformation can have significant effects on crystal structure.  

As such, it is difficult to predict the effect of varying alkoxy chain length on otherwise 

identical molecules.  Unsubstituted oligothiophenes crystallize in a herringbone structure 

with very little π-overlap, similar to unsubstituted oligoacenes.76  However, the 

introduction of alkyl side chains causes a lamellar structure, where the main chains are 

forced into a more cofacial arrangement.6   Further, a series of compounds with the same 

aromatic backbone, but different length alkyl chains showed an increase in charge 

mobility as a function of increasing alkyl chain length.78,80  It is reasonable, then, to 

expect that the introduction of alkyl side chains onto a rigid aromatic core might cause a 

cofacial crystal arrangement.  In the present work, the crystal structures of the n,2-

OBTTT series are examined to determine the effect of alkoxy chain length on the crystal 

structure and intermolecular π-distance.   

 In addition to a favorable intermolecular distance and cofacial arrangement in the 



 85 

crystal structure, charge mobility values are improved upon limiting the number of grain 

boundaries in a thin film.18,19  Controlling the growth a crystal is very difficult and 

nucleation is a kinetic process that often occurs simultaneously in several regions of a 

thin film.  Grain boundaries and other structural defects trap charge carriers and limit 

device efficiency.77,79  It is possible to grow a perfect, defect-free molecular crystal20, but 

this is not a trivial process.  Crystal grain boundaries can also be avoided by preparing a 

monodomain crystalline sample by utilizing liquid crystal mesophases.68,69  Monodomain 

thin films have achieved charge carrier mobilities one order of magnitude higher than 

multidomain thin films of the same material.78  Solution deposition of a mesogen onto a 

substrate containing an alignment layer, like polyimide, and subsequent annealing in the 

fluid-smectic phases, like SmA or SmC, can yield highly aligned monodomain thin 

films.68-69,80-81  Figure 6-3a displays a spin-cast, multidomain thin film, as spun, and 

figure 6-3b displays a spin-cast, monodomain thin film of the same material obtained by 

coating the substrate with an alignment layer and annealing the as spun thin film into the 

SmA phase for realignment.81 

 

  
Figure 6-3.  (a) Leaf-like, multidomain thin film obtained from spin-casting without 
annealing; (b) monodomain thin film obtained from spin-casting onto an alignment layer 
and annealing into the SmA phase. [Source: J. Am. Chem. Soc. 128(7), 2336–2345 (2006)] 
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6.2  Single Crystal X-Ray Crystallography 

 All reflection intensities were measured at 110(2) K using a SuperNova 

diffractometer (equipped with Atlas detector) with Mo Kα radiation (λ = 0.71073 Å) 

under the program CrysAlisPro (Version 1.171.36.32 Agilent Technologies, 2013). The 

program CrysAlisPro (Version 1.171.36.32 Agilent Technologies, 2013) was used to 

refine the cell dimensions. Data reduction was done using the program CrysAlisPro 

(Version 1.171.36.32 Agilent Technologies, 2013). The structure was solved with the 

program SHELXS-2013 (Sheldrick, 2013) and was refined on F2 with SHELXL-2013 

(Sheldrick, 2013). Analytical numeric absorption corrections based on a multifaceted 

crystal model were applied using CrysAlisPro (Version 1.171.36.32 Agilent 

Technologies, 2013). The temperature of the data collection was controlled using the 

system Cryojet (manufactured by Oxford Instruments). The H atoms were placed at 

calculated positions using the instructions AFIX 23, AFIX 43 or AFIX 137 with isotropic 

displacement parameters having values 1.2 or 1.5 times Ueq of the attached C atoms. 

 The n,2-OBTTT series exhibits crystallochromy, changes in the color of the 

crystals.  Even though all members of the series exhibit a fluorescent yellow color and 

nearly identical absorption spectra when in solution, the color of the solid crystals varies 

as a function of the molecular packing within the crystal.  Figure 6-4 displays the change 

in color from yellow to orange and back to yellow in the n,2-OBTTT series.  These color 

changes have been attributed to changes in the degree of π-overlap within the aromatic 

cores.82  Figure 6-5 displays a series of different intermolecular arrangements of perylene 

bisimide dyes that yield drastically different colors depending on the degree of π-overlap.   
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(a) 

 
(b)      (c) 

 
Figure 6-4.  (a) Crystallochromy, changes in the color of the crystals, exhibited by the n-
2-OBTTT series, indicating a range of intermolecular π-π arrangements; (b) a single 
crystal of 13,2-OBTTT, yellow plate; (c) a single crystal of 3,2-OBTTT, orange plate.   
 
 
 

 
Figure 6-5.  A series representing the π-π arrangements of perylene bisimide dyes; the 
structure on the left (red) displays the largest offset and, thus, the smallest π-π 
interactions; the structure in the middle (maroon) displays more band broadening as a 
result of increased π-π coupling; the structure on the right (black) experiences extensive 
band broadening and π-π coupling. 
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1,2-OBTTT: Small yellow plates, Monoclinic, P21/c 
 

  
Figure 6-6.  Crystal structure of 1,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone array.  The π-π overlap is very minimal; π-π distance = 
3.518 Å. 
 
 
 
 1,2-OBTTT crystallizes in the monoclinic space group with 4 molecules in the 

unit cell.  The molecules display a herringbone arrangement, with edge-to-face 

interactions.  This significantly limits π-overlap, as can been seen in figure 6-6.  The 

distance between the cofacial aromatic rings is 3.518 Å, which is relatively close, but the 

minimal π-overlap will severely limit charge transport in this material.  The crystal 

structure displays smectic-like layers of tilted molecules; this structure could help explain 

the paramorphic phase transitions observed in chapter 5.  The structure is partly 
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disordered.  The central thieno[3,2-b]thiophene ring and alkoxy-bearing thiophene ring 

are disordered over two orientations (figure 6-7).   

 

 

 
Figure 6-7.  The molecular disorder inherent in the crystal structure of 1,2-OBTTT; the 
central thieno[3,2-b]thiophene and alkoxy-bearing thiophene ring are disordered over two 
orientations.   
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3,2-OBTTT: Orange plates, Monoclinic, C2/c 

 
Figure 6-8.  Crystal structure of 3,2-OBTTT displaying smectic-like layers of tilted 
molecules and a cofacial arrangement.  The π-π overlap is significant in this orientation; 
π-π distance = 3.498 Å. 
 

 3,2-OBTTT crystallizes in the monoclinic space group.  Unlike 1,2-OBTTT, the 

molecules display a cofacial arrangement, with face-to-face interactions.  This 

significantly increases π-overlap, as can been seen in figure 6-8.  The distance between 

the cofacial aromatic rings is 3.498 Å, which is relatively close and the significant π-

overlap will facilitate charge transport in this material.  The crystal structure displays 

smectic-like layers of tilted molecules; this structure could help explain the paramorphic 

phase transitions observed in chapter 5.   
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 The molecules of 3,2-OBTTT are found at sites of inversion symmetry.  The 

molecules are partially disordered as they do not have inversion symmetry (the fragment 

including the non-fused and fused thiophene rings are ordered though).  To prevent 

impossible intermolecular short contacts along the a direction, both ether and ester 

groups must be disordered over two orientations (figure 6-9).  The occupancy factors of 

the major components of the disorder were refined freely, and their values refine to 

0.314(6) and 0.298(5) (note: the sum of the major/minor occupancy factors for both ether 

and ester groups must be equal to 0.5 in the asymmetric unit).  In the figure below, the 

molecules are found at sites of inversion, and only one half of the molecule is 

crystallographically independent.  Thus, both ether and ester groups must be disordered, 

and the occupancy factors of the major components of the disorder must be < 0.5. 

 

 
Figure 6-9.  The molecular disorder inherent in the crystal structure of 3,2-OBTTT 
because the molecules are found are sites of inversion symmetry but the molecules don't 
possess inversion symmetry; both ether and ester groups must be disordered over two 
orientations. 
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5,2-OBTTT: Yellow plates, Triclinic, P-1 

 

   
Figure 6-10.  Crystal structure of 5,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone arrangement.  The π-π overlap is negligible in this 
orientation; π-π distance = 3.650 Å. 

 
 

 5,2-OBTTT crystallizes in the triclinic space group with 2 independent molecules 

in the unit cell.  Similar to 1,2-OBTTT, the molecules display a herringbone arrangement, 

with edge-to-face interactions.  This significantly hinders π-overlap, as can been seen in 

figure 6-10.  The distance between the cofacial aromatic rings is 3.650 Å.  The crystal 

structure displays smectic-like layers of tilted molecules; this structure could help explain 

the paramorphic phase transitions observed in chapter 5.  The structure is disordered.  

Both molecules are found to be wholly disordered (figure 6-11).   
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Figure 6-11.  The molecular disorder inherent in the crystal structure of 5,2-OBTTT; 
Both molecules found in the unit cell are completely disordered. 
 
 
 
6,2-OBTTT: Yellow plates, Triclinic, P-1 

  
Figure 6-12.  Crystal structure of 6,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone arrangement.  The π-π overlap is negligible in this 
orientation; π-π distance = 3.571 Å. 
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 6,2-OBTTT crystallizes in the triclinic space group with 2 independent molecules 

in the asymmetric unit cell.  Similar to 1,2-OBTTT, the molecules display a herringbone 

arrangement, with edge-to-face interactions.  This significantly hinders π-overlap, as can 

been seen in figure 6-12.  The distance between the cofacial aromatic rings is 3.571 Å.  

The crystal structure displays smectic-like layers of tilted molecules; this structure could 

help explain the paramorphic phase transitions observed in chapter 5.  In contrast to 5,2-

OBTTT, which is almost completely disordered, the structure of 6,2-OBTTT is mostly 

ordered.  The only disorder in the structure is found in the central thieno[3,2-b]thiophene 

ring, which is disordered over two orientations. 

 

8,2-OBTTT: Small yellow plates, Orthorhombic, Pbca 

           
Figure 6-13.  Crystal structure of 8,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone arrangement.  The π-π overlap is negligible in this 
orientation; π-π distance = 3.617 Å. 
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 8,2-OBTTT crystallizes in the orthorhombic space group with 2 independent 

molecules in the asymmetric unit cell.  This compound exhibits significantly different 

crystal morphology than those members of the series already discussed.  The layers are 

still smectic-like, though the layer interface displays anti-clinic orientation.  This should 

not affect charge carrier mobility since charge transport within these materials in 2D, 

within the layers, not between.  However, molecules within the layer do not form a 

continuous π-system as they do in the short chain members of the series.  This is a 

function of the increasing asymmetry along the long axis of the molecules caused by the 

increasing alkoxy chain length.  A head-to-tail orientation effectively disrupts the 

intermolecular π-overlap.  The molecules in the short chain mesogens crystallize with a 

head-to-tail orientation, as well, but because the ester and alkoxy chains are similar in 

length, there is still significant π-overlap.  This molecular arrangement is predicted to 

severely hinder charge transport.  There is essentially zero π-overlap; though the 

overhead view in figure 6-13 gives the impression that there is a favorable cofacial 

arrangement, though the perspective in the middle shows the head-to-tail orientation that 

effectively limits π-overlap.  Because the phase transition from SmC - crystal appears to 

be paramorphic, it raises the question whether the layer interfaces in the liquid crystal 

phase are syn-clinic or anti-clinic.  The crystal structure of 8,2-OBTTT is mostly ordered.  

The only disorder in the structure is found in the central thieno[3,2-b]thiophene ring, 

which is disordered over two orientations. 
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9,2-OBTTT: Yellow Needles, Monoclinic, P21/c 

 
Figure 6-14.  Crystal structure of 9,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone arrangement.  The π-π overlap is negligible in this 
orientation because of the head-to-tail orientation; π-π distance = 3.644 Å. 
 

 

 9,2-OBTTT crystallizes in the monoclinic space group.  Similar to 1,2-OBTTT, 

the molecules display a herringbone arrangement, with edge-to-face interactions.  The 

asymmetry of the molecule resulting from the long alkoxy chain disrupts the continuous 

π-system, similar to 8,2-OBTTT.  This significantly hinders π-overlap, as can been seen 

in figure 6-14.  The distance between the cofacial aromatic rings is 3.644 Å.  The crystal 

structure displays smectic-like layers of tilted molecules; this structure could help explain 

the paramorphic phase transitions observed in chapter 5.  Similar to 8,2-OBTTT, the 

molecules are oriented in a head-to-tail fashion, which disrupts the π-overlap.  However, 

9,2-OBTTT has syn-clinic layer interfaces, like the shorter chain members of the series.  

The only disorder in the structure is found in the central thieno[3,2-b]thiophene ring, 

which is disordered over two orientations. 
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10,2-OBTTT: Small Yellow Plates, Orthorhombic, Pbca 

 
Figure 6-15.  Crystal structure of 10,2-OBTTT displaying smectic-like layers of tilted 
molecules with anti-clinic layer interfaces and a herringbone arrangement.  The π-π 
overlap is negligible in this orientation because of the head-to-tail orientation; π-π 
distance = 3.652 Å. 
  
 
 10,2-OBTTT crystallizes in the orthorhombic space group, like 8,2-OBTTT.  Also 

similar to 8,2-OBTTT, the smectic-like layers in the crystal structure exhibit anti-clinic 

layer interfaces.  The π-π distance is slightly larger than in 8,2-OBTTT at 3.652 Å.  The 

fact that 9,2-OBTTT doesn't display the orthorhombic space group, but the members with 

8 and 10 carbons is their alkoxy chains do.  This suggests some type of even-odd 

switching behavior.  Crystal structures of 11,2-OBTTT and 12,2-OBTT are not available, 

but it would be interesting to solve these structures and see if they follow this same trend.  

Again, it would be interesting to examine whether the tilted smectic phase exhibited by 

10,2-OBTTT has syn-clinic or anti-clinic layer interfaces, since the SmC - crystal 
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transition appears paramorphic, suggesting structural similarity between the liquid crystal 

phase and the crystal phase.  This crystal structure is not predicted to yield high charge 

carrier mobilities due to the low π-overlap.  The structure is mostly ordered, but the 

thieno[3,2-b]thiophene ring is disordered over two orientations. 

 

13,2-OBTTT: Yellow Plates, Monoclinic, P21/c 

       
Figure 6-16.  Crystal structure of 13,2-OBTTT displaying smectic-like layers of tilted 
molecules and a herringbone arrangement.  The π-π overlap is negligible in this 
orientation because of the head-to-tail orientation; π-π distance = 3.581 Å. 
 

 13,2-OBTTT crystallizes in the monoclinic space group with 2 independent 

molecules in the unit cell.  Similar to 1,2-OBTTT, the molecules display a herringbone 

arrangement, with edge-to-face interactions.  This significantly hinders π-overlap, as can 

been seen in figure 6-10.  The distance between the cofacial aromatic rings is 3.581 Å.  

The asymmetry of the molecule resulting from the long alkoxy chain disrupts the 

continuous π-system, similar to 8,2-OBTTT.  This significantly hinders π-overlap, as can 
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been seen in figure 6-16.  The distance between the cofacial aromatic rings is 3.581 Å.  

This distance is shorter than the distance in the 8, 9, and 10 carbon alkoxy isomers, which 

underlines the fact that there is no linear effect of alkoxy chain length on π-π distance.  

Again, the only disorder in the structure is found in the central thieno[3,2-b]thiophene 

ring, which is disordered over two orientations. 

 Table 6-1 summarizes the results obtained from crystal structures of the n,2-

OBTTT series.  A general conclusion that emerges from these results is that there is not a 

linear correlation between alkoxy chain length and crystal structure, although the crystal 

structure is profoundly affected by such small molecular changes.   

 

Table 6-1.  Crystal Properties of the n,2-OBTTT Series 
Chain	  
Length	   Crystal	  Color	   π-‐π	  Distance	  

Layer	  
Interface	   Regularity	  

Space	  
Group	  

1	   yellow	   3.518	  Å	   synclinic	   disordered	   P21/c	  
2	   orange	   	  	   	  	   	  	   	  	  
3	   orange	   3.498	  Å	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  synclinic	   disordered	   C2/c	  
4	   yellow/orange	   	  	   	  	   	  	   	  	  
5	   yellow/orange	   3.650	  Å	   synclinic	   disordered	   P-‐1	  
6	   yellow	   3.571	  Å	   synclinic	   ordered	   P-‐1	  
7	   yellow	   	  	   	  	   	  	   	  	  
8	   yellow	   3.617	  Å	   anticlinic	   ordered	   Pbca	  
9	   yellow	   3.644	  Å	   synclinic	   ordered	   P21/c	  
10	   yellow	   3.652	  Å	   antclinic	   ordered	   Pbca	  
11	   yellow	   	  	   	  	   	  	   	  	  
12	   yellow	   	  	   	  	   	  	   	  	  
13	   yellow	   3.581	  Å	   synclinic	   ordered	   P21/c	  

 

 

It is unclear what is responsible for the significant shortening of the π-π distance and the 

cofacial orientation in 3,2-OBTTT.  This compound displays significant band broadening 

in the solid state resulting from the π-interactions, as evidenced by its different crystal 
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color caused by a red-shifted absorption.  Though the crystal structure of 2,2-OBTTT was 

not solved, this material also formed orange crystals and it would be worthwhile to 

measure the π-π distance.  The shorter chain members of the series also exhibited much 

more disorder in their crystal structures than the longer chain members.  It is unclear what 

role crystal disorder plays in charge transport; it is possible that this disorder limits 

charge mobility, but it is also possible that this disorder could contribute to a productive 

phonon system, facilitating charge transport.  This effect needs to be further studied.  In 

addition to larger π-π distances, long chain members become more and more asymmetric, 

which further disrupts the π-overlap.  Taking this into consideration, future mesogens 

should be designed with some maximum limit to the chain length asymmetry to prevent 

head-to-tail disruptions of the π-system.   

 The odd-even behavior of the layer interfaces in the crystal structures of 8,2-

OBTTT, 9,2-OBTTT, and 10,2-OBTTT is certainly a topic for future investigation, as 

well.  Odd-even trends are common in liquid crystal research, but it is strange that 

extending the length of an n-alkoxy chain could drive a shift from syn-clinic to anti-clinic 

layer interfaces.  Further, that the effect is not extended to 13,2-OBTTT, which displays 

syn-clinic layer interfaces once again, is also unexpected.  Another possible explanation 

of this behavior is that these materials exhibit more than one stable crystal phase.  

Perhaps all of the longer chain mesogens exhibit more than one stable crystal phase and it 

is only coincidental that even chain members happened to crystallize in that structure.   
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(a) 

 
(b) 

 
(c) 

 

 
Figure 6-17.  Molecular orbitals of 3,2-OBTTT; (a) HOMO; (b) LUMO; (c) overlap of 
HOMO-LUMO.  Calculated by DFT using B3LYP/6-31G* starting from MMFF energy 
minimized geometry.   
 
 
 One final consideration is that short π-π distances do not necessarily ensure higher 

charge carrier mobilities.  It is not spatial overlap that is important for charge transport; it 

is wavefunction overlap of the HOMO and LUMO of adjacent molecules.   Figure 6-17 

shows the molecular orbitals of 3,2-OBTTT.  Because the molecule contains a molecular 

dipole moment, the frontier orbitals are not symmetric.  This means that perfect cofacial 

arrangement might not lead to the highest charge carrier mobilities.  To truly determine 

whether a specific molecular π-π arrangement is favorable, the charge carrier mobility of 

the material must be measured. 
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6.3  Thin-Films 

 The n,2-OBTTT series was designed to exhibit paramorphic liquid crystal phases 

to create highly ordered thin films.  Though none of the mesophases have been confirmed 

by x-ray studies, it is believed that 1,2-OBTTT and 2,2-OBTTT exhibit the SmE phase.  

The SmE phase has been characterized as exhibiting charge carrier mobilities as high as 

solid crystalline materials.  As such, these members of the series are excellent candidates 

for creating monodomain thin films.  Even though 3,2-OBTTT exhibited shorter π-π 

distances than 1,2-OBTTT, the nature of the low-temperature smectic phase in 3,2-

OBTTT is less clear.  Since there is no crystal structure for 2,2-OBTTT and this 

information will be useful for the analysis of the thin film characteristics, 1,2-OBTTT 

was chosen as a pilot compound to make monodomain thin films and optimize the 

processing conditions. 

 Two different deposition techniques were examined: spin-casting and blade-

casting.  Figure 6-18 shows the morphology of an unannealed thin film of 1,2-OBTTT 

obtained from spin-casting a chloroform solution of 10 mg/mL at a rate of 1000 RPM.  

The film is a multidomain structure with needle-like regions meeting at grain boundaries.  

The film was visible to the naked eye on top of the substrate, so it is likely not 

particularly thin, though no measurements of film thickness were taken.  Although this 

technique has been used to successfully deposit thin films with very high charge carrier 

mobilities, there is substantial variation in the specific execution of the technique, leading 

to difficulty obtaining reproducible results.  Further, the radial force applied to the 

substrate as it spins will likely lead to a radially aligned thin film, which does not provide 

a channel for the anisotropic transport of charge through organic materials.   
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Figure 6-18.  TEM image of an unannealed, spin-cast thin film of 1,2-OBTTT.  Solution 
concentration = 10 mg/mL; spin speed = 1000 RMP.  Multidomain morphology with 
several grain boundaries. 
 
 
 In contrast, figure 6-19 shows a TEM image of an unannealed, blade-cast thin 

film of 1,2-OBTTT from a chloroform solution of 10 mg/mL.  Blade-casting offers the 

advantage of being able to control the deposition temperature, which for liquid crystalline 

materials, can be extremely useful.  In a material is deposited at a temperature so that it is 

in a liquid crystal phase, it will be much easier to align.  Further, blade-casting produces a 

uni-directional force on the thin film during deposition, potentially leading to uni-

directional alignment, an ideal orientation for organic semiconductors.  The film in figure 

6-19 was deposited at 150° and was not annealed.  As can been seen from the images, the 

structure produced from blade-casting is more homogenous, though more than one 

domain are still certainly present.  The domains in figure 6-18 look crystalline, like 



 104 

needles, suggesting that the solvent evaporated too quickly during spin-casting.  

Conversely, the domains in the film in figure 6-19 have far less severe grain boundaries 

and the edges of the domains are softer.  This suggests that the film benefitted from the 

liquid crystallinity of the material during blade-casting.   

 

 
Figure 6-19.  TEM image of an unannealed, thin film of 1,2-OBTTT blade-cast at 
150°C.  Solution concentration = 10 mg/mL.  Multidomain morphology with several 
grain boundaries, though an improvement over spin-casting. 
 

 Although liquid crystallinity certainly affects the morphology of the thin films 

when deposited at different temperatures, this is also a function of the solvent boiling 

point: a low boiling point solvent will evaporate quickly, especially at high temperatures, 

and may not yield enough time for mesophase induced molecular alignment.  As such, it 

was discovered that bromoform, with dissolving properties similar to chloroform but with 

a much higher boiling point, was a better solvent for deposition at elevated temperatures.  



 105 

 Thin films were also blade-cast at 100°C (figure 6-20) and 90°C (figure 6-21).  

Subtle variations in deposition conditions can have profound effects on the morphology 

of thin films, so several deposition temperatures, casting speeds, solution concentrations, 

and blade heights were tried.  Of the several deposition temperatures that were explored, 

it was discovered that depositing at 90°C yielded films with the most homogenous 

morphologies.  Figure 6-21 shows an image of a thin film of 1,2-OBTTT deposited at 

90°C without further annealing.  There is clearly an improvement in the morphology 

between the films deposited at 100°C and 150°C.  There is a striking improvement in thin 

film morphology caused by a simple 10°C reduction in the deposition temperature (figure 

6-20 vs 6-21).  

 

 
Figure 6-20.  TEM image of an unannealed, thin film of 1,2-OBTTT blade-cast at 
100°C.  Solution concentration = 10 mg/mL.  Multidomain morphology with several 
grain boundaries, though an improvement over both spin-casting and blade-casting at 
150°C. 
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Figure 6-21.  TEM image of an unannealed, thin film of 1,2-OBTTT blade-cast at 90°C.  
Solution concentration = 10 mg/mL.  The morphology is highly homogenous and 
contains very few different domains.   
 
 
 Finally, to further improve morphology, thin films are often annealed at high 

temperatures for minutes to hours.  With liquid crystalline materials, this is especially 

beneficial since elevated temperatures cause the self-assembly of mesophases.  The thin 

films of 1,2-OBTTT with the best morphologies were obtained by blade-casting a 

bromoform solution of 10 mg/mL at 90°C (figure 6-22).  The film was then annealed at 

190°C for 20 minutes, then cooled to room temperature at a rate of 10°C/min.  The 

annealing temperature was chosen to ensure that 1,2-OBTTT would enter the SmA phase.  

The ideal annealing time was determined by examining changes in the texture of the thin 

films as a function of temperature by PLM.  Annealing was stopped when the texture had 

become a homogenous monodomain.   
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Figure 6-22.  TEM image of a thin film of 1,2-OBTTT blade-cast at 90°C.  The film was 
annealed at 190°C for 20 minutes and then cooled to room temperature at a rate of 
10°C/min.  Solution concentration = 10 mg/mL.  A monodomain thin film was achieved. 
 

 Although the thin film is not perfectly aligned, no efforts were made to align the 

thin film beyond the force supplied by blade-casting, so any alignment is merely an 

artifact of the casting and annealing processes.  Further, because the director in liquid 

crystalline domains shifts gently and continuously, not abruptly, it has been found that 

these morphologies are far more tolerant of slight mis-alignment.  What can certainly be 

said is that there is a huge improvement in morphology from the unannealed spin-cast 

film (figure 6-18) to the annealed blade-cast film (figure 6-22) and these are films of the 

same material!  Future investigations should focus on alignment techniques that can be 

used to exploit the nature of the liquid crystal phases.  Also, mesogens with lower 

temperature mesophases should be designed.  Annealing at temperatures as high as 
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190°C is not a viable option for many industrial processing techniques.  Lastly, 

deposition of the neat liquid crystalline material should be investigated; depositing 

solutions of liquid crystalline material does not take full advantage of the beneficial 

properties of the mesophases.  Blade-casting allows for a wide-range of deposition 

temperatures and it would certainly be possible to deposit pure liquid crystalline materials 

when they have entered a liquid crystal phase. 

 
6.4  Conclusions 
 
 The design and synthesis of the n,2-OBTTT series of mesogenic semiconductors 

has proven to be a successful strategy for the production of highly-ordered, monodomain 

thin films.  The π-π distances observed in the crystal structure of 3,2-OBTTT (d = 3.498 

A) are more favorable than pBTTT (d = 3.630 A), the polymer that our series was based 

on.  This is certainly a success.  It is unknown what specific features of 3,2-OBTTT 

caused favorable π-π distances, since no other member of the series exhibited such ideal 

face-to-face packing.  The strategy of utilizing liquid crystalline mesophases for the 

alignment and ordering of thin film monodomains has proven to be highly successful.  

More investigations into the specific cause of how chain length affects crystal-smectic 

phase formation and short π-π distances in crystal structures in warranted.  The final 

demonstration of whether the thin films produced during this project are comparable to 

the vast array of organic semiconducting materials now available is to measure their 

charge carrier mobility.  Now that promising candidates from the n,2-OBTTT series have 

been identified by their mesophase behavior and crystal structure (3,2-OBTTT) and the 

deposition conditions have been optimized, OFET devices should be made and the charge 

carrier mobility values measured.  
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Chapter VII:  Improving Students' Understanding of Molecular Structure with 
Computer Models 
 
 
7.1  Molecular Representation in Chemistry Education  
 
 
 Organic chemistry is a discipline that requires an understanding of a molecule's 

three-dimensional shape.  Until very recently1, molecules could not been seen directly, so 

chemists and chemistry students have typically relied on different representations of 

molecules to understand their shapes and properties.83  Though all of the images in Figure 

7-1 represent the same molecule, the structures appear vastly different.  There is more 

structural information contained in 3-D representations than in 1-D or 2-D 

representations, like bond angles, relative bond lengths, and the relative size of atoms.  

Representations of molecular structure differ in their level of detail and physical 

accuracy.  No representation is entirely accurate, not even computer-generated models of 

molecules.84  Computer models typically depict nuclei as static, though physicists suggest 

that they are actually oscillating around some nuclear site; similarly, electrons are usually 

depicted as solid lines between atoms, though they might be more accurately described as 

having some probability of being located at a certain distance from the nucleus.84  Indeed, 

some authors have suggested that the "electron density" model of molecular structure is 

easier for students to grasp than the orbital model since orbitals are purely mathematical 

constructs that have no physical counterpart and electron density is a property that can be 

experimentally determined.85-86  What level of accuracy or detail would most effectively 

teach students about molecular structure?   
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Figure 7-1.  Several representations of chemical structure, displaying an evolution from 
1-D to 2-D to 3-D representations of 3-methyl-1-butene. 
 

 

7.1.1 Physical Accuracy of Computer Models 

 

 Computer models are among the most physically accurate representations of 

molecular structure currently available and several studies have discussed the benefits of 

including computer models and animations into some part of the chemistry curriculum.87-

103  A study by Ferk et al.100 concluded that students performed better on tests designed to 

measure spatial ability and molecular structure when given 3-D models, whether they 

were physical models, computer models, or photographs of physical models, than if they 

were given more abstract 2-D images (schematic representations or stereochemical 

formulas).  Several studies have established that students' ability to transfer between 2-D 

and 3-D representations of a molecule was significantly improved because of their 

interactions with computer models.93,99-103  Should educators, then, replace all physically 

inaccurate representations of molecular structure with physically accurate, computer-

generated models?   
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 There are several reasons why providing only one representation of molecular 

structure may not be desirable, even if the one representation provided is highly accurate 

and detailed, like computer models.  Because chemistry occurs at several different levels 

of representation (the molecular, the macroscopic, and the symbolic), Kozma and 

Russell104 suggest using several linked representations of molecular structure to make 

explicit the connections between these levels.  Research by Wu et al.102 suggests using 

both physical (plastic) and computer models because different students prefer using 

different types of models.  A study by Copolo and Hounshell105 has shown that when 

students are provided with multiple representations of molecular structure, they perform 

better on tests designed to measure their understanding of isomeric identification, even if 

they were given exclusively highly accurate computer models.  Many tasks in organic 

chemistry require not only an understanding of molecular structure in three dimensions, 

but also an understanding of how those 3-D structural relationships are depicted in a 2-D 

representation of the same molecule.  An understanding of how features in one type of 

representation are related to features in another type of representation is often referred to 

as representational translation.102,104,106,107  It seems likely that the task of translating 

between representations would be more difficult if students were only given one 

representation of molecular structure. 
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Figure 7-2.  Representations of the distribution of electrons within the molecule, anisole: 
a) a 2-D representation of one member of a family of resonance contributors; b) a 2-D 
representation of the entire family of resonance contributors; c) a 3-D computer-
generated representation of the HOMO. 
 

 Figure 7-2a is a common representation of the molecule, anisole, yet it gives the 

impression that the oxygen atom has two lone pairs of electrons, that it is sp3-hybridized, 

and, thus, has a C-O-C bond angle of about 109.5°.  However, calculations show that the 

oxygen atom in anisole is sp2-hybridized and that the C-O-C bond angle is closer to 120°.  

This "extra" information about the electron distribution that is missing from the 

representation in Figure 7-2a is contained within the set of resonance structures in Figure 

7-2b.  Because of the limitations of 2-D representations of molecules, it is common that 

bond angles, bond lengths, preferred conformations, etc., are not depicted accurately (or 

at all) and an experienced chemist must fill-in the missing information from their own 

understanding of molecular structure.  However, computer-generated 3-D models can 

display physically accurate information about bond angles, bond lengths, and electron 

distribution in a single structure (Figure 7-2c).  Perhaps viewing a physically accurate 3-
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D model of a molecule alongside its 2-D representations can direct students' attention to 

the aspects of the 2-D representations that are misleading or inaccurate, helping to clarify 

the relationships between the representations and impart a deeper understanding of 

molecular structure.  Making linked referential connections between multiple 

representations visible has been identified as an important principle for developing 

effective learning tools for chemistry.104-105,108 

 

7.1.2 Making Connections Between Representations 

 Another reason that computer models should not be the only representation of 

molecular structure given to students is that some representations may contain too much 

information.  Some authors suggest that if an image or animation is too detailed and too 

much information is presented, students' working memory can be overloaded and 

effective learning cannot occur.108-110  The cognitive theory of multimedia learning 

suggests that human minds contain a finite amount of working memory and that complex 

learning activities can present too much information to be processed simultaneously.27  

The amount of information presented to the working memory is sometimes called the 

cognitive load.108-110  It is possible that highly detailed computer models may contain too 

much information for students to process simultaneously.  However, it is also possible 

that viewing a 3-D computer model could decrease cognitive load by externalizing the 

transformation from a 2-D representation to a 3-D representation and by performing 

rotational manipulations of the model in the physical world instead of one's mind.101-102 
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Figure 7-3.  Representations of the molecular structure of cis-1,2-dimethylcyclohexane: 
a) a 2-D skeletal structure; b) a 2-D chair-conformation; c) a Newman projection; d), e), 
and f) are different perspectives of the same 3-D computer model that was rotated to 
resemble the 2-D representations. 
 

 Often, the depiction of 3-D information in 2-D requires several static 2-D images 

(Figures 7-2 and 7-3).  Conformations of cyclohexane are usually explained with at least 

three 2-D representations of the molecule (Figure 7-3).  Further, different representations 

require different conventions for depicting the 3-D structure of the molecule in the 2 

dimensions of the page.106  Not only must a student understand the 3-D structure of the 

molecule, they must also understand how all of the representations are related to each 

other, a task that is not straightforward.101-102  If these relationships are not understood, a 

student can develop disjointed knowledge.106  It is likely that the mental requirements to 

translate a 2-D representation to a 3-D mental image and to understand the connections 

between the various 2-D representations place quite a large cognitive load on a student's 

working memory.  Stull et al.106 suggest that because a computer model is already 3-D, it 

obviates the need for these conventions to be maintained in working memory.  Thus, 

simply viewing a 3-D computer model may be beneficial to learning by reducing the 

cognitive load on a student's memory.  However, these same researchers concluded that 
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students who simply viewed a 3-D model but did not interact with it performed no better 

on a test to measure representational translation than students who did not see the models 

at all.106  The students that only viewed the model, but did not manipulate it, were still 

allowed to manipulate it and chose not to; this suggests that perhaps they didn't 

manipulate the model because they didn't know how the model related to the 2-D 

representations.  Indeed, many researchers have concluded that to fully benefit from 

model use, students must understand how to correctly interpret them.91,93,99  Simply 

viewing a 3-D computer model may not be sufficient to improve performance because 

many students may not understand what they are seeing. 

 It has been shown that physical manipulation of a 3-D model can have a 

beneficial effect on a student's understanding of molecular structure.102,108  Is it necessary 

that the manipulations be performed by the student or might simply viewing the 

appropriate manipulations being performed achieve similar gains in understanding?  

Perhaps viewing the appropriate physical manipulations being performed whether the 

student is actually performing them or not, may impart deeper understanding of 

molecular structure and the connections among representations by reducing the cognitive 

load on a student's working memory.  Although presenting computer models alongside 

the current representations of molecular structure during lecture or recitation is actually 

increasing the amount of information presented to the students, perhaps viewing a 3-D, 

computer model would improve students' understanding of molecular structure by 

displaying physically accurate information, like bond angles and bond lengths.  Perhaps 

simply viewing the appropriate rotational manipulations of a 3-D computer generated 

model being performed by a teacher could help students make connections between 3-D 
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molecular structure and the various types of 2-D representations, like skeletal structures, 

chair conformations, and Newman projections (Figure 7-3).  Externalizing the 

transformation from 2-D to 3-D by performing rotational manipulations of the 3-D model 

in the physical world instead of one's mind could be reducing cognitive load.101-102  If 

viewing a computer model helps to make connections between 3-D spatial relationships 

and 2-D representations, then perhaps it is actually reducing the cognitive load by 

integrating into a single concept what was before seen as several separate, unrelated 

images (Figures 7-2 and 7-3).   

 

7.1.3 Research Questions 

This study was designed with the following questions in mind: 

• Could student understanding of molecular structure be significantly 
improved by simply viewing teacher-performed manipulations of a computer 
model in recitation or lecture alongside typical 2-D representations? 
 

• What topics, if any, seem to benefit from simply viewing computer models? 

 

7.2 Study Design 

 This study was performed during an introductory organic chemistry course for 

non-chemistry-major undergraduates at a large research university.  The course consisted 

of two summer semesters of introductory organic chemistry (OCHEM 1 and OCHEM 2).  

Each semester consisted of a lecture and two recitation sections.  Students were required 

to enroll in both the lecture and 1 of 2 recitation sections.  The lecture was given by an 

assistant professor and was attended by students in both recitation sections, which were 

led by a teaching assistant (the author).  Because this research involved human subjects 
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and the author was involved in data collection, all aspects of the research design were 

approved by an institutional review board (IRB) before the study commenced.   

 

7.2.1 Population 

 The experimental treatment was applied in one of the two recitation sections: one 

control section and one experimental section.  Each recitation section contained roughly 

20 students.  Demographic data of the research population is presented in Table 7-1.   

 

Table 7-1.  Demographic Data of the Student Population 
  OCHEM 1      OCHEM 2    

  Control Experimental   Control Experimental 
Gender 

     Female 9 10 
 

11 10 
Male 11 9 

 
8 10 

Academic Year 
     Freshman 1 0 

 
0 0 

Sophomore 2 1 
 

1 2 
Junior 8 6 

 
10 9 

Senior 7 10 
 

5 7 
5th Yr. Senior 2 2 

 
3 2 

Major 
     Soc. Science 2 0 

 
4 3 

Nat. Science 5 4 
 

5 4 
Pre-Med. 10 11 

 
6 8 

Engineering 2 3 
 

3 4 
Humanities 0 1 

 
1 1 

Non-Degree 1 0   0 0 
 

 The students in each recitation section were examined according to major and 

academic year and it was determined that the groups were randomly distributed according 

to these two variables.   The results of a Shapiro-Wilk test showed the distribution of 

student majors (OCHEM 1: control, W = 0.85; experimental, W = 0.81; OCHEM 2: 

control, W = 0.96; experimental, W = 0.94) and academic year (OCHEM 1: control, W = 
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0.82; experimental, W = 0.90; OCHEM 2: control, W = 0.92; experimental, W = 0.89) 

was normal in all groups at the 95% confidence level.  There were roughly equal numbers 

of males and females in each group.  The groups were also subjected to a t-test, which 

found no statistically significant differences with regard to distribution of major 

(OCHEM 1: p = 0.94; OCHEM 2: p = 0.91), gender (OCHEM 1: p = 0.64; OCHEM2: p 

= 0.63), or academic year (OCHEM 1: p = 0.93; OCHEM 2: p = 0.94).  Because the 

groups were statistically equivalent with regard to gender, academic year, and major, no 

further randomization of groups was performed.  The students in the second semester 

study were not necessarily the same students from the first semester study. 

 

7.2.2 Pre/Post-Test Design 

 An instrument was created to measure student understanding of molecular 

structure.  The pre/post assessment and answers to the pre/post assessment can be found 

in the supplemental information.  Students were given a 2-D representation of a molecule 

and were asked to determine the magnitude of certain values of the molecule's structure.  

Test questions required students to either: 1) identify the indicated bond angle; 2) 

determine which of two bonds is longer or whether they are the same length; 3) 

determine whether a molecule is chiral, achiral, or meso; 4) determine whether the 

equilibrium constant (KEQ) for the given reaction is greater than 1, less than 1, or equal to 

one (as a function of ring strain, steric hindrance, or other structural features of the 

molecule). 
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 The questions on the instrument were analyzed for content validity by a panel of 

10 expert organic chemists (3 university-level professors and 7 chemistry PhD students).  

The structure and behavior of a molecule is a function of at least three properties: the 

bond lengths (1-D), the bond angles (2-D), and 3-D properties (like dihedral angle and 

chirality).  These three broad properties are dictated by certain phenomena: steric strain, 

torsional strain, ring strain, hydrogen-bonding, resonance, conjugation, aromaticity, 

hybridization, orbital geometry, conformation, and chirality.  As all of these topics were 

included on the instrument and, as such, the measure was considered valid by the panel of 

chemistry experts.  

 

Table 7-2. Internal Consistency of the Pre/Post Instrument 

Cronbach's (α) 
OCHEM 1 OCHEM 2 

Pre-Test 0.72 0.76 
Post-Test 0.69 0.74 

 

 The pre/post-test results were analyzed to determine the reliability of the 

instrument.  Table 7-2 reports the values of Cronbach's α for the pre-test and post-test in 

both semesters.  The sample size N for each group is reported in Table 7-3.  Cronbach's α 

is a well-accepted measure of reliability by means of internal consistency.  Nunnally111 

suggests that values of α above 0.70 have a moderate level of reliability and can be 

acceptable for exploratory research, but for applied settings where important decisions 

are being made as a result of certain test scores (like changes in curriculum), Nunnally111 

suggests seeking α values exceeding 0.90.  The obtained values of α (Table 7-2) fall 

within the range of acceptable reliability (except the post-test of OCHEM 1, which lies 
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just outside the lower bound of 0.70).  These values are acceptable for the present study, 

since it is exploratory research.  As such, the instrument can be considered moderately 

reliable. 

 

7.2.3 Experimental Treatment 

 Research done in the classroom can provide external validity and support to more 

carefully controlled studies, but there are often difficulties in maintaining consistency 

among groups.  For example, Kozma and Russel107 note that it is difficult to control the 

specific verbal content, relative to the presentation of visual content during a typical 

classroom lecture.  To avoid this specific problem, the present study employed a "script" 

that contained both the verbal script and accompanying visual material that was to be 

employed in each group.  The scripts for the control group and experimental group were 

kept identical, except for the presentation of the experimental treatment to the 

experimental group, which included both additional verbal and visual material.  

Examples of the additional visual material can be seen in Figures 7-2 and 7-3 and the 

additional verbal script contained explanations about how to interpret the computer 

models and physical manipulations.  During a discussion of resonance structures and the 

distribution of electrons in a molecule, both groups would receive the 2-D representations 

(Figure 7-2a and 7-2b) as images drawn on the chalkboard by the teaching assistant and 

the experimental group would also view the 3-D computer model (Figure 7-2c) as well as 

a verbal explanation of how to interpret the model.  During a discussion of conformation 

and dihedral angles, both groups would be shown the 2-D representations (Figure 7-3a, 

3b, and 3c) as images drawn on the chalkboard by the teaching assistant and the 
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experimental group would also view a projection of the 3-D computer model, rotated by 

the teaching assistant to resemble the perspectives indicated in the 2-D representations 

(Figure 7-3d, 3e, and 3f), and accompanied by a verbal explanation of how to interpret 

the model and manipulations.  Presentation of the additional computer models and 

explanations to the experimental group typically required about 3-5 minutes of additional 

presentation time per recitation relative to the control group. Scripts were presented as 

similarly as possible to both groups, except for the experimental treatment.  However, 

even with these precautions, it is highly unlikely that the execution of the two scripts was 

exactly identical in every case, in terms of timing and other uncontrollable variables.  

Further, due to ethical concerns, the researcher did not avoid answering student questions 

when they arose in either group, even if they prompted additional, unscripted discussion 

of relevant issues.  The researcher did not notice significantly greater or fewer questions 

in either group, but data were not taken. 

 

7.3 Results 

 The sample size N for each group is reported in Table 7-3.  The same value of N 

is used in all statistical analyses for this study (Tables 7-2, 7-4, and 7-5).  The pre/post 

test results were analyzed using a Shapiro-Wilk test for normality and the results are 

reported in Table 7-3.  Because the calculated values of W were all greater than the value 

that represents the 95% confidence level, the null hypothesis was accepted.  Since all of 

the data sets were determined to be normally distributed, parametric statistics were used 

throughout the analysis.   
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Table 7-3.  Statistical Distribution of Student Scores 

Shapiro-Wilk Statistic 
(W) 

OCHEM 1   OCHEM 2 

Control Experimental   Control Experimental 
Sample Size (N) 20 19 

 
19 20 

Pre-Test (W)  0.965 0.923 
 

0.919 0.961 
95% CL 0.905 0.901 

 
0.901 0.905 

Post-Test (W) 0.948 0.931 
 

0.939 0.946 
95% CL 0.905 0.901   0.901 0.905 

 

 A paired, two-sample t-test for means was performed on student’s answers to the 

pre/post-test and the results are reported in Table 7-4.  Because of small sample sizes, the 

effect size is also reported as measured by Cohen's d.  No significant differences in pre-

test means were found between the control group and the experimental group for either 

semester at the 95% confidence level.  Because there were no statistically significant 

differences in pre-test means and it was determined that the groups were indeed 

equivalent with respect to gender, academic major, and academic year, it was concluded 

that there was no significant class effect and that the groups could be considered 

equivalent in terms of prior knowledge about molecular structure.   

 

Table 7-4.  Statistical Analysis of Pre-Test and Post-Test Results 

  OCHEM 1   OCHEM 2 

  Pre Post   Pre Post 
Exp. Average 3.95 7.11 

 
5.00 8.06 

Cont. Average 3.52 5.05 
 

5.20 6.71 
p-value  0.42 0.005 

 
0.79 0.035 

Effect Size (d) 0.23 0.98   0.09 0.75 
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 Students in the experimental group performed much better on the post-test than 

students in the control group in both semesters (Table 7-4).  The results of a t-test showed 

that the difference in post-test means was statistically significant at the 95% confidence 

level.  The values of Cohen's d reported in Table 4 show that the effects are medium to 

large in both semesters.112  Pre-test results suggested that there was no significant 

difference between the prior knowledge of the experimental group and control group, so 

any significant difference in post-test results can be attributed to the experimental 

treatment.   

 To examine which broad topics benefited the most from the experimental 

treatment, results were further analyzed using another paired, two-sample t-test for means 

according to the broad categories of bond angle, bond length, and 3-D properties (like 

dihedral angle and chirality) to determine where the largest differences in scores occurred 

(Table 7-5).  The greatest gains in the experimental group were achieved in the broad 

categories of bond angle and 3-D properties in both semesters, while performance on the 

topic of bond length did not seem to have benefited from the experimental treatment in 

either semester.  In fact, though the difference is not statistically significant, the control 

group scored higher in bond length in both semesters. 

 

Table 7-5.  Statistical Analysis of Post-Test Results by Broad Topic 

  OCHEM 1   OCHEM 2 

  
Bond 
Angle 

Bond 
Length 

3D 
Properties   

Bond 
Angle 

Bond 
Length 

3D 
Properties 

Exp. Average 2.79 1.42 2.90 
 

2.56 2.56 2.94 
Cont. Average 1.47 1.53 2.05 

 
1.65 2.88 2.18 

p-value  0.0003 0.76 0.06 
 

0.03 0.43 0.04 
Effect Size (d) 1.28 0.10 0.64   0.77 0.27 0.72 

 



 124 

 Student's answers were further analyzed by examining the results of a paired, two-

sample t-test to the responses to each individual question on the pre/post assessment, 

since each question was measuring comprehension of a slightly different sub-topic within 

the larger broad categories.  The sub-topics that seem to have benefited the most from the 

experimental treatment (that is, topics where a statistically significant difference was 

observed in favor of the experimental group) were ring strain, steric strain, torsional 

strain, conformation, orbital geometry, and axial chirality.  The most significant 

differences in favor of the experimental group were observed in the topics of steric strain 

(p = 0.011, d = 0.87), conformation (p = 0.020, d = 0.66), and axial chirality (p = 0.030, d 

= 0.78).  Molecules with axial chirality don’t possess a stereogenic center, but rather an 

axis of chirality, like cumulenes and some bi-phenyls.  Finally, some sub-topics seem 

completely unaffected by the experimental treatment.  A significant difference was not 

observed for the sub-topics of hydrogen-bonding, resonance, hybridization, conjugation, 

aromaticity, and chirality by virtue of asymmetric carbon atoms. 

 

7.4 Discussion 

Could student understanding of molecular structure be significantly improved by 
simply viewing teacher-performed manipulations of a computer model in recitation or 
lecture alongside typical 2-D representations? 
 
 Yes.  The results of this study suggest that simply viewing computer models and 

relevant manipulations of computer models with a verbal explanation of how to interpret 

the models can significantly improve a student’s understanding of molecular structure.  

Students from the experimental group performed significantly better on a post-test 

designed to measure understanding of molecular structure than those in the control group, 
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even though there were no significant differences in pre-test scores (Table 7-4); these 

results suggest that the experimental treatment improved student understanding of 

molecular structure.  The effects were medium to large, as indicated by Cohen's d112 

(Table 7-4 and Table 7-5), and statistically significant at the 95% confidence level.  

Experimental group students were better able to identify the misleading or incomplete 

information provided by the 2-D representations on the test and choose the correct values 

for the indicated spatial relationships.   

 It is hypothesized that the experimental treatment was effective because viewing 

the 3-D computer models during recitation decreased the cognitive load on a student's 

working memory by externalizing the transformation from a 2-D representation to a 3-D 

representation and by performing rotational manipulations of the model in the physical 

world instead of the student's mind.101-102  It is believed that this decrease in cognitive 

load allowed more meaningful learning and helped students to understand: 1) that 2-D 

representations of molecules can given incomplete or misleading information and 2) how 

different 2-D representations of a molecule (i.e., skeletal structures, chair conformations, 

Newman projections, etc.) are related to the 3-D structure of the molecule and to each 

other.  However, this is only speculation because no data were collected to measure 

differences in cognitive load between groups; future experiments could be designed with 

a qualitative aspect to probe what students are thinking as they solve problems and 

determine whether differences in cognitive load play any significant role. 

 

What topics, if any, seem to benefit most from inclusion of computer models? 
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 Experimental group students performed significantly better in the broad 

categories of bond angle and 3-D properties in both semesters (Table 7-5).  Further, 

experimental group students performed significantly better on the sub-topics of ring 

strain, steric strain, torsional strain, conformation, orbital geometry and axial chirality.  

Experimental group students did not outperform control group students in all categories, 

though.  The broad category of bond length seemed unaffected by the experimental 

treatment, as did the sub-topics of hydrogen-bonding, resonance, hybridization, 

conjugation, aromaticity, and chirality by virtue of an asymmetric carbon atom.  These 

preliminary results suggest that 3-D computer models will be more effective at teaching 

certain topics than others; just as it would be inappropriate to use a Fisher projection to 

teach about conformation, so, too, it seems less effective to use computer models with 

certain topics.  This trend should be explored further to determine the best, most time-

efficient use of computer models in the organic chemistry curriculum. 

 There seems to be some connection between the topics that were affected by the 

experimental treatment and those that weren't: namely, the topics that benefitted from the 

experimental treatment are topics that seem to necessitate some degree of mental 

visualization and the topics that did not benefit from the experimental treatment may not 

require mental visualization.  For example, to determine whether a compound is chiral, a 

student can merely look for asymmetric carbons without having to imagine the entire 3-D 

shape of the molecule and whether its mirror image is superimposable upon itself.  This 

shortcut would only work, however, for chiral compounds that have asymmetric carbons.  

For those that don’t have asymmetric carbons, this shortcut won’t work, and indeed, the 

post-test results seem to suggest this:  for compounds that exhibit axial chirality, there 
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was a significant difference in performance between the experimental and control groups.  

Presumably, for students to determine whether a compound displays axial chirality, they 

would have to mentally visualize the 3-D structure and perform mental rotations and 

manipulations.  Work by Steiff and Raje113 has shown that students can develop 

alternative strategies, like learned algorithms and other shortcuts, which obviate the need 

for mental visualization and allow them to correctly answer questions that seem to 

require mental visualization.  Perhaps some topics did not benefit from the experimental 

treatment because students were not relying on mental visualization to answer the 

questions.  Although this hypothesis seems consistent with work by Steiff and Raje113, 

the current study collected no qualitative data to investigate this question.   

 

7.5 Conclusions 

 This study suggests a method of displaying 3-D computer models alongside 2-D 

representations during recitation and demonstrates significant benefits to student 

understanding of molecular structure.  There have been articles published in this journal 

and elsewhere for more than 20 years appealing for the integration of computer models in 

the chemistry curriculum108,114-115, but their use in the undergraduate chemistry 

curriculum is still limited.  A recent survey reported that only 12 of the 71 chemistry 

graduate students interviewed were involved with computer modeling as part of their 

introductory or intermediate organic chemistry course work.91  There are several possible 

reasons for this limitation and lack of financial resources and/or experience are likely 

among them.  After all, to accommodate student use, a department may need a dedicated 

computer lab with several software licenses.  This can be cost prohibitive for some 
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departments.  However, few resources are required to simply show computer models and 

simulations during lecture or recitation: most chemical educators have access to a 

computer, the internet, and a video projector.  Further, an educator doesn’t have to be an 

expert in computation to take advantage of the large number of chemical databases online 

that contain models and simulations for free, like Jmol.116  

 Although experimental group students performed significantly better than control 

group students on the post-test, it is unclear why they benefitted from the experimental 

treatment.  The current experimental design can't explain what students were thinking as 

they solved the problems, so it can't say anything about why the experimental treatment 

was effective, just that it was.  It is assumed that the experimental group students 

performed better on the test because they were better at performing mental 

representational translations; that they were creating 3-D mental models of the 2-D 

images on the page.  However, without having some qualitative aspect of the study, like a 

questionnaire or interview, it is impossible to tell what the students were thinking as they 

solved the problems.  A future study could utilize a mixed methods approach and include 

both a quantitative aspect and a qualitative aspect to understand what students are 

thinking as they view the computer models and as they solve the problems on the test. 
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