Increasing The Effectiveness of Deduction in Propositional ST
Solvers
by
Hyojung Han
B.S., Kangnung National University, Korea, 1999

M.S., University of Colorado at Boulder, 2010

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Electrical, Computerm, and Energy Engineering

2010

This thesis entitled:
Increasing The Effectiveness of Deduction in Propositional SAT $8lve
written by Hyojung Han
has been approved for the Department of Electrical, Computerm, angyHargineering

Fabio Somenzi

Aaron Bradley

Date

The final copy of this thesis has been examined by the signatories, anddikdt both the content and the
form meet acceptable presentation standards of scholarly work in thre afEntioned discipline.

Han, Hyojung (Ph.D., Electrical and Computer Engineering)
Increasing The Effectiveness of Deduction in Propositional SAT $8lve

Thesis directed by Professor Fabio Somenzi

The satisfiability (SAT) of a propositional formula is the decision problem terdgne whether there
is a satisfying assignment that can make the formtla or not. In the past few years, many successful
SAT solvers based on the David-Putnam-Logemann-Loveland (DPLldgegure [DP60, DLL62, MS99,
MMZ +01, ES03] for formulae in conjunctive normal form (CNF) have beamltged. Since the deduction
procedure of DPLL is sound but not complete, its effects depend orhviiimula is selected to represent
the input function. CNF transformations are among the most effectiveitpato improve quality of the
input formula by either simplifying clauses [ES03, EBO5, SE05, ZKKSWW807, HS09] or learning new
ones [MS99]. Specifically, effective CNF transformations can help S#Vers to be sped up by allowing
them to do more deductions and less enumerations.

In my dissertation, | characterize existing transformations in terms of their ingpathedeductive
power of the formula and their effects on tipeoof concisenessthat is, the sizes of the implication graphs.
| also present two new techniques that try to increase deductive polefirst is a check performed during
the computation of resolvents. The second is a new preprocessing atgbeted owlistillation that com-
bines simplification and increase of deductive power. Most currentstiMers apply resolution at various
stages to derive new clauses or simplify existing ones. The former hgyolpeimg conflict analysis, while
the latter is usually done during preprocessing. | show how subsumptiba operands by the resolvent can
be inexpensively detected during resolution; | then discuss how thigidetéezused to improve three stages
of the SAT solver: variable elimination, clause distillation, and conflict analyidig on-the-fly subsump-
tion check is easily integrated in a SAT solver. In particular, it is compatible witng conflict analysis
and the generation of unsatisfiability proofs. Experiments show the efeeiss of the new techniques.

SAT solvers also benefit from clauses learned by the DPLL proce@wsn though they are by

definition redundant. In addition to those derived from conflicts, the elRlearned bgominator analysis

iv
during the deduction procedure tend to produce smaller implication graghscanetimes increase the
deductive power of the input CNF formula. | extend dominator analysis witifiicient self-subsumption
check. | also show how the information collected by dominator analysis casdibto detect redundancies
in the satisfied clauses and, more importantly, how it can be used to pragyaemental conflict clauses.
| characterize these transformations in terms of deductive power anflqguoaciseness. Experiments show

that the main advantage of dominator analysis and its extensions lies in improwifgcpnciseness.

This thesis is dedicated to my grandmother "OkJib Choi”. Thank you for gtvangth, your kindness

and your love.

Vi

Acknowledgements

First and foremost | would like to thank my adviser Professor Fabio Sonfi@nkis guidance and
support throughout my graduate studies. He has been my inspirationuadl¢ lall the obstacles in the
completion this research work. | also thank him for giving me the great oppity to enjoy hiking in the
Rocky Mountains. Especially, | will never forget the moment when we wesantaineering the Mountain
Evans at 2005. For this dissertation, | would like to make a special refermenProfessor Armin Biere,
Professor Aaron Bradley, Professor Michael Lightner, and BsofieSriram Sankaranarayanan for kindly
serving on my thesis committee.

The members of the VLSI CAD group have contributed immensely to my peraodgbrofessional
time at University of Colorado. | especially want to acknowledge hoyogamup member Hoonsang Jin
who is now working for Cadence Design Systems. We have worked togatheur Satisfiability Solver,
CirCUs. | appreciate his enthusiasm and intensity for our work. Besidesisang, | am grateful for time
spent with Hyondeuk Kim and Sagib Sohail, who shared with me not only leume in our study but also
such a great experience in Boulder, Colorado.

My internships at Intel allow me to have a valuable experience of solvidgwedd problems from
industry. |1 would like to thank Dr. Murali Talupur and Dr. James Grundym@ntoring and supervising me
during my internship in Intel Strategic CAD Laboratories.

Lastly, | would like to thank my family for all their love and encouragement. Forpasents who
supported me in all my pursuits. And most of all for my loving, supportive andouraging husband
Hyoungsuk and my lovely daughter Binna, | heartily appreciate for thieiféd support and patient during

this Ph.D.

Contents

Chapter

1

Introduction

1.1 Background e e e
1.2 Thesis Contributions
1.3 ThesisOrganization e e e

1.4 Related Work

Propositional Satisfiability Solvers

2.1 Propositional Satisfiability Problems oL
2.2 Representations
23 CNFFormulae
24 CNF SAT SOIVErS e e
25 TheDPLLProcedure e
2.6 Conflict Analysis
2.7 Proof of Unsatisfiability

2.8 PreproCessing e

Increasing the Efficiency of the Deduction Procedure
3.1 Deductive PowerofaCNF Formula

3.2 On-The-Fly Self-Subsumption

11

12

13

15

19

20

21

3.3 Clause Distillation e 37

3.4 \Variable Elimination
3.5 Experimental Results

3.6 Summaryand DiSCuSSION e e e e

4 Clause Simplification through Dominator Analysis

4.1 DOminators e e e
4.2 Simplifying Clauses During Deduction
4.3 Dominator Clauses and Redundancy uua. ..
4.4 Garbage Collection e
4.5 Dominator-Based ConflictClauses e
4.6 Experimental Results
4.7 Summary and DiSCUSSION

5 Conclusions
5.1 ThesisConclusions 0 e

5.2 Future Work e e e e

Bibliography

Appendix

A Tables for Comparison

viii

44

a7

59

61

72

73

76

84

86

86

87

88

94

Tables
Table
A.1 Comparison of CirCUs with and without the proposed techniques (1) 95
A.2 Comparison of CirCUs with and without the proposed techniques (2) 96
A.3 Comparison of CirCUs with and without the proposed techniques (3) 97
A.4 Comparison of CirCUs with and without the proposed techniques (4) 98
A.5 Comparison of CirCUs with and without the proposed techniques (5) 99
A.6 Comparison of CirCUs with and without the proposed techniques (6) 100
A.7 Comparison of CirCUs with and without the proposed techniques (7). 101
A.8 Comparison of CirCUs with and without the proposed techniques (8) 102
A.9 Comparison of CirCUs with and without the proposed techniques (9). 103
A.10 Comparison of CirCUs with and without the proposed techniques (10) 104
A.11 Comparison of CirCUs with and without the proposed techniques (11) 105
A.12 Comparison of CirCUs with and without the proposed techniques (12) 106
A.13 Comparison of CirCUs with and without the proposed techniques (23) 107
A.14 Comparison of CirCUs with and without the proposed techniques (14) 108

A.15 Comparison of CirCUs with and without the proposed techniques (15) 109

Figure

2.1
2.2
2.3
2.4

2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

Figures

GRASPDPLL algorithm.

Implication hypergraph for Example 2.5.

Implication graph for the first conflict of Example 2.6.

Resolution graph of conflict analysis for Example 2.6.

Conflict clause computed on an implicationgraph.

Implication graph of Example 3.2.
Implication graph of Example 3.7.
Implication graph of Example 3.10.
Implication graph for the first conflict of Example 3.11.
Implication graph without additional conflictclause.
Implication graph with additional conflictclause.
Implication graph of Example 3.13.

Resolution tree of conflict analysis for Fig. 3.7

Implication graph for the second conflict of Example 3.13.

Resolution tree of conflict analysis for Fig.3.9.
Implication graph shrunk from Fig. 3.7 with a new conflictnode.
Algorithm for conflict analysis with on-the-fly simplification.

The implication graph of Example 3.17.

15

16

17

18

24

27

33

33

34

37

3.14 Implication graph of Example 3.18. e 39
3.15 Resolution graph of conflict analysis for Example 3.18. 39
3.16 Algorithm for clause distillation. 43
3.17 Atrieofthe CNF clauses d@f. 45
3.18 The implication graph generated under= {{-b}}.. 45
3.19 The implication graph generated under= {{b},{—-c}}. 45
3.20 The resolution graph of the conflict analysison Fig. 3.20. 45
3.21 The implication graphundel; = {{—-c}}. 46
3.22 The resolution graph of conflict analysison Fig. 3.21. « 46

3.23 Number of instances solved by various SAT solvers versus CPU &neoriparison of the
proposed algorithm to modern SAT solvers; (b) individual contributidnsiraplification
methodsto CirCUS e

3.24 Comparison of the performance improvements between (a)SAT and BT instances of

3.25 Effect of CirCUs with and without EVAL+OCI on (a) CPU time:EGMETRIC MEAN =
0.56, p-value =2.2 - 10~'%; (b) number of decisions: BOMETRIC MEAN = 0.51, p-value =
2.2-10716; (c) number of resolution steps per conflicte GMETRIC MEAN = 0.57, p-value
=2.2-107'5; (d) number of literals per conflict clauseEGMETRIC MEAN = 0.82, p-value
=825 1078,

3.26 Effect of CirCUs with and without EV+OCI on (a) CPU timeEGMETRIC MEAN = 0.63,
p-value =5.7 - 10715; (b) number of decisions: BOMETRIC MEAN = 0.59, p-value =
2.2-10716; (c) number of resolution steps per conflictt GMETRIC MEAN = 0.68, p-value

=2.29-1071?; (d) number of literals per conflict clauseEGMETRICMEAN = 0.87, p-value

Xil
3.27 Effect of CirCUs with and without AL+OCI on (a) CPU timeEGMETRIC MEAN = 0.86,

p-value =0.003; (b) number of decisions: BOMETRICMEAN =0.77, p-value =1.71-107%;

(c) number of resolution steps per conflictEGMETRIC MEAN = 1.01, p-value =0.76; (d)

number of literals per conflict clause:EGMETRIC MEAN =0.92, p-value =0.03. 54
3.28 The number of resolution steps perconflict. 55
3.29 The effect on memory consumption. e . 55

3.30 Number of OCI applications per resolution step with and without prepsitg: (a) both
elimination and distillation: GOMETRIC MEAN = 1.9, p-value =2.96 - 10~; (b) only

elimination: GEOMETRIC MEAN = 1.69, p-value =6.65 - 10~'2; (c) only distillation: Ge-

OMETRIC MEAN =0.92, p-value =0.17. e e e e 56
3.31 Implication graph of Example 3.21 withoutEV. 57
3.32 Implication graph of Example 3.21 withEV. 58

3.33 Number of instances simplified by various preprocessors verdudi@B. SatELite times
outononeinstance after 3600S. e 58

3.34 Ratio of simplification made by various preprocessors on (a) varjdbleslauses, and (c)

literals. 06
4.1 Implication graphof Example4.2 63
4.2 Implication graph of Example 4.3 64
4.3 Dominator analysisin PrecoSAT 66
4.4 Implication graph of Example 4.4 66
4.5 Implicationgraph of Example 4.6 68
4.6 Implication graph of Example 4.7 69
4.7 Dominator analysis with simplifying assertingclauses 70
4.8 Implication graph of Example 4.11 e 74
4.9 Implication graphs of Example 4.13 75

4.10 Implication graphs of Example 4.13 e 75

4.11 Algorithm for generating a new conflict clause based on recuwisinenators.
4.12 CPU time by PrecoSAT and CirCUs with and without proposed techniques
4.13 The contribution of proposed technique DOM« 0 ...
4.14 The contribution of proposed technique DOMSUB
4.15 The contribution of proposed technique DSSCL
4.16 The contribution of proposed technique DCCL oo
4.17 Effect of proposed techniques on (a)the number of subsuming dmmaiauses per domi-
nator computation: GOMETRIC MEAN = 1.11, p-value =0.001; (b)the number of literals

per conflict clause: GOMETRIC MEAN = 0.6, p-value =2.2-10716

Chapter 1

Introduction

1.1 Background

The last two decades have seen great advances in the performaatisfedbility solvers for proposi-
tional logic, in particular those based on the David-Putnam-Logemanndmay¢éDPLL) procedure [DP60,
DLL62, MS99, MMZ*01, ES03]. These solvers have evolved in symbiotic relationship with mamy Ele
tronic Design Automation (EDA) applications including model checking [BC&28cM02, McM03, LS06,
Li06], logic synthesis [MB89], testing [SBV96], and timing analysis.

Progress has been made both in the pruning of the search space [M@98]the efficient implemen-
tation of the basic operations like deductions [MMZL]. Here we are concerned with techniques that trans-
form a Conjunctive Normal Form (CNF) formula, either as a prepracgssep [EB05, SE05, ZKKSV06]
or during the DPLL procedure. These transformations should be ®iativexpensive and produce formu-
lae on which the DPLL procedure runs faster than on the original ones.

Reducing the size of the formula is a common objective of transformationsingtance, a set of
clauses igedundant if a proper subset represents the same function. A subsumed clausa ¢lause
implied by another) is redundant, and the cost of many SAT solver opesadiecreases with a smaller
formula. Hence, removing subsumed clauses is usually beneficial. Howetell redundant clauses can
be removed without negative effect on the speed of the solver.

In this thesis, | introduce two notions that help in the design and evaluatiarmoifa transforma-
tions. The first iddeductive powerof a CNF formula. The higher this power, the more consequences the

DPLL procedure can deduce from each of its decisions; hence, the effective is the pruning of the

search space. The second notiomplisof conciseness It reflects the fact that the DPLL procedure pro-
gresses through the search space by proving that parts of thatapdeé no satisfying assignment and
recording such findings in the form of new clauses and their derivatidiose concise proofs are faster to
build and usually more effective at pruning further search.

To see how deductive power may help in the analysis of SAT solversidgesrtéause recording, which
addsconflict-learned clausesor, simply, conflict clausesto the original SAT instance. Each conflicting
assignment is analyzed to identify a subset that is sufficient to causertieatcconflict. The disjunction
of the literals in the subset becomes a new clause added to the original S&ficies The conflict clauses
learned by SAT solvers are by definition redundant, but they alwaywephe deductive power of a CNF
formula.

Clauses that are subsumed by other clauses slow down the implicationgyrogedo not help the
solver in pruning the search space. | show that they never improvetilapower. Therefore, preprocess-
ing often removes them to accelerate implications. On the other hand, removiafslitem clauses may
increase the deductive power of a formula. | study in detail severabappes to such elimination, both as
preprocessing and during DPLL.

Literal removal procedures are often based on resolution. In addigsojution may be applied
to eliminate variables from the formula. Since the elimination of variables may weris@ number of
clauses, it is usually applied with restraint [SP04, EBO5]. Deductiveepasvnot guaranteed to improve
either. Instead, the main benefit of variable elimination is the decrease indgregamnumber of decisions
and implications required to produce a conflicting assignment. Not only csnfiezur sooner, but their
analysis is faster, and the learned clauses tend to prune larger poftibessearch space.

In this thesis | analyze existing techniques that increase deductive powgenerate more concise
implication graphs and | propose two new ones. | show how to detectsybisuns during resolution during
both preprocessing and conflict analysis with minimal overhead. Theogeopon-the-fly subsumption
check can be applied to both regular and strong [JS06] conflict analgsiew how this inexpensive check
is used to improve deductive power at three stages of the SAT solveableelimination, clause distillation,

and conflict analysis. | then describéliatillation algorithm that asserts the negations of clauses to remove

3

redundant literals and possibly derive new clauses. Unlike previqueagphes, this distillation procedure
may replace a clause with the resolvent of two or more existing clauses wikplititly deriving any
such resolvents in advance. | show that distillation increases deduativer mnd shortens implication
graphs. Experiments show that the presented techniques speed upTosol®er. Variable elimination
works primarily by shortening the implication graphs, while other transformatimainly improve deductive
power.

Despite recent progress in DPLL-based SAT solvers, more improveramise achieved with sev-
eral extensions of existing formula transformation techniques. One exaroptErns conflict clauses
learned by SAT solvers. They are redundant definition, but | hagevishihat they always improve the
deductive power of a CNF formula. In previous work [Nad09, SBG®],Rlifferent approaches to produce
learned clauses from one based on UIP have been proposed to fimeay prune the search spadks-
signment shrinking [Nad09] applies the assignments again in the newly found conflict claude umew
conflict occurs. This may produce a new smaller conflict clause. In9SBf®], a clause is learned from the
analysis for a single dominator during the implication process. Since the dantsns only two literals of
which one is for the dominator and the other is for the implied literal, its additionéstfe in shortening
the implication graph. Even though those schemes have empirically provedpta ISAT solver prune
more of the search space, a formal analysis of their effectivenegsoh&®en attempted. In this thesis, |
investigate them for the improvement of either deductive power or pratfiseness. In particular, | also
study how efficiently extend the learning scheme based on dominatorstteefimprovement of deduction

in SAT solvers.

1.2 Thesis Contributions

This thesis deals with the effectiveness of deduction procedure ingitmpal satisfiability problems.
To this aim, | followed three research directions.

In DPLL-based SAT solvers, deduction basedneadus ponensplays a key role in boosting effi-
ciency by finding what literals are implied by the current partial assignmémte$his deduction procedure

is sound but not complete, its effects depend on how the CNF input formuiagented to it. This motivates

4

techniques that transform a CNF formula, either as preprocessinge®®d [SE05, ZKKSV06, HS07] or
during the DPLL procedure [HS09, HSJ10, SB09, Pre]. Theseftrianations should be relatively inex-
pensive and produce formulae on which the DPLL procedure rutes fdmn on the original ones.

To achieve this goal several important research items are identified. arbedyiefly summarized as

follows.

¢ | have introduced two notions that help in the design and evaluation of fortrariaformations.
The first isdeductive powerof a CNF formula. It is motivated by the observation that the more
consequences the DPLL procedure can deduce from each of itsodscithe more effective the
pruning of the search space. The second notigrasf conciseness It reflects the fact that the
DPLL procedure progresses through the search space by prowinggitis of that space contain no

satisfying assignment and recording such findings in the form of nevsetau

e Modern DPLL-based SAT solvers heavily rely on various CNF tramsédion technigues to en-
hance the effectiveness in pruning the search space. These tnaatéms include simplifying
clause data base and clause recording. | have formally characteremss tthnsformation tech-
niques in terms of deductive power and proof conciseness. In additi@ve proved their effec-

tiveness in speeding up the SAT solver by in-depth analysis of experihneststs.

¢ | have developed efficient transformations that aim at increasing thectieel power of a CNF
formula and generating more compact implication graphs. The procedwlausfe distillation
at the preprocessing stage amdthe-fly simplifications based on self-subsumption during DPLL
considerably speed up the SAT solver by increasing deductive p@mehe other hand, the trans-
formation based on variable elimination works mainly by reducing the numbesofution steps

required in conflict analysis, that is, by producing more concise proofs

e Despite recent progress in DPLL-based SAT solvers, more improveroantbe achieved with
several extensions of existing formula transformation techniques. Gamapds concerns a clause

learned from the analysis for a single dominator during the implication pro&sse the clause

5

contains only two literals of which one is for the dominator and the other is fomtipéed lit-
eral, its addition is effective in shortening the implication graph. Even thouggetechemes have
empirically proved to help a SAT solver prune more of the search spacemalfanalysis of its
effectiveness had not been attempted. | have investigated it for the ierpent of either deductive
power or proof conciseness. In particular, | also proposed howfitmegttly extend the learning

scheme based on dominators for the generation of even more compact implgrajihs.

1.3 Thesis Organization

The organization of this thesis is as follows.

Chapter 2 covers background and definitions related to the satisfiabilibyepne for propositional
formulae that are pertinent to my work.

Chapter 3 presents several approachs to make the deduction pecedie efficient. In DPLL-
based SAT solvers, deduction basednoodus ponensplays a key role in boosting efficiency by finding
what literals are implied by the current partial assignment. Since this dedycboadure is sound but not
complete, its effects depend on how the CNF input formula is presented tastmibhivates techniques that
transform a CNF formula, either as preprocessing step or during the piecedure. These transformations
should be relatively inexpensive and produce formulae on which the_.[pPbcedure runs faster than on
the original ones. In this chapter, | have introduced two notions that heheidesign and evaluation of
formula transformations. The firstéeductive powerof a CNF formula. It is motivated by the observation
that the more consequences the DPLL procedure can deduce frorofagcdecisions, the more effective
the pruning of the search space. The second notiproisf conciseness

In Chapter 4, thelominator-based CNF simplificationtechniques are presented. A clause with two
literals may be derived during the deduction process. Since such a tdsnaiseto shorten the implication
graph, it can be characterized in terms of the notions defined in Chapteh&ve extended dominator
analysis with an efficient self-subsumption check. | also show how theniafiion collected by dominator
analysis can be used to detect redundancies in the satisfied clausememnthportantly, how it can be used

to produce supplemental conflict clauses. | have characterized theséotmations in terms of deductive

power and proof conciseness. My experiments show that the main ageasftdominator analysis and its
extensions lies in improving proof conciseness.

Chapter 5 includes the conclusions of this thesis and some future res@aaions.

1.4 Related Work

Most powerful modern SAT solvers [zCh, Jer, Satb, Rsa, Pic, Pag, 8ATc] employ variants of
the DPLL procedure, and recently they have achieved great improvemseveral ways other than CNF
transformation techniques like efficient implementations based on two-watitbesd schemes [Zha97,
MMZ +01, Bie08b] for faster implication process, heuristics to select the deaciaivables [Lib00, GNO2,
HBO03, JS04a], and restart techniques [GSK97, Bie08a, PD09].

More recently, there has been considerable interest in efficient tt@msiechniques from the original
problem to CNF formula, which are call&AT encoding problemgVel04, ES06, EMS07, MVQ7]. In par-
ticular, [EMSO07] explores the preprocessing stage of SAT for cirawiblems using recent logic synthesis
techniques. In contrast with preprocessing steps of the DPLL-baSBd@ver, SAT encoding techniques
are applied to generate simpler CNF formulae to be processed by the SAT. solv

The notion of deductive power that is defined in this thesis is related to,istinal from thede-
ducibility of [VHO5], which counts the number of implications due to assignment to ablar@ a CNF
formula.

A problem related to preprocessing of a CNF formula is the preprocessiconflict clauses in an
incremental SAT solver. An incremental solver is given a sequence birfances and tries to use clauses
learned in earlier instances to expedite the solution of later instances hifresiance is obtained from the
previous by addition of new clauses, all clauses learned by the solvéedarwarded to the new instance.
However, in the general case, clauses must be validated before thbg éarwarded. In [JS04b], a process
calleddistillation was proposed, which forwards a clause derived from a previousigéel clause only if
asserting the negation efcauses a conflict in the new instance. In [HS07] and [HSJ10] | appiylati®n
to preprocessing the original clauses of a CNF formula and we chdractieis approach from the point of

view of deductive power.

Assignment shrinking [Nad09] can also be seen as on-the-fly distillation of selected conflicGetau
At the end of conflict analysis, the algorithm of [Nad09] backtracks tovael lereceding the backtracking
level to undo some assignments in the conflict clause. It then applies ttgigerasnts again in a different
order until a new conflict occurs. This may produce a new smaller coalffiase. Since this is a potentially
expensive technique, its invocation is controlled by a heuristic.

Previous work besides [Nad09] has addressed the quality of condlictes [ZMMMO01, ES03, SEOQ5,
JS06, SB09]. In particular, the clause minimization algorithm of [SEQ5, FB@%erses the implication
graph beyond the 1-UIP to remove literals in the conflict clause that are imipjieather literals. The
strong conflict analysis proposed in [JS06] generates a secondctotdlise that is often more effective
than a regular conflict clause of [ZMMMO1] in escaping regions of tlegdespace where the solver would
otherwise linger for a long time. A common thread of most work on the subjectisdhrch for a balance
between a technique’s cost and its ability of to detect implications earlier. Uhkken-the-fly subsumption
to be discussed in Section 3.2, these earlier techniques focus on simplifafatierconflict-learned clauses,
instead of looking at all clauses appearing in the resolution graph.

An existing clause may be subsumed by a conflict clause newly found byfadhng conflict analysis
algorithms. Hence, one may try to simplify the newly redundant clauses. ittkesfly simplification
algorithm used in [Zha05] can detect the subsumed clause watheawatched literal scheme, when a
new clause is generated by conflict analysis. While the one watched litbierhe is efficient, the removal
of subsumed clauses does not improve deductive power and doesodate more concise proofs. The
practical ability of this technique to speed up SAT solvers was not the ficha05] and remains to be

established.

Chapter 2

Propositional Satisfiability Solvers

The propositional satisfiability (SAT) problem is of central importance in vexriareas of com-
puter science, including artificial intelligence, hardware design, eldctdssign automation, and verifi-
cation. The last two decades have seen great advances in the pederaizatisfiability (SAT) solvers for
propositional logic, in particular those based on the David-Putnam-Logefoaveland (DPLL) procedure
[DP60, DLL62, MS99, MMZ"01, ES03]. These solvers have found many applications in electronic de-
sign automation (EDA) including model checking, logic synthesis, testingtiamidg analysis. Especially
in the formal verification area, the SAT solving algorithms have helped makedim Model Checking
(BMC [BCCZ99]) a widely used alternative to BDD-based model checkiRgogress has been made in
the pruning of the search space [MS99] and in the efficient implementatitmedbasic operations like
deductions [MMZ01] during the DPLL procedure; for instance, non-chronologicakbacking and con-
flict analysis based on unique implication points (UIPs), and efficient implicdigssed on two-watched
literal scheme [Zha97, MMZO01], decision variable heuristics, e.g., Variable State Independent/iDgca
Sum (VSIDS) heuristic [MMZ 01] and conflict cluase based heuristic in BerkMin [GN02], and effecti
constraints database management.

This chapter covers backgrounds and definitions related to the satisfiphilitiems for propositional

formulae that are pertinent to my work.

2.1 Propositional Satisfiability Problems

Variables that can take truth valuese andfalse are calledBoolean variables Lettersa, b, c, ...
will be used for Boolean variables. AlsBoolean connectivesre conjunction), disjunction {/), and
negation {). Thepropositional formulae in the standard Boolean connectives are inductively defined as

follows.
e false andtrue are propositional formulae.
e Every Boolean variable is a propositional formula.
e If F'is a propositional formula, then(F") is a propositional formula.
e If F} andF; are propositional formulae, théy)V (F>) and(Fy)A(Fy) are propositional formulae.

We drop outer parentheses, “(" and “)", when no ambiguity arises. Giteendard Boolean con-
nectivities can be defined as abbreviations. For instance, exclugivef@ariablesa andb is defined by
(—a Ab) V (a A —b), and function & impliesbd” (a — b) is defined by-a Vv b. An assignmentto the set of
variablesV of CNF formulaF is a mapping fronl” to {true, false}. A partial assignment maps a subset
of V. A satisfying assignment for CNF formula is one that causek to evaluate tarue. FormularF' is
said to besatisfiableif there is any satisfying assignment fér. Otherwise, it is said to bensatisfiable
The satisfiability problem (SAT) is the decision problem to determine whether a propositional formula is

satisfiable or not.

Example 2.1. Considering the following propositional formula:

F = (-aNnb)V(aN-c).

Formula F is satisfiable because the assignmegt 0, b = 1, andc = 0 makest' becometrue. O

2.2 Representations

We consider several ways of representing a propositional formulaju€ctive Normal Form (CNF)

is often used because it can be manipulated efficiently and becauseagursif various provenance are

10

easily translated into it.
A CNF formula is a set otlauses each clause is a set liferals; each literal is either a variable or
its negation. The function of a clause is the disjunction of its literals, and theidunof a CNF formula is

the conjunction of its clauses. The CNF formula

{{—a,c}, {-b,c},{—a,—c,d},{-b,—c,~d}}
therefore corresponds to the following propositional formula:
(maVe)r A(=bVe)a A(—aV eV d)gA(=bV —eV —d)y,

where subscripts indicate clause numbers for ease of reference; ihdbisc; represents the clause that is
numbered by.

SAT is a central problem in complexity theory, and several special dzpes been studied. The
problem called “3-SAT” in which each clause in CNF formula has exactlethiterals was the first problem
proved to beNP-complete[Coo71] The general CNF SAT problem is as hard as the 3-SAT problem. On
the other hand, the “2-SAT” problem, in which each clause is restrictedvi® &tamost two literals, can be
solved in polynomial time.

SAT problems can also become easier if the formulae are restricted to Digguhgirmal Form
(DNF), that is, disjunctions of terms; each term is a conjuction of literals. iSHiscause such a formula is
satisfiable if and only if some term is satisfiable, and a conjunctive term is ablésff and only if it does
not contain both and—a for variablea. This can be checked in polynomial time.

Propositional formulae can be represented in Boolean circuit forms. eQample is theAnd-
Inverter Graph (AIG) [KGPO1], where each internal nodehas exactly two predecessors; if the pre-
decessor variables ateandb, its functionp(v) is one ofa A b, a A =b, —a A b, and—a A —b. Even if
the AIG is not acanonical representation that is, it does not provide a unique representation of a given

function, it is often used because it allows a variety of simplification techsithat may significantly speed

! Stephen Cook and Leonid Levin discovered certain problem$Fnthe class of languages decidible in nondeterministic
polynomial time, whose complexity is related to that of the whole class. Iflpnpmial time algorithm exists for any of these
problems, all problems in NP would be polynomial time solvable. Thedalgmts are called NP-complete[Sip96].

11

up subsequent analyses. The SAT problem of the input formula camittenwn AIG formats [GAG 02],
and this is also NP-complete [WCCO09].

Canonical circuit representations, like Binary Decision Diagrams (BD&s) useful to manipulate
large propositional formulae. A BDD representing functiBrconsists of two types of nodeserminal
nodesthat are labeled by eitherue or false, andinternal nodes that are labeled with variable names.
Following a path from the root to a terminal node evaludfder a given assignment to the input variables.
That is, the label of the terminal node is the result of the evaluation. Eadmahteode represents the
function(a A f,) V (—ma A f-q) (With f, # f-.) 2, wherea is thecontrol variable of the internal node, and
fa andf-, are the functions of the successors of the internal node. In popwigeuBDDs refer to reduced
and ordered BDDs.

Different representations of propositional formulae have peculiaargdges regarding SAT prob-
lems. For the representations like DNF and BDDs, the hurdle lies in convén#n§AT problem into the
required form; if this can be accomplished, satisfiability is then trivial. In paeicwith BDDs, determin-
ing whether a function is satisfiable requires constant time, while a satisfygigranent, if it exists, can be
found inO(n) time, wheren is the number of variables. Since converting a Boolean circuit into a BDD may
incur an exponential blow-up, naive application of BDDs to SAT lacksistiiiess. On the other hand, there
exist numerous cases in which a proper mix of canonical (e.g., BDDshamaanonical representations
(e.g., CNF or AIG) is very beneficial [KK97, BS98]. This is true, in pautar, of SAT solvers based on

search, and applied to instances for which compact search trees existair are hard to find.

2.3 CNF Formulae

In this thesis | assume that the input to the SAT solver is a formula in CNF defingedc.2.2. We
represent assignments by setauaft clauses, that is, clauses containing exactly one literal. For instance,
the partial assignment that setandb to true andd to false is written{{a}, {b}, {—d}} or, interchangeably,

a A b A —d. Given CNF formulag; andF;, over variable seV, Fy implies Fs, written Iy — Fy, if all the

assignments t&” that satisfyF} satisfy F»; Fy and Fy areequivalentif F; — Fy andF, — Fy. A clause

2 This is known as thexpansion theoremof f with respect ta.

12

~ is assertingunder assignmemnt if all its literals except one (the asserted literal) are false. We say that an
asserting clause is antecedentof its asserted literal, and also say that the antecedent implies its asserted

literal. Clausey; subsumes clausg if v1 C vs.
Example 2.2. Given two clauseéa V b V ¢); and(a V ¢)2, c2 subsumes;. O

Givenv; = +4 U {l} and~y2 = 4 U {-l}, theresolution of the two clauses overproduces the

resolventy; U ~4, which is implied by{~1,72}.
Example 2.3. Given the following propositional formula:
(aV=bVe)yA(—aVd)s,
resolvingc; andcs overa yields the resolvent-b Vv ¢ V d).]

Clausesy; and~, are inself-subsumptionrelation if their resolvent subsumes. If F' contains
clausesy; andy, such thaty, is in self-subsumption relation with,, the CNFF’ obtained by replacing;

with the resolvent of;; and~ is equivalent taF.

Example 2.4. Given the following formula:
F=(aVv-bVe)iA(aVb)aA(cVd)s,

resolution ofc; and ¢, gives the resolvent = (a V ¢) that subsumes, that isc; is in self-subsumption

relation withcy. Then, formula
F'=(aveA(aVbaA(eVd)s

that is obtained by replacing; in F' with ~ is equivalent ta. O

2.4 CNF SAT Solvers

SAT algorithms for CNF formulae can be categorizedra®mplete or complete algorithms. In-
complete algorithms do not guarantee that they will eventually either repatistying assignment or

prove the given formula unsatisfiable. Incomplete methods are usuallg basstochastic local search

13

[GW93, SKC93], while the complete algorithms are based on an exhabstinehing andbacktracking
search GSAT [SLM92] and Walksat [SKC95] played a key role in the succégsoal search in SAT. GSAT
is based on a randomized local search technique [LK73, Pap94]. stagyby assigning a random value
to each variable. If the assignment satisfies all clauses, the algorithm temireturning the assignment.
Otherwise, a variable is flipped and the above is then repeated until all theeslare satisfied. Such SAT
solvers based on stochastic local search perform better on randdrim&Ances rather than on structured
instances like the ones obtained from real verification problems.

Given an input formulaf’, complete algorithms either produce a satisfying assignment'for
prove thatF' is unsatisfiable. Most complete methods remain variants of a procedureuic¢thdeveral
decades ago: the DPLL procedure. The DPLL procedure perforbecktrack search in the space of
partial truth assignments. The key feature of DPLL is the efficient pruofrige search space. My work
only concerns DPLL-based SAT solvers, and the following section istdevto reviewing these complete
SAT solvers. Another compete approach isd8tarck’'s method [SS98], which is based on tilemma
rule. This rule opens two branches and assumes a formula taubén one branch anéblse in the other.
The branches are eventually merged and the intersection of the two bsaisdkept: for variable: of the
formula, consequences that are gained both froand ~z must betrue independently ofc. This proof

procedure has been successfully used in industrial verification pnslj2or97, Bor98, CGO05].

2.5 The DPLL Procedure

Resolution can be used &iminate variablel from a CNF formula. One replaces the clauses that
contain eitherl or = with all their resolvents. If, for example, variablgs to be eliminated front' and
a Vb, —bV cand-bV d are the only clauses d containingb, then they are replaced by all the resolvents
overb, namelya V ¢ anda V d. The resulting CNF formula isquisatisfiableto F'; that is, it is satisfiable if
and only if F' is. Therefore, repeated application of variable elimination results in a degsi@edure for
CNF satisfiability that is known as Davis-Putnam (DP) procedure [DRB&0].some iteration, one resolves
{l;} and{—l;}, then the empty clause is produced and the CNF formula is unsatisfiablew@thesnce all

variables are eliminated, no clauses are left and the formula is satisfialel@RA procedure often produces

14
GRASPDPLL() {

while (CHOOSENEXTASSIGNMENT() == FOUND)
while (Debuck() == CONFLICT){
blevel = ANALYZE CONFLICT();
if (blevel< 0) return UNSATISFIABLE;
elseBACKTRACK (blevel);

}
return SATISFIABLE;

}

OO ~NOOOUTDSWDNPRF

Figure 2.1: GRASHDPLL algorithm.

too many resolvents; in applications, it has been mostly replaced by the Patviam-Loveland-Logemann
(DPLL) procedure [DLL62] that is a search algorithm based on brimgcand backtracking.

Many successful SAT solvers are based on the DPLL proceduresevimodern incarnations are
described by the pseudocode of Fig. 2.1. The solver maintains a cpendiatl assignment that is extended
until it either becomes a total satisfying assignment, or becomes conflictinge W4tending the partial
assignment, the BDUCE procedure tries to detect as many implications as possible by using asserting
clauses.

A derivation ' U A + [(I is implied by CNF formulaF' together with partial assignment) is
conveniently represented by itaplication hypergraph. An implication hypergraph has a vertex for each
literal in A and each asserted literal; it has a directed hyperedge (i.e., a set dédiexiges) for each
asserting clause with more than one literal that is involved in the derivatioa.irfiplication hypergraph

may also have a special conflict node, nametb be described later.

Example 2.5. Consider the following CNF formula:

F=(aVbiA(aVec)A(aVd)sA(=bV-cVe)sA(-cV—dVe)s.

Under partial assignmenft{ —a} }, literals b, ¢, andd are implied byey, c2, andcs of F' ande is then implied
by either the fourth or the fifth clause. The implication hypergraphHfar {—A} F e is shown in Fig. 2.2.
Hyperedges are labeled with antecedent clause numbers. The nofrdzlyes in a hyperedge equals

the number of literals in the corresponding clause minus one. In the daitB®LL, each node is annotated

15
b@l

4;: cQ1 % e@l
N

Figure 2.2: Implication hypergraph for Example 2.5.

—aq@Q1

with a decision level (the number following the @ sign in the figure). For the literals in the assignrttent,
level is the order in which they are asserted. For a literal asserted by aselait is the highest level of its
predecessors. Literals asserted by unit clauses have decision tpyadite 0. The hypergraph of Fig. 2.2

shows that can be implied in two different ways.

SAT solvers usually keep track of just one way to assert a literal. Heéheg,use anmplication
graph rather than a hypergraph. The implication graph corresponds to asglbgf the implication hyper-
graph in which every vertex has at most one incoming hyperedge.

If extension of the assignment produces a conflict—that is, a clausehwesaid to beconflicting,
has all its literals assigned to false—the solver analyzes the conflidiaaidracks accordingly.

A conflict results in the presence of the conflict nedim the implication hypergraph, with a hyper-
edge joining it to the negations of the literals of the conflicting clause. Multipldictsxmay be derived
from the same partial assignment. Hence, the conflict node may have multipieimgchyperedges. SAT
solvers, once again, usually work with a subset of the hypergraphdhédins only one hyperedge into each

node.

2.6 Conflict Analysis

Conflict analysis [MS96] leads to learningcanflict learned clause(in short, conflict clause), that

is, a clause”’ with the following properties: given CNF formuld and assignmer,
o F — {C’},

e C¢F,and

16
:(aVvbVe) Y4 : (bV eV —d) v2 i (me V = f)

> da2 /= f@2

v 9 & .
Y R Phie
r/ N .-
] > / -

Figure 2.3: Implication graph for the first conflict of Example 2.6.

e ('is conflicting underA.

A conflict clause is computed by resolving the conflicting clause with the aséete of literals that appear
in it. The antecedents are processed in reverse order in which the litezglagbert were implied. The
conflict clause can be added to the given SAT instance to prevent therateon of regions of the search

space that contain no solutions.

Example 2.6. Consider the following formula:

F = (avbV=c)1A(aVeVd)aAbVeVe)sA(=dV flan(—eV g)s A
(=f V=g Vh)gA(=f V=gV —h)r

Suppose that the decisiofsa@1, -b@2} are made by the SAT solver and that the implications of those
decisions are computed. Figure 2.3 shows the implication graph that isedeviten the following rule

is applied: the earliest asserting clauses adds a new implied literal into theghgr&he implication graph
shows the literals implied up to the current decision level. The implications wlaksec; conflicting as
shown by the conflict node Conflict analysis is illustrated in Fig. 2.4. The implication graph of Fig. 2.3
also shows each resolvemnt of the resolution graph of Fig. 2.4 that the conflict analysis generates while
traversing backward the implication graph from the conflicting clatseEvery resolvent and, hence, every
conflict clause corresponds tocat in the implication graph. The literals having outgoing edges that cross

the cut comprise a sufficient reason for the conflict.

Most conflict analysis algorithms terminate as soon as they find a clausensogtaUnique Im-

plication Point (UIP), that is, a single literal asserted at the current level. There mawydoe than one

17

cr: (—f VgV —h)
ce: (mfV-gVh)

Y1 i (=g Vv =f)

Yo : (meV —f)
Cq (_|de)

f

vs 1 (—d V —e)
cs: (bVeVe)

(&

Y41 (bV eV —d)

v : (aVb)

Figure 2.4: Resolution graph of conflict analysis for Example 2.6.

18

1 .
@9 = —d@2 }ic: —e@2 >C: g@2

\,"‘;}‘ﬂf@2 ﬁ\;Fg

Conflict clause(a V b V d)

Figure 2.5: Conflict clause computed on an implication graph.

cut containing a UIP in the implication graph. Specifically, the cut closestoiige conflicting clause in
the implication graph contains tliest UIP (in short, 1-UIP). In [ZMMMO01], conflict clauses based on the
1-UIP have been empirically shown effective in pruning the searctespa&xample 2.6, sincg; contains
the only UIP, that is literab, it is chosen as conflict clause.

When the 1-UIP is far from the conflict in the implication graph, the conflicuséamay not be
effective in preventing the SAT solver from producing many conflicts liviag the same clauseStrong
conflict analysis[JSO6] can be a remedy in such cases: It examines intermediate reselydnii3-based
conflict analysis does. Contrary to UIP-based analysis, howeveznérgtes an additional conflict clause
that contains more than one literal assigned at the current decision lévehdditional conflict clause must
be one of the intermediate resolvents derived between the conflict andtte Wsually, the closer to the
conflict, the fewer literals the resolvent contains. Therefore, the additaamflict clause tends to be shorter
than the conflict clause with the 1-UIP.

A SAT solver can simplify a conflict clause by dropping the literals implied atsitee level0 from
the conflict clause. In [EMSO07, SB09], thi®nflict clause minimization method has been extended to
remove a literal that is implied at a decision level higher thas long as it is implied by other literal in the
conflict clause. This procedure can be applied to the results of bothesthadd strong conflict analysis. It

applies resolution to the conflict clause and the antecedent clauses.

Example 2.7.1n Fig. 2.5, the literala is lifted from the conflict clause, since the conflict clause is subsumed
by (b Vv d), which is the resolvent of the antecedent.and the conflict clause itself. In other wordsis

removed becauseq is implied by—b in (—a V b).

19

2.7 Proof of Unsatisfiability

Once conflict analysis adds a new conflict clause, it computdsaitigrack level, namedlevel, that
is the highest decision level of the literals in the conflict clause exceptéddtR. After conflict analysis, the
DPLL procedure backtracks téevel, where the newly recorded conflict clauses is asserting. If the conflict
occurs while propagating an assignment at decision lgvuben the DPLL procedure computes -1b&sel.
This means that there is no way to resolve the conflict, and the procedilaeadethe formula unsatisfiable.
When a CNF formula is unsatisfiable, a DPLL-based SAT solver can geseproof of unsatisfiability
[GNO3, ZMO03] in the form of aresolution graph. A resolution graph is a directed acyclic graph like the
one of Fig.2.4. Each node in the graph represents a clause; the smpoesent original clauses, and the
inner nodes represent the resolvents of their immediate predecess@sradof of unsatisfiability, there
is a sink node associated with the empty clause. The sources identify arsul#mften referred to as an
unsatisfiable core[LMS04, OMA*04]. To generate a proof of unsatisfiability, the SAT solver keeps track
of the derivations of conflict clauses. When the empty clause is learrthd assult of a level-0 conflict, the
solver recursively replaces each conflict clause with its derivatioa.pfbicess starts from the empty clause
and terminates when only clauses of the original formula are left. In pantj@raunsatisfiabile clause set
F' ={c1,...,cy} C Fisminimally unsatisfiable if any proper subset of” is satisfiable. Both problems
of finding a unsatisfiable core and proof of unsatisfiability have bearareked in last few years due to its
increasing importance in formal verification [AKMMO03, KOSS04, GLSTPEMO03, LS06, Li06]. Hence,

a new technique added to a SAT solver should not interfere with its ability thupgeeither.

To apply CNF transformations without interrupting proofs of unsatisfiabilitg, SAT solver, like
CirCUs [JASO04, VIS] can move every modified clause to a separate datdioang DPLL. For instance, if
a clause is removed by variable elimination or simplification, it is stored as arréasioe derivation of the
resolvents or of the simplified clause. In the context dbaninator clauseto be discussed in Chapter 4, the

solver keeps track of the antecedents involved in the dominator computatiblogs for a conflict clause.

20

2.8 Preprocessing

The GRASPDPLL procedure is often applied aftepeeprocessingphase, which attempts to remove
redundant clauses and literals from the given formula. SatELite [EB&5] Simplifies a CNF formula by
removing clauses subsumed by other clauses, by simplifying clauseséhatsaif-subsumption relation
with other clauses, and by eliminating variables. By contrast, [HS07] gexpa new prepocessing al-
gorithm where the CNF formula is distilled by analyzing the implication graphs tergés the improved
clauses.

Equivalent variable substitution [Bra01] is another method to simplify the input formula. If formula
F contains two clauses; = (—p V ¢) andca = (p V —q), literalsp and ¢ are equivalent irF, that is,
FU{p} Fp gandF U{—-p} Fp —q. In the standard deduction procedure of DPLL-based SAT solvéss, th
can be found by checking cycles of implications, but this may spend caabiddime while searching and
comparing these two-literal clauses. Variables in equivalence relationdtldhe samequivalence class
In an equivalence class, a representative is selected and it substitutdsdther variables in the clause
database. This yields fewer variables, and allows the SAT solver to expl@duced search space.

Preprocessing may reduce the workload of a SAT solver. Howeveeg #xésts a trade-off between
effect and cost of the preprocessing techniques, because it is, trcases, too time consuming to remove

all the redundancies in the given SAT instance or eliminate all variables.

Chapter 3

Increasing the Efficiency of the Deduction Procedure

The Progress of DPLL-based SAT solvers of Sect. 2.5 has been rotdia the pruning of the search
space [MS99] and in the efficient implementation of the basic operations likectiens [MMZ"01]. Here
we are concerned with techniques that transform a CNF formula, eithemasprocessing step [EBO5,
SEO05, ZKKSV06] or during the DPLL procedure. These transformatgimould be relatively inexpensive
and produce formulae on which the DPLL procedure runs faster thémeasriginal ones.

Reducing the size of the formula is a common objective of transformationsingtance, a set of
clauses igedundant if a proper subset represents the same function. A subsumed clausa ¢lause
implied by another) is redundant, and the cost of many SAT solver opesatiecreases with a smaller
formula. Hence, removing subsumed clauses is usually beneficial. HoweXeall redundant clauses can
be removed without negative effect on the speed of the solver.

We introduce two notions that help in the design and evaluation of formulaforametions. The
first is thedeductive powerof a CNF formula. The higher this power, the more consequences the DPLL
procedure can deduce from each of its decisions; hence, the mect\effis the pruning of the search space.
The second notion igroof concisenessilt reflects the fact that the DPLL procedure progresses through the
search space by proving that parts of that space contain no satis$giggmaent and recording such findings
in the form of new clauses and their derivations. More concise proeftaater to build and usually more
effective at pruning further search.

To see how deductive power may help in the analysis of SAT solversigesrtéause recording, which

addsconflict-learned clausesor, simply, conflict clausesto the original SAT instance. Each conflicting

22

assignment is analyzed to identify a subset that is sufficient to causereatcconflict. The disjunction
of the literals in the subset becomes a new clause added to the original S&ficies The conflict clauses
learned by SAT solvers are by definition redundant, but they alwaywephe deductive power of a CNF
formula.

Clauses that are subsumed by other clauses slow down the implicationgrogedo not help the
solver in pruning the search space. We show that they never improvetdedpower. Therefore, prepro-
cessing often removes them to accelerate implications. On the other handjngiiterals from clauses
may increase the deductive power of a formula. We study in detail seygpabaches to such elimination,
both as preprocessing and during DPLL.

Literal removal procedures are often based on resolution. In addisojution may be applied
to eliminate variables from the formula. Since the elimination of variables may wers@ number of
clauses, it is usually applied with restraint [SP04, EBO5]. Deductiveepasvnot guaranteed to improve
either. Instead, the main benefit of variable elimination is the decrease ingregamnumber of decisions
and implications required to produce a conflicting assignment. Not only csnfiezur sooner, but their
analysis is faster, and the learned clauses tend to prune larger poftibessearch space.

In this work we analyze existing techniques that increase deductivervgenerate more concise
implication graphs and we propose two new ones. We show how to detesttrapbons during resolution
during both preprocessing and conflict analysis with minimal overheado®the-fly subsumption check
can be applied to both regular and strong [JS06] conflict analysis. @ Isbw this inexpensive check is
used to improve deductive power at three stages of the SAT solverblaebmination, clause distillation,
and conflict analysis. We then describaliatillation algorithm that asserts the negations of clauses to
remove redundant literals and possibly derive new clauses. Unlikéopsegpproaches, this distillation
procedure may replace a clause with the resolvent of two or more existuggslavithout explicitly deriving
any such resolvents in advance. We show that distillation increasestdechawer and shortens implication
graphs.

Experiments show that the presented techniques speed up our SAT. sbbwaable elimination

works primarily by shortening the implication graphs, while other transformstioainly improve deduc-

23

tive power.

3.1 Deductive Power of a CNF Formula

Among the operations performed by a DPLL-based SAT solver, dedugttonthe DEDUCE proce-
dure of Fig. 2.1) plays a key role in boosting efficiency by finding whatditeare implied by the current

partial assignment. Deduction is usually basednmaus ponens

P,-PVQ
—0 (3.1)
where P and Q are formulae. The rule of modus ponens used in the DPLL procedureatf 3.5 is

a specialized form, whereP Vv @ is an asserting clause arigl is the asserted literal. In other words,
given a claus€!ly, ..., 1, } and a partial assignmefi{ i1}, ...,{—l,—1}}, modus ponens deducks The
deduction procedure in a DPLL-based SAT solver repeatedly applieasygmhens to asserting clauses in
the given formula until either no new literal is implied, or a clause becomesiciomjl We denote this
deduction procedure, which employs modus ponens as the only infandacky D. We write F' Fp [if
the truth ofl can be established by repeatedly applying modus ponens to assertirgsdlabis We write

F Fp false if procedureD applied toF finds a conflicting clause. Procedufeis sound § p [implies

F+landF tp false implies F' + false) but not complete.
Example 3.1. D is not sufficient to deduce that
F=(aVb)iA(aV-baA(—-aVec)sA(—-aV-c)y

is unsatisfiable; that isF’ i false, but F' t/p false. In contrast, if(—a V ¢) and (—a V —c) are replaced by

(—a), thenD would deduce unsatisfiability of
F'=(aVb) A(aV-b)s A (—a)s;
that is, thatF’ Fp false. O

While F U {{p}} ¢ is equivalent toF' U {{—q}} - —p, F U {{p}} Fp g does not implyF" U

{{—q}} Fp —p, asillustrated by the next example.

24

Figure 3.1: Implication graph of Example 3.2.

Example 3.2. Consider the following formula:
F = (—|l1 \Y l3)1 VAN (—\ll vV l4)2 VAN (—\lg V ol VvV lg)g .

ProcedureD deduces literal, from F'U {{l; } } as shown in Fig. 3.1 . However, it does not deduéefrom

FU{{=l}}. O

The rule of modus ponens is a special case of resolution:

PvQ,-PVR
QVR ’

(3.2)
whereP, Q, and R are formulae. In the DP procedure of Sect. 25y (Q and—P Vv R are clauses. The
deduction procedure that repeatedly applies that inference rule isnd smal complete proof system for
CNF. However, as mentioned in Sect. 2.5, this procedure is inefficienttipe: DPLL usually achieves
better results by combining an incomplete deduction procedure and s8arcaD is incomplete, its effects
depend on how the input is presented to it. In particular, the strengthefrifauees as in Example 3.1 or the
addition of new clauses may help. Though the DPLL procedure only riedusable to detect conflicting
assignments to be complete, it is clearly advantageous for a SAT solval baseto work on a CNF
formula that allows more to be done through deduction and less through eatione This motivates the

following definition. It is convenient to assume that when assignmdstconflicting inF, for every literal

lL,LFUAFgI.

Definition 3.3. For a given sound (but possibly incomplete) deduction procefwaad two equivalent sets
of clausesF; and F5, let A denote a partial assignment to the variablesAnU F». We say that; has
deductive power greater than or equal td, (relative toS) if and only if for every4 and any literall such

thatFb UAFg [, FE UARg L.

25

If F1 has deductive power greater than or equaktp(relative toS) we write Fr <g Fi. If F5 <g I
and Fy As Fb, we writeFy, <s Fy. If Fy» <g Fy and F; <g Fb, thenFy and F, have the same deductive

power (relative taS), written F} ~g Fb.

Note that if F, <gs F1 and A is conflicting in Fy, then A is also conflicting infy. In Example 3.1,
F <p F’. Since it is reflexive and transitives s is a preorder. In the following, unless otherwise stated, the
deduction procedure is assumed toband we write< for <p. We are interested in transformations of a

CNF formula that increase, or at least preserve, its deductive pdWweifollowing fact proves useful.

Lemma 3.4. Let I} be a CNF formula and let be animplicate of F; (that is, a clause implied b¥?). Let
F5 be the CNF formula obtained froif, by addingy and optionally removing clauses that are subsumed

by~. Then,F; < Fs.

Proof. F} and F, are obviously equivalent. Also, adding an implicate to a CNF formula caremedse
its deductive power. For the removal of subsumed clauses, we needsmeotwo cases. Led be an
assignment anélbe a literal such thak’;, U A p [. Suppose)’ is a clause subsumed bythat is used in
the derivation of. If 4/ asserts a literal that is alsoin theny’ can be replaced by in the derivation. Ify’

asserts a literal not iry, then all literals ofy are false in the derivation and addingo it leads to a conflict.

In both cases, the conditions of Definition 3.3 are met.]

We can use Lemma 3.4 to characterize the change in deductive power of do@hula when it
is simplified by either subsumption or self-subsumption. As a special case, @iy clause of’ is an
implicate of F', one obtains the intuitive result that clauses subsumed by other clausies camoved from
a CNF formula without negatively affecting its deductive power. Addintpase toF' that is subsumed by
other clauses does not decrease the deductive power either. lde@bi; formulaFy and the formular,
obtained by removing subsumed clauses filbnhave the same deductive power, iB,,~ F5. Similarly,
since every resolvent of clauses Bfis implied by F', augmenting a CNF with a resolvent may increase
deductive power. Therefore, simplification based on self-subsumptignmogease the deductive power of
a CNF formula, while simplification based on subsumption can only speed ugthuetibn procedure by

reducing the number of clauses to be examined.

26

Example 3.5. The CNF formulaF}; = (aVbV)1 A(aV —b)2 can be simplified tds = (aV)1 A(aV —b)a
by self-subsumption. Siné&g U {{—c}} /p a, while F5 U {{—c}} Fp a, we havel'; < F». On the other
hand, simplifyingF; = F} A (a V —d) A (d V ¢) by self-subsumption does not increase deductive power, as

one can show by applying Lemma 3.6 below. O

Since resolution is broadly used in DPLL-based SAT solvers, simplificatisadon self-subsumption
can be applied to various stages of the procedure; in particular, to ¢@nflitysis. This will be dealt with
in the next section.

The clause{-ly,l,}, wheren > 2, is atransitive closure clauseof F, if there exist literals
li,...,ln—1 such that{—ly, 11}, {—l1,l2},...,{~l,-1,1,} are clauses of’. Adding a transitive closure

clause toF' does not change its deductive power as stated in the following lemma.

Lemma 3.6. Let F' be a CNF formula andy = {-ly,,,} be a transitive closure clause @f. Let F’ =

FU{y}. ThenF' ~ F.

Proof. If v € F, there is nothing to prove. Suppose not. By Lemma 3.4, sinisean implicate ofF,
F < F'.Ifl, (—ly) is asserted by in F’, thenl (—I,,) must be true; thereforig (—ly) is also implied by the

sequence of clausésilo, l1}, ..., {=ln—1,ln} {—lpn-1,ln}, ..., {=lo,l1})in F. Therefore " < F. O

While adding a transitive closure clause of the implications does not aféekctative power, it may
help the solver by shortening the implication graph. A more concise implicatigghgray benefit the
procedures that work on it. For instance, the deduction procedure reagifyda conflicting clause more
quickly, and conflict analysis may resolve fewer antecedents. On the lodinel, adding clauses to the
CNF database indiscriminately may substantially slow down the deduction precedo prevent this, a
supplemental clause should be generated only when its usefulness iskbsthby an effective criterion
(i.e., strong conflict analysis).

Adding a clause that is the resolvent of other clauses may either incredsetide power or shorten
the implication graph. Adding a transitive closure clause may lead to a more eomptication graph.
On the other hand, some clauses may never become asserting and ¢heesrappear in an implication

hypergraph, as shown in the next example.

27

Figure 3.2: Implication graph of Example 3.7.

Example 3.7. Consider the following CNF formula:

F=(-aV-b)iA(aV-eaA(eVad)sA(-bVeV-d)y .

The formulaF is not simplified by either subsumption or self-subsumption. Assigning ara} tifec, to
false causes another literal of the same clause to be implied to true; for égampis implied byb in the
implication graph of Fig. 3.2. Hence4 can be removed frorf' without affecting its deductive power or the
size of the implication graphs. On the other hand, sifteeV —d) is a transitive closure clause df that
subsumes$—b Vv ¢ V —d), its addition may shorten an implication graph, e.g., the dashed edge in Fig. 3.2

even though it does not improve deductive power. O]

Even though adding an implicate to a CNF formula may not affect its deduativerpthe situation
is different when a conflict clause containing a UIP is learned by a DPided solver. After recalling a
known result (Lemma 3.8, [MS99]), we show that the addition of a conflazhied clause containing a UIP

always increases the deductive power.

Lemma 3.8. Let F' be a CNF formula and lef be a conflict clause containing a UIP. Theiis an implicate

of F not subsumed by any clausefof

Proof. Since~ is obtained by resolution of clauses it it is implied by their conjunction, and hence by
F. Sincew evaluates tdalse at the last decision level, any clause that subsumes it should evalifate:to
as well. However, all clauses that are false at the last decision levidinat least two literals assigned
at the last decision level. (Otherwise they would have been assertinghatgevious level.) On the other
hand,y contains exactly one literal assigned at the last decision level, namely th&h#iefore, it cannot

be subsumed by any conflicting clause. O]

28
—p@1

~q@2 s ~c@3 s:
-a@3 2wk
\3L -d@3 /

Figure 3.3: Implication graph of Example 3.10.

Lemma 3.9. Let I} be a CNF formula and let be a conflict clause containing a UIP. L&} be the CNF
formula obtained fron¥; by addingy and optionally removing clauses that are subsumed, byl hen,

Fy < Fs.

Proof. By Lemma 3.4F) < Fy. Lety = {l4,...,l,,u} be the conflict clause and letbe its UIP. Consider
the assignmentt = {{-=l1},...,{-l,}}. We haveF, U A Fp u, but F; U A t/p u, for otherwiseu would

have not had a higher decision level than the other literals. Hdhcg, F;. O

Lemma 3.9 does not apply to strong conflict analysis. The following examplé&dtes a clause that

is not new may be generated.

Example 3.10. Consider the following clauses:

(aV-d)y AaV-eVp)aA(@VeVd)sA(aVdVp)y .

Suppose that the SAT solver makes decisigrgl and —-a@2, and, at level 2, examines, c2, andcs in
order. It then identifiegs as a conflicting clause. As shown in Fig. 3.3, claus&loes not appear in the
implication graph, even though it is also conflicting under the current assent. The resolution e and

c3 onc producesa V d V p), which isc4. Since this clause contains two literals assigned at level 2, it may

be chosen by strong conflict analysis. O]

Adding duplicate clauses clearly does not improve deductive powem ®hen a clause added by
strong conflict analysis is new, it may not improve it. However, it may still cbate to generating more

compact implication graphs.

29

conflict clause(—d vV —e V —j V =)

fas -~ h@3

conflict clause(—a V =i V =5 V =k V =)

Figure 3.4: Implication graph for the first conflict of Example 3.11.

Example 3.11. Consider the implication graph of Fig. 3.4. For that conflict, the SAT soleenmutes a
1-UIP based clausé-a vV —i V —j V =k Vv —l), which becomes asserting at level 2. Now supposerithiat
assigned tarue by decision making and that the deduction procedure creates the implicatph shown

in Fig. 3.5. This graph is similar to the one of Fig. 3.4; in particular, the samestsis conflicting. However,

if strong conflict analysis adds-d VvV —e v =5 V —l), then, under the same decisions, the additional clause
will cause a conflict after fewer implications as shown in Fig. 3.6. A simpler imtidio graph is analyzed
more quickly. Moreover, the additional conflict clause may increaseictere power. For instance, if later

in the searchl, e, andj are the only assigned literals, the additional conflict clause is assertinig Wie

1-UIP based conflict clause is not. O

3.2 On-The-Fly Self-Subsumption

Lemma 3.4 implies that simplification based on self-subsumption may improve thetidedamver
of a CNF formula. Since detecting whether the resolvent of two clausssisugs either operand is easy and
inexpensive, checkingn-the-fly for subsumption can be added with almost no penalty to those operations
of SAT solvers that are based on resolution. In this section we reviewassie lnlea and detail the applica-
tion of the on-the-fly subsumption check to conflict analysis. Then, weauslsson-the-fly subsumption in
preprocessing.

An efficient on-the-fly check for subsumption during resolution is basetthe following elementary

30

—a@

5 i@l j@2
9o[S pas3 gd@?) 4\5& a3
ma3 7,
c@3 76@3 75]@3
kal 1@3

Figure 3.5: Implication graph without additional conflict clause.

—a@2 Jj@2

16 K
m@Q4 10

1@1
bad gd@i&
6@4 7;6@3
kQ2 [@2

Figure 3.6: Implication graph with additional conflict clause.

31
fact.

Lemma 3.12. Lete; = ¢} U {l} andcy = ¢, U {1} be two clauses. Thefesolvent ¢} U ¢}, subsumes;

(c2) ifand only if|c) U cy| = |e1] — 1 (|¢) U | = |ea] — 1).

Proof. Subsumption of; occurs if and only it} Uc/, = ¢}, which is equivalent t¢] Uch| = |c}| = |e1]—1.

Likewise for subsumption ofs. O

Thanks to Lemma 3.12, existing clauses that are subsumed by resolvebtsdstected and replaced
by the resolvents themselves. Doing so during conflict analysis is eaayd®the eliminated literal is the
one asserted by the clause itself. If that literal is kept in the first positioneirctduse [ES03, Bie08b],
it is easily accessed. In variable elimination, the literal to be removed comdspo the variable to be
eliminated. Therefore, itis enough to save its position in the clause beingestan summary, the overhead
of on-the-fly subsumption check is negligible. The advantages, on the lndinel, may be significant as

illustrated by the following example.
Example 3.13. Consider the following set of clauses:

(aVbV=c)i AlaVbV -d)aA(cVdV—e)zA(cVeV fa

AdV eV =f)s A(=bV—dVe)gA(=dV—e); .

Suppose that the first decision is to adb false, and the second decision is to &¢b false. From these
decisions literals—c, —d, and—e are deduced at level 2. This partial assignment, in turn, yigldsrough
¢4, at which pointes is conflicting. Analysis of this conflict proceeds on the implication graphveho
Fig. 3.7. Conflict analysis goes back through the implication graph buildiegréisolution graph shown
in Fig. 3.8. The resolution graph shows that subsumesgs, and thatv, subsumeg;. The subsumed
clauses can be strengthened by eliminating the pivot variable on which #reyresolved. In addition to
the simplificationsy,, containing the 1-UIP, subsumes it is not required to add it to the clause database.

Rather,c; is strengthened ta Vv b. The simplified CNF is therefore

(a\/b)1/\(aVb\/—'d)gA(ch)g/\(c\/er)4A

(dVveV-af)s A(=bV—dVe)sA(—dV —e)r .

—a@1

—c@Q2 » f@Q2

>
> —\8@2 5
—d@2 K

f
|

—-b@2

Figure 3.7: Implication graph of Example 3.13.

cs: (dVeVf)

cyg:(eVeVf)
f
7 :(eVdVe)

Y2 : (¢ V d)

ca:(aVbV—d)

’74:((1\/b)

Figure 3.8: Resolution tree of conflict analysis for Fig. 3.7

32

33
—a@1 — " b@1l e@2

—c@Q2 —3> dQ2 K

Figure 3.9: Implication graph for the second conflict of Example 3.13.

After conflict analysis, the solver backtracks to level 1, which is the higleession level in the strengthened
c1 when the UIPb is ignored. After backtracking@1 is asserted by, .

Suppose thatc is decided at level 2. From this decision, literais implied. This partial assignment,
in turn, implies—e throughe;. The chain of implications leads to another conflictgtas shown in Fig. 3.9.
Conflict analysis, illustrated in Fig. 3.10 yields the conflict clagse Then, sinceg is subsumed bys, cg

is strengthened. Hence the CNF formula is simplified as follows:

(aVb)1 A(aVbV-d)aA(cVd)sA(cVeV flan
(dVeV-af)s A(=bV —d)g A (—dV —e); .
O

Example 3.13 shows how the CNF database can be simplified by checkingrgutimn on-the-fly.
A clause can be shortened when it is resolved during conflict analysigsisitbsumed by the resolvent.

The resolvent may contain a UIP; then, the clause that is strengthensdrvaras conflict-learned clause.

cg: (bV-dVe)

cr: (—dV —e)
e
Y5 - (_\b V _\d)

Figure 3.10: Resolution tree of conflict analysis for Fig. 3.9.

34

—a@1 —c@Q2

—-b@2 —d@2

Figure 3.11: Implication graph shrunk from Fig. 3.7 with a new conflict node

When this happens, an increase in deductive power is achieved eventatiding a conflict clause.
Conflict analysis based on 1-UIP may be followed by strong conflict arsaly¥herefore, we consider

the on-the-fly subsumption check in the context of strong conflict analysis

Lemma 3.14. If clause~y has been simplified by self-subsumption during conflict analysis, it isctorgl

at the current level.

Proof. Every resolvent produced in conflict analysis is conflicting at the atidecision level. Therefore,

clausey, which is one such resolvent, is also conflicting. O]

In Example 3.13, once; is strengthened bys, it becomes conflicting. Then, the implication graph

of Fig. 3.7 is shrunk as shown in Fig. 3.11 by establishings the antecedent of a newnode.

Lemma 3.15. Let~ be the clause most recently simplified by on-the-fly subsumption durfigctanalysis.
The subgraph of the implication graph between this clause and the 1-Ulthés a single vertex or a valid

implication graph (hence, suitable for strong conflict analysis).

Proof. The requirement for a valid implication subgraph is that the source vertexckmise with at least
two literals assigned at the current level. By Lemma 3:1#& conflicting at the current decision level. If
~ contains the 1-UIP, the subgraph consists of a single vertex and stooflgcicanalysis is not invoked.
Otherwise, since the residual clauses beygmuh the graph were not touched, they form a valid graph for

strong conflict analysis. O

Lemmas 3.14 and 3.15 allow us to conclude that on-the-fly subsumption checkatible with
strong conflict analysis. As an alternative, one could postpone theglimmng of the clauses until after

strong conflict analysis. Our experiments, however, indicate that it wantlde as efficient.

35

Returning to Example 2.6, in Fig. 2.33, 72, and~s all have a chance to be chosen as additional
conflict clauses by strong conflict analysis, since they have only twolstdoath of which are assigned
at the current level. Strong conflict analysis dismisgeas too close to the conflicting clause. However,
on-the-fly subsumption achieves the same effect on deductive powehé¢haddition ofy; would have by
strengtheningg and dropping:;. On-the-fly subsumption therefore complements strong conflict analysis.
If no subsumption is found during conflict analysis, additional clausesrgéed by strong conflict analysis
may still be helpful, even though they are not guaranteed to increasetieduower.

One may be tempted to apply on-the-fly subsumption to conflict clause minimizat@s[SB09].
However, the antecedent clauses involved in the minimization are nevemsabdy their resolvents since
they do not contain any literal assigned at the current level, while thésezge contain the UIP.

Figure 3.12 shows the pseudocode of the algorithm that detects and sinthkfimsbsumed clauses
during conflict analysis. The algorithm AnalyzeConflictWithSimplification@aks the subsumption condi-
tion whenever RsoLVE() produces a new resolvent as long asJNDUIP() is false (line 4). By Lemma 3.12,
if one of the operands exists in the clause database—either the old résatein CNF_resolvent = TRUE
or the antecedent of the pivot variable (line 9)—and the new resohaains fewer literals than one of
its operands (lines 10 and 12), the operand is strengthened by remogipiyoh variable (line 11). When
both operands are subsumed, one of them survives and the othertésidétee 13). If a clause is replaced
with the resolvent, the flag iI€NF_resolvent is set to TRUE (line 14); otherwise, it is set to FALSE (line
16), since the new resolvent is not yet in the clause database. At thef &émelresolution step, if the final
resolvent containing the UIP strengthens an existing clause, that isCilresolvent is true, the conflict
analysis algorithm refrains from adding a new conflict clause to the cldatsdase. Otherwise the clause
is added at line 20. Whether a conflict clause is added or not, the DPldeguoe backtracks to the level
returned by conflict analysis (line 21), and asserts the clause finalhel@d@rom the conflict.

The pseudocode of Fig. 3.12 omits some details for the sake of clarity. lcti@ amplementation,
the implication graph is shrunk with a new conflicting clause by replacing thremuconflicting clause with
a newly strengthened clause, which must be a new resolvent. The modé#pdthen is available for strong

conflict analysis.

1 AnalyzeConflictWithSimplificationf, conflicting){

2 resolvent = conflicting;

3 in_CNF_resolvent = TRUE;

4 while (!FounpUIP(resolvent)

5 lit = GETLATESTASSIGNEDLITERAL(resolvent);
6 ante = GTANTECEDENTCLAUSE(lit);

7 var = VARIABLE (lit);

8 resolverit= REsOLVE(resolvent, ante, var);

9 oprnd = inCNF_resolvent ? resolvent : ante;
10 if (Size(resolven? < Size(oprnd)){

11 STRENGTHENCLAUSE(oprnd, var);

12 if (in_CNF_resolvent & textscSize(resolvénk Size(ante))
13 DeLETECLAUSE(ante);

14 in.CNF_resolvent = TRUE;

15 }

16 elsein_CNF_resolvent = FALSE;

17 resolvent = resolvent

18 }

19 if (lin_CNF_resolvent)

20 ADDCONFLICTCLAUSE(resolvent);

21 blevel = @MPUTEHIGHESTLEVEL(resolvent);
22 return (blevel);
23 }

Figure 3.12: Algorithm for conflict analysis with on-the-fly simplification.

36

37

Figure 3.13: The implication graph of Example 3.17.

3.3 Clause Distillation

In this section, we present an extension of simplification based on sedtisydtion, which is called
clause distillation. Given a CNF formula, clause distillation removes clauses subsumed by imglibate
may not be explicitly found in the formula, and optionally adds new conflictsglau Like simplification

based on self-subsumption, the distillation procedure often increasestivecbower.

Lemma3.16.1f A = {{-l1},...,{~l,—1}} is a partial assignment to the variables of CNF forméland

FUAFI,,then{ly,...,1,} is an implicate ofF'.

Proof. Suppose that a satisfying assignmentfancluded{{—l;}, ..., {—l,}}. Such an assignment would
contradictF" U A + [,,. Therefore, any complete assignment that satigfiesust contain some literd),

1 <i < n. Hence, such assignment satisfies clajuse . ., [, }. O

The next example shows how Lemmas 3.16 and 3.4 combine to improve a CNHddhaucannot

be simplified by either subsumption or self subsumption.

Example 3.17.Consider the following CNF formula:
F=(@VvbVve)i AbV=d)aA(eVd)zADV-cVe) .

Under partial assignmenf{—b}}, —d is implied bycs of F' andc is implied bycs. The clauser; is then
satisfied. Finallye is implied byc,. The implication hypergraph depicted in Fig. 3.13 shows that) is
an implicate ofF’ that subsumes the first clause, and tfiat e) is another implicate of" that subsumes;.

The simplified CNF is therefore

F'=0Ve)ADbV-daA(cvd)sn(bVe),.

38

Note thatF’ - F becausd” U {—e} bp b, but ' U {—e} t/p b. If, from F’, F" is obtained by deleting;,
which is the transitive closure clause @fandcs, thenF” is equivalent tof” and F’ ~ F”. On the other

hand,F" is not as effective aB” in shortening the implication graph. O

Example 3.17, Lemmas 3.16 and 3.9 suggest a systematic approach to imprewdegtctive power
of a CNF formulaF’. SupposeF' contains no unit clauses. (If it does, simplifyin the obvious way.) Let
v = {l1,...,l,} be a clause of’. Consider the sequence of assignmefits= {{-l1},...,{-l;}} for
1 < i < n (theassignment sequencef). There exists a leagtsuch that eithef” U A; Fp false, or
FUA; bp 1, fori < j < n. Ineither case, we extract from the implication graph an implicate tiat
subsumes. This implicate may be itself, another clause df that subsumes, or the resolvent of several
clauses off.

If FFU A; bp false, the learned conflict clause is addedHdo increase its deductive power (thanks
to Lemma 3.9). The conflict analysis used in distillation differs from that of 3&cin that it stops when it
computes a resolvent that is the negation of a subsdt.oSuch a resolvent always exists, contains a UIP,
and subsumes. If intermediate resolvents contain a UIP, but are not in subsumption relatibry, then

conflict analysis produces two clauses: the 1-UIP clause and the dreeiisaimes.

Example 3.18. Given a CNF formular:

F = (avbVvevdiA(aVe)ANDV f)3A

(meVafVg)an(meV afV=ah)s A(=gVh ,

supposey is ¢, and A, is {—a@1, —b@2}; then ¢g is conflicting as shown in Fig. 3.14. Analysis of this
conflict leads to the resolution graph shown in Fig. 3.15. Smgeontaining the 1-UIP, does not subsume
~, the analysis returns two clauses; and~,. Adding eithery, or v, increases the deductive powerof
thanks to Lemma 3.9. Adding both and~4 does not, however, further increase deductive power in this

case, becausg, is the transitive closure clause of, v-, andcs. O

If FUA; Fp l;, we use Lemma 3.16 to extract an implicatétthat subsumesg from the implication

hypergraph. Ify is subsumed by another claugein F, the implication hypergraph contains a hyperedge

v3 : (me V' b)

—a@1 ,/T> e@1
/
[e

\ -

-

—b@2 A_?’ﬁ» f@2

Y4 : (a VD) v2 : (me VvV —=f)

Figure 3.14: Implication graph of Example 3.18.

’Y4i((l\/b)

Figure 3.15: Resolution graph of conflict analysis for Example 3.18.

39

40

that assert$; and such that all the directed edges originate from literald;inTherefore, even if finding

a minimal implicate ofF' that subsumes is hard, removing fron¥’ a clause that is subsumed by another
clause only requires inspecting the hypergraph induced hbyHowever, if an implication graph is used
instead of the full hypergraph, the computed implicate may be subsumed theantause. This problem

is solved by integrating subsumption-based simplification with the distillation puoeed

Example 3.19. Given clausesa vV b V ¢); and (b V ¢)2 of F, supposey = ¢; is distilled with Ay =
{{—a},{=b}}. If cis implied byc; rather thance, then the implicatéa Vv b V ¢) is computed, which does

not strictly subsume. O]

If ~ is strictly subsumed by the implicate obtained through Lemma 3.16, then replaeiity the
implicate inF' may or may not increase deductive power, as shown in Example 3.17, ih adhiing(bV ¢)
to F' improves its deductive power, while addifigVv ¢) does not.

The distillation procedure outlined above may be used to detect some castsspibsumption. For
instance, ify = {l1,12,13,l4} andF' = {v,~'}, with v' = {l;, =2}, thenF U Ay Fp —ly. From that, it
is concluded thaf{l;, 3,14} is the desired implicate of' that subsumes. Another example is given by
v = {l1,l2} andy’ = {l;,~ly}. Asserting—l; leads to a conflict, and the learned clauSe}, subsumes
v (and~’). Self-subsumption, however, may go undetected. Congider{~,~'}, with v = {i1,l2,13,14}
andy’ = {-ly,l2}. In this case A; will cause no implications, and the simplified clauge, Is, 14} will
not be discovered. Such limited ability should not surprise. In generad éausey of F' with n literals,

n attempts are sufficient to find an implicate Bfthat subsumes and cannot be further simplified by self
subsumption. This is comparable to what the procedure of [EBO5] does.

More simplifications can be achieved if the on-the-fly simplification discuss&eadh. 3.2 is applied
to conflict analysis in the distillation procedure. For instance, in Fig. 3.14afriple 3.18¢, is simplified
by on-the-fly subsumption check because it is subsumeg bin addition, as we shall see in the detailed
discussion of the algorithm, on-the-fly simplification improves the efficiengh®tlistillation procedure.

A preprocessing algorithm can be based on distilling each clawugea CNF formula by trying its

assignment sequence until either a conflict occurs or a litgrafl is asserted. Clausgis replaced by

41

either a conflict clause or an implicate containing We have seen in Example 3.19 that after distillation
a clause may still be subsumed by other clauses of the CNF formula. In addisialistillation proceeds
and shorter clauses are addedta clause that is initially not subsumed may lose this property. Therefore,
subsumption-based simplification is applied after distillation.

Figure 3.16 describes an algorithm based on the distillation approach outlitleid section. The
clauses are initially stored intaie [AHU83] so that common prefixes may be identified. Each trie node
has two sets of children corresponding to the two literals of each varialble0-€hild is for the positive
literal, and thel-child is for the negative literal. Every path in the trie represents a clausaf aode in a
path stores the index of the clause associated with it. Hence, clausesvwbat é@ammon prefix will share
nodes in the trie. While building the trie, clauses that are subsumed by othgtserdatected and removed.
However, both building a compact trie and detecting subsumed clausasddepé¢he variable order. The
frequency of variables in the clause database usually provides a gbed o

Since the trie supplements instead of replacing the clause database, itdaaaemory. Its use is
justified by the speed-up that the sharing among clauses affords. diufeve distill the clauses based on
the trie, instead of enumerating them one by one, we need to reach a leatfonlodate the corresponding
clause in the database. Applying on-the-fly simplification to conflict analysis mep the distillation
procedure dispense with that search.~Iparticipates in conflict analysis, then it may be identified by
on-the-fly subsumption check and replaced with the conflict clause thatisiesy.

In Fig. 3.16, variable Trie is the set of roots of the trie that is built on themgisemulaF'. Distillation
consists of a depth-first traversal of the trie bRIEBASEDIMPLICATION(). If the value of the node is
assigned, i.e., value '= UNKNOWN (line 4),MaLYZE IMPLICATE() analyzes the implication graph to find
an implicate that strictly subsumes the clause being distilled (line 5). If the implicégts.eit replaces
the clause being distilled (lines 7-8). At each node whose value is notsgettad (lines 15 and 16),
CHOOSENEXTASSIGNMENTONTRIE assigns value§ and1 to the children only if they have siblings (line
21). Procedure BDUCK() propagates the decision over the clausel {fne 22). If a conflict occurs during
DEDUCE(), ANALYZE CONFLICTFORDISTILLATION () generates two clauses: cll is the one that subsumes

the clause being distilled, and cl2 is the 1-UIP clause (line 24). The conliases can be NULL: cll1

42

is NULL when a clause is simplified by the conflict clause and is marked duongict analysis; cl2 is
NULL when the conflict analysis produces only one conflict clauselllinot NULL, the clause being
distilled is found by FNDDISTILLED CLAUSEONTRIE() along the path from the current node (line 26), is
simplified by the generated conflict clause cl1 (line 27), and marked (lindfa82 is not NULL, it is added

to F as a conflict clause (line 31) and also marked (line 32). If a conflict doesccur during EDUCK(),
TRIEBASEDIMPLICATION() is invoked to test the next sibling at the current decision level (line 36
procedure backtracks to the previous decision level when it has sexvatl the children (line 36). Once
the traversal on the trie is complete, each clausE is added taF” only if it is marked. After distillation

formulaF’ can be further simplified by subsumption check.
Example 3.20. Consider the following CNF formula:

F = (a\/b\/c)1/\(b\/—|d)2/\(c\/d)g/\(b\/c\/e)4/\

(=bV eV s A(=dV = f)s -

The trie shown in Fig. 3.17 is built with the CNF clausesFoficcording to the variable ordey < ¢ <

d < f < a < e. (The variables are sorted by their number of occurrenceg'in The procedure starts
traversal from the firs0-child of theb root (line 15 of Fig. 3.16), that is, by considerinty = {{-b}}. The
assignment; is applied to all clauses that contain Propagation of-b@1 over I’ leads to~d@1 andc@1

as shown in Fig. 3.18. The distillation procedure then reaches rodénding thatc is already implied,

it computes the implicaté V ¢) by resolvinges and ¢z (line 5). Then, a depth-first search is performed
on the0-children ofc to find one of the clauses that share the traversed path as a prefix (liné @) is
found, it is simplified tdb V ¢) (line 8) and is marked (line 9) to be retained at the end of distillation;
is not marked and can be deleted because it is subsumed by the simplifeithce node: does not have
1-children, the procedure goes back to ré@nd then on tel. The implication graph is not changed; hence,
d is still assigned. However, since the implicatev —d) is the antecedent, of d, o is just marked with
no simplification. Then, the procedure backtracks to I6yahd it continues traversing thiechild of b with

A1 = {{b}} (line 16). Variablec is assigned tdalse because it is not yet assigned. Frotm = {{b}, {—c}},

f andd are implied througle; andcs, respectively, and thefy becomes conflicting. Analysis of this conflict

43

1 TRIEBASEDIMPLICATION(Trie) {

2 for each (nodee Trie) {

3 value = \ALUE(node);

4 if (value '= UNKNOWN){

5 implicate = ANALYZE IMPLICATE()

6 if (implicate){

7 distilled = ANDDISTILLED CLAUSEONTRIE(NOde);
8 SIMPLIFY CLAUSE(distilled, implicate);

9 GETCLAUSEMARKED(distilled);

10 }

11 if (node.child[value])

12 TRIEBASEDIMPLICATION(node.child[value]);
13 continue;

14 }

15 TRIEBASEDIMPLICATIONAUX(node, 0);

16 TRIEBASEDIMPLICATIONAUX(nOde, 1);

17 }

18 }

19 TRIEBASEDIMPLICATIONAUX(node, value)
20 child = node.child[value];

21 if (child) {

22 level = GHOOSENEXTASSIGNMENTONTRIE(nOde, value);
23 if (DEDUCKE() == CONFLICT){

24 (cl1, cl2) = ANALYZE CONFLICTFORDISTILLATION ();
25 if (cl1!=NULL) {

26 distilled = ANDDISTILLED CLAUSEONTRIE(child);
27 SMPLIFY CLAUSE(distilled, cll);

28 GETCLAUSEMARKED(distilled);

29 }

30 if (cl2 '=NULL)

31 ADDCONFLICTCLAUSE(CI2);

32 GETCLAUSEMARKED(cI2);

33 }

34 else

35 TRIEBASEDIMPLICATION(child);

36 BACKTRACK (level-1);

37 }

38 }

Figure 3.16: Algorithm for clause distillation.

44

(line 24) proceeds on the implication graph shown in Fig. 3.20, building teelution graph of Fig. 3.20.
The resolution graph shows that containing the 1-UIP subsumes, which appears at the leaf node of
the current path. Therefore; is strengthened by, and marked; this eliminates the work required to get
the clause index stored in a leaf node (i.e., cll and cl2 are NULL in line 24yedler, this increases the
deductive power af'. The procedure backtracks to leweland it moves to the second roetpf the trie. The
0-child of c is traversed withd; = {{—c}}. This assignment causes a conflictatas shown in Fig. 3.21
(left): the antecedent ofb, c5, was simplified by on-the-fly subsumption in the previous conflict analysis
Conflict analysis, illustrated in Fig. 3.21 (right), produces and simplifiescs because it is subsumed by
~v2. Sincecs = (c) is a unit clause, it must be propagated at lepelfter backtracking; if a conflict occurs
during this propagation, then the formuld is declared unsatisfiable. After lev@propagation, the root

is revisited only if it hadl-children to be traversed. Finally, the procedure traversesitfehild of the last
root d with A; = {{d}}, under which—f is asserted bys. Then,cs is marked because it is the implicate

itself. Once the trie has been traversed, the marked clausEsaoé forwarded toF’. Therefore,
F'=BVe) ADV-daA(e)sA(=bVe)sA(=dV —f)g .

The formulaF” is processed by subsumption-based simplification. In this casee c; deleted fromF”

because they are subsumeddyyAt last, the formula is simplified to
F'=(bV-d)aA(e)sA(=dV-fs .

Addition of the unit clauséc) to F' definitely increases its deductive power, thatiis< F”. O

3.4 Variable Elimination

In this section, we review the preprocessor for variable elimination thabeantegrated with the
distillation procedure of Sec. 3.3.

To select variables to be eliminated, all the variables are sorted by a metiithsti€ = (|clauseg| *
|clauses,|) — (|clauseg| + |clauses,|), where clausgsstands for an occurrence list of variableand

|clausekrepresents the length of the liststresses the fact that the less symmetric occurrence lists are, the

Figure 3.17: A trie of the CNF clauses 6t

-b@Q1 —2> —-d@1 —3> c@1l

Figure 3.18: The implication graph generated under= {{—b}}.

5% /@2 w\
6 K
@2 3 =d@2/

Figure 3.19: The implication graph generated under= {{b}, {—c}}.

b@1

cg : (—dV —f)

Y2 ! (_|b\/ C)

Figure 3.20: The resolution graph of the conflict analysis on Fig. 3.20.

45

dal

—c@1 y \2<\Ii
\5~ ﬁb@l/

Figure 3.21: The implication graph undés = {{—c}}.

Figure 3.22: The resolution graph of conflict analysis on Fig. 3.21.

46

a7

earlier the variable should be selected. The length of a resolvent sHsaldeataken into account, because
clauses may also be lengthened through resolution. This can be harmfal$éihsolver. Hence, we use
an additional criterion, the number of literals of the resolvents, to choosbles to be eliminated.

To eliminate a variable, resolutions are applied to all the pairs of clauses is¢heence lists of the
two literals of the variable. In our variable elimination, all the literals of eachsdlare sorted by variable
index. Taking the union of two sorted clauses can be done in linear time hyagiva of themerge-sort
algorithm [CLR90]. This linear operation guarantees that all the literalstdrsorted after merging. With
minor modification in the algorithm, the linear operation can be also used to chbskraption relation
between two clauses.

A variable is eliminated only when the produced resolvents are fewer tharttiierence clauses of
the variable. At each resolution operation, we can check if one of theogeis subsumed by the resolvent,
like the on-the-fly subsumption check in conflict analysis of Sect. 3.2. Aselaan be simplified by the on-
the-fly subsumption, regardless of whether the variable is eliminated. Timedanplified by the on-the-fly
subsumption is removed out of the occurrence list. In such a case, teatelimination check may benefit
from the shortened occurrence list. Every simplified clause is checksdlisumption to other clauses after

the variable elimination check.

3.5 Experimental Results

We have presented techniques that aim at increasing the deductiveg@@a@NF formula and pro-
moting more concise implication graphs. In order to evaluate them, we have impézhaepreprocessor on
top of the CNF SAT solve€irCUs 2.0 [HIKS09, VIS], which applies variable elimination, the distillation
procedure of Sect. 3.3, namédembic, and simplification based on subsumption and self-subsumption as
in [EBO5]. We have also implemented the three applications of on-the-flyekioglification discussed in
this paper, namely, to variable elimination and conflict analysis in Alembic as sl eonflict analysis in
CirCUs. In variable elimination, an increase in the average length of theed@adetrimental for deductive
power. Hence, in our implementation, only variables whose elimination doesuasé such an increase are

eliminated.

48

Since SAT solvers often need to provide either a satisfying assignmeiptroogof unsatisfiability,
clauses that are either removed or simplified are set aside just as thetidag\wof conflict clauses [GNO3,
ZMO03]. The SAT solver CirCUs only needs these clauses to recovemalete solution (for a satisfiable
instance), or to produce a proof of unsatisfiability in terms of the originaises. This scheme requires
extra memory, but its effect on speed is negligible.

The benchmark suite is composed of all the CNF instances (with no dupli¢ates)he industrial
category of the SAT Races of 2006 and 2008, and the SAT Competition30af &hd 2009 [SATa]. We
conducted the experiments on a 2.4 GHz Intel Core2 Quad processor@Btiomemory. We used 10000
seconds as timeout, and 2GB as memory bound. We tested MiniSat 2.0 [SatBlenoSAT 236 [Pre]
along with CirCUs 2.0 to provide reference points.

The plot of Fig. 3.23 shows how many instances are solved by selectasisulithin a given time
bound. Our variable elimination algorithm is named EV; Alembic is abbreviatedEAJAL stands for
EV+AL, and OCI denotes the on-the-fly clause improvement describeddn 3.2. Figure 3.23 shows the
CPU time taken by CirCUs (with various subsets of the proposed app®abdhiaiSat, and PrecoSAT. Both
MiniSat and PrecoSAT use their own preprocessors [EB05]. Figa® &nfirms that CirCUs is compa-
rable to state-of-the-art SAT solvers, and that its performance is sigmifjcimproved by applying all the
proposed approaches (i.e., EVAL+OCI). Among the instances of Fig, Bigure 3.5 shows that unsatisfi-

able instances fare a bit better, but not much, than satisfiable ones in tepesasmance improvements.

The scatterplots of Fig. 3.25, 3.26, and 3.27 examine the effects of thegmwpgechniques on
deductive power and size of implication graphs, by showing the chan@#3linime, numbers of decisions,
average numbers of resolution steps per conflict analysis, and averagh of conflict-learned clauses. For
each of these quantities the geometric mean of the new/old ratios is reportadi{eg cases in which one
of the values i9)). Single-samplé-tests were performed to confirm the statistical significance of the data.
The null hypothesis was that the mean of the logarithms of the ratids e alternative hypothesis is
two-sided. Since the data that are compared span several ordersmfudag, differences and ratios may

paint very different pictures of the experiments. Analyzing the ratiosguusl emphasis on short and long-

400

380

360

340

320

300

Number of Instances

280

260

400

380

360

340

320

300

Number of Instances

280

260

49

i Precosat

C|rCUs+EVAL+OCI ——
CirCUs —+—

rrrrrrrrrrrrr | MiniSat —v—

‘ i ‘ i ‘ i ‘ i
0 2000 4000 6000 8000 10000

CPU time (sec)
(@)
I CirCUs+EV+OCI — =

¥ | CirCUs+OCl

B 7 S— CirCUs —+— ...

1] CirCUs+EV —*— 1

3 ‘ CirCUs+EVAL — = |

§ 5 . i . i . i . i . j
0 2000 4000 6000 8000 10000

CPU time (sec)
(b)

Figure 3.23: Number of instances solved by various SAT solvers v€lBlstime. (a) comparison of the
proposed algorithm to modern SAT solvers; (b) individual contributidissnoplification methods to CirCUs

50

SAT Instances

o 10° "4
@2 G
— 10° iy
Q + o AT
Q yauk
-_|-I 102 - %FPHF*+ +
< ++ iR

a 101 S M #j:”#i # |

4 +++T4ﬂ¥ qff +
p 0[5 F e
D) A4
O 10 ++
O 191 -

101 10° 10 10?7 10° 10*
CirCUs (sec)
(@)

UNSAT Instances
~ + -+
g 10 |

i +
51 T REE]
< s I
L 10" ﬁﬁf E i
b s
= 10 gt ¥
O oy Ak
O 10t

10t 10° 10t 10?2 10° 10
CirCUs (sec)
(b)

Figure 3.24: Comparison of the performance improvements between (&@RA{b)UNSAT instances of
Fig. 3.23.

51

running instances. This is partly compensated by the scatterplots and tlsdvigig. 3.23, which highlight
the ability of the improved procedure to complete more instances in the allotted tireifi&gly, one can
find the relative size of the resolution graphs for conflict analysis frerdtta of Fig. 3.25(c), as shown in
Fig. 3.28.

A marked decrease in the numbers of decisions confirms that the prajeabedues allow the SAT
solver to rely more on deduction and less on search. The reduction iltiescsteps confirms that the
implication graphs are, on average, significantly smaller. As a result, sletateses are learned. For lack of
space, we omit scatterplots illustrating the effects of individual techniqUiesy would show that variable
elimination is the main cause for the smaller implication graphs, and that it also teretkitee the number
of decisions and shorten the learned clauses. Distillation alone dectkagagsnbers of decisions (as one
would expect of a technique addressing deductive power) and sldetrned clauses, but has limited effect
on the sizes of the implication graphs. Its effect on memory consumptiongonaggigible. This is shown
in Fig. 3.29.

Variable elimination interacts in an interesting way with OCI. This is shown in Fi), Bere the
numbers of on-the-fly subsumptions per resolution step during DPLLearets increase significantly when

EV is applied. The following example sheds light on this phenomenon.

Example 3.21. Consider the following clauses:

(maV=p)i A(bV —p)2 AaV =bVp)sA(aV g
(7bV =g)s A (ma VbV q)e A(=p Vr)r A(=g Vr)sA
(pVgV-r)gA(aV-as)igA bV as)A(—aV bV s)i
A(—aV =t)13 A (=bV =t)1a A (aV bV i)s A (s V —u)igA

(—\t V —|u)17 A (S ViV u)lg VAN (7‘ \Y u)19 VAN (—|7" V —\U)QO .

Suppose that the SAT solver makes decisiari@1 and —-5@2. This leads to a conflict omg, with the
implication graph shown in Fig. 3.31. There are no instances of on-thsdtygumption during conflict

analysis, even thoughs that is derived by minimizing the conflict clause subsumes;s: 5 directly

CirCUs+EVAL+OCI

CirCUs+EVAL+OCI

CPU (sec)
10*
,*, =
103 + + 4
TR 1
10° S R
+ +#¢ Tt 3
101 ' ﬁf«EL’:f =
0 L+ i
10 . Lt 4?%*#{:
107 :
10

102101 10° 10 107 10 10°

CirCUs
()

Resolution steps / Conflict

10
10° ;
+ + b 1 '
107 e fy 1
01 + - +f+¢++ !
1 ST i -
| R {ﬁ@?g& my
10° rRAALTRE
1° 10t 1P 1 1
CirCUs

(©

CirCUs+EVAL+OCI

CirCUs+EVAL+OCI

Decisions
10°
10° &
7 g
10 1 +
10° &
10° ¥ S
+ +
104 *+ ﬁgﬁ‘##i o’
103 JrﬂﬁJiJrJr I
+ +
107

10°10310*10°10°10"10°10°

CirCUs
(b)

52

Num. Literals / Conflict Clause

10°

107

+ N fgm
+1 E@
i
101 - I ﬁi$ £
+ +
+
0
10
10 10t 168 10®
CirCUs

(d)

Figure 3.25: Effect of CirCUs with and without EVAL+OCI on (a) CPU timeE@VETRIC MEAN = 0.56,

p-value =2.2-10~'%; (b) number of decisions: BOMETRICMEAN = 0.51, p-value =2.2-10~16; (c) number
of resolution steps per conflict: KBMETRIC MEAN = 0.57, p-value =2.2 - 10~16; (d) number of literals per
conflict clause: GOMETRIC MEAN = (.82, p-value =8.25 - 1078,

53

CPU (sec) Decisions
104 | 1+1H 4 109
gt
= L = ¢
8 10 s s 8 103 i
T 1P e o Y 10 + +
+ TGS n +
> 1 Tt > 106 4 ‘
Yot -
i A P 05 ks
3 L 31
0 R 7 e R
O 10 ug QO 10t -1t L R
5 47 + 5 +++% it
10 + 103 ﬁﬂffk+
10° 2,120 10° 4 64 7 9
10%10" 10° 10" 107 10° 10° 10°10°10%10°10°10"10°10
CirCUs CirCUs
(2) (b)
Resolution steps / Conflict Number of Literals per Conflict Clause
10° 10"
o 10t ’ ®
C+) 10 9 10°
+ -
@ 103 ; @ 102 Iy 3
+ g ¥ +
E)m) 107 T j{ﬁ ; é’ T gg H
= = = toh T
G 10t yjf = 510"
S
16 5 ‘ 1 5 ‘
10° 10t 107 10° 10* 10° 1° 100 108 10° 10
CirCUs CirCUs

(© (d)

Figure 3.26: Effect of CirCUs with and without EV+OCI on (a) CPU timeE@ETRIC MEAN = 0.63,
p-value =5.7-10~'%; (b) number of decisions: BOMETRICMEAN = 0.59, p-value =2.2-10716; (c) number
of resolution steps per conflict: KBMETRIC MEAN = (.68, p-value =2.29 - 10~15; (d) number of literals
per conflict clause: GOMETRIC MEAN = 0.87, p-value =7.8 - 107>,

54

CPU (sec) Decisions
10* - 10°
+ - £
g 103 EEE." H I 8 loj T,
il 102 +) i-l 106 + ¥ ++
< . + < 10 .
¥ 10" CE + |+ *
@ L . 2 10° St
O 100 +++i +%‘t + O 4:+ i + +
et . 5, + = 104 R
. §ii
O 10 -+ O 103 ‘:4
10° 2.1 40 10° ; 64 7 9
10210110 10 107 10° 10 10°10°10*10°10°10"10°10
CirCUs CirCUs

(@) (b)

Resolution steps / Conflict Number of Literals per Conflict Clause

10° 10*

9 10* : 5,5)
4 03 7+ 5
< 1 + S <)
¢ N ’ + 102 + j”j* ‘++
0 3 ¥ .
D 102 +-Hiig o i i
O -+ ﬁ»@ 3 i
5 10t | e 5 10t o+ 1
{‘Mﬂ;ﬁ\j?mr ++:+
g LA LA
10 O I 10 g ‘
10° 10' 10 10° 10* 10° 1P 10t 1?7 1P 1d
CirCUs CirCUs

() (d)

Figure 3.27: Effect of CirCUs with and without AL+OCI on (a) CPU timee@ETRIC MEAN = 0.86,
p-value =0.003; (b) number of decisions: BOMETRIC MEAN = 0.77, p-value =1.71 - 10~%; (c) number of

resolution steps per conflict: ®®METRIC MEAN = 1.01, p-value =0.76; (d) number of literals per conflict
clause: GOMETRIC MEAN = 0.92, p-value =0.03.

Total resolution steps

o 10° i
o 7 " +
¥ 10 sl
— T it
< 6 i +
a 10]Ef& o F
T 10° - ﬁ’ﬂgﬂ%ﬁ
2} + H + ++
D) 4 -+ iy + i
10 TR,
.(é & #fi
(@) 103 T
10° +4 64 7
10°10°10*10°10° 10" 10°
CirCUs

Figure 3.28: The number of resolution steps per conflict.

Memory Usage

= 10"

>3

O 10° v
o

-_i-l +

< 10° b
L

@ 10"

Q

O 1¢°

10° 100 100 100 10°
CirCUs+EV+0CI (MB)

Figure 3.29: The effect on memory consumption.

55

56

10° o 10°
6 i T+ * + _ +
9 101 4 I s ++ ; 3 8 10—1 . _+
+ 4 g +
zfl -2 NE L Lﬂjﬁ% ; 2 * ﬁﬁ#mﬁ& 1 +
> 10 I i w10 AR £
w jdjr + + +ﬁ%f 0
4(/-) 3 +44+4ﬁ+ | #jﬁ 8 10_3 +¥ n = " tg%
310 A 0 o iy
= g *ﬁﬁﬁ# O, 4| ™ 2%+t
010 A 10 #L++1
+
_5 + -5
10 10
10° 10% 102 102 107 10° 10° 10% 103 102 10t 1
CirCUs+0OCl CirCUs+0OCl
(@) (b)
10
+
— + +
010+ =
@) e
X2 e +
< 10 e I i
- et
5107 o
5 Fhrn T
O, 4
104 e
e u
b
10°

10° 10% 10° 102 10t 1d°

CirCUs+0OClI

(©

Figure 3.30: Number of OCI applications per resolution step with and witheprpcessing: (a) both elim-
ination and distillation: GOMETRICMEAN = 1.9, p-value =2.96-10~?; (b) only elimination: GOMETRIC
MEAN = 1.69, p-value =6.65 - 10~'2; (c) only distillation: GGOMETRIC MEAN = 0.92, p-value =0.17.

57
—s@1

Ya:(aVvVbVag) v2:(pVaV-t)
”

—a@1

-bQ2 i :
V4 14

v5 : (a V' b) vz : (bV qV —t)

Figure 3.31: Implication graph of Example 3.21 without EV.

subsumes other resolvents rather thag If we eliminatep, ¢, s, and¢, we get the following clauses:

(aV=bVr)iA(aVbV-r)yA(=aV-bV-r)sA
(maVOVT)aA(aV—-bVu)sA(aVbV-u)sA

(maV =bV-u)s A(—aVbVu)gA(rVu)gA(—rV-u)s .

Figure 3.32 shows that the conflict clause subsumeg(It also subsumesg, but this is not detected by
the algorithm.) This time there are fewer resolution steps, and this “abrid¢jneéthe process allows the
subsumed clause to enter the analysis right before the subsuming r@ssleemputed instead of several

steps before. Ol

We now report statistics on the performance of the preprocessorsteRBg28 compares the speed
of various versions of EVAL to SatELite. (In these plots, SatELite is runlb@F formulae, while, in
Fig. 3.23, the solver may disable SatELite depending on the size of CNF fajn@@ contributes to the
improved preprocessor speed. This is clear in the case of EVAL vsLEWKI. It is true also without
distillation, because EV+OCI removes significantly more clauses and literaispthan EV in about the
same time.

It is also interesting to compare the reductions achieved by differentquegsors. In Fig. 3.34, we

5 270
)
&)
S 260
17
<
— 250
o
)
Q 240
S
>
Z

230

220

58

—b@2 ¢ —r@2 "

Y2 : (aVDb) y1:(aVbVvr)

Figure 3.32: Implication graph of Example 3.21 with EV.

EV o+
R A A o Frov EV+OCl —x—
f£# / EVAL+OCI —+
¢ S EVAL —+—
i 4 . saElite -

40 60 80 100 120 140 160 180
CPU time (sec)

Figure 3.33: Number of instances simplified by various preprocessmgs/€PU time. SatELite times out
on one instance after 3600 s.

59

report the fractions of instances that achieve certain reductions in térmasiables, clauses, and literals.
About 10% of the instances achieve close to 100% reduction. This meanméipaocessing reduces the
CNF formulae to either the empty clause or the empty set of clauses. CirCitEble elimination is less
aggressive than SatELite’s: it eliminates fewer clauses, but almost imeveases the number of literals.
Adding Alembic yields the least number of clauses without compromising the gedddrmance in terms

of literals. While conflict analysis during distillation may produce additionalfflatirclauses, the number
of added clauses is on avera@e% of the total. Alembic often achieves more simplifications thanks to the
on-the-fly subsumption check. The mean number of clauses simplified pictd 0.7. Moreover, on
average, irb1% of the conflicts the 1-UIP clauses subsumes one of the clauses usedlte iiesn those

cases, rather than the 1-UIP clause being added to the database rdreapsimplified.

3.6 Summary and Discussion

We have presented efficient transformations of a CNF formula that aiithat @nproving its deduc-
tive power or shortening implication graphs. We have shown that the tranafions help a DPLL-based
SAT solver to run faster by deducing more literals from its decisions ancetdycing the depth of the
implication graphs used in conflict analysis.

On-the-fly simplification based on self-subsumption can be applied to ary thtaguses resolution,
e.g., conflict analysis and variable elimination, with minimal overhead. Its apiplices compatible with
advanced conflict analysis techniques and with the generation of ursalisfiproofs. Another benefit is
the reduction of the number of added conflict clauses without detrimetfiéateductive power.

The distillation procedure applied to preprocessing of the CNF formula alssiderably speeds up
the SAT solver by increasing deductive power. In contrast, we hawersthat variable elimination works
mainly by reducing the number of resolution steps required in conflict asaly&his results in earlier

conflicts, cheaper analyses and better conflict clauses.

60

100
80
S
n 60
(O]
(&)
g
7 40
£
20 FEvAL+OCI —o—
EV+OCl —+—
0 SatELite —~
0 200 40 60 80 100
Reduction on Variables (%)
(@
100
EVAL+OC| ——
EV+OC| —+—
80 - SatELite —~—
S
» 60 By,
8
3!]
©
7 40 %
£
20 -
%*":—KM!&#
0

0 20 40 60 80 100
Reduction on Clauses (%)

(b)

100 G

80

60

40

Instances (%)

20 FeyAL+OCI —o—
EV+OCl —
SatELite —

0
-100 -50 0 50 100

Reduction on Literals (%)
(c)

Figure 3.34: Ratio of simplification made by various preprocessors oraf@bles, (b) clauses, and (c)
literals.

Chapter 4

Clause Simplification through Dominator Analysis

In the previous chapter, two notions that help in the design and evaluatiomatfifa transformations
have been discussed. The first is deductive power of a CNF formtla.motivated by the observation
that the more consequences the DPLL procedure can deduce frorofagedecisions, the more effective
the pruning of the search space. The second notion is proof consssdheeflects the fact that the DPLL
procedure progresses through the search space by proving ttmiopghat space contain no satisfying
assignment and recording such findings in the form of new clauses.

These notions are at work in several techniques that are adoptedtéypktae-art SAT solvers to
improve the quality of the CNF clauses. In PrecoSAT [Bie09, Pre], whery features are shared with
PicoSAT [Bie08b], a clause with two literals may be derived basedaminator analysis during the de-
duction process. Such a clause variables, but it also tends to shorterptleation graph. In turn, a concise
implication graph often benefits the recursive approach of [Bie09] to miniouméict clauses. This chapter
describes the effect of this type of clauses on deductive power aodflgonciseness, and propose two main

extensions of dominator-based analysis:
e A subsumption check concurrent with dominator computation, and
¢ the addition of dominator-based supplemental conflict clauses.

This chapter also reports results from the implementation of the proposeshapp

62

4.1 Dominators

While adding a transitive closure clause of the implications does not aféekctative power, it may
shorten the implication graph. A more concise implication graph may benefitdledures that work on it.
For instance, the deduction procedure may identify a conflicting clause quaridy, and conflict analysis
may resolve fewer antecedents. On the other hand, adding clauses thlfhéatabase indiscriminately
may substantially slow down the deduction procedure. To prevent thig@esnental clause should be
generated only when its usefulness is established by an effective eriterio

In this section we give an overview of the approach to learning new donmbaged clauses pre-
sented in [Bie09] with the name of Lazy Hyper Binary Resolution (LHBR) Tibtion ofdominancewas
introduced in [Pro59] for the analysis of flow diagrams. This notion isihpadapted to implication graphs,

as the following definition shows.

Definition 4.1. Given an implication graptG = (V, E), whereV is the set of vertices anfl is the set
of directed edges, a nodec V dominatesy € V if all paths from source nodes 6f (decisions) taw go
throughd. Noded is theearliest dominator of v if it dominatesv and has no other dominator than itself.
Also, d immediately dominates v if it is the last dominator ofy distinct fromwv. Finally, v is thetrivial

dominator of itself. O

For each node in G its dominator set, denoted by @M(v), contains every dominator ef Under
Definition 4.1, the dominators of a node are totally orderedaaddom(v).

Aliteral g is dominated by in an implication graph fof’ if and only if F U {{p}} Fp ¢. Therefore,
if ¢ is dominated byp the clausg—p V ¢) is an implicate ofF" by Lemma 3.16. We reserve the name

dominator clausefor the case in whicl # ¢.
Example 4.2. Consider the following CNF formul&:
F=(-aVbiA(-aVchA(=bV-cVd)s .

Suppose that the SAT solver makes decigi@h. This leads to the implication graph shown in Fig. 4.1,

where literala dominates literali, i.e., FF U {{a}} Fp d. Then,y = (-a V d) is an implicate ofF. A new

63

Figure 4.1: Implication graph of Example 4.2

formula F obtained by adding' to F' may shorten the implication graph as shown by the dashed edge in

the figure. Moreover, by Definition 3.8, < F’, because” U {{—d}} Fp —a but FU{{~d}} V/p —a. O

Example 4.3. Consider the following CNF formul&:

F:(—|a\/b)1/\(—|b\/0)2/\(—\b\/d)g/\(—'b\/ﬂc\/—'d\/eh .

Suppose that the SAT solver makes decisiam, which yields the implication graph shown in Fig. 4.2.
In the implication graphg, d, and e share two non-trivial dominators: the earliest dominatoand the
immediate dominatob. Sincel’ U {{a}} Fp candF U {{a}} Fp d, 11 = (-a V ¢) andyz = (—a V d)
are dominator clauses, and are transitive closure clauses. By Lemmadili®igy,; and~- does not change
the deductive power df'. On the other handys = (—a VvV e) andvys = (—b V e) are dominator clauses
that increase deductive power, sinfeJ {3} U {—e} Fp —a but F U {—e} /p —a. (Similarly for~,.)

In particular, since the asserting clausg is subsumed by,, it is removed ify, is added. This leads to
the shorter implication graph where the asserting clauses replaced withy,. BesidesF' < F'U {3} <

F U {y} ~ FU{y3,74}. In this case, deducing the negation of the immediate dominator allows one to
deduce the negation of all other non-trivial dominators. When the immeditatenator is distinct from the
earliest dominator, the dominator clause involving the former is the one thatlly gives the greatest boost
to deductive power.

Dominator clauses do not always increase deductive power. If wed=sins

F'=FA(eV-f)sA(eV-g)sA(fVgV-e)r,

then~y is still a dominator clause, but its addition does not affect deductive power. O

64

a@1 —T a1 ﬁ: c@l 4 e@1
3 ™ dal

Figure 4.2: Implication graph of Example 4.3

Example 4.3 motivates the CNF transformation implemented in [Pre] by adding domahauses,
which are derived during the deduction procedure. dleé a clause of CNF formul&'. When literall is
deduced from: under a partial assignment, it is annotated with one of its dominatowgjich is then used
to compute dominators for further implied literals.

The earliest dominator d@fis easily computed. The earliest dominator of a decision is the literal itself.
For an implied literal, if all predecessors dfshare the same earliest dominadpthend is the dominator
of [too; otherwise] is the earliest dominator of itself.

In [Pre, Bie09] a variation of this scheme is used. First, a dominateicomputed for vertex with
the above recursion in terms of the dominators chosen for the predece$&oThese may not be earliest
dominators; hencel may not be the earliest dominator oéither. We call it therecursive dominator of
[. Second, if the clause assertihtnas two literals ofd is trivial, [is annotated withi. Otherwise, the
immediate dominatoi of [is computed. If the negation @f appears in the asserting clause, thles 7.
Otherwisej is found by a search linear in the size of the subgraph of the implication fpetpleen! and!.
The search is made easy by enforcing the invariant that every pssidead] is connected td by exactly
one path. (Alternatively, that the asserting clause of every litenahe implication graph that is not its own
dominator has exactly two literalsand the negation of a dominator lof

Figure 4.3 describes this procedure. The procedure is performedakseting clause has more
than two literals and does not contain the negation of the recursive domiftratmm”. For the first an-
tecedent literal alit iny, for which idom == 0 (line 12), the procedure sets alit as the first catelinfathe
immediate dominator, i.e. idom == alit (line 13), and traces back up to rdom asngalnle literals between

alit and rdom with MaRK(lit) (lines 14—18). For the search of the remaining antecedent literals @he 1

65

the procedure traverses back from the current antecedent literalraiitit hits a literal on the marked path
(line 20), or it meets either idom or rdom (lines 23 and 24). If a new endpditite marked path is met, it

becomes a new idom and the literals between the new and old idom are unrtimdge@6-27).

Example 4.4. Consider the implication graph shown in Fig. 4.4. In the implication grapis asserted
from (b V —cV ~d V e)3 and its predecessors have the common recursive dominafsince the negation
of the recursive dominator is not contained in the asserting claysthe procedurscCOMPUTEDOMINA -
TORINPRECGCSAT of Fig. 4.3 is invoked with argumentg and a to search the immediate dominatoreof
Supposed that ins, the procedure examinesb, andd in that order (lines 3 and 4). Initially idom = 0. Then
the search front setsc as a new idom (line 13), and the procedure marks all the literaland c¢) along
the path betweea anda (lines 14-18). In the search from the next antecedent litigrainceb is marked,

it becomes a new idom (line 26) and the current idoimw unmarked (line 27). For the last search, the
procedure meets the current iddmwvhile traversing the implication graph froah(lines 20-25). Therefore,
the procedure stops searching fram Sinced was the last antecedent, all the marks betwkand ¢ are

cleared (lines 5 and 6), antdis returned as the immediate dominatoreof

Wheni is computed] is annotated with it and the dominator clause- (—i \ 1) is added taF'. The
implication graph is modified accordingly by makinghe antecedent af This simplifies the graph and
guarantees that only one path connects /. If the negation ofi is contained in the original antecedent
clausec, c is subsumed byy, as shown in Example 4.3. In the exampig,computed from immediate
dominatorb simplifiesc, while v3 based on the earliest dominatodoes not.

The use of immediate dominators is motivated by the fact that, if there is a domiratise chat
subsumes the asserting clause, then it contains the negation of the immediatatdonrecoSAT gives
up the chance of finding some non-trivial dominators in return for the abilityirtglify clauses using
immediate dominators. Besides, Example 4.3 shows that dominator clauses igatudliediate dominators

are also best for deductive power.

Lemma 4.5. If immediate dominator clauses are added for all implied literals with non-tridg@hinators,

then asserting-l cause<D to deduce the negation of all literals Dom(l) \ {i}.

O~NO Ol WN P

}

66

CoMPUTEDOMINATORINPRECOSAT (y,rdom){

idom = 0;
for each (antecedent literal lit iny)
idom = SEARCHDOM(-lit, rdom, idom);
for (lit = idom; lit != rdom; lit = PRED(lit))
MARK(lit) = false;
return idom;

9 SeArcHDowm(alit, rdom, idom){

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 }

a@Q] —— pQ] ————— cQ1

la]

ASSERT(rdom != alit);

lit = alit;

if (idom == 0){
idom = alit;
do{

ASSERT(SIZE(GETANTECEDENTCLAUSE(lit) == 2)); {
MARK (lit) = true;
lit = PRED(lit);

} while (lit = rdom);

} else{

while (M ARK(lit)) {
ASSERT(SIZE(GETANTECEDENTCLAUSE(lit) == 2)); {
lit = PRED(lit);
if (lit ==rdom) break ;
if (lit==idom) break ;

}

for (;idom != lit; idom = PRED(idom))
MARK (idom) =false ;

}

return idom;

Figure 4.3: Dominator analysis in PrecoSAT

1 a 2 a a
a \3~%®1 [a]

Figure 4.4: Implication graph of Example 4.4

67

Proof. If for any literal [in the implication graph that has a non-trivial dominator its dominator clause is
added toF’, then! is connected to all its non-trivial dominators by a chain of two-literal clabseause
Dowm(l) is totally ordered. Let BM(l) = {d1,...,d,} with d; < d; for i < j. Itis then sufficient to

observe thatl, — d; 1 is equivalent to-d; 1 — —d;. O

4.2 Simplifying Clauses During Deduction

The use of immediate dominators increases the chances of subsumptionssdhang clause by the

dominator clause. However, it may lead to missing non-trivial dominators.

Example 4.6. Given the following clauses:

(—\a V b)l VAN (—\CL V f)g A (ﬁb V 6)3 VAN (—\b vV d)4/\

(=bV =cV-=dVe)sA(maV—-eV-fVg .

Suppose thai@1 is assigned as a decision. Propagating this assignment results in the implisatiown
in Fig. 4.5, where literals in square brackets are the dominators compuwteldebalgorithm of [Pre]. Since
b, ¢, d, and f are asserted by two-literal clauses, they are annotated with their earl@msirthtora. For

e asserted by, its immediate dominatads is computed becausg does not contain the negation of the
earliest dominator. Literal b is used for the dominator computation wheis implied throughes. However,
since the other predecessgrhas a different dominator frora, g is computed as its own dominator. This
leads to missing the opportunity to simplifyto v = (—a V g), which would be derived with the earliest

dominatora. O

Example 4.6 shows that some simplification opportunities may be missed if vertickdbaled with
their immediate dominators because fewer non-trivial dominators may be.f@ndhe other hand, Ex-
ample 4.3 shows that the exclusive use of earliest dominators may preékensonplifications, when the
immediate dominator is distinct from the earliest one. The simplifications of bottoagipes can be ob-
tained within the same complexity bound by labeling each vertex with its earliest dtmmibut computing

the immediate dominator as well. The next example shows that even the combpred@pmisses some

68

Ql
9]

Figure 4.5: Implication graph of Example 4.6

opportunities for simplification. However, we can directly check for sebisamption between the asserting
clause and other implicates 6fthat may or may not be present in the database. We now demonstrate how

this multistep resolution can be integrated with the search for the immediate dominator.

Example 4.7. Given the following clauses:

(—|CL V b)l A (—|b V C)Q A (—|b V d)g A (—|C vV 6)4 A (—|d V f)5/\

(meVadV=—eVafVg .

Suppose that propagating@1 results in the implications shown in Fig. 4.6. Literalis found as the
immediate dominator of in the graph. Since the asserting clauggedoes not contairb, it cannot be
simplified by the immediate dominator clause. Howexgcan be simplified tg—c vV —d V g) because:

andd imply e and f, respectively. O]

An antecedent literad of a clausey asserting can be removed by self-subsumption with another
implicate of ' if each path between the immediate dominatot ahda goes through some other literal in
~. If only one path connects a literal to its dominator, the check is simple aneaffiSelf-subsumption is
possible even if the immediate dominator is not among the literajs in

The pseudocode for the check is shown in Figure 4.7. As in [Pre], teedure is performed if the
asserting clause has more than two literals and does not contain the negation of the recdosnieator.
The immediate dominator is known to be on all paths connecting the recurswimator “rdom” to the

antecedent literals in. Therefore, it is known to be somewhere on the unique path between “rdndc”

69

Figure 4.6: Implication graph of Example 4.7

the first such literal, for which idom == 0 (line 18). All the vertices of the imgiima graph on that path
are marked as candidate immediate dominators witRKk(lit) = true (lines 20-28). Tracing back (with
PRED(!)) from the remaining literals, i.e., idom != 0 (line 29), until a marked literal is hihmates more
candidates until the position of the immediate dominator is known (lines 30-3&hdruf a literall in

is found while tracing back from another literalof ~, i.e., ANTE(lit) == true (lines 23 and 33), then

is marked as redundant with ARK (idom) = false (line 24) and ANTE(alit) = false (line 34). When this
occurs during the initial path marking phagséecomes the new endpoint of the marked path (lines 25-26).
Otherwise, the trace back is terminated because the remaining work eithdom&sr will be done when
starting from.

While this procedure is based on multistep resolution like on-the-fly simplificatiwimgl conflict
analysis [HS09] and conflict clause minimization [SB09], the use of the stadl@ninator to limit the search
makes it suitable for frequent use during deduction. The three proeedue complementary: dominator-
based simplification resolves an asserting clause with clauses that precetes implication graph; on-
the-fly simplification resolves an asserting clause with clauses that follow ieimtplication graph, while
conflict clause minimization does not modify clauses in the implication graph. &ergthe simplification
of the implication graph that results from replacing asserting clauses with dtnitlauses speeds up the

other two procedures.

1 CoMPUTEDOMINATORANDSIMPLIFY (y,rdom){
2 idom = 0;

3 for each (antecedent literal lit iny)

4 ANTE(-lit) = true;

5 for each (antecedent literal lit iny)

6 idom = SEARCHDOMANDSUBSUME(—lit, rdom, idom);
7 for (lit = idom; lit I= rdom; lit = PRED(lit))

8 MARK(lit) = false;

9 for each (antecedent literal lit iny)

10 if (ANTE(=lit) == false)

11 REMOVE(~, lit);

12 elseANTE(-lit) = false

13 return idom;

14 }

15 SEARCHDOMANDSUBSUME(alit, rdom, idom){
16 ASSERT(rdom != alit);

17 lit = alit;

18 if (idom == 0){

19 idom = alit;

20 do{

21 MARK (lit) = true;

22 lit = PRED(lit);

23 if (ANTE(lit)) {

24 ANTE(idom) =false;

25 for (;idom !=lit; idom = PRED(idom))
26 MARK (idom) =false ;
27 }

28 }+ while (lit = rdom);

29 } else{

30 while (M ARK(lit)) {

31 lit = PRED(lit);

32 if (lit ==rdom) break ;

33 if (ANTE(Iit)) {

34 ANTE(alit) = false;

35 return idom;

36 }

37 }

38 for (;idom !=lit; idom = PRED(idom))
39 MARK (idom) =false ;

40 }

41 return idom;

42 }

Figure 4.7: Dominator analysis with simplifying asserting clauses

70

71

4.3 Dominator Clauses and Redundancy

In this section we study when dominator clauses may duplicate existing clauddswa, on the
other hand, dominator analysis may help a SAT solver remove redundaaisliterm clauses other than the
asserting clauses and remove subsumed clauses from the database.

To minimize overhead, the SAT solver should not add dominator clausesiblatate clauses already

in I

Example 4.8. Consider the following formul':

F=(-aVbiA(-aV-bVec)aA(-aVc)s .

Suppose that the SAT solver makes decisiamn, and examineg; and ¢, in order. Then,b and ¢ are
asserted by; andcs, respectively. Sinceg has more than two literals andis found as the dominator of
the dominator clause = (—a V ¢) is generated. Howevey, subsumes botty andcs. In particular, c; is a

duplicate ofy and is satisfied by. Therefore F' ~ F U {~}. O

Notice that in Example 4.8 the dominator clause is not in the implication graph asdreeb the
asserting clause.

While duplication is possible, if the SAT solver processes implications in the oraénich it discov-
ers them—which is the usual way—rather strong conditions must be met. tteditions for duplication

are described in the following lemma.

Lemma 4.9. Suppose implications are processed in first-in, first-out mannery ke —d, [} be a domina-
tor clause, wherel is the dominator of. If it is already present in formuld’, v is not an asserting clause

in the implication graph and it subsumes the asserting clausé for

Proof. Lety = (—d Vv [) be a dominator clause computed fdrom asserting clause Assume first that
is asserting in the implication graph. Thegontaing and at least another literélthat is deduced fromi.
Assertingd makesy a unit clause so thatis implied through it before the implications fare examined.

That preventsy from being found as dominator clause, resulting in a contradiction. Seppms~ is not

72

in the implication graph, but is already . Supposel is not inc. Then,/ is implied from~ before it is

implied frome. This prevents duplication. Therefortappears ire, andc is subsumed by. O

Lemma 4.9 suggests that duplication is not a frequent occurrence instile¢ preprocess their input
and possibly remove more redundancies during DPLL. Also notice that, ikamiple 4.8¢c3 is processed
beforecy, no duplicate is generated. This is the case of a SAT solver, like Precti®&handles the clauses
with two literals before other clauses in the deduction procedure. Thi®a@piis not adopted by many
other DPLL-based SAT solvers. Besides, one can detect claussegnsetd by dominator clauses on-the-
fly during the deduction procedure. That is, during the deduction duee if a clause: that is found
to be satisfied by literal contains the negation of dominatérof /, thenc is subsumed by the dominator
clause(—d Vv 1). The check for containment of the dominator/shay be expensive for any dominator and
for clauses with many literals. Hence, this approach should be applied wsitfairg: for example, only
checking whether the recursive dominator ¢and possibly of a few more true literals in the clause) is the
false literal that caused the clause to be examined. The annotation of esmhritte implication graph
with its recursive dominator allows this test to be carried out even when thesponding dominator clause
is not added to the database. If not all satisfied literals are checkexljrapbion may not be detected. On
the other hand, subsumption may be found when the examined clause imsdldsyithe dominator clause,

even though it is not subsumed by the clause assdrting

4.4 Garbage Collection

According to the algorithm of Sect. 4.2, a dominator clayder literal [is obtained through simpli-
fication of the asserting clause lofHence;y may contain the negation of the immediate dominatahich
is different from the earliest one For this case (a dominator clause is based)pthe clause subsumption
check for non-asserting clauses during the deduction procedwrgagsdo save with d, and it uses both
information to simplify the clauses. if # i and—d is a literal of clause that is satisfied by, then there
must be a dominator clause based: dhat subsumes, and hence is removable. Otherwise, checking the

containment of-d in ¢ can also simplify to a new dominator clauged v [).

73

Applying on-the-fly simplification to the deduction procedure in addition to adrgthalysis may lead
to the deletion of clauses—for instance, clauses subsumed by dominasel&eriving unit clauses from
dominator clauses also increases the number of clauses which are safsfiean at leveD. Therefore,
these simplification techniques should be coupled to an efficient schergarfmage collection Note that
subsumed clauses can be simply deleted, because they will never be dnvodvproof of unsatisfiability.

Deleting a clause s relatively expensive: is deleted after finding its position in the clause database;
the clauses after that point are moved up. Similarly, the watched literals listbaugpdated. It makes
sense to amortize the cost of deletion over multiple clauses by resorting taggacbllection. Let =
{lo,...,ln—1} be a clause andj, be a dummy literal that appears in no clause and is assigned true at level
0. Clauser is turned into a satisfied clause by replacipgvith [,,; the solver delays deleting the satisfied
until it gets rid of all the clauses satisfied at decision IéveThis clause deletion tends to be often invoked

due to leveD assignments implied by unit clauses derived from dominator clauses.

4.5 Dominator-Based Conflict Clauses

In its original formulation, dominator analysis cannot produce implicates witleriam two literals
and with literals assigned at different decision levels. The following elemefdaat and example suggest
one way to extend the approach to generate clauses when not all amtelitedals have a common domi-

nator.
Lemma 4.10. No literal / in F implied at levelk may have a dominator at a level different frégm

Proof. Let d be a dominator of that is assigned at levél # k. Then, by definitionF U {{—~d}} Fp [at

level k. This is in contradiction with the assumption. O

Example 4.11. Given the following formula:

F :(—|a V b)1 A (—|b V 0)2 A (—\d vV 6)3 A (—|b V-dV —eV f)4/\

(=bV =cVfVg)s .

74

a@Q] —— Q1 —— =@l

[a] L g 2]

Q2 @2
fl gl

Figure 4.8: Implication graph of Example 4.11

Suppose that decisiong21 andd@2 are made. They result in the implications shown in Fig. 4.8; for each
literal the earliest dominator is computed. In this case, no clause is ge@tkifsstandard dominator analysis

is applied. However, two implicates, which subsume existing clauses,ecderlved if the algorithm is
modified in order to check the dominators of literals at the same level. Foarios, the literals oty,
which assertsf, can be divided intel; = {—b} anddy = {—d, —e, f} according to the decision level of
each literal. Application of dominator analysis th results in a dominator clause = {—d, f} because

d is the earliest dominator of. Clausecs = v U d; becomes a new implicate éf, and it subsumes the
antecedent clausg. Similarly, c; is another implicate that is obtained by removingfrom cs. Suppose”

is transformed t&#” = FU{¢s} andF” = F'U{¢;}. Then,F < F’ becausé” U {{b},{—~f}} Fp —d but
Fu{{b},{~f}} V/p ~d,andF’ < F" becausd” U{{b},{—g}} Fp —f and—d but F"U{{b},{—g}} /D

= f nor —d. O

In this section we discuss the application of dominator analysis to the deriatmmflict clauses.
Once a conflict clause is generated and possibly simplified, the dominatomation collected for its

antecedent literals can be used thanks to the following lemma.

Lemma4.12. Letc = {ly, ..., l,} be the asserting clause of literg]. Letd, be a dominator of literat-.

Then{—dp} U (c\ {lo}) is an implicate off".

Proof. Itis also true that"U{{do},{-l1},...,{-ln-1}} Fp ln, becaus&' U{{=lp},..., {-ln—1}} Fp s

andF' U {{do}} Fp —lp. By Lemma 3.16{—d} U (¢ \ {lo}) is an implicate ofF". O

Replacing antecedents with their non-trivial dominators therefore pesdacew clause that can be

used in conjunction with, or as replacement of, the clause computed byct@mélysis. Even though

75

a@l—»b@l—»c@l

%2 : %2 : MC]@Q L7902

d 3 —) 91
5 h@Q?2

d]

Figure 4.9: Implication graphs of Example 4.13

adding a dominator clause to a CNF formula may not affect its deductiverpaven such a clause is
derived from a conflict clause based on a UIP, it is at least guahmigeto be a duplicate and it often

improves deductive power.

Example 4.13. Suppose conflict clausg = (—cV —f V =h V g), Whereg is the UIP, is added and when
after backtracking it becomes asserting, the implication graph is the onershoFig. 4.9. Suppose clause
c; = (—a VvV —d V g) is generated fronzs by replacing the antecedent literals gfwith their recursive
dominators. Since; contains a UIP §), it can substitute:s as a conflict clause. Whepnis asserted by
c7 and the implication graph is shortened. To generate more compact imphogitaphs, we could always
substitute a standard conflict clause likg with a dominator-based conflict clause like However, this
unlimited replacement may lead the SAT solver to miss some implications thaild tvave found with
the standard conflict clauses. For instancegrfreplacescs, and later in the searchj@1 and —¢@Q2 are
assigned as decisions, literal®1, fQ1, hQ1, and—a@?2 are implied. However, ifg exists in the database,

—c and—b are also implied as shown in the implication graph of Fig. 4.10. O

One may add both conflict clauses (eq@.andc; of Example 4.13), but the overhead is not negligi-

ble. Hence, supplemental conflict clauses based on dominators shazddelbelly generated and added to

|C@2 —— > -bQ2
2

Figure 4.10: Implication graphs of Example 4.13

76

standard conflict clauses rather than replacing them.

Our approach is to produce a dominator-based conflict clalsaly when a newly-found conflict
clause~ is obtained by on-the-fly simplification during conflict analysis [HSJ10].this case, since
already exists in the database, addifdpas an acceptable cost.

The pseudocode of Fig. 4.11 shows the procedure that is run wheaeslause is asserting. A
dominator clause is learned only when a newly found conflict clause becasserting and this invokes
procedure AIALYZE DOMINATOR with learned= true (lines 7-9). Otherwise, simplification based on
either single or multiple dominators is applied to the asserting clause (lines 3—4).

The replacement based on recursive dominators is straightforwaidexpensive: while computing
the earliest dominator of the asserted literal, it is sufficient to check whstithrdominator is the negation

of one of the antecedent literals of the clause. This can be done by a staglef the literals.

4.6 Experimental Results

We have implemented the algorithms for clause simplification during deductiordaiittba of dom-
inator clauses in the CNF SAT solveirCUs 2.0 [HIKS09, VIS]. The benchmark suite is composed of all
the CNF instances (with no duplicates) from the industrial category of theR&&es of 2006, 2008, and the
SAT Competitions of 2009 [SATa]. We conducted the experiments on a 2.41@&lLore2 Quad processor
with 4GB of memory. We used 10000 seconds as timeout, and 2GB as memaox. el tested PrecoSAT
236 [Pre] along with CirCUs 2.1 to provide a reference point. We denotextemsions by DOM (Dom-
inator analysis), DOMSUB (Dominator analysis with Subsumption check oertass clauses), DSSCL
(Dominator-based Simplification on Satisfied Clauses), and DCCL (DominatsebConflict Clause gen-
eration).

The results are summarized in the graph of Fig. 4.12, which shows the nofbstances completed
in a given CPU time. The graphs of Fig 4.13, 4.14, 4.15, and 4.16 give titelmations of the proposed
techniques in detail. From the graph it appears that the proposed teebriglp CirCUs complete more
instances within 10000 s, but provide limited benefits for simpler SAT problémfact, for the easier for-

mulae, PrecoSAT is faster, but the improved CirCUs has performanaetoldisat of PrecoSAT. Moreover,

15
16
17
18 }

Figure 4.11: Algorithm for generating a new conflict clause based amsiwe dominators.

REPLACECONFLICTLITSWITHDOMS(Y) {

v ={UIPO)}
for each (antecedent literal lit iny)
ANTE(=lit) = true;
for each (antecedent literal lit iny) {
rdom = recursive dominator oflit;
if (ANTE(rdom)){
ANTE(-lit) = false;
ANTE(rdom) =true;
v =+ U {-rdom};
¥
else if(rdom == lit)
~ =" UAlit};
}

for each (antecedent literal lit in’)
ANTE(-lit) = false;
return +/;

77

335

330

325

320

315

310

305

Number of Instances

300

295

290

78

¢ CirCUs+DOMSUB+DSSCL+DCCL -+
. CirCUs+DOMSUB+DSSCL—<—
o CirCUs+DOMSUB ¢+

CirCUs+DOM — = |

CirCUs
| | PrecoSAT S
0 2000 4000 6000 8000 10000

CPU time (sec)

Figure 4.12: CPU time by PrecoSAT and CirCUs with and without proposéahitgaes

Number of Instances

335

330

325

320

315

310

305

300

295

290

79

R """""""""""""""" """""""""""""""" """"""""""""""""""""""""""" >><(

Lo ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,, >222€ ,,,,,, ffigé ,, |

I S i T N

3 X

[T """"""" //>< """" T T

L)%Z/ ,,

b g >‘z< ,,

— f ,,,

£

. A, S S A o o 1
Q/(CirCUs+DOM ———
;g | CirCUs |
VA | L | L | L | L J

0 2000 4000 6000 8000 10000

CPU time (sec)

Figure 4.13: The contribution of proposed technique DOM

Number of Instances

335

330

325

320

315

310

305

300

295

290

80

I CirCUs+DOMSUB
i i | i | pirCU§+DOM X
0 2000 4000 6000 8000 10000

CPU time (sec)

Figure 4.14: The contribution of proposed technigue DOMSUB

Number of Instances

335

330

325

320

315

310

305

300

295

290

] CirCUs+DOMSUB+DSSCL——<—
| i | | | CirQUs+DQMSQB —&—
0 2000 4000 6000 8000 10000

CPU time (sec)

Figure 4.15: The contribution of proposed technique DSSCL

81

Number of Instances

335

330

325

320

315

310

305

300

295

290

4 MO CifCU'SJE DOMS UBJFD'SS'CL#'DC”CL """"""""""""
| | | QwCUs&DOI\(ISUBj—DSS?L% |
0 2000 4000 6000 8000 10000

CPU time (sec)

Figure 4.16: The contribution of proposed technique DCCL

82

83

Subsuming Dominator Clauses

10° T 4
B
1 S R 5
m 10 S
(:/)) + ++ji ++ fus
- + AT n
S 107 SR
+
8 LT
3 74N
10
At
4 |
10 1

10% 10° 10°% 10t 10
Immediate DOM

@

Num. of Literals / Conflict Clause

10°

102 + ++

NEW
s
o

(b)

Figure 4.17: Effect of proposed techniques on (a)the number ofisuibg dominator clauses per dominator
computation: GOMETRIC MEAN = 1.11, p-value =0.001; (b)the number of literals per conflict clause:

GEOMETRIC MEAN = 0.6, p-value =2.2 - 1016

84

the proposed techniques tends to help CirCUs to solve more hard instaacdldtbase version of CirCUs
and PrecoSAT.

Figure 4.17 examine the effects of the proposed techniques (i.e., DOMSBS8&L+DCCL) on
(a) the number of dominator clauses subsuming asserting clauses per ornomaputation and (b) the
number of literals per conflict clause. For each of these quantities the gigmmean of the new/old ratios
is reported (excluding cases in which one of the value®).is Single-samplég-tests were performed to
confirm the statistical significance of the data. The null hypothesis wathéhgeometric mean of the ratios
is1.

In Fig. 4.17(a), our dominator analysis, i.e., DOMSUB, produces morerappties for computed
dominator clauses to subsume asserting clauses than the analysis of immetliai@als. In our experi-
ments, on average02 literals were removed by subsuming dominator clauses for every implication.

Analysis of the CirCUs runs show that the major effect of DOMSUB+DS8OCCL is in reducing
the number of literals per conflict clause. (See Figure 4.17(b).) Our sirahdicates that this reduction
stems from the reduction in the average number of resolution steps pdcicanéllysis. The reduction in
resolution steps is 11% on average andjhalue is1.05 - 1079, This translates in a 40% reduction in
literals per conflict clause. In contrast, the indicators of increasedctiedpower are not changed in a
decisive way. The number of conflicts per decision shows a 9% improvesneaverage and its-value is
0.009. This supports the conclusion that the main way in which dominator clausesvienpesformance is

by affecting proof conciseness.

4.7 Summary and Discussion

Dominator analysis, introduced in PrecoSAT [Bie09], is the basis foriefficechniques that allow a
SAT solver based on DPLL to simplify the given CNF formula and learn newsela while deducing new
literals. In this chapter, we have introduced two enhancements over thRi&lBrocedure to check clauses
for simplification based on self-subsumption that is both more powerful ard efticient than analysis
based on immediate dominators; and a low-overhead procedure to learrattomiiased conflict clauses.

In our experiments, the new techniques were especially effective o, ldifficult examples. We

85

hope that a better understanding of the interplay between the new techaiggdi®ther components of the

solver will lead to improved performance also for the easier SAT instances.

Chapter 5

Conclusions

51 Thesis Conclusions

The purpose of this thesis research is to devise clause transformatioimteshthat help a DPLL-
based SAT solver to run faster by deducing more literals from its decisiahbyareducing the depth of the
implication graphs used in conflict analysis. Even though many transforntatbniques have empirically
proved to help a SAT solver prune more of the search space, a foralgbenof their effectiveness has not
been attempted. In this thesis, | introduced deductive power and preohafseness to characterize them,
and proposed the new tranformations applied at several stages in treoAT.

In Chapter 3, | have introduced deductive power and proof conesssfior DPLL-based SAT solvers.
Then, | have presented how to evaluate the effectiveness of existimgedi@nsformations in terms of the
two notions. First, | have shown that simplifications based on self-subsungterk guarantee no deteri-
oration in deductive power. More importantly, the addition of standard icocfhuses has been proved to
improve the deductive power of the input formula always. By contrastethgirical analysis of variable
elimination showed the enhance performance of our SAT solver due toagemeof more compact impli-
cation graphs. Second, | proposed two new techniques based @uBsifmption, both of which efficiently
improve the deductive power of CNF formuale. On-the-fly simplification deteabsumption relation be-
tween clauses at negligible cost, and it can be applied at any stage usihgiom, such as conflict analysis
and variable elimination. The distillation procedure, which is implicitly extendenh fself-subsumption
check, is applied to preprocessing of the CNF formula.

In Chapter 4, | have presented dominator-based clause learning selpeiies in PrecoSAT. First,

87

| presented how adding dominator clauses during implication process @iaffén shortening the im-
plication graph, and hence in deducing other literals quickly. This analgsisbben extended to check
self-subsumption relation over antecedent clauses with inexpensiveutatiop. | also proposed a new
scheme to generate conflict clause based on dominators.

| conducted the experiments over various benchmarks that are obtaimeddal SAT problems to
demonstrate the effectiveness of the proposed techniques. In dghysismf results have shown that the
the proposed CNF transformations contribute in improving the performdrmar SAT solver in practice.
In particular, | expected that dominator-based simplification techniques mapvmthe deductive power

of the given formula, but my experimental results showed that it primarilytieadore concise proofs.

5.2 Future Work

The proposed techniques have several extensions that are worttestigiation: generation of small
unsatisfiable cores, application to restarts and solution enumeration, &épplimanon-clausal reasoning,
and logic synthesis and representation of sets by characteristic funictiGhd~ [McMO02].

Generation of small unsatisfiability cores is one of the most required puoeeth formal verification
applications [AKMMO03, KOSS04, GLST05, McMO03, LS06, Li06]. An @atigiable core is extracted from
the original clauses involved in generating the empty clause. This is peddsyngnalyzing the implication
graphs generated during the DPLL procedure. Hence, proof @mess is a meaningful criterion to evaluate
a CNF transformation with respect to the generation of small unsatisfiabili&scor

In this thesis, CNF transformations are only considered as a way to imp@waethuction procedure
of DPLL-based SAT solvers. However, there have been variousoappes to make DPLL-based SAT
solvers faster. One example is SAT encoding. Some optimizations of theiegaaah be performed in the
form of preprocessing before SAT solving. These techniques allosidoificant reductions in the size of
the resulting propositional formulae, and in consequent improved peafige of the SAT solver. Hence,
such translation techniques from a circuit to a CNF formula may be charseten terms of deductive
power and proof conciseness. For this, first, the formal definitions ofnetions should be extended to

non-clausal formulae and reasoning.

Bibliography

[AHU83] A.V.Aho, J. E. Hopcroft, and J. D. UllmamataStructuresandAlgorithms. Addison-Wesley,
Reading, MA, 1983.

[AKMMO3] N. Amla, R. P. Kursahn, K. L. McMillan, and R. Medel. Experimi@al analysis of different
techniques for bounded model checkinglrternationalConferencen ToolsandAlgorithms
for ConstructiorandAnalysisof SystemgTACAS’03), pages 34-48, Warsaw, Poland, April
2003. LNCS 2619.

[Bar] URL:http://www.Isi.upc.edu/ oliveras/bclt-main.html .

[BCCZ99] A.Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model chiegkvithout BDDs. InFifth
InternationalConferenceon Tools andAlgorithmsfor Constructiorand Analysisof Systems
(TACAS'99), pages 193-207, Amsterdam, The Netherlands, Mar@B.1ONCS 1579.

[Bie08a] A. Biere. Adaptive restart strategies for conflict drivetrssdvers. InTheoryandApplications
of Satisfiability Testing SAT 2008, pages 28-33. Springer-Verlag, 2008. LNCS 4996.

[Bie08b] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2—-4):75-97, 2008.

[Bie09] A. Biere. Hre,i}coSAT@sc'09. SAT Competition 2009 - Solver Description, June 2009.

[Bor97] A. Boralv. The industrial success of verification tools based @tstrck’'s method. In
ComputerAided Verification, 9th InternationalConferencé CAV'97), pages 7-10, Haifa, Is-
rael, June 1997. Springer-Verlag. LNCS 1254.

[Bor98] A. Boralv. Case study: Formal verification of a computerized railway interlockfrgrmal
Asp.Comput., 10(4):338-360, 1998.

[Bra0O1] R. I. Brafman. A simplifier for propositional formulas with many binalauses. In
Proceeding®f the 17th internationaljoint conferenceon Atrtificial intelligence- Volume 1,
pages 515-520, San Francisco, CA, 2001. Morgan Kaufmann Peislisit.

[BS98] J. R. Burch and V. Singhal. Tight integration of combinationalfieation methods. In
Proceedingsf thelnternationalConferenceon Computer-Aidedesign, pages 570-576, San
Jose, CA, November 1998.

[CGO5] B. Cook and G. Gonthier. Usingadnarck’s algorithm to prove inequalities. Formal
Methodsand Software Engineering,7th InternationalConferenceon Formal Engineering
Methods(ICFEM 2005), pages 330-344, Manchester, UK, November 2005. Spiifagkg.
LNCS 3785.

[CLR9O]

[Coo71]

[DLL62]

[DP60]

[EBO5]

[EMS07]

[ESO03]

[ESO06]

[GAG*02]

[GLSTO5]

[GNO2]

[GNO3]

[GSK97]

[GW93]

89

T. H. Cormen, C. E. Leiserson, and R. L. Rive&n Introductionto Algorithms. McGraw-
Hill, New York, 1990.

S. A. Cook. The complexity of theorem-proving procedune®rbceedingsf the3rd Annual
ACM SymposiunontheTheoryof Computing, pages 151-158, New York, 1971. Association
for Computing Machinery.

M. Davis, G. Logemann, and D. Loveland. A machine programn theorem proving.
Communication®f the ACM, 5:394-397, 1962.

M. Davis and H. Puthnam. A computing procedure for quantificatie@omyn Journalof the
Associationfor ComputingMachinery, 7(3):201-215, July 1960.

N. Eén and A. Biere. Effective preprocessing in SAT through variablecéagse elimination.
In EighthInternationalConferencen TheoryandApplicationsof Satisfiability Testing(SAT
2005), pages 61-75, St. Andrews, UK, June 2005. Springer&/etldCS 3569.

N. Eén, A. Mischchenko, and N.d8ensson. Applying logic synthesis for speeding up SAT.
In TheoryandApplicationsof Satisfiability Testing: SAT 2007, pages 272-286, Lisbon, Por-
tugal, May 2007. Springer. LNCS 4501.

N Een and N. $rensson. An extensible SAT-solver. $ixth InternationalConferenceon
TheoryandApplicationsof Satisfiability Testing(SAT 2003), pages 502-518, S. Margherita
Ligure, Italy, May 2003. Springer-Verlag. LNCS 2919.

N. Een and N. $rensson. Translating pseudo-boolean constraints intdSAT., 2(1-4):1-26,
2006.

M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combinitigrgyths of circuit-
based and CNF-based algorithms for a high-performance SAT solv@&roteeding®f the
DesignAutomationConference, pages 747-750, New Orleans, LA, June 2002.

O. Grumberg, F. Lerda, O. Strichman, and M. TheobaldofPgaided underapproximation-
widening for multi-process systems. Rroceeding®f the 32nd ACM SIGPLAN-SIGACT
symposiumon Principlesof programminganguages, POPL '05, pages 122-131, New York,
NY, USA, 2005. ACM.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust Sadlver. InProceeding®sf the
Conferencen Design,AutomationandTestin Europe, pages 142-149, Paris, France, March
2002.

E. Goldberg and Y. Novikov. Verification of proofs of unsatsility for CNF formulas.
In Design,Automationand Testin Europe(DATE’'03), pages 886—891, Munich, Germany,
March 2003.

C. P. Gomes, B. Selman, and H. Kautz. Heavy-tailed distributionsntbmatorial search. In
Proceedingsf NationalConferencen Artificial Intelligence, pages 431-437, 1997.

I. P. Gent and T. Walsh. Towards an understanding of hill-climplgrocedures for sat. In
Proceedingsf 11thNationalConferenceon Artificial Intelligence, 1993. ISBN 0262510715.

[HBO3]

[HIKS09]

[HS07]

[HS09]

[HSJ10]

[JAS04]

[Jer]

[JS04a]

[JS04b]

[JS06]

[KGPO1]

[KK97]

[KOSS04]

[Li06]

[Lib0O]

[LK73]

90

M. Herbstritt and B. Becker. Conflict-based selection of bhamg rules. InSixth International
Conferenceon Theoryand Application in Satisfiability Testing(SAT2003), pages 441-451,
Portofino, Italy, May 2003. Springer. LNCS 2919.

H. Han, H. Jin, H. Kim, and F. Somenzi. CirCUs 2.0 — SAT competi#io09 edition. SAT
Competition 2009 - Solver Description, June 2009.

H. Han and F. Somenzi. Alembic: An efficient algorithm for CNFppogessing. In
Proceeding®f the Design Automation Conference, pages 582-587, San Diego, CA, June
2007.

H. Han and F. Somenzi. On-the-fly clause improvementwlelfth InternationalConference
on Theoryand Applicationsof Satisfiability Testing(SAT 2009), pages 209-222, Swansea,
UK, June 2009. Springer-Verlag. LNCS 5584.

H. Han, F. Somenzi, and H. Jin. Making deduction more effed@tivSAT solvers. IEEE
Transaction®n Computer-Aidedesign, 29(8):1271-1284, August 2010.

H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solveargd towards bounded
model checking. In R. Alur and D. Peled, editogxteenthConferenceon ComputerAided
Verification (CAV'04), pages 519-522. Springer-Verlag, Berlin, July 2004.AN3114.

URL.: http://www.cs.tau.ac.il/research/alexander.nadel/.

H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solveintarnationalConferencen
TheoryandApplicationsof Satisfiability Testing(SAT 2004), Vancouver, Canada, May 2004.

H. Jin and F. Somenzi. An incremental algorithm to check satisfiafalifgounded model
checking. ElectronicNotesin TheoreticalComputerScience, 2004. Second International
Workshop on Bounded Model Checking. http://www.elsevier.nl/locate/entcs/.

H. Jin and F. Somenzi. Strong conflict analysis for propositisagséfiability. InDesign,
AutomationandTestin Europe(DATE’'06), pages 818-823, Munich, Germany, March 2006.

A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Banleasoning. IRroceedings
of the DesignAutomationConference, pages 232-237, Las Vegas, NV, June 2001.

A. Kuehlmann and F. Krohm. Equivalence checking using cutsteaps. IiProceedingsf
the DesignAutomationConference, pages 263-268, Anaheim, CA, June 1997.

D. Kroening, J. Ouaknine, S. Seshia, and O. Strichmantradi®n-based satisfiability solv-
ing of Presburger arithmetic. In R. Alur and D. Peled, edit@&teenthConferenceon
ComputerAided Verification (CAV'04), pages 308-320. Springer-Verlag, Berlin, July 2004.
LNCS 3114.

B. Li. Satisfiability-Based\bstractionRefinementn SymbolicModel Checking. PhD thesis,
University of Colorado, Department of Electrical and Computer Enginge2006.

P. Liberatore. On the complexity of choosing the branching literaDPLL. Artificial
Intelligence, 116(1-2):315-326, 2000.

S. Lin and B. W. Kernighan. An effective heuristic for the trlmg salesman problem.
OperationdResearch, 21:498-516, 1973.

91

[LMSO04] I. Lynce and J. P. Marques-Silva. On computing minimum unsabisfieores. Innternational
Conferenceon Theory and Applications of Satisfiability Testing (SAT 2004), Vancouver,
Canada, May 2004.

[LS06] B. Liand F. Somenzi. Efficient abstraction refinement in intefpmabased unbounded model
checking. IninternationalConferencen ToolsandAlgorithmsfor ConstructiorandAnalysis
of SystemgTACAS’06), pages 227-241, Vienna, Austria, March 2006. LN@3®

[MB89] P. McGeer and R. Brayton. The satisfiability don't care set mvdriant transformations
in multi-level synthesis. IProceeding®f the IEEE InternationalConferenceon Computer
Aided Design, November 1989.

[McM02] K. L. McMillan. Applying SAT methods in unbounded symbolic moddiecking. In
E. Brinksma and K. G. Larsen, editorgourteenth Conferenceon Computer Aided
Verification (CAV’'02), pages 250-264. Springer-Verlag, Berlin, July 2002.03\2404.

[McMO03] K. L. McMillan. Interpolation and SAT-based model checkingn W. A. Hunt, Jr. and
F. Somenzi, editorgrifteenthConferenceon ComputerAided Verification (CAV'03), pages
1-13. Springer-Verlag, Berlin, July 2003. LNCS 2725.

[MMZ T01] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. a@h Engineering an
efficient SAT solver. InPProceedingsf the DesignAutomationConference, pages 530-535,
Las Vegas, NV, June 2001.

[MS96] J. P. Marques-Silva and K. A. Sakallah. Grasp—a new sedgdrithm for satisfiability. In
Proceedingsf thelnternationalConferencen Computer-Aidedesign, pages 220-227, San
Jose, CA, November 1996.

[MS99] J. P. Marques-Silva and K. A. Sakallah. GRASP: A searchrithgo for propositional satisfi-
ability. IEEE Transaction®n Computers, 48(5):506-521, 1999.

[MVO7] P. Manolios and D. Vroon. Efficient circuit to CNF conversiom. TheoryandApplications
of Satisfiability Testing: SAT 2007, pages 4-9, Lisbon, Portugal, May 2007. Springer. LNCS
4501.

[Nad09] A. Nadel.Understandingindimprovinga ModernSAT Solver. PhD thesis, Tel Aviv Univer-
sity, 2009. (Submitted).

[OMA*04] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L.rkt&v. AMUSE:
A minimally-unsatisfiable subformula extractor. Rroceeding®f the Design Automation
Conference, pages 518-523, San Diego, CA, June 2004.

[Pap94] C. H. PapadimitrioucComputationaComplexity. Addison-Wesley, Reading, MA, 1994.

[PDO09] K. Pipatsrisawat and A. Darwiche. On the power of clausaiiegrsat solvers with restarts.
In Principlesand Practiceof ConstraintProgramming CP 2009, pages 654—668. Springer-
Verlag, 2009. LNCS 5732.

[Pic] URL:http://fmv.jku.at/picosat .

[Pre] URL: http://fmv.jku.at/precosat.

[Pro59]

[Rsa]
[SATa]
[Satb]
[SATCc]
[SBO9]

[SBV96]

[SEO05]

[Sip96]

[SKC93]

[SKCO5]

[SLM92]

[SP04]

[SS98]

[Velo4]

[VHO5]

92

Reese T. Prosser. Applications of boolean matrices to the @nalyiow diagrams. In
IRE-AIEE-ACM '59, easternjoint IRE-AIEE-ACM computerconference, pages 133-138,

New York, NY, December 1959. ACM.

URL.: http://reasoning.cs.ucla.edu/rsat.

URL: http://www.satcompetition.org.

URL: http://http://minisat.se/MiniSat.html.

URL: http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/.

N. Sirensson and A. Biere. Minimizing learned clausesTrelfth InternationalConference
on Theoryand Applicationsof Satisfiability Testing(SAT 2009), pages 237-243, Swansea,

UK, June 2009. Springer-Verlag. LNCS 5584.

P. Stephan, R. K. Brayton, and A. Sangiovanni VincentellimBmational test pattern gen-
eration using satisfiabilit\EEE Transaction®n Computer-Aidedesign, 15(9):1167-1176,
September 1996.

N. $rensson and N &n. MiniSat v1.13 — a SAT solver with conflict-clause minimization.
SAT Competition 2005 - Solver Description, June 2005.

Michael Sipserlntroductionto the Theoryof Computation. International Thomson Publish-
ing, 1996.

B. Selman, H. Kautz, and B. Cohen. Local search strategiesadfisfiability testing. In
Cliques,Coloring,andSatisfiability: SecondDIMACS ImplementatiorChallenge, oct 1993.

Bart Selman, Henry Kautz, and Bram Cohen. Local sedrategies for satisfiability testing.
In DIMACS SERIESIN DISCRETEMATHEMATICS AND THEORETICAL COMPUTER
SCIENCE, pages 521-532, 1995.

Bart Selman, H. J. Levesque, and D. G. Mitchell. New method&dving hard satisfiability
problems. INLOthAAAI, pages 440-446, San Jose, CA, July 1992.

Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: iNom®asing variable elim-
ination resolution for preprocessing SAT instances.SéventhinternationalConferenceon
TheoryandApplicationsof SatisfiabilityTesting(SAT 2004), pages 276—291, Vancouver, BC,
Canada, May 2004. Springer-Verlag. LNCS 3542.

M. Sheeran and G.&@ark. A tutorial on Stimark’s proof procedure for propositional logic.
In G. Gopalakrishnan and P. Windley, editoFsrmal Methodsin ComputerAided Design,
pages 82-99. Springer-Verlag, Palo Alto, CA, November 1998. LN&221

M. N. Velev. Exploiting signal unobservability for efficient trdatgon to CNF in formal
verification of microprocessor. IRroceeding®sf the Conferenceon Design,Automationand
Testin Europe, pages 10266-10271, Paris, France, February 2004.

V. C. Vimjam and M. S. Hsiao. Increasing the deducibility in CNF insesfor efficient
SAT-based bounded model checking.High-Level Design,Validation, and TestWorkshop,
pages 184-191, Napa, CA, 2005.

[VIS]
[WCCO09]

[zCh]
[Zzha97]

[ZhaO5]

[ZKKSVO06]

[ZM03]

93

URL: http://visi.colorado.edutvis.

Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting nghe Electronic Design
Automation: Synthesis\erification,and Test(Systemson Silicon). Morgan Kaufmann Pub-
lishers, 2009.

URL: http://www.princeton.edu/ chaff.

H. Zhang. SATO: An efficient propositional prover. Rmoceedingof the International
Conferenceon AutomatedDeduction, pages 272-275, July 1997. LNAI 1249.

L. Zhang. On subsumption removal and on-the-fly CNF simplifinatioEighthInternational
Conferenceon TheoryandApplicationsof Satisfiability Testing(SAT 2005), pages 482—489,
St. Andrews, UK, June 2005. Springer-Verlag. LNCS 3569.

Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-\én¢elli. SAT sweeping with
local observability don’t cares. IRroceeding®f the DesignAutomationConference, pages
229-234, San Francisco, CA, July 2006.

L. Zhang and S. Malik. Validating SAT solvers using an independesolution-based checker:
Practical implementations and other applicationsDé&sign,Automationand Testin Europe
(DATE’03), pages 880-885, Munich, Germany, March 2003.

[ZMMMO1] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficiewonflict driven learn-

ing in Boolean satisfiability solver. IProceedingsof the International Conferenceon
Computer-Aidedesign, pages 279-285, San Jose, CA, November 2001.

Appendix A

Tables for Comparison

In this chapter, | list the tables comparing the performance (CPU time) of Gir@th and without

the propsoed techniques (EVAL+OCI) described in Chapter 3.

Table A.1: Comparison of CirCUs with and without the proposed technidyes (

| Design | Answer | CirCUs | CirCUs+EVAL+OCI |
aloul-chnl11-13 UNSAT | 107.54 26.66
een-pico-prop01-75 || UNSAT 6.84 1.4
een-pico-prop05-50 || UNSAT | 31.12 6
een-tip-sat-nusmv-t5.8 SAT 5.64 1.42
een-tip-sat-nusmv-tt5.8 SAT 458 1.56
een-tip-uns-nusmv-t5.8 UNSAT 1.58 1.4
goldb-heqc-alu4mul || UNSAT | 182.62 190.88
goldb-heqgc-dalumul || UNSAT | 1098.24 923.72
goldb-heqc-desmul || UNSAT | 91.84 70.86
goldb-heqc-frg2mul || UNSAT | 77.06 51.62
goldb-heqc-i10mul || UNSAT | 264.18 225.86
goldb-heqc-i8mul UNSAT | 420.66 382.28
goldb-heqc-termimul || UNSAT | 96.2 181.44
grieu-vmpc-s05-25 SAT 6.04 9.76
grieu-vmpc-s05-27 SAT 37.3 203.94
grieu-vmpc-s05-28 SAT 256.54 9.16
grieu-vmpc-s05-34 SAT >10000 1252.86
hoons-vbmc-lucky7 | UNSAT 2.02 0.86
ibm-2002-05r-k90 SAT 25.78 14.1
ibm-2002-07r-k100 || UNSAT | 2.84 1.22
ibm-2002-11r1-k45 SAT 190.78 76.32
ibm-2002-19r-k100 SAT | 3297.18 512.94
ibm-2002-21r-k95 SAT | 1359.72 340.32
ibm-2002-26r-k45 UNSAT | 541.46 15.16
ibm-2002-27r-k95 SAT 103.72 15.68
ibm-2004-03-k70 SAT 21.08 18.34
ibm-2004-04-k100 SAT 120.26 50.46
ibm-2004-06-k90 SAT 192.08 45.2
ibm-2004-111-k25 UNSAT | 9.18 3.56
ibm-2004-131 2-k25 || UNSAT | 29.92 8.48
ibm-2004-19-k90 SAT | 1096.08 252.7
ibm-2004-202.1-k100 || UNSAT | 17.6 7.46
ibm-2004-214-k45 UNSAT | 17.12 9.56

Table A.2: Comparison of CirCUs with and without the proposed technidt)es (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
ibm-2004-26-k25 UNSAT 42.34 7.82
ibm-2004-302_1-k95 UNSAT 2.76 2.52
ibm-2004-302_3-k95 SAT 18.96 2.22
ibm-2004-311-k60 UNSAT 476.72 219.28
ibm-2004-602 3-k100 | UNSAT 11.92 5.98
manol-pipe-c10ids UNSAT 7.76 7.42
manol-pipe-c10nidus UNSAT 302.94 35
manol-pipe-c6nidwui UNSAT 494.34 116.54
manol-pipe-c7b UNSAT 56.56 14.8
manol-pipe-c7h4 UNSAT 57.32 154
manol-pipe-c7bidwi UNSAT | 1171.36 189.74
manol-pipe-c7nidw UNSAT | 1493.14 194.58
manol-pipe-c9 UNSAT 6.38 3.26
manol-pipe-cOnidwus UNSAT 159.32 28.02
manol-pipe-f10ni UNSAT | 3215.34 1341.6
manol-pipe-f6bi UNSAT 4.32 3.2
manol-pipe-f7idw UNSAT 372.66 1708.78
manol-pipe-fob UNSAT | 1572.68 842.14
manol-pipe-fon UNSAT | 1589.34 686.14
manol-pipe-g10b UNSAT 176.38 53.52
manol-pipe-g10bidw || UNSAT | 1527.22 305.06
manol-pipe-g10id UNSAT 158.54 73.52
manol-pipe-g10nid UNSAT 954.98 298.14
manol-pipe-g6bi UNSAT 1.3 1.14
manol-pipe-g7nidw UNSAT 32.66 35.96
maris-s03-gripperll SAT >10000 402.48
mizh-md5-47-3 SAT 2013.6 >10000
mizh-md5-47-4 SAT >10000 4494.5
mizh-md5-47-5 SAT >10000 7167.48
mizh-md5-48-2 TIMEOUT | >10000 >10000
mizh-md5-48-5 TIMEOUT | >10000 >10000
mizh-sha0-35-2 SAT 5005.52 1440.34

Table A.3: Comparison of CirCUs with and without the proposed techni@)es (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
mizh-sha0-35-3 SAT 2702.42 2345.72
mizh-sha0-35-4 SAT 977.94 8557.52
mizh-sha0-35-5 SAT 2407.2 3292.08
mizh-sha0-36-2 SAT >10000 2291.66

narain-vpn-clauses-6 SAT 534.4 539.56
schup-12s-guid-1-k56 UNSAT 432.06 197.48
schup-12s-motst-2-k315 SAT 707.44 80.26
simon-s02b-dp11ul0 UNSAT | >10000 52.08
simon-s02b-k2f-gr-rcs-w8|| TIMEOUT | >10000 >10000
simon-s02b-r4b1k1.1 SAT >10000 470.42
simon-s02-w08-18 SAT >10000 75.02
simon-s03-fifo8-300 UNSAT | >10000 43.64
simon-s03-fifo8-400 UNSAT 456.74 158.2
vange-col-abb313GPIA-9-¢ SAT >10000 >10000
vange-col-inithx.i.1-cn-5 SAT >10000 >10000
velev-engi-uns-1.0-4nd UNSAT | >10000 25.92
velev-engi-uns-1.0-5c1 UNSAT | >10000 12.84
velev-fvp-sat-3.0-b18 SAT >10000 133.28
velev-live-uns-2.0-ebuf UNSAT | >10000 15.46
velev-npe-1.0-9dIx-b71 SAT >10000 320.78
velev-pipe-o0-uns-1.0-7 UNSAT | >10000 1008.48
velev-pipe-o0-uns-1.1-6 UNSAT 75 91.96
velev-pipe-sat-1.0-b10 SAT 549.96 381.92
velev-pipe-sat-1.0-b7 SAT 77.9 846.1
velev-pipe-sat-1.0-b9 SAT 137.8 583.3
velev-pipe-sat-1.1-b7 SAT 108.64 608.76
velev-pipe-uns-1.0-8 UNSAT | >10000 1223.2
velev-pipe-uns-1.0-9 UNSAT 389.26 384
velev-pipe-uns-1.1-7 UNSAT 278.06 245.42
velev-vliw-sat-2.0-b6 SAT 344.66 244.9
velev-vliw-sat-4.0-b1 SAT 40.76 233.62
velev-vliw-sat-4.0-b3 SAT 49.6 264.86

Table A.4: Comparison of CirCUs with and without the proposed technigbes (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
velev-vliw-sat-4.0-b4 SAT 185.58 334.44
velev-vliw-uns-2.0-iq4 UNSAT | >10000 4153.84
velev-vliw-uns-4.0-9C1 UNSAT | >10000 931.22

AProVEO7-01 TIMEOUT | >10000 >10000
AProVEOQO7-02 UNSAT 1929.42 1191.88
AProVvEQ7-03 UNSAT 4980.1 2885.86
AProVEO07-04 UNSAT 307.16 192.86
AProVEQ7-06 UNSAT 96.16 83.58
AProVEQ07-08 UNSAT 1421.6 725.72
AProVEO7-09 UNSAT 1018.44 96.8
AProVEO7-11 SAT 282.42 28.9
AProVEOQO7-15 UNSAT 29.96 22.58
AProVEOQO7-16 UNSAT 279.68 277.02
AProVEQ7-20 UNSAT 415.52 251.12
AProVEOQO7-21 UNSAT 180.8 554.44
AProVEQ7-22 UNSAT 79.52 41.54
AProVEQ7-25 TIMEOUT | >10000 >10000
AProVEQ7-26 TIMEOUT | >10000 >10000
AProVEOQ7-27 UNSAT 4218.22 1698.7
blocks-4-ipc5-h21-unknown UNSAT 143.82 70.76
blocks-4-ipc5-h22-unknown UNSAT 237.84 86.96
clauses-10 UNSAT 96.98 88.24
clauses-2 SAT 2.06 2.3
clauses-4 SAT 77.1 51.16
clauses-6 SAT 541.88 540.12
clauses-8 SAT 3204.6 2061.1
cube-11-h13-unsat UNSAT 279.04 7915.36
cube-11-h14-sat SAT 351.58 82.4
cube-9-h10-unsat UNSAT 38.62 31.52
cube-9-h11-sat SAT 144.96 206.4
dated-10-11-s SAT 4.28 20.7
dated-10-11-u UNSAT 2228.76 1123.12

Table A.5: Comparison of CirCUs with and without the proposed technidies (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
dated-10-13-s SAT 8.06 43.32
dated-10-13-u UNSAT 1929.4 1517.96
dated-10-15-s SAT 4.4 38.46
dated-10-15-u UNSAT 32.2 47.18
dated-10-17-s SAT 13.32 59.12
dated-10-17-u TIMEOUT | >10000 >10000
dated-10-19-s SAT 13.98 10.76
dated-10-19-u TIMEOUT | >10000 >10000
dated-5-11-s SAT 0.92 8.4
dated-5-11-u UNSAT 67.76 58
dated-5-13-s SAT 1.94 8.08
dated-5-13-u TIMEOUT | >10000 >10000
dated-5-15-s SAT 2.56 7.24
dated-5-15-u UNSAT 303.56 241.64
dated-5-17-s SAT 3.74 9.14
dated-5-17-u UNSAT 438.98 226.6
dated-5-19-s SAT 6.76 6.54
dated-5-19-u TIMEOUT | >10000 >10000

dspamdumpvc1080 UNSAT 0.74 0.72
dspamdumpvc1081 UNSAT 7.64 0.7
dspamdumpvc1093 UNSAT 0.34 0.6
dspamdumpyvc1103 UNSAT 134.74 1.68
dspamdumpyvc1104 UNSAT 162.18 1.66
dspamdumpvc949 UNSAT 1.54 0.62
dspamdumpvc950 UNSAT 6.92 0.58
dspamdumpvc962 UNSAT 0.72 0.56
dspamdumpvc972 UNSAT 18.5 1.6
dspamdumpvc973 UNSAT 22.74 1.52
emptyroom-4-h21-unsat UNSAT 497.28 113.98
emptyroom-4-h22-sat SAT 44.06 16.2
eg.atree.braun.10.unsgt UNSAT 753.44 714.2
eg.atree.braun.11.unsgt UNSAT | >10000 7117.42

Table A.6: Comparison of CirCUs with and without the proposed technidies (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
eg.atree.braun.12.unsgtTIMEOUT | >10000 >10000
eg.atree.braun.13.unsatTIMEOUT | >10000 >10000
eg.atree.braun.7.unsgt UNSAT 4.58 2.64
eq.atree.braun.8.unsﬂt UNSAT 22.6 19.42
eq.atree.braun.9.unsat UNSAT 67.04 113.48

hsatvc11773 UNSAT 6.84 1.08
hsatvc11803 UNSAT 3.96 1.24
hsatvc11813 UNSAT 10.24 1.3
hsatvc11817 UNSAT 2.3 0.9
hsatvc11935 UNSAT 2.26 0.74
hsatvc11944 UNSAT 7.94 0.68
hsatvc12016 UNSAT 1.98 0.7
hsatvc12062 UNSAT 3.48 0.84
hsatvc12070 UNSAT 6.34 0.8
hsatvc12072 UNSAT 4.32 1.08
itox_vc1033 SAT 33.72 3.78
itox_vc1044 SAT 13.98 4.9
itox_vc1130 SAT 82.84 4.16
itox_vc1138 SAT 86.34 5.04
itox_vcl1216 UNSAT 0.28 0.54
itox_vc909 SAT 6.52 3.44
itox_vc965 UNSAT 0.2 0.28
itox_vc979 UNSAT 0.22 0.5
partial-10-11-s SAT >10000 2380.86
partial-10-11-u TIMEOUT | >10000 >10000
partial-10-13-s SAT 7997.24 2388.14
partial-10-13-u TIMEOUT | >10000 >10000
partial-10-15-s SAT 3164 1320.1
partial-10-15-u TIMEOUT | >10000 >10000
partial-10-17-s TIMEOUT | >10000 >10000
partial-10-17-u TIMEOUT | >10000 >10000
partial-10-19-s TIMEOUT | >10000 >10000

100

Table A.7: Comparison of CirCUs with and without the proposed technigies (

] Design | Answer | CirCUs | CirCUs+EVAL+OCI |
partial-10-19-u TIMEOUT | >10000 >10000
partial-5-11-s SAT 312.7 164.22
partial-5-11-u TIMEOUT | >10000 >10000
partial-5-13-s SAT 88 440.44
partial-5-13-u TIMEOUT | >10000 >10000
partial-5-15-s SAT 1017.38 459.4
partial-5-15-u TIMEOUT | >10000 >10000
partial-5-17-s TIMEOUT | >10000 >10000
partial-5-17-u TIMEOUT | >10000 >10000
partial-5-19-s SAT 3817.64 727.3
partial-5-19-u TIMEOUT | >10000 >10000

safe-30-h29-unsat | TIMEOUT | >10000 >10000
safe-30-h30-sat SAT >10000 58.06
safe-50-h49-unsat | TIMEOUT | >10000 >10000
safe-50-h50-sat TIMEOUT | >10000 >10000
sortnet-6-ipc5-h1l-unsat UNSAT | 3289.32 1381.8
sortnet-7-ipc5-h15-unsat TIMEOUT | >10000 >10000
sortnet-7-ipc5-h16-sat SAT 1364.28 113.64
sortnet-8-ipc5-h18-unsat TIMEOUT | >10000 >10000
sortnet-8-ipc5-h19-sat| TIMEOUT | >10000 >10000
total-10-11-s SAT 8.64 42.42
total-10-11-u UNSAT 111.3 96.88
total-10-13-s SAT 13.14 68.94
total-10-13-u UNSAT 702.22 736.92
total-10-15-s SAT 110.78 9.48
total-10-15-u TIMEOUT | >10000 >10000
total-10-17-s SAT 18.84 10.9
total-10-17-u TIMEOUT | >10000 >10000
total-10-19-s SAT 13.7 14.7
total-10-19-u TIMEOUT | >10000 >10000
total-5-11-s SAT 3.94 16.2
total-5-11-u UNSAT 24.56 18.88

101

Table A.8: Comparison of CirCUs with and without the proposed techni@)es (

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
total-5-13-s SAT 1.74 13
total-5-13-u UNSAT 42.52 20.7
total-5-15-s SAT 5.16 6.54
total-5-15-u TIMEOUT | >10000 >10000
total-5-17-s SAT 16.18 14.14
total-5-17-u TIMEOUT | >10000 >10000
total-5-19-s SAT 14.18 17.26
total-5-19-u TIMEOUT | >10000 >10000

uts-105-ipc5-h26-unsat | UNSAT 54.2 54.14
uts-105-ipc5-h27-unknown UNSAT 83.56 61.06
uts-106-ipc5-h28-unknown UNSAT 54.7 205.16
uts-106-ipc5-h29-unknown UNSAT 88.42 198.8
uts-106-ipc5-h30-unknown UNSAT 225.32 217.8
uts-106-ipc5-h31-unknown UNSAT 181.86 244.4
uts-106-ipc5-h32-unknown UNSAT 335.5 269.94
uts-106-ipc5-h33-unknown UNSAT 586.14 286.86
uts-106-ipc5-h34-unknown SAT 153.36 222.48
uts-106-ipc5-h35-unknown SAT 120.3 219.66

vmpc.24 SAT 3.26 3.1
vmpc 26 SAT 19.9 49.68
vmpc.29 SAT 706.62 727.32
vmpc.30 SAT 3561.68 161.46
vmpc31 SAT >10000 78.54
vmpc 33 SAT 1225.22 559
xinetd.vc56687 UNSAT 0.22 0.22
xinetd.vc56703 UNSAT 0.2 0.22
anbul-dated-5-15-u UNSAT 295.9 247.32
anbul-part-10-13-s SAT 7912.96 2442.8
anbul-part-10-15-s SAT 3131 1318.94
babic-dspam-vc1080 UNSAT 0.66 0.68
babic-dspam-vc949 UNSAT 1.56 0.62
babic-dspam-vc973 UNSAT 22.64 1.6

102

Table A.9: Comparison of CirCUs with and without the proposed technid)es (

] Design | Answer | CirCUs | CirCUs+EVAL+OCI |
cmu-bmc-barrel6 || UNSAT | 3.06 1.3
cmu-bmc-longmultl3|| UNSAT | 57.14 29.74
cmu-bmc-longmultl5|| UNSAT | 28.46 19.16
een-pico-prop00-75| UNSAT | 15.56 2.2
een-pico-prop05-75| UNSAT | 107.86 17.5

een-tip-sat-texas-tp-5¢ SAT 0.36 0.1
een-tip-sat-vis-eisen|| SAT 0.96 0.34
fuhs-aprove-15 UNSAT | 30.56 22.58
fuhs-aprove-16 UNSAT | 279.16 279.96
goldb-heqc-x1mul || UNSAT | >10000 4802.72
grieu-vmpc-31 SAT >10000 77.62
ibm-2002-04r-k80 SAT 76.6 64.4
ibm-2002-18r-k90 SAT | 6373.16 1495.72
ibm-2002-20r-k75 SAT | 1501.88 442.06
ibm-2002-22r-k60 || UNSAT | 551.62 310.52
ibm-2002-22r-k75 SAT | 1942.66 471.54
ibm-2002-22r-k80 SAT | 3743.74 840.5
ibm-2002-23r-k90 SAT | >10000 3295.52
ibm-2002-24r3-k100|| UNSAT | 328.74 224.26
ibm-2002-25r-k10 || UNSAT | 1047.24 622.24
ibm-2002-29r-k75 SAT 169.78 50.38
ibm-2002-30r-k85 SAT | 8006.54 928.24
ibm-2002-311r3-k30 || UNSAT | 606.86 139.38
ibm-2004-111-k80 SAT | 4951.88 904.36
ibm-2004-23-k100 SAT | >10000 6483.76
ibm-2004-23-k80 SAT | 8094.54 1347.12
ibm-2004-29-k25 || UNSAT | 114.06 69.9
ibm-2004-29-k55 SAT 139.72 96.74
jarvi-eg-atree-9 UNSAT | 65.66 112.92
manol-pipe-c10nid || UNSAT | 9448.12 1510.68
manol-pipe-c10nidw| UNSAT | >10000 2906.32
manol-pipe-cébidwi || UNSAT | 565.58 105.16

103

Table A.10: Comparison of CirCUs with and without the proposed techni@gs

] Design | Answer | CirCUs | CirCUs+EVAL+OCI |
manol-pipe-c8nidw UNSAT | 5065.12 832.02
manol-pipe-c9n UNSAT 106.18 29.42
manol-pipe-f7nidw UNSAT 538.14 273.72
manol-pipe-g10bid UNSAT | 7771.76 1357.74
manol-pipe-g8nidw UNSAT 123.36 49.7
marijn-philips UNSAT | 8205.62 7336.88
mizh-sha0-36-1 TIMEOUT | >10000 >10000
mizh-sha0-36-3 TIMEOUT | >10000 >10000
mizh-sha0-36-4 TIMEOUT | >10000 >10000
narain-vpn-clauses-8 SAT 3171.04 2037.84
palac-sn7-ipc5-h16 SAT 1347.06 114.74
palac-uts-106-ipc5-h34 SAT 149.34 222.42
post-c32s-col400-16 UNSAT | 1323.36 286.06
post-c32s-gcdm16-22 SAT 896.52 175
post-c32s-gcdm16-23|| UNSAT 920.8 226.8
post-c32s-ss-8 UNSAT | 4147.44 974.2
post-cbomc-aes-d-rl1 UNSAT 5.92 5.84
post-cbomc-aes-d-r2 UNSAT | 1324.42 633.72
post-comc-aes-ee-r2|| UNSAT | 1476.32 459,72
post-comc-aes-ee-r3| UNSAT | >10000 2449.82
post-cbmc-aes-ele UNSAT 20.5 42.54
post-cbmc-zfcp-2.8-u2 SAT 29.96 58.08
schup-12s-abp4-1-k31|| UNSAT 28.54 21.98
schup-12s-bc56s-1-k39[L UNSAT | 1228.64 877.52
simon-s02b-r4b1k1.2 SAT 104.5 142.5
simon-s02-f2clk-50 UNSAT 418.84 122.52
simon-s03-w08-15 SAT 308.6 82.32
velev-vliw-sat-4.0-b8 SAT 50.76 132.62
velev-vliw-uns-2.0-iql || UNSAT 200.7 172.7
velev-vliw-uns-2.0-ig2 || UNSAT 926.14 685.8
velev-vliw-uns-2.0-ug5|| UNSAT 8976.8 9081.2
velev-vliw-uns-4.0-9 UNSAT | 1336.58 931.66

104

Table A.11: Comparison of CirCUs with and without the proposed techniLigs

] Design | Answer | CirCUs | CirCUs+EVAL+OCI |
velev-vliw-uns-4.0-9-i1]] UNSAT 8759.8 7155.42
ACG-10-5p0 UNSAT 18.62 87.76
ACG-15-10p0 UNSAT | 2637.58 1193.12
ACG-15-10p1 SAT 2233.3 2266.78
ACG-20-10p0 UNSAT | 7103.24 4798.98
ACG-20-10p1 SAT 7387.36 3382.08
ACG-20-5p1 SAT 1312.38 1138.84
AProVE09-01 SAT 1.42 1.16
AProVE09-03 SAT 3.7 1.14
AProVEQ09-05 SAT 0.94 1.56
AProVE09-06 SAT 2227.66 1309.76
AProVEQ09-07 SAT 1.78 0.76
AProVEQ09-08 SAT 1.42 2.26
AProVEQ09-10 SAT 3.32 57.52
AProVEOQ09-11 SAT 0.16 1.78
AProVEQ09-12 SAT 0.44 1.9
AProVE09-13 SAT 0.04 0.3
AProVEQ09-15 SAT 5.22 21.3
AProVEQ09-17 SAT 30.5 15.14
AProVE09-19 SAT 0.48 2.58
AProVE09-20 SAT 1339.74 531.84
AProVE09-21 SAT 21.5 2.8
AProVEQ09-22 SAT 0.04 0.28
AProVE09-24 SAT 18.6 5.18
AProVEQ09-25 SAT 0.16 1.58
countbitsarray0232 UNSAT 658.94 3002.5
countbitsarray0&2 TIMEOUT | >10000 >10000
countbitsarray322 TIMEOUT | >10000 >10000
countbitsrotate016 UNSAT 52.58 44,18
countbitsrotate032 || TIMEOUT | >10000 >10000
countbitsrotate128 || TIMEOUT | >10000 >10000
countbitssrl016 UNSAT 8.64 6.68

105

Table A.12: Comparison of CirCUs with and without the proposed techni@i2s

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
countbitssrl032 UNSAT | 6800.36 5359.78
countbitssrl128 | TIMEOUT | >10000 >10000

countbitswegner064 UNSAT 302.34 116.38
gss-13-s100 SAT 78.8 51.56
gss-14-s100 SAT 150.58 50.36
0ss-15-s100 SAT 458.52 226.74
gss-16-s100 SAT 828.14 336.2
gss-17-s100 SAT 1339.48 505.88
gss-19-s100 SAT >10000 2227.12
gss-20-s100 TIMEOUT | >10000 >10000
gss-21-s100 TIMEOUT | >10000 >10000
gss-22-s100 TIMEOUT | >10000 >10000
gss-23-s100 TIMEOUT | >10000 >10000
0ss-24-s100 TIMEOUT | >10000 >10000
gss-25-s100 TIMEOUT | >10000 >10000
gss-26-s100 TIMEOUT | >10000 >10000
gss-27-s100 TIMEOUT | >10000 >10000
gss-28-s100 TIMEOUT | >10000 >10000
gss-31-s100 TIMEOUT | >10000 >10000
gss-32-s100 TIMEOUT | >10000 >10000
gss-33-s100 TIMEOUT | >10000 >10000
gss-34-s100 TIMEOUT | >10000 >10000
gus-md5-04 UNSAT 5.98 5.9
gus-md5-05 UNSAT 15.42 17.08
gus-md5-06 UNSAT 57.8 38.58
gus-md5-07 UNSAT 157.06 111.38
gus-md5-09 UNSAT 3020.8 1709.26
gus-md5-10 UNSAT | 6981.82 4004.86
gus-md5-11 TIMEOUT | >10000 >10000
gus-md5-14 TIMEOUT | >10000 >10000
gus-md5-15 TIMEOUT | >10000 >10000
gus-md5-16 TIMEOUT | >10000 >10000

106

Table A.13: Comparison of CirCUs with and without the proposed techni@iBs

] Design | Answer | CirCUs | CirCUS+EVAL+OCI |
icbrt1.32 UNSAT 55.92 27.76
maxand064 UNSAT 8.48 4.24
maxorl28 UNSAT | 5766.14 6162.66
maxxor064 UNSAT >10000 6910.84
maxxorl28 TIMEOUT | >10000 >10000
maxxororand032 UNSAT 313.5 263.86
maxxororand128 TIMEOUT | >10000 >10000
minand128 UNSAT 26.7 11.44
minandmaxor032 UNSAT 10.02 4.74
minandmaxor128 UNSAT | 4573.48 3228.66
minor032 UNSAT 0.64 0.42
minor064 UNSAT 7.22 2.88
minxor128 UNSAT 138.94 303.16
minxorminand032 UNSAT 2.62 5.34
minxorminand064 UNSAT 47.94 92.36
minxorminand128 UNSAT 1089.9 2152.4
mulhs016 TIMEOUT | >10000 >10000
mulhs032 TIMEOUT | >10000 >10000
ndhf xits_09_UNSAT TIMEOUT | >10000 >10000
ndhfxits_10_.UNSAT TIMEOUT | >10000 >10000
ndhfxits_11 UNSAT TIMEOUT | >10000 >10000
ndhfxits_.12 UNSAT TIMEOUT | >10000 >10000
ndhf.xits_13_.UNSAT TIMEOUT | >10000 >10000
ndhf.xits_14_UNSAT TIMEOUT | >10000 >10000
ndhfxits_.15.UNKNOWN || TIMEOUT | >10000 >10000
ndhf.xits.16_LUNKNOWN || TIMEOUT | >10000 >10000
ndhf.xits_.17Z.UNKNOWN || TIMEOUT | >10000 >10000
ndhf.xits_20_SAT SAT 694.26 592.22
ndhfxits_21 SAT SAT 7.66 13.76
ndhf.xits_22 SAT SAT 0.28 11.18
post-cbmc-aes-d-r2-nohole UNSAT | 1504.94 749.7
post-cbmc-aes-ee-r2-nohol UNSAT | 1408.16 448.52

107

Table A.14:; Comparison of CirCUs with and without the proposed technij4gs

| Design | Answer | CirCUs | CirCUs+EVAL+OCI |
g-query 21324 coli UNSAT 17.3 10.24
g-query.3_L100_coli.s UNSAT 296.42 208.9
g-query.3_L150_coli.s UNSAT 650.38 140.72
g-query.3_L200_coli.s UNSAT 473.28 404.44
g-query3.137_lambda SAT 11.2 4.2
g-query 3.138_lambda SAT 17.64 4.54
g-query 3.139_lambda SAT 20.26 10.34
g-query 3_140_lambda SAT 27.18 17.2
g-query 3141 lambda SAT 41.52 11.46
g-query 342 lambda SAT 81.56 29.46
g-query.3_143_lambda SAT 62.32 46.98
g-query 3_144 lambda UNSAT 276.28 227.8
g-query 3.145_ lambda UNSAT 320.38 206
g-query 3_146_lambda UNSAT 300.9 2125
g-query3_147_lambda UNSAT 315.02 220.64
g-query 3_148_lambda UNSAT 275.88 213.78
g-query 3_L60_coli.sa SAT 158.96 84.18
g-query3_L70_coli.sa SAT 163.6 108.96
g-query 3_L80_coli.sa UNSAT 190.56 92.86
g-query.3_L90_coli.sa UNSAT 218.02 252.76
rbcl_xits_ 06_UNSAT UNSAT 12.18 12.2
rbcl xits_ 07_-UNSAT UNSAT 170.22 297.56
rbcl xits_ 08 UNSAT TIMEOUT | >10000 >10000
rbcl xits 09 UNKNOWN || TIMEOUT | >10000 >10000
rbclxitsZ10.UNKNOWN | TIMEOUT | >10000 >10000
rbclxits.11. UNKNOWN || TIMEOUT | >10000 >10000
rbclxits-.12 UNKNOWN || TIMEOUT | >10000 >10000
rbcl xits_ 13 UNKNOWN | TIMEOUT | >10000 >10000
rbcl xits_14 SAT SAT 7.68 20.36
rpocxits_ 07_-UNSAT UNSAT 124.2 233.84
rpoc xits_ 08 UNSAT UNSAT 5727.9 3707
rpoc xits_ 09_UNSAT TIMEOUT | >10000 >10000
rpocxits. 10.UNKNOWN | TIMEOUT | >10000 >10000

108

Table A.15: Comparison of CirCUs with and without the proposed techni@tgs

] Design | Answer | CirCUs | CirCUs+EVAL+OCI |
rpocxits_Z11. UNKNOWN || TIMEOUT | >10000 >10000
rpocxits_.12 UNKNOWN | TIMEOUT | >10000 >10000
rpocxits. 13.UNKNOWN | TIMEOUT | >10000 >10000
rpocxits_.14 UNKNOWN | TIMEOUT | >10000 >10000

rpocxits_17_SAT SAT 0.14 2.68
smulo016 UNSAT 24.58 9.9
smulo128 TIMEOUT | >10000 >10000

UCG-10-5p0 UNSAT 35.56 55.6
UCG-15-10p0 UNSAT 1415.64 908.14
UCG-15-10p1 SAT 2312.28 998.04
UCG-15-5p0 UNSAT 126.06 99.88
UCG-20-10p1 SAT 4960.12 2954.5
UCG-20-5p1 SAT 890.92 406.3
UR-10-5p0 UNSAT 34.1 68.28
UR-10-5p1 SAT 20 63.14
UR-15-10p0 UNSAT | 1933.16 1053.38
UR-15-10p1 SAT 3148.88 1105.78
UR-15-5p0 UNSAT 300.5 136.56
UR-20-10p1 SAT >10000 4198.78
UR-20-5p0 UNSAT | 2605.52 2065.18
UR-20-5p1 SAT 3072.84 2157.48
UTI-10-10p0 UNSAT 159.8 135.32
UTI-15-10p0 UNSAT 651.32 290.42
UTI-15-10p1 SAT 1346.42 505.82
UTI-15-5p0 UNSAT | 1091.08 843.02
UTI-15-5p1 SAT 957.68 646.26
UTI-20-10p0 UNSAT | 6601.34 2212.62
UTI-20-10p1 SAT >10000 7104.92
UTI-20-5p0 UNSAT | 7187.76 4939.72
UTI-20-5p1 SAT 6451.24 2431.54

109

