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The satisfiability (SAT) of a propositional formula is the decision problem to determine whether there

is a satisfying assignment that can make the formulatrue or not. In the past few years, many successful

SAT solvers based on the David-Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62, MS99,

MMZ+01, ES03] for formulae in conjunctive normal form (CNF) have been developed. Since the deduction

procedure of DPLL is sound but not complete, its effects depend on which formula is selected to represent

the input function. CNF transformations are among the most effective techniques to improve quality of the

input formula by either simplifying clauses [ES03, EB05, SE05, ZKKSV06,HS07, HS09] or learning new

ones [MS99]. Specifically, effective CNF transformations can help SATsolvers to be sped up by allowing

them to do more deductions and less enumerations.

In my dissertation, I characterize existing transformations in terms of their impact on thedeductive

power of the formula and their effects on theproof conciseness, that is, the sizes of the implication graphs.

I also present two new techniques that try to increase deductive power.The first is a check performed during

the computation of resolvents. The second is a new preprocessing algorithm based ondistillation that com-

bines simplification and increase of deductive power. Most current SATsolvers apply resolution at various

stages to derive new clauses or simplify existing ones. The former happens during conflict analysis, while

the latter is usually done during preprocessing. I show how subsumption ofthe operands by the resolvent can

be inexpensively detected during resolution; I then discuss how this detection is used to improve three stages

of the SAT solver: variable elimination, clause distillation, and conflict analysis. Theon-the-fly subsump-

tion check is easily integrated in a SAT solver. In particular, it is compatible with strong conflict analysis

and the generation of unsatisfiability proofs. Experiments show the effectiveness of the new techniques.

SAT solvers also benefit from clauses learned by the DPLL procedure, even though they are by

definition redundant. In addition to those derived from conflicts, the clauses learned bydominator analysis
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during the deduction procedure tend to produce smaller implication graphs and sometimes increase the

deductive power of the input CNF formula. I extend dominator analysis with an efficient self-subsumption

check. I also show how the information collected by dominator analysis can beused to detect redundancies

in the satisfied clauses and, more importantly, how it can be used to produce supplemental conflict clauses.

I characterize these transformations in terms of deductive power and proof conciseness. Experiments show

that the main advantage of dominator analysis and its extensions lies in improving proof conciseness.
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Chapter 1

Introduction

1.1 Background

The last two decades have seen great advances in the performance ofsatisfiability solvers for proposi-

tional logic, in particular those based on the David-Putnam-Logemann-Loveland (DPLL) procedure [DP60,

DLL62, MS99, MMZ+01, ES03]. These solvers have evolved in symbiotic relationship with many Elec-

tronic Design Automation (EDA) applications including model checking [BCCZ99, McM02, McM03, LS06,

Li06], logic synthesis [MB89], testing [SBV96], and timing analysis.

Progress has been made both in the pruning of the search space [MS99]and in the efficient implemen-

tation of the basic operations like deductions [MMZ+01]. Here we are concerned with techniques that trans-

form a Conjunctive Normal Form (CNF) formula, either as a preprocessing step [EB05, SE05, ZKKSV06]

or during the DPLL procedure. These transformations should be relatively inexpensive and produce formu-

lae on which the DPLL procedure runs faster than on the original ones.

Reducing the size of the formula is a common objective of transformations. Forinstance, a set of

clauses isredundant if a proper subset represents the same function. A subsumed clause (i.e.,a clause

implied by another) is redundant, and the cost of many SAT solver operations decreases with a smaller

formula. Hence, removing subsumed clauses is usually beneficial. However, not all redundant clauses can

be removed without negative effect on the speed of the solver.

In this thesis, I introduce two notions that help in the design and evaluation of formula transforma-

tions. The first isdeductive powerof a CNF formula. The higher this power, the more consequences the

DPLL procedure can deduce from each of its decisions; hence, the more effective is the pruning of the
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search space. The second notion isproof conciseness. It reflects the fact that the DPLL procedure pro-

gresses through the search space by proving that parts of that spacecontain no satisfying assignment and

recording such findings in the form of new clauses and their derivations. More concise proofs are faster to

build and usually more effective at pruning further search.

To see how deductive power may help in the analysis of SAT solvers, consider clause recording, which

addsconflict-learned clausesor, simply,conflict clausesto the original SAT instance. Each conflicting

assignment is analyzed to identify a subset that is sufficient to cause the current conflict. The disjunction

of the literals in the subset becomes a new clause added to the original SAT instance. The conflict clauses

learned by SAT solvers are by definition redundant, but they always improve the deductive power of a CNF

formula.

Clauses that are subsumed by other clauses slow down the implication process, but do not help the

solver in pruning the search space. I show that they never improve deductive power. Therefore, preprocess-

ing often removes them to accelerate implications. On the other hand, removing literals from clauses may

increase the deductive power of a formula. I study in detail several approaches to such elimination, both as

preprocessing and during DPLL.

Literal removal procedures are often based on resolution. In addition,resolution may be applied

to eliminate variables from the formula. Since the elimination of variables may increase the number of

clauses, it is usually applied with restraint [SP04, EB05]. Deductive power is not guaranteed to improve

either. Instead, the main benefit of variable elimination is the decrease in the average number of decisions

and implications required to produce a conflicting assignment. Not only conflicts occur sooner, but their

analysis is faster, and the learned clauses tend to prune larger portions of the search space.

In this thesis I analyze existing techniques that increase deductive poweror generate more concise

implication graphs and I propose two new ones. I show how to detect subsumptions during resolution during

both preprocessing and conflict analysis with minimal overhead. The proposed on-the-fly subsumption

check can be applied to both regular and strong [JS06] conflict analysis. I show how this inexpensive check

is used to improve deductive power at three stages of the SAT solver: variable elimination, clause distillation,

and conflict analysis. I then describe adistillation algorithm that asserts the negations of clauses to remove
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redundant literals and possibly derive new clauses. Unlike previous approaches, this distillation procedure

may replace a clause with the resolvent of two or more existing clauses withoutexplicitly deriving any

such resolvents in advance. I show that distillation increases deductive power and shortens implication

graphs. Experiments show that the presented techniques speed up our SAT solver. Variable elimination

works primarily by shortening the implication graphs, while other transformations mainly improve deductive

power.

Despite recent progress in DPLL-based SAT solvers, more improvementscan be achieved with sev-

eral extensions of existing formula transformation techniques. One exampleconcerns conflict clauses

learned by SAT solvers. They are redundant definition, but I have shown that they always improve the

deductive power of a CNF formula. In previous work [Nad09, SB09, Pre], different approaches to produce

learned clauses from one based on UIP have been proposed to more efficiently prune the search space.As-

signment shrinking [Nad09] applies the assignments again in the newly found conflict clause until a new

conflict occurs. This may produce a new smaller conflict clause. In [SB09, Pre], a clause is learned from the

analysis for a single dominator during the implication process. Since the clausecontains only two literals of

which one is for the dominator and the other is for the implied literal, its addition is effective in shortening

the implication graph. Even though those schemes have empirically proved to help a SAT solver prune

more of the search space, a formal analysis of their effectiveness hasnot been attempted. In this thesis, I

investigate them for the improvement of either deductive power or proof conciseness. In particular, I also

study how efficiently extend the learning scheme based on dominators for further improvement of deduction

in SAT solvers.

1.2 Thesis Contributions

This thesis deals with the effectiveness of deduction procedure in propositional satisfiability problems.

To this aim, I followed three research directions.

In DPLL-based SAT solvers, deduction based onmodus ponensplays a key role in boosting effi-

ciency by finding what literals are implied by the current partial assignment. Since this deduction procedure

is sound but not complete, its effects depend on how the CNF input formula ispresented to it. This motivates
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techniques that transform a CNF formula, either as preprocessing step [EB05, SE05, ZKKSV06, HS07] or

during the DPLL procedure [HS09, HSJ10, SB09, Pre]. These transformations should be relatively inex-

pensive and produce formulae on which the DPLL procedure runs faster than on the original ones.

To achieve this goal several important research items are identified. Theyare briefly summarized as

follows.

• I have introduced two notions that help in the design and evaluation of formulatransformations.

The first isdeductive powerof a CNF formula. It is motivated by the observation that the more

consequences the DPLL procedure can deduce from each of its decisions, the more effective the

pruning of the search space. The second notion isproof conciseness. It reflects the fact that the

DPLL procedure progresses through the search space by proving that parts of that space contain no

satisfying assignment and recording such findings in the form of new clauses.

• Modern DPLL-based SAT solvers heavily rely on various CNF transformation techniques to en-

hance the effectiveness in pruning the search space. These transformations include simplifying

clause data base and clause recording. I have formally characterized these transformation tech-

niques in terms of deductive power and proof conciseness. In addition,I have proved their effec-

tiveness in speeding up the SAT solver by in-depth analysis of experimental results.

• I have developed efficient transformations that aim at increasing the deductive power of a CNF

formula and generating more compact implication graphs. The procedure ofclause distillation

at the preprocessing stage andon-the-fly simplifications based on self-subsumption during DPLL

considerably speed up the SAT solver by increasing deductive power.On the other hand, the trans-

formation based on variable elimination works mainly by reducing the number of resolution steps

required in conflict analysis, that is, by producing more concise proofs.

• Despite recent progress in DPLL-based SAT solvers, more improvementscan be achieved with

several extensions of existing formula transformation techniques. One example concerns a clause

learned from the analysis for a single dominator during the implication process. Since the clause
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contains only two literals of which one is for the dominator and the other is for theimplied lit-

eral, its addition is effective in shortening the implication graph. Even though those schemes have

empirically proved to help a SAT solver prune more of the search space, a formal analysis of its

effectiveness had not been attempted. I have investigated it for the improvement of either deductive

power or proof conciseness. In particular, I also proposed how to efficiently extend the learning

scheme based on dominators for the generation of even more compact implication graphs.

1.3 Thesis Organization

The organization of this thesis is as follows.

Chapter 2 covers background and definitions related to the satisfiability problems for propositional

formulae that are pertinent to my work.

Chapter 3 presents several approachs to make the deduction procedure more efficient. In DPLL-

based SAT solvers, deduction based onmodus ponensplays a key role in boosting efficiency by finding

what literals are implied by the current partial assignment. Since this deductionprocedure is sound but not

complete, its effects depend on how the CNF input formula is presented to it. This motivates techniques that

transform a CNF formula, either as preprocessing step or during the DPLL procedure. These transformations

should be relatively inexpensive and produce formulae on which the DPLL procedure runs faster than on

the original ones. In this chapter, I have introduced two notions that help inthe design and evaluation of

formula transformations. The first isdeductive powerof a CNF formula. It is motivated by the observation

that the more consequences the DPLL procedure can deduce from each of its decisions, the more effective

the pruning of the search space. The second notion isproof conciseness.

In Chapter 4, thedominator-based CNF simplificationtechniques are presented. A clause with two

literals may be derived during the deduction process. Since such a clausetends to shorten the implication

graph, it can be characterized in terms of the notions defined in Chapter 3.I have extended dominator

analysis with an efficient self-subsumption check. I also show how the information collected by dominator

analysis can be used to detect redundancies in the satisfied clauses and,more importantly, how it can be used

to produce supplemental conflict clauses. I have characterized these transformations in terms of deductive
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power and proof conciseness. My experiments show that the main advantage of dominator analysis and its

extensions lies in improving proof conciseness.

Chapter 5 includes the conclusions of this thesis and some future researchdirections.

1.4 Related Work

Most powerful modern SAT solvers [zCh, Jer, Satb, Rsa, Pic, Pre, Bar, SATc] employ variants of

the DPLL procedure, and recently they have achieved great improvement in several ways other than CNF

transformation techniques like efficient implementations based on two-watchedliteral schemes [Zha97,

MMZ+01, Bie08b] for faster implication process, heuristics to select the decisionvariables [Lib00, GN02,

HB03, JS04a], and restart techniques [GSK97, Bie08a, PD09].

More recently, there has been considerable interest in efficient translation techniques from the original

problem to CNF formula, which are calledSAT encoding problems[Vel04, ES06, EMS07, MV07]. In par-

ticular, [EMS07] explores the preprocessing stage of SAT for circuit problems using recent logic synthesis

techniques. In contrast with preprocessing steps of the DPLL-based SAT solver, SAT encoding techniques

are applied to generate simpler CNF formulae to be processed by the SAT solver.

The notion of deductive power that is defined in this thesis is related to, but distinct from thede-

ducibility of [VH05], which counts the number of implications due to assignment to a variable of a CNF

formula.

A problem related to preprocessing of a CNF formula is the preprocessingof conflict clauses in an

incremental SAT solver. An incremental solver is given a sequence of SAT instances and tries to use clauses

learned in earlier instances to expedite the solution of later instances. If each instance is obtained from the

previous by addition of new clauses, all clauses learned by the solver can beforwarded to the new instance.

However, in the general case, clauses must be validated before they can be forwarded. In [JS04b], a process

calleddistillation was proposed, which forwards a clause derived from a previously learned clauseγ only if

asserting the negation ofγ causes a conflict in the new instance. In [HS07] and [HSJ10] I apply distillation

to preprocessing the original clauses of a CNF formula and we characterize this approach from the point of

view of deductive power.
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Assignment shrinking [Nad09] can also be seen as on-the-fly distillation of selected conflict clauses.

At the end of conflict analysis, the algorithm of [Nad09] backtracks to a level preceding the backtracking

level to undo some assignments in the conflict clause. It then applies those assignments again in a different

order until a new conflict occurs. This may produce a new smaller conflictclause. Since this is a potentially

expensive technique, its invocation is controlled by a heuristic.

Previous work besides [Nad09] has addressed the quality of conflict clauses [ZMMM01, ES03, SE05,

JS06, SB09]. In particular, the clause minimization algorithm of [SE05, SB09] traverses the implication

graph beyond the 1-UIP to remove literals in the conflict clause that are impliedby other literals. The

strong conflict analysis proposed in [JS06] generates a second conflict clause that is often more effective

than a regular conflict clause of [ZMMM01] in escaping regions of the search space where the solver would

otherwise linger for a long time. A common thread of most work on the subject is the search for a balance

between a technique’s cost and its ability of to detect implications earlier. Unlikethe on-the-fly subsumption

to be discussed in Section 3.2, these earlier techniques focus on simplificationof the conflict-learned clauses,

instead of looking at all clauses appearing in the resolution graph.

An existing clause may be subsumed by a conflict clause newly found by anyof the conflict analysis

algorithms. Hence, one may try to simplify the newly redundant clauses. The on-the-fly simplification

algorithm used in [Zha05] can detect the subsumed clause with aone watched literal scheme, when a

new clause is generated by conflict analysis. While the one watched literal scheme is efficient, the removal

of subsumed clauses does not improve deductive power and does not produce more concise proofs. The

practical ability of this technique to speed up SAT solvers was not the focusof [Zha05] and remains to be

established.



Chapter 2

Propositional Satisfiability Solvers

The propositional satisfiability (SAT) problem is of central importance in various areas of com-

puter science, including artificial intelligence, hardware design, electronic design automation, and verifi-

cation. The last two decades have seen great advances in the performance of satisfiability (SAT) solvers for

propositional logic, in particular those based on the David-Putnam-Logemann-Loveland (DPLL) procedure

[DP60, DLL62, MS99, MMZ+01, ES03]. These solvers have found many applications in electronic de-

sign automation (EDA) including model checking, logic synthesis, testing, andtiming analysis. Especially

in the formal verification area, the SAT solving algorithms have helped make Bounded Model Checking

(BMC [BCCZ99]) a widely used alternative to BDD-based model checking. Progress has been made in

the pruning of the search space [MS99] and in the efficient implementation ofthe basic operations like

deductions [MMZ+01] during the DPLL procedure; for instance, non-chronological backtracking and con-

flict analysis based on unique implication points (UIPs), and efficient implication based on two-watched

literal scheme [Zha97, MMZ+01], decision variable heuristics, e.g., Variable State Independent Decaying

Sum (VSIDS) heuristic [MMZ+01] and conflict cluase based heuristic in BerkMin [GN02], and effective

constraints database management.

This chapter covers backgrounds and definitions related to the satisfiabilityproblems for propositional

formulae that are pertinent to my work.
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2.1 Propositional Satisfiability Problems

Variables that can take truth valuestrue andfalse are calledBoolean variables. Lettersa, b, c, . . .

will be used for Boolean variables. Also,Boolean connectivesare conjunction (∧), disjunction (∨), and

negation (¬). Thepropositional formulae in the standard Boolean connectives are inductively defined as

follows.

• false andtrue are propositional formulae.

• Every Boolean variable is a propositional formula.

• If F is a propositional formula, then¬(F ) is a propositional formula.

• If F1 andF2 are propositional formulae, then(F1)∨(F2) and(F1)∧(F2) are propositional formulae.

We drop outer parentheses, “(” and “)”, when no ambiguity arises. Other standard Boolean con-

nectivities can be defined as abbreviations. For instance, exclusive-OR of variablesa andb is defined by

(¬a ∧ b) ∨ (a ∧ ¬b), and function “a impliesb” (a → b) is defined by¬a ∨ b. An assignmentto the set of

variablesV of CNF formulaF is a mapping fromV to {true, false}. A partial assignment maps a subset

of V . A satisfying assignment for CNF formulaF is one that causesF to evaluate totrue. FormulaF is

said to besatisfiable if there is any satisfying assignment forF . Otherwise, it is said to beunsatisfiable.

Thesatisfiability problem (SAT) is the decision problem to determine whether a propositional formula is

satisfiable or not.

Example 2.1. Considering the following propositional formula:

F = (¬a ∧ b) ∨ (a ∧ ¬c).

FormulaF is satisfiable because the assignmenta = 0, b = 1, andc = 0 makesF becometrue.

2.2 Representations

We consider several ways of representing a propositional formula. Conjunctive Normal Form (CNF)

is often used because it can be manipulated efficiently and because constraints of various provenance are
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easily translated into it.

A CNF formula is a set ofclauses; each clause is a set ofliterals; each literal is either a variable or

its negation. The function of a clause is the disjunction of its literals, and the function of a CNF formula is

the conjunction of its clauses. The CNF formula

{{¬a, c}, {¬b, c}, {¬a,¬c, d}, {¬b,¬c,¬d}}

therefore corresponds to the following propositional formula:

(¬a ∨ c)1 ∧ (¬b ∨ c)2 ∧ (¬a ∨ ¬c ∨ d)3 ∧ (¬b ∨ ¬c ∨ ¬d)4,

where subscripts indicate clause numbers for ease of reference; in thisthesisci represents the clause that is

numbered byi.

SAT is a central problem in complexity theory, and several special caseshave been studied. The

problem called “3-SAT” in which each clause in CNF formula has exactly three literals was the first problem

proved to beNP-complete[Coo71].1 The general CNF SAT problem is as hard as the 3-SAT problem. On

the other hand, the “2-SAT” problem, in which each clause is restricted to have at most two literals, can be

solved in polynomial time.

SAT problems can also become easier if the formulae are restricted to Disjunctive Normal Form

(DNF), that is, disjunctions of terms; each term is a conjuction of literals. Thisis because such a formula is

satisfiable if and only if some term is satisfiable, and a conjunctive term is satisfiable if and only if it does

not contain botha and¬a for variablea. This can be checked in polynomial time.

Propositional formulae can be represented in Boolean circuit forms. Oneexample is theAnd-

Inverter Graph (AIG) [KGP01], where each internal nodeν has exactly two predecessors; if the pre-

decessor variables area andb, its functionϕ(ν) is one ofa ∧ b, a ∧ ¬b, ¬a ∧ b, and¬a ∧ ¬b. Even if

the AIG is not acanonical representation, that is, it does not provide a unique representation of a given

function, it is often used because it allows a variety of simplification techniques that may significantly speed

1 Stephen Cook and Leonid Levin discovered certain problems inNP, the class of languages decidible in nondeterministic
polynomial time, whose complexity is related to that of the whole class. If a polynomial time algorithm exists for any of these
problems, all problems in NP would be polynomial time solvable. These problems are called NP-complete[Sip96].
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up subsequent analyses. The SAT problem of the input formula can be written in AIG formats [GAG+02],

and this is also NP-complete [WCC09].

Canonical circuit representations, like Binary Decision Diagrams (BDDs), are useful to manipulate

large propositional formulae. A BDD representing functionF consists of two types of nodes:terminal

nodes that are labeled by eithertrue or false, and internal nodes that are labeled with variable names.

Following a path from the root to a terminal node evaluatesF for a given assignment to the input variables.

That is, the label of the terminal node is the result of the evaluation. Each internal node represents the

function(a∧ fa)∨ (¬a∧ f¬a) (with fa 6= f¬a) 2 , wherea is thecontrol variable of the internal node, and

fa andf¬a are the functions of the successors of the internal node. In popular usage, BDDs refer to reduced

and ordered BDDs.

Different representations of propositional formulae have peculiar advantages regarding SAT prob-

lems. For the representations like DNF and BDDs, the hurdle lies in convertingthe SAT problem into the

required form; if this can be accomplished, satisfiability is then trivial. In particular, with BDDs, determin-

ing whether a function is satisfiable requires constant time, while a satisfying assignment, if it exists, can be

found inO(n) time, wheren is the number of variables. Since converting a Boolean circuit into a BDD may

incur an exponential blow-up, naive application of BDDs to SAT lacks robustness. On the other hand, there

exist numerous cases in which a proper mix of canonical (e.g., BDDs) andnon-canonical representations

(e.g., CNF or AIG) is very beneficial [KK97, BS98]. This is true, in particular, of SAT solvers based on

search, and applied to instances for which compact search trees do notexist or are hard to find.

2.3 CNF Formulae

In this thesis I assume that the input to the SAT solver is a formula in CNF definedin Sec.2.2. We

represent assignments by sets ofunit clauses, that is, clauses containing exactly one literal. For instance,

the partial assignment that setsa andb to true andd to false is written{{a}, {b}, {¬d}} or, interchangeably,

a ∧ b ∧ ¬d. Given CNF formulaeF1 andF2 over variable setV , F1 implies F2, writtenF1 → F2, if all the

assignments toV that satisfyF1 satisfyF2; F1 andF2 areequivalent if F1 → F2 andF2 → F1. A clause

2 This is known as theexpansion theoremof f with respect toa.
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γ is assertingunder assignmentA if all its literals except one (the asserted literal) are false. We say that an

asserting clause is anantecedentof its asserted literal, and also say that the antecedent implies its asserted

literal. Clauseγ1 subsumes clauseγ2 if γ1 ⊆ γ2.

Example 2.2. Given two clauses(a ∨ b ∨ c)1 and(a ∨ c)2, c2 subsumesc1.

Given γ1 = γ′
1 ∪ {l} andγ2 = γ′

2 ∪ {¬l}, the resolution of the two clauses overl produces the

resolventγ′
1 ∪ γ′

2, which is implied by{γ1, γ2}.

Example 2.3. Given the following propositional formula:

(a ∨ ¬b ∨ c)1 ∧ (¬a ∨ d)2,

resolvingc1 andc2 overa yields the resolvent(¬b ∨ c ∨ d).

Clausesγ1 andγ2 are inself-subsumptionrelation if their resolvent subsumesγ1. If F contains

clausesγ1 andγ2 such thatγ1 is in self-subsumption relation withγ2, the CNFF ′ obtained by replacingγ1

with the resolvent ofγ1 andγ2 is equivalent toF .

Example 2.4. Given the following formula:

F = (a ∨ ¬b ∨ c)1 ∧ (a ∨ b)2 ∧ (c ∨ d)3,

resolution ofc1 and c2 gives the resolventγ = (a ∨ c) that subsumesc1, that isc1 is in self-subsumption

relation withc2. Then, formula

F ′ = (a ∨ c)4 ∧ (a ∨ b)2 ∧ (c ∨ d)3

that is obtained by replacingc1 in F with γ is equivalent toF .

2.4 CNF SAT Solvers

SAT algorithms for CNF formulae can be categorized asincomplete or completealgorithms. In-

complete algorithms do not guarantee that they will eventually either report a satisfying assignment or

prove the given formula unsatisfiable. Incomplete methods are usually based on stochastic local search
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[GW93, SKC93], while the complete algorithms are based on an exhaustivebranching andbacktracking

search. GSAT [SLM92] and Walksat [SKC95] played a key role in the success of local search in SAT. GSAT

is based on a randomized local search technique [LK73, Pap94]. Theystart by assigning a random value

to each variable. If the assignment satisfies all clauses, the algorithm terminates, returning the assignment.

Otherwise, a variable is flipped and the above is then repeated until all the clauses are satisfied. Such SAT

solvers based on stochastic local search perform better on random SAT instances rather than on structured

instances like the ones obtained from real verification problems.

Given an input formulaF , complete algorithms either produce a satisfying assignment forF or

prove thatF is unsatisfiable. Most complete methods remain variants of a procedure introduced several

decades ago: the DPLL procedure. The DPLL procedure performs abacktrack search in the space of

partial truth assignments. The key feature of DPLL is the efficient pruningof the search space. My work

only concerns DPLL-based SAT solvers, and the following section is devoted to reviewing these complete

SAT solvers. Another compete approach is Staålmarck’s method [SS98], which is based on thedilemma

rule. This rule opens two branches and assumes a formula to betrue in one branch andfalse in the other.

The branches are eventually merged and the intersection of the two branches is kept: for variablex of the

formula, consequences that are gained both fromx and¬x must betrue independently ofx. This proof

procedure has been successfully used in industrial verification problems [Bor97, Bor98, CG05].

2.5 The DPLL Procedure

Resolution can be used toeliminate variablel from a CNF formula. One replaces the clauses that

contain eitherl or ¬l with all their resolvents. If, for example, variableb is to be eliminated fromF and

a ∨ b, ¬b ∨ c and¬b ∨ d are the only clauses ofF containingb, then they are replaced by all the resolvents

overb, namelya ∨ c anda ∨ d. The resulting CNF formula isequisatisfiableto F ; that is, it is satisfiable if

and only ifF is. Therefore, repeated application of variable elimination results in a decision procedure for

CNF satisfiability that is known as Davis-Putnam (DP) procedure [DP60].If in some iteration, one resolves

{li} and{¬li}, then the empty clause is produced and the CNF formula is unsatisfiable. Otherwise, once all

variables are eliminated, no clauses are left and the formula is satisfiable. The DP procedure often produces
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1 GRASPDPLL() {
2 while (CHOOSENEXTASSIGNMENT() == FOUND)
3 while (DEDUCE() == CONFLICT){
4 blevel = ANALYZE CONFLICT();
5 if (blevel< 0) return UNSATISFIABLE;
6 elseBACKTRACK(blevel);
7 }
8 return SATISFIABLE;
9 }

Figure 2.1: GRASPDPLL algorithm.

too many resolvents; in applications, it has been mostly replaced by the Davis-Putnam-Loveland-Logemann

(DPLL) procedure [DLL62] that is a search algorithm based on branching and backtracking.

Many successful SAT solvers are based on the DPLL procedure, whose modern incarnations are

described by the pseudocode of Fig. 2.1. The solver maintains a currentpartial assignment that is extended

until it either becomes a total satisfying assignment, or becomes conflicting. While extending the partial

assignment, the DEDUCE procedure tries to detect as many implications as possible by using asserting

clauses.

A derivationF ∪ A ⊢ l (l is implied by CNF formulaF together with partial assignmentA) is

conveniently represented by itsimplication hypergraph . An implication hypergraph has a vertex for each

literal in A and each asserted literal; it has a directed hyperedge (i.e., a set of directed edges) for each

asserting clause with more than one literal that is involved in the derivation. The implication hypergraph

may also have a special conflict node, namedκ, to be described later.

Example 2.5. Consider the following CNF formula:

F = (a ∨ b)1 ∧ (a ∨ c)2 ∧ (a ∨ d)3 ∧ (¬b ∨ ¬c ∨ e)4 ∧ (¬c ∨ ¬d ∨ e)5.

Under partial assignment{{¬a}}, literals b, c, andd are implied byc1, c2, andc3 of F ande is then implied

by either the fourth or the fifth clause. The implication hypergraph forF ∪ {¬A} ⊢ e is shown in Fig. 2.2.

Hyperedges are labeled with antecedent clause numbers. The numberof edges in a hyperedge equals

the number of literals in the corresponding clause minus one. In the context of DPLL, each node is annotated
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4

¬a@1
2

3

1
e@1

5

b@1

c@1

d@1

Figure 2.2: Implication hypergraph for Example 2.5.

with a decision level (the number following the @ sign in the figure). For the literals in the assignment,the

level is the order in which they are asserted. For a literal asserted by a clause, it is the highest level of its

predecessors. Literals asserted by unit clauses have decision level equal to 0. The hypergraph of Fig. 2.2

shows thate can be implied in two different ways.

SAT solvers usually keep track of just one way to assert a literal. Hence,they use animplication

graph rather than a hypergraph. The implication graph corresponds to a subgraph of the implication hyper-

graph in which every vertex has at most one incoming hyperedge.

If extension of the assignment produces a conflict—that is, a clause, which is said to beconflicting,

has all its literals assigned to false—the solver analyzes the conflict andbacktracks accordingly.

A conflict results in the presence of the conflict nodeκ in the implication hypergraph, with a hyper-

edge joining it to the negations of the literals of the conflicting clause. Multiple conflicts may be derived

from the same partial assignment. Hence, the conflict node may have multiple incoming hyperedges. SAT

solvers, once again, usually work with a subset of the hypergraph thatcontains only one hyperedge into each

node.

2.6 Conflict Analysis

Conflict analysis [MS96] leads to learning aconflict learned clause(in short, conflict clause), that

is, a clauseC with the following properties: given CNF formulaF and assignmentA,

• F → {C},

• C /∈ F , and
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6
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1 7

Figure 2.3: Implication graph for the first conflict of Example 2.6.

• C is conflicting underA.

A conflict clause is computed by resolving the conflicting clause with the antecedents of literals that appear

in it. The antecedents are processed in reverse order in which the literals they assert were implied. The

conflict clause can be added to the given SAT instance to prevent the examination of regions of the search

space that contain no solutions.

Example 2.6. Consider the following formula:

F = (a ∨ b ∨ ¬c)1 ∧ (a ∨ c ∨ d)2 ∧ (b ∨ c ∨ e)3 ∧ (¬d ∨ f)4 ∧ (¬e ∨ g)5 ∧

(¬f ∨ ¬g ∨ h)6 ∧ (¬f ∨ ¬g ∨ ¬h)7 .

Suppose that the decisions{¬a@1,¬b@2} are made by the SAT solver and that the implications of those

decisions are computed. Figure 2.3 shows the implication graph that is derived when the following rule

is applied: the earliest asserting clauses adds a new implied literal into the graph. The implication graph

shows the literals implied up to the current decision level. The implications makeclausec7 conflicting as

shown by the conflict nodeκ. Conflict analysis is illustrated in Fig. 2.4. The implication graph of Fig. 2.3

also shows each resolventγi of the resolution graph of Fig. 2.4 that the conflict analysis generates while

traversing backward the implication graph from the conflicting clausec7. Every resolvent and, hence, every

conflict clause corresponds to acut in the implication graph. The literals having outgoing edges that cross

the cut comprise a sufficient reason for the conflict.

Most conflict analysis algorithms terminate as soon as they find a clause containing a Unique Im-

plication Point (UIP), that is, a single literal asserted at the current level. There may bemore than one
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c6 : (¬f ∨ ¬g ∨ h)

γ1 : (¬g ∨ ¬f)
c5 : (¬e ∨ g)

h

c4 : (¬d ∨ f)

f

g

c3 : (b ∨ c ∨ e)

c7 : (¬f ∨ ¬g ∨ ¬h)

γ6 : (a ∨ b)

γ2 : (¬e ∨ ¬f)

γ3 : (¬d ∨ ¬e)

e

d

c

c2 : (a ∨ c ∨ d)

c1 : (a ∨ b ∨ ¬c)

γ5 : (a ∨ b ∨ c)

γ4 : (b ∨ c ∨ ¬d)

Figure 2.4: Resolution graph of conflict analysis for Example 2.6.
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Figure 2.5: Conflict clause computed on an implication graph.

cut containing a UIP in the implication graph. Specifically, the cut closest oneto the conflicting clause in

the implication graph contains thefirst UIP (in short, 1-UIP). In [ZMMM01], conflict clauses based on the

1-UIP have been empirically shown effective in pruning the search space. In Example 2.6, sinceγ6 contains

the only UIP, that is literalb, it is chosen as conflict clause.

When the 1-UIP is far from the conflict in the implication graph, the conflict clause may not be

effective in preventing the SAT solver from producing many conflicts involving the same clause.Strong

conflict analysis[JS06] can be a remedy in such cases: It examines intermediate resolventsas UIP-based

conflict analysis does. Contrary to UIP-based analysis, however, it generates an additional conflict clause

that contains more than one literal assigned at the current decision level. This additional conflict clause must

be one of the intermediate resolvents derived between the conflict and the 1-UIP. Usually, the closer to the

conflict, the fewer literals the resolvent contains. Therefore, the additional conflict clause tends to be shorter

than the conflict clause with the 1-UIP.

A SAT solver can simplify a conflict clause by dropping the literals implied at decision level0 from

the conflict clause. In [EMS07, SB09], thisconflict clause minimization method has been extended to

remove a literal that is implied at a decision level higher than0 as long as it is implied by other literal in the

conflict clause. This procedure can be applied to the results of both standard and strong conflict analysis. It

applies resolution to the conflict clause and the antecedent clauses.

Example 2.7. In Fig. 2.5, the literala is lifted from the conflict clause, since the conflict clause is subsumed

by (b ∨ d), which is the resolvent of the antecedent ofa and the conflict clause itself. In other words,a is

removed because¬a is implied by¬b in (¬a ∨ b).



19

2.7 Proof of Unsatisfiability

Once conflict analysis adds a new conflict clause, it computes thebacktrack level, namedblevel, that

is the highest decision level of the literals in the conflict clause except for the UIP. After conflict analysis, the

DPLL procedure backtracks toblevel, where the newly recorded conflict clauses is asserting. If the conflict

occurs while propagating an assignment at decision level0, then the DPLL procedure computes -1 asblevel.

This means that there is no way to resolve the conflict, and the procedure declares the formula unsatisfiable.

When a CNF formula is unsatisfiable, a DPLL-based SAT solver can generatea proof of unsatisfiability

[GN03, ZM03] in the form of aresolution graph. A resolution graph is a directed acyclic graph like the

one of Fig.2.4. Each node in the graph represents a clause; the sourcesrepresent original clauses, and the

inner nodes represent the resolvents of their immediate predecessors. In a proof of unsatisfiability, there

is a sink node associated with the empty clause. The sources identify a subformula often referred to as an

unsatisfiable core[LMS04, OMA+04]. To generate a proof of unsatisfiability, the SAT solver keeps track

of the derivations of conflict clauses. When the empty clause is learned asthe result of a level-0 conflict, the

solver recursively replaces each conflict clause with its derivation. The process starts from the empty clause

and terminates when only clauses of the original formula are left. In particular, an unsatisfiabile clause set

F ′ = {c1, . . . , cn} ⊆ F is minimally unsatisfiable if any proper subset ofF ′ is satisfiable. Both problems

of finding a unsatisfiable core and proof of unsatisfiability have been researched in last few years due to its

increasing importance in formal verification [AKMM03, KOSS04, GLST05,McM03, LS06, Li06]. Hence,

a new technique added to a SAT solver should not interfere with its ability to produce either.

To apply CNF transformations without interrupting proofs of unsatisfiability,the SAT solver, like

CirCUs [JAS04, VIS] can move every modified clause to a separate database during DPLL. For instance, if

a clause is removed by variable elimination or simplification, it is stored as a reason to the derivation of the

resolvents or of the simplified clause. In the context of adominator clauseto be discussed in Chapter 4, the

solver keeps track of the antecedents involved in the dominator computation, as it does for a conflict clause.
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2.8 Preprocessing

The GRASPDPLL procedure is often applied after apreprocessingphase, which attempts to remove

redundant clauses and literals from the given formula. SatELite [EB05, Satb] simplifies a CNF formula by

removing clauses subsumed by other clauses, by simplifying clauses that are in self-subsumption relation

with other clauses, and by eliminating variables. By contrast, [HS07] proposed a new prepocessing al-

gorithm where the CNF formula is distilled by analyzing the implication graphs to generate the improved

clauses.

Equivalent variable substitution [Bra01] is another method to simplify the input formula. If formula

F contains two clausesc1 = (¬p ∨ q) andc2 = (p ∨ ¬q), literalsp andq are equivalent inF , that is,

F ∪ {p} ⊢D q andF ∪ {¬p} ⊢D ¬q. In the standard deduction procedure of DPLL-based SAT solvers, this

can be found by checking cycles of implications, but this may spend considerable time while searching and

comparing these two-literal clauses. Variables in equivalence relation belong to the sameequivalence class.

In an equivalence class, a representative is selected and it substitutes for all other variables in the clause

database. This yields fewer variables, and allows the SAT solver to explore a reduced search space.

Preprocessing may reduce the workload of a SAT solver. However, there exists a trade-off between

effect and cost of the preprocessing techniques, because it is, in most cases, too time consuming to remove

all the redundancies in the given SAT instance or eliminate all variables.



Chapter 3

Increasing the Efficiency of the Deduction Procedure

The Progress of DPLL-based SAT solvers of Sect. 2.5 has been made both in the pruning of the search

space [MS99] and in the efficient implementation of the basic operations like deductions [MMZ+01]. Here

we are concerned with techniques that transform a CNF formula, either asa preprocessing step [EB05,

SE05, ZKKSV06] or during the DPLL procedure. These transformations should be relatively inexpensive

and produce formulae on which the DPLL procedure runs faster than onthe original ones.

Reducing the size of the formula is a common objective of transformations. Forinstance, a set of

clauses isredundant if a proper subset represents the same function. A subsumed clause (i.e.,a clause

implied by another) is redundant, and the cost of many SAT solver operations decreases with a smaller

formula. Hence, removing subsumed clauses is usually beneficial. However, not all redundant clauses can

be removed without negative effect on the speed of the solver.

We introduce two notions that help in the design and evaluation of formula transformations. The

first is thedeductive powerof a CNF formula. The higher this power, the more consequences the DPLL

procedure can deduce from each of its decisions; hence, the more effective is the pruning of the search space.

The second notion isproof conciseness. It reflects the fact that the DPLL procedure progresses through the

search space by proving that parts of that space contain no satisfying assignment and recording such findings

in the form of new clauses and their derivations. More concise proofs are faster to build and usually more

effective at pruning further search.

To see how deductive power may help in the analysis of SAT solvers, consider clause recording, which

addsconflict-learned clausesor, simply,conflict clausesto the original SAT instance. Each conflicting
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assignment is analyzed to identify a subset that is sufficient to cause the current conflict. The disjunction

of the literals in the subset becomes a new clause added to the original SAT instance. The conflict clauses

learned by SAT solvers are by definition redundant, but they always improve the deductive power of a CNF

formula.

Clauses that are subsumed by other clauses slow down the implication process, but do not help the

solver in pruning the search space. We show that they never improve deductive power. Therefore, prepro-

cessing often removes them to accelerate implications. On the other hand, removing literals from clauses

may increase the deductive power of a formula. We study in detail severalapproaches to such elimination,

both as preprocessing and during DPLL.

Literal removal procedures are often based on resolution. In addition,resolution may be applied

to eliminate variables from the formula. Since the elimination of variables may increase the number of

clauses, it is usually applied with restraint [SP04, EB05]. Deductive power is not guaranteed to improve

either. Instead, the main benefit of variable elimination is the decrease in the average number of decisions

and implications required to produce a conflicting assignment. Not only conflicts occur sooner, but their

analysis is faster, and the learned clauses tend to prune larger portions of the search space.

In this work we analyze existing techniques that increase deductive power or generate more concise

implication graphs and we propose two new ones. We show how to detect subsumptions during resolution

during both preprocessing and conflict analysis with minimal overhead. Our on-the-fly subsumption check

can be applied to both regular and strong [JS06] conflict analysis. We show how this inexpensive check is

used to improve deductive power at three stages of the SAT solver: variable elimination, clause distillation,

and conflict analysis. We then describe adistillation algorithm that asserts the negations of clauses to

remove redundant literals and possibly derive new clauses. Unlike previous approaches, this distillation

procedure may replace a clause with the resolvent of two or more existing clauses without explicitly deriving

any such resolvents in advance. We show that distillation increases deductive power and shortens implication

graphs.

Experiments show that the presented techniques speed up our SAT solver. Variable elimination

works primarily by shortening the implication graphs, while other transformations mainly improve deduc-
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tive power.

3.1 Deductive Power of a CNF Formula

Among the operations performed by a DPLL-based SAT solver, deduction(i.e., the DEDUCE proce-

dure of Fig. 2.1) plays a key role in boosting efficiency by finding what literals are implied by the current

partial assignment. Deduction is usually based onmodus ponens:

P,¬P ∨ Q

Q
, (3.1)

whereP and Q are formulae. The rule of modus ponens used in the DPLL procedure of Sect. 2.5 is

a specialized form, where¬P ∨ Q is an asserting clause andQ is the asserted literal. In other words,

given a clause{l1, . . . , ln} and a partial assignment{{¬l1}, . . . , {¬ln−1}}, modus ponens deducesln. The

deduction procedure in a DPLL-based SAT solver repeatedly applies modus ponens to asserting clauses in

the given formula until either no new literal is implied, or a clause becomes conflicting. We denote this

deduction procedure, which employs modus ponens as the only inferencerule, byD. We writeF ⊢D l if

the truth ofl can be established by repeatedly applying modus ponens to asserting clauses inF . We write

F ⊢D false if procedureD applied toF finds a conflicting clause. ProcedureD is sound (F ⊢D l implies

F ⊢ l andF ⊢D false impliesF ⊢ false) but not complete.

Example 3.1.D is not sufficient to deduce that

F = (a ∨ b)1 ∧ (a ∨ ¬b)2 ∧ (¬a ∨ c)3 ∧ (¬a ∨ ¬c)4

is unsatisfiable; that is,F ⊢ false, butF 6⊢D false. In contrast, if(¬a ∨ c) and(¬a ∨ ¬c) are replaced by

(¬a), thenD would deduce unsatisfiability of

F ′ = (a ∨ b)1 ∧ (a ∨ ¬b)2 ∧ (¬a)5;

that is, thatF ′ ⊢D false.

While F ∪ {{p}} ⊢ q is equivalent toF ∪ {{¬q}} ⊢ ¬p, F ∪ {{p}} ⊢D q does not implyF ∪

{{¬q}} ⊢D ¬p, as illustrated by the next example.
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Figure 3.1: Implication graph of Example 3.2.

Example 3.2. Consider the following formula:

F = (¬l1 ∨ l3)1 ∧ (¬l1 ∨ l4)2 ∧ (¬l3 ∨ ¬l4 ∨ l2)3 .

ProcedureD deduces literall2 fromF ∪{{l1}} as shown in Fig. 3.1 . However, it does not deduce¬l1 from

F ∪ {{¬l2}}.

The rule of modus ponens is a special case of resolution:

P ∨ Q,¬P ∨ R

Q ∨ R
, (3.2)

whereP , Q, andR are formulae. In the DP procedure of Sect. 2.5,P ∨ Q and¬P ∨ R are clauses. The

deduction procedure that repeatedly applies that inference rule is a sound and complete proof system for

CNF. However, as mentioned in Sect. 2.5, this procedure is inefficient in practice: DPLL usually achieves

better results by combining an incomplete deduction procedure and search.SinceD is incomplete, its effects

depend on how the input is presented to it. In particular, the strengthening of clauses as in Example 3.1 or the

addition of new clauses may help. Though the DPLL procedure only needsto be able to detect conflicting

assignments to be complete, it is clearly advantageous for a SAT solver based on it to work on a CNF

formula that allows more to be done through deduction and less through enumeration. This motivates the

following definition. It is convenient to assume that when assignmentA is conflicting inF , for every literal

l, F ∪ A ⊢S l.

Definition 3.3. For a given sound (but possibly incomplete) deduction procedureS and two equivalent sets

of clausesF1 andF2, let A denote a partial assignment to the variables inF1 ∪ F2. We say thatF1 has

deductive power greater than or equal toF2 (relative toS) if and only if for everyA and any literall such

thatF2 ∪ A ⊢S l, F1 ∪ A ⊢S l.
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If F1 has deductive power greater than or equal toF2 (relative toS) we writeF2 �S F1. If F2 �S F1

andF1 6�S F2, we writeF2 ≺S F1. If F2 �S F1 andF1 �S F2, thenF1 andF2 have the same deductive

power (relative toS), writtenF1 ≃S F2.

Note that ifF2 �S F1 andA is conflicting inF2, thenA is also conflicting inF1. In Example 3.1,

F �D F ′. Since it is reflexive and transitive,�S is a preorder. In the following, unless otherwise stated, the

deduction procedure is assumed to beD and we write� for �D. We are interested in transformations of a

CNF formula that increase, or at least preserve, its deductive power.The following fact proves useful.

Lemma 3.4. LetF1 be a CNF formula and letγ be animplicate of F1 (that is, a clause implied byF1). Let

F2 be the CNF formula obtained fromF1 by addingγ and optionally removing clauses that are subsumed

byγ. Then,F1 � F2.

Proof. F1 andF2 are obviously equivalent. Also, adding an implicate to a CNF formula cannot decrease

its deductive power. For the removal of subsumed clauses, we need to consider two cases. LetA be an

assignment andl be a literal such thatF1 ∪ A ⊢D l. Supposeγ′ is a clause subsumed byγ that is used in

the derivation ofl. If γ′ asserts a literal that is also inγ, thenγ′ can be replaced byγ in the derivation. Ifγ′

asserts a literal not inγ, then all literals ofγ are false in the derivation and addingγ to it leads to a conflict.

In both cases, the conditions of Definition 3.3 are met.

We can use Lemma 3.4 to characterize the change in deductive power of a CNF formula when it

is simplified by either subsumption or self-subsumption. As a special case, since any clause ofF is an

implicate ofF , one obtains the intuitive result that clauses subsumed by other clauses can be removed from

a CNF formula without negatively affecting its deductive power. Adding a clause toF that is subsumed by

other clauses does not decrease the deductive power either. Hence,a CNF formulaF1 and the formulaF2

obtained by removing subsumed clauses fromF1 have the same deductive power, i.e.,F1 ≃ F2. Similarly,

since every resolvent of clauses ofF is implied byF , augmenting a CNF with a resolvent may increase

deductive power. Therefore, simplification based on self-subsumption may increase the deductive power of

a CNF formula, while simplification based on subsumption can only speed up the deduction procedure by

reducing the number of clauses to be examined.
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Example 3.5.The CNF formulaF1 = (a∨b∨c)1∧(a∨¬b)2 can be simplified toF2 = (a∨c)1∧(a∨¬b)2

by self-subsumption. SinceF1 ∪ {{¬c}} 6⊢D a, whileF2 ∪ {{¬c}} ⊢D a, we haveF1 ≺ F2. On the other

hand, simplifyingF3 = F1 ∧ (a ∨ ¬d) ∧ (d ∨ c) by self-subsumption does not increase deductive power, as

one can show by applying Lemma 3.6 below.

Since resolution is broadly used in DPLL-based SAT solvers, simplification based on self-subsumption

can be applied to various stages of the procedure; in particular, to conflict analysis. This will be dealt with

in the next section.

The clause{¬l0, ln}, wheren ≥ 2, is a transitive closure clauseof F , if there exist literals

l1, . . . , ln−1 such that{¬l0, l1}, {¬l1, l2}, . . . , {¬ln−1, ln} are clauses ofF . Adding a transitive closure

clause toF does not change its deductive power as stated in the following lemma.

Lemma 3.6. Let F be a CNF formula andγ = {¬l0, ln} be a transitive closure clause ofF . Let F ′ =

F ∪ {γ}. Then,F ′ ≃ F .

Proof. If γ ∈ F , there is nothing to prove. Suppose not. By Lemma 3.4, sinceγ is an implicate ofF ,

F � F ′. If ln (¬l0) is asserted byγ in F ′, thenl0 (¬ln) must be true; thereforeln (¬l0) is also implied by the

sequence of clauses{¬l0, l1}, . . . , {¬ln−1, ln} ({¬ln−1, ln}, . . . , {¬l0, l1}) in F . Therefore,F ′ � F .

While adding a transitive closure clause of the implications does not affect deductive power, it may

help the solver by shortening the implication graph. A more concise implication graph may benefit the

procedures that work on it. For instance, the deduction procedure may identify a conflicting clause more

quickly, and conflict analysis may resolve fewer antecedents. On the other hand, adding clauses to the

CNF database indiscriminately may substantially slow down the deduction procedure. To prevent this, a

supplemental clause should be generated only when its usefulness is established by an effective criterion

(i.e., strong conflict analysis).

Adding a clause that is the resolvent of other clauses may either increase deductive power or shorten

the implication graph. Adding a transitive closure clause may lead to a more concise implication graph.

On the other hand, some clauses may never become asserting and therefore never appear in an implication

hypergraph, as shown in the next example.
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Figure 3.2: Implication graph of Example 3.7.

Example 3.7. Consider the following CNF formula:

F = (¬a ∨ ¬b)1 ∧ (a ∨ ¬e)2 ∧ (e ∨ ¬d)3 ∧ (¬b ∨ c ∨ ¬d)4 .

The formulaF is not simplified by either subsumption or self-subsumption. Assigning any literal of c4 to

false causes another literal of the same clause to be implied to true; for example, ¬d is implied byb in the

implication graph of Fig. 3.2. Hence,c4 can be removed fromF without affecting its deductive power or the

size of the implication graphs. On the other hand, since(¬b ∨ ¬d) is a transitive closure clause ofF that

subsumes(¬b ∨ c ∨ ¬d), its addition may shorten an implication graph, e.g., the dashed edge in Fig. 3.2,

even though it does not improve deductive power.

Even though adding an implicate to a CNF formula may not affect its deductive power, the situation

is different when a conflict clause containing a UIP is learned by a DPLL-based solver. After recalling a

known result (Lemma 3.8, [MS99]), we show that the addition of a conflict learned clause containing a UIP

always increases the deductive power.

Lemma 3.8. LetF be a CNF formula and letγ be a conflict clause containing a UIP. Thenγ is an implicate

of F not subsumed by any clause ofF .

Proof. Sinceγ is obtained by resolution of clauses inF , it is implied by their conjunction, and hence by

F . Sinceγ evaluates tofalse at the last decision level, any clause that subsumes it should evaluate tofalse

as well. However, all clauses that are false at the last decision level contain at least two literals assigned

at the last decision level. (Otherwise they would have been asserting at some previous level.) On the other

hand,γ contains exactly one literal assigned at the last decision level, namely the UIP. Therefore, it cannot

be subsumed by any conflicting clause.
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Figure 3.3: Implication graph of Example 3.10.

Lemma 3.9. Let F1 be a CNF formula and letγ be a conflict clause containing a UIP. LetF2 be the CNF

formula obtained fromF1 by addingγ and optionally removing clauses that are subsumed byγ. Then,

F1 ≺ F2.

Proof. By Lemma 3.4,F1 � F2. Letγ = {l1, . . . , ln, u} be the conflict clause and letu be its UIP. Consider

the assignmentA = {{¬l1}, . . . , {¬ln}}. We haveF2 ∪ A ⊢D u, butF1 ∪ A 6⊢D u, for otherwiseu would

have not had a higher decision level than the other literals. Hence,F2 6� F1.

Lemma 3.9 does not apply to strong conflict analysis. The following example illustrates a clause that

is not new may be generated.

Example 3.10.Consider the following clauses:

(a ∨ ¬d)1 ∧ (a ∨ ¬c ∨ p)2 ∧ (a ∨ c ∨ d)3 ∧ (a ∨ d ∨ p)4 .

Suppose that the SAT solver makes decisions¬p@1 and¬a@2, and, at level 2, examinesc1, c2, andc3 in

order. It then identifiesc3 as a conflicting clause. As shown in Fig. 3.3, clausec4 does not appear in the

implication graph, even though it is also conflicting under the current assignment. The resolution ofc2 and

c3 on c produces(a ∨ d ∨ p), which isc4. Since this clause contains two literals assigned at level 2, it may

be chosen by strong conflict analysis.

Adding duplicate clauses clearly does not improve deductive power. Even when a clause added by

strong conflict analysis is new, it may not improve it. However, it may still contribute to generating more

compact implication graphs.
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Figure 3.4: Implication graph for the first conflict of Example 3.11.

Example 3.11. Consider the implication graph of Fig. 3.4. For that conflict, the SAT solver computes a

1-UIP based clause(¬a ∨ ¬i ∨ ¬j ∨ ¬k ∨ ¬l), which becomes asserting at level 2. Now suppose thatm is

assigned totrue by decision making and that the deduction procedure creates the implicationgraph shown

in Fig. 3.5. This graph is similar to the one of Fig. 3.4; in particular, the same clause is conflicting. However,

if strong conflict analysis adds(¬d ∨ ¬e ∨ ¬j ∨ ¬l), then, under the same decisions, the additional clause

will cause a conflict after fewer implications as shown in Fig. 3.6. A simpler implication graph is analyzed

more quickly. Moreover, the additional conflict clause may increase deductive power. For instance, if later

in the searchd, e, andj are the only assigned literals, the additional conflict clause is asserting, while the

1-UIP based conflict clause is not.

3.2 On-The-Fly Self-Subsumption

Lemma 3.4 implies that simplification based on self-subsumption may improve the deductive power

of a CNF formula. Since detecting whether the resolvent of two clauses subsumes either operand is easy and

inexpensive, checkingon-the-fly for subsumption can be added with almost no penalty to those operations

of SAT solvers that are based on resolution. In this section we review the basic idea and detail the applica-

tion of the on-the-fly subsumption check to conflict analysis. Then, we discuss on-the-fly subsumption in

preprocessing.

An efficient on-the-fly check for subsumption during resolution is basedon the following elementary
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Figure 3.5: Implication graph without additional conflict clause.
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Figure 3.6: Implication graph with additional conflict clause.
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fact.

Lemma 3.12. Let c1 = c′1 ∪ {l} andc2 = c′2 ∪ {¬l} be two clauses. Theirresolvent c′1 ∪ c′2 subsumesc1

(c2) if and only if|c′1 ∪ c′2| = |c1| − 1 (|c′1 ∪ c′2| = |c2| − 1).

Proof. Subsumption ofc1 occurs if and only ifc′1∪c′2 = c′1, which is equivalent to|c′1∪c′2| = |c′1| = |c1|−1.

Likewise for subsumption ofc2.

Thanks to Lemma 3.12, existing clauses that are subsumed by resolvents canbe detected and replaced

by the resolvents themselves. Doing so during conflict analysis is easy because the eliminated literal is the

one asserted by the clause itself. If that literal is kept in the first position in the clause [ES03, Bie08b],

it is easily accessed. In variable elimination, the literal to be removed corresponds to the variable to be

eliminated. Therefore, it is enough to save its position in the clause being scanned. In summary, the overhead

of on-the-fly subsumption check is negligible. The advantages, on the other hand, may be significant as

illustrated by the following example.

Example 3.13.Consider the following set of clauses:

(a ∨ b ∨ ¬c)1 ∧ (a ∨ b ∨ ¬d)2 ∧ (c ∨ d ∨ ¬e)3 ∧ (c ∨ e ∨ f)4

∧(d ∨ e ∨ ¬f)5 ∧ (¬b ∨ ¬d ∨ e)6 ∧ (¬d ∨ ¬e)7 .

Suppose that the first decision is to seta to false, and the second decision is to setb to false. From these

decisions literals¬c, ¬d, and¬e are deduced at level 2. This partial assignment, in turn, yieldsf through

c4, at which pointc5 is conflicting. Analysis of this conflict proceeds on the implication graph shown in

Fig. 3.7. Conflict analysis goes back through the implication graph building the resolution graph shown

in Fig. 3.8. The resolution graph shows thatγ2 subsumesc3, and thatγ4 subsumesc1. The subsumed

clauses can be strengthened by eliminating the pivot variable on which they were resolved. In addition to

the simplifications,γ4, containing the 1-UIP, subsumesc1; it is not required to add it to the clause database.

Rather,c1 is strengthened toa ∨ b. The simplified CNF is therefore

(a ∨ b)1 ∧ (a ∨ b ∨ ¬d)2 ∧ (c ∨ d)3 ∧ (c ∨ e ∨ f)4 ∧

(d ∨ e ∨ ¬f)5 ∧ (¬b ∨ ¬d ∨ e)6 ∧ (¬d ∨ ¬e)7 .
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Figure 3.7: Implication graph of Example 3.13.

c4 : (c ∨ e ∨ f)
c5 : (d ∨ e ∨ ¬f)

γ1 : (c ∨ d ∨ e)
c3 : (c ∨ d ∨ ¬e)

f

γ2 : (c ∨ d)
c2 : (a ∨ b ∨ ¬d)

d

e

γ3 : (a ∨ b ∨ c)
c1 : (a ∨ b ∨ ¬c)

c

γ4 : (a ∨ b)

Figure 3.8: Resolution tree of conflict analysis for Fig. 3.7
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Figure 3.9: Implication graph for the second conflict of Example 3.13.

After conflict analysis, the solver backtracks to level 1, which is the highest decision level in the strengthened

c1 when the UIPb is ignored. After backtracking,b@1 is asserted byc1.

Suppose that¬c is decided at level 2. From this decision, literald is implied. This partial assignment,

in turn, implies¬e throughc7. The chain of implications leads to another conflict atc6, as shown in Fig. 3.9.

Conflict analysis, illustrated in Fig. 3.10 yields the conflict clauseγ5. Then, sincec6 is subsumed byγ5, c6

is strengthened. Hence the CNF formula is simplified as follows:

(a ∨ b)1 ∧ (a ∨ b ∨ ¬d)2 ∧ (c ∨ d)3 ∧ (c ∨ e ∨ f)4 ∧

(d ∨ e ∨ ¬f)5 ∧ (¬b ∨ ¬d)6 ∧ (¬d ∨ ¬e)7 .

Example 3.13 shows how the CNF database can be simplified by checking subsumption on-the-fly.

A clause can be shortened when it is resolved during conflict analysis if itis subsumed by the resolvent.

The resolvent may contain a UIP; then, the clause that is strengthened canserve as conflict-learned clause.

c7 : (¬d ∨ ¬e)

e

c6 : (¬b ∨ ¬d ∨ e)

γ5 : (¬b ∨ ¬d)

Figure 3.10: Resolution tree of conflict analysis for Fig. 3.9.
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Figure 3.11: Implication graph shrunk from Fig. 3.7 with a new conflict node.

When this happens, an increase in deductive power is achieved even without adding a conflict clause.

Conflict analysis based on 1-UIP may be followed by strong conflict analysis. Therefore, we consider

the on-the-fly subsumption check in the context of strong conflict analysis.

Lemma 3.14. If clauseγ has been simplified by self-subsumption during conflict analysis, it is conflicting

at the current level.

Proof. Every resolvent produced in conflict analysis is conflicting at the current decision level. Therefore,

clauseγ, which is one such resolvent, is also conflicting.

In Example 3.13, oncec3 is strengthened byγ2, it becomes conflicting. Then, the implication graph

of Fig. 3.7 is shrunk as shown in Fig. 3.11 by establishingc3 as the antecedent of a newκ node.

Lemma 3.15.Letγ be the clause most recently simplified by on-the-fly subsumption during conflict analysis.

The subgraph of the implication graph between this clause and the 1-UIP is either a single vertex or a valid

implication graph (hence, suitable for strong conflict analysis).

Proof. The requirement for a valid implication subgraph is that the source vertex bea clause with at least

two literals assigned at the current level. By Lemma 3.14,γ is conflicting at the current decision level. If

γ contains the 1-UIP, the subgraph consists of a single vertex and strong conflict analysis is not invoked.

Otherwise, since the residual clauses beyondγ on the graph were not touched, they form a valid graph for

strong conflict analysis.

Lemmas 3.14 and 3.15 allow us to conclude that on-the-fly subsumption check iscompatible with

strong conflict analysis. As an alternative, one could postpone the strengthening of the clauses until after

strong conflict analysis. Our experiments, however, indicate that it wouldnot be as efficient.
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Returning to Example 2.6, in Fig. 2.3,γ1, γ2, andγ3 all have a chance to be chosen as additional

conflict clauses by strong conflict analysis, since they have only two literals, both of which are assigned

at the current level. Strong conflict analysis dismissesγ1 as too close to the conflicting clause. However,

on-the-fly subsumption achieves the same effect on deductive power that the addition ofγ1 would have by

strengtheningc6 and droppingc7. On-the-fly subsumption therefore complements strong conflict analysis.

If no subsumption is found during conflict analysis, additional clauses generated by strong conflict analysis

may still be helpful, even though they are not guaranteed to increase deductive power.

One may be tempted to apply on-the-fly subsumption to conflict clause minimization [SE05, SB09].

However, the antecedent clauses involved in the minimization are never subsumed by their resolvents since

they do not contain any literal assigned at the current level, while the resolvents contain the UIP.

Figure 3.12 shows the pseudocode of the algorithm that detects and simplifiesthe subsumed clauses

during conflict analysis. The algorithm AnalyzeConflictWithSimplification() checks the subsumption condi-

tion whenever RESOLVE() produces a new resolvent as long as FOUNDUIP() is false (line 4). By Lemma 3.12,

if one of the operands exists in the clause database—either the old resolvent with in CNF resolvent = TRUE

or the antecedent of the pivot variable (line 9)—and the new resolvent contains fewer literals than one of

its operands (lines 10 and 12), the operand is strengthened by removing the pivot variable (line 11). When

both operands are subsumed, one of them survives and the other is deleted (line 13). If a clause is replaced

with the resolvent, the flag inCNF resolvent is set to TRUE (line 14); otherwise, it is set to FALSE (line

16), since the new resolvent is not yet in the clause database. At the endof the resolution step, if the final

resolvent containing the UIP strengthens an existing clause, that is, if inCNF resolvent is true, the conflict

analysis algorithm refrains from adding a new conflict clause to the clausedatabase. Otherwise the clause

is added at line 20. Whether a conflict clause is added or not, the DPLL procedure backtracks to the level

returned by conflict analysis (line 21), and asserts the clause finally learned from the conflict.

The pseudocode of Fig. 3.12 omits some details for the sake of clarity. In the actual implementation,

the implication graph is shrunk with a new conflicting clause by replacing the current conflicting clause with

a newly strengthened clause, which must be a new resolvent. The modified graph then is available for strong

conflict analysis.
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1 AnalyzeConflictWithSimplification(F , conflicting){
2 resolvent = conflicting;
3 in CNF resolvent = TRUE;
4 while (!FOUNDUIP(resolvent)){
5 lit = GETLATESTASSIGNEDL ITERAL(resolvent);
6 ante = GETANTECEDENTCLAUSE(lit);
7 var = VARIABLE (lit);
8 resolvent′ = RESOLVE(resolvent, ante, var);
9 oprnd = inCNF resolvent ? resolvent : ante;
10 if (SIZE(resolvent′) < SIZE(oprnd)){
11 STRENGTHENCLAUSE(oprnd, var);
12 if (in CNF resolvent & textscSize(resolvent′) < SIZE(ante))
13 DELETECLAUSE(ante);
14 in CNF resolvent = TRUE;
15 }
16 elsein CNF resolvent = FALSE;
17 resolvent = resolvent′ ;
18 }
19 if (!in CNF resolvent)
20 ADDCONFLICTCLAUSE(resolvent);
21 blevel = COMPUTEHIGHESTLEVEL(resolvent);
22 return (blevel);
23 }

Figure 3.12: Algorithm for conflict analysis with on-the-fly simplification.
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Figure 3.13: The implication graph of Example 3.17.

3.3 Clause Distillation

In this section, we present an extension of simplification based on self-subsumption, which is called

clause distillation. Given a CNF formula, clause distillation removes clauses subsumed by implicates that

may not be explicitly found in the formula, and optionally adds new conflict clauses. Like simplification

based on self-subsumption, the distillation procedure often increases deductive power.

Lemma 3.16. If A = {{¬l1}, . . . , {¬ln−1}} is a partial assignment to the variables of CNF formulaF and

F ∪ A ⊢ ln, then{l1, . . . , ln} is an implicate ofF .

Proof. Suppose that a satisfying assignment forF included{{¬l1}, . . . , {¬ln}}. Such an assignment would

contradictF ∪ A ⊢ ln. Therefore, any complete assignment that satisfiesF must contain some literalli,

1 ≤ i ≤ n. Hence, such assignment satisfies clause{l1, . . . , ln}.

The next example shows how Lemmas 3.16 and 3.4 combine to improve a CNF formula that cannot

be simplified by either subsumption or self subsumption.

Example 3.17.Consider the following CNF formula:

F = (a ∨ b ∨ c)1 ∧ (b ∨ ¬d)2 ∧ (c ∨ d)3 ∧ (b ∨ ¬c ∨ e)4 .

Under partial assignment{{¬b}}, ¬d is implied byc2 of F and c is implied byc3. The clausec1 is then

satisfied. Finally,e is implied byc4. The implication hypergraph depicted in Fig. 3.13 shows that(b ∨ c) is

an implicate ofF that subsumes the first clause, and that(b∨ e) is another implicate ofF that subsumesc4.

The simplified CNF is therefore

F ′ = (b ∨ c)1 ∧ (b ∨ ¬d)2 ∧ (c ∨ d)3 ∧ (b ∨ e)4.
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Note thatF ′ ≻ F becauseF ′ ∪ {¬e} ⊢D b, butF ∪ {¬e} 6⊢D b. If, fromF ′, F ′′ is obtained by deletingc1,

which is the transitive closure clause ofc2 andc3, thenF ′′ is equivalent toF ′ andF ′ ≃ F ′′. On the other

hand,F ′′ is not as effective asF ′ in shortening the implication graph.

Example 3.17, Lemmas 3.16 and 3.9 suggest a systematic approach to improving the deductive power

of a CNF formulaF . SupposeF contains no unit clauses. (If it does, simplifyF in the obvious way.) Let

γ = {l1, . . . , ln} be a clause ofF . Consider the sequence of assignmentsAi = {{¬l1}, . . . , {¬li}} for

1 ≤ i < n (the assignment sequenceof γ). There exists a leasti such that eitherF ∪ Ai ⊢D false, or

F ∪ Ai ⊢D lj , for i < j ≤ n. In either case, we extract from the implication graph an implicate ofF that

subsumesγ. This implicate may beγ itself, another clause ofF that subsumesγ, or the resolvent of several

clauses ofF .

If F ∪ Ai ⊢D false, the learned conflict clause is added toF to increase its deductive power (thanks

to Lemma 3.9). The conflict analysis used in distillation differs from that of Sec. 2.6 in that it stops when it

computes a resolvent that is the negation of a subset ofAi. Such a resolvent always exists, contains a UIP,

and subsumesγ. If intermediate resolvents contain a UIP, but are not in subsumption relationwith γ, then

conflict analysis produces two clauses: the 1-UIP clause and the one that subsumesγ.

Example 3.18.Given a CNF formulaF :

F = (a ∨ b ∨ c ∨ d)1 ∧ (a ∨ e)2 ∧ (b ∨ f)3 ∧

(¬e ∨ ¬f ∨ g)4 ∧ (¬e ∨ ¬f ∨ ¬h)5 ∧ (¬g ∨ h)6 ,

supposeγ is c1, andA2 is {¬a@1, ¬b@2}; then c6 is conflicting as shown in Fig. 3.14. Analysis of this

conflict leads to the resolution graph shown in Fig. 3.15. Sinceγ2, containing the 1-UIP, does not subsume

γ, the analysis returns two clauses:γ2 andγ4. Adding eitherγ2 or γ4 increases the deductive power ofF

thanks to Lemma 3.9. Adding bothγ2 andγ4 does not, however, further increase deductive power in this

case, becauseγ4 is the transitive closure clause ofc2, γ2, andc3.

If F∪Ai ⊢D lj , we use Lemma 3.16 to extract an implicate ofF that subsumesγ from the implication

hypergraph. Ifγ is subsumed by another clauseγ′ in F , the implication hypergraph contains a hyperedge
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Figure 3.14: Implication graph of Example 3.18.

c5 : (¬e ∨ ¬f ∨ ¬h)
c6 : (¬g ∨ h)

γ1 : (¬e ∨ ¬f ∨ ¬g)
c4 : (¬e ∨ ¬f ∨ g)

h

γ2 : (¬e ∨ ¬f)
c3 : (b ∨ f)
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g

γ3 : (¬e ∨ b)
c2 : (a ∨ e)

e

γ4 : (a ∨ b)

Figure 3.15: Resolution graph of conflict analysis for Example 3.18.
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that assertslj and such that all the directed edges originate from literals inAi. Therefore, even if finding

a minimal implicate ofF that subsumesγ is hard, removing fromF a clause that is subsumed by another

clause only requires inspecting the hypergraph induced byAi. However, if an implication graph is used

instead of the full hypergraph, the computed implicate may be subsumed by another clause. This problem

is solved by integrating subsumption-based simplification with the distillation procedure.

Example 3.19. Given clauses(a ∨ b ∨ c)1 and (b ∨ c)2 of F , supposeγ = c1 is distilled withA2 =

{{¬a}, {¬b}}. If c is implied byc1 rather thanc2, then the implicate(a ∨ b ∨ c) is computed, which does

not strictly subsumeγ.

If γ is strictly subsumed by the implicate obtained through Lemma 3.16, then replacingγ with the

implicate inF may or may not increase deductive power, as shown in Example 3.17, in which adding(b∨e)

to F improves its deductive power, while adding(b ∨ c) does not.

The distillation procedure outlined above may be used to detect some cases ofself subsumption. For

instance, ifγ = {l1, l2, l3, l4} andF = {γ, γ′}, with γ′ = {l1,¬l2}, thenF ∪ A1 ⊢D ¬l2. From that, it

is concluded that{l1, l3, l4} is the desired implicate ofF that subsumesγ. Another example is given by

γ = {l1, l2} andγ′ = {l1,¬l2}. Asserting¬l1 leads to a conflict, and the learned clause,{l1}, subsumes

γ (andγ′). Self-subsumption, however, may go undetected. ConsiderF = {γ, γ′}, with γ = {l1, l2, l3, l4}

andγ′ = {¬l1, l2}. In this case,A1 will cause no implications, and the simplified clause{l2, l3, l4} will

not be discovered. Such limited ability should not surprise. In general, for a clauseγ of F with n literals,

n attempts are sufficient to find an implicate ofF that subsumesγ and cannot be further simplified by self

subsumption. This is comparable to what the procedure of [EB05] does.

More simplifications can be achieved if the on-the-fly simplification discussed inSect. 3.2 is applied

to conflict analysis in the distillation procedure. For instance, in Fig. 3.14 of Example 3.18,c4 is simplified

by on-the-fly subsumption check because it is subsumed byγ2. In addition, as we shall see in the detailed

discussion of the algorithm, on-the-fly simplification improves the efficiency ofthe distillation procedure.

A preprocessing algorithm can be based on distilling each clauseγ of a CNF formula by trying its

assignment sequence until either a conflict occurs or a literallj of γ is asserted. Clauseγ is replaced by
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either a conflict clause or an implicate containinglj . We have seen in Example 3.19 that after distillation

a clause may still be subsumed by other clauses of the CNF formula. In addition, as distillation proceeds

and shorter clauses are added toF , a clause that is initially not subsumed may lose this property. Therefore,

subsumption-based simplification is applied after distillation.

Figure 3.16 describes an algorithm based on the distillation approach outlinedin this section. The

clauses are initially stored in atrie [AHU83] so that common prefixes may be identified. Each trie node

has two sets of children corresponding to the two literals of each variable. The0-child is for the positive

literal, and the1-child is for the negative literal. Every path in the trie represents a clause; aleaf node in a

path stores the index of the clause associated with it. Hence, clauses that have a common prefix will share

nodes in the trie. While building the trie, clauses that are subsumed by others may be detected and removed.

However, both building a compact trie and detecting subsumed clauses depend on the variable order. The

frequency of variables in the clause database usually provides a good order.

Since the trie supplements instead of replacing the clause database, it takes extra memory. Its use is

justified by the speed-up that the sharing among clauses affords. However, if we distill the clauses based on

the trie, instead of enumerating them one by one, we need to reach a leaf node to locate the corresponding

clause in the database. Applying on-the-fly simplification to conflict analysis may help the distillation

procedure dispense with that search. Ifγ participates in conflict analysis, then it may be identified by

on-the-fly subsumption check and replaced with the conflict clause that subsumesγ.

In Fig. 3.16, variable Trie is the set of roots of the trie that is built on the given formulaF . Distillation

consists of a depth-first traversal of the trie by TRIEBASEDIMPLICATION(). If the value of the node is

assigned, i.e., value != UNKNOWN (line 4), ANALYZE IMPLICATE() analyzes the implication graph to find

an implicate that strictly subsumes the clause being distilled (line 5). If the implicate exists, it replaces

the clause being distilled (lines 7–8). At each node whose value is not yet asserted (lines 15 and 16),

CHOOSENEXTASSIGNMENTONTRIE assigns values0 and1 to the children only if they have siblings (line

21). Procedure DEDUCE() propagates the decision over the clauses ofF (line 22). If a conflict occurs during

DEDUCE(), ANALYZE CONFLICTFORDISTILLATION () generates two clauses: cl1 is the one that subsumes

the clause being distilled, and cl2 is the 1-UIP clause (line 24). The conflict clauses can be NULL: cl1
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is NULL when a clause is simplified by the conflict clause and is marked during conflict analysis; cl2 is

NULL when the conflict analysis produces only one conflict clause. If cl1 is not NULL, the clause being

distilled is found by FINDDISTILLEDCLAUSEONTRIE() along the path from the current node (line 26), is

simplified by the generated conflict clause cl1 (line 27), and marked (line 28). If cl2 is not NULL, it is added

to F as a conflict clause (line 31) and also marked (line 32). If a conflict doesnot occur during DEDUCE(),

TRIEBASEDIMPLICATION() is invoked to test the next sibling at the current decision level (line 35).The

procedure backtracks to the previous decision level when it has traversed all the children (line 36). Once

the traversal on the trie is complete, each clause inF is added toF ′ only if it is marked. After distillation

formulaF ′ can be further simplified by subsumption check.

Example 3.20.Consider the following CNF formula:

F = (a ∨ b ∨ c)1 ∧ (b ∨ ¬d)2 ∧ (c ∨ d)3 ∧ (b ∨ c ∨ e)4 ∧

(¬b ∨ c ∨ f)5 ∧ (¬d ∨ ¬f)6 .

The trie shown in Fig. 3.17 is built with the CNF clauses ofF according to the variable orderb < c <

d < f < a < e. (The variables are sorted by their number of occurrences inF .) The procedure starts

traversal from the first0-child of theb root (line 15 of Fig. 3.16), that is, by consideringA1 = {{¬b}}. The

assignmentA1 is applied to all clauses that containb. Propagation of¬b@1 overF leads to¬d@1 andc@1

as shown in Fig. 3.18. The distillation procedure then reaches nodec. Finding thatc is already implied,

it computes the implicate(b ∨ c) by resolvingc3 and c2 (line 5). Then, a depth-first search is performed

on the0-children ofc to find one of the clauses that share the traversed path as a prefix (line 7). If c1 is

found, it is simplified to(b ∨ c) (line 8) and is marked (line 9) to be retained at the end of distillation;c4

is not marked and can be deleted because it is subsumed by the simplifiedc1. Since nodec does not have

1-children, the procedure goes back to rootb and then on tod. The implication graph is not changed; hence,

d is still assigned. However, since the implicate(b ∨ ¬d) is the antecedentc2 of d, c2 is just marked with

no simplification. Then, the procedure backtracks to level0, and it continues traversing the1-child ofb with

A1 = {{b}} (line 16). Variablec is assigned tofalse because it is not yet assigned. FromA2 = {{b}, {¬c}},

f andd are implied throughc5 andc3, respectively, and thenc6 becomes conflicting. Analysis of this conflict
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1 TRIEBASEDIMPLICATION(Trie) {
2 for each (node∈ Trie) {
3 value = VALUE(node);
4 if (value != UNKNOWN){
5 implicate = ANALYZE IMPLICATE()
6 if (implicate){
7 distilled = FINDDISTILLEDCLAUSEONTRIE(node);
8 SIMPLIFY CLAUSE(distilled, implicate);
9 GETCLAUSEMARKED(distilled);
10 }
11 if (node.child[value])
12 TRIEBASEDIMPLICATION(node.child[value]);
13 continue ;
14 }
15 TRIEBASEDIMPLICATIONAUX(node, 0);
16 TRIEBASEDIMPLICATIONAUX(node, 1);
17 }
18 }

19 TRIEBASEDIMPLICATIONAUX(node, value){
20 child = node.child[value];
21 if (child) {
22 level = CHOOSENEXTASSIGNMENTONTRIE(node, value);
23 if (DEDUCE() == CONFLICT){
24 (cl1, cl2) = ANALYZE CONFLICTFORDISTILLATION ();
25 if (cl1 != NULL) {
26 distilled = FINDDISTILLEDCLAUSEONTRIE(child);
27 SIMPLIFY CLAUSE(distilled, cl1);
28 GETCLAUSEMARKED(distilled);
29 }
30 if (cl2 != NULL)
31 ADDCONFLICTCLAUSE(cl2);
32 GETCLAUSEMARKED(cl2);
33 }
34 else
35 TRIEBASEDIMPLICATION(child);
36 BACKTRACK(level-1);
37 }
38 }

Figure 3.16: Algorithm for clause distillation.
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(line 24) proceeds on the implication graph shown in Fig. 3.20, building the resolution graph of Fig. 3.20.

The resolution graph shows thatγ2 containing the 1-UIP subsumesc5, which appears at the leaf node of

the current path. Therefore,c5 is strengthened byγ2 and marked; this eliminates the work required to get

the clause index stored in a leaf node (i.e., cl1 and cl2 are NULL in line 24). Moreover, this increases the

deductive power ofF . The procedure backtracks to level0, and it moves to the second root,c, of the trie. The

0-child of c is traversed withA1 = {{¬c}}. This assignment causes a conflict atc2, as shown in Fig. 3.21

(left): the antecedent of¬b, c5, was simplified by on-the-fly subsumption in the previous conflict analysis.

Conflict analysis, illustrated in Fig. 3.21 (right), producesγ2 and simplifiesc3 because it is subsumed by

γ2. Sincec3 = (c) is a unit clause, it must be propagated at level0 after backtracking; if a conflict occurs

during this propagation, then the formulaF is declared unsatisfiable. After level0 propagation, the rootc

is revisited only if it has1-children to be traversed. Finally, the procedure traverses the1-child of the last

root d with A1 = {{d}}, under which¬f is asserted byc6. Then,c6 is marked because it is the implicate

itself. Once the trie has been traversed, the marked clauses ofF are forwarded toF ′. Therefore,

F ′ = (b ∨ c)1 ∧ (b ∨ ¬d)2 ∧ (c)3 ∧ (¬b ∨ c)5 ∧ (¬d ∨ ¬f)6 .

The formulaF ′ is processed by subsumption-based simplification. In this case,c1 are c5 deleted fromF ′

because they are subsumed byc3. At last, the formula is simplified to

F ′ = (b ∨ ¬d)2 ∧ (c)3 ∧ (¬d ∨ ¬f)6 .

Addition of the unit clause(c) to F definitely increases its deductive power, that is,F ≺ F ′.

3.4 Variable Elimination

In this section, we review the preprocessor for variable elimination that canbe integrated with the

distillation procedure of Sec. 3.3.

To select variables to be eliminated, all the variables are sorted by a metric such thatδ = (|clausesv| ∗

|clauses¬v|) − (|clausesv| + |clauses¬v|), where clausesv stands for an occurrence list of variablev, and

|clauses| represents the length of the list.δ stresses the fact that the less symmetric occurrence lists are, the
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Figure 3.20: The resolution graph of the conflict analysis on Fig. 3.20.
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earlier the variable should be selected. The length of a resolvent should also be taken into account, because

clauses may also be lengthened through resolution. This can be harmful to the SAT solver. Hence, we use

an additional criterion, the number of literals of the resolvents, to choose variables to be eliminated.

To eliminate a variable, resolutions are applied to all the pairs of clauses in the occurrence lists of the

two literals of the variable. In our variable elimination, all the literals of each clause are sorted by variable

index. Taking the union of two sorted clauses can be done in linear time by a variation of themerge-sort

algorithm [CLR90]. This linear operation guarantees that all the literals arestill sorted after merging. With

minor modification in the algorithm, the linear operation can be also used to check subsumption relation

between two clauses.

A variable is eliminated only when the produced resolvents are fewer than theoccurrence clauses of

the variable. At each resolution operation, we can check if one of the operands is subsumed by the resolvent,

like the on-the-fly subsumption check in conflict analysis of Sect. 3.2. A clause can be simplified by the on-

the-fly subsumption, regardless of whether the variable is eliminated. The clause simplified by the on-the-fly

subsumption is removed out of the occurrence list. In such a case, the current elimination check may benefit

from the shortened occurrence list. Every simplified clause is checked for subsumption to other clauses after

the variable elimination check.

3.5 Experimental Results

We have presented techniques that aim at increasing the deductive power of a CNF formula and pro-

moting more concise implication graphs. In order to evaluate them, we have implemented a preprocessor on

top of the CNF SAT solverCirCUs 2.0 [HJKS09, VIS], which applies variable elimination, the distillation

procedure of Sect. 3.3, namedAlembic, and simplification based on subsumption and self-subsumption as

in [EB05]. We have also implemented the three applications of on-the-fly clause simplification discussed in

this paper, namely, to variable elimination and conflict analysis in Alembic as well as to conflict analysis in

CirCUs. In variable elimination, an increase in the average length of the clauses is detrimental for deductive

power. Hence, in our implementation, only variables whose elimination does notcause such an increase are

eliminated.
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Since SAT solvers often need to provide either a satisfying assignment or aproof of unsatisfiability ,

clauses that are either removed or simplified are set aside just as the derivations of conflict clauses [GN03,

ZM03]. The SAT solver CirCUs only needs these clauses to recover a complete solution (for a satisfiable

instance), or to produce a proof of unsatisfiability in terms of the original clauses. This scheme requires

extra memory, but its effect on speed is negligible.

The benchmark suite is composed of all the CNF instances (with no duplicates)from the industrial

category of the SAT Races of 2006 and 2008, and the SAT Competitions of 2007 and 2009 [SATa]. We

conducted the experiments on a 2.4 GHz Intel Core2 Quad processor with 4GB of memory. We used 10000

seconds as timeout, and 2GB as memory bound. We tested MiniSat 2.0 [Satb] and PrecoSAT 236 [Pre]

along with CirCUs 2.0 to provide reference points.

The plot of Fig. 3.23 shows how many instances are solved by selected solvers within a given time

bound. Our variable elimination algorithm is named EV; Alembic is abbreviated AL,EVAL stands for

EV+AL, and OCI denotes the on-the-fly clause improvement described in Sect. 3.2. Figure 3.23 shows the

CPU time taken by CirCUs (with various subsets of the proposed approaches), MiniSat, and PrecoSAT. Both

MiniSat and PrecoSAT use their own preprocessors [EB05]. Figure 3.23 confirms that CirCUs is compa-

rable to state-of-the-art SAT solvers, and that its performance is significantly improved by applying all the

proposed approaches (i.e., EVAL+OCI). Among the instances of Fig. 3.23, Figure 3.5 shows that unsatisfi-

able instances fare a bit better, but not much, than satisfiable ones in terms of performance improvements.

The scatterplots of Fig. 3.25, 3.26, and 3.27 examine the effects of the proposed techniques on

deductive power and size of implication graphs, by showing the changes inCPU time, numbers of decisions,

average numbers of resolution steps per conflict analysis, and average length of conflict-learned clauses. For

each of these quantities the geometric mean of the new/old ratios is reported (excluding cases in which one

of the values is0). Single-samplet-tests were performed to confirm the statistical significance of the data.

The null hypothesis was that the mean of the logarithms of the ratios is0. The alternative hypothesis is

two-sided. Since the data that are compared span several orders of magnitudes, differences and ratios may

paint very different pictures of the experiments. Analyzing the ratios putsequal emphasis on short and long-



49

 260

 280

 300

 320

 340

 360

 380

 400

 0  2000  4000  6000  8000  10000

N
um

be
r 

of
 In

st
an

ce
s

CPU time (sec)

Precosat
CirCUs+EVAL+OCI

CirCUs
MiniSat

(a)

 260

 280

 300

 320

 340

 360

 380

 400

 0  2000  4000  6000  8000  10000

N
um

be
r 

of
 In

st
an

ce
s

CPU time (sec)

CirCUs+EVAL+OCI
CirCUs+EV+OCI

CirCUs+OCI
CirCUs

CirCUs+EV
CirCUs+EVAL

(b)

Figure 3.23: Number of instances solved by various SAT solvers versusCPU time. (a) comparison of the
proposed algorithm to modern SAT solvers; (b) individual contributions of simplification methods to CirCUs



50

10-1

100

101

102

103

104

10-1 100 101 102 103 104

C
irC

U
s+

E
V

A
L+

O
C

I (
se

c)

CirCUs (sec)

SAT Instances

(a)

10-1

100

101

102

103

104

10-1 100 101 102 103 104

C
irC

U
s+

E
V

A
L+

O
C

I (
se

c)

CirCUs (sec)

UNSAT Instances

(b)

Figure 3.24: Comparison of the performance improvements between (a)SATand (b)UNSAT instances of
Fig. 3.23.



51

running instances. This is partly compensated by the scatterplots and the views in Fig. 3.23, which highlight

the ability of the improved procedure to complete more instances in the allotted time. Specifically, one can

find the relative size of the resolution graphs for conflict analysis from the data of Fig. 3.25(c), as shown in

Fig. 3.28.

A marked decrease in the numbers of decisions confirms that the proposedtechniques allow the SAT

solver to rely more on deduction and less on search. The reduction in resolution steps confirms that the

implication graphs are, on average, significantly smaller. As a result, shorter clauses are learned. For lack of

space, we omit scatterplots illustrating the effects of individual techniques.They would show that variable

elimination is the main cause for the smaller implication graphs, and that it also tends toreduce the number

of decisions and shorten the learned clauses. Distillation alone decreasesthe numbers of decisions (as one

would expect of a technique addressing deductive power) and shortens learned clauses, but has limited effect

on the sizes of the implication graphs. Its effect on memory consumption proves negligible. This is shown

in Fig. 3.29.

Variable elimination interacts in an interesting way with OCI. This is shown in Fig. 3.30, where the

numbers of on-the-fly subsumptions per resolution step during DPLL are seen to increase significantly when

EV is applied. The following example sheds light on this phenomenon.

Example 3.21.Consider the following clauses:

(¬a ∨ ¬p)1 ∧ (b ∨ ¬p)2 ∧ (a ∨ ¬b ∨ p)3 ∧ (a ∨ ¬q)4∧

(¬b ∨ ¬q)5 ∧ (¬a ∨ b ∨ q)6 ∧ (¬p ∨ r)7 ∧ (¬q ∨ r)8∧

(p ∨ q ∨ ¬r)9 ∧ (a ∨ ¬s)10 ∧ (b ∨ ¬s)11 ∧ (¬a ∨ ¬b ∨ s)12

∧(¬a ∨ ¬t)13 ∧ (¬b ∨ ¬t)14 ∧ (a ∨ b ∨ t)15 ∧ (¬s ∨ ¬u)16∧

(¬t ∨ ¬u)17 ∧ (s ∨ t ∨ u)18 ∧ (r ∨ u)19 ∧ (¬r ∨ ¬u)20 .

Suppose that the SAT solver makes decisions¬a@1 and¬b@2. This leads to a conflict onc19, with the

implication graph shown in Fig. 3.31. There are no instances of on-the-flysubsumption during conflict

analysis, even thoughγ5 that is derived by minimizing the conflict clauseγ4 subsumesc15: γ5 directly
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Figure 3.25: Effect of CirCUs with and without EVAL+OCI on (a) CPU time: GEOMETRIC MEAN = 0.56,
p-value =2.2·10−16; (b) number of decisions: GEOMETRICMEAN = 0.51, p-value =2.2·10−16; (c) number
of resolution steps per conflict: GEOMETRIC MEAN = 0.57, p-value =2.2 · 10−16; (d) number of literals per
conflict clause: GEOMETRIC MEAN = 0.82, p-value =8.25 · 10−8.
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Figure 3.26: Effect of CirCUs with and without EV+OCI on (a) CPU time: GEOMETRIC MEAN = 0.63,
p-value =5.7·10−16; (b) number of decisions: GEOMETRICMEAN = 0.59, p-value =2.2·10−16; (c) number
of resolution steps per conflict: GEOMETRIC MEAN = 0.68, p-value =2.29 · 10−15; (d) number of literals
per conflict clause: GEOMETRIC MEAN = 0.87, p-value =7.8 · 10−5.
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Figure 3.27: Effect of CirCUs with and without AL+OCI on (a) CPU time: GEOMETRIC MEAN = 0.86,
p-value =0.003; (b) number of decisions: GEOMETRIC MEAN = 0.77, p-value =1.71 · 10−6; (c) number of
resolution steps per conflict: GEOMETRIC MEAN = 1.01, p-value =0.76; (d) number of literals per conflict
clause: GEOMETRIC MEAN = 0.92, p-value =0.03.
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Figure 3.30: Number of OCI applications per resolution step with and without preprocessing: (a) both elim-
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Figure 3.31: Implication graph of Example 3.21 without EV.

subsumes other resolvents rather thanc15. If we eliminatep, q, s, andt, we get the following clauses:

(a ∨ ¬b ∨ r)1 ∧ (a ∨ b ∨ ¬r)2 ∧ (¬a ∨ ¬b ∨ ¬r)3∧

(¬a ∨ b ∨ r)4 ∧ (a ∨ ¬b ∨ u)5 ∧ (a ∨ b ∨ ¬u)6∧

(¬a ∨ ¬b ∨ ¬u)7 ∧ (¬a ∨ b ∨ u)8 ∧ (r ∨ u)14 ∧ (¬r ∨ ¬u)15 .

Figure 3.32 shows that the conflict clause subsumesc2. (It also subsumesc6, but this is not detected by

the algorithm.) This time there are fewer resolution steps, and this “abridgment” of the process allows the

subsumed clause to enter the analysis right before the subsuming resolvent is computed instead of several

steps before.

We now report statistics on the performance of the preprocessors. Figure 3.33 compares the speed

of various versions of EVAL to SatELite. (In these plots, SatELite is run on all CNF formulae, while, in

Fig. 3.23, the solver may disable SatELite depending on the size of CNF formula.) OCI contributes to the

improved preprocessor speed. This is clear in the case of EVAL vs. EVAL+OCI. It is true also without

distillation, because EV+OCI removes significantly more clauses and literals than plain EV in about the

same time.

It is also interesting to compare the reductions achieved by different preprocessors. In Fig. 3.34, we



58

¬a@1

¬b@2 ¬r@2

γ1 : (a ∨ b ∨ r)γ2 : (a ∨ b)

6

2

¬u@2

κ9

Figure 3.32: Implication graph of Example 3.21 with EV.
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report the fractions of instances that achieve certain reductions in terms of variables, clauses, and literals.

About 10% of the instances achieve close to 100% reduction. This means that preprocessing reduces the

CNF formulae to either the empty clause or the empty set of clauses. CirCUs’s variable elimination is less

aggressive than SatELite’s: it eliminates fewer clauses, but almost neverincreases the number of literals.

Adding Alembic yields the least number of clauses without compromising the goodperformance in terms

of literals. While conflict analysis during distillation may produce additional conflict clauses, the number

of added clauses is on average0.1% of the total. Alembic often achieves more simplifications thanks to the

on-the-fly subsumption check. The mean number of clauses simplified per conflict is 0.7. Moreover, on

average, in51% of the conflicts the 1-UIP clauses subsumes one of the clauses used to resolve it; in those

cases, rather than the 1-UIP clause being added to the database, the operand is simplified.

3.6 Summary and Discussion

We have presented efficient transformations of a CNF formula that aim at either improving its deduc-

tive power or shortening implication graphs. We have shown that the transformations help a DPLL-based

SAT solver to run faster by deducing more literals from its decisions and by reducing the depth of the

implication graphs used in conflict analysis.

On-the-fly simplification based on self-subsumption can be applied to any stage that uses resolution,

e.g., conflict analysis and variable elimination, with minimal overhead. Its application is compatible with

advanced conflict analysis techniques and with the generation of unsatisfiability proofs. Another benefit is

the reduction of the number of added conflict clauses without detriment forthe deductive power.

The distillation procedure applied to preprocessing of the CNF formula also considerably speeds up

the SAT solver by increasing deductive power. In contrast, we have shown that variable elimination works

mainly by reducing the number of resolution steps required in conflict analysis. This results in earlier

conflicts, cheaper analyses and better conflict clauses.
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Chapter 4

Clause Simplification through Dominator Analysis

In the previous chapter, two notions that help in the design and evaluation of formula transformations

have been discussed. The first is deductive power of a CNF formula. It is motivated by the observation

that the more consequences the DPLL procedure can deduce from each of its decisions, the more effective

the pruning of the search space. The second notion is proof conciseness. It reflects the fact that the DPLL

procedure progresses through the search space by proving that parts of that space contain no satisfying

assignment and recording such findings in the form of new clauses.

These notions are at work in several techniques that are adopted by state-of-the-art SAT solvers to

improve the quality of the CNF clauses. In PrecoSAT [Bie09, Pre], wheremany features are shared with

PicoSAT [Bie08b], a clause with two literals may be derived based ondominator analysis during the de-

duction process. Such a clause variables, but it also tends to shorten theimplication graph. In turn, a concise

implication graph often benefits the recursive approach of [Bie09] to minimizeconflict clauses. This chapter

describes the effect of this type of clauses on deductive power and proof conciseness, and propose two main

extensions of dominator-based analysis:

• A subsumption check concurrent with dominator computation, and

• the addition of dominator-based supplemental conflict clauses.

This chapter also reports results from the implementation of the proposed approach.
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4.1 Dominators

While adding a transitive closure clause of the implications does not affect deductive power, it may

shorten the implication graph. A more concise implication graph may benefit the procedures that work on it.

For instance, the deduction procedure may identify a conflicting clause morequickly, and conflict analysis

may resolve fewer antecedents. On the other hand, adding clauses to the CNF database indiscriminately

may substantially slow down the deduction procedure. To prevent this, a supplemental clause should be

generated only when its usefulness is established by an effective criterion.

In this section we give an overview of the approach to learning new dominator-based clauses pre-

sented in [Bie09] with the name of Lazy Hyper Binary Resolution (LHBR). The notion ofdominancewas

introduced in [Pro59] for the analysis of flow diagrams. This notion is readily adapted to implication graphs,

as the following definition shows.

Definition 4.1. Given an implication graphG = (V, E), whereV is the set of vertices andE is the set

of directed edges, a noded ∈ V dominatesv ∈ V if all paths from source nodes ofG (decisions) tov go

throughd. Noded is theearliest dominator of v if it dominatesv and has no other dominator than itself.

Also, d immediately dominates v if it is the last dominator ofv distinct fromv. Finally, v is the trivial

dominator of itself.

For each nodev in G its dominator set, denoted by DOM(v), contains every dominator ofv. Under

Definition 4.1, the dominators of a node are totally ordered andv ∈ DOM(v).

A literal q is dominated byp in an implication graph forF if and only if F ∪{{p}} ⊢D q. Therefore,

if q is dominated byp the clause(¬p ∨ q) is an implicate ofF by Lemma 3.16. We reserve the name

dominator clausefor the case in whichp 6= q.

Example 4.2. Consider the following CNF formulaF :

F = (¬a ∨ b)1 ∧ (¬a ∨ c)2 ∧ (¬b ∨ ¬c ∨ d)3 .

Suppose that the SAT solver makes decisiona@1. This leads to the implication graph shown in Fig. 4.1,

where literala dominates literald, i.e.,F ∪ {{a}} ⊢D d. Then,γ = (¬a ∨ d) is an implicate ofF . A new
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Figure 4.1: Implication graph of Example 4.2

formulaF ′ obtained by addingγ to F may shorten the implication graph as shown by the dashed edge in

the figure. Moreover, by Definition 3.3,F ≺ F ′, becauseF ′ ∪ {{¬d}} ⊢D ¬a butF ∪ {{¬d}} 6⊢D ¬a.

Example 4.3. Consider the following CNF formulaF :

F = (¬a ∨ b)1 ∧ (¬b ∨ c)2 ∧ (¬b ∨ d)3 ∧ (¬b ∨ ¬c ∨ ¬d ∨ e)4 .

Suppose that the SAT solver makes decisiona@1, which yields the implication graph shown in Fig. 4.2.

In the implication graph,c, d, ande share two non-trivial dominators: the earliest dominatora and the

immediate dominatorb. SinceF ∪ {{a}} ⊢D c andF ∪ {{a}} ⊢D d, γ1 = (¬a ∨ c) andγ2 = (¬a ∨ d)

are dominator clauses, and are transitive closure clauses. By Lemma 3.6, addingγ1 andγ2 does not change

the deductive power ofF . On the other hand,γ3 = (¬a ∨ e) andγ4 = (¬b ∨ e) are dominator clauses

that increase deductive power, sinceF ∪ {γ3} ∪ {¬e} ⊢D ¬a but F ∪ {¬e} 6⊢D ¬a. (Similarly for γ4.)

In particular, since the asserting clausec4 is subsumed byγ4, it is removed ifγ4 is added. This leads to

the shorter implication graph where the asserting clausec4 is replaced withγ4. Besides,F ≺ F ∪ {γ3} ≺

F ∪ {γ4} ≃ F ∪ {γ3, γ4}. In this case, deducing the negation of the immediate dominator allows one to

deduce the negation of all other non-trivial dominators. When the immediatedominator is distinct from the

earliest dominator, the dominator clause involving the former is the one that usually gives the greatest boost

to deductive power.

Dominator clauses do not always increase deductive power. If we consider

F ′ = F ∧ (e ∨ ¬f)5 ∧ (e ∨ ¬g)6 ∧ (f ∨ g ∨ ¬c)7 ,

thenγ4 is still a dominator clause, but its addition does not affect deductive power.
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Figure 4.2: Implication graph of Example 4.3

Example 4.3 motivates the CNF transformation implemented in [Pre] by adding dominator clauses,

which are derived during the deduction procedure. Letc be a clause of CNF formulaF . When literall is

deduced fromc under a partial assignment, it is annotated with one of its dominators,d, which is then used

to compute dominators for further implied literals.

The earliest dominator ofl is easily computed. The earliest dominator of a decision is the literal itself.

For an implied literall, if all predecessors ofl share the same earliest dominatord, thend is the dominator

of l too; otherwise,l is the earliest dominator of itself.

In [Pre, Bie09] a variation of this scheme is used. First, a dominatord is computed for vertexl with

the above recursion in terms of the dominators chosen for the predecessors of l. These may not be earliest

dominators; hence,d may not be the earliest dominator ofl either. We call it therecursive dominator of

l. Second, if the clause assertingl has two literals ord is trivial, l is annotated withd. Otherwise, the

immediate dominatori of l is computed. If the negation ofd appears in the asserting clause, thend is i.

Otherwise,i is found by a search linear in the size of the subgraph of the implication graphbetweend andl.

The search is made easy by enforcing the invariant that every predecessor ofl is connected tod by exactly

one path. (Alternatively, that the asserting clause of every literall in the implication graph that is not its own

dominator has exactly two literals:l and the negation of a dominator ofl.)

Figure 4.3 describes this procedure. The procedure is performed if theasserting clauseγ has more

than two literals and does not contain the negation of the recursive dominator, “rdom”. For the first an-

tecedent literal alit inγ, for which idom == 0 (line 12), the procedure sets alit as the first candidate of the

immediate dominator, i.e. idom == alit (line 13), and traces back up to rdom as marking the literals between

alit and rdom with MARK(lit) (lines 14–18). For the search of the remaining antecedent literals (line 19),
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the procedure traverses back from the current antecedent literal alit,until it hits a literal on the marked path

(line 20), or it meets either idom or rdom (lines 23 and 24). If a new endpointof the marked path is met, it

becomes a new idom and the literals between the new and old idom are unmarked(lines 26–27).

Example 4.4. Consider the implication graph shown in Fig. 4.4. In the implication graph,e is asserted

from (¬b∨¬c∨¬d∨ e)3 and its predecessors have the common recursive dominatora. Since the negation

of the recursive dominator is not contained in the asserting clausec3, the procedureCOMPUTEDOMINA -

TORINPRECOSAT of Fig. 4.3 is invoked with argumentsc3 anda to search the immediate dominator ofe.

Supposed that inc3, the procedure examinesc, b, andd in that order (lines 3 and 4). Initially idom = 0. Then

the search fromc setsc as a new idom (line 13), and the procedure marks all the literals (b and c) along

the path betweene anda (lines 14–18). In the search from the next antecedent literalb, sinceb is marked,

it becomes a new idom (line 26) and the current idomc is unmarked (line 27). For the last search, the

procedure meets the current idomb while traversing the implication graph fromd (lines 20–25). Therefore,

the procedure stops searching fromd. Sinced was the last antecedent, all the marks betweenb anda are

cleared (lines 5 and 6), andb is returned as the immediate dominator ofe.

Wheni is computed,l is annotated with it and the dominator clauseγ = (¬i ∨ l) is added toF . The

implication graph is modified accordingly by makingγ the antecedent ofl. This simplifies the graph and

guarantees that only one path connectsi to l. If the negation ofi is contained in the original antecedent

clausec, c is subsumed byγ, as shown in Example 4.3. In the example,γ4 computed from immediate

dominatorb simplifiesc4 while γ3 based on the earliest dominatora does not.

The use of immediate dominators is motivated by the fact that, if there is a dominator clause that

subsumes the asserting clause, then it contains the negation of the immediate dominator. PrecoSAT gives

up the chance of finding some non-trivial dominators in return for the ability tosimplify clauses using

immediate dominators. Besides, Example 4.3 shows that dominator clauses including immediate dominators

are also best for deductive power.

Lemma 4.5. If immediate dominator clauses are added for all implied literals with non-trivialdominators,

then asserting¬l causesD to deduce the negation of all literals inDOM(l) \ {l}.
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1 COMPUTEDOMINATORINPRECOSAT(γ,rdom){
2 idom = 0;
3 for each (antecedent literal lit inγ)
4 idom = SEARCHDOM(¬lit, rdom, idom);
5 for (lit = idom; lit != rdom; lit = PRED(lit))
6 MARK(lit) = false;
7 return idom;
8 }

9 SEARCHDOM(alit, rdom, idom){
10 ASSERT(rdom != alit);
11 lit = alit;
12 if (idom == 0){
13 idom = alit;
14 do{
15 ASSERT(SIZE(GETANTECEDENTCLAUSE(lit) == 2)); {
16 MARK(lit) = true;
17 lit = PRED(lit);
18 } while (lit != rdom);
19 } else{
20 while (!M ARK(lit)) {
21 ASSERT(SIZE(GETANTECEDENTCLAUSE(lit) == 2)); {
22 lit = PRED(lit);
23 if (lit == rdom) break ;
24 if (lit == idom) break ;
25 }
26 for ( ;idom != lit; idom = PRED(idom))
27 MARK(idom) = false ;
28 }
29 return idom;
30 }

Figure 4.3: Dominator analysis in PrecoSAT
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Figure 4.4: Implication graph of Example 4.4
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Proof. If for any literal l in the implication graph that has a non-trivial dominator its dominator clause is

added toF , thenl is connected to all its non-trivial dominators by a chain of two-literal clausesbecause

DOM(l) is totally ordered. Let DOM(l) = {d1, . . . , dn} with di < dj for i < j. It is then sufficient to

observe thatdi → di+1 is equivalent to¬di+1 → ¬di.

4.2 Simplifying Clauses During Deduction

The use of immediate dominators increases the chances of subsumption of the asserting clause by the

dominator clause. However, it may lead to missing non-trivial dominators.

Example 4.6. Given the following clauses:

(¬a ∨ b)1 ∧ (¬a ∨ f)2 ∧ (¬b ∨ c)3 ∧ (¬b ∨ d)4∧

(¬b ∨ ¬c ∨ ¬d ∨ e)5 ∧ (¬a ∨ ¬e ∨ ¬f ∨ g)6 .

Suppose thata@1 is assigned as a decision. Propagating this assignment results in the implications shown

in Fig. 4.5, where literals in square brackets are the dominators computed by the algorithm of [Pre]. Since

b, c, d, andf are asserted by two-literal clauses, they are annotated with their earliest dominatora. For

e asserted byc5, its immediate dominatorb is computed becausec5 does not contain the negation of the

earliest dominatora. Literal b is used for the dominator computation wheng is implied throughc6. However,

since the other predecessorf has a different dominator frome, g is computed as its own dominator. This

leads to missing the opportunity to simplifyc6 to γ = (¬a ∨ g), which would be derived with the earliest

dominatora.

Example 4.6 shows that some simplification opportunities may be missed if vertices are labeled with

their immediate dominators because fewer non-trivial dominators may be found. On the other hand, Ex-

ample 4.3 shows that the exclusive use of earliest dominators may prevent other simplifications, when the

immediate dominator is distinct from the earliest one. The simplifications of both approaches can be ob-

tained within the same complexity bound by labeling each vertex with its earliest dominator, but computing

the immediate dominator as well. The next example shows that even the combined approach misses some
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Figure 4.5: Implication graph of Example 4.6

opportunities for simplification. However, we can directly check for self-subsumption between the asserting

clause and other implicates ofF that may or may not be present in the database. We now demonstrate how

this multistep resolution can be integrated with the search for the immediate dominator.

Example 4.7. Given the following clauses:

(¬a ∨ b)1 ∧ (¬b ∨ c)2 ∧ (¬b ∨ d)3 ∧ (¬c ∨ e)4 ∧ (¬d ∨ f)5∧

(¬c ∨ ¬d ∨ ¬e ∨ ¬f ∨ g)6 .

Suppose that propagatinga@1 results in the implications shown in Fig. 4.6. Literalb is found as the

immediate dominator ofg in the graph. Since the asserting clausec6 does not containb, it cannot be

simplified by the immediate dominator clause. However,c6 can be simplified to(¬c ∨ ¬d ∨ g) becausec

andd implye andf , respectively.

An antecedent literala of a clauseγ assertingl can be removed by self-subsumption with another

implicate ofF if each path between the immediate dominator ofl anda goes through some other literal in

γ. If only one path connects a literal to its dominator, the check is simple and efficient. Self-subsumption is

possible even if the immediate dominator is not among the literals inγ.

The pseudocode for the check is shown in Figure 4.7. As in [Pre], the procedure is performed if the

asserting clauseγ has more than two literals and does not contain the negation of the recursivedominator.

The immediate dominator is known to be on all paths connecting the recursive dominator “rdom” to the

antecedent literals inγ. Therefore, it is known to be somewhere on the unique path between “rdom”and
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the first such literal, for which idom == 0 (line 18). All the vertices of the implication graph on that path

are marked as candidate immediate dominators with MARK(lit) = true (lines 20–28). Tracing back (with

PRED(l)) from the remaining literals, i.e., idom != 0 (line 29), until a marked literal is hit eliminates more

candidates until the position of the immediate dominator is known (lines 30–39). Further, if a literall in γ

is found while tracing back from another literala of γ, i.e., ANTE(lit) == true (lines 23 and 33), thena

is marked as redundant with MARK(idom) = false (line 24) and ANTE(alit) = false (line 34). When this

occurs during the initial path marking phase,l becomes the new endpoint of the marked path (lines 25–26).

Otherwise, the trace back is terminated because the remaining work either wasdone or will be done when

starting froml.

While this procedure is based on multistep resolution like on-the-fly simplification during conflict

analysis [HS09] and conflict clause minimization [SB09], the use of the earliest dominator to limit the search

makes it suitable for frequent use during deduction. The three procedures are complementary: dominator-

based simplification resolves an asserting clause with clauses that precedeit in the implication graph; on-

the-fly simplification resolves an asserting clause with clauses that follow it in the implication graph, while

conflict clause minimization does not modify clauses in the implication graph. Moreover, the simplification

of the implication graph that results from replacing asserting clauses with dominator clauses speeds up the

other two procedures.
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1 COMPUTEDOMINATORANDSIMPLIFY (γ,rdom){
2 idom = 0;
3 for each (antecedent literal lit inγ)
4 ANTE(¬lit) = true;
5 for each (antecedent literal lit inγ)
6 idom = SEARCHDOMANDSUBSUME(¬lit, rdom, idom);
7 for (lit = idom; lit != rdom; lit = PRED(lit))
8 MARK(lit) = false;
9 for each (antecedent literal lit inγ)
10 if (ANTE(¬lit) == false)
11 REMOVE(γ, lit);
12 elseANTE(¬lit) = false

13 return idom;
14 }

15 SEARCHDOMANDSUBSUME(alit, rdom, idom){
16 ASSERT(rdom != alit);
17 lit = alit;
18 if (idom == 0){
19 idom = alit;
20 do{
21 MARK(lit) = true;
22 lit = PRED(lit);
23 if (ANTE(lit)) {
24 ANTE(idom) = false;
25 for ( ;idom != lit; idom = PRED(idom))
26 MARK(idom) = false ;
27 }
28 } while (lit != rdom);
29 } else{
30 while (!M ARK(lit)) {
31 lit = PRED(lit);
32 if (lit == rdom) break ;
33 if (ANTE(lit)) {
34 ANTE(alit) = false;
35 return idom;
36 }
37 }
38 for ( ;idom != lit; idom = PRED(idom))
39 MARK(idom) = false ;
40 }
41 return idom;
42 }

Figure 4.7: Dominator analysis with simplifying asserting clauses
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4.3 Dominator Clauses and Redundancy

In this section we study when dominator clauses may duplicate existing clauses and how, on the

other hand, dominator analysis may help a SAT solver remove redundant literals from clauses other than the

asserting clauses and remove subsumed clauses from the database.

To minimize overhead, the SAT solver should not add dominator clauses that duplicate clauses already

in F .

Example 4.8. Consider the following formulaF :

F = (¬a ∨ b)1 ∧ (¬a ∨ ¬b ∨ c)2 ∧ (¬a ∨ c)3 .

Suppose that the SAT solver makes decisiona@1, and examinesc1 and c2 in order. Then,b and c are

asserted byc1 andc2, respectively. Sincec2 has more than two literals anda is found as the dominator ofc,

the dominator clauseγ = (¬a∨ c) is generated. However,γ subsumes bothc2 andc3. In particular,c3 is a

duplicate ofγ and is satisfied byc. Therefore,F ≃ F ∪ {γ}.

Notice that in Example 4.8 the dominator clause is not in the implication graph and subsumes the

asserting clause.

While duplication is possible, if the SAT solver processes implications in the order in which it discov-

ers them—which is the usual way—rather strong conditions must be met. Theseconditions for duplication

are described in the following lemma.

Lemma 4.9. Suppose implications are processed in first-in, first-out manner. Letγ = {¬d, l} be a domina-

tor clause, whered is the dominator ofl. If it is already present in formulaF , γ is not an asserting clause

in the implication graph and it subsumes the asserting clause forl.

Proof. Let γ = (¬d ∨ l) be a dominator clause computed forl from asserting clausec. Assume first thatγ

is asserting in the implication graph. Thenc containsl and at least another literall′ that is deduced fromd.

Assertingd makesγ a unit clause so thatl is implied through it before the implications ofl′ are examined.

That preventsγ from being found as dominator clause, resulting in a contradiction. Suppose nowγ is not
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in the implication graph, but is already inF . Supposed is not inc. Then,l is implied fromγ before it is

implied fromc. This prevents duplication. Therefore,d appears inc, andc is subsumed byγ.

Lemma 4.9 suggests that duplication is not a frequent occurrence in solvers that preprocess their input

and possibly remove more redundancies during DPLL. Also notice that, if in Example 4.8c3 is processed

beforec2, no duplicate is generated. This is the case of a SAT solver, like PrecoSAT, that handles the clauses

with two literals before other clauses in the deduction procedure. This approach is not adopted by many

other DPLL-based SAT solvers. Besides, one can detect clauses subsumed by dominator clauses on-the-

fly during the deduction procedure. That is, during the deduction procedure, if a clausec that is found

to be satisfied by literall contains the negation of dominatord of l, thenc is subsumed by the dominator

clause(¬d ∨ l). The check for containment of the dominator ofl may be expensive for any dominator and

for clauses with many literals. Hence, this approach should be applied with restraint: for example, only

checking whether the recursive dominator ofl (and possibly of a few more true literals in the clause) is the

false literal that caused the clause to be examined. The annotation of each literal in the implication graph

with its recursive dominator allows this test to be carried out even when the corresponding dominator clause

is not added to the database. If not all satisfied literals are checked, subsumption may not be detected. On

the other hand, subsumption may be found when the examined clause is subsumed by the dominator clause,

even though it is not subsumed by the clause assertingl.

4.4 Garbage Collection

According to the algorithm of Sect. 4.2, a dominator clauseγ for literal l is obtained through simpli-

fication of the asserting clause ofl. Hence,γ may contain the negation of the immediate dominatord which

is different from the earliest onei. For this case (a dominator clause is based oni), the clause subsumption

check for non-asserting clauses during the deduction procedure requires to savei with d, and it uses both

information to simplify the clauses. Ifd 6= i and¬d is a literal of clausec that is satisfied byl, then there

must be a dominator clause based oni that subsumesc, and hencec is removable. Otherwise, checking the

containment of¬d in c can also simplifyc to a new dominator clause(¬d ∨ l).
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Applying on-the-fly simplification to the deduction procedure in addition to conflict analysis may lead

to the deletion of clauses—for instance, clauses subsumed by dominator clauses. Deriving unit clauses from

dominator clauses also increases the number of clauses which are satisfiedby them at level0. Therefore,

these simplification techniques should be coupled to an efficient scheme forgarbage collection. Note that

subsumed clauses can be simply deleted, because they will never be involved in a proof of unsatisfiability.

Deleting a clausec is relatively expensive;c is deleted after finding its position in the clause database;

the clauses after that point are moved up. Similarly, the watched literals list mustbe updated. It makes

sense to amortize the cost of deletion over multiple clauses by resorting to garbage collection. Letc =

{l0, . . . , ln−1} be a clause andln be a dummy literal that appears in no clause and is assigned true at level

0. Clausec is turned into a satisfied clause by replacingl0 with ln; the solver delays deleting the satisfiedc

until it gets rid of all the clauses satisfied at decision level0. This clause deletion tends to be often invoked

due to level0 assignments implied by unit clauses derived from dominator clauses.

4.5 Dominator-Based Conflict Clauses

In its original formulation, dominator analysis cannot produce implicates with more than two literals

and with literals assigned at different decision levels. The following elementary fact and example suggest

one way to extend the approach to generate clauses when not all antecedent literals have a common domi-

nator.

Lemma 4.10. No literal l in F implied at levelk may have a dominator at a level different fromk.

Proof. Let d be a dominator ofl that is assigned at levelk′ 6= k. Then, by definitionF ∪ {{¬d}} ⊢D l at

levelk′. This is in contradiction with the assumption.

Example 4.11.Given the following formulaF :

F =(¬a ∨ b)1 ∧ (¬b ∨ c)2 ∧ (¬d ∨ e)3 ∧ (¬b ∨ ¬d ∨ ¬e ∨ f)4∧

(¬b ∨ ¬c ∨ ¬f ∨ g)5 .



74
a@1 b@1 c@11 2[a] [a] [a]

e@2d@2 f@2
3

g@2
[g][d] [d] [f ]

4
5

Figure 4.8: Implication graph of Example 4.11

Suppose that decisionsa@1 andd@2 are made. They result in the implications shown in Fig. 4.8; for each

literal the earliest dominator is computed. In this case, no clause is generated if standard dominator analysis

is applied. However, two implicates, which subsume existing clauses, can be derived if the algorithm is

modified in order to check the dominators of literals at the same level. For instance, the literals ofc4,

which assertsf , can be divided intod1 = {¬b} andd2 = {¬d,¬e, f} according to the decision level of

each literal. Application of dominator analysis tod2 results in a dominator clauseγ = {¬d, f} because

d is the earliest dominator off . Clausec6 = γ ∪ d1 becomes a new implicate ofF , and it subsumes the

antecedent clausec4. Similarly,c7 is another implicate that is obtained by removing¬c fromc5. SupposeF

is transformed toF ′ = F ∪{c6} andF ′′ = F ′∪{c7}. Then,F ≺ F ′ becauseF ′∪{{b}, {¬f}} ⊢D ¬d but

F ∪{{b}, {¬f}} 6⊢D ¬d, andF ′ ≺ F ′′ becauseF ′′∪{{b}, {¬g}} ⊢D ¬f and¬d butF ′∪{{b}, {¬g}} 6⊢D

¬f nor¬d.

In this section we discuss the application of dominator analysis to the derivationof conflict clauses.

Once a conflict clause is generated and possibly simplified, the dominator information collected for its

antecedent literals can be used thanks to the following lemma.

Lemma 4.12. Letc = {l0, . . . , ln} be the asserting clause of literalln. Letd0 be a dominator of literal¬l0.

Then,{¬d0} ∪ (c \ {l0}) is an implicate ofF .

Proof. It is also true thatF ∪{{d0}, {¬l1}, . . . , {¬ln−1}} ⊢D ln, becauseF ∪{{¬l0}, . . . , {¬ln−1}} ⊢D ln

andF ∪ {{d0}} ⊢D ¬l0. By Lemma 3.16,{¬d0} ∪ (c \ {l0}) is an implicate ofF .

Replacing antecedents with their non-trivial dominators therefore produces a new clause that can be

used in conjunction with, or as replacement of, the clause computed by conflict analysis. Even though
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adding a dominator clause to a CNF formula may not affect its deductive power, when such a clause is

derived from a conflict clause based on a UIP, it is at least guaranteed not to be a duplicate and it often

improves deductive power.

Example 4.13.Suppose conflict clausec6 = (¬c ∨ ¬f ∨ ¬h ∨ g), whereg is the UIP, is added and when

after backtracking it becomes asserting, the implication graph is the one shown in Fig. 4.9. Suppose clause

c7 = (¬a ∨ ¬d ∨ g) is generated fromc6 by replacing the antecedent literals ofg with their recursive

dominators. Sincec7 contains a UIP (g), it can substitutec6 as a conflict clause. Wheng is asserted by

c7 and the implication graph is shortened. To generate more compact implication graphs, we could always

substitute a standard conflict clause likec6 with a dominator-based conflict clause likec7. However, this

unlimited replacement may lead the SAT solver to miss some implications that it would have found with

the standard conflict clauses. For instance, ifc7 replacesc6, and later in the search,d@1 and¬g@2 are

assigned as decisions, literalse@1, f@1, h@1, and¬a@2 are implied. However, ifc6 exists in the database,

¬c and¬b are also implied as shown in the implication graph of Fig. 4.10.

One may add both conflict clauses (e.g.,c6 andc7 of Example 4.13), but the overhead is not negligi-

ble. Hence, supplemental conflict clauses based on dominators should becarefully generated and added to

d@1 e@1

¬a@2¬g@2
f@1

h@1

¬c@2 ¬b@23
5

4 2
6

7

Figure 4.10: Implication graphs of Example 4.13
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standard conflict clauses rather than replacing them.

Our approach is to produce a dominator-based conflict clauseγ′ only when a newly-found conflict

clauseγ is obtained by on-the-fly simplification during conflict analysis [HSJ10]. Inthis case, sinceγ

already exists in the database, addingγ′ has an acceptable cost.

The pseudocode of Fig. 4.11 shows the procedure that is run whenever a clause is asserting. A

dominator clause is learned only when a newly found conflict clause becomes asserting and this invokes

procedure ANALYZE DOMINATOR with learned= true (lines 7–9). Otherwise, simplification based on

either single or multiple dominators is applied to the asserting clause (lines 3–4).

The replacement based on recursive dominators is straightforward andinexpensive: while computing

the earliest dominator of the asserted literal, it is sufficient to check whethersuch dominator is the negation

of one of the antecedent literals of the clause. This can be done by a singlescan of the literals.

4.6 Experimental Results

We have implemented the algorithms for clause simplification during deduction and addition of dom-

inator clauses in the CNF SAT solverCirCUs 2.0 [HJKS09, VIS]. The benchmark suite is composed of all

the CNF instances (with no duplicates) from the industrial category of the SAT Races of 2006, 2008, and the

SAT Competitions of 2009 [SATa]. We conducted the experiments on a 2.4 GHzIntel Core2 Quad processor

with 4GB of memory. We used 10000 seconds as timeout, and 2GB as memory bound. We tested PrecoSAT

236 [Pre] along with CirCUs 2.1 to provide a reference point. We denote theextensions by DOM (Dom-

inator analysis), DOMSUB (Dominator analysis with Subsumption check on asserting clauses), DSSCL

(Dominator-based Simplification on Satisfied Clauses), and DCCL (Dominator-based Conflict Clause gen-

eration).

The results are summarized in the graph of Fig. 4.12, which shows the numberof instances completed

in a given CPU time. The graphs of Fig 4.13, 4.14, 4.15, and 4.16 give the contributions of the proposed

techniques in detail. From the graph it appears that the proposed techniques help CirCUs complete more

instances within 10000 s, but provide limited benefits for simpler SAT problems.In fact, for the easier for-

mulae, PrecoSAT is faster, but the improved CirCUs has performance close to that of PrecoSAT. Moreover,
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1 REPLACECONFLICTL ITSWITHDOMS(γ) {
2 γ′ = {UIP(γ)};
3 for each (antecedent literal lit inγ)
4 ANTE(¬lit) = true;
5 for each (antecedent literal lit inγ) {
6 rdom = recursive dominator of¬lit;
7 if (!A NTE(rdom)){
8 ANTE(¬lit) = false;
9 ANTE(rdom) =true;
10 γ′ = γ′ ∪ {¬rdom};
11 }
12 else if(rdom == lit)
13 γ′ = γ′ ∪ {lit};
14 }
15 for each (antecedent literal lit inγ′)
16 ANTE(¬lit) = false;
17 return γ′;
18 }

Figure 4.11: Algorithm for generating a new conflict clause based on recursive dominators.
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the proposed techniques tends to help CirCUs to solve more hard instances than the base version of CirCUs

and PrecoSAT.

Figure 4.17 examine the effects of the proposed techniques (i.e., DOMSUB+DSSCL+DCCL) on

(a) the number of dominator clauses subsuming asserting clauses per dominator computation and (b) the

number of literals per conflict clause. For each of these quantities the geometric mean of the new/old ratios

is reported (excluding cases in which one of the values is0). Single-samplet-tests were performed to

confirm the statistical significance of the data. The null hypothesis was thatthe geometric mean of the ratios

is 1.

In Fig. 4.17(a), our dominator analysis, i.e., DOMSUB, produces more opportunities for computed

dominator clauses to subsume asserting clauses than the analysis of immediate dominators. In our experi-

ments, on average0.02 literals were removed by subsuming dominator clauses for every implication.

Analysis of the CirCUs runs show that the major effect of DOMSUB+DSSCL+DCCL is in reducing

the number of literals per conflict clause. (See Figure 4.17(b).) Our analysis indicates that this reduction

stems from the reduction in the average number of resolution steps per conflict analysis. The reduction in

resolution steps is 11% on average and thep-value is1.05 · 10−9. This translates in a 40% reduction in

literals per conflict clause. In contrast, the indicators of increased deductive power are not changed in a

decisive way. The number of conflicts per decision shows a 9% improvement on average and itsp-value is

0.009. This supports the conclusion that the main way in which dominator clauses improve performance is

by affecting proof conciseness.

4.7 Summary and Discussion

Dominator analysis, introduced in PrecoSAT [Bie09], is the basis for efficient techniques that allow a

SAT solver based on DPLL to simplify the given CNF formula and learn new clauses while deducing new

literals. In this chapter, we have introduced two enhancements over the LHBR: a procedure to check clauses

for simplification based on self-subsumption that is both more powerful and more efficient than analysis

based on immediate dominators; and a low-overhead procedure to learn dominator-based conflict clauses.

In our experiments, the new techniques were especially effective on large, difficult examples. We
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hope that a better understanding of the interplay between the new techniques and other components of the

solver will lead to improved performance also for the easier SAT instances.



Chapter 5

Conclusions

5.1 Thesis Conclusions

The purpose of this thesis research is to devise clause transformation techniques that help a DPLL-

based SAT solver to run faster by deducing more literals from its decisions and by reducing the depth of the

implication graphs used in conflict analysis. Even though many transformationtechniques have empirically

proved to help a SAT solver prune more of the search space, a formal analysis of their effectiveness has not

been attempted. In this thesis, I introduced deductive power and proof ofconciseness to characterize them,

and proposed the new tranformations applied at several stages in the SATsolver.

In Chapter 3, I have introduced deductive power and proof conciseness for DPLL-based SAT solvers.

Then, I have presented how to evaluate the effectiveness of existing clause transformations in terms of the

two notions. First, I have shown that simplifications based on self-subsumption check guarantee no deteri-

oration in deductive power. More importantly, the addition of standard conflict clauses has been proved to

improve the deductive power of the input formula always. By contrast, theempirical analysis of variable

elimination showed the enhance performance of our SAT solver due to generation of more compact impli-

cation graphs. Second, I proposed two new techniques based on self-subsumption, both of which efficiently

improve the deductive power of CNF formuale. On-the-fly simplification detects subsumption relation be-

tween clauses at negligible cost, and it can be applied at any stage using resolution, such as conflict analysis

and variable elimination. The distillation procedure, which is implicitly extended from self-subsumption

check, is applied to preprocessing of the CNF formula.

In Chapter 4, I have presented dominator-based clause learning schemeapplied in PrecoSAT. First,
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I presented how adding dominator clauses during implication process is effective in shortening the im-

plication graph, and hence in deducing other literals quickly. This analysis has been extended to check

self-subsumption relation over antecedent clauses with inexpensive computation. I also proposed a new

scheme to generate conflict clause based on dominators.

I conducted the experiments over various benchmarks that are obtained from real SAT problems to

demonstrate the effectiveness of the proposed techniques. In depth analysis of results have shown that the

the proposed CNF transformations contribute in improving the performance of our SAT solver in practice.

In particular, I expected that dominator-based simplification techniques may improve the deductive power

of the given formula, but my experimental results showed that it primarily leadto more concise proofs.

5.2 Future Work

The proposed techniques have several extensions that are worth of investigation: generation of small

unsatisfiable cores, application to restarts and solution enumeration, application to non-clausal reasoning,

and logic synthesis and representation of sets by characteristic functionsin CNF [McM02].

Generation of small unsatisfiability cores is one of the most required procedures in formal verification

applications [AKMM03, KOSS04, GLST05, McM03, LS06, Li06]. An unsatifiable core is extracted from

the original clauses involved in generating the empty clause. This is performed by analyzing the implication

graphs generated during the DPLL procedure. Hence, proof conciseness is a meaningful criterion to evaluate

a CNF transformation with respect to the generation of small unsatisfiability cores.

In this thesis, CNF transformations are only considered as a way to improve the deduction procedure

of DPLL-based SAT solvers. However, there have been various approaches to make DPLL-based SAT

solvers faster. One example is SAT encoding. Some optimizations of the encoding can be performed in the

form of preprocessing before SAT solving. These techniques allow for significant reductions in the size of

the resulting propositional formulae, and in consequent improved performance of the SAT solver. Hence,

such translation techniques from a circuit to a CNF formula may be characterized in terms of deductive

power and proof conciseness. For this, first, the formal definitions of two notions should be extended to

non-clausal formulae and reasoning.



Bibliography

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.DataStructuresandAlgorithms. Addison-Wesley,
Reading, MA, 1983.

[AKMM03] N. Amla, R. P. Kursahn, K. L. McMillan, and R. Medel. Experimental analysis of different
techniques for bounded model checking. InInternationalConferenceonToolsandAlgorithms
for ConstructionandAnalysisof Systems(TACAS’03), pages 34–48, Warsaw, Poland, April
2003. LNCS 2619.

[Bar] URL:http://www.lsi.upc.edu/ oliveras/bclt-main.html .

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. InFifth
InternationalConferenceon ToolsandAlgorithmsfor ConstructionandAnalysisof Systems
(TACAS’99), pages 193–207, Amsterdam, The Netherlands, March 1999. LNCS 1579.

[Bie08a] A. Biere. Adaptive restart strategies for conflict driven sat solvers. InTheoryandApplications
of SatisfiabilityTesting SAT 2008, pages 28–33. Springer-Verlag, 2008. LNCS 4996.

[Bie08b] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2–4):75–97, 2008.

[Bie09] A. Biere. P{re,i}coSAT@sc’09. SAT Competition 2009 - Solver Description, June 2009.

[Bor97] A. Borälv. The industrial success of verification tools based on stålmarck’s method. In
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Appendix A

Tables for Comparison

In this chapter, I list the tables comparing the performance (CPU time) of CirCUs with and without

the propsoed techniques (EVAL+OCI) described in Chapter 3.
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Table A.1: Comparison of CirCUs with and without the proposed techniques (1)

Design Answer CirCUs CirCUs+EVAL+OCI

aloul-chnl11-13 UNSAT 107.54 26.66
een-pico-prop01-75 UNSAT 6.84 1.4
een-pico-prop05-50 UNSAT 31.12 6

een-tip-sat-nusmv-t5.B SAT 5.64 1.42
een-tip-sat-nusmv-tt5.B SAT 4.58 1.56
een-tip-uns-nusmv-t5.B UNSAT 1.58 1.4

goldb-heqc-alu4mul UNSAT 182.62 190.88
goldb-heqc-dalumul UNSAT 1098.24 923.72
goldb-heqc-desmul UNSAT 91.84 70.86
goldb-heqc-frg2mul UNSAT 77.06 51.62
goldb-heqc-i10mul UNSAT 264.18 225.86
goldb-heqc-i8mul UNSAT 420.66 382.28

goldb-heqc-term1mul UNSAT 96.2 181.44
grieu-vmpc-s05-25 SAT 6.04 9.76
grieu-vmpc-s05-27 SAT 37.3 203.94
grieu-vmpc-s05-28 SAT 256.54 9.16
grieu-vmpc-s05-34 SAT >10000 1252.86
hoons-vbmc-lucky7 UNSAT 2.02 0.86
ibm-2002-05r-k90 SAT 25.78 14.1
ibm-2002-07r-k100 UNSAT 2.84 1.22
ibm-2002-11r1-k45 SAT 190.78 76.32
ibm-2002-19r-k100 SAT 3297.18 512.94
ibm-2002-21r-k95 SAT 1359.72 340.32
ibm-2002-26r-k45 UNSAT 541.46 15.16
ibm-2002-27r-k95 SAT 103.72 15.68
ibm-2004-03-k70 SAT 21.08 18.34
ibm-2004-04-k100 SAT 120.26 50.46
ibm-2004-06-k90 SAT 192.08 45.2

ibm-2004-111-k25 UNSAT 9.18 3.56
ibm-2004-131 2-k25 UNSAT 29.92 8.48

ibm-2004-19-k90 SAT 1096.08 252.7
ibm-2004-202 1-k100 UNSAT 17.6 7.46

ibm-2004-214-k45 UNSAT 17.12 9.56
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Table A.2: Comparison of CirCUs with and without the proposed techniques (2)

Design Answer CirCUs CirCUs+EVAL+OCI

ibm-2004-26-k25 UNSAT 42.34 7.82
ibm-2004-302 1-k95 UNSAT 2.76 2.52
ibm-2004-302 3-k95 SAT 18.96 2.22
ibm-2004-311-k60 UNSAT 476.72 219.28

ibm-2004-602 3-k100 UNSAT 11.92 5.98
manol-pipe-c10ids UNSAT 7.76 7.42

manol-pipe-c10nidws UNSAT 302.94 35
manol-pipe-c6nidwi UNSAT 494.34 116.54

manol-pipe-c7b UNSAT 56.56 14.8
manol-pipe-c7bi UNSAT 57.32 15.4

manol-pipe-c7bidwi UNSAT 1171.36 189.74
manol-pipe-c7nidw UNSAT 1493.14 194.58

manol-pipe-c9 UNSAT 6.38 3.26
manol-pipe-c9nidws UNSAT 159.32 28.02

manol-pipe-f10ni UNSAT 3215.34 1341.6
manol-pipe-f6bi UNSAT 4.32 3.2

manol-pipe-f7idw UNSAT 372.66 1708.78
manol-pipe-f9b UNSAT 1572.68 842.14
manol-pipe-f9n UNSAT 1589.34 686.14

manol-pipe-g10b UNSAT 176.38 53.52
manol-pipe-g10bidw UNSAT 1527.22 305.06

manol-pipe-g10id UNSAT 158.54 73.52
manol-pipe-g10nid UNSAT 954.98 298.14
manol-pipe-g6bi UNSAT 1.3 1.14

manol-pipe-g7nidw UNSAT 32.66 35.96
maris-s03-gripper11 SAT >10000 402.48

mizh-md5-47-3 SAT 2013.6 >10000
mizh-md5-47-4 SAT >10000 4494.5
mizh-md5-47-5 SAT >10000 7167.48
mizh-md5-48-2 TIMEOUT >10000 >10000
mizh-md5-48-5 TIMEOUT >10000 >10000
mizh-sha0-35-2 SAT 5005.52 1440.34
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Table A.3: Comparison of CirCUs with and without the proposed techniques (3)

Design Answer CirCUs CirCUs+EVAL+OCI

mizh-sha0-35-3 SAT 2702.42 2345.72
mizh-sha0-35-4 SAT 977.94 8557.52
mizh-sha0-35-5 SAT 2407.2 3292.08
mizh-sha0-36-2 SAT >10000 2291.66

narain-vpn-clauses-6 SAT 534.4 539.56
schup-l2s-guid-1-k56 UNSAT 432.06 197.48

schup-l2s-motst-2-k315 SAT 707.44 80.26
simon-s02b-dp11u10 UNSAT >10000 52.08

simon-s02b-k2f-gr-rcs-w8 TIMEOUT >10000 >10000
simon-s02b-r4b1k1.1 SAT >10000 470.42
simon-s02-w08-18 SAT >10000 75.02

simon-s03-fifo8-300 UNSAT >10000 43.64
simon-s03-fifo8-400 UNSAT 456.74 158.2

vange-col-abb313GPIA-9-c SAT >10000 >10000
vange-col-inithx.i.1-cn-5 SAT >10000 >10000
velev-engi-uns-1.0-4nd UNSAT >10000 25.92
velev-engi-uns-1.0-5c1 UNSAT >10000 12.84
velev-fvp-sat-3.0-b18 SAT >10000 133.28

velev-live-uns-2.0-ebuf UNSAT >10000 15.46
velev-npe-1.0-9dlx-b71 SAT >10000 320.78
velev-pipe-o-uns-1.0-7 UNSAT >10000 1008.48
velev-pipe-o-uns-1.1-6 UNSAT 75 91.96
velev-pipe-sat-1.0-b10 SAT 549.96 381.92
velev-pipe-sat-1.0-b7 SAT 77.9 846.1
velev-pipe-sat-1.0-b9 SAT 137.8 583.3
velev-pipe-sat-1.1-b7 SAT 108.64 608.76
velev-pipe-uns-1.0-8 UNSAT >10000 1223.2
velev-pipe-uns-1.0-9 UNSAT 389.26 384
velev-pipe-uns-1.1-7 UNSAT 278.06 245.42
velev-vliw-sat-2.0-b6 SAT 344.66 244.9
velev-vliw-sat-4.0-b1 SAT 40.76 233.62
velev-vliw-sat-4.0-b3 SAT 49.6 264.86
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Table A.4: Comparison of CirCUs with and without the proposed techniques (4)

Design Answer CirCUs CirCUs+EVAL+OCI

velev-vliw-sat-4.0-b4 SAT 185.58 334.44
velev-vliw-uns-2.0-iq4 UNSAT >10000 4153.84
velev-vliw-uns-4.0-9C1 UNSAT >10000 931.22

AProVE07-01 TIMEOUT >10000 >10000
AProVE07-02 UNSAT 1929.42 1191.88
AProVE07-03 UNSAT 4980.1 2885.86
AProVE07-04 UNSAT 307.16 192.86
AProVE07-06 UNSAT 96.16 83.58
AProVE07-08 UNSAT 1421.6 725.72
AProVE07-09 UNSAT 1018.44 96.8
AProVE07-11 SAT 282.42 28.9
AProVE07-15 UNSAT 29.96 22.58
AProVE07-16 UNSAT 279.68 277.02
AProVE07-20 UNSAT 415.52 251.12
AProVE07-21 UNSAT 180.8 554.44
AProVE07-22 UNSAT 79.52 41.54
AProVE07-25 TIMEOUT >10000 >10000
AProVE07-26 TIMEOUT >10000 >10000
AProVE07-27 UNSAT 4218.22 1698.7

blocks-4-ipc5-h21-unknown UNSAT 143.82 70.76
blocks-4-ipc5-h22-unknown UNSAT 237.84 86.96

clauses-10 UNSAT 96.98 88.24
clauses-2 SAT 2.06 2.3
clauses-4 SAT 77.1 51.16
clauses-6 SAT 541.88 540.12
clauses-8 SAT 3204.6 2061.1

cube-11-h13-unsat UNSAT 279.04 7915.36
cube-11-h14-sat SAT 351.58 82.4
cube-9-h10-unsat UNSAT 38.62 31.52
cube-9-h11-sat SAT 144.96 206.4
dated-10-11-s SAT 4.28 20.7
dated-10-11-u UNSAT 2228.76 1123.12
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Table A.5: Comparison of CirCUs with and without the proposed techniques (5)

Design Answer CirCUs CirCUs+EVAL+OCI

dated-10-13-s SAT 8.06 43.32
dated-10-13-u UNSAT 1929.4 1517.96
dated-10-15-s SAT 4.4 38.46
dated-10-15-u UNSAT 32.2 47.18
dated-10-17-s SAT 13.32 59.12
dated-10-17-u TIMEOUT >10000 >10000
dated-10-19-s SAT 13.98 10.76
dated-10-19-u TIMEOUT >10000 >10000
dated-5-11-s SAT 0.92 8.4
dated-5-11-u UNSAT 67.76 58
dated-5-13-s SAT 1.94 8.08
dated-5-13-u TIMEOUT >10000 >10000
dated-5-15-s SAT 2.56 7.24
dated-5-15-u UNSAT 303.56 241.64
dated-5-17-s SAT 3.74 9.14
dated-5-17-u UNSAT 438.98 226.6
dated-5-19-s SAT 6.76 6.54
dated-5-19-u TIMEOUT >10000 >10000

dspamdumpvc1080 UNSAT 0.74 0.72
dspamdumpvc1081 UNSAT 7.64 0.7
dspamdumpvc1093 UNSAT 0.34 0.6
dspamdumpvc1103 UNSAT 134.74 1.68
dspamdumpvc1104 UNSAT 162.18 1.66
dspamdumpvc949 UNSAT 1.54 0.62
dspamdumpvc950 UNSAT 6.92 0.58
dspamdumpvc962 UNSAT 0.72 0.56
dspamdumpvc972 UNSAT 18.5 1.6
dspamdumpvc973 UNSAT 22.74 1.52

emptyroom-4-h21-unsat UNSAT 497.28 113.98
emptyroom-4-h22-sat SAT 44.06 16.2
eq.atree.braun.10.unsat UNSAT 753.44 714.2
eq.atree.braun.11.unsat UNSAT >10000 7117.42
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Table A.6: Comparison of CirCUs with and without the proposed techniques (6)

Design Answer CirCUs CirCUs+EVAL+OCI

eq.atree.braun.12.unsatTIMEOUT >10000 >10000
eq.atree.braun.13.unsatTIMEOUT >10000 >10000
eq.atree.braun.7.unsat UNSAT 4.58 2.64
eq.atree.braun.8.unsat UNSAT 22.6 19.42
eq.atree.braun.9.unsat UNSAT 67.04 113.48

hsatvc11773 UNSAT 6.84 1.08
hsatvc11803 UNSAT 3.96 1.24
hsatvc11813 UNSAT 10.24 1.3
hsatvc11817 UNSAT 2.3 0.9
hsatvc11935 UNSAT 2.26 0.74
hsatvc11944 UNSAT 7.94 0.68
hsatvc12016 UNSAT 1.98 0.7
hsatvc12062 UNSAT 3.48 0.84
hsatvc12070 UNSAT 6.34 0.8
hsatvc12072 UNSAT 4.32 1.08
itox vc1033 SAT 33.72 3.78
itox vc1044 SAT 13.98 4.9
itox vc1130 SAT 82.84 4.16
itox vc1138 SAT 86.34 5.04
itox vc1216 UNSAT 0.28 0.54
itox vc909 SAT 6.52 3.44
itox vc965 UNSAT 0.2 0.28
itox vc979 UNSAT 0.22 0.5

partial-10-11-s SAT >10000 2380.86
partial-10-11-u TIMEOUT >10000 >10000
partial-10-13-s SAT 7997.24 2388.14
partial-10-13-u TIMEOUT >10000 >10000
partial-10-15-s SAT 3164 1320.1
partial-10-15-u TIMEOUT >10000 >10000
partial-10-17-s TIMEOUT >10000 >10000
partial-10-17-u TIMEOUT >10000 >10000
partial-10-19-s TIMEOUT >10000 >10000
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Table A.7: Comparison of CirCUs with and without the proposed techniques (7)

Design Answer CirCUs CirCUs+EVAL+OCI

partial-10-19-u TIMEOUT >10000 >10000
partial-5-11-s SAT 312.7 164.22
partial-5-11-u TIMEOUT >10000 >10000
partial-5-13-s SAT 88 440.44
partial-5-13-u TIMEOUT >10000 >10000
partial-5-15-s SAT 1017.38 459.4
partial-5-15-u TIMEOUT >10000 >10000
partial-5-17-s TIMEOUT >10000 >10000
partial-5-17-u TIMEOUT >10000 >10000
partial-5-19-s SAT 3817.64 727.3
partial-5-19-u TIMEOUT >10000 >10000

safe-30-h29-unsat TIMEOUT >10000 >10000
safe-30-h30-sat SAT >10000 58.06

safe-50-h49-unsat TIMEOUT >10000 >10000
safe-50-h50-sat TIMEOUT >10000 >10000

sortnet-6-ipc5-h11-unsat UNSAT 3289.32 1381.8
sortnet-7-ipc5-h15-unsat TIMEOUT >10000 >10000
sortnet-7-ipc5-h16-sat SAT 1364.28 113.64

sortnet-8-ipc5-h18-unsat TIMEOUT >10000 >10000
sortnet-8-ipc5-h19-sat TIMEOUT >10000 >10000

total-10-11-s SAT 8.64 42.42
total-10-11-u UNSAT 111.3 96.88
total-10-13-s SAT 13.14 68.94
total-10-13-u UNSAT 702.22 736.92
total-10-15-s SAT 110.78 9.48
total-10-15-u TIMEOUT >10000 >10000
total-10-17-s SAT 18.84 10.9
total-10-17-u TIMEOUT >10000 >10000
total-10-19-s SAT 13.7 14.7
total-10-19-u TIMEOUT >10000 >10000
total-5-11-s SAT 3.94 16.2
total-5-11-u UNSAT 24.56 18.88
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Table A.8: Comparison of CirCUs with and without the proposed techniques (8)

Design Answer CirCUs CirCUs+EVAL+OCI

total-5-13-s SAT 1.74 13
total-5-13-u UNSAT 42.52 20.7
total-5-15-s SAT 5.16 6.54
total-5-15-u TIMEOUT >10000 >10000
total-5-17-s SAT 16.18 14.14
total-5-17-u TIMEOUT >10000 >10000
total-5-19-s SAT 14.18 17.26
total-5-19-u TIMEOUT >10000 >10000

uts-l05-ipc5-h26-unsat UNSAT 54.2 54.14
uts-l05-ipc5-h27-unknown UNSAT 83.56 61.06
uts-l06-ipc5-h28-unknown UNSAT 54.7 205.16
uts-l06-ipc5-h29-unknown UNSAT 88.42 198.8
uts-l06-ipc5-h30-unknown UNSAT 225.32 217.8
uts-l06-ipc5-h31-unknown UNSAT 181.86 244.4
uts-l06-ipc5-h32-unknown UNSAT 335.5 269.94
uts-l06-ipc5-h33-unknown UNSAT 586.14 286.86
uts-l06-ipc5-h34-unknown SAT 153.36 222.48
uts-l06-ipc5-h35-unknown SAT 120.3 219.66

vmpc 24 SAT 3.26 3.1
vmpc 26 SAT 19.9 49.68
vmpc 29 SAT 706.62 727.32
vmpc 30 SAT 3561.68 161.46
vmpc 31 SAT >10000 78.54
vmpc 33 SAT 1225.22 559

xinetd vc56687 UNSAT 0.22 0.22
xinetd vc56703 UNSAT 0.2 0.22

anbul-dated-5-15-u UNSAT 295.9 247.32
anbul-part-10-13-s SAT 7912.96 2442.8
anbul-part-10-15-s SAT 3131 1318.94

babic-dspam-vc1080 UNSAT 0.66 0.68
babic-dspam-vc949 UNSAT 1.56 0.62
babic-dspam-vc973 UNSAT 22.64 1.6
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Table A.9: Comparison of CirCUs with and without the proposed techniques (9)

Design Answer CirCUs CirCUs+EVAL+OCI

cmu-bmc-barrel6 UNSAT 3.06 1.3
cmu-bmc-longmult13 UNSAT 57.14 29.74
cmu-bmc-longmult15 UNSAT 28.46 19.16
een-pico-prop00-75 UNSAT 15.56 2.2
een-pico-prop05-75 UNSAT 107.86 17.5

een-tip-sat-texas-tp-5e SAT 0.36 0.1
een-tip-sat-vis-eisen SAT 0.96 0.34

fuhs-aprove-15 UNSAT 30.56 22.58
fuhs-aprove-16 UNSAT 279.16 279.96

goldb-heqc-x1mul UNSAT >10000 4802.72
grieu-vmpc-31 SAT >10000 77.62

ibm-2002-04r-k80 SAT 76.6 64.4
ibm-2002-18r-k90 SAT 6373.16 1495.72
ibm-2002-20r-k75 SAT 1501.88 442.06
ibm-2002-22r-k60 UNSAT 551.62 310.52
ibm-2002-22r-k75 SAT 1942.66 471.54
ibm-2002-22r-k80 SAT 3743.74 840.5
ibm-2002-23r-k90 SAT >10000 3295.52

ibm-2002-24r3-k100 UNSAT 328.74 224.26
ibm-2002-25r-k10 UNSAT 1047.24 622.24
ibm-2002-29r-k75 SAT 169.78 50.38
ibm-2002-30r-k85 SAT 8006.54 928.24

ibm-2002-311r3-k30 UNSAT 606.86 139.38
ibm-2004-111-k80 SAT 4951.88 904.36
ibm-2004-23-k100 SAT >10000 6483.76
ibm-2004-23-k80 SAT 8094.54 1347.12
ibm-2004-29-k25 UNSAT 114.06 69.9
ibm-2004-29-k55 SAT 139.72 96.74
jarvi-eq-atree-9 UNSAT 65.66 112.92

manol-pipe-c10nidi UNSAT 9448.12 1510.68
manol-pipe-c10nidw UNSAT >10000 2906.32
manol-pipe-c6bidwi UNSAT 565.58 105.16
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Table A.10: Comparison of CirCUs with and without the proposed techniques(10)

Design Answer CirCUs CirCUs+EVAL+OCI

manol-pipe-c8nidw UNSAT 5065.12 832.02
manol-pipe-c9ni UNSAT 106.18 29.42

manol-pipe-f7nidw UNSAT 538.14 273.72
manol-pipe-g10bidi UNSAT 7771.76 1357.74
manol-pipe-g8nidw UNSAT 123.36 49.7

marijn-philips UNSAT 8205.62 7336.88
mizh-sha0-36-1 TIMEOUT >10000 >10000
mizh-sha0-36-3 TIMEOUT >10000 >10000
mizh-sha0-36-4 TIMEOUT >10000 >10000

narain-vpn-clauses-8 SAT 3171.04 2037.84
palac-sn7-ipc5-h16 SAT 1347.06 114.74

palac-uts-l06-ipc5-h34 SAT 149.34 222.42
post-c32s-col400-16 UNSAT 1323.36 286.06
post-c32s-gcdm16-22 SAT 896.52 175
post-c32s-gcdm16-23 UNSAT 920.8 226.8

post-c32s-ss-8 UNSAT 4147.44 974.2
post-cbmc-aes-d-r1 UNSAT 5.92 5.84
post-cbmc-aes-d-r2 UNSAT 1324.42 633.72
post-cbmc-aes-ee-r2 UNSAT 1476.32 459.72
post-cbmc-aes-ee-r3 UNSAT >10000 2449.82
post-cbmc-aes-ele UNSAT 20.5 42.54

post-cbmc-zfcp-2.8-u2 SAT 29.96 58.08
schup-l2s-abp4-1-k31 UNSAT 28.54 21.98

schup-l2s-bc56s-1-k391 UNSAT 1228.64 877.52
simon-s02b-r4b1k1.2 SAT 104.5 142.5
simon-s02-f2clk-50 UNSAT 418.84 122.52
simon-s03-w08-15 SAT 308.6 82.32

velev-vliw-sat-4.0-b8 SAT 50.76 132.62
velev-vliw-uns-2.0-iq1 UNSAT 200.7 172.7
velev-vliw-uns-2.0-iq2 UNSAT 926.14 685.8
velev-vliw-uns-2.0-uq5 UNSAT 8976.8 9081.2
velev-vliw-uns-4.0-9 UNSAT 1336.58 931.66
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Table A.11: Comparison of CirCUs with and without the proposed techniques(11)

Design Answer CirCUs CirCUs+EVAL+OCI

velev-vliw-uns-4.0-9-i1 UNSAT 8759.8 7155.42
ACG-10-5p0 UNSAT 18.62 87.76
ACG-15-10p0 UNSAT 2637.58 1193.12
ACG-15-10p1 SAT 2233.3 2266.78
ACG-20-10p0 UNSAT 7103.24 4798.98
ACG-20-10p1 SAT 7387.36 3382.08
ACG-20-5p1 SAT 1312.38 1138.84
AProVE09-01 SAT 1.42 1.16
AProVE09-03 SAT 3.7 1.14
AProVE09-05 SAT 0.94 1.56
AProVE09-06 SAT 2227.66 1309.76
AProVE09-07 SAT 1.78 0.76
AProVE09-08 SAT 1.42 2.26
AProVE09-10 SAT 3.32 57.52
AProVE09-11 SAT 0.16 1.78
AProVE09-12 SAT 0.44 1.9
AProVE09-13 SAT 0.04 0.3
AProVE09-15 SAT 5.22 21.3
AProVE09-17 SAT 30.5 15.14
AProVE09-19 SAT 0.48 2.58
AProVE09-20 SAT 1339.74 531.84
AProVE09-21 SAT 21.5 2.8
AProVE09-22 SAT 0.04 0.28
AProVE09-24 SAT 18.6 5.18
AProVE09-25 SAT 0.16 1.58

countbitsarray0232 UNSAT 658.94 3002.5
countbitsarray0832 TIMEOUT >10000 >10000
countbitsarray3232 TIMEOUT >10000 >10000
countbitsrotate016 UNSAT 52.58 44.18
countbitsrotate032 TIMEOUT >10000 >10000
countbitsrotate128 TIMEOUT >10000 >10000

countbitssrl016 UNSAT 8.64 6.68
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Table A.12: Comparison of CirCUs with and without the proposed techniques(12)

Design Answer CirCUs CirCUs+EVAL+OCI

countbitssrl032 UNSAT 6800.36 5359.78
countbitssrl128 TIMEOUT >10000 >10000

countbitswegner064 UNSAT 302.34 116.38
gss-13-s100 SAT 78.8 51.56
gss-14-s100 SAT 150.58 50.36
gss-15-s100 SAT 458.52 226.74
gss-16-s100 SAT 828.14 336.2
gss-17-s100 SAT 1339.48 505.88
gss-19-s100 SAT >10000 2227.12
gss-20-s100 TIMEOUT >10000 >10000
gss-21-s100 TIMEOUT >10000 >10000
gss-22-s100 TIMEOUT >10000 >10000
gss-23-s100 TIMEOUT >10000 >10000
gss-24-s100 TIMEOUT >10000 >10000
gss-25-s100 TIMEOUT >10000 >10000
gss-26-s100 TIMEOUT >10000 >10000
gss-27-s100 TIMEOUT >10000 >10000
gss-28-s100 TIMEOUT >10000 >10000
gss-31-s100 TIMEOUT >10000 >10000
gss-32-s100 TIMEOUT >10000 >10000
gss-33-s100 TIMEOUT >10000 >10000
gss-34-s100 TIMEOUT >10000 >10000
gus-md5-04 UNSAT 5.98 5.9
gus-md5-05 UNSAT 15.42 17.08
gus-md5-06 UNSAT 57.8 38.58
gus-md5-07 UNSAT 157.06 111.38
gus-md5-09 UNSAT 3020.8 1709.26
gus-md5-10 UNSAT 6981.82 4004.86
gus-md5-11 TIMEOUT >10000 >10000
gus-md5-14 TIMEOUT >10000 >10000
gus-md5-15 TIMEOUT >10000 >10000
gus-md5-16 TIMEOUT >10000 >10000
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Table A.13: Comparison of CirCUs with and without the proposed techniques(13)

Design Answer CirCUs CirCUs+EVAL+OCI

icbrt1 32 UNSAT 55.92 27.76
maxand064 UNSAT 8.48 4.24
maxor128 UNSAT 5766.14 6162.66
maxxor064 UNSAT >10000 6910.84
maxxor128 TIMEOUT >10000 >10000

maxxororand032 UNSAT 313.5 263.86
maxxororand128 TIMEOUT >10000 >10000

minand128 UNSAT 26.7 11.44
minandmaxor032 UNSAT 10.02 4.74
minandmaxor128 UNSAT 4573.48 3228.66

minor032 UNSAT 0.64 0.42
minor064 UNSAT 7.22 2.88
minxor128 UNSAT 138.94 303.16

minxorminand032 UNSAT 2.62 5.34
minxorminand064 UNSAT 47.94 92.36
minxorminand128 UNSAT 1089.9 2152.4

mulhs016 TIMEOUT >10000 >10000
mulhs032 TIMEOUT >10000 >10000

ndhf xits 09 UNSAT TIMEOUT >10000 >10000
ndhf xits 10 UNSAT TIMEOUT >10000 >10000
ndhf xits 11 UNSAT TIMEOUT >10000 >10000
ndhf xits 12 UNSAT TIMEOUT >10000 >10000
ndhf xits 13 UNSAT TIMEOUT >10000 >10000
ndhf xits 14 UNSAT TIMEOUT >10000 >10000

ndhf xits 15 UNKNOWN TIMEOUT >10000 >10000
ndhf xits 16 UNKNOWN TIMEOUT >10000 >10000
ndhf xits 17 UNKNOWN TIMEOUT >10000 >10000

ndhf xits 20 SAT SAT 694.26 592.22
ndhf xits 21 SAT SAT 7.66 13.76
ndhf xits 22 SAT SAT 0.28 11.18

post-cbmc-aes-d-r2-nohole UNSAT 1504.94 749.7
post-cbmc-aes-ee-r2-nohol UNSAT 1408.16 448.52
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Table A.14: Comparison of CirCUs with and without the proposed techniques(14)

Design Answer CirCUs CirCUs+EVAL+OCI

q query2 L324 coli UNSAT 17.3 10.24
q query3 L100 coli.s UNSAT 296.42 208.9
q query3 L150 coli.s UNSAT 650.38 140.72
q query3 L200 coli.s UNSAT 473.28 404.44
q query3 l37 lambda SAT 11.2 4.2
q query3 l38 lambda SAT 17.64 4.54
q query3 l39 lambda SAT 20.26 10.34
q query3 l40 lambda SAT 27.18 17.2
q query3 l41 lambda SAT 41.52 11.46
q query3 l42 lambda SAT 81.56 29.46
q query3 l43 lambda SAT 62.32 46.98
q query3 l44 lambda UNSAT 276.28 227.8
q query3 l45 lambda UNSAT 320.38 206
q query3 l46 lambda UNSAT 300.9 212.5
q query3 l47 lambda UNSAT 315.02 220.64
q query3 l48 lambda UNSAT 275.88 213.78
q query3 L60 coli.sa SAT 158.96 84.18
q query3 L70 coli.sa SAT 163.6 108.96
q query3 L80 coli.sa UNSAT 190.56 92.86
q query3 L90 coli.sa UNSAT 218.02 252.76
rbcl xits 06 UNSAT UNSAT 12.18 12.2
rbcl xits 07 UNSAT UNSAT 170.22 297.56
rbcl xits 08 UNSAT TIMEOUT >10000 >10000

rbcl xits 09 UNKNOWN TIMEOUT >10000 >10000
rbcl xits 10 UNKNOWN TIMEOUT >10000 >10000
rbcl xits 11 UNKNOWN TIMEOUT >10000 >10000
rbcl xits 12 UNKNOWN TIMEOUT >10000 >10000
rbcl xits 13 UNKNOWN TIMEOUT >10000 >10000

rbcl xits 14 SAT SAT 7.68 20.36
rpoc xits 07 UNSAT UNSAT 124.2 233.84
rpoc xits 08 UNSAT UNSAT 5727.9 3707
rpoc xits 09 UNSAT TIMEOUT >10000 >10000

rpoc xits 10 UNKNOWN TIMEOUT >10000 >10000
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Table A.15: Comparison of CirCUs with and without the proposed techniques(15)

Design Answer CirCUs CirCUs+EVAL+OCI

rpoc xits 11 UNKNOWN TIMEOUT >10000 >10000
rpoc xits 12 UNKNOWN TIMEOUT >10000 >10000
rpoc xits 13 UNKNOWN TIMEOUT >10000 >10000
rpoc xits 14 UNKNOWN TIMEOUT >10000 >10000

rpoc xits 17 SAT SAT 0.14 2.68
smulo016 UNSAT 24.58 9.9
smulo128 TIMEOUT >10000 >10000

UCG-10-5p0 UNSAT 35.56 55.6
UCG-15-10p0 UNSAT 1415.64 908.14
UCG-15-10p1 SAT 2312.28 998.04
UCG-15-5p0 UNSAT 126.06 99.88
UCG-20-10p1 SAT 4960.12 2954.5
UCG-20-5p1 SAT 890.92 406.3
UR-10-5p0 UNSAT 34.1 68.28
UR-10-5p1 SAT 20 63.14
UR-15-10p0 UNSAT 1933.16 1053.38
UR-15-10p1 SAT 3148.88 1105.78
UR-15-5p0 UNSAT 300.5 136.56
UR-20-10p1 SAT >10000 4198.78
UR-20-5p0 UNSAT 2605.52 2065.18
UR-20-5p1 SAT 3072.84 2157.48

UTI-10-10p0 UNSAT 159.8 135.32
UTI-15-10p0 UNSAT 651.32 290.42
UTI-15-10p1 SAT 1346.42 505.82
UTI-15-5p0 UNSAT 1091.08 843.02
UTI-15-5p1 SAT 957.68 646.26
UTI-20-10p0 UNSAT 6601.34 2212.62
UTI-20-10p1 SAT >10000 7104.92
UTI-20-5p0 UNSAT 7187.76 4939.72
UTI-20-5p1 SAT 6451.24 2431.54


