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Abstract— In this paper, we develop a data-driven ap-
proach for the safety verification of stochastic systems with
unknown dynamics. First, we use a notion of barrier certifi-
cates in order to cast the safety verification as a robust con-
vex program (RCP). Solving this optimization program is
difficult because the model of the stochastic system, which
is unknown, appears in one of the constraints. Therefore,
we construct a scenario convex program (SCP) by collect-
ing a number of samples from trajectories of the system.
Then, we develop a repetition-based scenario framework
to provide an out-of-sample performance guarantee for the
constructed SCP. In particular, we iteratively solve an SCP
for a given number of samples, and then check its feasibility
using a certain number of new samples after substituting
the optimal decision variables from solving the SCP. We
continue the iterations until a desired violation error is
achieved. Eventually, a safety condition is checked on top
of the feasibility problem. If the safety condition is fulfilled,
then we can provide a lower bound on the probability of
safety satisfaction for the original stochastic system by
leveraging the optimal solution of the successful iteration.
We illustrate the effectiveness of the proposed results
through a two-tank system case study, where the safety
objective is to ensure that the water levels in both tanks
are within some safe zones.

I. INTRODUCTION

Safety is one of the most important requirements for design-
ing and manufacturing complex life-critical systems. Consider
a self-driving car which is not equipped with certain safety
functionalities. It can cause fatal accidents, severe injuries, or
serious damages to the environment. Other life-critical appli-
cations include power grids, traffic networks, and integrated
medical devices, where a minor fault may have catastrophic
consequences. Hence, rigorous safety analysis is required to
ensure the correctness of functionalities in many safety-critical
applications.

There have been many results in the past two decades
on developing discretization-based or discretization-free tech-
niques to either verify safety requirements or synthesize con-
trollers enforcing them over complex dynamical systems. In
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abstraction-based techniques, e.g., [1]–[3], finite approxima-
tions are constructed by discretizing state and input sets. Those
approximations are then utilized for verification and synthesis
purposes. These abstraction-based techniques suffer from the
curse of dimensionality due to discretizing state and input sets
and, hence, they are not applicable to large-scale systems. On
the other hand, some of the abstraction-free techniques utilized
in the past decade leverage a notion of so-called barrier
certificates (BC) [4], [5]. BCs are scalar-valued functions over
state sets taking different values in different regions of the
state set including safe and unsafe ones. Unfortunately, all
of the above-mentioned discretization-based or discretization-
free methods need a model of the system which may not be
available or may be too complex to be of any use.

Verifying safety of dynamical systems using data has been
investigated in the last few years, see, e.g., [6]–[10]. Barrier
certificates and data collected from the systems’ trajectories
are combined in order to provide a formal guarantee on the
safety, see, e.g., [11]–[15]. However, those results either suffer
from the sample complexity in order to provide out-of-sample
performance guarantees, may not provide any performance
guarantee, require some stability assumptions, need a complete
or partial knowledge of the model of the system, or not able to
handle infinite time horizon specifications such as the safety
specification in this paper.

Inspired by the results in [16], we propose here a so-
called repetitive scenario approach that provides a data-driven
framework to formally verify safety of stochastic systems with
unknown models, while providing out-of-sample performance
guarantees over the verification results. Similar to the results
in [15] and [17], we leverage a notion of barrier certificates in
order to cast the safety problem as a robust convex program
(RCP). Since solving this optimization program is not tractable
since the unknown model appears in one of the constraints,
instead we propose a scenario convex program (SCP) corre-
sponding to the original RCP by using N samples collected
from trajectories of the system. To tackle the underlying
sample complexity in the results in [15] and [17], here we
construct a repetitive scenario program (RSP) with a specific
number of iterations based on the original SCP. At each
iteration, we feed the optimal solution of the SCP with N
samples to a feasibility checker, called the feasibility oracle,
with N0 new test samples. The feasibility condition is defined
in a way that the empirical error of the violations should
be less than a desired threshold. There is a theoretical upper
bound on the required number of iterations in order to satisfy
the feasibility condition. Finally, a safety condition, which



is derived based on Lipschitz constants of the constraints of
RCP, is checked on top of the feasibility condition. If both
conditions are satisfied, then the optimal solution of the RSP
is formally related to the original safety verification problem.
As a result, for a fixed a-priori confidence, the unknown
stochastic system is safe with a quantified probability lower
bound computed using feasible solutions of the successful
iteration.

The proposed approach here enables the users to select the
required number of samples (i.e. N ) by trading it off with the
expected value of the required number of iterations: smaller
amounts of N requires larger amounts of iterations and vice
versa. Fortunately, these iterations are natively parallelizable
which facilitates applications of our approach to large-scale
systems. Finally, we apply our method to a two-tank system
in order to verify whether the water levels in both tanks never
reach a critical region within a specific time horizon. This
case study readily shows that the computational cost of our
approach is much smaller (roughly two orders of magnitude)
than the one in [15], [17] in terms of sample complexity and
computation time.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notation

The set of positive and non-negative integers, real numbers,
non-negative and positive real numbers are denoted by N :=
{1, 2, 3, . . .}, N0 := {0, 1, 2, . . .}, R, R+

0 , and R+, respec-
tively. We denote the indicator function by 1A (X) : X →
{0, 1}, where 1A (x) is 1 if and only if x ∈ A , and 0
otherwise. Notation 1m is used to indicate a column vector of
ones in Rm. We denote by ∥x∥ the Euclidean norm of x ∈ Rn.
We also denote the induced norm of matrix A ∈ Rm×n

by ∥A∥ := supx ̸=0 ∥Ax∥/∥x∥. Given N vectors xi ∈ Rni ,
ni ∈ N, and i ∈ {1, . . . , N}, we use [x1; . . . ;xN ] and
[x1, . . . , xN ] to denote the corresponding column and row
vectors, respectively, with dimension

∑
i ni. Considering a

random variable z, Var(z) denotes its variance. The largest
integer no larger than x is denoted by ⌊x⌋. We use the notation
S |=H Ψ to denote that system S satisfies a property Ψ within
a time horizon H . We also use |= to show that a solution is
feasible for an optimization problem.

The sample space of random variables is denoted by Ω.
The Borel σ-algebra on a set X is denoted by B(X). The
measurable space on X is denoted by (X,B(X)). We have
two probability spaces in this work. The first one is repre-
sented by (X,B(X),P) which is the probability space defined
over the state set X with P as a probability measure. The
second one, (Vw,B(Vw),Pw), defines the probability space
over Vw for the random variable w affecting the system as
the process noise with Pw as its probability measure. With
a slight abuse of notation, we use the same notation for
P and Pw when the product measures are needed in the
formulations. We define a so-called beta-Bionomial distribu-
tion as fbb(q, α, β; i) =

(
q
i

)
B(i+ α, q − i+ β)/B(α, β) for

i = 0, 1, . . . , q, where B(α, β)−1 = α
(
α+β−1
β−1

)
,∀α, β ∈ N.

B. System Definition
In this paper, we deal with discrete-time stochastic systems

as in the next definition.
Definition 1: Consider a discrete-time stochastic system

(dt-SS), denoted by S = (X,Vw, w, f), described by:

S : x(t+ 1) = f(x(t), w(t)), t ∈ N0, (1)

where X and Vw are Borel σ-algebras on the set Rn and
the uncertainty space, respectively. Here, x denotes the state
sequence of the system as x := {x(t) : Ω → X, t ∈ N0}, and
w denotes a sequence of i.i.d. random variables over Vw as
w := {w(t) : Ω → Vw, t ∈ N0}. Map f : X × Vw → X
is a measurable function characterizing the state evolution
of the system. A finite trajectory of the system in (1) is
represented by x(0)x(1) . . . x(t), t ∈ N0. Throughout this
paper, we assume the set X is compact.

C. Problem Statement
First, we formally define what it means for a system to

satisfy a safety specification.
Definition 2: Consider a dt-SS S as in (1) and a safety

specification denoted by the tuple Ψ = (Xin, Xu, H), where
Xin, Xu ⊂ X and H ∈ N0. System S satisfies Ψ, denoted
by S |=H Ψ, if all trajectories of S started from initial set
Xin ⊂ X never reach unsafe set Xu ⊂ X within the time
horizon H .

Now, we present the main problem we solve in this paper.

Problem 1: Consider a dt-SS S as in Definition 1,
where f and Pw are unknown, and a safety speci-
fication Ψ as in Definition 2. With a confidence of
at least (1 − β) ∈ [0, 1], provide a lower bound
(1 − ∆) ∈ [0, 1] on the probability with which S
satisfies Ψ, i.e., Pw

(
S |=H Ψ

)
≥ 1 − ∆, using data

collected from trajectories of S.

The overview of our approach for solving Problem 1 is
depicted in Fig. 1, which connects the related optimizations
and results throughout the paper. First, a stochastic safety
problem is reformulated as a scenario convex program (SCP)
by collecting N samples from the state set, and N̂ samples
from the realization of the noise. The constructed scenario
program is solved, and the obtained optimal solution is sent
to a feasibility checker called a feasibility oracle. In this oracle,
the feasibility of the SCP is assessed for N0 new test samples
by checking the constraints after substituting the optimal
decision variables from the previous step. The violation of
constraints is measured through an empirical mean over the
violated constraints. These two steps, namely solving the SCP
for collected samples and feasibility oracle, are executed for
a specific number of iterations, until the violation error is
less than a desired threshold. Finally, a safety condition is
checked on top of the feasibility oracle. If the safety condition
is satisfied, with an a-priori fixed confidence, one can conclude
that the original stochastic system with unknown dynamic
is safe with a probability lower bound computed using the
optimal solution coming from the successful iteration.
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Fig. 1. An overview of our repetition-based scenario approach. The
block on the left solves a scenario program SCPN using NN̂ samples
collected from the system at each iteration. The resulted optimizer of
this scenario program is fed into a feasibility oracle, which assesses the
feasibility of the computed optimizer for N0 new test samples. Finally,
the block on the right checks a condition whose satisfaction ensures Ψ
is satisfied with a probability lower-bound computed using the optimal
solution of the successful iteration.

D. Safety Verification of Stochastic Systems

Here, we explain a notion of barrier certificates and its
application in the safety verification of stochastic systems. Let
us first formally define a barrier certificate.

Definition 3: Consider a dt-SS S as in Definition 1 and
a safety specification Ψ as in Definition 2. A non-negative
function B : X → R+

0 is called a barrier certificate (BC) for
S if there exist constants λ > 1, and c ∈ R such that

B(x) ≤ 1, ∀x ∈ Xin, (2)
B(x) ≥ λ, ∀x ∈ Xu, (3)

E
[
B(f(x,w)) | x

]
≤ B(x) + c, ∀x ∈ X, (4)

where Xin ⊂ X and Xu ⊂ X are initial and unsafe sets,
respectively, corresponding to Ψ (cf. Definition 2).

Next theorem, borrowed from [5], provides a lower bound
on the probability of safety satisfaction for a dt-SS.

Theorem 1: Consider a dt-SS S and safety specification
Ψ as in Definitions 1-2, respectively. Suppose there exists a
barrier certificate B satisfying conditions (2)-(4). Then, one
has

Pw

(
S |=H Ψ

)
≥ 1− 1 + max{0, c} H

λ
, (5)

where H ∈ N0 is the finite time horizon associated with Ψ.
Note that if c ≤ 0 in (4), then H can be chosen arbitrarily
large without affecting the lower bound in (5).

In this work, we fix the structure of barrier certificates as
B(b, x) =

∑r
j=1 bjpj(x) with some user-defined (possibly

nonlinear) basis functions pj(x) and unknown coefficients
b = [b1; · · · ; br] ∈ Rr. For the sake of simplicity of the pre-
sentation, we consider polynomial-type barrier certificates with
degree m ∈ N0, where basis functions pj(x) are monomials
over x. However, other basis functions such as exponential
or trigonometric ones can also be handled by the proposed
approach here.

III. DATA-DRIVEN SAFETY VERIFICATION OF
STOCHASTIC SYSTEMS

A. Scenario-Based Formulations for Safety Verification

According to [15], [17], a barrier-based safety verification as
in Theorem 1 together with Definition 3 can be reformulated
as a robust convex program (RCP):

RCP :


min
d

K

s.t. max
(
gz(x, d)

)
≤0, z∈{1, . . . , 4},∀x∈X,

λ > 1, d = [K;λ; c; b],

(6)

where

g1(x, d) = −B(b, x)−K,

g2(x, d) = B(b, x)1Xin(x)− 1−K,

g3(x, d) = −B(b, x)1Xu(x) + λ−K,

g4(x, d) = E
[
B(b, f(x,w)) | x

]
− B(b, x)− c−K. (7)

In general, finding an optimal solution for the RCP in (6)
is difficult (or even impossible) because the map f and the
probability measure Pw are both unknown. Furthermore, there
are infinitely many constraints in the RCP since x ∈ X , where
X is a continuous set. To address the issue of unknown Pw and
the expectation term in g4 in (7), we replace the expectation
term with its empirical mean approximation by collecting N̂
i.i.d. samples wj , j ∈ {1, . . . , N̂}, from Pw and construct a
new RCP denoted by RCPN̂ as follows:

RCPN̂:


min
d

K

s.t. max
(
gz(x, d), ḡ4(x,wj , d)

)
≤0, z∈{1, . . . , 3},

j ∈ {1, . . . , N̂},∀x∈X,λ > 1, d = [K;λ; c; b],
(8)

where

ḡ4(x,wj , d)=
1

N̂

N̂∑
j=1

B(b, f(x,wj))−B(b, x)−c−K+e. (9)

Notice that the expectation term in g4 in (7) is approximated
by the empirical mean in (9). This approximation introduces an
error which is introduced by e in (9). Next theorem, borrowed
from [17, Theorem 3.4], shows that the optimal solution of the
RCPN̂ is a feasible solution for the RCP in (6) with a certain
confidence.

Theorem 2: Let d∗s be a feasible solution of the RCPN̂ for
some e > 0, and assume Var

(
B(b, f(x,w)

)
≤ M̂, ∀x ∈ X

with a given positive M̂ . Then, for any βs ∈ (0, 1), one has
P(d∗s |= RCP) ≥ 1 − βs, if the number of samples in the
empirical mean satisfies N̂ ≥ M̂

e2βs
.

Now, one can assign a probability distribution over the state
set and collect N i.i.d. samples to solve RCPN̂ in (8). The
data-set is denoted by:

DN,N̂ :=
{
(xi, wj , f(xi, wj)) ⊂ X × Vw ×X |

i ∈ {1, . . . , N}, j ∈ {1, . . . , N̂}
}
. (10)



By substituting these samples in RCPN̂ in (8) results in the
following SCP denoted by SCPN,N̂ :

SCPN,N̂ :


min
d

K

s.t. max (gz(xi, d), ḡ4(xi, wj , d))≤0,
λ > 1, z∈{1, 2, 3}, i ∈ {1, . . . , N},
j ∈ {1, . . . , N̂}, d = [K;λ; c; b].

(11)

B. Repetitive Scenario Program

Inspired by the the idea of repetitive scenario design in
[16], we aim at constructing an RSP for the stochastic safety
problem. The main idea is to solve an SCPN,N̂ in (11) for
several iterations. At each iteration, the obtained optimal
values denoted by d∗

N,N̂
are used to construct a feasibility

problem denoted by SCPN0,N̂
using N0 new test samples. The

violation criteria for the constraints using the kth sampled data,
where k ∈ {1, . . . , N0}, in the constructed feasibility problem
at each iteration can be quantified as:

vN,N̂(k)=


1 min

(
− gz(xk, d

∗
N,N̂

),−ḡ4(xk, wj , d
∗
N,N̂

)
)
≤ 0,

z∈{1, 2, 3}, j ∈ {1, . . . , N̂},
0 otherwise.

(12)

Now, we define the concept of successful iteration.
Definition 4: The overall violation error for N0 test samples

can be computed by applying an empirical mean over all
violated constraints at each iteration and can be upper bounded
by a given desired value:∑N0

k=1 vN,N̂(k)

N0
≤ ϵ′. (13)

We call the first iteration at which the above condition is
satisfied the successful iteration.

Now, we introduce Algorithm 1 to systematically construct
an RSP to solve the original safety problem (Problem 1) in
Algorithm 2. The optimal solution of the RSP resulted from
Algorithm 1 is denoted by d∗.

Algorithm 1 Repetitive Scenario Program (RSP Algorithm)

Require: Number of samples (N , N̂ , and N0) and the desired
violation error ϵ′

1: Collect N̂ samples wj , j ∈ [1, . . . , N̂ ] from Pw

2: Collect N samples xi, i ∈ [1, . . . , N ] from the state set
3: Solve the SCPN, N̂ in (11) using the collected data in Step 1

and Step 2, and obtain the optimizer d∗
N,N̂

4: Feasibility Oracle: Construct the feasibility problem
SCPN0, N̂

using N0 new samples by feeding the optimal
values from Step 3 to the scenario program in (11)

5: Compute
∑N0

k=1 vN,N̂ (k)

N0
for vN,N̂(k) as in (12)

6: If (13) is satisfied, then d∗ = d∗
N,N̂

, otherwise go to Step 2.

Remark 1: According to [16, Theorem 3], Algorithm 1
terminates within (1−H1,ϵ′.(N))−1 iterations with probability
one, where H1,ϵ′(N) = 1−

∑⌊ϵ′N0⌋
i=0 fbb(N0, |d|, N+1−|d|; i),

fbb is the beta-Binomial distribution, and |d| is the number of

decision variables in (11). Furthermore, for the large values of
N0, the expected number of iterations in order to satisfy (13),
and accordingly termination of the algorithm, is approximated
by

1

1− βϵ′(N)
, (14)

where βϵ′(N) = 1 −
∑N

i=|d|
(
N
i

)
ϵ′
i
(1 − ϵ′)N−i. For the sake

of simple presentation, we use this approximation in the rest
of the paper.

In the next section, we relate the optimal solution of an RSP
to that of RCP in (6) and finally to the safety of stochastic
systems.

IV. SAFETY VERIFICATION OF STOCHASTIC SYSTEMS

Here, we provide a probabilistic connection between the
optimal value of a repetitive scenario optimization program
RSP as in Algorithm 1 and the safety of stochastic systems
with unknown dynamics in Definition 1. The next theorem
provides the relation between the solution of a repetitive
scenario program and the original safety problem.

Theorem 3: Consider a stochastic system S as in (1),
where f and Pw are unknown, and a safety specifica-
tion Ψ as in Definition 2. Assume all constraints in (7)
are Lipschitz continuousa with respect to x and with a
Lipschitz constant Lx. Let ϵ, ϵ′ ∈ [0, 1], ϵ′ ≤ ϵ. Choose
N̂ as in Theorem 2 based on a given confidence
1 − βs, βs ∈ (0, 1). Suppose that for a given N and
N0, there is a successful iteration (cf. Definition 4) for
RSP in Algorithm 1, for which the optimal solution is
d∗ = [K∗;λ∗; c∗; b∗]. If

K∗ + Lx ϵ
1
n ≤ 0, (15)

then

Pw(S |=H Ψ) ≥ 1− 1 + c∗H

λ∗ , (16)

with a confidence of at least 1 − β̄ϵ,ϵ′(N,N0) − βs,
where

β̄ϵ,ϵ′(N,N0)=1−
∑N+N0

i=⌊|d|+ϵ′N0−1⌋+1

(
N+N0

i

)
ϵi(1−ϵ)N+N0−i,

and |d| is the number of decision variables in (11).

aWe only need to consider Lipschitz continuity of g2 and g3
inside Xin and Xu, respectively.

Proof: From the robust convex program RCPN̂ in (8),
one can construct a chance constraint program as:

CCPϵ:


min
d

K

s.t. P
(
max

(
gz(x, d), ḡ4(x,wj , d)

)
≤0

)
≥ 1− ϵ,

j ∈ {1, . . . , N̂}, z∈{1, . . . , 3},
λ > 1, d = [K;λ; c; b],

(17)

for some ϵ > 0, where gz(x, d), z ∈ {1, . . . , 3}, and ḡ4 are
defined in (7) and (9), respectively. Using Theorem 3 in [16]



and for a given N and N0, one obtains

P
(
d∗ |= CCPϵ

)
≥ 1− β̄ϵ,ϵ′(N,N0), (18)

for some ϵ′ ≤ ϵ, where d∗ = [K∗;λ∗; c∗; b∗] is the optimal
solution of the RSP in Algorithm 1. Now, we construct a
relaxed version of RCPN̂ in (8) as follows:

RCPh(ϵ) :


min
d

K

s.t. max
(
gz(x, d), ḡ4(x,wj , d)

)
≤ h(ϵ),

j ∈ {1, . . . , N̂}, z∈{1, . . . , 3},∀x∈X,
λ > 1, d = [K;λ; c; b],

(19)

where h(ϵ) is a uniform level-set bound as defined in [18, Def-
inition 3.1]. According to [16], N0 can be selected such that
β̄ϵ,ϵ′(N,N0) ≤ βϵ(N). As a result, one can use Lemma 3.2
in [18] and conclude from (18) that P

(
d∗ |= RCPh(ϵ)

)
≥

1−β̄ϵ,ϵ′(N,N0), which readily results in P(K∗
RCPh(ϵ)

≤ K∗) ≥
1 − β̄ϵ,ϵ′(N,N0). The last inequality is true mainly because
K∗

RCPh(ϵ)
is the optimal value of RCPh(ϵ) in (19), whereas

K∗ is just the optimization value for a feasible solution (i.e.
d∗). Using Lemma 3.4 in [18], we obtain K∗ ≤ K∗

RCPN̂
≤

K∗
RCPh(ϵ)

+ Lsph(ϵ), where K∗
RCPN̂

is the optimal value of
RCPN̂ in (8), and Lsp is the Slater constant defined in
[18, Assumption 3.3]. Therefore, one can deduce P

(
K∗ ≤

K∗
RCPN̂

≤ K∗ + Lsph(ϵ)
)

≥ 1 − β̄ϵ,ϵ′(N,N0). Since the
optimization problem in (8) is a min-max problem, Lsp can be
chosen as 1 according to Remark 3.5 in [18]. Uniform level-
set bound h(ϵ) can be computed as Lx

n
√
ϵ as stated in [18,

Remark 3.8], where Lx is the Lipschitz constant of constraints.
Therefore, we have P

(
K∗ ≤ K∗

RCPN̂
≤ K∗ + Lx ϵ

1
n

)
≥

1 − β̄ϵ,ϵ′(N,N0). Let us denote the optimal solution of the
RCP in (8) by d∗RCPN̂

. We get P
(
d∗RCPN̂

|= RCP
)
≥ 1−βs for

a specific N̂ according to Theorem 2. This inequality implies
P
(
K∗

RCP ≤ K∗
RCPN̂

)
≥ 1 − βs, where K∗

RCP is the optimal
value of the RCP in (6). By defining events A := {K∗ ≤
K∗

RCPN̂
≤ K∗ + Lx ϵ

1
n } and B := {K∗

RCP ≤ K∗
RCPN̂

}, where
P(A) ≥ 1− β̄ϵ,ϵ′(N,N0) and P(B) ≥ 1−βs, it is easy to see
that (A∩B) ⊆ (K∗

RCP ≤ K∗ +Lx ϵ
1
n ). By the assumption of

the theorem, we have K∗ + Lx ϵ
1
n ≤ 0. Hence, one obtains

P(K∗ + Lx ϵ
1
n ≤ 0) ≥ P(A ∩ B) ≥ 1 − P(Ac) − P(Bc) ≥

1−β̄ϵ,ϵ′(N,N0)−βs. This concludes the proof since K∗
RCP ≤ 0

implies that the feasible solution of RCP in (6) satisfies the
barrier conditions in Theorem 1 with a confidence of at least
1− β̄ϵ,ϵ′(N,N0)− βs.

Remark 2: According to [16, Remark 2], for a given num-
ber of samples N , the desired level of confidence β, number
of decision variables |d|, and δ = ϵ − ϵ′, a lower bound for
N0 can be computed as

N0 ≥
ϵ
δ lnβ−1 + |d| − 1−N( δ2 + ϵ′)

δ
, (20)

to ensure β̄ϵ,ϵ′(N,N0) ≤ β.
Based on the results in Theorem 3, we provide Algorithm 2

to systematically verify the safety of a stochastic system
with an unknown dynamic. The coefficients of the barrier

certificate satisfying conditions (2)-(4) are obtained in Step 4
of Algorithm 2.

Remark 3: Remark that there is a trade off (pareto curve)
between the expected number of iterations in (14) and the
number of samples N (cf. Figure 2 in the case study). Hence,
the user can decide how to pick N based on the number of
expected iterations within which Algorithm 1 terminates.

Algorithm 2 Data-driven safety verification
Require: Parameters β ∈ (0, 1), βs ∈ (0, 1), ϵ, ϵ′ ∈ [0, 1],

ϵ′ ≤ ϵ, Lx ∈ R+, and the degree of the barrier certificate
1: Choose the number of samples N according to Remark 3
2: Compute the number of test samples N0 according to (20)
3: Compute N̂ according to Theorem 2
4: Call Algorithm 1 to get d∗ = [K∗;λ∗; c∗; b∗]
5: Safety Verifier: If K∗+Lxϵ

1
n ≤ 0, then Pw(S |=H Ψ) ≥

1− 1+c∗H
λ∗ with a confidence of at least 1− β̄ϵ,ϵ′(N,N0)−

βs.

V. CASE STUDY

Consider a two-tank system modelled by the following
discrete-time stochastic system:

h1(t+ 1)=(1− τs
α1

A1
) h1(t) + τs

qi(t)

A1
+ w1(t) (21)

h2(t+ 1)=τs
α1

A2
h1(t)+(1− τs

α2

A2
)h2(t)+τs

qo(t)

A2
+w2(t),

where h1(t) and h2(t) are heights of two tanks. Terms
w1(t) and w2(t) are additive zero-mean Gaussian noises with
standard deviations of 0.01, which model the environmental
uncertainties. Parameters αi and Ai, i ∈ {1, 2}, are valve
coefficients and the area of tank i. Variables qi(t) and q0(t)
are inflow rate entering the first tank and outflow rate exiting
the second tank at time t, respectively. The model for this
two-tank system is adapted from [19] discretized by τs = 0.1
seconds. We consider state and input matrices as Aτ =
[1 − τs, 0; τs, 1 − τs] and bτ = [τs; τs], respectively, in the
situation in which input and output valves are fully open,
and two constant-rate feeding and retaining pumps ensure
constant flows of qi(t) and qo(t) with values of 4.5m3/s and
3m3/s, respectively. Let us consider Xin = [1.75m, 2.25m]2,
Xu = [9m, 10m]2, and X = [1m, 10m]2 as the initial, unsafe
and the overall state sets, respectively. We assume the model
in (21) and the distribution of the noise are unknown. The
main goal is to verify that the heights of both tanks stay
away from the unsafe region within the time horizon H = 5
with an a-priori confidence 99%. Let us consider a barrier
certificate with degree k = 2 in the polynomial form as
[h1; h2; 1]

TP[h1; h2; 1] = b0h
2
1 + b1h

2
2 + b2h1h2 + b3h1 +

b4h2 + b5, where P is a matrix containing the coefficients
of the barrier certificate. By enforcing ∥P∥ ≤ 0.2 and since
∥x∥ ≤

√
2 × 10, the Lipschitz constant is Lx = 11.03 [15,

Lemma 1].
We use Algorithm 2 to apply our proposed approach to this

example. We select ϵ = 0.65×10−4, ϵ′ = 0.7ϵ = 0.45×10−4,
βs = 0.001, and β = 0.009. Then, one needs to select



the number of samples N . This can be done by considering
the trade-off between N and the number of the required
iterations according to Remark 3 (cf. Fig. 2). For example,
for 106, 105, and 5 × 104 number of samples, the expected
required iterations are 1, 59, and 8283, respectively. Here,
we select N = 70000 for which the expected number of
iterations is 636. The number of test samples is computed
as N0 = 1017100 using (20). The value of N̂ is computed as
400 according to Theorem 2 by considering the approximation
error in (9) as e = 0.05 and enforcing M̂ = 0.001. The value
of M̂ was checked a posteriori using enough number of data.
This provides a confidence of 1 − βs, where βs = 0.001. In
Step 4, we run Algorithm 1. The algorithm terminates in only 5
iterations, which is much less than the expected one (i.e. 636).
This shows that our proposed approach is even more scalable
in practice, and the theoretical upper bound is too conservative
to cover the worst-case scenarios. The obtained optimal value
of the successful iteration is K∗ = −0.1119. According to
Step 5 in Algorithm 2, since K∗+Lxϵ

1
n = −0.0230 ≤ 0, one

can conclude that the water levels remain in the safe zone with
a probability lower bounded of 0.90, and this statement is true
with a confidence of at least 0.9985. Remark that the number
of samples, which is 70000 here, is much less than 1337297,
based on the results in [15] and [17], while our approach
provides an even better confidence (i.e. 0.9985 in comparison
to 0.99). The numerical experiments were conducted using
CVX [20] under MATLAB. The total computation time here
was 22 seconds, which is much less than 2 hours needed to run
an SCP, as in [15] and [17], for 1337297 number of samples.
Furthermore, Step 4 in Algorithm 2, the most expensive part of
the algorithm, is natively parallelizable. Hence, our approach
can be applied to large-scale systems.

Fig. 2. Pareto diagram of expected number of iterations versus N .

VI. CONCLUSION

In this paper, we developed a data-driven verification ap-
proach based on the idea of repetitive scenario design. First,
we constructed a repetitive scenario program based on an RCP
characterizing the main safety problem as an optimization one.
At each iteration of the proposed repetitive scheme, we first
solve an SCP, then feed the optimizer to a feasibility oracle
to check the feasibility of the SCP for a certain number of
new samples before checking a rigorous safety condition on
top of the feasibility one. Once both conditions (feasibility

and safety) are satisfied, a lower bound can be computed for
the probability of the safety of the stochastic system with
unknown model by leveraging the optimal solutions of the
successful iteration. Finally, the effectiveness of our approach
in comparison with the existing results in [15], [17] was
illustrated via a two-tank system.
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