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Abstract

In this thesis, we investigate several properties of rotating turbulent flows. First, we ran

several computer simulations of rotating turbulent flows and performed statistical analysis of the

data produced by an established computational model using Large Eddy Simulations (LES). This

enabled us to develop deeper phenomenological understanding of such flows, e.g. the effect of

anisotropic injection in the power laws of energy and helicity spectral densities, development of

shear in specific rotating flows and evidence of wave-vortex coupling. This served as a motiva-

tion for detailed theoretical investigations. Next, we undertook a theoretical study of nonlinear

resonant wave interactions to deduce new understanding of rotating flow dynamics. The latter

analysis pertained to the highly anisotropic regime of rotating flows. To the best of our knowl-

edge, the application of wave-turbulence theory to asymptotically reduced equations in the limit

of rapidly rotating hydrodynamic flows is presented here for the first time and aims to further

our understanding of highly anisotropic turbulent flows. A coupled set of equations, known as the

wave kinetic equations, for energy and helicity is derived using a novel symmetry argument in the

canonical description of the wave field sustained by the flow. A modified wave turbulence schematic

is proposed and includes scaling law solutions of the flow invariants that span a hierarchy of slow

manifold regions where slow inertial waves are in geostrophic balance with non-linear advection

processes. A brief summary of the key findings of this thesis is presented in Table 1.
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Chapter 1

Introducing a world of Waves, Eddies and Turbulence

“To create one’s own world takes courage.”

Georgia O’Keeffe

In this chapter, we present a historical as well as an application based introduction to the

troika, viz., waves, eddies and turbulence, that together form the centerpiece of this doctoral re-

search work. The primary question we attempt to answer in this dissertation is the following,

how does the wave-eddy interplay drive the flow of energy across scales in rotating

turbulent flows? To accomplish this goal, we have analyzed results of computational simulations

and employed theoretical investigations of the governing fluid equations. Before we present the

detailed analysis of rotating turbulent flows, we introduce the reader to the role of waves, eddies

and turbulence in the context of several natural systems pertaining to geophysical and astrophysical

applications.

1.1 Waves, eddies and their interplay in nature

Waves are efficient carriers of energy and angular momentum. Hence, their ubiquitous oc-

currence in different natural systems has an important physical significance. The study of waves

has spanned a broad spectrum of applied fields. These studies have broadened our understanding

of climate in meteorology [26, 27]. Historically, meteorologists have studied atmospheric distur-

bances modeled by the nonlinear vorticity equation[52, 53]. These studies were aimed at forecasting
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weather phenomena and atmospheric circulations [104, 31]. Atmospheric Rossby waves, as they are

better known, emerge due to shear in rotating flows. These waves were first invented by Carl-

Gustaf Arvid Rossby, who described their motion. Specifically, it was shown that easterly waves

have diminishing velocity with increasing wavelength, while the situation reversed for westerly cur-

rents [94]. This is only a historical perspective of the significance of studying wave phenomena in

the context of atmospheric meteorology and we will comment a little more on some of the recent

investigations in this field in a while after we mention the role of waves in other fields of science.

Atmospheric studies are often not confined to our planet earth because several physical

processes on earth are impacted, either directly or indirectly, by phenomena happening outside

our thin atmosphere. In this regard, one of the primary subjects of research investigation is the

Sun and its atmosphere. More specifically, the study of the Sun’s corona and its highly ionized

plasma state. In the corona, kinetic and magnetohydrodynamic (henceforth referred to as MHD)

waves transport energy from the chromosphere to the outer corona and the solar wind and thereby

sustain the solar corona [78, 23]. Kinetic models of the solar corona have revealed the possibility of

coronal particle acceleration and heating by high-frequency waves, although previous studies had

only detected prevalence of weak MHD waves. However, a recent observational study by McIntosh

et. al. [80] has shown the existence of large amplitude Alfvénic waves of the order of 20kms−1 and

the periods of the order of 100− 500s in the quiet solar atmosphere with sufficient energy reserves

to pump the solar corona. Mathematical models and simulations further support this proposition

[55, 128].

Beyond the earth and the sun lies the large expanding universe and the scientific realm of

astrophysics. Here, we will mention a few areas in astrophysics where the role of waves (often

gravity waves) is important, one such field being the study of accretion discs. Accretion discs are a

ubiquitous phenomenon in astrophysics, from planetary formation, Saturn’s rings, black holes that

swallow stars to the Milky Way’s spiral structure. The focal point of accretion disk theory is to

understand how angular momentum is transported in the radially outward direction so that matter

can accrete onto the central gravitating body. In this context, Lovelace et. al. [73] consider a thin
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(2D) non-magnetized Keplerian accretion disk based on the vorticity equation [96] to show that

a certain Rossby wave instability mechanism results in the formation of multiple Rossby vortices

after breaking of the waves, the vortices then coalesce after a few revolutions. This may explain the

transport of angular momentum in the radially outward direction. Moreover, simulation studies

like that of Arras et. al. [2] have shown that quasi-periodic oscillations (QPOs) associated with

accreting neutron star and black hole binaries are triggered by magneto-rotational instabilities.

Further, observational studies have demonstrated wave bending and warping phenomena in binary

star systems [105]. While the role of waves in these examples has significant influence in the actual

dynamics of the respective processes, the question one may ask is how are these waves produced?

How do they couple with the dynamics of vortices and turbulence?

Eddies are swirling of a fluid and are representative of vortical motions. Sometimes, standing

or solitary wave modes may be analogous with vortical coherent structures that abound in geo-

physical and planetary dynamics. The two best examples that come to mind are the polar vortex

in the earth’s stratosphere prominent in the winter and the Great Red Spot (GRS) on Jupiter’s

southern equatorial belt. Unlike waves which serve as carriers of energy and momentum, vortices

are invariably reserves (pool) of momentum, mass and energy. Together, they are the powerhouse

of many natural systems and detail understanding of their interplay (technically, interaction) is

key to unraveling the mystery of several physical processes of this universe. In this introductory

section, we will only mention a few examples of wave-vortex interplay as a motivation of this thesis

work.

Earlier, in the introductory paragraph, we mentioned that long wave disturbances in the

earth’s atmosphere affect the climate. A logical starting point is to understand how such waves may

be generated at the first place? Instabilities and orographic asymmetries are known sources of wave

generation. Another possible source is tropical cyclones that radiate Rossby waves due to existence

of large scale potential vorticity gradients in the atmosphere, this theory has been supported by

numerical simulations by K. D. Krouse et. al. [68]. This is not surprising as supported by a common

and simple experiment by throwing a stone on water in a pond would show that surface gravity
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waves are generated in the radial direction. Numerical simulations using the quasi-geostrophic

vorticity equation in a beta plane have shown that stratospheric planetary wave activities can be

sustained by forcing from tropospheric baroclinic eddies [107]. The occurrence of vortex islands in

models of protoplanetary nebula are considered to be sources of Rossby waves, the latter can be

generated as a result of vorticity gradients as has been shown v́ıa computer simulations by Davis et.

al. [36]. A recent theoretical and numerical study has shown that internal waves in the deep ocean

may be generated by resonant interactions between tidal oscillations and geostrophic eddies as

long as the horizontal length scales of the tidal currents and the eddies are comparable [70]. These

length scales are normally not comparable except near coastlines where topographic effects can play

a role. These studies clearly emphasize the interplay between waves and eddies in atmospheric and

planetary flows and their impact in atmospheric and planetary circulations in general. Numerical

experiments by Bigot and Galtier [11] have shown the coupling of 3D wave modes and 2D vortical

modes in the presence of a strong magnetic field and can explain the co-existence of waves and

vortices in astrophysical plasmas.

A confluence of a classical hydrodynamic theory with a relatively modern quantum mechanical

theory is the field of superfluid flows. This will help us understand complex fluid motions in

both low temperature fluids and ordinary fluids. A recent study by L’vov et. al. describe the

nature of interaction between hydrodynamic eddies and Kelvin waves in superfluid turbulence

[123]. Hopefully, these examples have reinforced the fact that the interplay of waves and eddies

in a variety of physical systems is an important phenomena and understanding the mechanism of

their interaction is of fundamental significance. It must also be said that most of the examples

presented here thus far, involve another complex phenomena intertwined with the story of waves

and eddies. This complex phenomena is turbulence and is known as the last unsolved problem in

classical physics. In the subsequent paragraphs, we informally introduce the history and science

associated with the study of turbulence.

T urbulence is a quintessential problem in nonlinear physics. The complexity of a turbulent

fluid flow is elucidated by the prevalence of a multitude of interacting scales [43] that exchange
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energy amongst themselves [66] and manifest interesting physical structures [39].

1.1.1 Eddies and turbulence

So what exactly is turbulence? This question can be perhaps best answered by quoting Lewis

Fry Richardson’s famous couplet [102]: ‘Big whirls have little whirls that feed on their velocity, and

little whirls have lesser whirls and so on to viscosity.’ Thus, Richardson’s notion of turbulence is

that of a flow composed of eddies of different scales exchanging energy among themselves, thereby

resulting in smaller eddies from larger ones. This cascading of energy into smaller eddies continues

until a sufficiently small scale whence the viscosity of the fluid effectively dissipates the kinetic

energy into internal energy of the fluid system. The story of classical turbulence is thus a fascinating

tale of cascading eddies. This story was beautifully captured in a sketch by Leonardo Da Vinci a few

hundred years before it was put in words by Richardson (see Figure 1.1.1). In this sense, turbulence

is ubiquitous; from the profile of smoke rising from a cigarette to atmospheric circulation, and from

flow in gas turbines to blood flow in human body.

1.1.2 Waves and turbulence

So, is the story of turbulence a story of eddies alone? An interesting extension of the problem

of turbulence is to examine the flow by imposing an anisotropic effect like a direction specific

magnetic field or an imposed global rotation. In this thesis we will study the latter as a canonical

framework for studying turbulence. We will formulate our examination of wave-eddy dynamics in

fluid flows within this set up.

The introduction of rotation through a Coriolis term in the governing equations and its

effect on the geometrical features that develop in the flow, have been studied for over a century

now [56, 101, 117]. Consider, the nondimensionalized incompressible Navier-Stokes equations (the

governing equations) with global rotation, Ω = Ωẑ, as follows:

∂tu + (u · ∇)u +
1

Ro
ẑ × u = − 1

Ro
∇P +

1

Re
∇2u + f , (1.1)
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Figure 1.1: Leonardo Da Vinci’s illustration of the swirling flow of turbulence. The sketch elucidates
that water flowing out of an orifice has eddying motions of different scales (courtesy: The Royal
Collection c©2004, Her Majesty Queen Elizabeth II ).



8

∇ · u = 0, (1.2)

where u is the instantaneous velocity field, P is the pressure term, f is an external force per unit

mass, the Rossby number is Ro = U0
2L0Ω (where U0 and L0 are, respectively, normalized velocity and

length scales taken to be unity), and the Reynolds number is Re = U0Lo
ν (where ν is the kinematic

viscosity). To understand the role of global rotation in the flow dynamics, consider a steady state,

Figure 1.2: Left: Perspective volume rendering of vorticity intensity in a snapshot of a 15363

rotating turbulent helical flow (courtesy: NCAR and [121]). Right: Convective Taylor Columns
from simulations of Rayleigh-Beénard convection using reduced equations [51].

inviscid, weakly (negligibly) nonlinear approximation of the governing equation (1.1) in the absence

of external forces. This results in a balance between the Coriolis term and the gradient of pressure:

ẑ × u = −∇P , whence the curl of this expression along with the incompressibility condition (1.2)

gives us the following relation:

(ẑ · ∇)u = 0. (1.3)

Equivalently, this means u = u(x, y), i.e. the velocity field is independent of z under the effect

of rapid global rotation. This is known as the Taylor-Proudman theorem [49]. The implication

of this theorem is the observed emergence of columnar structures in rotating turbulent flows (see
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Figure 1.1.2). Morevover, the linear, inviscid, time-dependent equation is known to have wave

solutions,

u = Ueiωt, (1.4)

P = Peiωt, (1.5)

where ω is the wave frequency, U and P are, respectively, the velocity and pressure amplitudes.

The waves in the flow are of the dispersive type [130] and the dispersion relation is given by,

ωs(k) = 2Ωs
kz
k
, (1.6)

where kz is the z-component of the wave vector, k and s = ±1. In the subsequent chapters we

observe that the effect of the waves, through the dispersion relation, appears in the nonlinear energy

transfer term and thereby plays a key role in the nonlinear transfer of energy across scales.

Rotating turbulence is thus a theater of waves and eddies interacting with each other at

different spatial and temporal scales. The nature of their interaction is thus key to unraveling the

mystery of rotating turbulent flows. This manuscript is an attempt in that direction.

1.2 Brief survey of rotating turbulence in the atmospheres, laboratory and

computer simulations

We would like to emphasize that fluid turbulence is a matured field with several contributions

leading to a vast body of work that has been archived in the research literature. Here we briefly

mention a few research efforts that served as a motivation of this thesis work. Several other work

is cited in relevant parts of the thesis in the subsequent chapters.

1.2.1 Rotating turbulence in geophysical and planetary atmospheres

Rotating fluid flow is ubiquitous in nature, from atmospheric and oceanic phenomena to

planetary dynamics. The interplay between waves and vortical eddies makes for interesting dy-

namics both from fundamental physical point of view and also in furthering our understanding

about several geophysical and planetary processes. Here, we will mention two such recent findings
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that served as a motivation to understand wave-vortex interactions which is the main subject of

this dissertation. The first is a study of the role of planetary waves in generating and sustaining

the stratospheric polar vortex [72]. Another evidence of wave-vortex interplay in planetary science

is an observational study about the manner in which planetary wave disturbances on Jupiter’s

atmosphere are severely impacted by the presence of large vortices like the Great Red Spot (GRS)

[111]. Analysis of Cassini satellite data from the Jovian atmosphere has shown evidence of energy

exchange between vortical eddies and the mean wind flow in the rich turbulent atmosphere of the

planet [106]. It is important to note that in the atmosphere, the wave dynamics due to rotation

is often coupled with density stratification effects and thereby interactions between different types

of waves like gravity waves are possible especially through near resonant interactions. A detailed

presentation of rotating turbulence in the context of geophysical and planetary applications can

be found in the literature [124, 81]. Another interesting study on the role of rotation in accretion

disks can be found in the paper by Dubrulle et. al. [38].

1.2.2 Rotating turbulence in the laboratory

The interesting observational studies mentioned above and similar studies in the past have

always enthused researchers to attempt to simulate similar environments in a controlled laboratory

environment since the pioneering work by G. I. Taylor who first showed the emergence of columnar

eddies in a rotating tank in the laboratory. These experimental studies have enabled further

understanding of rotating turbulent flows and related processes like vortex generation methods [125],

resonant wave propagation and decay [13, 15]. The role of instability mechanisms in generating

vortices in rotating fluid systems is described in a very simple and easily accessible manner in an

article in the Hands-on Oceanography [91].

1.2.3 Rotating turbulence in computer simulations

Here, we mention three recent simulations of rotating turbulent flows and statistical analysis

of the simulation data therein. First, is a high resolution (15363) direct numerical simulation of
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rotating helical turbulence by Mininni and Pouquet [83], [83] and detailed investigation on the

role of helical forcing on the flow dynamics. Another simulation of decaying rotating turbulence

is the work by Thiele and Muller [122]. In both these papers, the authors have obtained power

laws for the anisotropic energy spectrum that are in agreement with the analysis presented later

in this thesis. Finally, it is worth mentioning computational simulations of asymptotically reduced

model for rotating convective flow by Julien et. al. [61] and the statistical analysis of different flow

regimes therein. Computational studies of reduced equations have acquired a useful place in the

literature as they are valid for flow regimes that are still unattainable by simulations of the full

incompressible Navier-Stokes equations. The theoretical wave turbulence investigation presented

in the subsequent chapters in this thesis is based on asymptotically reduced equations of Julien

and Knobloch [58].

1.3 Dimensional analysis and power laws in turbulence: the legacy of Kol-

mogorov

Since turbulence is basically chaotic motion of fluid under certain physical constraints, it is

impossible to deterministically predict the dynamics of flow field variables (e.g., velocity, vorticity,

etc.). Hence a statistical approach is necessary to answer questions like: what is the average

decay rate of energy across scales in a turbulent flow? This entails the nature of energy cascade

across scales and their possible physical implications. Thus a useful quantity of interest is the

isotropic total energy spectrum, E(k) = 1
2

∑
k≤|k|<k+1 |u(k)|2 and is such that the total energy is

E =
∑

k E(k). E(k) represents the energy contained in a feature (e.g., eddies) of scale, lk ∼ 1
k .

Kolmogorov’s theory [43] is based on a wide separation of viscous and global (box) scales and over

a range of wave modes (known as the inertial range) where the flux of energy, Π(k), given by

∂tE(k) = −∂kΠ(k), is constant. Dimensional analysis then gives:

E(k) ∼ ε2/3k−5/3, (1.7)
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which is valid for all k in the inertial range. Here, ε is the rate of energy dissipation. The result

expressed in equation (1.7) is valid for two-dimensional flows in the inverse cascade range of the

spectrum. But the Kolmogorov phenomenology can be extended to the case of decaying rotating

turbulence and a constant flux solution for the inertial range energy spectrum can be obtained

by equating the inertial wave time scale (τΩ = 1
Ω) with the nonlinear (eddy turn-over) time scale

(τNL =
√
k3E(k)). The Kolmogorov solution for rotating turbulence, in the absence of external

forces, is [136]:

E(k) ∼ (Ωε)1/2k−2. (1.8)

Scaling law solutions to stationary and non-stationary energy spectra in turbulent flows

have been studied by many researchers since the pioneering work by Kolmogorov in 1941. Two

interesting papers by Heisenberg in the late 1940s, elaborated later by Chandrasekhar [25], explain

how simple explicit solutions for the energy spectrum can be obtained both for the stationary and

non-stationary case, by solving a certain second order differential equation. These solutions agree

with the predictions of Kolmogorov theory and provide a historical perspective to the significance

of scaling law solutions to spectra of turbulence.

1.4 Two dimensional turbulence: a competition between scales

Before we delve into forced rotating turbulent flows, it is useful to review our understanding

of two dimensional turbulence in the presence of external forces. It must be emphasized that since

the flow is restricted to two dimensions, there is no Coriolis term in the governing equations. This

entails an absence of waves in the system and hence it is a story of eddies. Forced two dimensional

turbulence has several unique characteristics, perhaps the most interesting aspect being the reversal

in the energy flux resulting in an inverse cascade of energy to large scales. This reversal of energy

flux is explained in detail in this section. The conceptual explanations of this section are based

on the works of Batchelor [7] and the review paper on two dimensional turbulence of Boffetta and

Ecke [12]. The following sections underline the role of invariants in the flow dynamics.
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1.4.1 Direct cascade of enstrophy

Inviscid two dimensional turbulence, in the absence of external forces, has two fundamental

invariants, viz., energy and enstrophy. However, it must be mentioned that there are an infinitely

many Casimir invariants in 2D turbulence (i.e. any continuously differentiable function of the

vorticity field is conserved) [19] that are conceptual extensions of the two fundamental invariants

mentioned here. Energy is as defined in the previous section. Enstrophy, Z is defined as follows:

Z = 1
2 ζ̄

2 = 1
2

∑
k |ζk|2, where the over-bar denotes spatial average.1 Real physical flows have

finite viscosity and therefore it is essential to consider the dissipation of energy in the limit of small

viscosity for turbulent flows. Again, in the absence of external forces and considering finite non-zero

viscosity, the evolution of energy and enstrophy is given by the following equations:

∂tE = −2νZ ≡ εν(t), (1.9)

∂tZ = −2νP ≡ ην(t), (1.10)

where P :=
∫
k4E(k)dk is called the Palinstrophy. Equation (1.10) implies a decaying Z and thus

it bounds enstrophy from above (initial condition). Therefore, equation (1.9) implies that εν → 0

as ν → 0. This is unlike three dimensional turbulence where enstrophy Z is not bounded from

above as equation (1.10) has a source term in the case of three dimensional flows. In fact, in

three dimensional turbulence, Z is magnified due to vortex stretching. However, in 2D turbulence,

spatial gradient of vorticity, ∇ζ increases due to prolongation of isovorticity lines. This is explained

formally as follows. The governing equation for two dimensional flows in the absence of forcing can

be written in terms of vorticity, ζ, as follows:

Dtζ = ∂tζ + u · ∇ζ = ν∇2ζ. (1.11)

Taking the gradient of equation (1.11) and using appropriate vector calculus identities2 along with

the incompressibility condition gives us an equation for the evolution of vorticity gradient,

∂t(∇ζ) = −∇u · ∇ζ + ν∇2(∇ζ). (1.12)

1 Note: ω is used to denote wave frequency and ζ = ∇× u is used to denote vorticity.
2 ∇(a · b) = (a · ∇)b+ (b · ∇)a+ (a×∇× b) + (b×∇× a) and ∇×∇a = 0
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Multiplying equation (1.12) by (∇ζ) and averaging over spatial dimensions, we arrive at a transport

equation for mean squared vorticity gradient and the resulting nonlinear term comprising of the

product of the gradient of velocity and vorticity represents the amplification rate of vorticity gra-

dients by prolongation of isovorticity lines. This means that if the 2D turbulence is initiated with

vorticity and vorticity gradients on comparable length scales, the prolongation of the isovorticity

lines will amplify the vorticity gradients thereby transporting enstrophy (mean square vorticity) to

smaller scales. This is known as the direct cascade of enstrophy to smaller scales and plays a major

role in the direction of energy cascade as is explained in the next section.

1.4.2 Dual cascade of energy

Two dimensional turbulence with non-trivial external forcing exhibits dual cascade of energy,

i.e. energy cascades both towards smaller and larger scales. The spectrum scales with the respective

inertial range wavenumbers as follows:

E(k) ∼ ε2/3k−5/3, ∀k � kf , (1.13)

E(k) ∼ η2/3k−3, ∀k � kf , (1.14)

where kf is the forcing wavenumber and ε and η are, respectively, the rate of energy dissipation at

viscous and box scales. It is important to note that in the limit of infinite Reynolds number, as

k → ∞, we have E(k) = Z(k)
k2 → 0, i.e. energy transfer to the smallest scale is inhibited by the

direct cascade of enstrophy.

However, an interesting question is: why does the energy cascade to large scales at all? We will

see that the key to this question is directly related to the fact that the other invariant of the system,

viz., enstrophy, cascades to smaller scales only. The simplest and yet convincing explanation for

the reversal of energy flux to larger scales is based on Fjørtoft’s argument [41]. Consider that there

are only three interacting wave modes in the system, k,p,q such that k < p < q. For simplicity,

say p = 2k and q = 3k. Let us also denote by δE(k) the differential energy in wave mode k over a

fixed incremental time span such that δE(k) < 0 implies a loss of energy by mode k in that time
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interval and vice versa. Then, the conservation of energy and enstrophy entail the following:

δE(k) + δE(p) + δE(q) = 0, (1.15)

and

δZ(k) + δZ(p) + δZ(q) = 0, (1.16)

where δZ(k) = k2δE(k). Equations (1.15) and (1.16) result in δE(k) = −5
8δE(p) and δE(q) =

−3
8δE(p). So if the intermediary wave mode p loses energy, i.e. δE(p) < 0 then δE(k) > δE(q) > 0.

This means more energy goes to the larger scale, k than the smaller scale, q and thereby elucidating

the inverse energy cascade. However, it is interesting to note that δZ(q) = −27
8 k

2δE(p) and

δZ(k) = −5
8k

2δE(p) and thus if δE(p) < 0, we have δZ(q) > δZ(k). This is a clear indication of

a direct cascade of enstrophy. It is easy to check that if the enstrophy cascades to larger scales, it

is impossible to have an inverse cascade of energy based on the above arguments. The pioneering

work in two-dimensional turbulence is the work by Robert Kraichnan and is a useful reference [66].

Therefore, in order to have an inverse cascade of any one of the invariants of the system,

it is imperative to have a purely direct cascade of the other invariant of the system. We will see

later in the following chapter that in the case of forced rotating flows, a new invariant, helicity

(alignment of velocity and vorticity, i.e. u · ζ) plays the role of the enstrophy to enable the inverse

cascade of energy. However, a naive and direct application of this argument, to the case of 3D

turbulence, is contested by Kraichnan [67] because unlike enstrophy, helicity at any given mode k,

denoted by H(k), is not exactly determined by E(k) (or equivalently by uk). It is merely bounded

from above by E(k) by the relation: |H(k)| ≤ k|E(k)|. Moreover, since maximal helicity is not

conserved, the equality in the above relation does not necessarily hold true for any k even in the

case of a maximally helical initial state. This means that the invariance of helicity is not a sufficient

condition for the reversal in energy flux to larger scales and this is what makes the study of 3D

rotating turbulence an interesting and difficult one. It must be noted that helicity is identically

zero in two dimensional flows.
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1.5 Summary

In this introductory chapter, we have stated the motivating factors of this thesis. We have

also presented a brief overview of 2D turbulence. Two dimensional turbulence is a matured research

field having occupied the minds of several researchers over more than two centuries. A broader

narrative on 2D turbulence can be found in several review articles on the topic [64, 116] and that

of Fornberg [42] for a computational perspective.



Chapter 2

Rotating Turbulence I: Phenomenology and Simulations

“It is important to express oneself...provided the feelings are

real and are taken from your own experience.”

Berthe Morisot

In the previous chapter, we have introduced, albeit briefly, the problem of turbulence with

background rotation. We will see, from what follows here and the latter chapters, that the many

interesting challenges posed by background rotation stem from the presence of inertial Waves that

interact with the vortical Eddies and thereby alter the dynamics and energetics of the flow system.

For e.g., it is well known that rotation decreases the rate of energy decay [21, 89]. Rotation also

introduces a new invariant of the system, viz., helicity. Helicity is a measure of the alignment of

velocity and vorticity and is non-trivial in a 3D flow unlike in the 2D case. The new invariant has

been shown to further decrease the energy decay rate only in the presence of background rotation

but does not affect the energy decay in the absence of rotation [119]. The fact that non-trivial

helicity retards the nonlinear energy transfer across scales has been long conjectured by Kraichnan

[67]. This can be easily checked by re-writing the nonlinear transfer term in the governing equation,

(u · ∇)u in terms of the Lamb vector, ζ × u and noting that in the maximally helical case when

velocity and vorticity are perfectly aligned, i.e. u · ζ = 1, we have ζ × u = 0 and the deductions

thereof. Moreover, helicity is also responsible for departure in mirror symmetry in homogeneous

isotropic turbulence [79, 99].

The current manuscript does not discuss the role of helicity on turbulent flows although
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some passing references to the role of helicity in the context of the simulations performed is made.

Interested readers should refer to the paper by Moffatt [87] for a topological perspective of helicity

and to the recent papers by Mininni and Pouquet [83, 84] for a phenomenological treatment of the

role of helicity in rotating flow dynamics based on direct numerical simulations.

In this chapter, we will discuss the particular case of rotating turbulent flows in the presence

of different types of external forces and the resulting energetics and physical features that result

from it. We will begin with a brief discussion on rotating turbulence based on important work in

the past and then present the case of forced rotating turbulence in the subsequent sections.

2.1 Towards axisymmetric turbulence: historical perspective

2.1.1 The Craya-Herring helical basis

One of the first papers to present a novel theoretical framework for analyzing rotating (ax-

isymmetric) turbulence was one by Herring in 1974 [54]. This paper introduced the Craya-Herring

basis [32, 54], a suitable basis of the wavefields that populate rotating flows. The Craya-Herring

basis vectors are two of the three eigenvectors of the two-point velocity correlation tensor that have

non-trivial eigenvalues, denoted by (e
(1)
k , e

(2)
k ) that lie in a plane perpendicular to the direction of

wave propagation. Craya [32] showed that helicity manifests itself as a purely imaginary number

proportional to the product of these basis vectors. The construction of the non-trivial eigenvalues

imply that if the statistical properties of the velocity field are invariant to an arbitrary rotation

of the coordinate axes about the axis of rotation, then so are the statistics of these two eigenval-

ues. Hence, the physical importance of this basis in the context of axisymmetric flows. It must

be said here that the third eigenvector is the wave vector, k that is in the direction of propa-

gation of the wave and has a zero eigenvalue. The incompressibility condition then conveniently

becomes, k · uk = 0. In his paper [54], Herring uses the direct interaction approximation as a clo-

sure strategy to compute the two-point velocity correlation tensor and based on numerical results,

shows the progress of axisymmetric turbulence to isotropy at smaller scales (larger wavenumbers).
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Lesieur [71] proposed a small modification of this basis formulation by constructing a new set of

complex-conjugate pair of eigenvectors, known as the helical basis vectors, as a linear combination

of the nontrivial Craya-Herring basis vectors in a complex plane as follows: Nk = e
(2)
k − ie

(1)
k and

N∗k = e
(2)
k + ie

(1)
k = N−k. In this formulation of the helical basis vectors, Nke

ik·x is the eigenvector

of the curl operator. The Craya-Herring helical basis, denoted by (Nk,N
∗
k,k), has since attained

wide recognition in theoretical representations of axisymmetric turbulence.

2.1.2 Anisotropic effects and closure strategies

Earliest works on theoretical spectral space analysis of rotating turbulence can be referred to

Cambon et. al. [21]. The need for wave space analysis arises from the fact that earlier efforts based

on the Reynolds stress tensor, T is not suitable for studying anisotropic effects because T remains

fairly spherical or symmetric in the three principal components as noted in simulations. On the

other hand, the spectral approach separates the linear and nonlinear (resulting from the convolution

in spectral space) contribution. The latter may be modeled based on a Eddy Damped Quasi-Normal

Markovian (EDQNM) approximation or its variants as in [22] that retain the anisotropic structure

of the relevant operators. The quasi normal approximation enables one to write the fourth order

moments as a sum of second order moments and fourth order cumulant. The latter is then taken

to be proportional to the third order moment. This forms the basis of a closure strategy. The

trace of the second order spectral tensor, representing the energy spectral density, is proportional

to the nonlinear transfer term (third order moments approximated by the sum of the second order

moments and the cumulant approximation, due to the quasi normal approximation). Cambon et.

al. [22] decompose the second order spectral tensor in terms of three scalars, viz., energy, helicity

and the polarization anisotropy, the latter is a complex scalar function measuring the extent of

anisotropy in the flow. Evolution equations for each of these terms in terms of the respective

nonlinear triadic transfer presents the wave space build up of the three corresponding spectra.
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Formally, the evolution equation for energy in wave space, is:(
∂t + 2νk2

)
E(k, t) = T (k, t), (2.1)

where the transfer term on the right hand side is an integral over all triads of the form k = p + q

that satisfy the resonance condition: ωk = ωp + ωq. Here, ωk = 2Ωkz
k is the dispersion relation. It

must be noted that, T (k, t) in its original form is proportional to the third order moment of the

velocity field in spectral space. Equation (2.1) is written in closed form by the closure strategy

mentioned above.

It must be mentioned here that the aforementioned anisotropic closure mechanism is not

unique. In fact, the simulations presented in the next section are performed using a Large Eddy

Simulation (LES) model that is a variant of the EDQNM closure methodology that assumes isotropy

at small scales. The technique is discussed in more detail in the next section.

The angular dependence of the spectra is captured by this formalism as the flow gradually

becomes two-dimensional. The particular spectral laws for decaying rotating turbulence can be

found in the papers by Cambon [21, 22]. The nonlinear transfer term is non-trivial only when

the resonance condition is satisfied by the interacting triads. As far as the direction of the energy

transfer is concerned, [21, 14] show that the resultant (secondary) wave number in the triad config-

uration is shallower (more 2D) than the two primary wave numbers when the resonance condition

is satisfied. This is based on the instability assumption, described by Waleffe [126, 127], that entails

the direction of energy flow amongst the three wave numbers in the triad configuration. Hence,

owing to rotation, the energy is gradually concentrated near the two dimensional manifold (or slow

manifold) with weak dependence along the rotation axis.

2.2 External forcing, inverse energy cascade and large scale dynamics

An interesting feature of rotating turbulent flows is the transfer of energy to large scales on

application of external forcing [112, 114, 28]. In physical space, this manifests as growth in core

size of the columnar structures. This is the main focus of this chapter and subsequent sections of
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this chapter are based on the recent paper by Sen et. al. [109].

2.2.1 Scaling laws at large scales: recent findings

There has been little consensus about the scaling of the energy spectrum at large scales.

The numerical simulation of [114] reports a steep ∼ k−3
⊥ spectrum whereas [112, 28] show a more

conventional ∼ k
−5/3
⊥ scaling that is reminiscent of two-dimensional (2D) Kolmogorov-Kraichnan-

Batchelor-Leith (KKBL) phenomenology for an inverse cascade of energy [66] (also see [33]). In

[113], a model is used to show that a ∼ k−5/3
⊥ spectrum for the 2D modes (also called “slow modes”)

results when triadic interactions between the 2D and the 3D (“fast”) modes are discounted for

artificially, but a ∼ k−3
⊥ spectrum is observed when all interactions are accounted for. Besides, a

∼ k−3
⊥ law for the horizontal kinetic energy spectra is also observed in a rapidly rotating Rayleigh-

Bénard convection using a reduced model [61].

In what follows we attempt to clarify some of the aforementioned issues related to the scaling

index of the energy spectrum. To this end, an LES model is used that models the smaller scales

based on energy and helicity contributions to the eddy viscosity and the eddy noise terms in the

EDQNM equations and explicitly solves the governing equations for larger scales. Details are

mentioned below. A large parameter study, with different types of external forcing functions, is

performed.

2.2.2 Numerical simulations and sub-grid scale modeling of turbulence

The simulations of this section were performed using a highly scalable Fortran 90-95 pseudo-

spectral code that integrates the Navier-Stokes equations (1.1) and (1.2) in a rotating frame of

reference with periodic boundary conditions. Detail discussions of the parallelized code, called

GHOST (acronym for Geophysical High Order Suite for Turbulence), can be found in the papers

of Baerenzung et. al. [3, 4] and Mininni et. al. [86]. The model is briefly summarized below.
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First, the larger resolved scales are computed by integrating the following equation:[
∂

∂t
+ k2

(
1

Re
+ νk|kc

)]
uα(k, t) = T<α (k, t)− 1

Ro
Pαβ εβγζuζ(k, t) + fα(k, t), (2.2)

which is the Fourier transform of (Eq. 1.1) (barring the newly introduced subgrid model term,

νk|kc). The Greek subindices denote cartesian components of the vectors and tensors and Einstein

summation convention is assumed. The term T<α (k, t) is the Fourier transform of the nonlinear

term in Eq. (1.1) over all modes with k < kc. Here, kc = N/2, where N is the domain resolution.

This term is computed using the pseudo-spectral method. The eddy viscosity term, νk|kc is related

to the subgrid model and is computed based on parameters that are modeled from the unresolved

scales. Pαβ(k) = δαβ −
kαkβ
k2 is the classical projection operator on the solenoidal velocity field that

lies in a plane perpendicular to the wave vector, k and εβγζ is the antisymmetric tensor associated

with the curl operator (Levi-Civita symbol).

The isotropic energy spectrum E(k, t) and the helicity spectrum H(k, t) up to wavenumber

3kc (including unresolved scales) are then obtained through data fitting and extrapolation from

the resolved scales. Next, the isotropic energy spectrum E(k, t) for the unresolved scales is evolved

based on the following:

(∂t + 2νk2)E(k, t) = −2νk|kck
2E(k, t)− 2ν̃k|kck

2H(k, t) + T<E (k, t) +
T̂ pqE (k, t)

4πk2
. (2.3)

An equivalent balance equation for the unresolved helicity spectrum H(k, t) is solved if the helicity

of the flow is non-zero (note: when H ≡ 0 , we have ν̃ ≡ 0). Here, νk|kc and ν̃k|kc are terms

prescribed by the model as before, T<E (k, t) represents the energy transferred to unresolved scales

from the resolved scales and T̂ pqE represents the energy and helicity interactions at wavenumbers

p, q > kc. The analytical forms of the above terms come from a two-point analysis of an integro-

differential equations originating from the EDQNM closure for isotropic Navier-Stokes turbulence.

Finally, eddy-noise (upscaling of energy towards the resolved scales from the unresolved scales) is

added to the velocity field based on a reconstruction of Eq. (2.3).
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2.2.3 External forcing functions

The primary goal of this section is to study the effect of external forcing mechanism on

the large scale dynamics of the flow, especially the nature of the energy spectrum for all wave

numbers, k < kf , where kf is the forcing wavenumber. Especially, the role of spectral anisotropy

of the forcing function is studied in detail. The different categories of forcing functions studied are

described below.

(1) Taylor-Green forcing: The Taylor-Green (TG) forcing function [118] is as follows:

fTG = f0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (2.4)

where f0 is the forcing amplitude taken to be 5.0. fTG has only two components, i.e. in

the x − y plane and hence injects zero helicity. In spectral space, it injects energy into

a few purely 3D modes. Eq. (2.4) includes products of three trigonometric terms in each

component, i.e. a product of three modes in spectral space, the effective forcing wave

number is kf =
√

3 min{kTG} which is taken to be approximately 40 in the simulations.

Thus, the 2D mode projection of the forcing wavenumber is k⊥,f =
√

2 min{kTG} ≈ 30.

(2) Arnold-Beltrami-Childress forcing: The Arnold-Beltrami-Childress (ABC) forcing

function [1, 29] is as follows:

fABC = f0 {[B cos(kfy) + C sin(kfz)] x̂

+ [A sin(kfx) + C cos(kfz)] ŷ

+ [A cos(kfx) +B sin(kfy)] ẑ} , (2.5)

with A = 0.9, B = 1 and C = 1.1. ABC forcing is an eigenfunction of the curl operator

and injects maximum helicity (i.e., fABC and ∇ × fABC are co-linear). The ABC forcing

excites only two 2D modes in the Fourier shell with k = kf (in the kx and ky axis in Fourier

space) and one 3D mode (in the kz axis).
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(3) Isotropic random forcing: In this case, all modes in spherical Fourier shells between

kf = 40 and 41 were fired with the same amplitude but random phases. The procedure

described in [100] was used to correlate phases and change the helicity of the forcing from

zero to maximal. This results in isotropic forcing independent of the amount of helicity.

As a result, more energy is injected into 3D modes compared to 2D modes. This forcing is

denoted by fRND.

(4) Anisotropic random forcing: In this case, we introduce a new parameter, β in order to

control the extent of anisotropy in the forcing. We define a new forcing function by mul-

tiplying each mode in the random forcing (described above) by a factor that concentrates

the effective forcing near the 2D manifold,

fANI(k) =

(
1− kz

kf

)β
fRND(k). (2.6)

The simple case, when β = 0, corresponds to isotropic forcing.

The simulations were started from a flow at rest and without rotation and integrated up to

ten large-scale turnover times (τf = Lf/U ≈ 10) until a turbulent steady state with a reasonably

well developed direct energy cascade was attained. Next, at a time arbitrarily re-labeled t = 0,

rotation was turned on and the simulation was continued for at least 250 τf turnover times.

2.2.4 Definitions: spectra and flux of energy

The definitions in this section are reproduced from the papers, [85, 109]. The isotropic total

energy spectrum is computed in the simulations as:

E(k) =
1

2

∑
k≤|k|<k+1

|u(k)|2, (2.7)

and is such that the total energy is E =
∑

k E(k). We can also define an axisymmetric energy

spectrum:

e(k⊥, k‖) =
1

2

∑
|u(k)|2 = e(k, θk), (2.8)
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where in the latter expression, θk is the colatitude in Fourier space with respect to the rotation

axis. The sum in Eq. (2.8) is over the following wave numbers: (k⊥, k‖) s.t. k⊥ ≤ |k × ẑ| <

k⊥+ 1; k‖ ≤ kz < k‖+ 1. The axisymmetric energy spectrum is such that the total energy in 2D

modes is E2D =
∑

k⊥
e(k⊥, k‖ = 0) =

∑
k e(k, θk = π/2). As a result, we refer to e(k⊥, k‖ = 0) as

the energy spectrum of the 2D modes. The spectrum e(k⊥, k‖) can be further decomposed into a

perpendicular and parallel components as follows:

e(k⊥, k‖) = e⊥(k⊥, k‖) + e‖(k⊥, k‖), (2.9)

where the first term corresponds to the energy spectrum of only the horizontal components of the

velocity (u and v), and the second to the vertical component (w).

Reduced perpendicular and parallel spectra can then be defined as:

E(k⊥) =
∑
k‖

e(k⊥, k‖), (2.10)

and

E(k‖) =
∑
k⊥

e(k⊥, k‖) (2.11)

respectively. As for the energy, E =
∑

k⊥
E(k⊥) =

∑
k‖
E(k‖). We then introduce the isotropic

and perpendicular energy spectra of the 3D modes:

E3D(k) = E(k)− e(k, θk = π/2), (2.12)

and

E3D(k⊥) = E(k⊥)− e(k⊥, k‖ = 0). (2.13)

Finally, we associate energy fluxes with the energy spectra E(k), E(k⊥), and E(k‖). These are

defined from the transfer functions as follows:

T (k) = −
∑

k≤|k|<k+1

u?(k) · ̂(u · ∇u)k, (2.14)

T (k⊥) = −
∑

k⊥≤|k×ẑ|<k⊥+1

u?(k) · ̂(u · ∇u)k, (2.15)
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and

T (k‖) = −
∑

k‖≤kz<k‖+1

u?(k) · ̂(u · ∇u)k, (2.16)

where the superscript ̂ denotes Fourier transformed quantities. Then, the fluxes are as follows:

Π(k) = −
k∑

k′=0

T (k′) (2.17)

Π(k⊥) = −
k⊥∑
k′⊥=0

T (k′⊥), Π(k‖) = −
k‖∑
k′‖=0

T (k′‖) (2.18)

These fluxes represent energy per unit of time across spheres in Fourier space with radius k, cylinders

with radius k⊥ and planes with k‖ = constant, respectively. In particular, note that Π(k‖ = 0)

represents energy transferred from 2D to 3D modes when positive, and from 3D to 2D modes when

negative.

Similarly, we can write definitions for helicity. Although, enstrophy is not an invariant in

3D flows, we will establish some connections between enstrophy and helicity later. 2D and 3D

enstrophy are defined in the following ways:

Z2D =
1

2

∑
k s.t. kz=0,|k|6=0

|ω|2, (2.19)

Z3D =
1

2

∑
k s.t. kz ,|k|6=0

|ω|2, (2.20)

2.2.5 Simulation results for energy spectra

Table (2.1) describes various simulation runs with the respective parameters and scaling

index of the energy spectrum. The perpendicular spectrum E(k⊥), the spectrum of 3D modes

E3D(k⊥) and the spectrum of the horizontal kinetic energy of the 2D modes, e⊥(k⊥, k‖ = 0), at

late times are all shown in Fig. 2.1 for the TG, ABC, RND1 and RND4 runs. The ABC run shows

a spectrum e⊥(k⊥, k‖ = 0) ∼ k
−5/3
⊥ and E(k⊥) ∼ k−1 at large scales. All the other runs have

e⊥(k⊥, k‖ = 0) ∼ k−3
⊥ . The build up of the energy spectrum is clearly shown in Sen et. al. [109]

indicating a cascading phenomenon due to local transfer of energy across scales towards low wave
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Table 2.1: Table of the runs with the total relative helicity of the flow ρH := H(k)
kE(k) , the anisotropy

exponent β, the forcing scale Rossby and Reynolds numbers, Rof and Ref , the energy injection rate
ε, and the power law index in the inverse cascade range of the horizontal kinetic energy spectrum
of the 2D modes. TG, ABC, RND, and ANI respectively stand for Taylor-Green, ABC, random,
and random anisotropic forcing. Note that ρH is the relative helicity of the flow at the time when
the inverse cascade starts, i.e. at t=0 in the run with rotation. All runs use a grid with N = 256
points, a forcing wavenumber kf = 40, an imposed rotation Ω = 35, and a kinematic viscosity
ν = 2× 10−4.

Run ρH β Rof Ref ε index

TG 8× 10−3 – 0.045 390 0.030 ≈ −3
RND1 9× 10−3 – 0.045 390 0.047 ≈ −3
RND2 8× 10−2 – 0.044 390 0.050 ≈ −3
RND3 5× 10−1 – 0.046 420 0.047 ≈ −3
RND4 7× 10−1 – 0.044 420 0.047 ≈ −3
ANI1 1× 10−2 1 0.045 400 0.010 ≈ −3
ANI2 8× 10−3 2 0.045 400 0.010 ≈ −3
ANI3 8× 10−3 3 0.045 420 0.007 ≈ −5/3
ANI4 7× 10−1 3 0.045 420 0.006 ≈ −5/3
ABC 7× 10−1 – 0.050 470 0.090 ≈ −5/3
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Figure 2.1: E(k⊥), E3D(k⊥) and e⊥(k⊥, k‖ = 0) at late times for TG, ABC, RND1 and RND4
forcing (from top to bottom).
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numbers. The build up of energy at large scales observed in the spectra is associated with an inverse

cascade of 2D energy in the presence of rotation. This can be verified from the energy flux that

shows a positive range at wavenumbers larger than kf (associated with a direct cascade of energy)

and a negative range at wavenumbers smaller than kf (associated with the inverse cascade). Figure

(2.2) shows Π(k⊥) for runs TG, ABC, and RND1. The same behavior is observed in the isotropic

flux Π(k) (not shown). The growth of energy is clearly seen from the temporal plots of total energy

as shown in [109]. The temporal evolution of enstrophy is shown in figure (2.3). Notably, Z2D

remains reasonably constant once the inverse cascade of energy starts.

2.2.6 Effect of anisotropic injection

Except for one case (ABC forcing), all simulations in figure (2.1) seem to show an inverse

cascade of 2D energy with a k−3
⊥ scaling. What is the origin of the KKBL-like ∼ k

−5/3
⊥ spectrum

in the ABC run? Previous studies obtained KKBL scaling with elongated boxes [28] or when all

triadic interactions between 2D and 3D modes were shut down [113] (which in fact corresponds to

the case of KKBL phenomenology). However, in our case we used a box with fixed unit aspect ratio

and with all triadic interactions and coupling between modes were accounted for in the simulations.

One of the distinguishing feature of an ABC forcing is its anisotropic spectral space geometry. Thus

it is interesting to study the effect of anisotropic random forcing on the scaling index of the energy

spectrum. Figure (2.4) underlines this point further. In the subsequent section, we will present

phenomenological arguments to justify the observed scaling law for the energy spectrum.

It must be noted that varying the forcing wavenumber either in absolute terms or broadening

the range of wave numbers excited by the external forcing mechanism do not have any discernible

effect on the slope of the energy spectrum [109].

2.3 Waves and Eddies: a first glimpse of an interesting interplay

In the previous section, we have seen that if the forcing mechanism excites predominantly the

3D wave modes (e.g, TG, RND1, etc.), the energy spectrum scales differently than the case when
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the external forces excite the vortical modes. This perhaps should suggest an interplay between

wave modes and vortical modes that ultimately changes the 2D energetics of the flow. Coupling

between Waves and Eddies has been a rather contentious issue in the literature and will be looked

at in greater detail in the next chapter. In this section, let us assume for now that Waves and

Eddies do couple and the 2D energetics is influenced by the 3D wave dynamics in the flow.

2.3.1 Coupling and fluxes between slow and fast modes

Assuming that the 2D and 3D dynamics is driven not only by their respective external force

components but also by one another, we can write the following equations for the evolution of 2D

and 3D energy:

dtE2D = −Π2D→3D −Π2D + ε2D, (2.21)

dtE3D = Π2D→3D −Π3D + ε3D. (2.22)

Thus, in equation (2.21), the temporal change in energy is governed not only by the energy flux

(energy exchange) across purely vortical modes and the 2D component of the external force but

also by the energy pumped into the vortical modes by the purely 3D wave modes. The same holds

true for the evolution of the 3D energy. Π2D→3D is the flux of energy across k|| = 0 in Fourier space,

i.e., energy going from the 2D to the 3D modes when Π2D→3D(t) > 0. This term is expected to be

O(Ro) [16]. A completely decoupled system (at the leading order) would mean that Π2D→3D = 0.

Equations (2.21) and (2.22) are not merely model equation but are exact in the sense that they can

be directly deduced form the governing equation (1.1) by integrating over the appropriate vortical

and 3D wave numbers as shown in [16].

Note that Π2D→3D ≡ Π(k‖ = 0) can be explicitly calculated by using equation (2.18) and is

plotted in figure (4.1) for the various runs tabulated in table (2.1). In most runs, the flux is negative

for small values of k‖ (indicating that energy goes from the 3D modes towards the 2D modes for

larger scales), and positive for large values of k‖ (indicating that energy goes away from the 2D

modes for smaller scales). Note that as more energy is injected into the 2D modes (e.g., as β is
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Table 2.2: Amplitude of the terms in Eq. (2.22). The time derivative dE3D/dt was obtained using
centered finite differences from the data. Π(k‖ = 0) represents energy per unit of time transferred

from 2D to 3D modes, and ε3D is the power injected in the 3D modes. Πl.h.s.
3D is the flux of energy

in the 3D modes estimated from Eq. (2.23), Πest.
3D is estimated based on geometrical considerations,

and 2ν
∫
k2Z3D(k) dk is an estimation based on the energy dissipation rate.

Run dE3D/dt Π(k‖ = 0) ε3D Πl.h.s.
3D Πest.

3D 2ν
∫
k2E3D(k)dk

TG 1.0× 10−4 −2.0× 10−3 3.0× 10−2 2.8× 10−2 1.0× 10−2 1.0× 10−2

RND1 1.0× 10−4 −6.8× 10−3 4.6× 10−2 3.9× 10−2 2.0× 10−2 2.0× 10−2

RND4 4.0× 10−5 −6.3× 10−3 4.6× 10−2 3.9× 10−2 2.0× 10−2 3.0× 10−2

ANI1 1.0× 10−4 −5.2× 10−3 8.9× 10−3 3.6× 10−3 4.0× 10−2 4.0× 10−2

ANI2 1.0× 10−4 −2.3× 10−3 9.3× 10−3 6.9× 10−3 2.0× 10−2 1.0× 10−2

ANI3 1.0× 10−4 −6.9× 10−4 6.5× 10−3 5.7× 10−3 2.0× 10−3 5.0× 10−3

ANI4 3.0× 10−5 −6.0× 10−4 5.4× 10−3 4.7× 10−3 2.0× 10−3 4.0× 10−3

ABC −2.0× 10−4 8.3× 10−2 2.0× 10−2 1.0× 10−1 3.0× 10−2 3.0× 10−2

increased in the ANI runs), the wavenumber at which the fluxes change sign moves towards k‖ = 0,

and for the ABC flow the flux Π(k‖) is positive everywhere (i.e., energy goes from the 2D modes

to the 3D modes at all scales). The above observations imply that the ABC flow corresponds to

the limiting case in which most of the energy is injected into the 2D modes and as a result of the

imbalance, an excess of energy “leaks” from the 2D modes to the 3D modes. We will see later that

this latter fact results in the build up of shear in the flow. This can be verified by computing each

term in the energy balance Eqs. (2.22) and (2.21) (see tables 2.2 and 2.3). The flux of 3D and 2D

energy can be estimated from Eqs. (2.22) and (2.21) as follows. Since all terms in these equations,

with the exception of Π2D and Π3D, are known, the equations can be re-written as:

Πl.h.s
3D = Π(k|| = 0, t) + ε3D − dtE3D, (2.23)

and

Πl.h.s
2D = −Π(k|| = 0, t) + ε2D − dtE2D. (2.24)

The superscript “l.h.s.” here and in the table indicates that the fluxes are obtained by solving for

the l.h.s. of the balance equations above.

The fact that Π2D is negative in the ABC run (see table 2.3) is evidence of an inverse cascade

of energy in the slow manifold once the energy from the 3D modes is transferred to the 2D modes.
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Table 2.3: Amplitude of the terms in Eq. (2.21). The time derivative dE2D/dt was obtained using
centered finite differences, ε2D is the power injected in the 2D modes, and Πl.h.s.

2D is the flux of energy
in 2D modes estimated from Eq. (2.24).

Run dE2D/dt ε2D Πl.h.s.
2D

TG 4.0× 10−4 1.0× 10−10 1.6× 10−3

RND1 1.0× 10−3 1.3× 10−3 7.1× 10−3

RND4 2.0× 10−3 1.5× 10−3 5.8× 10−3

ANI1 1.0× 10−3 1.1× 10−3 5.3× 10−3

ANI2 4.0× 10−4 7.0× 10−4 2.6× 10−3

ANI3 7.0× 10−5 5.0× 10−4 1.1× 10−3

ANI4 8.0× 10−5 6.4× 10−4 1.1× 10−3

ABC 5.0× 10−4 7.0× 10−2 −1.3× 10−2

For the other runs, even though Π2D is positive and small in magnitude, it merely implies that

more energy cascades to the smaller scales than to the larger scales. It is important to note that

the positiveness of Π2D hints at positive eddy viscosity and the possibility of the inverse cascade

of energy in the slow manifold cannot be ruled out. It may also be worth pointing out that with

increasing β (anisotropy), Π2D, for the ANI runs, become less positive and seems to approach the

nature of the energy cascade exhibited by the ABC run (see table 2.3).

The picture that emerges for the fluxes from the values in tables 2.2 and 2.3 is illustrated

schematically in Fig. 2.6.

2.3.2 Wave-eddy coupling and resulting energetics, scaling laws

The relevant quantity for distinguishing a ∼ k−3
⊥ power law from a ∼ k

−5/3
⊥ scaling in the

inverse cascade energy spectrum is Π(k‖ = 0). Indeed, if little energy goes into the 2D modes from

the 3D modes, or if energy goes from the 2D modes into the 3D modes with the 2D modes being the

most energetic and dominating the dynamics, we can assume that the cascade in the slow manifold

is dominated by the turnover time τ⊥ ∼ l⊥/u⊥ (where l⊥ is a characteristic length in the slow

manifold and u⊥ the 2D r.m.s. velocity at that length). With only one relevant timescale, KKBL
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Figure 2.6: A schematic depiction of the direction of transfer of energy (and corresponding fluxes)
in the case of forced rotating turbulence. Here fm is the normalized unit amplitude of forcing in
Fourier space. The black dots indicate the modes that are directly excited by the different forcing
functions, with 2fm indicating twice the energy injected in that mode compared to the energy
injected into other modes.
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phenomenology tells us that the energy flux goes as:

Π2D ∼
u2
⊥
τ⊥
∼
u3
⊥
l⊥
, (2.25)

which results in a ∼ k−5/3
⊥ scaling law based on dimensional arguments as shown below. Following

Kolmogorov, in the inertial range, we have Ek ∼ Πakb, where a, b are unknowns to be determined.

For simplicity, here Π is actually Π2D mentioned above and k is actually k⊥. [Ek] = [u
2

k ] where

[ ] denotes the dimensionality of the related argument. Matching exponents, we have a = 2/3 and

since a+ b = −1, b = −5/3.

On the other hand, if energy goes from the 3D modes to the 2D modes, interactions with

the 3D modes cannot be neglected. Besides the slow turnover time τ⊥, we have to consider now

the 3D turnover time and the timescale associated with the fast waves, τΩ ∼ 1
Ω . There is no

unique dimensional solution in this case but we can borrow from the phenomenology developed

by Kraichnan [65] for magnetohydrodynamic (MHD) turbulence where the effect of the waves

modulates the dominant time-scale of the flow. This phenomenology has been successfully extended

to rotating flows [136], including in the helical case [84]. It states that in the presence of waves, the

nonlinear transfer is slowed down because of the waves and the relevant parameter of the problem

is the Rossby number, i.e. the ratio of time-scales of the wave and the nonlinear turn-over time.

Thus, we can assume that the flux will be slowed down by a factor proportional to the ratio τΩ/τ

where τ is the relevant (and unknown) turnover time for the problem,

Π2D ∼
u2
⊥
τ

τΩ

τ
. (2.26)

It is interesting to point out that if the turnover time in the above expression is built upon the

velocity at the forcing scale Uf as τ ∼ l⊥/Uf (i.e., assuming interactions are non-local in the inverse

cascade range and that most of the energy in the slow manifold comes directly from the 3D forced

modes, which is consistent with the large and negative values of Π(k‖ = 0) in some of the runs),

Eq. (2.26) results in a ∼ k−3
⊥ scaling for the energy spectrum of the 2D modes. Note that such

a choice of the time-scale is consistent with the non-local transfers reported in [18], and that non

locality of nonlinear transfer in rotating turbulence in the direct cascade was also observed in [82].
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2.4 Large scale shear

In the ABC simulation run, since the large scale two dimensional modes leak energy to the 3D

modes, the spatial z derivative of field variables become non-zero. This results in development of

large scale shear. This point is further supported by plotting the spectrum of the largest eigenvalue

of the rate of strain tensor, S [109] as shown in figure (2.7).

It is interesting that once large-scale shear is present, a new constant time scale (i.e., inde-

pendent of length scale) appears. Large scale shear is associated with the shear time scale,

τsh :=
1

max{λmax}
, (2.27)

where λmax(x, y, z) is the largest eigenvalue (in magnitude) of S at any given location (x, y, z).

Dimensional analysis then hints at a flatter energy spectrum, and a k−1 energy spectrum (as

observed for the total energy in the ABC run) is not uncommon in shear dominated flows [97].

2.5 Summary

In this chapter, we have seen that spectral space anisotropy of the forcing function plays an

important role in the large scale energetics of the flow. We have also seen how Waves can interact

with Eddies and regulate the energy transfer across scales in the inertial range thereby determining

the scaling indices for the respective energy spectra. In the following chapters we will study the

nonlinear wave dynamics of rotating turbulent flows in more details from a theoretical point of

view.
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Figure 2.7: (Color online) Spectrum of the maximum eigenvalue of the rate of strain tensor in
horizontal planes, for different runs as a function of time. The amplitudes of the spectra are
normalized to their initial values (when the rotation is turned on corresponding to τf = 8). From
top to bottom: TG, RND1, RND4, and ABC.



Chapter 3

Introduction to Wave Turbulence Theory

“Everything has its beauty, but not everyone sees it.”

Andy Warhol

In the preceding chapter, we have studied and developed phenomenological understanding of

rotating turbulence by analyzing the flow variables produced by numerical simulations. This has

given us useful insight into the several interesting dynamics of rotating flows. We now undertake a

theoretical approach to study rotating turbulence in the subsequent chapters. In this chapter, we

introduce the fundamental concepts of weak-wave turbulence in the Hamiltonian framework.

3.1 Weak wave turbulence theory: a first glimpse

Weak-wave turbulence is a theory of small amplitude weakly interacting nonlinear random

waves that are in resonance in a dispersive medium. In this theory, the weak nonlinear interactions

happen at an asymptotic order higher than that where linear effects are dominant. Thus, it is most

suitable to describe the slow dynamics of the system that is embedded within the domineering linear

effects and are thereby visually masked by the leading order dynamics of the flow. For example,

in the case of purely rotating turbulent flows, the leading order geostrophic balance manifests as

axially oriented columnar eddies as shown in figure 1.1.2. This leading order dynamics masks the

underlying non-linear resonant wave interactions that serve as carriers of energy and helicity, the

two invariants of the flow. The wave dynamics happens at a higher asymptotic order and thus
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remains visually concealed. The importance and relevance of this nonlinear wave dynamics will

become clear in the subsequent chapters.

In this thesis, we have presented a Hamiltonian formalism of weak-wave turbulence. The

Hamiltonian, for any continuous media representing the equations of motion, embodies the invari-

ants of the motion. As we will soon find out, the Hamiltonian of the system comprises of the wave

dispersion relation (ωk) and the interaction coefficient of the canonical wave amplitude functions,

the latter encompassing the information about the nature of interaction between the resonating

wave modes. The wave dispersion relation and the interaction coefficient together contain all the

information for obtaining power law solutions of the spectral densities of the flow invariants. We

will return to this point in chapter 6. Here, we summarize the two distinct approaches of the

Hamiltonian formalism of wave turbulence.

3.2 Hamiltonian formalism: a perturbation approach in spectral space

This approach forms the basis of the theoretical presentation of this thesis in the subsequent

chapters. The details will be presented in the following chapters, here we outline the essence in

an informal manner. We begin with the incompressible reduced rotating hydrodynamic equations

[60, 58] that are an asymptotically reduced version of the incompressible Euler equations in the

limit of rapid rotation. We perform an asymptotic expansion of the wave field to extract the wave

amplitude equation at the appropriate order in the wave space in terms of the canonical complex

amplitude functions, ck. In the next chapter, we will show formally the relation between the wave

field and ck for purely rotating flows. Then, we construct the Hamiltonian involving the three

wave process by multiplying the wave amplitude equation by the complex conjugate, c∗k. The

Hamiltonian, H is generally a power series of the canonical variables, ck:

H = H(2) +H(3) +H(4) + · · ·, (3.1)

where the superscripts denote the order of the power series.
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For any three wave decay process, it can be shown that the Hamiltonian takes the form,

H ≈ H(3) =
1

2

∫
[Vkpqc

∗
kcpcq + c.c.]δk,pqδωk,ωpωqdpdq, (3.2)

since H(2) ≡ 0 and H(3) is the first non-trivial term in the power series [135]. This is a very strong

statement about the third order Hamiltonian, since it is unique for any three wave decay process

up to the multiplier, Vkpq, known as the interaction coefficient.

For a four-wave process [135],

H(4) =
1

4

∫
Wkpqlc

∗
kc
∗
pcqclδk+p−q−ldkpql +

∫
Gkpqlckc

∗
pc
∗
qc
∗
l δk−p−q−ldkpql (3.3)

+

∫
R∗kpqlckcpcqclδk+p+q+ldkpql, (3.4)

where W,G,R are the interaction coefficients.

The wave amplitude equation can then be written in terms of the Hamiltonian, H as follows:

i∂tck =
δH

δc∗k
. (3.5)

This equation is known as the Jacobi Hamilton equation in classical mechanics and precedes the

derivation of the three-wave kinetic equation describing the evolution of the energy (and helicity)

in the wave number space.

3.3 Hamiltonian formalism using Clebsch variables: a classical approach

A more natural way of obtaining the Hamiltonian for the resonant wave process is to construct

it in the physical space with appropriate co-ordinates. Here, we will explain this point in terms

of the presentation by Lvov and Tabak [75] applicable for stratified fluid turbulence given by the

equations,

∂tu +
∇p
ρ

= 0, pz + ρg = 0, (3.6)

∂tρ = 0, ∇ · u + wz = 0, (3.7)

where u and w are the horizontal and vertical velocities, p is the pressure, ρ is the density and

g is the gravity. The reason we have chosen equations (3.6) and (3.7) to explain the formalism
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at hand will become clear soon. Broadly speaking, there is a more suitable co-ordinate frame,

(x, y, ρ), known as the isopycnal coordinate axes, where the Hamiltonian formalism of this section

is applicable [75]. Here, the coordinate transformation, (x, y, z)→ (x, y, ρ) is implicit. In this case,

the Hamiltonian can be expressed in the general form as:

H =

∫
f(r, ρ,∇ρ,∇(2)ρ, ...)drdρ, (3.8)

where f is an appropriate functional describing the system (refer [75] to see the exact functional

form of f for the system described by equations (3.6)) and (3.7)). The functional form of f

stated above is important to construct the Hamiltonian such that the functional derivative of H:

δH
δρ = ∂f

∂ρ−∇·
∂f
∂∇ρ yields the requisite Jacobi Hamilton equations in the canonical physical variables:

∂tφ = − δH
δΠ , ∂tΠ = δH

δφ . Here, u = ∇φ and Π is a suitable re-normalization of ρ.

The canonical variables in physical space, (φ,Π) are the Clebsch variables for this system and

are related to the velocity field, v = Π∇φ+∇Φ, where the Φ dependence can be eliminated by using

the incompressibility condition. The Hamiltonian in the physical space given by equation (3.8), is

now transformed to spectral space via a Fourier transformation and is formally equivalent to that

given by equations (3.1), (3.2) and (3.4) in terms of the canonical complex amplitude functions, ck.

3.4 The equivalence of the two Hamiltonian formalism of wave turbulence

It must be noted that the choice of approach for the Hamiltonian wave turbulence theory

depends entirely on the problem at hand. Two points are important in this regard.

(1) To obtain the appropriate coordinate axes is a non-trivial exercise (in the above example:

the isopycnal coordinates are most suitable). It must be emphasized that the proper choice

of the coordinate axes is essential for expressing the functional form of the integrand in

the Hamiltonian expression (3.8) in the proper form. In this regard, it may be more

convenient to opt for the first approach to construct the Hamiltonian as has been done in

the subsequent chapters in this thesis.
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(2) The Clebsch variables, (φ,Π) are related to the canonical complex amplitude functions, ck

in the following manner:

φk = iA(ck − c∗k), Πk = B(ck + c∗k), (3.9)

where A,B are determinate constants (see [75] for details). Equivalently,

ck =
1

2
(Πk − iφk), c∗k =

1

2
(Πk + iφk), (3.10)

with A,B = 1. Thus, ck and c∗k are related to the annihilation and creation (or succinctly,

ladder) operators of the quantum mechanical description of the harmonic oscillator [50].

This is the basis of the formalism presented in [135] and establishes the equivalence of the

two Hamiltonian formalisms of wave turbulence.

Clebsch variables are often used as canonical variables to study incompressible fluids which have

inherent symmetries and thereby permit reduction of the given Hamiltonian system to the one of

smaller dimension [90]. This formalism is widely used in the study of ideal fluids; e.g., generalization

of the equations of motion described by the incompressible Navier-Stokes equations for the Weber-

Clebsch potentials have been derived by Cartes et. al. [24] and explain the phenomena of vortex

re-connections.

3.5 Summary

In this chapter, we have given an introductory flavor to Hamiltonian wave turbulence theory.

We have also shown that one of two approaches mentioned in the sections 2 and 3 of this chapter

can be applied to construct the Hamiltonian as they are equivalent. It is however imperative to

understand their intimate relationship to obtain a deeper understanding of the ensuing physical

and mathematical formulation.



Chapter 4

Rotating Turbulence II: wave amplitude equation for slow inertial waves

“I only give expression to the instincts from my soul.”

M. F. Husain

In this chapter, we derive the canonical equations of motion for the wave amplitudes of an

incompressible rapidly rotating fluid system. We will begin by introducing the governing equations

of the flow within the slow manifold that is populated by geostrophically balanced slow inertial

waves. These amplitude equations can be shown to be derived from the equation of motions

in Hamiltonian mechanics, the latter being a reformulation of classical mechanics [135]. Here,

the presentation will be slightly different as we will construct the amplitude equations from the

governing fluid equation in spectral space.

4.1 Slow manifold revisited

4.1.1 Slow inertial waves

We have seen in chapter 2 that inertial Rossby waves in a rotating flow transport energy from

the three dimensional modes towards the two dimensional manifold in an efficient manner. The

frequency of these waves in spectral space is a function of the axial wavenumber: ωk = ± 1
Ro

kz
k ,

where k =
√
k2
⊥ + k2

z is the total wavenumber expressed in terms of the horizontal and the vertical

(axial) wavenumbers, ± implies the circularly polarized nature of the waves. As the resonating

waves move energy towards the 2D modes, i.e. towards the slow manifold where kz becomes
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progressively small; the inertial waves become geostrophically balanced where the wave time scale

and the advective time scales are of the same order. This region is known as the slow manifold due

to the slowness of the oscillating wave modes as evident from the dispersion relation:

ωk = ± 1

Ro
kz
k
. (4.1)

4.1.2 Classical wave turbulence theory in the slow manifold: singular solutions

We recall that the underlying hypothesis of rotating wave turbulence is stated in [40] as:

(1) the separation of inertial and advective time scales, i.e. Ro� 1, and

(2) the non-interaction between geostrophically balanced and inertial waves dynamics.

Hypothesis (1) above is no longer valid in the slow manifold in the classical weak-wave turbulence

treatment of Galtier [45] which does not account for slow geostrophic waves. This results in singular

solutions for the energy and helicity evolution equations as stated in [45] primarily because the

governing equations therein are not valid in the slow manifold. This necessitated that the resonant

wave theory be applied to equations that are valid in the slow manifold. In the next section, we

introduce a recently developed asymptotically reduced set of equations henceforth referred to here

as the R-RHD (reduced rotating hydrodynamic equations)[59, 58]. It must be noted that a wave

turbulence analysis for reduced equations in the context of MHD has been developed by Nazarenko

[92].

4.2 Asymptotically reduced equations: the R-RHD

We will consider inviscid incompressible flow dynamics described by the Euler equation:

∂t + (u · ∇)u +
1

Ro
ẑ× u = − 1

Ro
∇p, ∇ · u = 0. (4.2)

The analysis presented in this thesis will be on the asymptotically reduced version of equation(4.2).

The original detailed derivations of the reduced equation can be found in the paper by Julien and
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Knobloch [58]. A summary of the approach is presented in this section to keep the analysis in

context. We propose a multiple-scale expansion in the axial direction, ∂z = ∂z + Ro∂Z with the

isotropic scale z = z ∼ (x, y) and the anisotropic columnar length scale Z = Roz. The flow variable,

v = (u, p)T is now expressed as an asymptotic series as:

v = v0 +Rov1 +Ro2v2 +O(Ro3). (4.3)

4.2.1 Leading order dynamics

At leading order in Ro, equation (4.2) becomes,

ẑ× u0 = −∇p0. (4.4)

Equation (4.4) describes geostrophic balance and the ensuing fluid motion is horizontally non-

divergent, i.e. ∇⊥ · u0⊥ = 0, with u0⊥ = ∇⊥ψ where p0 = ψ is the geostrophic stream function.

The axial invariance of the flow variables, as entailed by the Taylor-Proudman theorem [49], holds

because we have, ∂zv0 ≡ 0. However, in agreement with the Taylor-Proudman theorem, the

variations on Z-scale is permissible as shown in [59, 58]. This formally defines the slow manifold

as kz ≤ O(Ro).

4.2.2 O(Ro) dynamics: the R-RHD (reduced rotating hydrodynamic equations)

At the order Ro, the solvability condition ensuring non-secular of v1 gives us the R-RHD.

The R-RHD is stated below,

∂tζ + u⊥ · ∇⊥ζ = ∂ZW (4.5)

∂tW + u⊥ · ∇⊥W = −∂Zψ (4.6)

Here u⊥ = ∇⊥ψ, and ζ := ∇2
⊥ψ and W are the ẑ components of the vorticity and velocity fields.

Equations (4.5) and (4.6) are the governing equations in this chapter and the wave-turbulence

treatment presented in the subsequent chapters and will henceforth be referred to as the governing

equations unless otherwise specified.
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4.3 Features of the R-RHD

In the context of this thesis and for the purposes of the wave-turbulence treatment presented

here, we will state two relevant features of the governing equations. The overall detailed features

of the equations can be found in [59, 58].

4.3.1 Invariants of the R-RHD

The R-RHD conserves the temporal volume-averaged kinetic energy, EV and helicity, HV :

EV ≡
∫

u · udV =
1

2

∫ (
|∇⊥ψ|2 +W 2

)
dV, (4.7)

HV ≡
∫

u·∇ × udV = 2

∫
(Wζ) dV. (4.8)

4.3.2 Natural helical basis for circularly polarized waves

4.3.2.1 Circularly polarized waves

The resonant wave analysis that will be applied to the R-RHD will be presented in the spectral

wavenumber space. This approach is chosen for mathematical convenience in presenting the analysis

in its totality in an appropriate helical wave basis. Recall our brief introductory statements about

the geostrophically balanced slow inertial waves in section 4.1. Formally, we represent the slow

inertial waves with circular polarity as follows:

Ψsk
k e

iΦ(k,skωk), ωk =
kZ
k⊥
. (4.9)

with planar phase function Φ(k, skωk) = (k⊥ · x⊥ + kZZ − skωkt). Clearly, kZ = 0 represents

vertically invariant modes with ωk = 0. These 2D modes are generally referred to as eddies in this

thesis. Here, Ψsk
k is a vector function defined below:

Ψsk
k ≡

 ψskk

W sk
k

 =

 sk/k⊥

1

 cskk (4.10)
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where sk = ± denotes the handedness, ‘+’ for right-handed circularly polarized waves (with positive

helicity) and ‘−’ for left-handed circularly polarized waves (with negative helicity). cskk is a complex

amplitude function and we will later see they are the canonical variables for the wave-turbulence

analysis.

4.3.2.2 Orthogonal basis for helical waves

We first define an orthogonal ‘right-handed’ basis in the wavenumber basis as follows: (k̂⊥, k̂
⊥, ẑ),

where k̂⊥ = k⊥/k⊥ and k̂⊥ = k⊥/k⊥. The complex helical basis is then defined as:

hskk := iskk̂
⊥ + ẑ. (4.11)

The orthogonality condition is satisfied because,

1

2
h−skk · hskk = 1. (4.12)

Moreover, the incompressibility criteria, ∇⊥ · u = 0, can be stated in terms of this basis as:

k⊥ · hskk = 0. Note that subscripts, representing the order in the asymptotic expansion, have been

dropped here and henceforth as it is understood that the analysis of the R-RHD is undertaken at

the same order at which they were derived, i.e. O(Ro).

The velocity field can now be expressed in terms of the helical basis as follows:

uk =
(
U skk k̂⊥ +W sk

k ẑ
)
eiΦ(k,ωk) + c.c.

= cskk hskk e
iΦ(k,ωk) + c.c.,

where U skk := ik⊥ψ
sk
k .

It can be verified that the helical basis hskk has a very useful symmetry property.

h−skk = hsk−k = hsk∗k . (4.13)

This ensures that we can seamlessly transcend polarity (or handedness) through the complex con-

jugation operation. The most useful point to note is that the R-RHD are naturally set up in the

helical wave basis as shown in the figure (4.1).
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Figure 4.1: Helical wave basis: (k̂, k̂′⊥, ̂) forms a right-handed coordinate system with k · k′⊥ = k · ̂ = 0

where ̂ = k̂′⊥×k̂
k2⊥

. The wave propagation direction is given by the wave vector, k̂. Within the slow manifold

where kz = RokZ , (k̂, k̂′⊥, ̂)→ (k̂⊥, k̂
⊥, ẑ).
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4.4 Wave amplitude equation

Inertial wave amplitudes can be of the magnitude of o(Ro−1) outside the slow manifold.

These waves can also have strong nonlinear interactions. However, for the presentation here, we

will assume that the slow inertial waves have progressively (in time) attenuated in power sufficiently

such that small amplitude dynamics is dominant in the slow manifold. Hence we introduce another

small parameter, ε that is a measure of the strength of the wave amplitude. Thus, small amplitude

dynamics demands ε� 1 in the multiple scales expansion in time, ∂t = ∂t+ ε∂τ , where τ = εt.

4.4.1 Small amplitude weak non-linear interactions

We begin by writing an asymptotic expansion for the wave field,

Ψε(x⊥, Z, t, τ) = εΨ1(x⊥, Z, t, τ)|τ=t/ε (4.14)

+ ε2Ψ2(x⊥, Z, t, τ)|τ=t/ε +O(ε3);

It is important to note that τ denotes the advective time scale of the geostrophically balanced slow

waves as opposed to the fast inertial wave time scale represented by t. Thus, the resonant wave

interactions within the slow manifold happen on a slow time scale, τ .

Recall, that even though the governing equations are nonlinear, the perturbative approach is

linear in every successive order. Thus, a nonlinear system can be transformed into a hierarchy of

linear systems in successive order.

4.4.1.1 Leading order wave dynamics

At leading order, O(ε0), we have:

LHUsk
1k = 0, LH ≡

[
−iωskk I2 −

kZ
k⊥

J2

]
. (4.15)

Here J2 =


0 1

−1 0


is the Hamiltonian matrix and I2 is the identity matrix. The solution to this

system is the helical base vector Usk
1k ≡ hskk . This means that the wave field can now be written as
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a superposition of slow inertial helical waves,

U1 =
∑
sk

∫
cskk (τ)hskk e

iΦ(k,skωk)dk. (4.16)

We note that the complex modal amplitude function, cskk is a function of the advective time scale,

τ .

4.4.1.2 O(ε) wave dynamics

At order O(ε), we have,

LHUsk
2k = −∂τ cskk hskk −

∑
sp,sq

∫
p⊥ · q⊥
p⊥

 q⊥
k⊥
U
sp
p U

sq
q

U
sp
p W

sq
q


× ei(Φ(p,spωp)+Φ(q,sqωq)−Φ(k,skωk))dpdq. (4.17)

where the subscript 1 has been dropped from the right hand side of the above equations. To ensure

non-secular behavior, we impose the solvability condition: 1
2(h−skk · LHUsk

2k) = 0 and thus obtain

the wave amplitude equation,

i∂τ c
sk
k =

1

2

∑
sp,sq

∫
V
skspsq
kpq c

sp
p c

sq
q δk,pqδωk,ωpωqdpdqdk, (4.18)

where V
skspsq
kpq := p⊥·q⊥

p⊥

(
q⊥
k⊥
skspsq + sp

)
is the interaction coefficient. We note here that the inner

product in the solvability condition involves the fast time scale, t. It is also important to note that

for sk = +, we have forbidden the possibility of (sp, sq) = (−,−) and vice versa in the summation

over the polarities. This is because in such cases, resonance cannot be attained.

4.4.2 Large amplitude strong nonlinear interactions

It must be emphasized here that for the perturbation analysis to work out, it is imperative

that we have ε� 1 such that εRo is even smaller. However, it is clear that if ε� 1, then εRo ∼ O(1)

and the entire asymptotic analysis breaks down. This is also true if ε ∼ O(1). Thus, any wave

turbulence treatment falls outside the realm of large amplitude strongly interacting inertial waves,

the latter being an open research topic.
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4.5 Summary

In this chapter, we began by formally defining the slow manifold and the dynamics within

its scope. We also formally introduced the R-RHD which serve as the governing equations for our

wave-turbulence analysis in the subsequent chapters. Application of perturbation theory enabled

us to derive the wave-amplitude equation that are a suitable version of Hamilton’s equation of

classical mechanics.



Chapter 5

Rotating Turbulence III: energy and helicity equations

“If I could say it in words there would be no reason to paint.”

Edward Hopper

In this chapter, we will derive the equations that describe the energetics of rotating flows

within the realm of the governing equations. Moreover, we will also derive the equation that

describes the evolution of helicity. The calculations involving helicity are known to be intensive

and very mathematically rigorous [46]. We have applied a novel strategy here to accomplish the

above mentioned goals. We first begin with the case where the fluid flow is devoid of helicity, i.e. a

state where the waves are not polarized rendering it to be free of ‘handedness ’. For this case, we

derive the energy evolution equation describing scale by scale energy transfer by resonating wave

modes. We then extend this approach to the more general case of a fully helical flow by using

suitable arguments.
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5.1 Velocity spectral tensor and symmetries in canonical variables

5.1.1 Definition of velocity spectral tensor

The velocity spectral tensor is defined as the outer product of the complex wave field for

every spectral mode as follows:

Uk := 2 (Uk ⊗U∗k′) δk,k′ = 2


∑
sk=±

cskk c
sk∗
k′

∑
sk=±

isk
k⊥
k⊥
cskk c

sk∗
k′∑

sk=±
−isk k⊥k⊥ c

sk
k c

sk∗
k′

∑
sk=±

cskk c
sk
k′

 δk,k′

= 2

 c+
k c

+∗
k′ + c−k c

−∗
k′ ik⊥k⊥ (c+

k c
+∗
k′ − c

−
k c
−∗
k′ )

−ik⊥k⊥ (c+
k c

+∗
k′ − c

−
k c
−∗
k′ ) c+

k c
+∗
k′ + c−k c

−∗
k′

 δk,k′

= 2

 e+
k + e−k i

h+
k +h−k
k⊥

−ih
+
k +h−k
k⊥

e+
k + e−k

 = 2

 ek i hkk⊥

−i hkk⊥ ek

 . (5.1)

Note, Uk is Hermitian. Here, ek :=
∑

sk
cskk c

sk∗
k =

∑
sk
eskk and hk :=

∑
sk
skk⊥e

sk
k . We can now

establish the relationship between the modal energy and helicity in terms of the energy density

tensor, eskk as follows:

e+
k + e−k = ek, (5.2)

e+
k − e

−
k =

hk

k⊥
. (5.3)

Equivalently,

e+
k =

1

2

(
ek +

hk

k⊥

)
,

e−k =
1

2

(
ek −

hk

k⊥

)
. (5.4)

5.1.2 Mirror symmetry and parity conservation (Noether’s theorem)

Noether’s (first) theorem states that any differentiable symmetry of the action of a physical

system has a corresponding conservation law [95]. Here, we illustrate this further in the context of
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Figure 5.1: Mirror symmetry in non-helical flow is shown in a complex plane. By Noether’s theorem,
the wave field is invariant under parity transformation.
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a rotating flow. Clearly, from equation (5.4) above, we have that for a zero helicity flow (hk = 0),

e+
k = e−k = 1

2ek. This implies that given a specific flow of unique handedness, energy is not

transferred or leaked to a differently handed mode. In fact, the flow retains its unique handedness

at all times.

What does this mean in terms of the symmetry in the canonical complex amplitude functions

that make up the velocity spectral tensor? By carefully analyzing the structural components of the

tensor in equation (5.1), we see that hk = 0 implies that the minor diagonal terms are absent in the

tensor representation involving the terms ek and hk. This in turn demands that the corresponding

terms in the representation involving the canonical variables, cskk be also absent. For this to be

true, we must have:

c−skk = csk∗k (for convenience, c+∗
k ≡ c∗k). (5.5)

This shows that a non-helical flow is characterized by mirror symmetry (see figure 5.1). This should

not be surprising since helicity measures departure from mirror symmetry. The existence of mirror

symmetry is equivalent to the conservation of parity transformation by Noether’s theorem. Thus

in a non-helical flow, parity (or handedness) is preserved (for more details, see [88]). To make this

point formally precise, we first define parity transformation, P as follows:

Pψ(r) = ψ(−r), (5.6)

representing a reflection about the real axis on the complex plane followed by an inversion (180

degrees flip). It is easy to check (see figure (5.1)) that for the non-helical case this means that

handedness of the wave field, ψ is preserved, i.e.

for hk = 0, P(ψs) = ψs, where s = {+,−}

P acts as the identity operator and hence dtP = 0 meaning P is conserved. Also note that using

the definition of total derivative, the following is true,

dtP(ψ+) = ∂ψ+P(ψ+)dtψ
+ + ∂ψ−P(ψ+)dtψ

− = dtψ
+ = 0, (5.7)
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because ∂ψ−ψ
+ = 0 and P(ψ+) = ψ+. Similarly, we have

dtP(ψ−) = dtψ
− = 0. (5.8)

Following [110], dtψ
s can be written in symplectic form as,

dtψ
s = Jss′∂ψsH, (5.9)

where J =

 0 1

−1 0

and the variation of the Hamiltonian, H under the parity transformation,

denoted by δPH, becomes

δPH = ∂ψ+HδPψ
+ + ∂ψ−HδPψ

− = 0, (5.10)

after using equations (5.7), (5.8) and (5.9). Thus, we have shown that reflection symmetry of the

wave field in a non-helical flow is equivalent to the invariance of the Hamiltonian under parity

transformation (i.e., that variation represents a symmetry of the Hamiltonian).

We will see shortly in the subsequent sections that this mirror (reflection) symmetry of the

canonical system will make our calculations of deriving the wave kinetic equation much simpler.

5.2 Non-helical flow dynamics

We impose the mirror symmetry in the wave amplitude equation (4.18) with sk = + and

multiply it by c∗k, upon symmetrization to obtain the Hamiltonian, H ≈ H(3) that was introduced

in chapter 3.

H ≈ H(3) (5.11)

=
1

2

{∫
1

2
(V +++
kpq + V +++

kqp )c∗kcpcqδk,pqδωk,ωpωq + (V ++−
kpq + V +−+

kqp )c∗kcpc
∗
qδk,pqδωk,ωpωqdkpq

}
+ c.c..

The second term, (V ++−
kpq + V +−+

kqp ) = p⊥·q⊥
k⊥p⊥q⊥

(q⊥ − p⊥)(k⊥ − p⊥ − q⊥), is zero because of the delta

function δk,pq. Hence, in final form we have,

H(3) =

∫ [
L̃kpqc

∗
kcpcq + c.c.

]
δk,pqδωk,ωpωqdkpq (5.12)
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where the interaction coefficient, L̃kpq := 1
4(V +++

kpq + V +++
kqp ) = 1

4
p⊥·q⊥
k⊥p⊥q⊥

(q⊥ − p⊥)(p⊥ + q⊥) =

1
4

p⊥·q⊥
p⊥q⊥

(q⊥ − p⊥) is symmetric in the second and third arguments, i.e. L̃kpq = L̃kqp. The last

equality is again due to the delta function δk,pq, notably, the interaction coefficient is independent

of k.

The total derivative, δH
(3)

δc∗k
= ∂H(3)

∂c∗k
+ ∂H(3)

∂c∗p

δc∗p
δc∗k

+ ∂H(3)

∂c∗q

δc∗q
δc∗k

and the limit, δc∗k → 0 is applied to

show that Hamilton’s equation i∂τ ck = δH
δc∗k

is satisfied, where

δH

δc∗k
=

∫ [
L̃kpqcpcqδk,pqδωk,ωpωq + 2L̃∗qpkc

∗
pcqδq,pkδωk,ωpωq

]
dpdqdk.

5.2.1 Wave kinetic equation: general form

The steps in this and the subsequent section is broadly based on the presentation in [135].

We first define the third order correlation functions of ck as follows:

Jkpqδk,pq :=< c∗kcpcq > .

We then take ensemble averages in equation (5.13) and obtain the general wave kinetic equation:

∂τek =
1

2
=

{∫
L̃kpqJkpqδk,pqδωk,ωpωq − 2L̃pkqJpkqδp,kqδωp,ωkωqdpdq

}
.

Here, =(· · ·) refers to imaginary part of the argument within the parenthesis. Equation (5.13) is

not closed since the left hand side, which is a second order correlation, is expressed in terms of

Jkpq, which is a third order correlation function.

5.2.2 Wave kinetic equation: closed form

In this section, we will assume Gaussian distribution of the wave field and apply the random

phase approximation that will enable us to express fourth order correlation functions as sum of the

product of second order correlation function, i.e. < c∗kc
∗
pcqcm >:= 2ekepδkp,qm. Note, that the

left hand side is a fourth order correlation and ek on the right hand side is a correlation function

of second order, δkp,qm represents a summation over the appropriate wave numbers.
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We then take a fast time derivative (note: ∂t → ∂t + ε∂τ ) of the correlation function, Jkpq:

i∂t

(
Jkpq =< c∗kcpcq > δk,pq

)
,

i∂tJkpq → δωJkpq + iε∂τJkpq

→ δωJkpq + iε∂τ < c∗kcpcq > δk,pq. (5.13)

Here δω ≡ (ωk − ωp − ωq) and is unity only when a three- wave resonance is attained. We apply

the product rule to evaluate the term iε∂τ < c∗kcpcq > δk,pq. This means we will have terms of the

form ∂τ ck which can be expressed in terms of the correlation functions by using equation (4.18)

and simplified in terms of the second order correlation functions by applying the random phase

approximation stated in the previous paragraph.

Thus, we have derived an ordinary differential equation for Jkpq as follows:

∂tJkpq = −iδωJkpq + εL̃kpq(ekep + ekeq − epeq). (5.14)

The steady state solution, ∂tJkpq = 0 is,

Jkpq(τ) =
ε

iδω
L̃kpq(ekep + ekeq − epeq), (5.15)

or equivalently,

Jkpq(τ) =
ε

δω
L̃∗kpq(ekep + ekeq − epeq). (5.16)

where i is absorbed in the interaction coefficient, L̃kpq, i.e. L̃kpq → iL̃kpq. The singularity owing to

δω is averted by using the complex identity ={ω + iδ̃} = −πδ(ω) for some δ̃ � 1, the details are

available in the compendium paper by the author of this thesis and in [135]. We now substitute the

steady state solution for Jkpq given by equation (5.16) in the general wave kinetic equation (5.13)

and obtain the following closed equation for ek,

∂τek =
π

2

∫ [
|L̃kpq|2(epeq−ekep−ekeq)δk,pqδωk,ωpωq+2|L̃pkq|2(ekeq−epek−epeq)δp,kqδωp,ωkωq

]
dpdq.

(5.17)

Equation (5.17) is known as the three-wave kinetic equation in the closed form that satisfies the

applicability criterion for three-wave interaction [135] because ξk = |L̃kkk|2EV ωk ≈ 0 � 1 holds

true at the appropriate order in the multiple scale analysis.
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Recall, that the energetics described by the three-wave kinetic equation (5.17) is for a non-

helical fluid flow. In the next section, we will extend the formulation for a fully helical flow. It will

become clear how the two invariants of a rotating flow, viz. energy and helicity, are intertwined v̀ıa

a set of coupled differential equation.

5.3 Fully helical flow dynamics

We now relax the special case, hk = 0 and allow for hk 6= 0, i.e. non-trivial helicity. Clearly,

now c+∗
k = c∗k 6= c−k implying that the mirror symmetry, and hence the parity, in the flow is broken.

If we follow the same procedure to derive the three-wave kinetic equation in this case as we did

for the non-helical flow, the calculations become very tedious and it becomes extremely difficult to

define the correlators. Therefore, in this section, we take a novel approach to extend the results of

the previous section to the fully helical case by using symmetry arguments.

5.3.1 General solutions of equations with inherent symmetries

Before we extend our results of the previous section to the more general fully helical flow,

we present the steps here for a general (in (x and y) polynomial system. The important thing to

note is that if x and y are independent variables, then we can represent the system in a complex

plane by introducing a new complex variable, z = x + iy. Then, if we have a functional form of

the system that is valid in the positive real line, i.e. x > 0, we can extend it to the complex right

half plane and hence to the general bi-variate form as long as the functional form is analytic in the

entire domain. Here, we will look at the case where x and y are not independent, and yet we would

want to extend the system from the special case where, y = 0 to the more general case where,

x+ βy is on the real line, for some real valued β.

We have a new variable z (not complex-valued) defined such that z = x + βy,∀β ∈ R. Let

us suppose that we know a formal description of the system in terms of z when β = 0 as follows:

Az2 +Dz + F = 0, (5.18)
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or equivalently,

Ax2 +Dx+ F = 0, (5.19)

where A, D and F are system constants that represent the strength of the variable they are

associated with, e.g., D is the strength of the contribution of x and A is the strength of the

contribution of x2 and so on. The goal is to construct the more general system describing z in

terms of both x and y. We will assume for sake of convenience that both x and y have identical

contributions, a symmetry in x and y.

We then substitute z± = x± y in equation (5.18) to get:

4Axy + 2Dy = 0, (5.20)

2Ax2 + 2Ay2 + 2Dx+ 2F = 0. (5.21)

Adding equations (5.20) and (5.21) gives us the generalized system (5.23):

Ax2 + 2Axy +Ay2 +Dx+Dy + F = 0. (5.22)

Equation (5.22) can be re-written as:

Ax2 +

(
A+A

)
xy +Ay2 +Dx+Dy + F = 0, (5.23)

or

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (5.24)

where A,B,C,D,E and F are system constants with B = 2A implying the symmetrical contri-

butions of x and y. Thus we have shown that by simple algebraic manipulations and symmetry

arguments, it is possible to extract a more general bi-variate polynomial system from a simpler

mono-variate one. We will now show how this strategy is useful in deriving the general three-wave

kinetic equation for a fully helical case in closed form.
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5.4 Coupled equations of energy and helicity: general form

Recall, ek in equation (5.17) is actually e+
k ≡ e

−
k . Thus the closed form coupled energy-helicity

equation becomes,

∂τ

(
ek ±

hk
k⊥

)
=
π

4

∫ [
|L̃kpq|2

{(
ep ±

hp
p⊥

)(
eq ±

hq
q⊥

)
−
(
ek ±

hk
k⊥

)(
ep ±

hp
p⊥

)
−
(
ek ±

hk
k⊥

)(
eq ±

hq
q⊥

)}
δk,pqδωk,ωpωq

+ 2|L̃pkq|2
{(

ek ±
hk
k⊥

)(
eq ±

hq
q⊥

)
−
(
ep ±

hp
p⊥

)(
ek ±

hk
k⊥

)
−
(
ep ±

hp
p⊥

)(
eq ±

hq
q⊥

)}
δp,kqδωp,ωkωq

]
dpdq.

(5.25)

The individual evolution equations for ek (and hk) are obtained by adding (and subtracting) the

two set of equations expressed concisely by equation (5.25) and is given as follows:

∂τek =
π

4

∫ [
|L̃kpq|2

{(
epeq +

hphq

p⊥q⊥

)
−
(
ekep +

hkhp

k⊥p⊥

)
−
(
ekeq +

hkhq

k⊥q⊥

)}
δk,pqδωk,ωpωq

+ 2|L̃pkq|2
{(

ekeq +
hkhq

k⊥q⊥

)
−
(
ekep +

hkhp

k⊥p⊥

)
−
(
epeq +

hphq

p⊥q⊥

)}
δp,kqδωp,ωkωq

]
dpdq,

(5.26)

and

∂τhk =
π

4

∫
k⊥

[
|L̃kpq|2

{(
ep
hq

q⊥
+ eq

hq

q⊥

)
−
(
ek
hp

p⊥
+ ep

hk

k⊥

)
−
(
ek
hq

q⊥
+ eq

hk

k⊥

)}
δk,pqδωk,ωpωq

+ 2|L̃pkq|2
{(

ek
hq

q⊥
+ eq

hk

k⊥

)
−
(
ek
hp

p⊥
+ ep

hk

k⊥

)
−
(
ep
hq

q⊥
+ eq

hq

q⊥

)}
δp,kqδωp,ωkωq

]
. dpdq.

(5.27)

To summarize, we have taken a special case of the wave-kinetic equations which has the

functional form ∂tek = f(k) (think of f(k) as the right hand side of equation (5.17)) where hk = 0,

and extended it to the more general case where hk 6= 0. In this general case, the domain of f(k)

is still the positive real line because the inequality |hk| ≤ k⊥ek implies that hk and ek are not

independent variables and ek ± hk
k⊥
≥ 0 is always true. Hence, we have extended the applicability

of the wave kinetic equation from the simpler symmetric case (where c∗k = c−k because hk = 0) to

the more general case with non-trivial helicity.
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5.5 Summary

In this chapter, we have argued for the importance of symmetries in the canonical descrip-

tion of rotating flows in deriving the three-wave kinetic equations. This has made the calculations

tractable and mathematically convenient despite the rigor in the formalism. We have then ex-

tended the scope of the wave kinetic equation from the simpler case to a more general fully helical

case. The newly derived coupled equations (5.26) and (5.27) from the R-RHD is most suitable for

understanding the flow dynamics in the slow manifold.



Chapter 6

Stationary solutions and the wave-turbulence schematic

“Everything you can imagine is real.”

Pablo Picasso

In this chapter, we will present the stationary solutions of the three-wave kinetic equation

for the energy and helicity spectral densities. We identify the solution corresponding to the con-

stant energy flux Kolmogorov solution. We then review the power law solutions for different flow

regimes and place our results in perspective with the anisotropic turbulence schematic proposed

by Nazarenko and Schekochihin. Finally, we end the chapter by showing how near-resonant wave

interactions are the dominant players in wave-eddy coupling.

6.1 Stationary solutions of the wave kinetic equation

The detailed procedure for obtaining stationary solutions for the energy and helicity spectral

densities can be found in [135]. The key step is to find the conditions that make the integrand of

the integro-differential equation (5.17) equal to zero. Thus, the four possible stationary solutions

for the anisotropic spectrum, ek ∼ k−xiZ k−yi⊥ , ∀kz 6= 0, are listed as follows:

(i) x1 = 1 and y1 = −1.

(ii) x2 = 1 and y2 = 0.

(iii) x3 = (1 + u) and y3 = (2 + v), where 2u and 2v are respectively the powers of kz and k⊥

in |L̃kpq|2. Clearly, in our case, u = 0, v = 1 (equation (5.12)). Thus, x3 = 1 and y3 = 3.
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(iv) x4 = 1 and y4 = 7/2. This solution corresponds to the constant flux in the z-component of

the momentum.

Solution (iii), above, corresponds to the constant energy flux solution. Therefore, the exact solution

for the Kolmogorov-Zakharov-Kuznetsov spectra with constant flux is as follows:

ek = e(k⊥, kZ) ∼ k−3
⊥ k−1

Z . (6.1)

This result is also reported in recent numerical simulations [122, 85, 120].

Therefore, the cylindrically symmetrical solutions for the corresponding spectral quantitates

are

Ek⊥ = (2πk⊥ek) ∼ k−2
⊥ , and Hk⊥ = (2πk⊥hk) ∼ k−1

⊥ . (6.2)

It is important to note that within this set up of weak turbulence theory, where we have

assumed that helicity scales proportional to energy as stated above, obtaining multiple power law

solutions for helicity, as shown in numerical simulations by Mininni and Pouquet [84], is beyond the

scope of this study. Moreover, the treatment of wave interactions presented thus far is restricted

to a strongly anisotropic limit, Ro→ 0 and that of mildly fluctuating waves. Where and how does

all this fit in the big picture of rotating turbulence as a whole? This is a difficult question that

has plagued researchers for sometime. We have tried to bring together certain important ideas

proposed in the recent literature and the current theory presented in this thesis in the subsequent

section.

6.2 Critical balance: at the confluence of weak and strong turbulence

It is important to re-emphasize the fact that the common theme of the weak-wave turbulence

theory is to identify a small (or weak) parameter in the perturbation analysis, the small parameter

representing weak-nonlinear interactions between small amplitude wave fields. In a real fluid flow,

this weak interaction assumption is not always true and moreover wave amplitudes can be very

large. Unfortunately, we do not have theory for the later yet. Motivated by the treatment of strong
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magnetohydrodynamic (MHD) turbulence [48], Nazarenko and Schekochihin [93] have proposed

that the critical balance phenomenology be applied as a universal scaling conjecture in all anisotropic

turbulence. The conjecture is a balance between the linear wave time scale, τω and nonlinear

advective time scale, τNL; i.e. ω ∼ τ−1
NL, where ω is the fast inertial wave frequency related to the

time scale τω.

6.2.1 Weak-turbulence vis-à-vis critical balance, polarization alignment and path

to recovery of isotropic turbulence

We will list three possible regimes in the context of rotating turbulence [93] in terms of the

micro-Rossby number, Roω := 1
RoΩ

kz
k⊥

, whereRoΩ is defined in chapter 1 in the paragraph following

equations (1.1) and (1.2).

(1) ωτNL ≡ Roω � 1, such that nonlinear perturbations of the wave field are small since

δU ∼ Ro−1
ω U (c.f. U is the horizontal wave field as introduced in chapter 4). This the

regime of the weak-wave turbulence presentation of Galtier [[45].

(2) Nazarenko and Schekochihin propose that as the nonlinear interactions become stronger,

eventually a critical balance state is reached where Roω ≈ 1. Note, that this definition

of critical balance is disputed as Galtier et. al. [47] have argued that the constant does

not have to be unity but of order unity, the schematic presented in this section and in

figure (6.1) does not change on account of this slight disparity in the definition of critical

balance. They propose that beyond this limit, the turbulent interactions take a path

towards recovery of isotropic scales [85] (for wave numbers larger than the Zeman scale)

through an intermediary balance that accounts for polarization of the fluctuating wave

field known as polarization alignment (for the case of the helical waves, the nonlinear de-

correlation time is multiplied by a polarization factor to account for the helical waves; see

[93] for details). Here, Zeman scale is defined as the scale at which the eddy turnover time

scale and the inertial wave time scale become equal and thereby the connection with critical
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balance.

(3) The third regime corresponds to Roω � 1 pertains to the analysis presented in this dis-

sertation; i,e, the slow manifold. In fact, as the energy cascades to higher horizontal wave

numbers, the flow spans a hierarchy of slow manifold regimes with progressively diminish-

ing kz
k⊥

. While Nazarenko and Schekochihin, in their paper, had hinted at this regime and

suggested a possible wave-turbulence treatment within the slow manifold using asymptot-

ically reduced equations, it is for the first time to our knowledge that such an attempt has

been made in a mathematically rigorous manner as presented in this thesis.

There is at least one experimental study, that of Di Leoni et. al. [37], that gives evidence

that in rapidly rotating turbulent flows the energy is concentrated in modes that are far away

from modes where critical balance is true, i.e. energy is concentrated in regimes of the flow shown

by the blue arrow in figure (6.1). This means that for rapidly rotating flows, the k−2
⊥ spectra

observed in numerical simulations falls within the realm of the highly anisotropic weak turbulence

analysis presented in this thesis and is not due to critical balance as proposed by Nazarenko and

Schekochihin [93].

6.2.2 Wave turbulence schematic for rotating turbulent flows

We emphasize that a formal theory of strong turbulence is non-existent as yet, critical bal-

ance serves as a phenomenological scaling conjecture to describe strong wave interactions. Hence,

proposing a wave turbulence schematic based on scaling conjectures and a theory (that of weak-

wave turbulence) leaves a lacuna from a theoretical standpoint. Yet, it helps us to visualize what

the physics of a complete wave turbulence theory (including both weak and strong turbulence the-

ory) can entail if and when such a theory is indeed developed. Figure (6.1) depicts this schematic

in a concise manner.

We note that in the schematic presented in figure 6.1 as well as in the wave-turbulence theory

presented in this thesis and also that by Galtier [45] and Nazarenko et. al. [93], the cascade across
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Figure 6.1: A sketch of cascade paths for rotating turbulence shows the different flow regimes depending
on Roω(≡ ωτNL) and the corresponding energy spectra. Here, ki is the isotropic wavenumber, k⊥c is
the classical critical balance wavenumber, k0 is the injection wavenumber corresponding to an initial wave
field. Three distinct regimes are shown: (i) WT (Galtier) corresponding to the wave-turbulence regime with
Roω � 1, (ii) CB w/ pol. (i.e. critical balance with polarization alignment) as explained in [93] leading
towards isotropy, and (iii) WT (R-RHD) corresponding to the R-RHD equations of this paper with Roω � 1.
As we move along the horizontal axis from left to right, the flow traverses a hierarchy of slow manifolds with
successively rescaled (decreasing) kZ/k⊥ wave number ratio.

the vertical wave numbers is ignored. For the latter, we refer to the work by Bellet et. al. [8].

6.3 Wave-eddy coupling

Within the realm of wave-turbulence theory, energy trapped in the resonating wave modes

does not leak to non-resonating modes. However, numerical simulations and experimental evidences

have supported transfer of energy to non-resonating modes including the 2D manifold. Here it is

important to recognize the subtle distinction between the 2D manifold and the slow manifold, the

former refers to kz = 0 and the latter has already been defined in chapter 4 as a regime where slow

inertial waves propagate at advective timescales.
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So the important question that stays unresolved is if a formal theory can capture this co-

nundrum about 2D-3D coupling to support the passage of energy to the barotropic wave modes.

Here we refer to this phenomena as the wave-eddy coupling. Does this demand for an extension

of the wave-turbulence analysis from a three-wave to a four-wave resonant interaction at the next

order of asymptotic series? A four-wave process will make the calculations extremely tedious. Can

we present an alternative evidence of the wave-eddy coupling within the framework of the formal

approach pursued in this thesis? We make an attempt to address this issue in the following para-

graphs of this section. It must be said that other researchers in the past have attempted to resolve

this quandary in the recent past, one such example being the work of [114] who have argued, in an

informal manner, the importance of near-resonant three-wave interactions.

Let us formally see what happens when kZ = 0 in equation (5.17). Clearly, L̃kpq becomes

zero because p⊥ = q⊥ in this case. This can be shown as follows: when k = p + q or equivalently,

kZ = pZ + qZ , k⊥ = p⊥ + q⊥, we have pZ = −qZ . Next, the frequency resonance condition

ωk = ωp + ωq, or equivalently, kZ
k⊥

= pZ
p⊥

+ qZ
q⊥

becomes pZ
p⊥

= − qZ
q⊥

and consequently, p⊥ = q⊥ since

we have already established pZ = −qZ . Note that we have intentionally ignored the polarity, s here

to keep the expressions clean, it can be easily checked that the facts hold true even when we take

the polarity into consideration.

Recall that the frequency delta function in equation (4.18) appeared as a result of applying

the solvability condition to ensure bounded growth in the perturbation analysis. This involved

a fast time integral (actually a fast time averaging, i.e. 1
t

∫
(·)dt) as part of applying the inner-

product that changed the exponential term, ei(Φ(p,spωp)+Φ(q,sqωq)−Φ(k,skωk)) in equation (4.17) to

the delta function, δωk,ωpωq in equation (4.18). Instead, we stop for a while at equation (4.17)

and carefully analyze the information encompassed by the exponential term before applying the

fast time integral. Let us define a parameter, δω as skωk − spωp − sqωq = δω � ε, δω 6= 0. Next,

considering the smallness of δω
ε τ , we Taylor expand the exponential term to obtain,

ei
δω
ε
τ ≈ 1 + i

δω
ε
τ + ... (6.3)
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i.e.,

ei
δω
ε
τ ≈

(
δωskk ,ω

sp
p ω

sq
q

)
δω=0

+ i
δω
ε
τ + ... . (6.4)

Thus, using equation (6.4) in equation (4.18), we get,

i∂τ c̃
sk
k =

1

2t

∑
sp,sq

∫
V
skspsq
kpq c

sp
p c

sq
q

[(
δωskk ,ω

sp
p ω

sq
q

)
δω=0︸ ︷︷ ︸

res

+ i
δω
ε
τ + ...︸ ︷︷ ︸

non-res

]
δk,pqdpdqdt.

Here c̃ denotes that non-resonant terms have been retained here. Comparing equation (6.5) and

equation (4.18), we see that the second term responsible for the wave-eddy coupling (because here,

δω 6= 0 in the second term) is absent in the formal wave-turbulence treatment. Thus, broadly

speaking, we have,

∂τek = Tres(k, τ) + Tnon-res(k, τ), (6.5)

where T (k, τ) denotes nonlinear transfer of energy to mode k. However, there is a very crucial

implication of retaining the non-resonant terms in the manner prescribed above. In doing so, we

lose the ability to extract a stationary Kolmogorov solution for the energy and helicity spectral

densities. This is because it is the frequency delta function that is associated with the constant flux

Kolmogorov solution. For details, we refer the reader to [135]. However, the three other stationary

solutions, listed in section 6.1 in the beginning of this chapter, can be retained.

6.4 Summary

In this chapter, we have presented the stationary solutions of the three-wave kinetic equation

of the R-RHD. We have identified three special regimes of rotating turbulent flows following [93].

This has enabled us to expand upon the wave turbulence schematic proposed by [93] and collate

weak and strong turbulence phenomena within the broader picture of rotating flows. By no means

do we claim that this is close to being the final word on the understanding of rotating turbulence.

This is merely an attempt at engaging the weak-wave turbulence of R-RHD in the slow manifold

with the findings in recent literature. We have also shown a possible way of accounting for wave-

eddy coupling within the framework of the work presented in this thesis.



Chapter 7

Conclusion and future research

“The future belongs to those who believe in the beauty of their

dreams.”

Eleanor Roosevelt

7.1 Scope of the thesis: a concise review

In this thesis, we have studied the dynamics of rotating turbulent flows from a phenomenolog-

ical point of view through numerical simulations as well as theoretical investigation using resonant

wave theory. In doing so, we have ignored several important phenomena like the effect of den-

sity stratification, buoyancy forces, role of convection and boundary layer effects, to name a few.

Several interesting studies are available in the literature [115, 61, 77] that investigate the role of

one or more of these phenomena in the context of understanding turbulent flow dynamics. The

combined influence of some of these physical processes become key to understanding geophysical

and planetary flows. However, the goal here is to understand the energetics of flows where rotation

is the dominant force. This lays the foundation for extending the investigation by including other

physical processes.

7.2 Applicability of kinetic wave turbulence theory

The theoretical investigation presented here relies on resonant wave theory. Resonating waves

serve as efficient carriers of energy across scales. However, several numerical simulations have given
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enough evidence of the role of non-resonant wave interactions in the energy transfer process. A

robust theory on strongly interacting wave modes including non-resonant interactions may shed

deeper insight into the various dynamical processes involved in turbulent flows.

Moreover, the applicability of kinetic wave turbulence theory relies on two other simplifying

assumptions, viz.,

(1) L
λ →∞, where L is the domain size of the fluid system and λ here refers to the characteristic

wavelength. This means that boundary effects are not accounted for in this theory, and

(2) the locality of wave interactions, i.e. for two waves corresponding to ωp and ωq interacting

to trigger a wave, ωk, locality would imply that ωp ≈ ωq.

The second implication is naturally true within the slow manifold. This is because the frequency

resonance condition, when ωk ≈ 0, would imply that ωp ≈ ωq, thereby permitting only local

interactions within the slow manifold. This is not so obvious in the general case, outside the slow

manifold. In the general case, to ensure the convergence of the collision integral, a locality of wave

interactions is implicitly required. Thus, kinetic wave turbulence does not support non-local wave

interactions [135].

To relax the above mentioned constraints, a discrete wave turbulence analysis has been

undertaken recently [74, 63]. Two key points are worth discussing in this regard.

7.2.1 Boundary effects

Boundary effects are studied by imposing a finite box size, i.e. assuming 1� L
λ �∞. This

discretization naturally traps the energy in a few discrete modes (clusters) and forbids leakage of

energy between clusters.

7.2.2 Non-local interactions

Since, only a few modes (those within a cluster) participate in the energy exchange process

and there is no inter-cluster energy transfer, non-local wave interactions are dominant. This may be
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most suitable outside the slow manifold in rotating turbulent flows to study the effect of non-local

interactions in the energy cascade.

Thus, it is possible that natural processes can be best studied by accommodating a combi-

nation of discrete and kinetic wave turbulence investigations; thereby re-enforcing the importance

of a laminated wave turbulence theory [63].

7.3 Information content in the wave turbulence formalism

A careful observation of the mathematical formalism of this theory presented here entails

that all the important information about the wave dynamics and energetics of the flow is contained

in the interaction coefficient, L̃kpq and the wave dispersion relation, skωk. As a concluding remark,

it is useful to review the information contained in L̃kpq. The strategy employed in this thesis to

obtain the fully helical representation of the flow dynamics given by equations (5.26) and (5.27) is to

superimpose the positive and negative solutions obtained independently. As has been noted before,

the Hamiltonian of the system is such that the polarity of the interacting wave modes, (p,q)→ k

must be similar, either (+,+) → + or (−,−) → −. The interaction coefficient L̃kpq captures this

information as only L̃+++
kpq and L̃−−−kpq have non-trivial contribution to the Hamiltonian. The other

cases, e.g. (+,−) → + represent a destructive (meaning, out of phase) configuration with a null

contribution to the Hamiltonian as has been stated in chapter 5 in the paragraph after equation

(5.11).

Should this be surprising? The answer is no because (sp, sq) = (+,−) represents a fully

helical configuration of the two interacting wave modes, (p,q), in a given wave triad, (k,p,q).

As is known, helical states retard nonlinear energy transfer, so it is not surprising that such a

configuration would make no contribution to the Hamiltonian that makes up the nonlinear energy

transfer term. It is important to note that |L̃+++
kpq |

2 = |L̃−−−kpq |
2 ≡ |L̃kpq|2 and both L̃+++

kpq and

L̃−−−kpq , representing the helical state of the flow, are implicitly present in the wave kinetic equations

(5.26) and (5.27). The over-arching point here is that destructive wave interactions (i.e. out of

phase wave modes) do not contribute to the resonant three wave dynamics of the flow. This
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point can also be re-enforced by recalling that energy is conserved in every wave-triad and no

leakage is permissible. This implies that out of phase configurations have zero energy (information)

content. Of course, a quasi-resonant or non-resonant interaction would encompass out of phase wave

interactions as has been outlined in the section on wave-eddy coupling in chapter 6. Such out of

phase configurations will not conserve energy in every wave triad as some energy will always leak to

the non (near) resonating wave modes. This is the disadvantage of a non-resonant analysis and will

demand investigations at the four-wave resonance interactions thereby increasing the complexity

of the theoretical approach. Again, it is important to note that the comments made in this section

pertain to the formal theoretical framework of resonating waves only. If one relaxes the resonance

constraint, like in [10], then such out of phase interactions are permissible.

7.4 Future research directions

Here we will mention only two applications, the first being an applied field where the inves-

tigation presented here may be useful and the second a purely theoretical question.

7.4.1 Resonant wave theory to understand planetary dynamics

From a purely application point of view, the analysis can be applied to fluid models developed

to understand planetary dynamics. The weak wave turbulence formalism can be applied to the more

general Boussinesq equations that serve as canonical models for several geophysical and planetary

flows. These equations model the effect of stratification in addition to the effects of rotation. The

linear wave dispersion relation of these equations is, ωk = ±
√

f2k2
z+k2

⊥N
2

k2
⊥+k2

z
, where f and N are the

Coriolis and Brunt-Vaisala frequencies, respectively. It can be shown that in the limit ofRo2k2 � 1

and finite stratification, the dispersion relation reduces to ωk =
√
ghk and embodies non-dispersive

waves. This should not be surprising because Boussinesq equations are known to have solitary

wave solutions. Coherent structures observed in geophysical and planetary flows can be regarded

as manifestations of solitary waves and hence this line of research serves as an interesting starting

point to better understand such flows.
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7.4.2 Importance of symmetries in developing general theories in fluid turbulence

The importance of exploiting symmetries to reduce the dimensionality of a Hamiltonian (or

equivalently Lagrangian) system is one of mechanic’s grand themes [20, 90] and is closely related

to the invariants of the system by Noether’s theorem [95]. E.g., Davidson et. al. [35, 34] show

that the conservation of angular momentum that is related to rotational symmetry (axisymmetry)

in rotating turbulent flows can be exploited to explain the growth of columnar structures in such

flows. In this thesis, we have used reflection symmetry to obtain a special solution corresponding

to the non-helical dynamics of the flow and then extended the solution to the more general case.

An interesting question is if such simplification or reductions in the system description is always

possible. Can this always be used as general theme for solving complex problems? If not, why?

Certainly, there are several instances in other related areas of physics where symmetries in

the Hamiltonian formalism have been used to find new conservation laws; e.g. Philbin [98] has

shown that conservation of optical zilch (measure of chirality of light) can be derived from simple

symmetry of the standard electromagnetic action, Yahalom [132] has derived helicity conservation in

ideal baratropic fluids by introducing a new symmetry group called the alpha group of translations,

Webb et. al. [129] have used the Noether’s theorem to derive the canonical Alfv́en wave mixing

equations for the wave energy by exploiting linearity symmetry of the equations. These theoretical

efforts have shown the importance of using symmetries in the canonical system in unraveling deeper

insight about the system through conservation laws as a general strategic principle.

7.5 Summary

In this concluding chapter of the thesis, we have made brief remarks about the loopholes in

the kinetic weak wave turbulence theory. We have also noted recent efforts made in the scientific

community to address some of these short comings. Finally, we have identified two potential

research directions that spawn naturally based on the investigations pursued in this dissertation

research.
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Appendix A

A brief summary on the origin of R-RHD equations

Detail explanations of this chapter can be found in the paper by Julien et. al. [60]. A brief

overview of the origin of the reduced set of equations used in chapter (3) is presented here.

A.1 The governing equation

The Navier-Stokes equation for an incompressible flow are as follows:

Dtu + Ω̂× u = −∇P + E∇2u, (A.1)

∇ · u = 0, (A.2)

where, Ekman number, E := ν
2Ωd2 , ν is the kinematic viscosity, d is the typical length scale imposed

by the domain size and Ω = Ωẑ is the rotation vector. Here, time is scaled in units of (2Ω)−1,

distances in units of d and velocities in units of 2Ωd.

A.2 Stream-function formulation of the governing equation

A choice of a vector valued function, χ = φẑ+∇×ψẑ is made such that u = (u, v, w) = ∇×χ

ensures the incompressibility condition automatically due to the vector identity, ∇ · (∇× χ) ≡ 0.

Then velocity and vorticity can be expressed in terms of the stream-functions, φ, ψ, as follows:

u =


∂yφ+ ∂x∂zψ

−∂xφ+ ∂y∂zψ

−∇2
⊥ψ

 , ζ =


∂x∂zφ−∇2∂yψ

∂y∂zφ+∇2∂xψ

∇2
⊥φ

 . (A.3)
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Using the form of equation (A.3), the governing equation (A.1) can be written as follows by taking

(ẑ · ∇×) and (ẑ · ∇×)∇× of the momentum equation (A.1):

∂t∇2
⊥φ− (Ω̂ · ∇)∇2

⊥ψ +Nφ(φ, ψ) = E∇2∇2
⊥φ, (A.4)

∂t∇2∇2
⊥ψ + (Ω̂ · ∇)∇2

⊥φ+Nψ(φ, ψ) = E∇4∇2
⊥ψ, (A.5)

where Nφ(φ, ψ) ≡ (ζ · ∇)w − (u · ∇)ζ(z) and Nψ(φ, ψ) ≡ ẑ · ∇ × ∇× (ζ × u). Note that ζ(z) is the

vertical component of the vorticity, ζ. Nφ and Nψ can then be written in terms of φ and ψ.

A.3 Asymptotic analysis

A multiple scale asymptotic analysis is then performed using equations (A.4) and (A.5), E �

1 is the small expansion parameter. The Taylor-Proudman theorem demands slow variation in the

vertical direction, denoted here by D := ∂z and hence fast horizontal variables are introduced, x′ ≡

E−1/3x, y′ ≡ E−1/3y. Horizontal motion being in geostrophic balance demands the introduction

of a slow time scale, τ = E1/3t. The stream-function is scaled as: φ = Eφ′, ψ = E4/3ψ′. The

above implies that locally, Ro ∼ O(E1/3) and is hence extremely small. Using the aforementioned

scalings in equations (A.4) and (A.5), the following equations are obtained in terms of the new

variables denoted by primes (except that the primes have been dropped):

∂τ∇2
⊥φ− J [φ,∇2

⊥φ]−D∇2
⊥ψ = ∇4

⊥φ+O(E1/3), (A.6)

∂τ∇2
⊥ψ − J [φ,∇2

⊥ψ] +Dφ = ∇4
⊥ψ +O(E1/3). (A.7)

Then, using the fact that w = −∇2
⊥ψ and ζ(z) = −∇2

⊥φ and ignoring viscosity, the reduced rotating

hydrodynamic (R-RHD) equations are written in simple form as:

∂tζ(z) + J [ψ, ζ(z)] = ∂zw (A.8)

∂tw + J [ψ,w] = −∂zψ (A.9)

Note, ζ(z) = ∇2
⊥ψ and u⊥ = ∇⊥ψ in this formulation. This is the main set of equations for our

analysis in chapter (3).
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Appendix B

Vanishing integrals to show invariance of energy

Here we have chosen a function, f(k⊥) = 1
k2
⊥

but the result is true for any function of k⊥ that

decays slower than an exponential function.

First we show that
∫

1
k2
⊥
epeqδk,pqδωk,ωpωqdk = 0. To show this, we approximate the delta

function with a limiting exponential function as: δωk,ωpωq ≈ limσ→0 e
−ωk−ωp−ωq

σ .∫
1

k2⊥
epeqδk,pqδωk,ωpωqdk ∝

∫
δkz,pzqz

∫
1

k2⊥
δk⊥,p⊥q⊥ lim

σ→0
e−

ωk−ωp−ωq
σ dk⊥dkz

=

∫
δkz,pzqz lim

σ→0

∫
1

k2⊥
e
−( kzk⊥−

pz
p⊥
− qz
q⊥

)σ−1

δk⊥,p⊥q⊥dk⊥dkz

=

∫
δkz,pzqz lim

σ→0
e
( pzp⊥

+ qz
q⊥

)σ−1
∫

1

k2⊥
e
− kz
σk⊥ δk⊥,p⊥q⊥dk⊥dkz = 0. (B.1)

The above equation is zero on account of the integral
∫

1
k2
⊥
e
− kz
σk⊥ δk⊥,p⊥q⊥dk⊥ being zero as shown

below. Using integration by parts and the fact that for some arbitrary continuous function f(x),∫
f(x)δx−adx = f(a), we have,

I =

∫
1

k2
⊥
e
− kz
σk⊥ δk⊥,p⊥q⊥dk⊥ =

1

k2
⊥

∫
e
− kz
σk⊥ δk⊥,p⊥q⊥dk⊥ +

∫
2

k3
⊥
e
− kzσ

−1

p⊥+q⊥ dk⊥

=
1

k2
⊥
e
−σ−1 kz

p⊥+q⊥ − 1

k2
⊥
e
−σ−1 kz

p⊥+q⊥ = 0. (B.2)

Next, by following a similar argument it can be shown that∫
1

k2
⊥
ekepδk,pqδωk,ωpωqdk = 0

and ∫
1

k2
⊥
ekeqδk,pqδωk,ωpωqdk = 0
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