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Machine learning is ubiquitous in making predictions that affect people’s decisions. While most of

the research in machine learning focuses on improving the performance of the models on held-out data sets,

this is not enough to convince end-users that these models are trustworthy or reliable in the wild. To address

this problem, a new line of research has emerged that focuses on developing interpretable machine learning

methods and helping end-users make informed decisions.

Despite the growing body of research in developing interpretable models, there is still no consensus

on the definition and quantification of interpretability. We argue that to understand interpretability, we need

to bring humans in the loop and run human-subject experiments to understand the effect of interpretability on

human behavior. This thesis approaches the problem of interpretability from an interdisciplinary perspective

which builds on decades of research in psychology, cognitive science, and social science to understand

human behavior and trust. Through controlled user experiments, we manipulate various design factors in

supervised models that are commonly thought to make models more or less interpretable and measure their

influence on user behavior, performance, and trust. Additionally, we develop interpretable and interactive

machine learning based systems that exploit unsupervised machine learning models to bring humans in the

loop and help them in completing real-world tasks. By bringing humans and machines together, we can

empower humans to understand and organize large document collections better and faster. Our findings and

insights from these experiments can guide the development of next-generation machine learning models that

can be used effectively and trusted by humans.
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Chapter 1

Introduction

Machine learning is ubiquitous and continuous advancements improve the performance of machine

learning techniques in social science, healthcare, and criminal justice. Machine learning models are usually

evaluated and tested based on their predictive power on a held-out data set before being deployed in the

real world. However, good performance on a held-out data set is seldom sufficient for practitioners to trust

these models. As a result, hesitation in deploying these models is common among stakeholders, especially

in critical areas such as healthcare and criminal justice.

This skepticism is caused by a gap between model developers and end users. While machine learning

has been extremely successful in automatizing many tasks and decision-making procedures, human involve-

ment is still necessary for several aspects: humans should annotate and collect the data that is required for

models, develop, tune, and debug models, and evaluate models and trust them. Despite the inevitable

involvement of humans, their behavior is rarely studied and their goals are rarely considered. Additionally,

machine learning models are often treated as black boxes, which makes it hard for humans to get involved

and interact with them.

Part of the reason for the gap between model developers and end users is the difference in both

expectations and areas of expertise. While the developers and designers of machine learning models are

usually experts in computational and statistical methods, the end users are usually domain experts (e.g.,

doctors, lawyers, social scientists). Domain experts need to trust these models before deploying them and

since human trust and goals are not purely computational, they are usually not a direct factor in model design

and evaluation pipelines.
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This thesis bridges the gap between humans and machine learning models and empirically evalu-

ates model-based systems that humans can interact with. To achieve this goal, we take an interdisciplinary

approach. We build on decades of research from psychology and cognitive science to design and run exper-

iments and understand human behavior when they are exposed to machine learning models. Furthermore,

we design and evaluate frameworks that bring machine learning models and humans together to empower

end users to complete tasks and achieve their goals better and faster.

This chapter provides a summary of key innovations, approaches, and results presented in this thesis.

We start by motivating human-in-the-loop design for interactive and interpretable machine learning.

1.1 Motivation

Machine learning is commonly used to make predictions that affect people and their decisions: rec-

ommending the next movie to watch in online streaming applications such as Netflix (Pilászy and Tikk,

2009; Christakou et al., 2007), detecting spam emails (Rajan et al., 2006; Jindal and Liu, 2007), and predict-

ing the risk of a specific disease for a patient in healthcare (Cooper et al., 1997; Caruana et al., 2015) and

predicting the risk of lending in finance (Wang et al., 2005; Yu et al., 2008). Although there have been huge

advances to improve the performance of machine learning models, these models are often treated as black

boxes. Interpreting them and interacting with them remains a persistent problem.

While computer scientists might not see this as a problem, professionals in other communities who

are end users of machine learning models do. For example, models that are hard to interpret are considered

“risky” to be deployed for making decisions about the hospitalization of patients by healthcare profession-

als (Caruana et al., 2015), and new regulations in the European Union require that algorithmic decisions

should be explainable to the affected individuals (Goodman and Flaxman, 2016).

A related problematic aspect of black-box machine learning appears in the scenarios where end users

are interested in understanding and explaining some phenomena. For example, social scientists commonly

use machine learning to model and understand people’s actions and interactions (Iyyer et al., 2014; Nguyen

et al., 2014a; Guo et al., 2015). Contrary to computer scientists who are more interested in prediction

(and thus evaluate models based on their predictive performance), social scientists are usually interested in
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characterizing the data and finding plausible explanations from the data (Hofman et al., 2017). Similarly,

professionals in healthcare usually want to understand how and why a machine learning prediction has been

made so that they can make informed decisions (Cooper et al., 1997).

These differences in the goals of computer scientists and end users are constantly overlooked. Devel-

opers of machine learning models commonly ignore the goals of end users and evaluate models solely based

on their predictive performance on a held-out data set. However, with the ubiquity of machine learning in

critical areas, good performance on a held-out data set is seldom enough to convince professionals to trust

and deploy these models.

To address this problem and fill the gap between computer scientists and end users, a new line of

research has emerged that focuses on developing interpretable machine learning models. The Fairness,

Accountability, and Transparency in Machine Learning (FATML) community,1 brings together researchers

and practitioners concerned with fairness, accountability, and transparency in machine learning. A subsec-

tion of the work in this community focuses on developing interpretable machine learning models (Lakkaraju

et al., 2017; Bastani et al., 2017). Interpretability in machine learning is inspired by the need for “simplicity”

and “explainability” for gaining end users’ trust. The goal is to design models that humans can understand,

debug, interact with, and make informed decision with.

Despite the growing body of research on interpretability, there is still no consensus on how to define

or measure interpretability (Lipton, 2016; Doshi-Velez and Kim, 2017). In this thesis, we argue that bringing

humans in the loop is necessary to define and measure interpretability, gain users’ trust and convince users

that a machine learning model is reliable in the wild. As a result, we need to take a task-driven and human-

in-the-loop approach and examine model interpretability, usability, and trustworthiness based on humans’

abilities and behavior.

1.2 Thesis Goals

At a high level, the goal of this thesis is to design and empirically evaluate interpretable models

and systems that help humans complete real-world tasks better and faster and enable humans to effectively
1http://www.fatml.org/

http://www.fatml.org/
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interact with them. This goal requires an understanding of how humans perceive and react to models and

how model “interpretability” affects their behavior. Therefore, we take a two-fold approach: (1) empirically

studying humans when they are using machine learning models to complete tasks and measuring the effect

of various model design factors on their behavior; (2) developing interpretable and interactive machine

learning based systems that bring humans in the loop and helps them complete tasks better and faster.

More specifically, our goal is to answer the following questions:

(1) How do the factors that are generally thought to make supervised machine learning models more or

less interpretable affect users’ behavior such as their trust in models and their level of understanding

of how models work?

(a) How can we isolate these factors and study their effect on users’ abilities and behavior?

(b) Can these experiments provide insights on how to design models that users can trust?

(2) Can we use interpretable, interactive, and unsupervised machine learning to help users complete a

task better and faster?

(a) Do interpretability and interactivity lead to better performance faster?

(b) Do empirical experiments with humans in the loop provide insights on efficiency of different

approaches in different scenarios?

1.3 Thesis Approach and Overview

This thesis combines findings from human-computer interaction, psychology, cognitive science, and

social science research to design human-in-the-loop methods along with human-subject experiments to eval-

uate these methods. Additionally, it provides insights in several aspects of machine learning with humans

in the loop. Chapter 3 studies how users behave when they are exposed to a supervised machine learning

model and how their abilities and behavior are affected with different factors in the model design. Chapter 4

and Chapter 5 present interactive frameworks that exploit unsupervised machine learning models to enable

users to complete tasks with the help from machine learning and information retrieval methods.
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Interacting with machine learning models empowers humans, and machine learning research can

benefit from collaboration between humans and machines. Designing models that end users can trust and

use as intended requires an understanding of users’ abilities and behavior. The experiments and findings

in this thesis should encourage machine learning researchers to collaborate with professionals from other

fields to understand human behavior better, which will, in turn, lead to designing and evaluating models that

humans can use effectively.

We now provide a description of approaches and contributions of the work in this thesis.

1.3.1 An Interdisciplinary Approach for Quantifying Supervised Model Interpretability

With the ubiquity of machine learning in several domains that directly or indirectly affect people, a

new line of research has focused on creating interpretable machine learning methods and models. The

general goal in this subfield of machine learning is to design models that humans can understand, debug,

interact with, and make informed decisions with. Despite this growing body of research, there is still no

consensus on the definition and quantification of interpretability; most of the approaches do not consider

humans in evaluating their methods and there have been very few studies verifying whether interpretable

methods achieve their intended effects on end users.

In Chapter 3, we take the perspective that part of the reason for the difficulty in defining and measuring

interpretability is that it is not something that can be directly manipulated or measured. Rather, it is a latent

property that is influenced by several possible manipulable factors, which are commonly thought to make

models more or less understandable by humans (e.g., the number of features, model transparency, or the

visualizations). People’s abilities to understand, trust, or debug the model, directly or indirectly, depend on

these factor.

While the manipulable factors are properties of the model, measurable outcomes (dependent vari-

ables) are properties of human behavior (e.g., users’ trust in the model, users’ abilities in debugging the

model, users’ abilities in making informed decisions with the model). In other words, it is the humans’

behavior and abilities that is affected by the notion of model interpretability. Additionally, different end

users with different expertise and goals might care about different outcomes to different extent in different
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scenarios. Therefore, we propose to measure interpretability by isolating the effect of each of the factors of

interest and measuring the influence on any outcome of interest.

We take an interdisciplinary approach and build on decades of psychology and social science research

on human trust in models. We bring humans in the loop, enable them to interact with a supervised model and

complete a task with the help of the model. Designing and running controlled user studies lets us measure

how different factors affect people’s behavior and abilities in completing the task.

We present a framework for assessing the effects of model interpretability on users via pre-registered

experiments in which participants are shown functionally identical supervised models that vary in factors,

which are commonly thought to influence interpretability. Using this framework, we run a sequence of

large-scale randomized experiments, varying two putative drivers of interpretability: the number of features

and the model transparency (clear or black-box). We then explore how these factors interact with trust in the

model’s predictions, the ability to simulate the model, and the ability to detect the model’s mistakes.

Our large-scale crowdsourced experiments show that participants who are shown a clear model with a

small number of features are better able to simulate the model’s predictions. However, there is no difference

in multiple measures of trust. Additionally, clear models do not improve the ability to correct model’s

mistakes. Given that some of these results contradict common intuition that transparent and simple models

lead to higher trust, interpretability research could benefit from more emphasis on empirically verifying that

interpretable models achieve all their intended effects.

The experiments in Chapter 3 focus on the effect of interpretability on users behavior and performance

in a predictive task with the help of a supervised model. Other interesting properties of interpretable models

include users’ abilities to interact with them and debug them. Next, we design a framework that allows for a

rich interaction between humans and models. We evaluate the effectiveness of interpretable unsupervised

models on users’ decision making.
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1.3.2 Interactive and Interpretable Unsupervised Machine Learning for Label Induction and

Document Annotation

We address the problem of inducing label sets and creating training sets for supervised models by

exploiting interpretable unsupervised models and enabling users to interactively debug models.

Effective classification requires experts to annotate data with labels; these training data are time-

consuming and expensive to obtain. If you know what labels you want, active learning can reduce the

number of labeled data points needed. However, establishing the label set remains difficult. Annotators

often lack the global knowledge that is needed to induce a label set.

In Chapter 4, we focus on annotating text data. Our goal is to exploit unsupervised methods to guide

people’s decision making (i.e., inducing labels and assigning them to documents in this case) and reduce

the amount of human effort in annotating text data while preserving performance and quality in a limited

time. Additionally, we want to evaluate the effectiveness of our methods with a controlled human-subject

experiment.

We introduce ALTO—Active Learning with Topic Overviews—to address the problem of difficulty

in inducing label sets and assigning labels to documents for learning text classifiers. ALTO brings humans

and machines together to reduce the amount of manual human effort in annotation. It allows for a rich

collaboration between humans and machines. Furthermore, our controlled user study provides insights on

human behavior and blueprints on the effectiveness of different annotation strategies in different scenarios.

We use topic models to provide a global knowledge of the corpus to users and aid them in inducing

global label sets. We also use active learning to provide a local knowledge of individual documents that users

lack and guide them in labeling. Topic models are unsupervised models that provide a global overview of

the corpus to guide label set induction, and active learning directs them to the right documents to label.

We evaluate ALTO with a controlled human-subject experiment. Our forty-annotator user study shows

that while active learning alone is best in extremely resource limited conditions, topic models (even by

themselves) lead to better label sets, and ALTO’s combination is best overall. Our user study provides

insights on which annotation methods are better suitable in different scenarios.
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1.3.3 Human-in-the-Loop Machine Learning for a Real-World Use Case

Having demonstrated the success of ALTO—an interpretable and interactive framework—in help-

ing users induce label sets and organize documents, we explore the effectiveness of a similar system on

a real-world use case that requires exploring large document collections, finding documents of interest,

and answering a question based on retrieved documents. We focus on understanding science policy and

answering questions about funding policies of the national science foundation (NSF) as our use case.

In Chapter 5, we build on the ALTO interface and design an interactive framework to help users find

NSF grants that are relevant to a question, review these grants, and answer questions about these grants. Our

framework uses topic models to provide an overview of the NSF grants and help users navigate through them.

Furthermore, it allows for information search within the existing grants via an information retrieval tool.

Like ALTO, we use active learning to point users to the grants that would be more beneficial in automatically

discovering relevant grants to a question.

We evaluate the effectiveness of our framework with a user study with twenty participants. We com-

pare our framework with an alternative that lacks the overview of the NSF grants in terms of topics. Our

user study results show that topics inspire users to search more for specific information and explore the

corpus. Additionally, self-reported measures show that users find topic information helpful in answering the

questions. Contrary to expectation, we do not find that topic information help users answer questions faster

and more accurately. The findings and discussions in this chapter should encourage more empirical studies

of the effectiveness of topic models in helping humans browse and understand large document collections.

1.4 Thesis Outline

All the proposed frameworks, claims, and hypotheses in this thesis are empirically evaluated with

human-subject experiments. This thesis is organized as follows:

• Chapter 2 summarizes existing research work on interpretable supervised and unsupervised ma-

chine learning models;

• Chapter 3 introduces an interdisciplinary approach for manipulating and measuring the interpretabil-
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ity of supervised machine learning models. It proposes a template for measuring the effect of model

design factors (that are commonly thought to make supervised machine learning models more or

less interpretable) on people’s abilities in completing (potentially complicated) tasks with the help

of models;

• Chapter 4 introduces a framework that exploits unsupervised machine learning models to reduce the

amount of manual human effort in classifying large document collections. Our framework allows

for a rich collaboration between users and models. It enables users to interact with and build a

machine learning model by inducing label sets and assigning labels to documents in a large corpora

better and faster;

• Chapter 5 explores the effectiveness of similar approaches on a real-world use case. It introduces an

interactive framework, which combines unsupervised machine learning models to provide insights

to users with information retrieval systems to help users search for information.

• Chapter 6 concludes this thesis and discusses the possible applications and future extensions of the

presented research work.



Chapter 2

Background

The research in this thesis approaches the problem of interpretability in machine learning from an

interdisciplinary perspective. We argue that to understand and measure interpretability, we need to bring

humans in the loop. We design interfaces that bring humans and machines together and evaluate the inter-

pretability of our machine learning methods with a task-driven approach.

This chapter starts by summarizing existing research on interpretability of supervised (Section 2.1)

and unsupervised models (Section 2.2) —the two primary categories of machine learning algorithms. Sec-

tion 2.3 reviews topic modeling algorithms in more detail as they are unsupervised machine learning models

that are commonly used for exploring large document collections and are key to the research presented in

this thesis. Finally, Section 2.4 summarizes existing tools for visualizing unsupervised machine learning

models with a focus on topic models.

2.1 Interpretability and Visualization of Supervised Models

Supervised learning is the task of inferring an output for an input using a set of input-output pairs.

The set of input-output pairs is the training set. This training set is usually a subset of the original data set,

where each data point has metadata (output) associated with it. This metadata is either in the discrete form

of labels (e.g., whether an image is a dog, cat, or bird) or in the continuous value form (e.g., the rating of a

movie in a review on social media). The former is referred as classification or categorization (Kotsiantis

et al., 2007), while the latter is regression (Fox, 1997).

Supervised models have three primary components: input representation (features), model, and out-
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(a) An example of a decision table. (b) An example of a decision tree.

Figure 2.1: An Example of visualization of model internals for (a) a decision table and (b) a decision tree
from (Huysmans et al., 2011). Decision tables and trees are considered to be “interpretable” to humans.

put (predictions). Interpretability is usually used in the context of model internals. For example, decision

tables (Vanthienen and Wets, 1994) (Figure 2.1a) and decision trees (Safavian and Landgrebe, 1991) (Fig-

ure 2.1b) provide significant comprehensibility advantages over other models and thus are thought to be

more suitable in scenarios where interpretability is a key requirement (Huysmans et al., 2011). As model-

level interpretability has gained a lot of attention, several existing works attempt to visualize models to aid

better and faster understanding and interpretation. Examples include a system for interactive construction,

visualization, and exploration of decision trees (Teoh and Ma, 2003) and a visualization tool for providing

insight on function of intermediate layers in convolutional networks (Zeiler and Fergus, 2014).

The other two components—features and predictions—can potentially affect interpretability as well.

For example, while modern deep models (LeCun et al., 2015) usually lack model-level interpretability, they

tend to operate on raw or lightly-processed features. Thus, if nothing else, the inputs are meaningful and one

can provide easy-to-understand explanations for them. On the other hand, linear models have interpretable

internals but they usually operate on heavily hand-engineered features to get comparable performance, which

makes comprehension potentially harder.

As predictions made by supervised models are commonly associated with uncertainty, effective visu-

alization and communication of uncertainty is a relevant research area. Understanding probability distribu-

tions and interpreting them is challenging for humans. For example, using natural frequency and discrete

outcomes as replacement for abstract and continuous probabilities lead to more accurate precision estimate
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by medical experts (Hoffrage and Gigerenzer, 1998) and improved patient understanding of risk (Garcia-

Retamero and Cokely, 2013). As such, effective visualization of uncertainty is a related and ongoing area

of research (Spiegelhalter et al., 2011; Kay et al., 2016).

To address the problem with the lack of interpretability in different components of supervised mod-

els, a new line of research focuses on developing methods that are interpretable. There are two common

approaches:

The first is to employ models that are intrinsically simple, such as models in which the impact of

each feature on the model’s prediction is easy to understand. Examples include generative additive models,

where the dependent variables are modeled as the sum of univariate terms and pairwise interaction terms and

thus the relationship between the univariate and interaction terms can be visualized via easy-to-understand

two-dimensional or three-dimensional plots (Lou et al., 2012, 2013; Caruana et al., 2015) and point systems,

which use sparse integer linear models that users can add, subtract, and multiply a few small numbers in

order to make a prediction (Jung et al., 2017; Ustun and Rudin, 2016).

The second is to provide post-hoc explanations for (potentially complex) models. One thread of

research in this direction looks at how to explain individual predictions by learning locally faithful linear

approximations of the model around particular data points (Ribeiro et al., 2016), learning importance scores

of each feature for a particular prediction (Lundberg and Lee, 2017), or estimating the influence of training

examples on a particular prediction (Koh and Liang, 2017). Another thread of research in this area relies on

visualizing model outputs for explaining predictions (Kulesza et al., 2015; Wattenberg et al., 2016).

Despite the activity and innovation in this area, there is still no consensus about how to define, quan-

tify, or measure the interpretability of a supervised machine learning model. In Chapter 3, we argue that

interpretability should be measured with humans in the loop. We hypothesize that users will better un-

derstand interpretable models and they will trust interpretable models more. We introduce an experimental

template for systematically isolating the effect of factors that are thought to influence the interpretability of a

supervised regression model and measuring their effect on users’ abilities to simulate the model’s prediction,

trust the model, and detect the model’s mistakes.
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2.2 Interpretability of Unsupervised Models

Unsupervised learning is the task of inferring hidden structure from raw data sets (Hastie et al., 2009).

Unlike supervised learning, there is no training set where the data points are associated with metadata.

Unsupervised methods such as clustering (Jain et al., 1999) are often used for exploratory data analysis,

which is the subfield of summarizing the characteristics of data sets, often with visual methods. As such,

these models are popular in social sciences and thus, interpretability becomes more important as we discuss

in Section 1.1.

Similar to supervised models, the representation of the data can affect interpretability of unsupervised

models. Unlike supervised models, the output of unsupervised models is not in the form of a prediction,

rather it is an inferred hidden structure from data. Therefore, interpretability of the hidden structure is the

focus of the research in the area of unsupervised model interpretability. We now briefly review the existing

work on interpretability of examples of different unsupervised frameworks.

Representation learning (Bengio et al., 2013) is a popular framework for unsupervised learning, where

the goal is to automatically learn representations of data that can be used for many downstream tasks such as

classification and regression. As more interpretable representations lead to better understanding of models

and methods in these downstream tasks, Chen et al. (2016) use an information-theoretic method to learn

interpretable and disentangled representations of data.

Word embedding algorithms (Mikolov et al., 2013a,b; Pennington et al., 2014) are another example

of unsupervised models that their interpretability has gained attention. Word embedding models encode

meanings of words to vector spaces. These embeddings capture semantic relationships between words and

have been used to improve the performance in many NLP tasks such as part-of-speech tagging (Lin et al.,

2015), sentiment analysis (Kim, 2014), and named entity recognition (Guo et al., 2014). Interpreting the

dimensions of the vector space—which can provide insights in tasks that require semantic interpretation

(e.g., named entity recognition)—is challenging because these vectors are usually dense.

One common approach to make embeddings more interpretable is to learn sparse vectors, where each

word has a small number of active dimensions. Murphy et al. (2012) use non-negative matrix factorization,
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Faruqui and Dyer (2015) use pre-constructed linguistic resources such as WordNet (Miller, 1995), Faruqui

et al. (2015) use sparse coding, and Subramanian et al. (2017) use k−sparse autoencoders (Makhzani and

Frey, 2013) to induce sparse representations. Senel et al. (2017) take a different approach and propose a

method to capture the hidden semantic concept of vectors in word embedding models based on conceptual

categories (Vulić et al., 2017).

Topic models are another family of unsupervised models that are commonly used for exploratory

analysis of large document collections. By inducing thematic structure from large corpora and automatically

organizing documents based on their theme, these models help users wade through documents, understand

them, and find information of interest better and faster. As topic models are key to the methodologies

introduced in this thesis (Chapters 4 and 5), we now provide some preliminary background information on

them.

2.3 Topic Models: Unsupervised Exploratory Tools for Large-Scale Text Data

Topic models automatically induce structure from a data set of documents. Given a corpus and a

constant numberK—the number of topics—topic models output (1)K topics, where each topic k is defined

as a distribution over words (φk,w) and (2) a distribution over topics for each document d (θd,k). Topic

models are exemplified by Latent Dirichlet Allocation (Blei et al., 2003, LDA) and have been widely used for

different purposes such as information retrieval, visualization, statistical inference, multilingual modeling,

and linguistic understanding (Boyd-Graber et al., 2017).

Similar to many other unsupervised models, topic models are commonly used for exploratory pur-

poses such as understanding NIH-funded research (Talley et al., 2011) and historical trend of ideas in a

research field (Hall et al., 2008). Therefore, interpretability is of special interest. Each discovered topic is

usually interpreted by words with the highest marginal probability in the φ distribution. Figure 2.2 shows

an example of topics and their prominent words from the frequently used 20 Newsgroups data set (Lang,

2007). When the goal is to explore and understand large corpora, the induced set of topics guide people’s

exploration and help them discover thematic structure from the content of documents. Similar to any other

machine learning model, the evaluation of topic models should be done in the context of their intended goals
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hockey, game, 
sport, team, 

buffalo, columbia, 
andrew, play, 

games, canada

hardware, card, 
utexas, graphics, 
austin, microsoft, 
driver, version, 

computer, problem 

pitt, medical, 
health, food, 

disease, cancer, 
patients, medicine, 

gordon, doctor

Figure 2.2: Three out of nineteen topics discovered by LDA from the 20 Newsgroups corpus. Topics reveal
thematic structure from large-scale textual data and can be interpreted using their prominent words.

(i.e., users’ abilities in exploring and understanding large corpora) to ensure that humans can effectively trust

and use them. We now elaborate on the existing methods for evaluating topic models and measuring their

interpretability. While there are several variations and extensions of LDA such as supervised topic models

that jointly model document content and their associated metadata (e.g., labels or ratings) associated with

them (Mcauliffe and Blei, 2007; Zhu et al., 2012; Ramage et al., 2009; Nguyen et al., 2013, 2014b), in this

thesis we focus on LDA as a tool for exploring and understanding documents.

2.3.1 Evaluation

Traditionally, topic modeling evaluation has focused on perplexity, which measures how well a

model can predict words in unseen documents (Wallach et al., 2009). However, perplexity is not in line

with the goal of users in scenarios that topic models are used for exploratory purposes. In these cases,

comprehensibility is more important than predictive power. Therefore, topic-level interpretability, i.e.,

interpretability of the inferred hidden structure, is of interest. One usually cares about how good the top-

ics capture the thematic structure of the corpus, rather than their predictive power. This is related to the

prediction-explanation dilemma discussed in Chapter 1.

Word intrusion—a task-based evaluation method—is commonly used to evaluate topic models based

on their topic-level interpretability (Chang et al., 2009). The idea is that if a topic is interpretable and

semantically coherent, humans should be able to easily find the intruder word, which is a randomly selected

word. For example, when humans are shown words metropolitan, carrier, rail, agriculture, freight, passen-

ger, they will be able to detect agriculture as the intruder because the combination of other words construct
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an interpretable topic, which is generally about “transportation”. Followed by this work, Lau et al. (2014)

show that topic coherence (Newman et al., 2010)—an automatic way of measuring topic interpretability—

correlates with what humans consider more or less interpretable. To calculate topic coherence, the co-

occurrence probabilities of top-N topic words are looked up in a reference corpus (e.g., Wikipedia). Then,

topic coherence C is calculated based on pairwise normalized point-wise mutual information between topic

words:

C =

N∑
j=2

j−1∑
i=1

log P (wj ,wi)
P (wi)P (wj)

−logP (wi, wj)
, (2.1)

where P (wj , wi) is the probability of observing both wi and wj in a reference document, and P (wi) and

P (wj) are the probabilities of observing wi and wj in a reference document, respectively. While several

extensions of the discussed coherence score have been proposed (Morstatter and Liu, 2016; Ramrakhiyani

et al., 2017), in this thesis, we use Equation 2.1 to calculate topic coherence.

A common challenge with using topic models in practice is creating a list of stop words, i.e., words

that are extremely common. Stop words provide little value in helping users understand the semantics of

the topics and thus lead to lower levels of interpretability and coherence scores. For example, words such as

bill, session, and committee appear in almost every congressional bill and provide no help in understanding

the content of the bills. To prevent the degradation in interpretability of topics, these words are usually

excluded from the vocabulary. We use term frequency - inverse document frequency (TF-IDF) scores to

hand-filter words based on their semantic content in the corpus domain and generate corpus-specific stop

words. The TF-IDF score increases proportionally to the number of times a word w appears in the document

d and decreases proportionally to the number of documents it appears in. Intuitively, the TF-IDF score is

higher for a word that appears frequently in only a few documents:1

TF-IDF(w, d,D) = TF(w, d).IDF(w,D), (2.2)

whereD is the document collection, TF(w, d) is the number of timesw appears in document d and IDF(w,D)

is the inverse frequency of documents in the collection that w appears in:

IDF(w,D) =
|D|

|d ∈ D : w ∈ d|
. (2.3)

1We calculate the average TF-IDF over all documents in the corpus to find stop words.
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Like any clustering algorithm, setting the number of topics, K, is a challenge in topic modeling. Low

numbers of K usually lead to topics that are general and high numbers of K usually lead to overly specific

topics. Both of these cases lead to degradation in interpretability. In this thesis, since we are interested

in using topic models for exploratory purposes and thus we are interested in maximizing interpretability,

we set K based on the coherence metric described above. We calculate the average topic coherence in a

pre-defined range for K and select the K value that leads to the maximum mean coherence score.

2.4 Visualization of Unsupervised Models

As unsupervised models are often used to understand large data sets and get insights, effective visu-

alization of these models is of special interest. This section reviews some of the existing work in visualizing

unsupervised models.

Unsupervised models commonly operate on high-dimensional vector representation of data. Several

existing work focus on visualizing high-dimensional data representations using graphs (Di Battista et al.,

1994) or pixel-based techniques (Keim, 2000). Dimensionality reduction methods such as Principal Com-

ponent Analysis (Hotelling, 1933, PCA) and Maximum Variance Unfolding (Weinberger et al., 2004, MVU)

make these visualizations more interpretable. A more recently proposed and widely used visualization

technique for high-dimensional data (e.g., word embeddings) is t-Distributed Stochastic Neighbor Embed-

ding (Maaten and Hinton, 2008, t-SNE), which visualizes the similarity between data and reveals important

global structure such as clusters.

The visualization of topic models has also gained attention. Some of the existing work in the visu-

alization of topic models focuses on visualizing individual topics. While the simplest and most commonly

used visualization of topics is in the form of list of word that are ordered based on the marginal prob-

ability of each word in a topic, other visualization techniques such as word clouds and network graphs

exist (Smith et al., 2014). Furthermore, image labels (Aletras and Stevenson, 2014) and textual labels (Mei

et al., 2007; Magatti et al., 2009; Lau et al., 2010, 2011; Hulpus et al., 2013; Aletras and Stevenson, 2014;

Wan and Wang, 2016) provide more compact representations, which explicitly identify the semantics of top-

ics. Though compact, textual labels have been shown to be as effective as word lists in a document retrieval
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task (Aletras et al., 2014).

In Chapter 4, we compare the automatically generated document labels using the graph-based ap-

proach proposed by Aletras and Stevenson (2014) to the labels generated by humans. This method builds on

the common approach to generate textual labels for topics, which is to find an article in a reference corpus

(e.g., Wikipedia), that is the most representative of topic words. To find Wikipedia articles that are repre-

sentative of topic words, Wikipedia is queried with top twenty words in each topic. The titles of retrieved

Wikipedia articles are then treated as candidate labels. More candidate labels are generated by finding

noun-chunks and n-grams in the noun-chunks that are Wikipedia articles themselves. Next, topic words

are used to query a search engine and retrieve related articles. The words in the titles of these articles are

nodes in a graph. The edges are created based on the word co-occurrences in the retrieved articles. Next,

the PAGERANK algorithm (Page et al., 1999) is used to rank the nodes (word types). Each candidate label

is then scored according to the score of its tokens and the label with the highest score is chosen as the topic

label.

There are several tools that provide an overview of large corpora through the entirety of topic models.

The topic browser (Gardner et al., 2010), TopicViz (Eisenstein et al., 2012), and the topic model visualization

engine (Chaney and Blei, 2012) are examples of interactive tools that enable users to explore large corpora

via topics and their associated documents. In these interactive tools, topics are a protocol to find documents

of interest from the large corpus. More elaborate tools provide additional information from the topic model.

For example, LDAVis (Sievert and Shirley, 2014) provides information about the relationship between topics

and Soo Yi et al. (2005) use a dust-and-magnet visualization to show the forces of each topic on documents.

While there have been studies to understand whether people interpret particular visualizations of

individual topics better than others (Aletras et al., 2014; Smith et al., 2017),2 there has been no systematic

study to find out whether the existing topic model based tools actually help users navigate through document
2This work, in collaboration with Alison Smith, Tak Yeon Lee, Jordan Boyd-Graber, Kevin Seppi, Niklas Elmqvist, and

Leah Findlater, examines the interpretability of various topic visualizations techniques. I contributed by generating interpretable

automatic textual labels for individual topics. This work was published in Transactions of the Association for Computational

Linguistics (TACL), 2017.
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collections, understand documents, and complete a task with their help. In Chapters 4 and 5, we design a

similar interface and conduct a human-the-loop study to understand the effect of topics on users’ abilities in

understanding large corpora, labeling documents, and completing a task.

2.5 Summary

In this chapter, we summarized existing work on interpretability of supervised models and unsuper-

vised models. Additionally, we reviewed the fundamentals of topic models, the evaluation methods that

are inspired by interpretability rather than predictive power, and the existing tools that exploit them to help

users get insights on large textual data sets. In the following chapter, we study interpretability of supervised

models with humans in the loop. We introduce an experimental and task-driven approach to bring humans

in the loop, expose them to a supervised machine learning model and its predictions, and ask them to com-

plete a predictive task with the help of the model. This framework helps us understand and quantify the

interpretability of a supervised regression model.



Chapter 3

Manipulating and Measuring Model Interpretability1

Despite the flurry of activity and innovation in developing “interpretable” machine learning methods

that humans can interact with, understand and debug, and make informed decisions with (Chapter 2), there

is still no consensus about how to define, quantify, or measure the interpretability of a machine learning

model (Doshi-Velez and Kim, 2017). Indeed, different notions of interpretability, such as simulatability,

trustworthiness, and simplicity, are often conflated (Lipton, 2016). This problem is exacerbated because

different users of machine learning systems have different needs in different scenarios. For example, visu-

alizations or explanations of interest for a regulator who wants to understand why a particular person was

denied a loan may be different from the interests of a data scientist who tries to debug a machine learning

model.

The difficulty of defining interpretability stems from the fact that interpretability is not something

that can be directly manipulated or measured. Rather, interpretability is a latent property that can be in-

fluenced by different manipulable factors such as the number of features, the complexity of the model, the

transparency of the model, or even the user interface. People’s behavior such as their ability to simulate,

trust, or debug the model depends on these manipulable factors. Different factors may influence people’s

behavior and abilities in different ways. As such, we argue that to understand interpretability, it is necessary

to directly manipulate these factors and measure their influence on real people’s abilities in successfully
1An earlier version of this chapter was published as: Forough Poursabzi-Sangdeh, Daniel G. Goldstein, Jake

M. Hofman, Jennifer Wortman Vaughan, Hanna M. Wallach. Manipulating and measuring model interpretability.

In NIPS workshop on Transparent and Interpretable Machine Learning in Safety Critical Environments, 2017 (Poursabzi-Sangdeh

et al., 2017). The updated version is in submission.
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completing tasks.

The endeavor to understand the effect of different manipulable factors on people’s behavior and abil-

ities goes beyond the realm of typical machine learning research. While the factors that influence inter-

pretability are properties of the system design, the outcomes that we would ultimately like to measure are

properties of human behavior. Because of this, building interpretable machine learning models is not a

purely computational problem. In other words, what is or is not “interpretable” is defined by people, not

algorithms. We therefore take an interdisciplinary approach, building on decades of psychology and social

science research on human trust in models (e.g., Önkal et al., 2009; Dietvorst et al., 2015; Logg, 2017). The

general approach used in this literature is to run randomized human-subject experiments in order to iso-

late and measure the influence of different manipulable factors on trust. Our goal is to apply this approach

in order to understand interpretability—i.e., the relationships between properties of the system design and

properties of human behavior.

We present a sequence of large-scale randomized human-subject experiments, in which we vary fac-

tors that are thought to make models more or less interpretable (Glass et al., 2008; Lipton, 2016) and measure

how these changes affect people’s decision making. We focus on two factors that are often assumed to in-

fluence interpretability, but rarely studied formally: the number of features and the model transparency, i.e.,

whether the model internals are clear or black-box. A clear model has a completely transparent internals

and users can see how, exactly, the model makes its predictions on any input. On the other hand, the internals

of a black-box model is completely hidden from users.

We focus on laypeople as opposed to domain experts, and ask which factors help them simulate a

model’s predictions, gain trust in a model, and understand when a model will make mistakes. While others

have used human-subject experiments to validate or evaluate particular machine learning innovations in the

context of interpretability (e.g., Ribeiro et al., 2016; Lim et al., 2009), we attempt to isolate and measure the

influence of different factors on human behavior in a sequence of large-scale and crowdsourced experiments.

In each of our experiments, which were pre-registered to avoid pitfalls raised by the “replication

crisis” (Goldacre, 2016), participants are asked to predict the prices of apartments with the help of a machine
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learning model.2 Each apartment is represented in terms of eight features: number of bedrooms, number

of bathrooms, square footage, total rooms, days on the market, maintenance fee, distance from the subway,

and distance from a school. All participants see the same set of apartments (i.e., the same feature values)

and, crucially, the same model prediction for each apartment, which comes from a linear regression model.

What varies between the experimental conditions is only the presentation of the model. As a result, any

observed differences in the participants’ behavior between the conditions can be attributed entirely to the

model presentation.

We run three experiments: in the first experiment, we ask participants to predict the prices of apart-

ments in a single neighborhood in New York City. The second experiment examines the effect of high prices

of New York City apartments on participants’ behavior in our first experiment. Finally, the third experiment

measures an alternative metric for trust.

In our first experiment (Section 3.1), where participants are asked to predict the prices of apartments

in a single neighborhood in New York City, we hypothesize that participants who are shown a clear model

with a small number of features will be better able to simulate the model’s predictions and more likely to

trust (and thus follow) the model’s predictions. We also hypothesize that participants in different conditions

will exhibit varying abilities to correct the model’s inaccurate predictions on unusual examples. As pre-

dicted, participants who are shown a clear model with a small number of features are better able to simulate

the model’s predictions; however, they are not more likely to trust the model’s predictions. Additionally,

participants who are shown a clear model are less able to correct inaccurate predictions.

In our second experiment (Section 3.2), we scale down the apartment prices and maintenance fees to

match median housing prices in the U.S. in order to determine whether the findings from our first experiment

were merely an artifact of New York City’s high prices. Even with scaled-down prices and fees, the findings

from our first experiment replicate.

In our third experiment (Section 3.3), we dig deeper into our finding that there is no difference in

trust between the conditions. To make sure that this finding is not simply due to our measures of trust, we
2We choose real estate as a domain that would be familiar to participants, at least at a basic level (e.g., they should understand

what the features mean).
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instead use the weight of advice measure frequently used in the literature on advice-taking (Yaniv, 2004;

Gino and Moore, 2007) and subsequently used in the context of algorithmic predictions by Logg (2017).

We hypothesize that participants will give greater weight to the predictions of a clear model with a small

number of features than the predictions of a black-box model with a large number of features, and update

their own predictions accordingly. We also hypothesize that participants’ behavior may differ if they are

told that the predictions are made by a “human expert” instead of a black-box model with a large number

of features. Even with the weight of advice measure, there is no difference in trust between the conditions.

There is also no difference in the participants’ behavior when they are told that the predictions are made by

a human expert.

We view these experiments as a first step toward a larger agenda aimed at quantifying and measuring

the impact of different manipulable factors that influence interpretability.

3.1 Experiment 1: Predicting Apartment Prices

Our first experiment is designed to measure the influence of the number of features and the model

transparency on three properties of human behavior that are commonly associated with interpretability:

laypeople’s abilities to simulate a model’s predictions, gain trust in a model, and understand when a model

will make mistakes. Before running the experiment, we posited and pre-registered three hypotheses:3

H1. Simulation. A clear model with a small number of features will be easiest for participants to

simulate.

H2. Trust. Participants will be more likely to trust (and thus follow) the predictions of a clear model

with a small number of features than the predictions of a black-box model with a large number of

features.

H3. Detection of mistakes. Participants in different conditions will exhibit varying abilities to correct

the model’s inaccurate predictions on unusual examples.
3Pre-registered hypotheses are available at https://aspredicted.org/xy5s6.pdf.

https://aspredicted.org/xy5s6.pdf
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(a) Clear, two-feature condition (CLEAR-2). (b) Black-box, two-feature condition (BB-2).

(c) Clear, eight-feature condition (CLEAR-8). (d) Black-box, eight-feature condition (BB-8).

Figure 3.1: The four primary experimental conditions. In the conditions on top, the model uses two features;
on the bottom, it uses eight. In the conditions on the left, participants see the model internals; on the right,
they are presented with the model as a black box. Crucially, participants in all conditions are shown the same
apartment properties and the same model predictions. Therefore, any difference in participants’ behavior
can be attributed to the number of features that the model uses and whether the model is clear or black-box.

For unusual examples, we intentionally did not pre-register any hypotheses about which conditions would

make participants more or less able to correct inaccurate predictions. On the one hand, if a participant

understands the model better, she may be better equipped to correct examples on which the model makes

mistakes. On the other hand, a participant may place greater trust in a model she understands well, leading

her to closely follow its predictions.

Prediction error. Finally, we pre-registered our intent to analyze participants’ prediction error in

each condition, but intentionally did not pre-register any directional hypotheses.
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3.1.1 Experimental Design

As explained in the previous section, we ask participants to predict apartment prices with the help of a

machine learning model. We show all participants the same set of apartments and the same model prediction

for each apartment. What varies between the experimental conditions is only the presentation of the model.

We consider four primary experimental conditions in a 2× 2 design:

• Some participants see a model that uses only two features (number of bathrooms and square

footage—the two most predictive features, CLEAR-2 and BB-2), while some see a model that uses

all eight features (CLEAR-8 and BB-8). (All eight feature values are visible to participants in all

conditions.)

• Some participants see the model internals (i.e., a linear regression model with visible coefficients,

CLEAR-2 and CLEAR-8), while some are presented with the model as a black box (BB-2 and BB-8).

Screenshots from each of the four primary experimental conditions are shown in Figure 3.1. We

additionally consider a baseline condition in which there is no model available.

We run the experiment on Amazon Mechanical Turk using psiTurk (Gureckis et al., 2016), an open-

source platform for designing online experiments. The experiment was IRB-approved. We recruit 1,250

participants, all located in the U.S., with Mechanical Turk approval ratings greater than 97%. We randomly

assign participants to the five conditions (CLEAR-2, n = 248 participants; CLEAR-8, n = 247; BB-2,

n = 247; BB-8, n = 256; and NO-MODEL, n = 252).4 Each participant received a flat payment of $2.50.5

Participants were first shown detailed instructions, including, in the clear conditions, a simple En-

glish description of the corresponding two- or eight-feature linear regression model (Appendix A.1), before

proceeding with the experiment in two phases. In the training phase, participants were shown ten apart-

ments in a random order. In the four primary experimental conditions, participants were shown the model’s
4We do not screen for familiarity with the domain and we do not detect and filter out any outliers; randomization across our

large sample of participants ensures that participants’ levels of familiarity are similarly distributed across conditions.
5We estimated the total time that workers would spend on the task based on our pilot studies and determined the payments for

all experiments to match an hourly minimum wage of ten dollars.
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(a) Testing phase - step 1 (b) Testing phase - step 2

(c) Testing phase - step 3 (d) Testing phase - baseline

Figure 3.2: The testing phase in the first experiment: (a) participants are asked to guess the model’s predic-
tion and state their confidence (step 1), (b) participants are asked to state their confidence in the model (step
2), (c) participants are asked to make their own prediction and state their confidence (step 3), and (d) in the
baseline condition, participants are asked to predict the price and indicate their confidence.

prediction of each apartment’s price, asked to make their own prediction, and then shown the apartment’s

actual price. In the baseline condition, participants were asked to predict the price of each apartment and

then shown the actual price. In the testing phase, participants were shown another twelve apartments. The

order of the first ten was randomized, while the remaining two always appeared last, for reasons described

below. In the four primary experimental conditions, participants were asked to guess what the model would

predict for each apartment (i.e., simulate the model) and to indicate how confident they were in this guess

on a five-point scale (Figure 3.2a). They were then shown the model’s prediction and asked to indicate how

confident they were that the model was correct (Figure 3.2b). Finally, they were asked to make their own
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Feature Actual Coefficient Rounded Coefficient

#Bedrooms 89030.82 90,000
#Bathrooms 353252.43 350,000

#Square footage 997.76 1000
Total rooms -25816.23 -25,000

Days on the market -193.79 -200
Maintenance fee ($) -111.87 -110

Subway distance (miles) 85437.63 100,000
School distance (miles) 71775.32 100,000

Intercept -259615.78 -260,000

Table 3.1: The actual regression coefficients and the rounded coefficients that are used in our experiments.

prediction of the apartment’s price and to indicate how confident they were in this prediction (Figure 3.2c).

In the baseline condition, participants were asked to predict the price of each apartment and to indicate their

confidence (Figure 3.2d).

The apartments shown to participants are selected from a data set of actual Upper West Side apart-

ments taken from StreetEasy,6 a popular and reliable New York City real estate website, between 2013 and

2015. To create the models for the four primary experimental conditions, we first train a two-feature linear

regression model on our data set using ordinary least squares with Python’s scikit-learn library (Pedregosa

et al., 2011), rounding coefficients to “nice” numbers within a safe range.7 To keep the models as similar as

possible, we fix the coefficients for number of bathrooms and square footage and the intercept of the eight-

feature model to match those of the two-feature model, and then train a linear regression model with the

remaining six features, following the same rounding procedure to obtain “nice” numbers. The coefficients

are shown in Table 3.1. When presenting the model predictions to participants, we round predictions to the

nearest $100,000.

To enable comparisons across experimental conditions, the ten apartments used in the training phase

and the first ten apartments used in the testing phase are selected from those apartments in our data set

for which the rounded predictions of the two- and eight-feature models agree and chosen to cover a wide

range of deviations between the models’ predictions and the apartments’ actual prices. By selecting only
6https://streeteasy.com/
7In particular, for each coefficient, we find a value that is divisible by the largest possible exponent of ten and is in the safe

range, which is the coefficient value plus or minus stderr/4.

https://streeteasy.com/
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apartments for which the two- and eight-feature models agree, we are able to ensure that what varies between

the experimental conditions is only the presentation of the model. As a result, any observed differences in

the participants’ behavior between the conditions can be attributed entirely to the model presentation.

The last two apartments used in the testing phase are chosen to test our third hypothesis—i.e., that

participants in different conditions will exhibit varying abilities to correct the model’s inaccurate predictions

on unusual examples. To test this hypothesis, we would ideally use an apartment with strange or misleading

features that causes the two- and eight-feature models to make the same bad prediction. Unfortunately, there

is no such apartment in our data set, so we choose two examples to test different aspects of our hypothesis.

Both of these examples exploit the models’ large coefficient ($350,000) for number of bathrooms. The first

(apartment 11) is a one-bedroom, two-bathroom apartment from our data set for which both models make

high, but different, predictions. Comparisons between the two- and eight- feature conditions are therefore

impossible, but we can examine differences in accuracy between the clear and black-box conditions. The

second (apartment 12) is a synthetically generated one-bedroom, three-bathroom apartment for which both

models make the same (high) prediction, allowing comparisons between all conditions, but ruling out ac-

curacy comparisons since there is no ground truth. These apartments are always shown last to avoid the

previously studied phenomenon in which people trust a model less after seeing it make a mistake (Dietvorst

et al., 2015).

3.1.2 Results

Having run our experiment, we compare participants’ behavior across the conditions. We compare

multiple responses from multiple participants, which is complicated by possible correlations among any

given participant’s responses. For example, some people might consistently overestimate apartment prices

regardless of the condition they are assigned to, while others might consistently provide underestimates.

We address this by fitting a mixed-effects model for each measure of interest to capture differences across

conditions while controlling for participant-level effects—a standard approach for analyzing repeated mea-

sures experimental designs (Bates et al., 2015). We derive all plots and statistical tests from these models;

plots show averages with one standard error by condition from the fitted models, and statistical tests report
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degrees of freedom, test statistics, and p-values under the models.8 Unless otherwise noted, all plots and

statistical tests correspond to just the first ten apartments from the testing phase.

H1. Simulation. We define a participant’s simulation error to be the absolute deviation between the

model’s prediction, m, and the participant’s guess for that prediction, um—that is, |m− um|.9 Figure 3.3a

shows the mean simulation error in the testing phase. As hypothesized, participants in the CLEAR-2 con-

dition have lower simulation error, on average, than participants in the other conditions (t(996) = 11.91,

p < .001 for the contrast of CLEAR-2 with the other three primary conditions). On average, participants

in this condition have some understanding of how the model works. Participants in the CLEAR-8 condition

appear to have higher simulation error, on average, than participants in the BB-8 condition who could not

see the model’s internals (t(996) = 3.00, p = .002 for the contrast of CLEAR-8 with BB-8), though we note

that this comparison is not one we pre-registered and could be due to chance.

H2. Trust. To measure trust, we calculate the absolute deviation between the model’s prediction,

m, and the participant’s prediction of the apartment’s price, ua—that is, |m− ua|: if a participant trusts

the model to a good degree, she should follow the model in making her own prediction of the price; a

smaller value indicates higher trust.10 Figure 3.3b shows that contrary to our second hypothesis, there is

no significant difference in participants’ deviation from the model between CLEAR-2 and BB-8. (There are

statistically but not practically significant differences in participants’ self-reported confidence in the models’

predictions.)

H3. Detection of mistakes. We use the last two apartments in the testing phase (apartment 11 and

apartment 12) to test our third hypothesis. The models make erroneously high predictions on these examples.

For both apartments, participants in the four primary experimental conditions overestimate the apartments’

prices, compared to participants in the baseline condition (Figures 3.5a and 3.5b). We suspect that this is due
8We follow standard notation, where, e.g., the result of a t-test with n degrees of freedom is reported as t(n) = x, p = y,

where x is the value of the test statistic and y is the corresponding p-value.
9Relative deviation between the model’s prediction and the participant’s guess for that prediction (|m− um|/m) leads to

similar trends in all experiments.
10Relative deviation between the model’s prediction and the participant’s prediction of the apartment’s price (|m− ua|/m)

leads to similar trends in all experiments.
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Experiment 1: Simulation error
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Experiment 1: Prediction error

CLEAR−2 CLEAR−8 BB−2 BB−8 NO−MODEL
$0k

$100k

$200k

$300k

M
ea

n 
pr

ed
ic

tio
n 

er
ro

r

(c)

Figure 3.3: Results from our first experiment: (a) mean simulation error, (b) mean deviation of participants’
predictions from the model’s prediction (a smaller value indicates higher trust), and (c) mean prediction
error. Error bars indicate one standard error. While participants in the CLEAR-2 condition are better able
to simulate the model’s predictions, there is no significant difference across the four primary conditions in
terms of participants’ trust in the model (in terms of deviation from the model) and their final prediction
error.

to an anchoring effect around the models’ predictions. For apartment 11, there is no significant difference in

participants’ deviation from the model’s prediction between the four primary conditions (Figure 3.4a). For

apartment 12, there is a significant difference between the clear and black-box conditions (t(996) = 2.96,

p = .003 for the contrast of CLEAR-2 and CLEAR-8 with BB-2 and BB-8). In particular, participants in

the clear conditions deviate from the model’s prediction less, on average, than participants in the black-

box conditions, resulting in even worse final predictions of the apartment’s price (Figure 3.4b). This result

contradicts the common intuition that transparency enables users to understand when a model will make

mistakes.

Prediction error. We define prediction error to be the absolute deviation between the apartment’s

actual price, a, and the participant’s prediction of the apartment’s price, ua—that is, |a− ua|.11 There is no

significant difference between the four primary experimental conditions (Figure 3.3c). However, participants

in the baseline condition have significantly higher error than participants in the four primary conditions

(t(1248) = 15.27, p < .001 for the contrast of the baseline with the four primary conditions).

Summary. As predicted, participants who are shown a clear model with a small number of features
11Relative deviation between the apartment’s actual price and the participant’s prediction of the apartment’s price (|a− ua|/a)

leads to similar trends in all experiments.
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Experiment 1: Deviation in apartment 11
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Experiment 1: Deviation in apartment 12
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Experiment 2: Deviation in apartment 11
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Experiment 2: Deviation in apartment 12
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Figure 3.4: Mean deviation from the model for apartments 11 and 12 in our first experiment (top) and in
our second experiment (bottom). Error bars indicate one standard error. In both experiments, contrary to
intuition, participants who are shown a clear model are less able to correct inaccurate predictions of the
model on unusual examples. (Note that for apartment 11, comparisons between the two- and eight-feature
conditions are not possible because the models make different predictions.)

are better able to simulate the model’s predictions; however, they are not more likely to trust the model’s

predictions, as indicated by the deviation of their own prediction from the model’s prediction. Additionally,

contrary to intuition, participants who are shown a clear model are less able to correct inaccurate predictions.

Finally, there is no difference in prediction error between the four primary experimental conditions, though

participants who have the help of a model are more accurate than those in the baseline condition who do

not.
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Figure 3.5: The distribution of participants’ final predictions for apartments 11 and 12 in our first experiment
(top) and in our second experiment (bottom). Participants in the four primary conditions overestimate the
apartment prices compared to the participants in the baseline condition. We suspect that this is due to an
anchoring effect around the models’ predictions.
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3.2 Experiment 2: Scaled-Down Prices

One potential explanation for participants’ equal trust in the model across conditions may be their

lack of familiarity with New York City’s unusually high apartment prices. For example, if a participant finds

Upper West Side prices to be unreasonably high, she may not pay attention to how the model works, even

when the model is presented as a clear model. Our second experiment is designed to address this issue by

replicating our first experiment with apartment prices and maintenance fees scaled down to match median

housing prices in the U.S. Before running this experiment we pre-registered three hypotheses.12 The first two

hypotheses (H4 and H5) are identical to H1 and H2 from our first experiment. We make the third hypothesis

more precise than H3 to reflect the results of our first experiment and a small pilot with scaled-down prices:

H6. Detection of mistakes. Participants will be less likely to correct inaccurate predictions on unusual

examples of a clear model compared to a black-box model.

3.2.1 Experimental Design

We first scale down the apartment prices and maintenance fees13 from our first experiment by a factor

of ten. To account for this change, we also scale down all regression coefficients (except for the coefficient

for maintenance fee) by a factor of ten. Apart from the description of the neighborhood from which the

apartments are selected in the task instructions, the experimental design is unchanged. We again run the

experiment on Amazon Mechanical Turk. We exclude people who participated in our first experiment,

and recruit 750 new participants all of whom satisfy the selection criteria from our first experiment. The

participants are randomly assigned to the five conditions (CLEAR-2, n = 150; CLEAR-8, n = 150; BB-2,

n = 147; BB-8, n = 151; and NO-MODEL, n = 152). Each participant received a flat payment of $2.50.

3.2.2 Results

H4. Simulation. As hypothesized, and shown in Figure 3.6a, participants in the CLEAR-2 condition

have significantly lower simulation error, on average, than participants in the other conditions (t(596) =

12Pre-registered hypotheses are available at https://aspredicted.org/3bv8i.pdf.
13Maintenance fee is a feature of apartments, which is in terms of dollar amounts.

https://aspredicted.org/3bv8i.pdf
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Experiment 2: Simulation error
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Figure 3.6: Results from our second experiment: (a) mean simulation error, (b) mean deviation of par-
ticipants’ predictions from the model’s predictions (a smaller value indicates higher trust), and (c) mean
prediction error. Error bars indicate one standard error. Similar to the first experiment, participants in
the CLEAR-2 condition are better able to simulate the model’s predictions. Participants trust the CLEAR-2
model and the BB-8 model equally (in terms of deviation from the model). Additionally, participants in the
CLEAR-2 condition have statistically but not practically significantly lower prediction error.

10.28, p < .001 for the contrast of CLEAR-2 with the other three primary conditions). This is in line with

the results for H1 in our first experiment.

H5. Trust. Contrary to our second hypothesis, and in line with the results from our first experi-

ment, there is no significant difference in participants’ trust, as indicated by their deviation from the model,

between CLEAR-2 and BB-8 (Figure 3.6b).

H6. Detection of mistakes. In line with the results from our first experiment, there is no significant

difference in participants’ deviation from the model’s prediction between the four primary conditions for

apartment 11 (Figure 3.4c). Similar to the first experiment, we observe an anchoring effect around the

models’ predictions (Figures 3.5c and 3.5d). As hypothesized, and in line with the results from our first

experiment, participants in the clear conditions deviate from the model’s prediction less, on average, than

participants in the black-box conditions for apartment 12, resulting in even worse final predictions of the

apartment’s price (Figure 3.4d). These results suggest that New York City’s unusually high apartment prices

do not explain equal trust in models across conditions and participants’ poor abilities to correct inaccurate

predictions.

Prediction error. Participants in the CLEAR-2 condition have statistically but not practically (<

$3,000) significantly lower prediction error (t(596) = 3.17, p = .001 for the contrast of CLEAR-2 with the
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other three primary conditions).

Summary. This experiment confirms our results from the first experiment. Again, participants who

are shown a clear model with a small number of features are better able to simulate the model’s predictions,

though they are not more likely to trust the model’s predictions, as measured by the deviation of their own

prediction from the model’s prediction. Additionally, participants who are shown a clear model are less able

to correct inaccurate predictions. In the next section, we dig deeper into trust and design an experiment to

measure an alternative metric for trust.

3.3 Experiment 3: Alternative Measure of Trust

The results from our first two experiments demonstrate that participants are no more likely to trust the

predictions of a clear model with a small number of features than the predictions of a black-box model with a

large number of features, as indicated by the deviation of their own predictions from the model’s prediction.

However, perhaps another measure of trust would reveal differences between the conditions. In this section,

we therefore present our third experiment, which is designed to allow us to compare participants’ trust across

the conditions using an alternative measure of trust: the weight of advice measure frequently used in the

literature on advice-taking (Yaniv, 2004; Gino and Moore, 2007; Logg, 2017).

Weight of advice quantifies the degree to which people update their beliefs (e.g., predictions made

before seeing the model’s predictions) toward advice they are given (e.g., the model’s predictions). In the

context of our experiment, it is defined as |u2 − u1| / |m− u1|, where m is the model’s prediction, u1 is

the participant’s initial prediction of the apartment’s price before seeing m, and u2 is the participant’s final

prediction of the apartment’s price after seeingm. It is equal to 1 if the participant’s final prediction matches

the model’s prediction and equal to 0.5 if the participant averages their initial prediction and the model’s

prediction.

To understand the benefits of comparing weight of advice across the conditions, consider the scenario

in which u2 is close to m. There are different reasons why this might happen. On the one hand, it could be

the case that u1 was far from m and the participant made a significant update to their initial prediction based

on the model. On the other hand, it could be the case that u1 was already close to m and the participant
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did not update her prediction at all. These two scenarios are indistinguishable in terms of the participant’s

deviation from the model’s prediction. In contrast, weight of advice would be high in the first case and low

in the second.

We additionally use this experiment as a chance to see whether participants’ behavior would differ if

they are told that the predictions are made by a “human expert” instead of a model. Previous studies have

examined this question from different perspectives with differing results (e.g., Önkal et al., 2009; Dietvorst

et al., 2015). Most closely related to our experiment, Logg (2017) find that when people are presented with

predictions from either an algorithm or a human expert, they update their own predictions toward predictions

from an algorithm more than they do toward predictions from a human expert in a variety of domains. We

are interested to see whether this finding replicates.

We pre-registered four hypotheses:14

H7. Trust (deviation). Participants’ predictions will deviate less from the predictions of a clear model

with a small number of features than the predictions of a black-box model with a large number of

features.

H8. Trust (weight of advice). Weight of advice will be higher for participants who see a clear model

with a small number of features than for those who see a black-box model with a large number of

features.

H9. Humans vs. machines. Participants will trust a human expert and a black-box model to differing

extents. As a result, their deviation from the model’s predictions and their weight of advice will

also differ.

H10. Detection of mistakes. Participants in different conditions will exhibit varying abilities to correct

the model’s inaccurate predictions on unusual examples.

The first two hypotheses are variations on H2 from our first experiment, while the last hypothesis is

identical to H3.
14Pre-registered hypotheses are available at https://aspredicted.org/795du.pdf.

https://aspredicted.org/795du.pdf
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3.3.1 Experimental Design

We consider the same four primary experimental conditions as in the first two experiments plus a

new condition, EXPERT, in which participants see the same information as in BB-8, but with the black-box

model labeled as “Human Expert” instead of “Model.” We do not include a baseline condition because the

most natural baseline would be to simply ask participants to predict apartment prices (i.e., the first step of

the testing phase described below).

We again run the experiment on Amazon Mechanical Turk. We exclude people who participated in

our first two experiments, and recruit 1,000 new participants all of whom satisfy the selection criteria from

our first two experiments. The participants are randomly assigned to the five conditions (CLEAR-2, n = 202;

CLEAR-8, n = 200; BB-2, n = 202; BB-8, n = 198; and EXPERT, n = 197).15 Each participant received a

flat payment of $1.50.

We ask participants to predict apartment prices for the same set of apartments used in the first two

experiments. However, in order to calculate weight of advice, we modify the experiment design so that

participants are asked for two predictions for each apartment during the testing phase: an initial prediction

before being shown the model’s prediction and a final prediction after being shown the model’s prediction.

To ensure that participants’ initial predictions are the same across the conditions, we ask for their initial

predictions for all twelve apartments before introducing them to the model or human expert and before

informing them that they would be able to update their predictions. This design has the added benefit of

potentially reducing the amount of anchoring on the model or expert’s predictions.

Participants were first shown detailed instructions (which intentionally did not include any informa-

tion about the corresponding model or human expert), before proceeding with the experiment in two phases.

In the (short) training phase, participants were shown three apartments, asked to predict each apartment’s

price, and shown the apartment’s actual price. The testing phase consisted of two steps. In the first step,

participants were shown another twelve apartments. The order of all twelve apartments was randomized.

Participants were asked to predict the price of each apartment. In the second step, participants were intro-
15 We excluded data from one participant who reported technical difficulties.
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duced to the model or human expert before revisiting the twelve apartments. As in the first two experiments,

the order of the first ten apartments was randomized, while the remaining two (apartments 11 and 12) always

appeared last. For each apartment, participants were first reminded of their initial prediction, then shown

the model or expert’s prediction, and then asked to make their final prediction of the apartment’s price.

3.3.2 Results

H7. Trust (deviation). Contrary to our first hypothesis, and in line with the results from our first two

experiments, there is no significant difference in participants’ deviation from the model between CLEAR-2

and BB-8 (Figure 3.7a).

H8. Trust (weight of advice). Weight of advice is not well defined when a participant’s initial

prediction matches the model’s prediction (i.e., u1 = m). For each condition, we therefore calculate the

mean weight of advice over all participant–apartment pairs for which the participant’s initial prediction does

not match the model’s prediction.16 This calculation can be viewed as calculating the mean conditioned on

there being initial disagreement between the participant and the model. Contrary to our second hypothesis,

and in line with the results for the measures of trust in our first two experiments, there is no significant

difference in participants’ weight of advice between the CLEAR-2 and BB-8 conditions (Figure 3.7b).

H9. Humans vs. machines. Contrary to our third hypothesis, there is no significant difference in

participants’ trust, as indicated by either the deviation of their predictions from the model (Figure 3.7a) or

expert’s prediction or by their weight of advice (Figure 3.7b), between the BB-8 and EXPERT conditions.

H10. Detection of mistakes. In contrast to our first two experiments, there is no significant differ-

ence in participants’ abilities to correct inaccurate predictions of clear conditions compared to black-box

conditions.

Summary. This experiment confirms the results from our first two experiments regarding trust.

Again, participants are no more likely to trust the predictions of a clear model with a small number of

features than the predictions of a black-box model with a large number of features, this time as indicated

by their weight of advice as well as by the deviation of their own predictions from the model’s prediction.
16There is no significant difference in the fraction of times that participants’ initial predictions matched the model’s predictions.
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Experiment 3: Deviation
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Experiment 3: Prediction error
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Figure 3.7: Results from our third experiment: (a) mean deviation of participants’ predictions from the
model’s prediction (a smaller value indicates higher trust), (b) mean weight of advice, and (c) mean predic-
tion error. Error bars indicate one standard error. Participants trust the CLEAR-2 model and BB-8 model
equally (both in terms of deviation from the model and weight of advice). Additionally, participants trust
the BB-8 model and the human expert equally.

Additionally, participants are no more or less likely to trust a human expert than a black-box model. Finally,

in contrast to our first two experiments, participants in the clear conditions and black-box conditions are

equally able to correct inaccurate predictions on unusual examples.

3.4 Discussion and Future Work

3.4.1 Other Measures of Trust

In this chapter, we consider several ways of measuring trust: deviation of a participant’s prediction

from the model’s, self-reported confidence in the model, and weight of advice. Of course, this list is not

exclusive. Another potential measure of trust, also closely related to simulatability, is the extent to which a

user learns to mimic a model when making predictions.

In the process of designing the experiment described in Section 3.3, we considered an alternative

design in which for each apartment, a participant made a prediction of the apartment’s price, saw the model’s

prediction, and then updated their own prediction, all before moving onto the next apartment. While piloting

this design, participants began to change the way in which they made their initial predictions before seeing

the model. To test whether participants were in fact updating the way in which they initially made predictions

based on the model they observed, we ran a larger version of this study, hypothesizing that the participants’

initial predictions (before seeing the model) would deviate less from the model’s predictions in the CLEAR-2
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Other measure of trust: initial deviation
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Figure 3.8: Mean deviation of participants’ initial predictions from the model’s predictions. Participants
in the CLEAR-2 condition have a significantly lower deviation from the model than participants in other
conditions.

condition compared with the others.17 This was indeed the case (t(241) = −3.41, p < .001, Figure 3.8).

The general experimental approach that we introduce—i.e., presenting people with models that make

identical predictions but varying the presentation of these model in order to isolate and measure the impact

of different factors on people’s abilities to perform well-defined tasks—can be applied in a wide range of

different contexts and may lead to different conclusions in each. For example, instead of a linear regression

model, one could examine decision trees or rule lists in a classification setting. Or our experiments can

be repeated with participants who are domain experts, data scientists, or researchers in lieu of laypeople

recruited on Amazon Mechanical Turk. Likewise, there are many other scenarios to be explored such as de-

bugging a poorly performing model, assessing bias in a model’s predictions, or explaining why an individual

prediction was made. We hope that our work can serve as a useful template for examining the importance

of interpretability in these and other contexts.
17Pre-registered hypotheses are available at https://aspredicted.org/zi8yy.pdf.

https://aspredicted.org/zi8yy.pdf
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3.5 Summary

In this chapter, we investigated how two factors that are thought to influence a supervised model’s

interpretability—the number of features and the model transparency—impact laypeople’s abilities to simu-

late a model’s predictions, gain trust in a model, and understand when a model will make mistakes. Although

a clear model with a small number of features was easier for participants to simulate, there was no difference

in trust. Additionally, participants were less able to correct inaccurate predictions when they were shown

a clear model instead of a black box. Given these results, one should not take for granted that a “simple”

or “transparent” model always leads to higher trust. However, we caution readers against jumping to the

conclusion that interpretable models are not valuable. Our experiments focused on just one model, pre-

sented to one specific subpopulation, for only a subset of the scenarios in which interpretability might play

an important role. Instead, we see this work as the first of many steps towards a larger goal of rigorously

quantifying and measuring when and why interpretability matters.

The experiments in this chapter focused on the effect of interpretability on users behavior in a predic-

tive task, where users were asked to make prediction with the help of a supervised machine learning model.

In our experiments, the interactions that users had with the model was very limited. Existing work shows

that when people are given the ability to get involved in building and correcting algorithms, they tend to

trust them more (Hu et al., 2014; Hoque and Carenini, 2015; Fails and Olsen Jr, 2003). In the next chapter,

we design a framework that allows for richer interactions between humans and machines. We exploit inter-

pretable unsupervised models to enable users to interact with, build, and correct algorithms. We evaluate

our framework via experiments with humans in the loop.



Chapter 4

ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document

Labeling1

Many fields depend on texts labeled by human experts; computational linguistics uses such annota-

tion to determine word senses and sentiment (Kelly and Stone, 1975; Kim and Hovy, 2004); while social

science uses “coding” to scale up and systematize content analysis (Budge, 2001; Klingemann et al., 2006).

Classification takes these labeled data as a training set and labels new data automatically. Creating a broadly

applicable and consistent label set that generalizes well is time-consuming and difficult, requiring expensive

annotators to examine large swaths of the data. Effective NLP systems must measure (Hwa, 2004; Osborne

and Baldridge, 2004; Ngai and Yarowsky, 2000) and reduce annotation cost (Tomanek et al., 2007). Anno-

tation is hard because it requires both global and local knowledge of the entire data set. Global knowledge

is required to create the set of labels, and local knowledge is required to annotate the most useful documents

to serve as a training set for an automatic classifier.

We create a single interface—ALTO (Active Learning with Topic Overviews)—to address both global

and local challenges using two machine learning tools: topic models (Section 2.3) and active learning

(we will review active learning in Section 4.1.2). Topic models address the need for annotators to have a

global overview of the data, exposing the broad themes of the corpus so annotators know what labels to

create. Active learning selects documents that help the classifier understand the differences between labels

and directs the user’s attention to them locally.
1Parts of this chapter was published as: Forough Poursabzi-Sangdeh, Jordan Boyd-Graber, Leah Findlater, and

Kevin Seppi. Alto: active learning with topic overviews for speeding label induction and document labeling. In

Association for Computational Linguistics (ACL), 2016 (Poursabzi-Sangdeh et al., 2016).
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After reviewing the challenges associated with labeling in more detail and summarizing existing so-

lutions n Section 4.1, we introduce how we unify topic models and active learning to address the challenges

and pitfalls of existing methods (Section 4.2). We then describe our four experimental conditions to compare

the effects of providing users with either a topic model or a simple list of documents, with or without active

learning suggestions (Section 4.3). Following this section we then describe our data and evaluation metrics

(Section 4.4).

Through both synthetic experiments (Section 4.5) and a user study (Section 4.6) with 40 participants,

we evaluate ALTO and its constituent components by comparing results from the four conditions introduced

above. We first examine user strategies for organizing documents, user satisfaction, and user efficiency.

Finally, we evaluate the overall effectiveness of the label set in a post-study crowdsourced task.

4.1 Classification Challenges and Existing Solutions

Machine learning algorithms fall in two primary categories: supervised and unsupervised. While

unsupervised methods learn to generalize from a raw and unorganized data set, supervised methods, such as

classification, require a training set (Chapter 2).

Classification, one of the most commonly used methods in machine learning, is the process of pre-

dicting one or more categorical label for unlabeled data points from the training set.2 Classification is a

well-trodden area of machine learning research and has been used with great success for reducing manual

human effort and automatizing categorization of data sets in many fields such as computational linguis-

tics (Pang et al., 2002; Navigli, 2009), social science (Hillard et al., 2008), and political science (Grimmer

and Stewart, 2013; Paul and Girju, 2010). The difficulty is often annotation, i.e., creating the training set,

which is usually done by domain experts and requires a significant amount of effort (Hwa, 2004; Osborne

and Baldridge, 2004); coding theory is an entire subfield of social science devoted to creating, formulating,

and applying labels to text data (Saldana, 2012; Musialek et al., 2016).

Semi-supervised learning (Zhu, 2005) exploits the unlabeled data points for classification and reduces

the amount of required human effort in annotation. Additionally, dually supervised methods learn from both
2In this thesis, we focus on classification where each data point is associated with one label.
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document-level labels and word-level labels (Melville et al., 2009; Settles, 2011). The idea is that because

getting labels in the word level is cheaper, faster, and easier, one can learn from these labels to train a

classifier with reduced amount of human effort.

Given that the quality of predictions that a classifier makes largely depends on the quality of the

training set, ensuring that the data is labeled carefully and has high quality is necessary (Chuang et al.,

2014). However, the problem with annotation is usually overlooked and still remains. Perhaps part of

the reason is that the annotation problem is not a purely computational problem and it requires interacting

with humans. We now review common approaches to overcome the annotation challenges and discuss their

pitfalls. Next, we address these pitfalls with a human-in-the-loop approach in the context of document

classification.

4.1.1 Crowdsourcing

To ensure quality for the training set, we would ideally turn to domain experts to do the annotation.

However, experts are usually expensive and not available. Therefore, researchers usually use on-demand

crowdsourcing platforms such as Amazon Mechanical Turk3 or Figure Eight (previously known as Crowd-

flower)4 for annotating their data sets. In these crowdsourcing platforms, requesters post small jobs often

referred as Human Intelligence Tasks (HITs) and a specified payment for completing each HIT. Workers can

then choose from available HITs and complete them in exchange for the specified payment.

Annotating data points for classification is one of the most common types of HITs that are posted on

crowdsourcing platforms. However, given that workers on these platforms are usually non-experts, quality

control becomes an issue (Snow et al., 2008). Researchers use several methods to ensure that high quality

data are obtained from non-experts. Examples of such methods include requiring a minimum approval rate

from the workers to be able to work on the HIT, paying workers based on their performance (Kamar and

Horvitz, 2012; Ho et al., 2015; Shah and Zhou, 2016), having multiple workers do the same task and ag-

gregating their answers (Hung et al., 2013; Felt et al., 2015), correcting individual workers’ biases (Snow
3https://www.mturk.com/
4https://www.figure-eight.com/

https://www.mturk.com/
https://www.figure-eight.com/


45

et al., 2008), and filtering low quality annotations based on annotator level noise, ambiguity, and uncer-

tainty (Hsueh et al., 2009).

Crowdsourcing diminishes the need for domain expert annotators in many scenarios. However, some-

times using crowdsourcing is not feasible, such as cases where privacy is a concern. In such cases, active

learning can be used to reduce the number of labeled data points, while still achieving a reasonable classifier

performance (Settles, 2012). We now provide a review of existing work on active learning.

4.1.2 Active Learning

Active learning methods reduce manual human effort in annotation by directing users’ attention to

the data points that are most useful to label when training a classifier. These data points are usually the ones

that the classifier is most confused about their label and the idea is that if the annotator spends their time on

labeling these data points, a better classifier can be trained faster.

Active learning provides a systematic way for human annotators to constantly interact with machine

learning models to create a training set. Some previous work exists on interfaces that use active learning to

iteratively and interactively query human annotators for the label of data points. For example, DUALIST is

an interactive system that uses active learning on both the documents and features to reduce annotation cost

and train a classifier that achieves high accuracy with minimally-labeled data (Settles, 2011).

An important component of active learning is the querying strategy. This strategy defines how the

next data point to query the annotator is selected. Once the data point is selected, the human annotator is

asked to provide a label for it. Then the labeled data point is added to the training set and a new model is

trained with the new training set. Repeatedly, the new model selects the next data point to label until we are

satisfied with the current training set or we run out of resources (e.g, time). Different querying strategies

select data points based on different criterion. We now review some of the most commonly used strategies.

Uncertainty sampling (Lewis and Gale, 1994) is perhaps the most straightforward querying strategy.

This strategy selects the data point that the current classifier is most uncertain about its label. This approach

is well-suited for probabilistic classifiers. Entropy (Shannon, 2001) of the posterior label distribution is
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commonly used as a measure of uncertainty:

d∗ = argmax
d
−
∑
i

P (yi | d)logP (yi | d), (4.1)

where yi ranges over all the possible labels.

Query-by-committee (Seung et al., 1992) is another commonly used strategy. This strategy selects

the data point that a committee of classifiers disagree the most on its label. Bagging (Breiman, 1996) and

boosting (Freund and Schapire, 1997) are commonly used to construct a committee of classifiers (Mamitsuka

et al., 1998). Moreover, vote entropy is used for measuring the level of disagreement among the committee

members.

The advantage of using query-by-committee over uncertainty sampling is that rather than relying

on one classifier, multiple classifiers are considered (Freund et al., 1997). However, query-by-committee

usually does not scale well and thus might not be well-suited for human-in-the-loop systems.

Other families of querying strategies have been proposed, which perform based on the amount of

change in the model (Settles et al., 2008), the amount of generalization error reduction (Roy and McCallum,

2001), or minimization of variance when minimizing error is intractable (Settles, 2012). However, these

methods are usually computationally expensive and not well-suited for human-in-the-loop systems.

Discussion

In this section, we reviewed some of the querying strategies used in active learning methods. The choice

of the strategy depends on several factors such as domain of the data set, expertise of the annotators, and

available resources. The strategies we reviewed have one common assumption: all data points require the

same amount of effort to label. Therefore their goal is to minimize the number of labeled data points.

However, in most real-world scenarios, some data points are harder to label than others. For example, in

the context of document labeling, longer documents or documents that have a mixture of topics are usually

harder for annotators to label. This brings up the notion of “cost”. If the goal of active learning is to reduce

the amount of human effort, one might consider the amount of time annotators spend on labeling as the cost

rather than the number of data points they label. Thus, active learning methods should be evaluated in the

context of cost (Haertel et al., 2008). We take the same approach to develop querying strategies that reduce
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the time annotators spend on labeling in our human-in-the-loop system.

Crowdsourcing and active learning are commonly used to reduce annotation cost. However, these

methods can only be applied after a label set exists. In many scenarios such as organizing conferences and

legal discovery, there is no pre-defined set of labels and labels should be defined by the annotators. Creating

a broad and applicable label set requires a global knowledge of the data set, which annotators usually lack

when they first start exploring the data set and labeling. In the context of text data, topic models (Chapter 2)

are a method to provide an overview of the data set to the users. We now elaborate on our framework that

unifies topic overviews and active learning to speed label induction and document labeling.

4.2 Topic Overviews and Active Learning

ALTO,5 a framework for assigning labels to documents that uses both global and local knowledge to

help users create and assign document labels, has two main components: topic overview and active learning

selection. We explain how ALTO uses topic models to aid label induction and document labeling. We then

explain how it uses active learning to direct user attention and speed document labeling.

4.2.1 Topic Models

Topic models (Blei et al., 2003) automatically induce structure from a text corpus (Chapter 2). Given

a corpus and a constant K for the number of topics, topic models output (1) a distribution over words for

each topic k (φk,w) and (2) a distribution over topics for each document (θd,k). Each topic’s most probable

words and associated documents can help a user understand what the collection is about. Table 4.1 shows

examples of topics and their highest associated documents from our corpus of U.S. congressional bills.

Our hypothesis is that showing documents grouped by topics will be more effective than having

the user wade through an undifferentiated list of random documents and mentally sort the major themes

themselves.
5Code available at https://github.com/Foroughp/ALTO-ACL-2016.

https://github.com/Foroughp/ALTO-ACL-2016
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Topic words Document Title
metropolitan, carrier, rail, freight, passen-
ger, driver, airport, traffic, transit, vehicles

A bill to improve the safety of motorcoaches, and for
other purposes.

violence, sexual, criminal, assault, offense,
victims, domestic, crime, abuse, trafficking

A bill to provide criminal penalties for stalking.

agricultural, farm, agriculture, rural, pro-
ducer, dairy, crop, producers, commodity,
nutrition

To amend the Federal Crop Insurance Act to extend
certain supplemental agricultural disaster assistance pro-
grams through fiscal year 2017, and for other purposes.

Table 4.1: Given a data set—in this case, the U.S. congressional bills data set—topics are automatically
discovered sorted lists of terms that summarize segments of a document collection. Topics also are asso-
ciated with documents. These topics give users a sense of documents’ main themes and help users create
high-quality labels.

4.2.2 Active Learning

Active learning directs users’ attention to the examples that would be most useful to label when

training a classifier. When user time is scarce, active learning builds a more effective training set than

random labeling.

In contrast to topic models, active learning provides local information: this is the individual document

you should pay attention to. Our hypothesis is that active learning, when used as a preference function to

direct the users to documents most beneficial to label, will not only be more effective than randomly select-

ing documents but will also complement the global information provided by topic models. Section 4.3.3

describes the preference functions for the experimental conditions.

4.3 Study Conditions

Our goal is to characterize how local and global knowledge can aid users in annotating a data set. This

section describes our four experimental conditions and outlines the user’s process for labeling documents.

4.3.1 Study Design

The study uses a 2 × 2 between-subjects design, with factors of document collection overview (two

levels: topic model or list) and document selection (two levels: active or random). The four conditions, with

the TA condition representing ALTO, are:
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Overview

Topic List

Se
le
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Active TA LA
Random TR LR

Table 4.2: Our 2 × 2 study design and the four experimental conditions. There are two factors: document
collection overview and document selection.

(1) Topic model and active selection (TA)

(2) Topic model and random selection (TR)

(3) List and active selection (LA)

(4) List and random selection (LR)

Table 4.2 shows our experimental factors and conditions.

4.3.2 Document Collection Overview

The topic and list overviews offer different overall structure but the same basic elements for users

to create, modify, and apply labels (Section 4.3.4). The topic overview (Figure 4.1a) builds on (Hu et al.,

2014): for each topic, the top twenty words are shown alongside twenty document titles. Topic words (w)

are sized based on their probability φk,w in the topic k and the documents with the highest probability of

that topic (θd,k) are shown. The list overview, in contrast, presents documents as a simple, randomly ordered

list of titles (Figure 4.1b). We display the same number of documents (20K, where K is the total number of

topics) in both the topic model and list overviews, but the list overview provides no topic information.

4.3.3 Document Selection

To provide consistency across the four conditions, all of the conditions use a document preference

function U to direct the user’s attention to a document to label. For the random selection conditions, TR and
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Main Interface
(a) Topic Overview

(TA and TR)

(b) List Overview 
(LA and LR)

OR

Figure 4.1: Our Annotation system in different conditions: Initially, the user sees lists of documents or-
ganized in either (a) grouped into topics (only two topics are shown here; users can scroll to additional
document) or a (b) list format. The user can click on a document to label it.

LR, document selection is random, within a topic or globally. We expect this to be less useful than active

learning. The document preference functions are:

LA: LA uses traditional uncertainty sampling:

ULA
d = HC [Yd] , (4.2)

where HC [yd] = −
∑

i P (yi | d)logP (yi | d) is the classifier entropy. Entropy measures how confused

(uncertain) classifier C is about its prediction of a document d’s label y. Intuitively, it prefers documents

that most of the labels are likely to be predicted to documents that only one of the labels is highly likely to

be chosen.

LR: LR’s approach is the same as LA’s except we replace HC [yd] with a uniform random number:

ULR
d ∼ unif(0, 1). (4.3)

In contrast to LA, which suggests the most uncertain document, LR suggests a random document.

TA: Dasgupta and Hsu (2008) argue that clustering should inform active learning criteria, balancing coverage

against classifier accuracy. We adapt their method to flat topic models—in contrast to their hierarchical



51

cluster trees—by creating a composite measure of document uncertainty within a topic:

UTA
d = HC [yd] θd,k, (4.4)

where k is the prominent topic for document d. UTA
d prefers documents that are representative of a topic

(i.e., have a high value of θd,k for that topic) and are informative for the classifier.

TR: TR’s approach is the same as TA’s except we replace HC [Yd] with a uniformly random number:

UTR
d = unif(0, 1)θd,k. (4.5)

Similar to TA, this prefers documents that are representative of a topic, but not any particular such document.

Incorporating the random component encourages for covering different documents in diverse topics.

In LA and LR, the preference function directly chooses a document and directs the user to it. On the

other hand, UTA
d and UTR

d are topic dependent: To avoid the negative and misleading effect of topics, users’

attention should be drawn to documents that are representative of a specific topic. Therefore, the factor

θd,k appears in both. Thus, they require that a topic be chosen first and then the document with maximum

preference, U , within that topic can be chosen. In TR, the topic is chosen randomly. In TA, the topic is

chosen by

k∗ = argmax
k

(mediand(HC [yd] θd,k). (4.6)

That is the topic with the maximum median U . Median encodes how “confusing” a topic is.6 Intuitively, k∗

is the topic that the classifier is confused about its documents’ labels.

4.3.4 User Labeling Process

The user’s labeling process is the same in all four conditions. The overview (topic or list) allows users

to examine individual documents (Figure 4.1). Clicking on a document opens a dialog box (Figure 4.2a)

with the text of the document and three options:

(1) Create and assign a new label to the document.

(2) Choose an existing label for the document.
6Outliers skew other measures (e.g., max or mean).



52

Classifier Label (if available)

Raw
Text

User Label

(a) Document view: after clicking on a document
from the list or topic overview, the user inspects the
text and provides a label. If the classifier has a guess
at the label, the user can confirm the guess.

User-Labeled Documents

Classifier-Labeled Documents
Selected Document

(b) After the user has labeled some documents, the
system can automatically label other documents and
select which documents would be most helpful to an-
notate next. In the random selection setting, random
documents are selected.

Figure 4.2: Document view (a) and document selection (b) in our annotation system.

(3) Skip the document.

Once the user has labeled two documents with different labels, the displayed documents are replaced

based on the preference function (Section 4.3.3), every time the user labels (or updates labels for) a docu-

ment. In TA and TR, each topic’s documents are replaced with the twenty highest ranked documents. In LA

and LR, all documents are updated with the top 20K ranked documents.7

The system also suggests one document to consider by auto-scrolling to it and drawing a red box

around its title (Figure 4.2b). The user may ignore that document and click on any other document. After the
7In all conditions, the number of displayed unlabeled documents is adjusted based on the number of manually labeled doc-

uments. i.e. if the user has labeled n documents in topic k, n manually labeled documents followed by top 20 − n uncertain

documents will be shown in topic k.
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user labels ten documents, the classifier runs and assigns labels to other documents.8 For classifier-labeled

documents, the user can either approve the label or assign a different label. The process continues until the

user is satisfied or a time runs out (forty minutes in our user study, Section 4.6). We use time to control

for the varying difficulty of assigning documents: active learning will select more difficult documents to

annotate, but they may be more useful; time is a more fair basis of comparison in real-world tasks.

4.4 Data and Evaluation Metrics

In this section, we describe our data, the machine learning techniques to learn classifiers from exam-

ples, and the evaluation metrics to know whether the final labeling of the complete documents collection

was successful.

4.4.1 Data sets

Our experiments require corpora to compare user labels with gold standard labels. We experiment

with two corpora: 20 Newsgroups (Lang, 2007) and U.S. congressional bills from GovTrack.9

For U.S. congressional bills, GovTrack provides bill information such as the title and text, while

the Congressional Bills Project (Adler and Wilkerson, 2006) provides labels and sub-labels for the bills.

Examples of labels are agriculture and health, while sub-labels include agricultural trade and comprehensive

health care reform. The twenty top-level labels have been developed by consensus over many years by a team

of top political scientists to create a reliable, robust data set. We use the 112th Congress; after filtering,10

this data set has 5558 documents. We use this data set in both the synthetic experiments (Section 4.5) and

the user study (Section 4.6).

The 20 Newsgroups corpus has 19, 997 documents grouped in twenty news groups that are further

grouped into six more general topics. Examples are talk.politics.guns and sci.electronics, which belong to

the general topics of politics and science. We use this data set in synthetic experiments (Section 4.5).

8To reduce user confusion, for each existing label, only the top 100 documents get a label assigned in the UI.
9https://www.govtrack.us/

10We remove bills that have less than fifty words, no assigned gold label, duplicate titles, or have the gold label GOVERNMENT

OPERATIONS or SOCIAL WELFARE, which are broad and difficult for users to label.

https://www.govtrack.us/
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4.4.2 Machine Learning Techniques

Topic Modeling:

To choose the number of topics (K), we calculate average topic coherence (Lau et al., 2014) (Equa-

tion 2.1 in Chapter 2) on U.S. Congressional Bills, between ten and forty topics and choose K = 19, as it

has the maximum coherence score. For consistency, we use the same number of topics (K = 19) for the

20 Newsgroups corpus. After filtering words based on TF-IDF (Equation 2.2), we use Mallet (McCallum,

2002) with default options to learn topics.

Features and Classification:

A logistic regression classifier predicts labels for documents and provides the classification uncer-

tainty for active learning. To make classification and active learning updates efficient, we use incremental

learning (Carpenter, 2008, LingPipe). We update classification parameters using stochastic gradient de-

scent, restarting with the previously learned parameters as new labeled documents become available.11 We

use cross validation, based on the prominent topic as the label for each document, to set the parameters for

learning the classifier.12

The features for classification include topic probabilities, unigrams, and the fraction of labeled doc-

uments in each document’s prominent topic. The intuition behind adding this last feature is to allow active

learning to suggest documents in a diverse range of topics if it finds this feature a useful indicator of uncer-

tainty.13

4.4.3 Evaluation Metrics

Our goal is to create a system that allows users to quickly induce a high-quality label set. We compare

the user-created label sets against the data’s gold label sets. Comparing different clusterings is a difficult

task, so we use three clustering evaluation metrics: purity (Zhao and Karypis, 2001), rand index (Rand,
11Exceptions are when a new label is added, a document’s label is deleted, or a label is deleted. In those cases, we train the

classifier from scratch. Also, for final results in Section 4.6, we train a classifier from scratch.
12We use blockSize = 1/#examples, minEpochs = 100, learningRate = 0.1, minImprovement = 0.01,

maxEpochs = 1000, and rollingAverageSize = 5. The regression is unregularized.
13However, the final classifier’s coefficients suggested that this feature did not have a large effect.
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1971, RI), and normalized mutual information (Strehl and Ghosh, 2003, NMI).14

Purity: Purity measures how “pure” user clusters are compared to gold clusters. Given each user

cluster, it measures what fraction of the documents in a user cluster belong to the most frequent gold label

in that cluster:

purity(U,G) =
1

N

∑
l

max
j
|Ul ∩Gj |, (4.7)

where L is the number of labels the user creates, U = {U1, U2, . . . , UL} is the user clustering of documents,

G = {G1, G2, . . . , GJ} is the gold clustering of documents, and N is the total number of documents. The

user Ul and gold Gj labels are interpreted as sets containing all documents assigned to that label.

Rand index (RI): RI is a pair counting measure, where cluster evaluation is considered as a series

of decisions. If two documents have the same gold label and the same user label (TP), and if they do not

have the same gold label and are not assigned the same user label (TN), the decision is right. Otherwise, it

is wrong (FP and FN). RI measures the percentage of decisions that are right:

RI =
TP + TN

TP + FP + TN + FN
. (4.8)

Normalized mutual information (NMI): NMI is an information theoretic measure that measures

the amount of information one gets about the gold clusters by knowing what the user clusters are:

NMI(U,G) =
2I(U,G)

HU +HG
, (4.9)

where U and G are user and gold clusters, H is the entropy and I is mutual information (Bouma, 2009).

While purity, RI, and NMI are all normalized within [0, 1] (higher is better), they measure different

things. Purity measures the intersection between two clusterings, is sensitive to the number of clusters, and

is not symmetric.

On the other hand, RI and NMI are less sensitive to the number of clusters and are symmetric. RI mea-

sures pairwise agreement in contrast to purity that directly measures intersection. Moreover, NMI measures

shared information between two clusterings.
14We avoided using adjusted rand index (Hubert and Arabie, 1985), because it can yield negative values, which is not consistent

with purity and NMI. We also computed variation of information (Meilă, 2003) and normalized information distance (Vitányi et al.,

2009) and observed consistent trends. We omit these results for the sake of space.
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None of these metrics are perfect: purity can be exploited by putting each document in its own label,

RI does not distinguish separating similar documents with distinct labels from giving dissimilar documents

the same label, and NMI’s ability to compare different numbers of clusters means that it sometimes gives

high scores for clusterings by chance. Given the diverse nature of these metrics, if a labeling does well in

all three of them, we can be relatively confident that it is not a degenerate solution that games the system.

4.5 Synthetic Experiments

Before running a user study, we test our hypothesis that topic model overviews and active learning

selection improve final cluster quality compared to standard baselines: list overview and random selection.

We simulate the four conditions on Congressional Bills and 20 Newsgroups.

Since we believe annotators create more specific labels compared to the gold labels, we use sub-labels

as simulated user labels and labels as gold labels (we give examples of labels and sub-labels in Section 4.4.1).

We start with two randomly selected documents that have different sub-labels, assign the corresponding sub-

labels, then add more labels based on each condition’s preference function (Section 4.3.3). We follow the

condition’s preference function and incrementally add labels until 100 documents have been labeled (100

documents are representative of what a human can label in about an hour). Given these labels, we compute

purity, RI, and NMI over time. This procedure is repeated fifteen times (to account for the randomness of

initial document selections and the preference functions with randomness).15

Synthetic results validate our hypothesis that topic overview and active learning selection can help

label a corpus more efficiently (Figure 4.3). LA shows early gains, but tends to falter eventually compared

to both topic overview and topic overview combined with active learning selection (TR and TA).

However, these experiments do not validate ALTO. Not all documents require the same time or effort

to label, and active learning focuses on the hardest examples, which may confuse users. Thus, we need to

evaluate how effectively actual users annotate a collection’s documents.
15Synthetic experiment data is available at http://github.com/Pinafore/publications/tree/master/

2016_acl_doclabel/data/synthetic_exp.

http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/synthetic_exp
http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/synthetic_exp
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Figure 4.3: Synthetic results on U.S. Congressional Bills and 20 Newsgroups data sets. Topic models help
guide annotation attention to diverse segments of the data.

4.6 User Study

Following the synthetic experiments, we conduct a user study with forty participants to evaluate ALTO

(TA condition) against three alternatives that lack topic overview (LA), active learning selection (TR), or both

(LR) (Sections 4.6.1 and 4.6.2). Then, we conduct a crowdsourced study to compare the overall effectiveness
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Figure 4.4: User study results on U.S. Congressional Bills data set. Active learning selection helps initially,
but the combination of active learning selection and topic model overview has highest quality labels by the
end of the task.

of the label set generated by the participants in the four conditions (Section 4.6.5).
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4.6.1 Method

We use the freelance marketplace Upwork16 to recruit online participants. Communicating with par-

ticipants and instructing them on a specific task is usually easier on Upwork compared to crowdsourcing

platforms such as Amazon Mechanical Turk or Figure Eight (previously known as Crowdflower). We re-

quire participants to have more than 90% job success on Upwork, English fluency, and U.S. residency.

Participants are randomly assigned to one of the four conditions and we recruited ten participants per con-

dition.

Participants completed a demographic questionnaire (Appendix B.1), viewed a video of task instruc-

tions, and then interacted with the system and labeled documents until satisfied with the labels or forty

minutes had elapsed.17 The session ended with a survey (Appendix B.2), where participants rated mental,

physical, and temporal demand, and performance, effort, and frustration on 20-point scales, using questions

adapted from the NASA Task Load Index (Hart and Staveland, 1988, TLX). The survey also included 7-

point scales for ease of coming up with labels, usefulness and satisfaction with the system, and—for TR and

TA—topic information helpfulness. Each participant was paid fifteen dollars.18

For statistical analysis, we primarily use 2 × 2 (overview × selection) ANOVAs with Aligned Rank

Transform (Wobbrock et al., 2011, ART), which is a non-parametric alternative to a standard ANOVA that is

appropriate when data are not expected to meet the normality assumption of ANOVA.

4.6.2 Document Cluster Evaluation

We analyze the data by dividing the forty-minute labeling task into five minute intervals. If a par-

ticipant stopped before the time limit, we consider their final data set to stay the same for any remaining

intervals. Figure 4.4 shows the measures across study conditions, with similar trends for all three measures.
16http://Upwork.com
17Forty minutes of activity, excluding system time to classify and update documents. Participants nearly exhausted the time:

39.3 average minutes in TA, 38.8 in TR, 40.0 in LA, and 35.9 in LR.
18User study data is available at http://github.com/Pinafore/publications/tree/master/2016_acl_

doclabel/data/user_exp.

http://Upwork.com
http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/user_exp
http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/user_exp
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F p

Overview Selection Overview Selection
final purity 81.03 7.18 < .001 .011

final RI 39.89 6.28 < .001 .017
final NMI 70.92 9.87 < .001 .003

df(1,36) for all reported results

Table 4.3: Results from 2 × 2 ANOVA with ART analyses on the final purity, RI, and NMI metrics. Only
main effects for the factors of overview and selection are shown; no interaction effects were statistically
significant. Topics and active learning both had significant effects on quality scores.

Topic model overview and active learning both significantly improve final data set measures.

The topic overview and active selection conditions significantly outperform the list overview and random

selection, respectively, on the final label quality metrics. Table 4.3 shows the results of separate 2×2 ANOVAs

with ART with each of final purity, RI, and NMI scores. There are significant main effects of overview and

selection on all three metrics; no interaction effects were significant.

TR outperforms LA.

Topic models by themselves outperform traditional active learning strategies (Figure 4.4). LA performed

better than LR; while active learning was useful, it was not as useful as the topic model overview (TR and

TA).

LA provides an initial benefit.

Average purity, NMI and RI were highest with LA for the earliest labeling time intervals. Thus, when time

is very limited, using traditional active learning (LA) is preferable to topic overviews; users need time to

explore the topics and a subset of documents within them. Table 4.4 shows the metrics after ten minutes.

Separate 2 × 2 ANOVAs with ART on the means of purity, NMI and RI revealed a significant interaction

effect between overview and selection on mean NMI (F (1, 36) = 5.58, p = .024), confirming the early

performance trends seen in Figure 4.4 at least for NMI. No other main or interaction effects were significant,

likely due to low statistical power.
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M ± SD [median]

purity RI NMI

TA 0.31 ± 0.08 [0.32] 0.80 ± 0.05 [0.80] 0.19 ± 0.08 [0.21]
TR 0.32 ± 0.09 [0.31] 0.82 ± 0.04 [0.82] 0.21 ± 0.09 [0.20]
LA 0.35 ± 0.05 [0.35] 0.82 ± 0.04 [0.81] 0.27 ± 0.05 [0.28]
LR 0.31 ± 0.04 [0.31] 0.79 ± 0.04 [0.79] 0.19 ± 0.03 [0.19]

Table 4.4: Mean, standard deviation, and median purity, RI, and NMI after ten minutes. NMI in particular
shows the benefit of LA over other conditions at early time intervals.

M ± SD [median]
Condition Mental Demand Physical Demand Temporal Demand Performance Effort Frustration

TA 9.8 ± 5.6 [10] 2.9 ± 3.4 [2] 9 ± 7.8 [7] 5.5 ± 5.8 [1.5] 9.4 ± 6.3 [10] 4.5 ± 5.5 [1.5]

TR 10.6 ± 4.5 [11] 2.4 ± 2.8 [1] 7.4 ± 4.1 [9] 8.8 ± 6.1 [7.5] 9.8 ± 3.7 [10] 3.9 ± 3.0 [3.5]

LA 9.1 ± 5.5 [10] 1.7 ± 1.3 [1] 10.2 ± 4.8 [11] 8.6 ± 5.3 [10] 10.7 ± 6.2 [12.5] 6.7 ± 5.1 [5.5]

LR 9.8 ± 6.1 [10] 3.3 ± 2.9 [2] 9.3 ± 5.7 [10] 9.4 ± 5.6 [10] 9.4 ± 6.2 [10] 7.9 ± 5.4 [8]

Table 4.5: Mean, standard deviation, and median results from NASA-TLX post-survey. All questions are
scaled 1 (low)–20 (high), except performance, which is scaled 1 (good)–20 (poor). Users found topic model
overview conditions, TR and TA, to be significantly less frustrating than the list overview conditions.

4.6.3 Subjective Ratings

Table 4.5 shows the average scores given for the six NASA-TLX questions in different conditions. Sep-

arate 2× 2 ANOVA with ART for each of the measures revealed only one significant result: participants who

used the topic model overview find the task to be significantly less frustrating (M = 4.2 and median = 2)

than those who used the list overview (M = 7.3 and median = 6.5) on a scale from 1 (low frustration) to

20 (high frustration) (F (1, 36) = 4.43, p = .042), confirming that the topic overview helps users organize

their thoughts and experience less stress during labeling.

Participants in the TA and TR conditions rate topic information to be useful in completing the task

(M = 5.0 and median = 5) on a scale from 1 (not useful at all) to 7 (very useful). Overall, users were

positive about their experience with the system. Participants in all conditions rated overall satisfaction

with the interface positively (M = 5.8 and median = 6) on a scale from 1 (not satisfied at all) to 7 (very

satisfied).
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Topic Words Automatic Label
metropolitan, carrier, rail, freight, passenger, driver, air-
port, traffic, transit, vehicles

Rail transport

violence, sexual, criminal, assault, offense, victims, do-
mestic, crime, abuse, trafficking

Sexual violence

agricultural, farm, agriculture, rural, producer, dairy,
crop, producers, commodity, nutrition

Dairy farming

academic, youth, elementary, learning, teachers, lan-
guage, literacy, subpart, early, workforce

Education

Table 4.6: Topic words and their automatically generated label.

4.6.4 Discussion

One can argue that using topic overviews for labeling could have a negative effect: users may ignore

the document content and focus on topics for labeling. We tried to avoid this issue by making it clear in

the instructions that they need to focus on document content and use topics as a guidance. On average, the

participants in TR created 1.96 labels per topic and the participants in TA created 2.26 labels per topic. This

suggests that participants are going beyond what they see in topics for labeling, at least in the TA condition.

4.6.5 Label Evaluation Results

Section 4.6.2 compares clusters of documents in different conditions against the gold clustering but

does not evaluate the quality of the labels themselves. Since one of the main contributions of ALTO is to

accelerate the induction of a high quality label set, we use crowdsourcing to assess how the final induced

label sets compare in different conditions.

For completeness, we also compare labels against a fully automatic labeling method (Aletras and

Stevenson, 2014, Chapter 2) that does not require human intervention. We assign automatic labels to

documents based on their most prominent topic. Table 4.6 show examples of topics and their automatic

label.

We ask users on a crowdsourcing platform to vote for the “best” and “worst” label that describes

the content of a U.S. congressional bill (we use Crowdflower19 and require contributors to be in the U.S.).
19Crowdflower is now known as Figure Eight.
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Figure 4.5: Example best and worst label annotation task. Workers choose which labels best and worst
describe a congressional bill.

Document title Auto LA LR TA TR Best Worst
To amend title XIX of
the Social Security Act
to improve access to ad-
vanced practice nurses
and physician assistants
under the Medicaid Pro-
gram.

medicaid social
security

veterans medicare medical medical veterans

A bill to authorize the
use of certain offshore
oil and gas platforms in
the Gulf of Mexico for
artificial reefs, and for
other purposes.

coast endangeredenvironmentcoastal
restora-
tion

natural
re-
sources

natural
re-
sources

endangered

To establish pilot pro-
grams to encourage the
use of shared apprecia-
tion mortgage modifica-
tions, and for other pur-
poses.

mortgage
bank

banking
and
finance

banking
and
finance

mortgage securities
regula-
tion

mortgage securities
regula-
tion

To amend the Clean
Air Act to conform the
definition of renewable
biomass to the definition
given the term in the
Farm Security and Rural
Investment Act of 2002.

dairy
farming

agriculture energy renewable
fuel

agriculture renewable
fuel

dairy
farming

Table 4.7: Examples of documents, their assigned labels in different conditions, and the chosen best and
worst labels.



64

0

20

40

60

auto LA LR TA TR
Condition

N
um

be
r 

of
 V

ot
es

 (
m

ea
n)

best worst

Figure 4.6: Best and worst votes for document labels. Error bars are standard error from bootstrap sample.
ALTO (TA) gets the most best votes and the fewest worst votes.

Figure 4.5 shows an example of the task on Crowdflower. Table 4.7 shows examples of documents, labels

in different conditions, and the best and the worst chosen labels.

Five users label each document and we use the aggregated results generated by Crowdflower. The

user gets $0.20 for each task.

We randomly choose 200 documents from our data set (Section 4.4.1). For each chosen document,

we randomly choose a participant from all four conditions (TA, TR, LA, LR). The labels assigned in different

conditions and the automatic label of the document’s prominent topic construct the candidate labels for the

document.20 Identical labels are merged into one label to avoid showing duplicate labels to users. If a

merged label gets a “best” or “worst” vote, we split that vote across all the identical instances.21 Figure 4.6

shows the average number of “best” and “worst” votes for each condition and the automatic method. ALTO

(TA) receives the most “best” votes and the fewest “worst” votes. LR receive the most worst votes. The
20Some participants had typos in the labels. We corrected all the typos using pyEnchant (http://pythonhosted.org/

pyenchant/) spellchecker. If the corrected label was still wrong, we corrected it manually.
21Evaluation data is available at http://github.com/Pinafore/publications/tree/master/2016_acl_

doclabel/data/label_eval.

http://pythonhosted.org/pyenchant/
http://pythonhosted.org/pyenchant/
http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/label_eval
http://github.com/Pinafore/publications/tree/master/2016_acl_doclabel/data/label_eval
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automatic labels, interestingly, appear to do at least as well as the list view labels, with a similar number

of best votes and fewer worst votes. This indicates that automatic labels have reasonable quality compared

to at least some manually generated labels. However, when users are provided with topic model overview,

with or without active learning selection, they can generate label sets that improve upon automatic labels

and labels assigned without the topic model overview.

4.7 Related Work

ALTO quantitatively shows that corpus overviews aid text understanding, building on traditional inter-

faces for gaining both local and global information (Hearst and Pedersen, 1996). More elaborate interfaces

provide richer information given a fixed topic model (Chapter 2). Because topic models are imperfect (Boyd-

Graber et al., 2014), enabling users to interact with topic models and refine the underlying topics can po-

tentially improve users’ understanding of a corpus. This direction has a close connection with bridging the

gap between users and models (Chapter 1) and has been approached by focusing on systematically studying

the effect of unpredictability in topic refinements on users’ experience and proposing potential solutions to

improve users’ trust (Smith et al., 2016; Lee et al., 2017; Smith et al., 2018).

Another related direction of research focuses on representation of individual topics. Summariz-

ing document collections through discovered topics can happen through raw topics labeled manually by

users (Talley et al., 2011), automatically (Mei et al., 2007; Magatti et al., 2009; Lau et al., 2010, 2011; Hul-

pus et al., 2013; Aletras and Stevenson, 2014; Wan and Wang, 2016), or by learning a mapping from labels

to topics (Ramage et al., 2009). Depending on the target end users and specific scenarios, these alternative

visualizations and representations can be helpful.

When there is not a direct correspondence between topics and labels, supervised topic models jointly

model document content and labels to learn topics that are in line with labels (Mcauliffe and Blei, 2007;

Zhu et al., 2009; Nguyen et al., 2015). In this study, because we wanted topics to be consistent between

users, we used static topics. However, we believe ALTO can be extended to use supervised topic models that

dynamically update topics and provide an overview of the corpus that is more in line with user labels.
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4.8 Summary

We introduced ALTO, an interactive framework that combines active learning selections with topic

overviews to both help users induce a label set and assign labels to documents. We showed that users can

more effectively and efficiently induce a label set and create training data using ALTO compared to other

conditions, which lack either topic overviews or active selections.

ALTO exemplifies an interactive framework that brings humans and machine learning models together

to guide humans in completing a classification task by exploiting interpretable unsupervised models. We

used a task-driven approach to evaluate ALTO with humans in the loop. Our user study results provide

insights on how to make the best use of user effort under different scenarios and time constraints. In the

next chapter, we turn to a real-world use case that requires exploring and understanding large document

collections. We design a framework to help humans understand science policy and find answers to a set of

questions from a large data set of documents. We evaluate the effectiveness of a set of machine learning and

information retrieval tools with human-subject experiments.



Chapter 5

Understanding Science Policy via a Human-in-the-Loop Approach1

In Chapter 4, we demonstrated an interactive system that uses topic models to help humans induce

label sets, assign them to documents, and create the training set for a classifier. Several interfaces have been

proposed that use topic models to help humans navigate through large document collections, understand

them, and find documents of interest, some of which we review in Section 2.4. However, there have been

no systematic studies to assess the effectiveness of such tools on people’s abilities in completing real-world

tasks that require understanding large corpora. In this chapter, we turn to a real-world use case that requires

humans to interactively explore and understand large document collections and complete a task with the

knowledge they have gained. We use a task-driven approach to evaluate the effectiveness of a set of ML

tools.

We focus on understanding science policy as a use case that requires understanding large data sets.

Science policy is concerned with allocation of funding and resources for doing scientific research and ex-

periments (Archibugi and Filippetti, 2015). Common topics of interest in science policy include funding

scientific research, transferring research into technological innovation, and promoting product development.

Understanding science policy requires making sense of the large data set of funded scientific research docu-

ments. This use case is inspired by the questions that the funding agency representatives are frequently asked

on the details of the research they are funding. These questions are usually about the amount of money that

is awarded in a specific area of research, the research topics that are funded, and the future plans in a research
1The work in this chapter was done in collaboration with You Lu, Leah Findlater, Kevin Seppi, and Jordan Boyd-Graber and is

in submission.
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area. Coming up with accurate and convincing answers to these questions requires an understanding of the

large number of funded grants and is hard to do manually.

We take a machine learning with a human-in-the-loop approach to help users answer such questions.

We build on the ALTO interface presented in Chapter 4 to design a framework and help users find grants that

are relevant to a question, view a summary of those grants, and answer questions (Section 5.1). We create

two experimental conditions to compare the effect of providing users with either the topic model information

or a simple list of documents (Section 5.2). Following this section, we then describe our interactive system

and machine learning tools we have used to help users in this task (Section 5.3). Through a user study

with twenty participants, we evaluate the effectiveness of our framework by comparing results from the two

conditions introduced above (Section 5.4).

5.1 Understanding Science Policy Using Topic Overviews and Active Learning

We create a single interface to help users find the answer to a given question from a large collection

of documents about science. Finding answers to questions from a large corpus is hard because users need

to wade through the large unorganized collection, understand the collection, find relevant documents to the

question, and finally find the answer to the question from the documents they have deemed relevant. Classi-

fication algorithms can be used to automatically find relevant documents to the question. However, this can

only be done after we have a training set of relevant and irrelevant documents. While Chapter 4 addresses

the difficulty of inducing topical labels and creating training sets for classifying documents in topical cat-

egories, this chapter assumes a known label set (relevant or irrelevant) and addresses the problem with

finding documents of interest.

Having demonstrated that topic models and active learning help users induce a global label set from a

large corpus and assign them to individual documents (Chapter 4), we use the same approach to help users

mark documents that are relevant or irrelevant to a given question about the policies of a funding agency.

Next, we train a classifier using the user-generated training set to automatically find additional relevant

documents. Finally, we provide users with a summary of the retrieved relevant documents and ask them to

answer the question.
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(a) Topic Overview 
(TOPIC)

(b) List Overview 
(LIST)

Figure 5.1: Our interactive interface to help users understand science policy in the two conditions: (a) topic
overview and (b) list overview. Topic overview shows documents organized by the extracted topics. The
user can click on a topic to see the documents that are associated with the topic. List overview shows
documents in a simple and unsorted list format.

Similar to our hypotheses in Chapter 4, we hypothesize that users who see documents organized by

topics, which combined, provide an overview of the corpus, will be able to answer questions better and

faster compared to the users who see a list of unsorted documents.

5.2 Experimental Design

Our goal is to characterize how providing a global overview of the corpus via topics that are auto-

matically extracted from the document collection using topic models such as LDA, can aid users to find

documents of interest from a large corpus and answer specific questions. This section describes our experi-

mental conditions and data.
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5.2.1 Experimental Conditions

Our study uses a between-subject design2 with one factor of data set overview. The two conditions

are (1) topic overview (TOPIC) and (2) list overview (LIST).

Like ALTO, the topic overview presents documents organized by their topic, which are displayed as

an ordered list of words (Figure 5.1a). On the other hand, the list overview presents documents in a simple

and unsorted list format (Figure 5.1b). In both conditions, we display the same number of documents (20K,

where K is the number of topics), but the list overview lacks the topic information. There has already been

sufficient work that shows the effectiveness of active learning selections in helping people label documents

faster (Settles, 2011; Poursabzi-Sangdeh et al., 2016). Therefore, we do not consider document selection as

a factor in this study; we use active learning in both conditions.

5.2.2 Data

The data set that we use in our experiments includes the grants funded by the National Science

Foundation (NSF) in 2016 (NSF-2016). The titles, abstracts, and amounts awarded for all the grants are

publicly available.3 After filtering the grants that have duplicate content, this data set has 10,333 documents.

5.3 Topic Assisted Document Browsing and Understanding

In this section, we describe the machine learning tools that we use in our interactive system. We then

describe the process of answering questions by a user.

In addition to the topic model, which is only used in the TOPIC condition, our system has three

main components: (1) ranker, (2) classifier, and (3) selector. The ranker displays documents that are

related to a query made by users. The classifier periodically identifies documents that are likely relevant

or irrelevant and displays them to users. The selector is the active learning component, which periodically

selects documents that are more beneficial in learning a good classifier and points users’ attention to them.

We now describe these components in more detail.
2In a between-subject design, two or more groups of subjects each get tested by a different factor simultaneously.
3https://www.nsf.gov/awardsearch/download.jsp

https://www.nsf.gov/awardsearch/download.jsp
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5.3.1 Ranker

One of the most common interactions of humans with machines is via information search using

search engines. As such, most users are familiar with creating search queries to find pieces of information

of interest. Therefore, we use the ranker to sort documents based on their relevance to the queries users

make.

Users can search for phrases to rank and retrieve documents related to their query. The ranker assigns

a relevance score for each document in the corpus. Next, the documents are sorted based on their score and

displayed to the user. The ranker exposes users to a new set of documents, other than the 20K documents

that are highly associated with the topics, every time they make a new query. For consistency, we use

the same ranking method in the TOPIC and LIST conditions. In the LIST condition, these documents are

sorted by their relevance score. In the TOPIC condition, the documents are still displayed organized by their

prominent topic, and the topics are sorted based on the sum of their associated documents’ relevance scores.

The ranker uses an LDA-based method by Wei and Croft (2006) to rank and retrieve documents that

are relevant to the user’s query. Unlike the traditional retrieval methods that perform on documents modeled

as a “bag of words”, the LDA-based method models documents as a linear combination of a “bag of words”

document model (DM) with smoothing (Zhai and Lafferty, 2001) and an LDA model:

P (w | d) = λ PDM(w | d) + (1− λ) PLDA(w | d), (5.1)

where w is a word in the query and λ is a hyper-parameter that controls the importance of the document

model versus the LDA model. PLDA(w | d) and PDM(w | d) are the probabilities of observingw in document

d under the LDA model and the DM model, respectively. Additionally,

PDM(w | d) = Nd

Nd + µ
PML(w | d) + (1− Nd

Nd + µ
)PML(w | corpus), (5.2)

where µ is the parameter for Dirichlet smoothing.

The relevance score of a document d is then calculated as the likelihood of the model generating the

query:

SQ,d =
∏
w∈Q

P (w | d), (5.3)
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where Q is the query phrase and w is a word in the query. We refer the reader to the original paper by Wei

and Croft (2006) for more details on the LDA-based ranking.

Parameter Tuning

We need to set two parameters when using the LDA-based method: the Dirichlet prior for smooth-

ing (µ) and the weight of the document model (λ). We consider µ ∈ {1, 10, 100, 1000, 10000} and

λ ∈ {0, 0.1, 0.2, ..., 1} as possible parameters. To set these parameters, we create synthetic queries from

each document title and use the LDA-based method with all the possible parameters to rank the document.

Then, we select the parameters that lead to the lowest average ranking of the documents. To create the

queries for a document, we extract the nouns from the document title, rank them based on their frequency

in the document, and add them incrementally to make queries. For example, for the document with the title

Studies in Commutative Algebra, the noun algebra appears more frequently in the document than studies.

Therefore, we make two queries: algebra and algebra studies. We then calculate the average rank of this

document with these two queries and all the possible parameters. We do the same for all other documents

and select µ = 1000 and λ = 0.7 as these values lead to the minimum average ranking.

5.3.2 Classifier

A classifier automatically identifies documents that would be helpful for the user to label. It also

automatically identifies relevant documents based on the user-generated training set and displays them to the

user to help them review and answer the question. We use a logistic regression classifier (Carpenter, 2008,

LingPipe). The parameters of this classifier are optimized with cross validation based on the prominent topic

as the label for each document.4 The classifier uses unigrams and the topic probabilities as features.

5.3.3 Selector

We use active learning to periodically select documents that are more beneficial in learning a good

classifier faster. The selector identifies informative documents based on an active learning strategy and
4We use blockSize = 1/#examples, minEpochs = 100, learningRate = 0.1, minImprovement = 0.001,

maxEpochs = 1000, and rollingAverageSize = 100. The regression is unregularized.
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directs users’ attention to them. For consistency, we use the same strategy in both conditions. Similar to

ALTO, documents are sorted and selected based on the uncertainty level of the classifier (U ):

Ud = HC [yd] , (5.4)

where HC [yd] is the classifier entropy. Entropy is a measure of how confused a classifierC is about the label

y of a document d. If the user has queried for a phrase, we also consider relevance scores of the documents:

UQ
d = 0.5 HC [yd] + 0.5 SQ,d, (5.5)

where SQ,d is the relevance score of document d to the user query Q (Equation 5.3).5 Intuitively, UQ
d

selects documents that are relevant to the user query and are informative for the classifier. We then mix the

documents selected by Equation 5.4 and Equation 5.5 by interleaving and display them to the user.

5.3.4 User Answering Process

The user’s answering process is the same in both conditions, with the difference that the TOPIC con-

dition allows users to examine the topics that are associated with each document. First, the user reviews

documents and labels them as relevant or irrelevant to the question. Then, the system provides a summary

of the documents they have deemed relevant as well as additional ones it predicts are also relevant. The user

reviews these documents and answers the question.

Users start by seeing a question and a set of document titles along with the amount given for each

grant.6 In the TOPIC condition, by default, the user sees the top twenty documents in the first topic (Fig-

ure 5.1a). Clicking on each topic shows the top twenty documents associated with that topic. In this condi-

tion, the documents are by default sorted based on their relevance to the topic. Users can sort them based on

the grant amounts if they want to focus on the grants with high amounts. In the LIST condition, the docu-

ments are sorted based on the grant amounts (Figure 5.1b). In both conditions, clicking on the “Read more”

link under the title of each document displays the full text of the document. The user can label documents

as relevant or irrelevant by clicking on"and%buttons (Figure 5.1).
5We standardize the entropy and relevance scores to have a mean of zero and standard deviation of one.
6When presenting the grant amounts to the users, we round the amounts to the nearest $1000.
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(a) Dialog box, step 1

(b) Dialog box, step 2

Figure 5.2: After the user has labeled ten documents, a dialog box opens with three steps to complete: (a)
top ten documents extracted by active learning, (b) top ten documents identified by the classifier as being
relevant, and top ten documents identified by the classifier as being irrelevant. After completing these three
steps, the user is redirected back to the main window to continue labeling documents.

After the user labels ten documents, the classifier runs and identifies some documents for the user to

label. These documents are displayed in a dialog box (Figure 5.2). The user should complete three steps
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with ten documents in each step in this dialog box.7 The following documents are displayed in each step:

(1) Step 1: top ten documents identified by the selector (active learning - Figure 5.2a).

(2) Step 2: Top ten documents identified by the classifier as being relevant (Figure 5.2b).

(3) Step 3: Top ten documents identified by the classifier as being irrelevant.

In Step 1, we display documents identified by the selector (the active learning component). Unlike

ALTO, where the selected documents are displayed in the main window, we show these documents in a

separate dialog box. This was done to avoid inconsistency and confusion in the sorting criteria in the main

interface: if the active learning documents are generated at a time that the user has made a query, we would

like to display documents sorted based on uncertainty (Equation 5.5). On the other hand, the user would

expect the documents to be sorted based on their relevance to the query.

In Step 2 and Step 3, the user can save time and confirm the classifier assigned labels by clicking on the

select all as relevant or select all as irrelevant buttons. Unlike ALTO, we do not assign labels automatically

to documents. The answer to quantitative questions can be dramatically changed if we automatically label

some documents as relevant. Therefore, we show the top ten documents that the classifier is confident they

are relevant or irrelevant and ask the user to confirm or correct these predictions.

Users can also make queries using a search button to see other documents that are related to the query.

The ranker (Section 5.3.1) sorts all documents based on their relevance to the user query and displays the

top fifty. These documents are, by default, sorted based on their relevance score to the query. Similar to

the documents in the main window, users can sort them based on the grant amounts. After they have gone

through these documents, they can remove the search results and go back to the main window.

Once the user labels enough documents and is ready to answer the question, we direct them to the

review page (Figure 5.3). In this page, the user sees a summary of the relevant documents they have

manually marked as well as the ones that the classifier has automatically identified as relevant8 and answers

the question. The classifier-identified relevant documents are divided in two sets: 1) top twenty documents,
7The user may ignore the dialog box and continue labeling in the main window by closing it.
8The classifier runs in the background using the training set the user has created by labeling document as relevant or irrelevant.
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User answer

Manually and automatically identified relevant documents

Question text

Figure 5.3: The review page in our interface. After the user has labeled enough documents and is ready to
answer the question, they see a summary of the relevant documents they have manually marked as well as
the ones that the classifier has automatically identified as relevant and answer the question.

which the classifier is most confident that they are relevant and 2) all other documents the classifier predicts

are relevant.9 The user then clicks on “Show the documents” to see the documents in each category, inspects

the content, and writes the answer based on the relevant document. Some basic statistics (sum, average,

maximum, and minimum) is also provided on the amounts of the existing relevant grants, which the user

can use to answer quantitative questions.

Discussion

In the process of piloting our study, users did not label a diverse set of documents as irrelevant, causing the

classifier to perform poorly both in identifying uncertain documents to point the user to and in identifying

relevant documents in the review page. Users did not spend time for exploring documents in the main

interface, which includes documents with diverse content. Instead, they focused on labeling documents
9The classifier-identified relevant documents in each set are displayed in a random order to help users make a realistic and

informed decision on whether or not to include the amount of all documents in a set in their final answer.
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Topic words Document Title
privacy, cybersecurity, mobile, cyber, in-
ternet, cloud, secure, attacks, services, iot

Establishment of a Mentored Cybersecurity Research
Workshop for Graduate Students and Support for the
Conference on Cybersecurity Education, Research and
Practice

soil, ecosystems, ecosystem, ecological,
nitrogen, forest, land, river, coastal, nutri-
ent

Collaborative Research: The Sustainability of Ripar-
ian Forests in Expanding Amazonian Agricultural Land-
scapes

speech, languages, linguistic, speakers,
children, english, words, sound, linguis-
tics, reading

Doctoral Dissertation Research: The role of tongue posi-
tion in voicing contrasts in cross-linguistic contexts

Table 5.1: Automatically discovered sorted lists of terms (topics) from our NSF-2016 data set. These topics
give users a sense of documents’ main themes and help users navigate through the corpus and find documents
of interest.

that were retrieved by the ranker. To avoid this issue and encourage users to take actions that will help the

system best, we do not allow the users to make queries in the first three minutes for each question. Users

are instructed to use the first three minutes to explore the documents (and topics in the TOPIC condition)

and get an overview of the corpus. Doing so encourages them to review and label a diverse set of irrelevant

documents, which in turn leads to a better classifier performance and better suggestions by the selector.

5.4 Experiments and Evaluation

We use LDA to generate topics. To choose the number of topics (K), we calculate the average topic

coherence (Lau et al., 2014, Equation 2.1) between K = 5 and K = 200 and choose K = 45, as it has the

maximum coherence score. After filtering words based on TF-IDF (Equation 2.2), we use Mallet (McCallum,

2002) to learn topics.10 Table 5.1 shows examples of topics and their highest associated documents from

our NSF-2016 corpus.

The questions that we ask users to answer are inspired by Questions for the Record (QFR).11 QFRs

are a set of questions that are asked following a hearing in Congress, which are held regarding the de-

tails and specifics of a proposed bill or funding request. We manually extract questions that are about the

amount of money the NSF has spent on a specific area of research from these hearings. After inspecting the
10We use α = 0.1 and optimize-interval= 10.
11https://www.congress.gov/congressional-record

https://www.congress.gov/congressional- record
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ID Question
Q1 How much was NSF’s budget for supporting cybersecurity research?
Q2 How much did NSF spend on Climate Change research?
Q3 How much was NSF’s budget for supporting research on causes and responses

to violence?

Table 5.2: The three QFR-inspired questions that we use for our experiments.

questions and getting feedback from several experts, we revise the questions so that they are more aligned

with the intended task. The selected questions are inspired by the actual questions that are asked during

the hearings—we only remove potential sources of ambiguity for non-experts. Table 5.2 shows the final

questions.

5.4.1 Experiment with Domain Experts

Our experiments require gold standard answers and gold standard relevant grant sets for each ques-

tion. Therefore, we first run the experiment with four domain experts. To recruit experts, we posted an

advertisement on the Science of Science and Innovation Policy (SciSIP) email list and hired four experts.

After providing them with detailed instructions of the system in the TOPIC condition,12 they interacted with

the system, labeled grants as relevant or irrelevant, and answered the questions. Each of the experts were

paid with a $35 Amazon gift card.

To measure the level of agreement between experts, we calculate Fleiss’ kappa (Fleiss, 1971), which is

commonly used as a statistical measure of how consistent the labels are among several annotators. Because

experts do not manually label all the grants, in addition to relevant and irrelevant labels, we first assign

neutral for the grants that the expert does not manually label and then calculate κ. If the experts agree

completely, then κ will equal to 1. If there is no agreement other than what would be expected by chance,

then κ will be less than zero. Based on the interpretation provided by Landis and Koch (1977), experts fairly

agree on Q1 (κ = 0.202) and on Q3 (κ = 0.286) and they slightly agree on Q2 (κ = 0.197).

We aggregate the answers and grant labels from our experts to find gold standard answers. Table 5.3
12We expect the gold answers to be generated with all the possible available information. Given that our hypothesis is that topics

provide an overview of the corpus to help users, we assign all experts to the TOPIC condition.
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Question M ± SD [median]

Gold Answer ($)
Q1 36, 623, 000 ± 18, 420, 130 [22, 086, 000]

Q2 265, 423, 500 ± 205, 283, 387 [90, 073, 500]

Q3 2, 800, 500 ± 333, 520 [2, 824, 000]

Table 5.3: Mean, standard deviation, and median of answers given for the three questions by experts.

Question M ± SD [median]
# ManRel # ManIrrel # FinalRel

Q1 61.25 ± 44.32 [52] 73.5 ± 71.85 [68] 119.75 ± 118.44 [72]

Q2 43.5 ± 23.56 [34.5] 90.75 ± 54.06 [93.5] 750.75 ± 1016.36 [393.5]

Q3 31.5 ± 13.48 [29] 133.75 ± 55.93 [143] 31.5 ± 13.48 [29]

Table 5.4: Mean, standard deviation, and median of the number of manually labeled grants as relevant (#
manRel), the number of manually labeled grants as irrelevant (# manIrrel), and the number of relevant grants
considered in the final answer (# FinalRel) for the three questions by experts.

shows the average final numerical answers and Table 5.4 shows the average number of labeled grants and

the average number of relevant grants that are considered in the final answer for the three questions. To

generate gold labels for each question, we first aggregate the grants that experts manually label as relevant

and irrelevant by finding the union of grants that experts manually mark.13 Next, we use the aggregated

relevant and irrelevant sets to train a classifier (Section 5.3.2) and predict the gold labels for the remaining

grants.

5.4.2 User Study

We conduct a user study with 20 participants to evaluate the effectiveness of topic overviews provided

by topic models against an alternative that lacks topic overviews.
13We exclude the grants that are manually marked as relevant (or irrelevant) by at least one expert from the aggregated irrelevant

(or relevant) set.
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Figure 5.4: Mean final answer of experts compared to the mean final answer of participants in the LIST

condition and TOPIC condition for the three questions. Error bars indicate one standard errors. There is
no significant difference between the LIST condition and the TOPIC condition in terms of participants’ final
answers to the three questions.

5.4.2.1 Method

Our recruitment procedure is similar to the procedure in Chapter 4. We use the freelance marketplace

Upwork to recruit 20 online participants, all of whom satisfy the same selection criteria. Participants are

randomly assigned to either the LIST condition or the TOPIC condition. We end with ten participants in each

condition.

Participants completed a demographic questionnaire (Appendix C.1), viewed a video of task instruc-

tions, and then interacted with the system and answered the three questions. Participants had a maximum of

twenty minutes for each question.14 The session ended with a survey (Appendix C.2) similar to the one in

the ALTO study. Each participants was paid fifteen dollars. For statistical analysis, we use one-way ANOVAs

with Aligned Rank Transform (Wobbrock et al., 2011, ART).

5.4.2.2 Results

Do topics help users answer questions more accurately and faster?

We compare the answers provided by participants to the aggregated gold answers provided in table 5.3.

Figure 5.4 shows the mean final answer of participants in the LIST condition, participants in the TOPIC

condition, and the experts for each of the three questions. There is no significant difference between the LIST

14Twenty minutes of activity, excluding system time to classify, display dialog box, and display the review page.
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Figure 5.5: Mean time spent to answer a question by participants in the LIST condition and TOPIC condition
for the three questions. Error bars indicate one standard errors. There is no significant difference between the
LIST condition and the TOPIC condition in terms of the time it takes for participants to answer the question.
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Figure 5.6: Mean agreement (the fraction of gold relevant grants that is considered as relevant in the final
answer) of participants in the LIST condition and the mean agreement of participants in the TOPIC condition
with experts for the three questions. Error bars indicate one standard errors. There is no significant difference
between the LIST condition and the TOPIC condition in terms of participants’ agreement with experts.

condition and the TOPIC condition in terms of the value of final answers to all three questions. Additionally,

Figure 5.5 shows the mean time participants spend for answering each of the three questions. There is no

significant difference in the time it takes for participants to answer the questions between the LIST condition

and the TOPIC condition.

Do participants who see topic overviews agree with experts more?

We define a participant’s agreement with experts to be the fraction of gold relevant grants that the partici-

pant considers as relevant in her final answer. Figure 5.6 shows the mean agreement of participants in the

LIST condition and the mean agreement of participants in the TOPIC condition with experts for the three
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Figure 5.7: Mean precision (top) and recall (bottom) of the relevant grants for the three questions. Error
bars indicate one standard errors. Participants in the LIST condition have significantly higher precision in
Q2. No other significant difference is found between the LIST condition and the TOPIC condition.

questions. There is no significant difference between the LIST condition and the TOPIC condition in terms

of the participants’ agreement with experts.

Do topics help users create a better training set for classifiers?

One of our hypotheses was that topic models will help users find documents of interest, e.g., relevant doc-

uments to a question. To see whether this hypothesis holds, we learn a classifier using the training set that

each participant creates by manually marking relevant and irrelevant grants. This classifier predicts whether

the remaining grants are relevant or irrelevant. We then compare these predictions against the gold labels

(generated from aggregated labels by experts, Section 5.4.1). Figure 5.7 shows the mean precision and recall

of participants in the LIST condition and the TOPIC condition. While participants in the LIST condition have

significantly higher precision for Q2 than participants in the TOPIC condition (F (1, 18) = 15.18, p = .001),

there is no other significant difference between the LIST condition and the TOPIC condition in terms of
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Figure 5.8: Mean number of unique query words and mean number of unique query words that appear in
topic words. Error bars indicate one standard errors. There is no significant difference between the LIST

and TOPIC condition in terms of the number of unique words in queries and the number of unique words in
queries that are topic words.

precision and recall for the three questions.

Do topics lead to insights for information search?

Making queries and searching for information helps users find grants that are about specific phrases and

exposes users to different sets of grants. Participants in the TOPIC condition make significantly more queries

(M = 1.77 and median = 1) than participants in the LIST condition (M = 1.07 and median = 1) for all

questions combined (F (1, 58) = 7.66, p = .007). One of our hypotheses was that topics will help users

make better and more queries. Figure 5.8 shows the mean number of unique query words and the mean

number of unique query words that appear in topic words for each question. While there is no statistically

significant difference between the LIST condition and the TOPIC condition in terms of the number of unique

words in queries and the number of unique words in queries that are topic words, the results show some

evidence of participants being inspired by topics to make more queries that are related to topic words. For

example, a participant in the TOPIC condition searched for ecosystem in Q2, which appears in the topic soil,
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ecosystems, ecosystem, ecological, nitrogen, forest, land, river, coastal, nutrient. Another participant in the

topic condition searched for atmosphere for the same question, which appears in another topic atmospheric,

weather, tropical, cloud, precipitation, variability, atmosphere, clouds, el, ni.

Subjective Ratings:

One-way ANOVAs with ART for each of the subjective ratings revealed two significant results:

(1) Participants in the TOPIC condition find the task significantly less mentally demanding (M = 10.1

and median = 10) than participants in the LIST condition (M = 15 and median = 15) on a scale

from 1 (low) to 20 (high) (F (1, 18) = 4.94, p = .039).

(2) Participants rate the interface in the TOPIC condition (M = 5.7 and median = 5.5) significantly

more helpful than the interface in the LIST condition (M = 4.5 and median = 4) on a scale from

1 (not helpful at all) to 7 (very helpful) (F (1, 18) = 7.02, p = .016).

Participants in the TOPIC condition find the topic information to be useful in completing the task

(M = 6.4 and median = 6.5) on a scale from 1 (not helpful at all) to 7 (very helpful). On a similar scale,

participants in both conditions rate the search for queries feature helpful (M = 5.95 and median = 6).

Overall, participants were positive about their experience with the system, rating their overall satisfaction

with the interface positively (M = 5.7 and median = 6) on a scale from 1 (not satisfied at all) to 7 (very

satisfied).

5.5 Discussion

Following our results in Chapter 4 that showed the effectiveness of topic overviews in helping users

induce labels for large corpora and create the training set for classifiers, we had hypothesized that topic

overviews will be helpful for users to understand large corpora and answer specific questions about them.

However, our user study results did not reveal such an effect. We believe this unexpected outcome was due

to several factors.
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First, the NSF-2016 data set and the questions that we used for our experiments have technical and

scientific content and require expertise. This makes the task more mentally demanding and frustrating for

non-experts. We believe that giving users the ability to choose the domain and questions that they are

invested in, they care about, and have basic knowledge on could potentially lead to different results.

Reliability of gold answers is another related issue. We used the data from experts, who at least had

strong interest in science policy and were extensively instructed on the system to find gold answers and gold

relevant and irrelevant grants for each question. However, the agreement among the experts was worryingly

low, probably due to a high amount of variation in the data (Section 5.4.1).

Similarly, we observed a high amount of variation in the data from non-experts in our user study. One

major source of variability comes from the sets of relevant grants that users include in their final answer

(Figure 5.3): if a user includes the classifier identified relevant grants in the final answer and another user

does not, their answers will be dramatically different, even if the grants that they manually marked were

similar. Additionally, running the study with a larger sample size can reduce the amount of variation in the

data.

One clear difference of the experiments in this chapter with the experiments in Chapter 4 is in assign-

ing binary labels (relevant or irrelevant) to documents rather than topical labels. While we hypothesized

that topic overviews would guide users in searching for and exploring documents of interest, they could also

serve as a source of distraction, especially if their benefit is not immediately clear for users.

The ranker (Section 5.3.1) was included in the framework to enable users find relevant documents to

the queries they make. Because searching for keywords is a relatively intuitive and natural interaction for

humans, it can serve as a distraction from other features of the framework, i.e., topic overviews. Particularly,

if users trust the ranker and are confident that they can interact with the ranker effectively, they will focus on

the ranked documents and ignore the overview of the corpus in terms of topics. Another source of distraction

from topics is the dialog box, which periodically opens and active learning selected documents along with

relevant and irrelevant documents to confirm are displayed (Figures 5.2a and 5.2b). This dialog box is

identical in the TOPIC condition and the LIST condition—the topic overviews are not displayed. Therefore,

users in the TOPIC condition cannot benefit from the topic overview information when they are spending the
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time to mark documents in the dialog box.

5.6 Summary

In this chapter, we introduced a framework to test the effectiveness of topic models in helping users

understand a large document collection, find documents of interest, and find answers to a set of questions

from the documents in the context of a real-world use case. We ran a user study to evaluate the effective-

ness of topic overviews provided by topic models against an alternative that lacks topic overviews. Our

results showed that topics inspired participants to further explore the corpus by searching for information.

Self-reported measures showed that participants thought topic information was helpful in doing the task.

However, our experiment revealed no significant effect of topic information existence in helping users an-

swer the questions, find relevant documents, and train a classifier. We hope that the findings and discussions

in this chapter will encourage more empirical studies of the effectiveness of topic models in helping humans

browse and understand large document collections.



Chapter 6

Conclusion and Future Directions

In this thesis, we discussed the problem of interpretability in machine learning from an interdisciplinary

and human-in-the-loop perspective. We developed and proposed a template for human-subject experiments

that isolates and measures the effect of supervised model interpretability on human understanding, behavior,

and trust. Additionally, we proposed interactive frameworks that exploit interpretable and unsupervised

machine learning models to help users complete real-world tasks. We evaluated the proposed frameworks

with controlled user studies. These frameworks have some limitations and can be extended in several aspects

to improve user experience and performance.

In Chapter 3, we introduced an experimental template for measuring the effect of several manipulable

factors (that are thought to affect interpretability) on users’ trust and their abilities to simulate the model’s

predictions and detect the model’s mistakes. The user interactions with supervised regression models in

these experiments were very limited. Supporting users’ interaction with the model can help us understand

human abilities and behaviors better. For example, allowing users to manipulate regression coefficients

and/or do feature engineering by removing features or adding interaction features can lead to both better

performance of users and better understanding of interpretability.

Our proposed interactive framework in Chapter 4 (ALTO) is currently deployed in the standard work-

flow of Snagajob,1 an online employment website, to categorize job postings efficiently. ALTO was evaluated

and is currently used in an annotation task that requires an understanding of thematic structure in large cor-

pora. Evaluating the generalizability of ALTO on other similar tasks such as sentiment annotation requires
1https://www.snagajob.com/

https://www.snagajob.com/
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more user studies to understand how humans use topical overviews which are not directly and immediately

helpful for successfully completing a task.

Interactive systems that use machine learning models to guide humans in completing tasks should

reduce sources of distraction and possible advert effects of automatic suggestions by models. For example,

automatically generated topics in the frameworks introduced in Chapter 4 and Chapter 5 might not be as

useful to an expert user and thus lead to distraction and degradation in performance. Allowing users to

debug or personalize topics (Hu et al., 2014; Hoque and Carenini, 2015; Fails and Olsen Jr, 2003) in these

interfaces can prevent distraction and improve user experience.

Our experiments should encourage more empirical studies in the machine learning community and

our findings and insights should help develop the next-generation machine learning models considering

humans and interactivity as a factor. We now discuss future directions.

6.1 Future Directions

Extensions to ALTO.

We can further improve ALTO in Chapter 4 to help users gain better and faster understanding of text data.

Currently, ALTO limits users to view only 20K documents at a time and allows for one label assignment per

document. Moreover, the topics are static and do not adapt to better reflect users’ labels. Users should have

better support for browsing documents and assigning multiple labels. Topics can also improve via supervised

topic models such SLDA (Mcauliffe and Blei, 2007), LLDA (Ramage et al., 2009), or SANCHOR (Nguyen

et al., 2015) as users add labels. Given that inferring such topics is often slow and not suitable for an

interactive system, we first need to evaluate their effectiveness and efficiency with synthetic experiments.2

Additionally, with slight changes to what the system considers a document, we believe ALTO can be extended

to NLP applications other than classification, such as named entity recognition or semantic role labeling, to

reduce the annotation effort.

More feedback and involvement of users.
2This work is in collaboration with Thang Nguyen and Jordan Boyd-Graber and is in submission.
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One shortcoming of the frameworks in Chapter 3 and Chapter 5 is the lack of explicit feedback to users

on how they have done so far. In experiments in Chapter 3, we tried to do so in the training phase, where

participants saw the actual prices of apartments and how that compared to their predictions of the price.

Similarly, in Chapter 5, participants were instructed to use automatically identified relevant documents in

the review page as an evaluation of how reasonable they had marked relevant and irrelevant grants. We can

provide more feedback followed by clear instructions on what actions users can take to correct an automatic

decision. By enabling users to do so, we can both improve users’ experience and the systems’ performance.

More critical and familiar domains.

With the ubiquity of machine learning in many domains, it is important to evaluate methods and models

in the context and domain of interest. Therefore, if the goal is to evaluate the system with non-expert

participants, we should select domains that most people are familiar with and care about. The real-estate

data that we used for experiments in Chapter 3 would be irrelevant to many participants who do not reside

in New York City and the NSF data that we used in Chapter 5 can potentially be hard to understand for

participants without background and interest in science. As interpretability is usually a concern in critical

domains such as healthcare, it is worth experimenting with these domains that non-expert users are familiar

with and are aware of the potential consequences of automatically made prediction.

Measures of trust in the context of machine learning.

Interpretability in machine learning is often motivated by people’s trust in models. In Chapter 3, we experi-

mented and measured three different metrics for trust: the amount to which users follow the model, weight

of advice, and the amount to which they mimic the model. However, measuring trust of users in different

models and in different scenarios is not trivial and remains a persistent problem. While we believe that trust

should be measured based on people’s abilities and behavior using a task-driven approach, we think the

subfield of interpretability in machine learning can benefit from more research on appealing metrics of trust

in different scenarios.
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Interpretability of different families of models.

Measuring and comparing interpretability of different families of models (e.g., decision trees vs. deep neural

networks) is a challenging yet interesting problem that has a close connection to the work in this thesis.

We believe similar experiments to the experiments proposes in Chapter 3 can shed light on how humans

understand and make decisions with the help of different families of models. However, the first challenge

and interesting future direction is to come up with consistent visualizations of models that change as little

as possible between conditions (i.e., different families of models) to be able to run controlled studies.

Understanding when and why interpretability is important.

The work in this thesis focused on interpretability motivated by being able to explain why and how a model

makes predictions so that humans can understand how these models will affect people and decide whether

to trust them. On the other hand, our user study results in Chapter 3 regarding the cases that the model made

highly inaccurate predictions indicated that model transparency lowers abilities of users in detecting model’s

mistakes. A related psychology research study found that people are more easily convinced if there is an

explanation, even if the explanation is bad, compared to when there is no explanation (Langer et al., 1978).

We believe the unexpected finding in our study is worth exploring further to understand in what scenarios

interpretability can be helpful and potentially, when can interpretability harm people’s informed decision

making and lead to over-trust.
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Appendix A

Chapter 3 Study Material

A.1 Instructions for the First Experiment

The following instructions were shown to participants assigned to the CLEAR-2 condition in our first

experiment on Mechanical Turk. The instructions for other conditions and experiments were adapted from

these instructions with minimal changes.



5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
!! IMPORTANT !! Your session will expire in 60 minutes. Please make sure to
complete the HIT in 60 minutes!

You are here to predict New York City apartment prices in the Upper West Side
with the help of a model.
There will be a training phase and a testing phase:

In the training phase, you will see examples of apartments along with what the
model predicted they sold for and the actual price they sold for.
In the testing phase, you will see new apartments and make your own prediction
about what the model will predict and what the actual price is.

Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
You will see these properties for each apartment:

 Previousr Next s

105



5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
A model predicts apartment prices. We will explain how this model works in the next
page.

This model uses # Bathrooms and Square footage of the apartment to make its
prediction.
The graph at the bottom shows this price visually.

 Previousr Next s

106



5/23/2018 Predicting NYC Apartment Prices

http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
Here is how the model has made its prediction:
Each bathroom is worth $350,000. Therefore, $350,000 is multiplied by the number of
bathrooms and added to the price. This is repeated for Square footage. Finally, the
adjustment factor of $260,000 is subtracted and a price is predicted.
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Training Phase Instructions
There will be ten apartments in the training phase.
For each apartment, you will complete the following two steps:
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Training Phase Instructions-Step 1
In step 1, given the model's prediction, you will state what you think the apartment
actually sold for:
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/2

Training Phase Instructions-Step 2
In step 2, you will see what this apartment actually sold for and how you and the model
did:
There are three graphs at the bottom:

The first graph shows the model's prediction of the price of this apartment.
The second graph shows what you thought this apartment actually sold for.
The third graph shows what this apartment actually sold for.
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Instructions
Once you have reviewed all ten apartments in the training phase, you will move to the
testing phase.
In the testing phase, you will see twelve new apartments and you will guess the price
each was sold for.
NOTE: You will not see the actual prices for these apartments in the testing phase. Once
you are done, you will see how you did overall.
For each apartment, you will complete the following three steps:
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Testing Phase Instructions-Step 1
In step 1, you will state what you think the model will predict and how confident you are
that the model will make that prediction:
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Testing Phase Instructions-Step 2
In step 2, you will see what the model predicts and you will state how confident you are
that the model made the right prediction:
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Testing Phase Instructions-Step 3
In step 3, given the model's prediction, you will state what you think this apartment
actually sold for and your confidence:
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Instructions
Once you are done with twelve apartments in the testing phase, you will see your results
and how you did overall.
You are now done with all the instructions. Thanks for participating in this experiment!

You must provide correct answer to the following question to proceed:

 

Each apartment has the following 8 properties:

# Bedrooms, # Bathrooms, Square footage, Total rooms, Days on the market, Maintenance
fee, Subway distance, and School distance

How many of these apartment properties does the model use to make its prediction?

 1 property  
 2 properties 
 3 properties  
 4 properties  
 5 properties  
 6 properties  
 7 properties  
 8 properties  

 

 Submit

 Previousr Next s
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http://0.0.0.0:22361/exp?hitId=debugQASY87&assignmentId=debug5692FP&workerId=debugPRLWSJ&mode=debug 1/1

Starting the Training Phase...
You will now start the training phase.
You will see ten apartments, the price that the model predicted, and the price that they
were actually sold for.
Pay attention to apartment properties and how they relate to the actual price and the
model's prediction.
You won't be able to go back to the training phase once you get to the testing
phase!

 Previousr Begin training phase s
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Appendix B

ALTO Study (Chapter 4) Material

B.1 Background Questionnaire

Contains the survey that participants filled before starting the task in the TA and TR conditions. For

participants in the LA and LR conditions, the question about familiarity with topic model softwares was

omitted.



5/23/2018 Background Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSetmiRGlFds3TV0X7PSMqjmRHVUiHa-1r1NtWE7JjI7dcN0cA/viewform 1/3

Background Questionnaire 2
* Required

I have read and understand this agreement, and I accept and agree to all of
its terms and conditions.

*

Please enter your ID. *

Your answer

Please enter your email. *

Your answer
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5/23/2018 Background Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSetmiRGlFds3TV0X7PSMqjmRHVUiHa-1r1NtWE7JjI7dcN0cA/viewform 2/3

Female

Male

Prefer not to say

Very limited

1 2 3 4 5 6 7

Very pro�cient

Not interested

1 2 3 4 5 6 7

Very
interested

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

Please enter your age. *

Your answer

Gender *

What is your main occupation? (If you are a student, please
indicate your major.) *

Your answer

How would you rate your pro�ciency in reading English articles?
*

How interested are you in US politics? *
Hint: 1= The only political �gure I know is Obama. 4= I know what the US political parties stand for
on issues such as national defense, healthcare, and taxes. 7= I take an active interest in politics,
track the passage of bills, and can name majority and minority leaders in both houses of congress.

How familiar are you with topic model softwares? *
Choose

SUBMIT

 Forms
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B.2 Post Study Questionnaire

Contains the survey that participants filled after doing the task in the TA and TR conditions. For

participants in the LA and LR conditions, the question about topics was omitted.



5/23/2018 Post Study Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSdIaiPHHQ0MVx7C5F5G-dERg4QjfW_lKZcxBPngKLjSUnJ-hw/viewform 1/3

Post Study Questionnaire 2
* Required

Female

Male

Prefer not to say.

Please enter your ID. *

Your answer

Please enter your email. *

Your answer

Please enter your age. *

Your answer

Gender *

Mental Demand: How mentally demanding was the task?
(1:Low-20:High) *

Your answer

Physical Demand: How physically demanding was the task?
(1:Low-20:High) *

Your answer

121



5/23/2018 Post Study Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSdIaiPHHQ0MVx7C5F5G-dERg4QjfW_lKZcxBPngKLjSUnJ-hw/viewform 2/3

Very easy

1 2 3 4 5 6 7

Very di�cult

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

Temporal Demand: How hurried or rushed was the pace of the
task? (1:Low-20:High) *

Your answer

Performance: How successful were you in accomplishing what
you were asked to do? (1:Good-20:Poor) *

Your answer

Effort: How hard did you have to work to accomplish your level
of performance? (1:Low-20:High) *

Your answer

Frustration: How insecure, discouraged, irritated, stressed, and
annoyed were you? (1:Low-20:High) *

Your answer

How easy or di�cult was it to come up with good labels for the
documents? *

To what extent did the interface help you in labeling documents?
*

To what extent did the (topic) theme information help in
completing the task? *
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5/23/2018 Post Study Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSdIaiPHHQ0MVx7C5F5G-dERg4QjfW_lKZcxBPngKLjSUnJ-hw/viewform 3/3

Not satis�ed
at all

1 2 3 4 5 6 7

Very satis�ed

Not satis�ed
at all

1 2 3 4 5 6 7

Very satis�ed

yes

no

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

Rate your overall level of satisfaction with the interface. *

Rate your overall satisfaction with the �nal document labels. *

If you had more time, would you add/edit document labels
further? *

NEXT

 Forms
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Appendix C

Science Policy Study (Chapter 5) Material

C.1 Background Questionnaire

Contains the survey that participants filled before starting the task in the TOPIC condition. For partic-

ipants in the LIST condition, the question about familiarity with topic model software was omitted.



5/23/2018 Background Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSeM2ddyqXWOGGVAW2-aTBKHqYSgBAKsI-aDX-y-xbBdq_KnMQ/viewform 1/2

Background Questionnaire 2
* Required

Very limited

1 2 3 4 5 6 7

Native
Pro�cient

Not interested
at all

1 2 3 4 5 6 7

Very
interested

Not familiar at
all

1 2 3 4 5 6 7

Extremely
familiar

Please enter the user name (ID) you will use to login to the
system. *

Your answer

Please enter your email. *

Your answer

What is your main occupation? *

Your answer

How would you rate your pro�ciency in reading articles in
English? *

How interested are you in science in general? *

How familiar are you with topic modeling software? *
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C.2 Post Study Questionnaire

Contains the survey that participants filled after doing the task in the TOPIC condition. For participants

in the LIST condition, the question about topics was omitted.



5/23/2018 Post Study Questionnaire 2

https://docs.google.com/forms/d/e/1FAIpQLSemIPjih18FC7cj8p2CkXg9QE0kSi1jHkjQXsrk16um0S5EdA/viewform 1/4

Post Study Questionnaire 2
* Required

Female

Male

Prefer not to say

Please enter your ID. *

Your answer

Please enter your email. *

Your answer

Please enter your age. *

Your answer

Gender *

Mental Demand: How mentally demanding was the task? (1:Low-
20:High) *

Your answer
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https://docs.google.com/forms/d/e/1FAIpQLSemIPjih18FC7cj8p2CkXg9QE0kSi1jHkjQXsrk16um0S5EdA/viewform 2/4

Very easy

1 2 3 4 5 6 7

Very di�cult

Physical Demand: How physically demanding was the task? (1:Low-
20:High) *

Your answer

Temporal Demand: How hurried or rushed was the pace of the
task? (1:Low-20:High) *

Your answer

Performance: How successful were you in accomplishing what you
were asked to do? (1:Good-20:Poor) *

Your answer

Effort: How hard did you have to work to accomplish your level of
performance? (1:Low-20:High) *

Your answer

Frustration: How insecure, discouraged, irritated, stressed, and
annoyed were you? (1:Low-20:High) *

Your answer

How easy or di�cult was it to mark documents as relevant or
irrelevant? *
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https://docs.google.com/forms/d/e/1FAIpQLSemIPjih18FC7cj8p2CkXg9QE0kSi1jHkjQXsrk16um0S5EdA/viewform 3/4

Very easy

1 2 3 4 5 6 7

Very di�cult

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

Not helpful at
all

1 2 3 4 5 6 7

Very helpful

How easy or di�cult was it to answer questions based on the
relevant documents? *

To what extent were the summary statistics about relevant
documents helpful? *

To what extent was searching for phrases helpful? *

To what extent did the interface help in answering questions? *

To what extent did the (topic) theme information help in completing
the task? *
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https://docs.google.com/forms/d/e/1FAIpQLSemIPjih18FC7cj8p2CkXg9QE0kSi1jHkjQXsrk16um0S5EdA/viewform 4/4

Not satis�ed at
all

1 2 3 4 5 6 7

Very satis�ed

Not satis�ed at
all

1 2 3 4 5 6 7

Very satis�ed

yes

no

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

Rate your overall level of satisfaction with the interface. *

Rate your overall satisfaction with the �nal answers you provided. *

If you had more time, would you explore documents further and
provide better answers? *

NEXT
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