
Uncertainty Quantification of Coupled Problems with Applications

to Lithium-ion Batteries

by

Mohammad Hadigol

M.Sc., University of Tehran, 2010

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace Engineering Sciences

2016



This thesis entitled:
Uncertainty Quantification of Coupled Problems with Applications to Lithium-ion Batteries

written by Mohammad Hadigol
has been approved for the Department of Aerospace Engineering Sciences

Prof. Alireza Doostan

Prof. Kurt Maute

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the
form meet acceptable presentation standards of scholarly work in the above mentioned discipline.



iii

Hadigol, Mohammad (Ph.D., Aerospace Engineering Sciences)

Uncertainty Quantification of Coupled Problems with Applications to Lithium-ion Batteries

Thesis directed by Prof. Alireza Doostan

This thesis includes three main parts that are concerned with the propagation of uncertainty across

high-dimensional coupled problems with applications to Lithium-ion batteries (LIBs). In all three parts,

spectral methods involving polynomial chaos expansions (PCEs) are employed to quantify the effects of

propagating the input uncertainties across the system.

In the first part, a stochastic model reduction approach based on low-rank separated representations

is proposed for the partitioned treatment of the uncertainty space in coupled domain problems. Sequential

construction of the sub-domain solutions with respect to the stochastic dimensionality of each sub-domain

enabled by the classical FETI method drastically reduces the overall computational cost and provides a well

suited framework for parallel computing. Two high-dimensional stochastic problems, a 2D elliptic PDE

with random diffusion coefficient and a stochastic linear elasticity problem, have been considered to study

the performance and accuracy of the proposed stochastic coupling approach.

A sampling-based UQ framework to study the effects of input uncertainties on the performance of

LIBs using a full-order physics-based electrochemical model is presented in the second part. Developed

based on sparse PCEs, the proposed UQ technique enables one to study the effects of LIB model uncer-

tainties on the cell performance using a fairly small number of battery simulations. An LiC6/LiCoO2 cell

with 19 random parameters has been considered to study the performance and accuracy of the proposed UQ

approach. It was found that the battery discharge rate is a key factor affecting not only the performance

variability of the cell, but also the determination of most important random inputs.

The third part provides a comprehensive review of the sampling techniques for the regression-based

PCEs. Traditional sampling methods such Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal de-

sign of experiments, Gaussian quadratures as well as more recent techniques such as coherence-optimal and

randomized quadratures are discussed. In addition, hybrid sampling methods referred to by the alphabetic-
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coherence-optimal techniques which are a combination of the alphabetic optimality criteria and the coherence-

optimal sampling method are proposed. It was observed that the alphabetic-coherence-optimal techniques

outperform other sampling methods, specially when high-order PCEs are employed and/or the oversampling

ratio is low.
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Chapter 1

Introduction

As far as the laws of mathematics refer to reality, they

are not certain; and as far as they are certain, they do

not refer to reality.

ALBERT EINSTEIN

1.1 Uncertainty Sources

Simulation-based prediction of most physical systems is subject to either lack of knowledge about

the governing physical laws or incomplete/limited information about model parameters such as material

properties, initial, or boundary conditions. The former is referred to as epistemic uncertainty, while the later

is known as aleatory uncertainty. Epistemic uncertainty can be reduced by increasing our knowledge, e.g.

performing more experimental investigations and/or developing new physical models. In contrast, aleatory

uncertainty cannot be reduced as it arises naturally from observations, e.g. measurements, of the system.

Additional experiments can only be used to better characterize the variability. It is known that measurements

of any physical quantity can never be exact and the measured value is known within a certain range of

uncertainty. The measurement uncertainty is usually divided into two components: random and systematic

uncertainties [103]. Unknown and unpredictable changes in the experiment cause random uncertainties

while systematic uncertainties usually come from measuring instruments. Random uncertainties may be

reduced by averaging over a larger number of observations, but systematic errors are very hard to detect

and most of the times non-reducible. Since the measurement errors are inevitable, a reliable and more
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realistic computer simulation should be able to take into account for the uncertainties in the model input

parameters. Uncertainty quantification (UQ), an emerging field in computational engineering and science, is

concerned with the development of rigorous and efficient solutions to this exercise. In general, UQ provides

tools for assessing the credibility of model predictions and facilitating decision making under uncertainty

[146, 22, 205]. UQ is also utilized for quantitative validation of simulation models [258, 148, 155] and

robust design optimization under uncertainty [19, 67, 13].

Next, a brief review of different UQ techniques available in the literature in presented.

1.2 Uncertainty Quantification Techniques

A major class of UQ approaches are probabilistic where uncertain parameters are represented by

random variables/processes. Non-probabilistic approaches such as fuzzy set theory [267], interval theory

[164] and evidence theory [213] are more popular in areas like cognitive sciences, robotics and economics.

Non-probabilistic UQ methods are not discussed in this work.

Although it is difficult to build a proper taxonomy of the UQ techniques, in general, one may classify

them into two groups: intrusive and non-intrusive methods. Reformulation of the governing equations

of the mathematical models describing the physical processes is needed when one employs intrusive UQ

techniques. In other words, one needs to modify the existing deterministic solvers. On the other hand,

non-intrusive UQ schemes are developed to facilitate the use of existing deterministic solvers and treat them

as a black box. These methods work based on sampling the output quantity of interest (QoI) using these

deterministic black boxes.

The most general sampling based UQ technique is the classical Monte Carlo (MC) method. MC

schemes work based on generating independent samples of the random inputs according to their prescribed

probability density function (PDF) and then simulating a (deterministic) black box model to obtain the real-

izations of the output QoI. Then, one may compute the statistics, such as mean and variance, as well as the

PDF of the output QoI using sample averages from the ensemble of realizations of the output QoI. Simplic-

ity and straightforward application, ability to use the existing solvers as black box, and their independence

of the number of random inputs are the main advantages of the MC sampling method. It is known that
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the main drawbacks of MC schemes are slow convergence rate and high computational cost. Numerous

sampling strategies such as Latin hypercube sampling [116], Markov chain Monte Carlo sampling [98],

quasi-Monte Carlo sampling [174], and importance sampling [231, 174] have been proposed to accelerate

the convergence rate of the classical MC method. Although these sampling strategies have shown some

promising improvements, they suffer from a limited range of applications.

Among the probabilistic UQ techniques, stochastic spectral methods [95, 258] based on polynomial

chaos expansions (PCEs) [254, 34] have received special attention due to their advantages over traditional

UQ techniques such as perturbation-based [134] and MC sampling methods. In particular, under certain reg-

ularity conditions, these schemes converge faster than MC sampling methods [149] and, unlike perturbation

methods, are not restricted to problems with small uncertainty levels [95]. Stochastic spectral methods are

based on expanding the solution of interest in PC bases. The coefficients of these expansions are then com-

puted, for instance, via Galerkin projection [95], referred to as stochastic Galerkin (SG), or pseudo-spectral

collocation [259, 153], named stochastic collocation (SC).

The standard Stochastic Galerkin projection [95] is an intrusive approach. Since the PC expansions

provided an elegant mathematical framework for the UQ purposes, researchers have also developed non-

intrusive PC expansion techniques [113, 70, 59]. As the PC-based techniques are the main UQ method in

this work, a detailed description of these schemes is presented in the following.

1.2.1 Polynomial chaos expansion

Polynomial chaos expansion was first introduced by Wiener in 1938 [254]. It was reintroduced to the

engineering field in 1991 by Ghanem and Spanos [95] for the problems with Gaussian input uncertainties

and later extended for non-Gaussian random inputs by using the orthogonal polynomial sets of the Askey

scheme as a basis (generalized PC expansion) [260].

Let (Ω, T ,P) be a complete probability space, where Ω is the sample set and P is a probability

measure on the σ−field T . Also assume that the system input uncertainty has been discretized and approx-

imated by random variables, such that the vector ξ = (ξ1, · · · , ξd) : Ω → Rd, d ∈ N, represents the set of

independent random inputs. We also assume that the PDF of random variable ξk is denoted by ρ(ξk), while
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ρ(ξ) represents the joint PDF of ξ. The truncated PC representation of a finite variance random process

u(x0, t0, ξ) for a fixed x0 and t0 defined on (Ω, T ,P) is given by

û(x0, t,0 ξ) =
∑
i∈Id,p

αi(x0, t0)ψi(ξ), (1.1)

where αi(x0, t0) are the deterministic coefficients and ψi(ξ) are the multivariate PC basis functions. The

basis functions ψi(ξ) in (1.1) are generated from

ψi(ξ) =

d∏
k=1

ψik(ξk), i ∈ Id,p, (1.2)

where ψik(ξk), k = 1, . . . , d, are univariate polynomials of degree ik ∈ N0 := N ∪ {0} orthogonal with

respect to ρ(ξk), i.e.,

E[ψikψjk ] =

∫
ψik(ξk)ψjk(ξk)ρ(ξk)dξk = δikjkE[ψ2

ik
], (1.3)

see, e.g., Table 1.1. Here, δikjk is the Kronecker delta and E[·] denotes the mathematical expectation op-

erator. The multi-index i in (1.1) is i = (i1, · · · , id) ∈ Id,p and the set of multi-indices Id,p is defined

by

Id,p = {i = (i1, · · · , id) ∈ Nd0 : ‖i‖1 6 p}, (1.4)

where ‖ · ‖1 is the l1 norm and the size of Id,p, hence the number P of PC basis functions of total order not

larger than p in dimension d, is given by

P = |Id,p| =
(p+ d)!

p!d!
. (1.5)

Table 1.1: Correspondence of Wiener-Askey polynomial chaos and probability distribution of the corresponding ran-
dom variables [260].

ρ(ξk) Polynomial type Support
Gaussian Hermite (-∞,+∞)
Gamma Laguerre (0,+∞)

Beta Jacobi [a,b]
Uniform Legendre [a,b]
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Following the orthogonality of the polynomials ψik(ξk) and given that the ξk are independent, the PC

basis functions ψi(ξ) are also orthogonal, i.e., E[ψiψj ] = δi,jE[ψ2
i ]. The truncated PC expansion in (1.1)

converges in the mean-square sense as p → ∞ when u(x0, t0, ξ) has finite variance and the coefficients

αi(x0, t0) are computed from the projection equation αi(x0, t0) = E[u(x0, t0)ψi]/E[ψ2
i ] [260]. In (1.1),

we have used the notation û(x0, t0, ξ) to distinguish the truncated PC approximation of u(x0, t0, ξ) from its

true value. For the sake of brevity, we suppress the dependence of u and α on x0 and t0. For convenience,

we also index the PC basis functions by {1, . . . , P} so that there is a one-to-one correspondence between

{ψj(ξ)}Pj=1 and {ψi(ξ)}i∈Ip,d
.

Having defined the orthogonal PC basis functions ψi(ξ), the next task in PC-based methods is to com-

pute the coefficients of the solution expansion αi, either intrusively or non-intrusively, which is discussed

next.

1.2.1.1 Intrusive PC-based methods

In an intrusive PCE approach, dependent variables and random inputs are replaced with their PC

representations in the governing equations and the resulting residual is projected onto the stochastic PC

expansion bases via a Galerkin formulation. The final system of equations to be solved in an intrusive PC

expansion method is P times larger than the size of the deterministic counterpart. This approach requires a

thorough modification of the existing deterministic solvers, which for complex problems might be difficult

and time-consuming. Intrusive SG techniques will be discussed in more details in Section 2.3.1.

1.2.1.2 Non-intrusive PC-based methods

On the other hand, non-intrusive methods facilitate the use of existing deterministic solvers and treat

them as a black box. The first task is to generate a set of N realizations of ξ, denoted by {Ξ(i)}Ni=1.

Next, corresponding to these samples, N realizations of QoI, {u(Ξ(i))}Ni=1, are computed using an available

deterministic solver for the problem at hand. The last step is solving for the PC coefficients using these

realizations. Several methods such as least squares regression [113], pseudo-spectral collocation [258],

Monte Carlo sampling [149] and compressive sampling (CS) [59] have been employed in the literature for
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this purpose. In Section 3.3, we will review the least squares regression and CS methods. Optimal sampling

techniques for regression-based PCEs are also discussed in Chapter 4.

1.2.1.3 Response statistics via PC expansions

Once the PC coefficients are computed, the mean, µ[·], and variance, var[·], of û(ξ) can be directly

approximated by

µ[û] = α0, (1.6)

and

var[û] =
∑
i∈Id,p

i 6=0

α2
i . (1.7)

1.3 Thesis Organization and Objective

This thesis contains three main parts. The first part presented in Chapter 2 is on the propagation

of uncertainty across coupled domain problems with high-dimensional random inputs. The second part

presented in Chapter 3 deals with UQ of Lithium-ion batteries (LIBs) and the last part provides a compre-

hensive review of the sampling techniques for the regression-based PCEs presented in Chapter 4. The main

UQ technique employed in all three parts is the polynomial chaos expansion approach. The objectives and

organization details of this thesis are discussed in the following.

1.3.1 Part one: partitioned treatment of uncertainty in coupled domain problems

Although PC-based techniques benefit from elegant mathematical analyses, e.g., formal convergence

studies, they may suffer from the so-called curse-of-dimensionality if executed carelessly: the computational

cost may grow exponentially as a function of the number of independent random inputs [258, 149, 59], and

as a function of the total number of unknowns in the system. This may be a common situation when one

is dealing with UQ of engineering problems involving, for instance, coupled domains or separated scales

with independent and separate sources of uncertainty. In the past few years, several alternative methods
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have been proposed to introduce some form of sparsity in an effort to counter the curse-of-dimensionality

[243, 23, 177, 57, 86, 93, 59, 1, 60]. The ideas used here are based on sparse grids, element-like partitioning,

ANOVA expansions, separated representations, and more general tensor decompositions. Although these

techniques have been found efficient in alleviating curse-of-dimensionality, the high computing cost is still

a major bottleneck in PC expansion of high-dimensional random solutions.

Of particular interest in the present study is the problem of uncertainty propagation across coupled

domain problems where independent, high-dimensional random inputs are present in each sub-domain. In

such cases, the solution depends on all random inputs; hence, a direct application of PC expansion may not

be feasible or at least not desirable. While integration of PC expansions with standard domain decomposition

(DD) techniques may partially reduce the overall computational complexity by partitioning the physical

space, e.g., see [96, 49, 235], expansions (or sampling) with respect to the combined set of random inputs

is still required. Instead, we propose an approach that additionally enables a partitioned treatment of the

stochastic space; that is, the solution is computed through a sequence of approximations with respect to the

random inputs associated with each individual sub-domain, and not the combined set of random inputs. To

this end, we adopt a stochastic expansion based on the so-called separated representations and demonstrate

how it can be obtained in conjunction with a DD approach. As one of the simplest cases of such coupling,

we here consider a linear problem on two non-overlapping sub-domains with a common interface. We later

provide a numerical experiment featuring three coupled sub-domains. Although more elaborate coupling

techniques are possible, we restrict ourselves to a finite element tearing and interconnecting (FETI) approach

[82] for the sake of simplicity.

Chapter 2 starts with literature review and introduction in Section 2.1. Section 2.2 summarizes the

problem formulation, where we start with a general linear stochastic PDE as an abstract problem and present

its coupled formulation via FETI. Following that, in Section 2.3, we review the application of the SG scheme

to the original problem as well as its coupled formulation. In Section 2.4, we present our approach based

on separated representations along with an extension of the FETI algorithm to solve the resulting coupled

problems at the spatial level. Finally, two numerical examples, a 2D linear diffusion problem on an L-shaped

domain with random diffusivity coefficient and a 2D linear elasticity problem describing the deflection
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of a cantilever beam with random Young’s modulus, are considered in Section 2.5. The accuracy and

performance of the proposed coupling approach are demonstrated using these two examples.

1.3.2 Part two: uncertainty quantification of Lithium-ion batteries

High energy and power densities of LIBs alongside their superior safety features have made them the

number one energy storage device for a wide range of electric devices from cell phones to hybrid-electric

vehicles and aerospace applications [99, 61, 152, 72]. Since the launch of the first commercial LIB in

1991 [240], significant work has been dedicated to modeling [62, 225, 33, 236, 88, 64], design optimization

[90, 100, 261], and discovering new materials [39, 182, 6] for LIBs.

Among the proposed models for simulation of LIBs, the most widely used one is Newman’s model

[171, 62, 63], which is based on the porous electrode and concentrated solution theories. This model in-

volves material and electrochemical properties, such as porosity of electrodes, solid particle size, and dif-

fusion coefficients, which are measured/estimated directly or indirectly via experimental techniques [207].

Measurements of most physical quantities are accompanied by uncertainty due to accuracy limitations or

natural, cell-to-cell variabilities. For example, measurements of the solid particle size in the LIB electrodes

typically result in distributed values for the particle size [207, 150] rather than a single deterministic value

which is mostly used in the LIB simulations. Performing additional measurements may lead to a better

characterization of the solid particle size, but cannot completely eliminate the irreducible uncertainties due

to natural variations. Hence, a deterministic treatment of the solid particle size may result in predictions

which do not agree with the experiments well. Consequently, LIB models which incorporate discrete or

continuous particle size distributions have been developed [52, 167, 250, 234, 207]. Quantifying the impact

of such uncertainties is essential for reliable model-based predictions, and is the focus of the emerging field

of UQ in computational engineering and science.

We present a stochastic, physics-based model for LIBs in order to study the effects of parametric

model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed UQ approach,

based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within

this UQ framework, the identification of most important uncertainty sources is achieved by performing a
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global sensitivity analysis via computing the so-called Sobol’ indices. Such information aids in designing

more efficient and targeted quality control procedures, which consequently may result in reducing the LIB

production cost. An LiC6/LiCoO2 cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates

is considered to study the performance and accuracy of the proposed UQ approach. The results suggest

that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance

variability of the cell, but also the determination of most important random inputs.

Following the literature review in Section 3.1, Section 3.2 presents the LIB model used in this study.

In Section 3.3, we present our stochastic LIB modeling approach which is based on non-intrusive PC ex-

pansions. We then continue with reviewing a global sensitivity analysis approach via the Sobol’ indices.

Standard experimental techniques for measuring the model parameters and their underlying distributions

are discussed in Section 3.5. Finally, an LiC6/LiCoO2 cell with 19 uncertain input parameters is considered

as our numerical example in Section 3.6.

1.3.3 Part three: optimal sampling strategies for regression-based PCEs

As the non-institutive PCE techniques, and in particular, regression-based PCEs gain more and more

popularity among researchers, a comprehensive review of the sampling techniques is provided in Chapter

4. Traditional sampling methods such Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design

of experiments (ODE), Gaussian quadratures as well as more recent techniques such as coherence-optimal

and randomized quadratures are discussed. We also propose hybrid sampling methods referred to by the

alphabetic-coherence-optimal techniques which are a combination of the alphabetic optimality criteria used

in the context of ODE and the coherence-optimal sampling method. A comparison between the empirical

performance of the selected sampling methods applied to three numerical examples, including high-order

PCEs, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for

practitioners seeking the most suitable sampling approach for their problem at hand. We observed that the

alphabetic-coherence-optimal techniques outperform other sampling methods, specially when high-order

PC expansions are employed and/or the oversampling ratio is low.

Chapter 4 starts with the literature review and introduction presented in Section 4.1. Section 4.2
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summarizes the problem formulation, where we start with a general stochastic PDE as an abstract problem.

Following that, in Section 4.3, some definitions and preliminaries which are useful in describing the sam-

pling techniques discussed in Section 4.4 are presented. Standard MC, asymptotic, coherence-optimal and

random quadrature sampling techniques, as well as space-filling methods such as quasi-MC and LH sam-

pling are reviewed in Section 4.4. Moreover, Section 4.4 provides a comprehensive review on the application

of various alphabetic optimality criteria in the context of regression-based PCEs. Finally, three numerical

examples, i.e., the recovery of randomly generated functions, a nonlinear stochastic Duffing oscillator and

stochastic estimation of the remaining useful life (RUL) of Lithium-ion batteries (LIBs), are considered in

Section 4.5 to study the empirical performance of the selected sampling methods.





Chapter 2

Partitioned Treatment of Uncertainty in Coupled Domain Problems

2.1 Introduction

As discussed earlier in Section 1.3.1, we employ low-rank separated representations, a.k.a. canonical

decompositions or parallel factor analysis, to enable a partitioned treatment of the stochastic space. Sepa-

rated representations were first introduced in [111] to represent a multi-way tensor by a finite sum of rank-

one tensors. Consequently, it has been extensively applied to several areas including image compression and

classification [214, 91], telecommunication [221, 140], chemometrics [26], data mining [138, 136, 245, 3],

solution of operator equations [139, 20, 21, 4], among other applications. For a comprehensive review of

separated representations and their applications we refer the interested reader to [137]. Approximation tech-

niques based on separated representation of high-dimensional stochastic functions have also been recently

proposed in [176, 58, 57, 177, 178, 131, 104, 60] and proven effective in reducing the issue of curse-of-

dimensionality. We here adopt a special form of separated representations for the stochastic computation of

coupled domain problems.

Let (Ω, T ,P) be a complete probability space where Ω is the sample set and P is a probability

measure on the σ−field T . Assume that the input uncertainty has been discretized and approximated by

random variables, such that the vector ξ = (ξ1, · · · , ξd) : Ω→ Rd, d ∈ N, represents the set of independent

random inputs associated with a PDE defined on a domain D ⊂ RD, D ∈ {1, 2, 3}. As displayed in

Fig. 2.1, we consider the case in which D is composed of two non-overlapping sub-domains D1 and D2

(D = D1 ∪ D2 and D1 ∩ D2 = ∅) sharing an interface boundary ΓI = ∂D1 ∩ ∂D2. We further assume that

the random inputs representing the uncertainty associated with D1 and D2 are independent and denoted by
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D1 D2

∂D1

∂D2

ΓI

Figure 2.1: Geometry of the original problem and partitioning of D into two non-overlapping sub-domains D1 and
D2. D = D1 ∪ D2, D1 ∩ D2 = ∅, and ∂D1 ∩ ∂D2 = ΓI .

ξ1 = (ξ1,1, · · · , ξ1,d1) : Ω → Rd1 , and ξ2 = (ξ2,1, · · · , ξ2,d2) : Ω → Rd2 , respectively. Here, d1, d2 ∈ N

are the sizes of ξ1 and ξ2, respectively, and d = d1 + d2. Letting u1(x, ξ) : D̄1 × Ω → R and u2(x, ξ) :

D̄2 × Ω→ R be the sub-domain solutions, we consider the separated representation of the form

ui(x, ξ) =
r∑
l=1

ul0,i(x)φl1(ξ1)φl2(ξ2) +O(ε), i = 1, 2. (2.1)

Here ul0,i(x) : D̄i → R and φli(ξi) : Ω → R, l = 1, . . . , r, are, respectively, deterministic and stochastic

functions – or factors – to be determined along with the separation rank r. These quantities are not fixed a

priori and are computed through an optimization scheme such that a prescribed target accuracy ε is reached

for a minimum r.

We note that the expansion in (2.1) is constructed by the multiplication of the unknown factors

ul0,i(x), φl1(ξ1), and φl2(ξ2); hence, finding (2.1) may be cast in the form of a non-linear problem. However,

as we shall describe later, (2.1) may be computed through a sequence of alternating linear problems, where

{ul0,i(x)}rl=1, i = 1, 2, {φl1(ξ1)}rl=1, or {φl2(ξ2)}rl=1 are solved for one at a time while others are fixed at

their recent values. This alternating construction, together with the separated form of (2.1), enables com-

puting the stochastic functions {φl1(ξ1)}rl=1 and {φl2(ξ2)}rl=1 with computational complexities that depend

on d1 and d2 but not d = d1 + d2. This will be delineated further in Sections 2.3.2 and 2.4.4. Additionally,

the representation (2.1) allows for a natural extension of DD techniques for computing {ul0,i(x)}rl=1. In

the present work, we employ the standard FETI approach [82] for this purpose. Moreover, for situations

where the separation rank r is small, (2.1) provides a reduced order approximation and representation of the

coupled solution. We will describe the details of computing (2.1) in Section 2.4.



15

Among the limited earlier effort on separating random inputs for the solution of coupled problems,

we particularly mention the recent work of Arnst et al. [7] that is based on the so-called reduced chaos

expansions [229]. In particular, in each component, e.g., physics or sub-domain, the solution is expanded in

a PC basis that is generated based on random inputs associated with that component. The PC coefficients are

then considered to be functions of random inputs corresponding to the other component. This may be seen as

a special case of (2.1). As in (2.1) we do not prescribe a stochastic basis a priori, our approach is different

from that of [7]. The construction of (2.1) is also different from that of the reduced chaos expansions.

More importantly, when the coupled solution admits a low separation rank r, the computational complexity

and storage requirement of (2.1) may be significantly smaller than those of the reduced chaos expansion,

especially when d is large. A brief comparison of standard PC expansions and separated representations has

been presented in [60, Section 3].

Separated representations have also been utilized in the context of multi-scale problems with local

uncertainties, [41]. In that work, a local-global, multi-scale iterative method has been devised in which

the macro-scale global problem involves a deterministic operator with stochastic source term. The local

micro-scale problems require the solution of stochastic operator equations with stochastic sources. The con-

tinuity of the solution between the global and local problems is enforced weakly via Lagrange multipliers,

and separated representations have been used to solve the two problems. While for two different purposes,

our coupled domain formulation overlaps with that of [41] in that we also enforce the solution continuity

using Lagrange multipliers. However, several differences exist. In particular, (a) our approach is based on

the formulation of a saddle-point problem as opposed to an iterative local-global method, (b) we directly

approximate the solution of this saddle-point problem while in [41] a reformulation of that problem is con-

sidered, and (c) the particular choice of separated representation (2.1) and its numerical construction, both

at the physical and stochastic levels, are considerably different from those adopted in [41]. An adaptation

of the present work to multi-scale problems and its comparison with the approach in [41] may form an

interesting future study.
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2.2 Problem Formulation and Semi-discretization

2.2.1 A linear PDE with random inputs

We consider computing the solution u(x, ξ) : D̄ × Ω→ R satisfying the linear PDE

L(x, ξ)(u(x, ξ)) = f(x) x ∈ D,

B(x, ξ)(u(x, ξ)) = g(x) x ∈ ∂D,
(2.2)

P− almost surely in Ω. Here, L is a linear differential operator and B is a boundary operator taking possibly

various forms on different boundary segments. Additionally, as mentioned before, the uncertainty in (4.8)

is assumed to have been approximated in such a way it may be represented by the random vector ξ =

(ξ1, · · · , ξd) : Ω→ Rd, d ∈ N, consisting of independent identically distributed (i.i.d.) random variables ξk

with probability density function ρ(ξk) : R→ R+. Without loss of generality, the functions f(x) and g(x)

in (4.8) are considered to be deterministic. We hereafter refer to (4.8) as the original problem.

2.2.2 Coupled formulation via domain decomposition

Given the partitioning of the physical domain D, shown in Fig. 2.1, and consequently the random

vector ξ into ξ = (ξ1, ξ2), (4.8) may be naturally cast into the non-overlapping DD formulation

L(x, ξ1)(u1(x, ξ)) = f(x) x ∈ D1,

L(x, ξ2)(u2(x, ξ)) = f(x) x ∈ D2,

B(x, ξ1)(u1(x, ξ)) = g(x) x ∈ ∂D1,

B(x, ξ2)(u2(x, ξ)) = g(x) x ∈ ∂D2,

u1(x, ξ) = u2(x, ξ) x ∈ ΓI , (2.3)

which we henceforth refer to as the coupled problem. Here, u1(x, ξ) : D̄1 × Ω → R and u2(x, ξ) :

D̄2 × Ω → R are the solutions to (2.3). The last equation in (2.3) enforces the continuity of the solution

on the interface ΓI . Again, for the sake of simplicity, we tacitly assume that the last equation in (2.3) is

sufficient to enforce that the two partial solutions u1(x, ξ) and u2(x, ξ) of (2.3) agree with the restriction of
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the solution u(x, ξ) of (4.8) to the respective sub-domains. As in DD methods, our goal is then to find the

sub-domain solutions u1(x, ξ) and u2(x, ξ) assuming independent solvers for each sub-domain.

Domain decomposition methods have been found efficient and powerful means for solving large-

scale PDEs with parallel computing, [37, 191, 223, 2, 102]. In particular, non-overlapping DD methods

can be classified based on the treatment of the interface solution compatibility. Primal methods, such as

balancing domain decomposition (BDD) [238] and balancing domain decomposition by constraints (BDDC)

[55], enforce the continuity constraint on the sub-domains interfaces via computing a unique unknown

interface solution. Alternatively, in dual methods, e.g., the FETI algorithm [82], this is done by iterating

on intermediary unknown variables, i.e., Lagrange multipliers. There are also hybrid methods such as dual-

primal finite element tearing and interconnecting (FETI-DP) [80], that are based on the combination of these

two approaches. In the present work, we use the classical FETI algorithm towards computing the coupled

solution to (2.3). However, we note that our approach may also be integrated with other non-overlapping

DD techniques, specially the FETI-DP.

The FETI method is based on finding the stationary or saddle point of an energy functional associated

with the sub-domain solutions, which we will discuss next.

2.2.3 Semi-discrete coupled formulation

Let u1(ξ) ∈ RM1 ⊗W and u2(ξ) ∈ RM2 ⊗W be the vector of nodal values corresponding to the

finite element (FE) discretization of u1 and u2 in (2.3), respectively. For simplicity, we assume that the

triangulations of D1 and D2 result in matching nodes at the interface ΓI with MI degrees of freedom. Let

also λ(ξ) = [λ1(ξ), · · · , λMI
(ξ)]T ∈ RMI ⊗W be the random vector of Lagrange multipliers to enforce

the solution continuity at ΓI . Then the triple (u1,u2,λ) is the stationary point of the energy functional

π(u1,u2,λ) = (2.4)

E
[

1

2
uT1K1u1 − uT1 f1

]
+ E

[
1

2
uT2K2u2 − uT2 f2

]
+ E

[
λT
(
CT

2 u2 −CT
1 u1

)]
,

where, for i = 1, 2, Ci ∈ RMi×MI are matrices that extract the interface nodal solutions from ui and

Ki(ξi) : Ω → RMi×Mi and fi ∈ RMi , are, respectively, the random stiffness matrices and deterministic
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force vectors associated with the FE discretization of (2.3) on Di.

Assumption 1. In the present study, we assume thatK1(ξ1) is symmetric positive definite, whileK2(ξ2) is

symmetric P−almost surely in Ω.

Given Assumption 1, the coupled solution uc = [ uT1 ,u
T
2 ,λ

T ]T can be obtained by solving the

following saddle point problem, established by the first-order optimality condition corresponding to the

stationary point of π in (2.4), i.e., δπ = 0 for arbitrary variations δu1, δu2, and δλ,
K1(ξ1) 0 C1

0 K2(ξ2) −C2

C1
T −C2

T 0




u1(ξ)

u2(ξ)

λ(ξ)


=


f1

f2

0


, or Kc(ξ)uc(ξ) = fc. (2.5)

The deterministic version of (2.5), i.e., corresponding to fixed realizations of ξ1 and ξ2, may be solved

efficiently using the FETI method, described in Section 2.4.2. This is done by eliminating u1 and u2 from

(2.5) and then solving the resulting system of equations for λ using a projected conjugate gradient solver

[82].

We next present a stochastic approximation of (4.8), when discretized by FE method in space, and

(2.5) using the standard PC expansions. Following that, in Section 2.4, we introduce the proposed stochastic

discretization which allows us to solve (2.5) iteratively through approximations in terms of ξ1 or ξ2.

2.3 Stochastic Discretization via Polynomial Chaos

We define the finite dimensional space

Wp = span{ψi(ξ) : i ∈ Id,p} ⊂ W,

within which we seek an approximation to a finite-variance, stochastic function u(ξ) ∈ W by

up(ξ) =
∑
i∈Id,p

uiψi(ξ). (2.6)

As proposed in [95], the PC coefficients ui may be computed via Galerkin projection that we briefly

describe next.
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2.3.1 Galerkin projection

Let up(ξ) =
∑
i∈Id,p

uiψi(ξ) be the PC approximation of the FE solution u(ξ) to (4.8). The

coefficients ui can be computed from the Galerkin projection

E[vT (Kup − f)] = 0, ∀v ∈ RM ⊗Wp,

which can be equivalently written in the form of the coupled system of equations

∑
i∈Id,p

E[ψiψjK]ui = E[ψjf ], ∀j ∈ Id,p. (2.7)

Following the same procedure, the Galerkin solution of the coupled problem (2.5) is computed from

∑
i∈Id,p

E[ψiψjKc]uc,i = E[ψjfc], ∀j ∈ Id,p, (2.8)

where Kc and fc are given in (2.5), and uc,i =

[
uT1,i,u

T
2,i,λ

T
i

]T
. Here, u1,i,u2,i, and λi are the PC

coefficients of the sub-domain solutions u1 and u2, and the Lagrange multipliers λ in (2.5), respectively.

2.3.2 Need for alternative stochastic discretizations

We note that the size of the linear system of equations (2.7) and (2.8) depends on P which is related

to d = d1 + d2 via (1.5). In particular, the linear system (2.7), corresponding to the PC approximation

of the original problem (4.8) discretized using standard FE method with M degrees of freedom, is of size

MP ×MP . On the other hand, assuming that λi are given, u1,i and u2,i in the coupled formulation (2.8)

may be computed from linear systems of equations of sizes M1P ×M1P and M2P ×M2P , respectively.

While the latter formulation provides a reduction with respect to the size M ≈ M1 + M2 of the spatial

discretization, it may be computationally prohibitive when d, hence P , is large.

To alleviate this difficulty, we seek an alternative stochastic discretization that allows us to approx-

imate the solution of the coupled problem (2.5) by solving problems in dimensions d1 and d2, instead of

d = d1 + d2, thereby partitioning the stochastic space in addition to the physical space. To this end, we

propose the approximation of the solution to (2.5) via separated representations that we describe next.
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2.4 Separated Representations

Given a target accuracy ε, as an extension of (2.1), we consider the following approximation of the

solution to (2.5), 
u1(ξ)

u2(ξ)

λ(ξ)


=

r∑
l=1


ul0,1

ul0,2

λl0


φl1(ξ1)φl2(ξ2) +O(ε), (2.9)

which we refer to as the separated representation with separation rank r. Observe that the set of all rank

r approximations is not a linear subspace [104]. The deterministic vectors ul0,1 ∈ RM1 , ul0,2 ∈ RM2 , and

λl0 ∈ RMI , the stochastic functions φl1(ξ1) : Ω → R and φl2(ξ2) : Ω → R, as well as the separation rank r

are not fixed a priori and are sought for to achieve the accuracy ε.

Due to the separated construction of the representation (2.9) with respect to variables along spatial

as well as the stochastic directions ξ1 and ξ2, the unknowns in the RHS of (2.9) may be computed from

a sequence of linear approximations arising from an alternating direction optimization of a suitable cost

function. One instance of such a multi-linear approach is described in Section 2.4.1.

The separation rank r plays an important role in the construction of separated representations. In

particular, smaller accuracies ε entail larger r values. This, in turn, results in an increase in the computational

complexity of the expansion, as we shall see in Section 2.4.1. However, when the solution to (2.5) admits

a low separation rank r, (2.9) is essentially a reduced representation – or compression – of the solution.

Therefore, we ideally desire to keep r as small as possible.

We note that the separated representation of the form (2.9) may not be unique [20]. However, we seek

one such representation that is within an accuracy ε of the solution to (2.5) which will be discussed in the

sequel.

Remark 1. A more general separated approximation to the solution of (2.5) may be considered as
u1(ξ)

u2(ξ)

λ(ξ)


=

r∑
l=1


ul0,1

ul0,2

λl0


d1∏
i=1

φl1,i(ξ1,i)

d2∏
j=1

φl2,j(ξ2,j) +O(ε). (2.10)
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where φl1,i and φl2,j are univariate functions in ξ1,i and ξ2,j , respectively. Using (2.10), one may ap-

proximate u1(ξ), u2(ξ), and λ(ξ) via a series of one-dimensional approximations with as fast as a linear

increase of the computation cost with respect to d. See [20, 57] for further discussions on such growth in

the case of single domain problems. This, however, is achieved by a potential increase in the separation

rank r as compared to the representation (2.9). We leave further comparison of these different separated

representations to a later study.

2.4.1 Alternating Rayleigh-Ritz (ARR) algorithm

To derive the separated representation (2.9), we use a Rayleigh-Ritz-type approach: we find the

unknowns in the RHS of (2.9) such that they correspond to a stationary point of the energy functional π

in (2.4). To do so, we adopt an alternating direction optimization approach, hence the name Alternating

Rayleigh-Ritz (ARR), in order to compute (2.9) using a sequence of linear, instead of nonlinear, problems

of smaller size. Notice that the stationary point of π is a saddle point, i.e, it is a minimum of π with respect

to u1(ξ) and u2(ξ) and simultaneously a maximum of π with respect to λ(ξ).

The ARR approach consists of a sequence of stationary point iterations that are meant to converge to

the saddle point of π as demonstrated in Proposition 1. Given a value for r and approximations (guesses)

{φl1}rl=1 and {φl2}rl=1, the ARR iteration starts by freezing the variables along ξ1 and ξ2 directions, i.e.,

{φl1}rl=1 and {φl2}rl=1, and solving for the deterministic vectors {ul0,1}rl=1, {ul0,2}rl=1, and {λl0}rl=1 as the

saddle point of π. We call this step a deterministic update. We then alternate to stochastic directions ξ1 and

update {φl1}rl=1 by minimizing π, while {ul0,1}rl=1, {ul0,2}rl=1 and {φl2}rl=1 are fixed at their latest values.

We dub this step a stochastic update. Similarly, we alternate to update {φl2}rl=1 by minimizing π, while the

rest of the variables are fixed at their current values. This completes one full sweep of the ARR algorithm.

As we initialized {φl1}rl=1 and {φl2}rl=1 arbitrarily, we repeat the ARR sweeps until the value of π does not

change much. We then increase the separation rank r and continue the ARR sweeps until π does not change

beyond some tolerance.

As we ideally want the separation rank r to be as small as possible, we may start the ARR updates
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with a small r, e.g., r = 1 and increase r until, for instance, the maximum norm of sub-domain residuals

εrres = max

(
‖f1 −K1u

r
1‖L2(RM1 )⊗W

‖f1‖L2(RM1 )⊗W
,
‖f2 −K2u

r
2‖L2(RM2 )⊗W

‖f2‖L2(RM2 )⊗W

)
(2.11)

is below a prescribed accuracy ε. Here, for i = 1, 2, uri =
∑r

l=1 u
l
0,iφ

l
1φ

l
2, and ‖ · ‖L2(RM )⊗W is defined

by ‖u‖2
L2(RM )⊗W = E[uTu]. We note that higher accuracies may be achieved by requiring smaller εrres in

(2.11), which in turn may necessitate higher separation ranks r.

In the following, we describe the ARR algorithm in more details.

Deterministic updates for {ul0,1}rl=1, {ul0,2}rl=1, and {λl0}rl=1. Assuming an initialization of the separation

rank r, and the stochastic functions {φl1}rl=1 and {φl2}rl=1, the first step of the ARR algorithm is to update

deterministic vectors {ul0,1}rl=1, {ul0,2}rl=1, and {λl0}rl=1 while freezing all other variables. Plugging (2.9)

in (2.4) and enforcing the condition

δπ = 0, ∀ δul0,1, δul0,2, δλl0,

for l = 1, . . . , r and arbitrary (but consistent) variations δul0,1, δul0,2, and δλl0, we arrive at the saddle point

problem 
K̂1 0 −Ĉ1

0 K̂2 Ĉ2

−ĈT
1 ĈT

2 0




û0,1

û0,2

λ̂0


=


f̂1

f̂2

0


. (2.12)

Each entry of the linear system (2.12) has a block structure given by

K̂i(l, l
′) = E

[
φl1φ

l
2Kiφ

l′
1φ

l′
2

]
,

Ĉi(l, l
′) = E

[
φl1φ

l
2φ

l′
1φ

l′
2

]
Ci,

û0,i(l) = ul0,i, (2.13)

λ̂0(l) = λl0,

f̂i(l) = E
[
φl1φ

l
2

]
fi,

for l, l′ = 1, . . . , r and i = 1, 2. A detailed derivation of (2.12) and (2.13) can be found in A.1.
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It should be noted that the form of (2.12) is similar to that of the saddle point system associated with

the deterministic version of the coupled problem (2.5), except that each entry in (2.12) has a block structure,

and for r = 1 the form actually coincides with the deterministic version. Such similarity, therefore, suggests

an extension of the original FETI method [82] for a parallel and partitioned solution of (2.12). This will be

discussed in more details in Section 2.4.2.

Stochastic updates for {φl1}rl=1. We freeze {ul0,1}rl=1, {ul0,2}rl=1, and {λl0}rl=1 to their updated values from

(2.12). We also fix the variables {φl2}rl=1 and solve for {φl1}rl=1 by minimizing π, that is, for l = 1, . . . , r,

we require

δπ = 0, ∀ δφl1(ξ1). (2.14)

This leads to the linear system

A1(ξ1)φ1(ξ1) = b1, (2.15)

whereA1 ∈ Rr×r, φ1 ∈ Rr, and b1 ∈ Rr are given by

A1(l, l′) = ul
T
0,1K1(ξ1)ul

′
0,1Eξ2

[
φl2φ

l′
2

]
+ ul

T
0,2Eξ2

[
K2φ

l
2φ

l′
2

]
ul
′

0,2,

φ1(l) = φl1(ξ1), (2.16)

b1(l) = ul
T
0,1f1Eξ2

[
φl2

]
+ ul

T
0,2f2Eξ2

[
φl2

]
,

and l, l′ = 1, . . . , r. Here, Eξ2 [·] is the mathematical expectation operator with respect to the probability

density function of ξ2. A.2 provides further details on the derivation of (2.15) and (2.16).

Stochastic updates for {φl2}rl=1. Following the same procedure for {φl1}rl=1, {φl2}rl=1 are updated by solv-

ing the linear system of size r

A2(ξ2)φ2(ξ2) = b2, (2.17)
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where, for l, l′ = 1, . . . , r,

A2(l, l′) = ul
T
0,1Eξ1

[
K1φ

l
1φ

l′
1

]
ul
′

0,1 + ul
T
0,2K2(ξ2)ul

′
0,2Eξ1

[
φl1φ

l′
1

]
,

φ2(l) = φl2(ξ2), (2.18)

b2(l) = ul
T
0,1f1Eξ1

[
φl1

]
+ ul

T
0,2f2Eξ1

[
φl1

]
,

and Eξ1 [·] is the mathematical expectation operator with respect to the probability density of ξ1.

We note that the update equations (2.15) and (2.17) only depend on ξ1 and ξ2, respectively, and not

ξ = (ξ1, ξ2), thus yielding a partitioning of the stochastic space. Approximations to the solutions of the

stochastic equations (2.15) and (2.17) may be obtained using, for instance, the SG [95] or the stochastic

collocation [153, 259] technique. In the present study we employ SG, described in Section 2.3, for this

purpose. Specifically, for (2.15) or (2.17), we consider the PC expansions

φi(ξi) ≈
∑

j∈Idi,p

φi,jψj(ξi), i = 1, 2,

where the coefficient vectors {φ1,j}j∈Id1,p
and {φ2,j}j∈Id2,p

are computed via Galerkin projection. Let P1

and P2 be the size of Id1,p and Id2,p evaluated from (1.5) by setting d = d1 and d = d2, respectively. Then,

the Galerkin systems to be solved for {φ1,j}j∈Id1,p
and {φ2,j}j∈Id2,p

are of size rP1×rP1 and rP2×rP2,

respectively. Notice that, for moderate values of separation rank r, the sizes of these linear systems may be

significantly smaller than those of (2.7), particularly when d1 and d2 are large. Such a reduction is due to

the use of separated representation (2.9) along with the ARR algorithm for its construction.

We next demonstrate that the sequence of separated approximations of the form (2.9) generated by

the ARR algorithm results in a non-increasing sequence of π in u1 and u2, and a non-decreasing sequence

of π in λ. In other words, the ARR algorithm iteratively improves the approximation to the saddle point

problem (2.5) unless u1, u2, or λ does not change throughout the iterations. In the latter scenario, either

the separation rank r needs to be increased or the separated approximation has converged to the solution of

(2.5).

Proposition 1 (Iterative improvement of separated representation). Let (u
(k)
1 ,u

(k)
2 ,λ(k)) and (u

(k+1)
1 ,u

(k+1)
2 ,λ(k+1))

be the rank r separated representation of the solution (u1,u2,λ) after k and k + 1, respectively, ARR up-
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dates (2.12), (2.15), and (2.17). Then,

π(u
(k+1)
1 ,u

(k+1)
2 ,λ(k)) ≤ π(u

(k)
1 ,u

(k)
2 ,λ(k)) ≤ π(u

(k)
1 ,u

(k)
2 ,λ(k+1)). (2.19)

Proof. We first note that the updates (2.15) and (2.17) along ξ1 and ξ2 directions, respectively, lead only

to minimizations of π, see A.2. Additionally, û0,1 and û0,2 (or equivalently, {ul0,1}rl=1 and {ul0,2}rl=1) in

(2.12) are obtained by minimizing π, thus implying the left inequality in (2.19). Finally, the right inequality

in (2.19) holds as π may increase only through the updates λ̂0 in (2.12).

The ARR algorithm is summarized in Algorithm 1.

Algorithm 1 Alternating Rayleigh-Ritz (ARR) Algorithm
1: • Input: target accuracy ε
2: • Output: separation rank r, {ul0,1}rl=1, {ul0,2}rl=1, {λl0}rl=1, {φl1}rl=1, and {φl2}rl=1

3: • Set r = 1; (randomly) initialize φ1
1 and φ1

2

4: while εrres > ε do
5: while π changes more than some tolerance tolr do
6: • Update {ul0,1}rl=1, {ul0,2}rl=1, and {λl0}rl=1 by solving (2.12)
7: • Update {φl1}rl=1 by solving (2.15)
8: • Update {φl2}rl=1 by solving (2.17)
9: end while

10: • Compute the residual error εrres
11: • Set r = r + 1; (randomly) initialize φr1 and φr2
12: end while

Remark 2. It is worthwhile noting that the ARR algorithm presented here may be interpreted as a variation

of the block Gauss-Seidel or multiplicative Schwarz [223] methods.

To complete our discussion on the ARR algorithm we next present an extension of the classical FETI

algorithm to solve the saddle point problem (2.12).

2.4.2 FETI solution of saddle point problem (2.12)

We are interested in parallel solution of (2.12) such that minimal exchange of information between

the sub-domain solvers is required. This may be achieved by, for instance, an extension of the classical
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FETI method for the particular case of problem (2.12). This is the approach we take in the present study.

FETI, one of the widely used DD approaches, was first introduced by Farhat and Roux [82] for the parallel

FE solution of second order, self-adjoint elliptic equations. It has also been successfully extended to many

other problems; multiple right-hand sides [89], transient problems [79], plate bending problems [81], and

non-linear problems [94]. We stress that, for the sake of simplicity, we use the original FETI [82] approach,

but with some extensions one may also utilize more recent versions of FETI such as FETI-DP [80].

The FETI method is a non-overlapping DD scheme based on partitioning the computational domain

into a number of sub-domains and enforcing the continuity of the solution across the sub-domain inter-

faces via Lagrange multipliers. In practice, after partitioning the original domain D, there might be some

sub-domains with insufficient Dirichlet boundary conditions resulting in positive semi-definite sub-domain

stiffness matrices. These are also known as floating sub-domains. For a partition consisting of two sub-

domains D1 and D2, we assume that D2 has no Dirichlet boundary condition and is a floating sub-domain

with symmetric positive semi-definite stiffness matrix K2(ξ2), while D1 is non-floating with symmetric

positive definite stiffness matrixK1(ξ1). Therefore, the second equation in (2.12), i.e.,

K̂2û0,2 = f̂2 − Ĉ2λ̂0, (2.20)

is solvable if and only if, [82],

R̂2

(
f̂2 − Ĉ2λ̂0

)
= 0, (2.21)

where R̂2 spans the null space of K̂2, i.e., range(R̂2) = ker(K̂2). In Section 2.4.2.1 we will discuss how

R̂2 is set in our formulation. The solution of (2.12) can then be written as

(
ĈT

1 K̂
−1
1 Ĉ1 + ĈT

2 K̂
+
2 Ĉ2

)
λ̂0 = −ĈT

1 K̂
−1
1 f̂1 + ĈT

2

(
K̂+

2 f̂2 + R̂2α̂0

)
,

û0,1 = K̂−1
1

(
f̂1 − Ĉ1λ̂0

)
,

û0,2 = K̂+
2

(
f̂2 − Ĉ2λ̂0

)
+ R̂2α̂0, (2.22)

where K̂−1
1 and K̂+

2 are the inverse and pseudo-inverse of K̂1 and K̂2, respectively. Here, α̂0 is an

unknown vector of coefficients. As it can be seen, there are four unknowns in (2.22) while only three

equations are available. The orthogonality condition in (2.21) is the fourth equation which makes (2.22)
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determined. We can write the FETI interface problem by combining (2.21) and the first equation in (2.22)

as  F̂I −R̂I
2

−R̂IT
2 0


 λ̂

α̂0

 =

 d̂

−ê

 , (2.23)

where

F̂I = ĈT
1 K̂

−1
1 Ĉ1 + ĈT

2 K̂
+
2 Ĉ2,

R̂I
2 = ĈT

2 R̂2,

d̂ = ĈT
2 K̂

+
2 f̂2 − ĈT

1 K̂
−1
1 f̂1,

ê = R̂T
2 f̂2. (2.24)

The solution to (2.12) can then be obtained by first solving the interface problem (2.23) for λ̂ and α̂0

and then by substituting these into the last two equations in (2.22) to compute û0,1 and û0,2. In order to avoid

an explicit assembly of F̂I in (2.23), the preconditioned conjugate projected gradient (PCPG) algorithm of

[82], which utilizes matrix-vector products, may be extended to compute λ̂ in (2.23). Algorithm 2 summa-

rizes the steps of the PCPG solver, in which εPCPG is a stopping criterion, P̂ = I − R̂I
2(R̂IT

2 R̂
I
2)−1R̂IT

2

is an orthogonal projection onto the null space of R̂I
2, I is the identity matrix of size rMI × rMI , and F̄−1

I

is a suitable preconditioner. For a detailed description of the PCPG solver and different choices of precon-

ditioners we refer the interested reader to [197, 133, 244, 193, 92, 38]. In the numerical result of Section

2.5.2, we have adopted the preconditioner F̄−1
I proposed in [133]. An optimal selection or design of F̄−1

I ,

however, requires further study.

After computing λ̂, we obtain α̂0 from

α̂0 = (R̂IT

2 R̂
I
2)−1R̂IT

2 (F̂I λ̂− d̂).

Next, we propose a method to set R̂2 which does not require an explicit computation of the null space

of K̂2.
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Algorithm 2 The FETI PCPG Algorithm

1: • Initialize λ̂0 = R̂I
2(R̂IT

2 R̂
I
2)−1R̂T

2 f̂2, w0 = P̂ d̂− P̂ F̂I λ̂0, k = 1
2: while ||wk−1||L2/||d̂||L2 > εPCPG do
3: • zk−1 = F̄−1

I (P̂ Twk−1)

4: • yk−1 = P̂ zk−1

5: • sk = yTk−1wk−1/y
T
k−2wk−2 (s1 = 0)

6: • pk = yk−1 + skpk−1 (p1 = y0)
7: • γk = yTk−1wk−1/p

T
k F̂Ipk

8: • λ̂k = λ̂k−1 + γkpk
9: • wk = wk−1 − γkP̂ F̂Ipk

10: end while

2.4.2.1 Setting R̂2

Since K̂2 is not assembled in practice, we cannot obtain R̂2 via a direct null space computation

of K̂2. For a deterministic problem, rigid body modes of the physical domain span the null space of the

stiffness matrix [82]. For three-dimensional problems, the maximum number of rigid body modes is six,

while for two-dimensional deterministic problems this number reduces to three. Let R2 denote the matrix

associated with the rigid body modes of the sub-domain D2 computed based on the geometry of D2, see,

e.g. [183]. Then R̂2 may be set as follows.

Proposition 2. R̂2 is an r × r block diagonal matrix whose (l, l) block, l = 1, · · · , r, is given by

R̂2(l, l) = R2. (2.25)

Proof. Since columns of R2 are linearly independent, columns of R̂2 are also linearly independent as R̂2

is block diagonal. On the other hand, as the columns of R2 form a basis for the null space of K2(ξ), we

have K̂2(l, l)R2 = 0, l = 1, · · · , r, where K̂2(l, l) is given in (2.13). Consequently K̂2R̂2 = 0, which,

together with the linear independency of the columns of R̂2, implies range(R̂2) = ker(K̂2).

2.4.3 Response statistics

In this section, the computation of response statistics based on the separated representation (2.9) is

presented. Let us denote the mean and variance of the separated representation uri =
∑r

l=1 u
l
0,iφ

l
1φ

l
2,

i = 1, 2, by E[uri ] and var[uri ], respectively. For example, we can approximate the point-wise mean and the
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second moment tensor of sub-domain solutions ui by

E[uri ] =

r∑
l=1

ul0,iEξ1 [φl1]Eξ2 [φl2],

E[uri ⊗ uri ] =
r∑
l=1

r∑
l′=1

(ul0,i ⊗ ul
′

0,i)Eξ1 [φl1φ
l′
1 ]Eξ2 [φl2φ

l′
2 ], (2.26)

respectively, where ⊗ denotes the Kronecker product of two vectors.

Alternatively, one may generate Monte Carlo estimates of the statistics of uri by directly sampling the

representation (2.9). We use the latter approach to compute the probability density function of the solution

of interest in our numerical experiments.

2.4.4 Computational cost

We next elaborate on the computational complexity of one sweep of the ARR algorithm, which in-

cludes assembling and solving the deterministic update (2.12), as well as the stochastic updates (2.15) and

(2.17). For the interest of simplicity, we consider the case of two coupled, non-floating sub-domains, each

with d1 independent random inputs. We further assume the sub-domain solutions are discretized such that

they have the same number of spatial degrees of freedom M1 � 1 and PC expansion order p. Following

(1.5), this leads to P1 = (p+d1)!/(p!d1!) PC basis functions for the solution to (2.15) and (2.17). Moreover,

we assume each Ki(ξi), i = 1, 2, has at most ζK non-zero entries on each row, and is expanded in a PC

basis of cardinality PK .

For a rank r separated representation, the linear system (2.12) can be formed with complexity

O
(
PK(ζSP1 + ζKM1)r2

)
and solved with cost O(Mβ0

1 rβ0), where β0 ∈ [1, 3] depends on the choice of

linear solver. Here, ζS is the maximum number of non-zeros on each row of sparse matrices Sk with entries

Sk(i, j) = E[ψkψiψj ], where i, j = 1, . . . , P1 and k = 1, . . . , PK . The matrices Sk are generated once and

utilized in computing the expectations in (2.13), and later in (2.16) and (2.18). The assembly and solution

of the stochastic update (2.15), or (2.17), can be achieved with complexities O((PKζSP1 + PKζKM1 +

ζKM1)r2) ≈ O(PK(ζSP1 + ζKM1)r2) and O(P β1
1 rβ1), respectively, where β1 ∈ [1, 3]. We highlight that

all the above complexity estimates depend on d1, through P1, and not the total dimensionality d = 2d1.
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As a comparison, the cost of forming and solving the linear system associated with order p Galerkin

PC approximation of (2.5) may be as high as O(PKζKM1P
2) and O(Mβ

1 P
β), respectively. Here, P =

(p+ 2d1)!/(p!(2d1)!) is given by (1.5) with d = 2d1 and β ∈ [1, 3].

Notice that, for cases where d1 is large (hence, P1 � P ) and the solution admits a low separation

rank r, i.e., r � P , the cost of the proposed separated representation approach is significantly smaller

than that of the standard Galerkin PC method. Table 2.1 summarizes the total computational costs of rank

r separated representation – assuming ζr iterations are needed for a converged solution – as well as the

standard Galerkin PC approximation of (2.5). The comparison of the actual cost of these two approaches

as well as the existence of solutions with low separation ranks r are empirically shown in the numerical

examples of next section.

Table 2.1: Computational cost of forming and solving linear systems arising in separated representation and Galerkin
PC approximation of (2.5). Here, ζr denotes the number of iterations needed for a converged rank r separated repre-
sentation. All the involved parameters are specified in Section 2.4.4.

Scheme Forming Solving

Separated representation O
(
ζrPK(ζSP1 + ζKM1)r2

)
O(ζr(M

β0
1 rβ0 + P β1

1 rβ1))

Standard Galerkin PC O(PKζKM1P
2) O(Mβ

1 P
β)

2.5 Numerical Examples

In this section, we present two numerical examples for the verification of the proposed stochastic

coupling framework. In the first example, we consider a linear elliptic PDE defined on a two-dimensional

L-shaped (spatial) domain with random diffusion coefficient. The second example deals with the problem

of deformation of a linear elastic cantilever beam with uncertain Young’s modulus. In both cases, the

uncertainly is represented by random fields taking statistically independent values on two and three non-

overlapping sub-domains, respectively, in the first and second examples. To study the convergence of the

separated representation on the entire domain, the mean and standard deviation (std) error measures

εrµ =

∥∥E[uref ]− E[ur]
∥∥
L2(RM )∥∥E[uref ]

∥∥
L2(RM )

and εrσ =

∥∥std[uref ]− std[ur]
∥∥
L2(RM )∥∥std[uref ]

∥∥
L2(RM )

(2.27)
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are used. Here ur is the rank r separated representation of the solution u to the coupled problem (2.5) and

uref is the FE solution to the original problem (4.8). The reference solution uref is the PC expansion of u

constructed with respect to all random inputs ξ and is obtained via Galerkin projection.

1.0 1.5 2.00.50.0

1.0

1.5

2.0

0.5

0.0

D2

D1
∂D(D)

1

∂D(D)
2

∂D(N)
1

∂D(N)
2

ΓI

x1

x2

Figure 2.2: Geometry of the 2D elliptic problem over an L-shaped domain (D = D1 ∪ D2 and D1 ∩ D2 = ∅).

2.5.1 Example I: 2D elliptic PDE with random diffusion coefficient

Consider the following elliptic PDE with random diffusion coefficient κ,

−∇ · (κ(x, ξ)∇u(x, ξ)) = f(x) x ∈ D,

u(x, ξ) = 0 x ∈ ∂D(D),

∇u(x, ξ) · n = 0 x ∈ ∂D(N), (2.28)

defined over an L-shaped domain D depicted in Fig. 2.2. Dirichlet and Neumann boundary conditions are

denoted by ∂D(D) and ∂D(N), respectively, and n is the unit normal vector to ∂D(N).

We assume D is composed of two non-overlapping sub-domains D1 and D2, i.e., D = D1 ∪ D2 and
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D1 ∩ D2 = ∅ on which κ and f take different values. Specifically, we set

log (κ(x, ξ)− κ0) =

 G1(x, ξ1) x ∈ D1

G2(x, ξ2) x ∈ D2

(2.29)

and

f(x) =

 10 x ∈ D1

0 x ∈ D2

,

where G1 and G2 are statistically independent Gaussian random fields, and κ0 is a small constant to ensure

κ is bounded away from zero. Therefore, κ in (2.29) is a (shifted) lognormal random field on sub-domains

D1 and D2. We represent G1 and G2 by the truncated Karhunen-Loève (KL) expansions

Gi(x, ξi) = Ḡi +

di∑
j=1

√
τi,jgi,j(x)ξi,j , i = 1, 2,

where Ḡi is the mean of Gi, and {ξ1,j}d1

j=1 and {ξ2,j}d2

j=1 are i.i.d. standard Gaussian random variables.

Additionally, {τi,j}dij=1 and {gi,j(x)}dij=1 are, respectively, di largest eigenvalues and the corresponding

eigenfunctions of the Gaussian covariance kernel

Ci(x1,x2) = σ2
i exp

(
−‖x1 − x2‖22

l2i

)
, x1,x2 ∈ Di. (2.30)

Here, σi controls the variability of Gi and li is the correlation length of Gi. To exactly compute the

expectations involvingK1(ξ1) andK2(ξ2) in (2.13), (2.16), and (2.18), we decompose κ(x, ξ), separately

on each sub-domain, into Hermite polynomial chaos of order 2pi, i.e., κ(x, ξi) =
∑
j∈Idi,2pi

κj,i(x)ψj(ξi),

x ∈ Di. Here, pi is the order of the PC expansion of the stochastic functions {φli(ξi)} in (2.19). For the case

of lognormal κ(x, ξi), the expansion coefficients {κj,i(x)}j∈Idi,2pi
are available analytically, see [246] or

Appendix B.

Table 2.2 summarizes the parameter values involved in the representation of κ.

Table 2.2: Assumed parameters for the PC representation of κ in (2.29).

d1 d2 p1 p2 lc,1 lc,2 Ḡ1 Ḡ2 σ1 σ2 κ0

4 6 3 3 2/3 1/3 1 1 1/2 1/2 0.28
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The FE discretization of (2.28) on each sub-domain is done using the FEniCS package [144]. In

particular, we use linear triangle elements with a uniform mesh size h1 = h2 = 1/20 along x1 and x2.

To demonstrate convergence of the separated representation of the solution u to (2.28), we increase

the separation rank r up to r = 20. Alternatively, we may prescribe a target accuracy ε for the residual

norm εrres in (2.11) and identify the corresponding separation rank r. In the latter approach, the solution

refinement is achieved by decreasing ε.
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Figure 2.3: Energy functional π (a) and relative errors in mean and standard deviation (b) as a function of the separation

rank r for the L-shaped problem. The errors are evaluated from (2.27).

Fig. 2.3(a) shows the values of the energy functional π with respect to increments in the separation

rank r. While this is not generally the case, here an increase in r leads to a monotonic reduction in π.

Fig. 2.3(b) presents the mean and standard deviation errors εrµ and εrσ, respectively, as defined in (2.27). As

can be observed from this figure, there is not monotonicity in the reduction of mean and standard deviation

errors as a function of r.
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Figure 2.4: Contours of the solution mean and standard deviation obtained with separated representation (solid line)

and the reference solution (dotted line) for the L-shaped problem. (a) Mean for r = 1; (b) Standard deviation for

r = 1; (c) Mean for r = 20; (d) Standard deviation for r = 20.

In Figs. 2.4(a)-(b) we display the contours of the solution mean and standard deviation obtained

from the separated representation with r = 1 as well as the reference solution. While approximation of

the solution mean may be relatively accurate, the standard deviation has not yet converged with r = 1.

By increasing the separation rank to r = 20, however, the approximation of these quantities improves

considerably as can be observed from Figs. 2.4(c)-(d).

In Fig. 2.5, the probability density function (PDF) of the separated representation of solution at
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(x1, x2) = (1.0, 0.5) is compared to that of the reference solution. For the case of small separation rank,

r = 1, there is a notable difference between the two PDFs. However, this disagreement reduces considerably

as the separation rank is increased to r = 20.
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Figure 2.5: PDF of u(1.0, 0.5) for the L-shaped problem. A comparison between the rank r separated representation
and the reference solution.

As discussed in Section 2.4, the stochastic functions {φl1}rl=1 and {φl2}rl=1 are not fixed a priori and

are computed by iteratively solving for the saddle point of π. Therefore, their representation is problem-

dependent. Fig. 2.6 presents the PDFs of φr1 and φr2 when r = 1, 3, 7, 12. As it can be observed, these

stochastic functions differ from each other and are not identically distributed. The actual stochastic basis

functions in (2.9) are products of these functions, i.e., φr1φ
r
2. Fig. 2.7 shows the PDFs of a number of these

basis functions. We note that these basis functions are generally different from the PC basis functions.

In order to compare the computational cost of the separated representation approach with the standard

PC expansion via SG, we report the ratio of their execution times in Fig. 2.8. By increasing r, the sizes of

the stochastic and deterministic update systems and, consequently, their solution times increases. However,

as the number of alternations for each separation rank r may not depend on r, the run time of ARR is

not monotonic with respect to r. This may be observed from Fig. 2.8. The run time of obtaining the PC

reference solution was about 1384 minutes, which was three orders of magnitudes larger than that of these

ARR approach, see Fig. 2.8. We note that here both solutions were obtained via serial implementations.
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Figure 2.6: PDFs of the normalized φr1 and φr2 in the separated representation of the solution to the L-shaped problem.
(a) PDF of the normalized φr1, r = 1, 3, 7, 12; (b) PDF of the normalized φr2, r = 1, 3, 7, 12. Each φri is normalized
such that it has unit second moment. The PDF of φ12 is not fully shown here.
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Figure 2.7: PDFs of the normalized stochastic basis functions φr1φ
r
2, r = 1, 3, 7, 12, for the L-shaped problem. Here

each basis function is normalized to have unit second moment.
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Figure 2.8: Execution time of the ARR algorithm as a function of the separation rank r for the L-shaped problem. The

normalization is with respect to the run time of the Galerkin-based PC method.
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2.5.2 Example II: 2D stochastic linear elasticity

For the second numerical example, we consider the linear elasticity problem,

−∇ · σ (u(x, ξ)) = 0 x ∈ D,

u(x, ξ) = 0 x ∈ ∂D(D),

σ (u(x, ξ))n = t(x) x ∈ ∂D(N), (2.31)

describing the deformation of the cantilever beam shown in Fig. 2.9. Here, u denotes the displacement

vector field, σ is the stress tensor, n is the unit normal vector to the boundary, and t is the traction vector.

We assume that t = (0,−0.1) on the edge corresponding to x2 = 1.0 and t = (0, 0) elsewhere. The stress

tensor σ is related to the strain tensor e =
(
∇u+∇uT

)
/2 via the isotropic linear elastic stress-strain

relation

σ =
E

1 + ν

(
e+

ν

1− 2ν
tr(e)I

)
,

where ν = 0.3 is the Poisson’s ratio. Here, tr(·) denotes the trace operator of a tensor and I is the identity

tensor of order two. The Young’s modulus E(x, ξ) is the source of uncertainty in (2.31) and is assumed to

take statistically independent values over sub-domains D1, D2 and D3 shown in Fig. 2.9. Specifically,

E(x, ξ) =


E1(x, ξ1) x ∈ D1

E2(x, ξ2) x ∈ D2

E3(x, ξ3) x ∈ D3

, (2.32)

where each Ei(x, ξi), i = 1, 2, 3, is represented by the series

Ei(x, ξi) = Ēi +

di∑
j=1

√
τi,jgi,j(x)ξi,j , x ∈ Di. (2.33)

Here, {τi,j}dij=1 and {gi,j(x)}dij=1 are di largest eigenvalues and the corresponding eigenfunctions of

the Gaussian covariance kernel given in (2.30). We assume that {ξi,j}dij=1, i = 1, 2, 3, are i.i.d. uniform

random variables U(−1, 1). The list of parameters used in the analyses of this example is given in Table

2.3. These choices ensure that all realizations of E are strictly positive on D.

Similar to the L-shaped problem, FE discretizations are done via the FEniCS project [144] and by

using linear triangle elements with a uniform grid size h1 = h2 = 1/10 along x1 and x2 directions.
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Figure 2.9: Geometry of the 2D cantilever beam composed of three non-overlapping sub-domains D1, D2 and D3.
The two interfaces are: ΓI12 = ∂D1 ∩ ∂D2 and ΓI23 = ∂D2 ∩ ∂D3. Young’s moduli of the sub-domain materials are
statistically independent random fields.

Table 2.3: Assumed parameters for the description of Young’s modulus E in (2.32) and (2.33).

d1 d2 d3 lc,1 lc,2 lc,3 Ē1 Ē2 Ē3 σ1 σ2 σ3

5 8 7 2/3 1/2 1/3 100 100 100 35 35 35

Legendre PC expansions of {φli}rl=1, i = 1, 2, 3, with degree p = 3 were found sufficient for the solution of

update equations (2.15) and (2.17).

We note that in the present test case, D2 and D3 are floating sub-domains with no Dirichlet boundary

conditions; therefore, the PCPG solver described in Section 2.4.2 is applied to compute the vectors of

Lagrange multipliers {λl0}rl=1 in (2.12). We refer to Algorithm 2 for the implementation details of the PCPG

solver. In our computations, we have considered εPCPG = 10−6 as the stopping criterion for the PCPG

solver. The condition number of F̂I determines the number of PCPG iterations and generally increases as a

function of the separation rank r, hence asking for a preconditioner. Selection of an effective preconditioner

F̄−1
I , however, is generally a non-trivial task in the FETI approach. Among several existing choices, e.g.,

[197, 133, 244, 193, 92, 38], we found the preconditioner of [133],

F̄−1
I =

(
3∑
i=1

ĈT
i Ĉi

)−1( 3∑
i=1

ĈT
i K̂iĈi

)(
3∑
i=1

ĈT
i Ĉi

)−1

, (2.34)

particularly effective for our purpose.
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Figure 2.10: Convergence properties of the PCPG algorithm used for the beam problem. (a) Condition number of F̂I

vs. the separation rank; (b) Number of the iterations required for the PCPG algorithm to converge with and without

preconditioning vs. the separation rank.
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Figure 2.11: Energy functional π (a) and relative errors in mean and standard deviation of the displacement (b) as a

function of the separation rank r for the beam problem. The errors are evaluated from (2.27).

In Fig. 2.10(a), we show the dependence of the condition number of F̂I on r for the present example.

A rapid increase in the condition number of F̂I can be observed when r is increased. Fig. 2.10(b) displays

the number of PCPG iterations required to reach εPCPG = 10−6 with the preconditioner (2.34) and when

no preconditioner is used, i.e., F̄−1
I = I . We observe that the choice of preconditioner (2.34) makes
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the convergence of the PCPG solver almost independent of r. This is particularly crucial when one is

dealing with problems in which r is large. However, we note that further analysis is needed to confirm the

effectiveness of (2.34).

Fig. 2.11 illustrates the convergence of the separated representation. Similar to the L-shaped problem,

increasing the separation rank r results in a monotonic descries of the energy functional π, see Fig. 2.11(a).

The relative mean and standard deviation errors εrµ and εrσ of the displacement are computed from (2.11) and

are plotted against r in Fig. 2.11(b).
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Figure 2.12: Contours of the mean and standard deviation of vertical displacement obtained with separated represen-
tation (solid line) and the reference solution (dotted line) for the beam problem. (a) Mean for r = 1; (b) Standard
deviation for r = 1; (c) Mean for r = 11; (d) Standard deviation for r = 11.

In Fig. 2.12, we display the contours of the mean and standard deviation of the vertical displacement

obtained from the separated representation, and compare them with those of the reference solution. The
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mean is captured fairly accurately with a rank one approximation. While for r = 1 a considerable deviation

from the standard deviation of the reference solution is observed, the rank r = 11 approximation agrees well

with the reference solution (Fig. 2.12(b) and Fig. 2.12(d)). Despite the high-dimensionality of the solution,

i.e., d = 20, we note that we only require a low separation rank, r = 11, to accurately approximate the

solution mean and standard deviation.
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Figure 2.13: PDF of the total displacement at (x1, x2) = (4.5, 0.0). A comparison between the separated approxima-

tion and the reference solution.

Fig. 2.13 compares the PDFs of the separated approximation of the total displacement at (x1, x2) =

(4.5, 0.0), when r = 1 and r = 11, to the PDF of the corresponding reference solution. An almost identical

agreement between these PDFs is observed when r = 11.

To demonstrate that the stochastic functions φr1, φr2, and φr3 in (2.9) depend on the problem at hand,

we present the PDFs of these quantities, for r = 1, 3, 8, 11, in Fig. 2.14. As it can be seen, these PDFs

are different from those of the L-shaped problem. Additionally, Fig. 2.15 reports the PDF of the stochastic

basis functions φr1φ
r
2φ

r
3 for the above r values.
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Figure 2.14: PDFs of the normalized stochastic functions φr1, φr2 and φr3, r = 1, 3, 8, 11, for the beam problem. The

normalized stochastic functions have unit second moment. (a) PDFs of the normalized φr1; (b) PDFs of the normalized

φr2; (c) PDFs of the normalized φr3. Some PDFs are not shown completely.
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Figure 2.15: PDFs of the normalized stochastic basis functions φr1φ
r
2φ
r
3, r = 1, 3, 8, 11, for the beam problem. Each

φr1φ
r
2φ
r
3 has unit second moment.
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Fig. 2.16 shows the execution time of the ARR algorithm, for multiple r values, normalized by the

execution time of of the SG approach for the beam solution. The serial implementation of the SG approach

took about 628 minutes. As may be observed from Fig. 2.16, the separated representation approach leads to

two orders of magnitude reduction in the computation time as compared to the PC counterpart.
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Figure 2.16: Execution time of the ARR algorithm as a function of the separation rank r for the beam problem. The

normalization is with respect to the run time of the Galerkin-based PC method.

2.6 Summary and Conclusions

In this chapter, we developed a computational framework for the propagation of uncertainty through

coupled domain problems. The proposed approach hinges on the construction of a solution-adaptive stochas-

tic basis that is of separated form with respect to the random inputs characterizing the uncertainty in each

sub-domain. Such a separated construction of stochastic basis is achieved through a sequence of approxima-

tions with respect to the dimensionality, i.e., number of random inputs, of each individual sub-domain and

not the combined dimensionality. This leads to a partitioned treatment of the stochastic space and, conse-

quently, a higher scalability of the method as compared with standard uncertainty propagation approaches,

such as those based on direct polynomial chaos expansions. For situations where the cardinality of the sep-

arated basis – here referred to as the separation rank – is small, the proposed approach provides a reduced

order representation of the coupled field solution.
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The deterministic coefficients associated with each separated stochastic basis capture the spatial vari-

ability of the solution and are computed via the standard FETI approach. Therefore, the method achieves

a high level of parallelism while requiring no intrusion in each sub-domain solver. Although our present

formulation of domain coupling is based on the standard FETI approach, we foresee no major technical

difficulties in employing more advanced domain coupling schemes.

The performance of the proposed framework was explored through its application to two linear el-

liptic PDEs with high-dimensional random inputs. Both problems were defined on physical domains con-

sisting of two coupled sub-domains with independent sources of uncertainty. In both cases, despite the

high-dimensionality of the random inputs, accurate estimations of the solution statistics were achieved with

relatively low separation ranks, thus demonstrating the effectiveness of the present approach.

The stochastic expansion of this study based on the separated representations may also be applied to

other coupled problems, such as fluid structure interaction (FSI), involving uncertainty. However, different

numerical strategies for the construction of the separated basis may be required.





Chapter 3

Uncertainty Quantification of Lithium-ion Batteries

3.1 Introduction

Up to date, the majority of the LIB physics-based simulations have treated the underlying model

parameters deterministically and ignored the effects of uncertainties in the model parameters on the perfor-

mance of LIBs. There are a few works in the literature which have addressed the variability of LIB physics-

based model parameters. In [207], PC expansion is employed within the Newman’s model to demonstrate

the reduction in the cell potentials as a result of the uncertainty in the particle size of the anode electrode.

Effects of variability in cycling rate, particle size, diffusivity, and electrical conductivity of the cathode

electrode on the LIB performance was examined in [65], where surrogate models are developed using the

Newman’s model together with techniques such as Kriging, polynomial response, and radial-basis neural

networks. It was found that the randomness in electrical conductivity has the minimal effects on the cell per-

formance, while the impact of the remaining parameters depend on the the cycling rate. In [208], impedance

spectroscopy [222] is utilized to compare the relative importance of randomness in porosity, particle size,

length and tortuosity of the cathode and separator using Nyquist stability criterion. It was shown that the

particle size has the largest impact on the fluctuations in the impedance. In [192], a reduced order LIB

model presented in [236] and a Bayesian inference technique are used to estimate the effective kinetic and

transport parameters from experimental data. These works either employ a reduced order model of the LIB

or only consider uncertainties in a few number of model parameters to avoid high computational costs.

This chapter presents a sampling-based PC approach to study the effects of uncertainty in various

model parameters on the cell capacity, voltage, and concentrations of an LIB described by the Newman’s
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model [171, 62, 63]. The proposed PC approach, first introduced in [59], relies on the sparsity of expansion

coefficients to accurately compute the statistics of quantities of interest with a small number of battery sim-

ulations. Through its application to an LiC6/LiCoO2 LIB model, we demonstrate that, unlike the previously

mentioned works on UQ of LIBs, the proposed PC approach is capable of taking into account a large num-

ber of uncertain parameters. While the proposed PC-based UQ framework is general, the results we present

are specific to the particular LiC6/LiCoO2 cell we consider and the the choices of uncertainty models for

its parameters. The latter are, as much as possible, identified from the reported experiments on identical or

similar cells/materials.

Additionally, this UQ framework enables performing a global sensitivity analysis (SA) to identify

the most important uncertain parameters affecting the variability of the output quantities. Such an analysis

may be used toward reducing cell-to-cell variations and designing more efficient and targeted quality control

procedures to reduce the manufacturing cost of LIBs [208, 218]. We also review the standard experimental

techniques used for measuring the model parameters and discuss their impacts on the cell capacity and/or

power.

It is worth highlighting that the present work is focused on modeling and propagation of parametric

uncertainties, as opposed to model form uncertainties which may consider multiple competing models.

3.2 LIB Governing Equations

An LIB schematic is presented in Fig. 3.1. During the discharge process, Lithium ions in the solid

particles of the anode diffuse to the particle surface where they oxidize into Li+ ions and electrons and

transfer to the electrolyte liquid (deintercalation). Electrons flow through the external circuit to the positive

electrode. Meanwhile, Li+ ions travel via diffusion and migration through the electrolyte and separator to

the cathode where they are reduced and diffused into the solid particles (intercalation). When the LIB is

charged, this process is reversed.

The Newman’s LIB model is developed based on porous electrode and concentrated solution theories

[171, 62, 63]. The governing equations of this model for the salt concentration in liquid phase c, lithium

concentration in solid phase cs, liquid phase potential φe and solid phase potential φs are presented in
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Figure 3.1: Schematic of a full cell LIB.

Table 3.1. Symbols used in this table are defined in the nomenclature at the end of this chapter. The

assumptions made in this model are summarized as: (i) transport properties are independent of temperature

and simulations are isothermal; (ii) D, Ds and t0+ do not depend on the concentrations; (iii) volume changes

within the cell are ignored; (iv) zero surface electrolyte inter-phase (SEI) resistance is considered; (v) no

double layer capacitive effects are considered; and (vi) solid particles are spherical.

In the literature, numerical techniques such as finite difference [62], finite volume [186], and finite

elements [249] have been used to solve this system of coupled non-linear equations simultaneously. In order

to reduce the computational cost of the LIB simulations, using the concepts of particular and homogeneous

solutions to Ordinary Differential Equations (ODEs), Reimers [194] suggested a decoupled formulation of

Newman’s model, which we use in this study. For the sake of completeness, this decoupling technique is

presented in the following.

The decoupling procedure starts with combining the potential equations for the solid phase (3.4),

liquid phase (3.3) and the Butler-Volmer (BV) equation (3.5) in order to first reduce the number of equations

to be solved. This is motivated by the fact that in each electrode, there are only three tightly coupled

quantities, i.e., c, cs and the over-potential η = φs−φe−V , which need to be solved simultaneously [194].
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Table 3.1: Coupled non-linear governing equations of LIB.

Governing equation Boundary conditions

Electrolyte
phase diffu-
sion

∂(εc)

∂t
= ∇(εDeff∇c) +

1− t0+
F

jvol (3.1) ∇c|x=0 = ∇c|x=L = 0

Solid phase
diffusion

∂cs
∂t

=
1

r2

∂

∂r

(
Dsr

2 ∂

∂r
cs

)
(3.2) ∇cs|r=0 = 0

∇cs|r=rs = − jvol
aFDs

Liquid phase
potential

∇(κeff∇φe)−∇(κeff
D ∇ ln c) + jvol = 0 (3.3) ∇φe|x=0 = ∇φe|x=L = 0

φe|x=L = 0

Solid phase
potential

∇(σeff∇φs)− jvol = 0 (3.4) ∇φs|x=0 = ∇φs|x=L =
−I
σeff

∇φs|x=La = ∇φs|x=La+Ls = 0

Reaction ki-
netics

jvol = aiex

[
exp

(0.5Fη

RT

)
− exp

(
− 0.5Fη

RT

)]
iex = Fk(csurf

s )0.5(cs,max − csurf
s )0.5(c)0.5

(3.5)

Consequently, the following non-linear equation for the over-potential η can be obtained

∇(σh∇η) = aiex

[
exp

(0.5Fη

RT

)
− exp

(
− 0.5Fη

RT

)]
−∇

[ I

σeff
+
κeff
D

κeff
∇ ln c(η) +∇V (η)

]
, (3.6)

subjected to the boundary conditions

∇η|x=0,L = −
[ I

σeff
+∇V (η)

]
x=0,L

, (3.7)

∇η|x=La,La+Ls =
[ I

κeff
−
κeff
D

κeff
∇ ln c(η)−∇V (η)

]
x=La,La+Ls

. (3.8)

Here, σh is the harmonic mean conductivity defined by 1
σh = 1

σeff + 1
κeff . So far, instead of solving the

coupled system of equations in Table 3.1, one needs to solve a system of equations including Eqs. (3.1), (3.2)

and (3.6) simultaneously. We note that all of the nonlinearities are isolated in Eq. (3.6) for the over-potential.

The next step of deriving the reformulation is decoupling these three equations via the concept of

particular and homogeneous solutions to ODEs. Application of the implicit finite time differencing to the
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solid phase diffusion equation (3.2) results in the following non-homogeneous ODE with non-homogeneous

BCs

cs(r, t+ ∆t)− ∆t

r2

∂

∂r

(
Dsr

2 ∂

∂r
cs(r, t+ ∆t)

)
= cs(r, t), (3.9)

∇cs|r=0 = 0, ∇cs|r=rs = − jvol
aFDs

. (3.10)

One may write the general solution to Eq. (3.9) as

cs(r, t+ ∆t) = cos(r, t+ ∆t) +
jvol
aF

cjs(r, t+ ∆t), (3.11)

where cos is the solution to the following non-homogeneous ODE with homogeneous BCs

cos(r, t+ ∆t)− ∆t

r2

∂

∂r

(
Dsr

2 ∂

∂r
cos(r, t+ ∆t)

)
= cs(r, t), (3.12)

∇cos|r=0 = 0, ∇cos|r=rs = 0, (3.13)

and cjs is the solution to the following the homogeneous ODE with non-homogeneous BCs

cjs(r, t+ ∆t)− ∆t

r2

∂

∂r

(
Dsr

2 ∂

∂r
cjs(r, t+ ∆t)

)
= 0, (3.14)

∇cjs|r=0 = 0, ∇cjs|r=rs = − 1

Ds
. (3.15)

A similar approach may be employed for decoupling the solution of the electrolyte phase diffusion

equation (3.1) from the over-potential solution η and the volumetric pore wall flux jvol. The only difference

here is that jvol in Eq. (3.1) is a position dependent source term while in Eq. (3.2) it appears on the boundary

conditions. Consequently, the general solution to the discretized version of Eq. (3.1) in the time domain can

be obtained via

c(x, t+ ∆t) = co(x, t+ ∆t) +
1− t+
F

∫
jvol(x0)cj(x, x0, t+ ∆t)dx0. (3.16)

Here in Eq. (3.16), co and cj are the solutions to the following ODEs both subjected to zero flux

boundary conditions
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ε[co(x, t+ ∆t)− c(x, t)]
∆t

= ∇[εDeff∇co(x, t+ ∆t)], (3.17)

εcj(x, x0, t+ ∆t)

∆t
= ∇[εDeff∇cj(x, x0, t+ ∆t)] + δ(x− x0), (3.18)

with δ(x− x0) being the Dirac delta function.

At this point, solutions to the solid and electrolyte phase diffusion equations are decoupled from the

over-potential and pore wall flux since in solving Eqs. (3.12), (3.14), (3.17) and (3.18), η and jvol are not

needed. Moreover, for the cases when Ds, Deff and ε are constant, analytic solutions are available for Eqs.

(3.14) and (3.18) [194]. cjs and cj can also be used to obtain a linearized form for the terms including V (η)

and ln c(η) on the RHS of Eq. (3.6), respectively. In conclusion, one needs to solve the decoupled Eqs.

(3.12), (3.14), (3.17), (3.18), and (3.6) instead of solving the coupled system of non-linear equations in

Table 3.1 for LIB modeling. In addition, if a constant time step is used, Eqs. (3.14) and (3.18) need to be

solved once at the beginning of the simulation. The only major approximation in deriving this decoupled

formulation is the finite time differencing which is inevitable in numerical simulations. An extended version

of this decoupled formulation, which includes SEI resistance and double layer capacitive effects coupled

with a thermal model, is given in [196, 195]. Interested reader is referred to [194] for more details on

linearizing the over-potential equation (3.6), grid generation and the time evolution strategy.

3.3 Non-intrusive Polynomial Chaos Expansion

In the following, we will review the least squares regression and the compressive sampling methods

which are used to compute the PC coefficients in a non-intrusive fashion, i.e., via sampling.

3.3.1 Least squares regression

The least squares regression technique is basically the regression of the exact solution u(ξ) in the PC

bases [237]. Given the set of samples {Ξ(i)}Ni=1, generated randomly, for instance, according to ρ(ξ), and
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the corresponding solution realizations {u(Ξ(i))}Ni=1, the discrete representation of (2.6) can be written as

Ψα ≈ u, (3.19)

where u = (u(Ξ(1)), · · · , u(Ξ(N)))T ∈ RN contains the realizations of the QoI, Ψ(i, j) = ψj(Ξ
(i)) ∈

RN×P is the measurement matrix containing samples of the PC basis, and α = (α1, · · · , αP )T ∈ RP is the

vector of PC coefficients.

PC coefficients α may be approximated by solving the least squares problem

min
α
‖u−Ψα‖2, (3.20)

where ‖ · ‖2 is the l2 norm. When Ψ is full rank, the solution to (4.4) is computed from the normal equation

(ΨTΨ)α = ΨTu. (3.21)

In general, a stable solution α to (4.5) requires N > P realizations of u. In [107, Theorems 2.2 and

3.1], it is shown that for d-dimensional Legendre polynomials of total order p, for the case of d > p, a stable

solution recovery from (4.4) can be guaranteed with a number of samples given by

N ≥ 3p C P log(P ), (3.22)

where C is an absolute constant. This suggests that the number of samples N depends linearly on P (up to

a logarithmic factor) for the least squares regression method.

For high dimensional complex problems, such as LIBs, generating N > P realizations may be

computationally expensive. In such cases, when the solution u(ξ) depends smoothly on ξ, the PC coefficients

are often sparse, i.e., many of them are negligible. In these cases, CS may be employed to compute the

coefficients with N < P realizations [59, 107, 184, 108, 211, 262, 124, 264]. Specifically, the importance

sampling approach of [108] ensures an accurate computation of α with a number of solution realizations

that depends linearly (up to a logarithmic factor in P ) on the number of dominant coefficients. We next

review the CS approach, which we use later for the UQ of LIBs.
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3.3.2 Compressive sampling

Compressive sampling/sensing is an emerging direction in signal processing which enables (up to)

exact reconstruction of signals admitting sparse representations with a small number of signal measurements

[56, 29, 36]. It was first introduced to the UQ field in 2011 by Doostan and Owhadi [59] where they used

CS to approximate sparse PC solutions to stochastic PDEs. The main requirement in CS methods is to have

a sparse solution at the stochastic level, that is a small fraction of PC coefficients in (2.6) are dominant and

contribute to the solution statistics. The ultimate goal of CS is to approximate the sparse PC coefficients α

accurately and robustly with N < P realizations of u(ξ).

With N < P , the underdetermined linear system in (3.19) is ill-posed and generally has infinitely

many solutions. Sparsity of the PC coefficients α allows a regularization of (3.19) to ensure a well-posed

solution [59]. This can be achieved by solving the Basis Pursuit Denoising (BPDN) problem

min
α
‖α‖1 subject to ‖Ψα− u‖2 6 γ. (3.23)

Minimization of the l1 norm in (3.23) promotes sparsity in α, while the l2 residual norm controls the

accuracy of the truncated PC expansion with the tolerance γ. Several numerical techniques are available

in the literature to solve the BPDN problem [59]. Among those, we adopt the Spectral Projected Gradient

algorithm (SPGL1) of [17] implemented in the SPGL1 package for MATLAB [16].

The accuracy of α computed from (3.23) depends on the sample size N and the truncation error

‖Ψα−u‖2 in (3.23). In general, the truncation error may be decreased by increasing the order p of the PC

basis, which leads to a larger number of coefficients, P . This, in turn, requires a larger number of samples

N to maintain the stability of the BPDN problem. The minimum sampling rate depends on the type of the

PC basis, the sparsity of α, and the sampling distribution according to which {Ξ(i)}Ni=1 are generated, and

is shown to linearly depend on the number of dominant PC coefficients [108, Theorems 3.1 and 4.2]. More

precisely, for d-dimensional Legendre polynomials of total order p, where d > p, the number of samples N

required to guarantee a stable solution recovery from (3.23) is given by

N ≥ 3p C S log(P ), (3.24)



54

where S is the number of dominant coefficients. In (3.24), N depends primarily on S and weakly on P

through the log(P ) term. For high dimensional complex problems, we usually have P � S, hence, a

comparison of (3.22) and (3.24) suggests that the CS approach requires considerably smaller number of

samples in comparison to the least squares regression.

In practice, one may start by approximating a lower order PC expansion whenN is small and increase

p when a larger number of samples become available. Another important factor in the sparse reconstruction

is the selection of the truncation error tolerance γ. The ideal value for the tolerance is γ ≈ ‖Ψαexact−u‖2.

Since the exact PC coefficients αexact are not known, selecting larger values than ‖Ψαexact − u‖2 for γ

deteriorates the accuracy of the approximation, while smaller choices may result in over-fitting the solution

samples and, thus, less accurate results. In the numerical results of Section 3.6, we employ the cross-

validation approach in [59, Section 3.5] to optimally choose γ. For the sake of completeness, this cross-

validation approach is summarized in Algorithm 3. For more details about the CS method, the interested

reader is referred to [59, 108].

Algorithm 3 Algorithm for cross-validation estimation of γ.
1: Divide the N solution samples to Nr reconstruction and Nv validation samples.
2: Choose multiple values for γr such that the exact truncation error ‖Ψαexact−u‖2 of the reconstruction

samples is within the range of γr values.
3: For each value of γr solve the BPDN problem (3.23) using the Nr reconstruction samples to compute
αr.

4: For each value of γr, compute the truncation error γv := ‖Ψvαr − uv‖2 of the Nv validation samples.
5: Find the minimum value of γv and and its corresponding γ̂r := γr.

6: Set γ =
√

N
Nr
γ̂r.

3.4 Global Sensitivity Analysis

Identification of the most important random inputs affecting the variations in the cell voltage, capacity,

and concentrations is one of the objectives of this study. This is achieved by performing a global sensitivity

analysis (SA) to quantify the specific effects of random inputs on the variance of the QoI.

Among the available techniques to perform global SA, we use the Sobol’ indices [228] which are

widely used due to their generality and accuracy. Sudret [237] introduced an analytic approach to compute
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the Sobol’ indices as a post-processing of the PC coefficients. Let us assume the PC coefficients in (2.6) are

computed. The first order PC-based Sobol’ index Sk, which represents the sole effects of the random input

ξk on the variability of u(ξ), is given by

Sk =
∑
i∈Ik

α2
i/var[u], Ik = {i ∈ Nd0 : ik > 0, im 6=k = 0}, (3.25)

where var[u] is given in (1.7). In computing Sk, it is assumed that all random inputs except ξk are fixed,

therefore, Sk does not represent the effects of the interactions between ξk and other random inputs. In order

to quantify the total effects of the random input ξk, including the interactions between random inputs on the

variability of u(ξ), one needs to compute the total PC-based Sobol’ indices defined as

STk =
∑
i∈I T

k

α2
i/var[u], I T

k = {i ∈ Nd0 : ik > 0}. (3.26)

The smaller STk , the less important random input ξk. For the cases when STk � 1, ξk is considered as

insignificant and may be replaced by its mean value without considerable effects on the variability of u(ξ).

In this study, we employ STk as a measure to identify the most important random inputs of the LIB model

considered.

3.5 Uncertainty in LIB Model Parameters

The model parameters of LIBs are measured experimentally and are accompanied by uncertainty due

to natural or experimental variability. Some of these parameters are measured using complex electrochemi-

cal techniques, while others are obtained via simple experiments. In the following, we will discuss a number

of such techniques. It should be noted that because of the limited data available in the literature, we could

not avoid making assumptions on the probability distribution for some of the parameters. Additionally, the

reported uncertainty models are specific to the LiC6/LiCoO2 cell we consider here.

3.5.1 Porosity, ε

Porosity is defined as the ratio of the pore volume to the bulk volume. Manufacturers choose the

porosity as a trade off between power and energy, i.e., the higher the porosity, the higher the power and
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the lower the capacity [216]. There are several methods to measure the porosity, such as the Method of

Standard Porosimetry (MSP) [66], porosity measurement using liquid or gas absorption methods according

to the American Society for Testing and Materials (ASTM) D-2873 [270], and X-ray tomography [44].

In [208], a uniform distribution [0.28, 032] is considered for the porosity of LiCoO2 based on exper-

imental data, which has ±6.7% (of the mean) variation around the mean. DuBeshter et al. [66] reported

±4.5% variability for porosity of the graphite anode electrode, while a higher value of ±12.6% is reported

for the separator. Hence, in the present study, we assume a uniform distribution for the porosity with±6.7%,

±4.5%, and±12.6% variation around the mean in LiCoO2 cathode, LiC6 anode, and separator, respectively.

Defining the coefficient of variation (COV) as the ratio of the standard deviation to the mean, the assumed

variations translate to COVs of 0.026, 0.073, and 0.038 in anode, separator, and cathode, respectively.

3.5.2 Solid particle size, rs

The flux of Li+ at the electrode-electrolyte interface is affected by the solid particle size in electrodes,

as it defines the available surface area for the reaction. The maximum battery power may be increased by

decreasing the particle size of the electrode material and increasing the surface area per volume.

The particle size distribution may be measured by a laser diffraction and scattering device [43], X-ray

computed tomography (XCT) [128], or focused ion beam tomography [215].

Santhanagopalan and White [207] considered a normal distribution for a graphite anode with the

mean and standard deviation of 6.2 µm and 0.42 µm, respectively, to quantify the effects of random particle

size. For the particle size distribution of LiCoO2, a normal distribution with mean of 7.7 µm and standard

deviation of approximately 1.5 µm is reported in [150]. The corresponding COV values are 0.0677 and

0.1948 for the graphite anode and LiCoO2 cathode, respectively. Nominal values, i.e., mean, of the particle

sizes in both electrodes are equal to 2.0 µm in our cell. Because of the limited data available in the literature

on the particle size distribution of our specific electrodes, we use these COVs to find the corresponding

standard deviations. Based on these COVs, we assume a normal distribution with a mean of 2.0 µm and

standard deviation of 0.1354 µm for the graphite anode. For the cathode electrode, the same mean value but

a standard deviation of 0.3896 µm is considered.
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Remark 3. When one draws samples from a Gaussian distribution for the solid particle size rs, one should

assure that all the rs samples are strictly positive. For this purpose, we here employed a truncated Gaussian

distribution bounded between mean ±3 standard deviation of rs.

3.5.3 Bruggeman coefficient, brugg

In porous electrode theory, instead of specifying the exact position and shapes of all pores and par-

ticles, a volume-averaged formulation is used [240]. In this model, the effective transport properties of the

liquid phase, Deff and κeff , are obtained using the porosity ε and tortuosity τ via

κeff =
εκ

τ
, Deff =

εD

τ
. (3.27)

Tortuosity τ is a geometric parameter and depends on the porous electrode structure [242]. Although in re-

cent years researchers have attempted to measure τ via experimental techniques [242, 69, 66, 216], because

of the experimental complexities, τ has been commonly used as a model parameter that is calibrated by

experiments [63]. More precisely, τ is computed via the well-known Bruggeman relation

τ = ε(1−brugg), (3.28)

where the Bruggeman exponent brugg is chosen to match numerical results with experimental data, and is

usually assumed to be 1.5 [242].

Since the Bruggeman relation is widely used in LIB simulations, instead of taking τ as a random input

parameter, we choose the Bruggeman exponent brugg to be an uncertain parameter in determining the effec-

tive properties. In [66], a uniform distribution with±4.9% of the mean variation around the mean is reported

for the Bruggeman exponent of the LiC6 anode, while ±33.3% is considered for the Bruggeman exponent

in separator bruggs [208]. For this study, we assume a uniform distribution for the Bruggeman exponent

with ±5.0% variations around the mean in both electrodes and ±20.0% in separator, which corresponds to

COVs of 0.029 and 0.115, respectively.
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3.5.4 Li+ transference number, t0+

When an LIB is discharged, electrolyte salt dissociates into Li+ and PF−6 ions. The portion of the

current that is carried by Li+ ions is called the Li+ transference number. The higher the Li+ transport

number, the higher the battery power [273].

Hittorf’s method [15], ac impedance spectroscopy [129], or pulsed field gradient NMR (pfg-NMR)

technique [85] are used to measure the transference number in electrolytes. The experimental error of pfg-

NMR technique for binary solutions is estimated to be around 5.0% [247]. Hence, we let the transference

number uniformly change between 0.345 and 0.381 in this study.

3.5.5 Salt diffusion coefficient in the liquid phase, D

The salt diffusion coefficient D is a measure of the friction forces between the ions and the solvents

[180]. In order to restrict the performance-limiting salt concentration gradients, which form in the electrolyte

during polarization, it is critical to have a high salt diffusion coefficient [169]. High values of D lead to

higher battery power. Experimental methods such as cyclic voltammetry (CV) [263] and electrochemical

impedance spectroscopy (EIS) [251] have been used to measure D.

Salt diffusion coefficient is usually reported as a constant, but in [247] it is assumed to be a function

of temperature and salt concentration. In this study, we assume a uniform distribution for D with ±10.0%

variation around the mean, which corresponds to COV of 0.0577.

3.5.6 Diffusion coefficient of the solid, Ds

Diffusion coefficient of the solid phase plays an important role in the performance of LIBs since it

affects the intercalation flux. Electrochemical techniques such as CV, GITT and EIS have been used to

determine Ds [257]. Ds has been mostly treated as a constant value in LIB simulations [90], while it has

been shown that Ds depends on the intercalation level, i.e., the ratio of csurf
s /cs,max [141]. The values of

Ds for the same materials, reported by different research groups, may differ by several orders of magnitude.

These large differences may suggest that a Fickian diffusion model which is used to calibrate Ds does not
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correctly describe the transport of Lithium within the active particles and other transport models need to be

considered.

In this study, we assume thatDs does not depend on the intercalation level. Hence, forDs, we assume

a uniform distribution with the same COV we assumed for D.

3.5.7 Electronic conductivity of the solid, σ

Capacity of LIBs may be improved by increasing the solid phase electronic conductivity by using

conductive additives in the electrode materials [40]. Two-point and four-point probe techniques have been

used to measure the electronic conductivity of electrode materials [241]. Although σ depends on temperature

and state of the charge [210], it is mostly treated as a constant in LIB simulations.

Reported values of σ in the literature for LiC6 anode are mostly around 100 S · m−1 [236, 61, 90],

while the electronic conductivity of LiCoO2 cathode is reported to be 100 S · m−1 [236] and 10 S · m−1

[61]. In our LIB model, the nominal values of σ is equal to 100 S · m−1 for both electrodes. Because of

the limited available data in the literature on the measurement uncertainties in σ, we assume that in both

electrodes it changes uniformly with ±10.0% variation.

3.5.8 Reaction rate constant, k

Exchange current density iex is measured at the initial state of the battery [185]. Using the relation

iex = Fk(csurf
s )0.5(cs,max − csurf

s )0.5(c)0.5, one can calculate the reaction rate constant k for each electrode

at the initial values of csurf
s and c. Although k shows an Arrhenius type dependence on temperature and

depends on the nature of the electrode surface [170], it is usually treated as a constant in LIB simulations.

Higher reaction rate constants are favored for Li-ion batteries since the reaction is more reversible, and

polarization effects are lower.

Because of the lack of experimental data on the reaction rate constant, we assumed that k has a

uniform distribution with ±10.0% variation around the mean in both electrodes.

A list of random parameters considered in this study is presented in Table 3.2. In addition to the

discussed input parameters, we also took the lengths L of electrodes and separator to be random in order to
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study the effect of uncertainties in geometrical parameters of the battery. It also should be noted that in our

battery model, the effective ionic conductivity of the liquid phase κeff is considered to be a function of liquid

concentration. Hence, κeff will be automatically a random parameter since the porosity is considered to be

random. We note that the anodic and cathodic transfer coefficients (considered to be 0.5 in this study) as

well as the open circuit potentials are also subjected to uncertainties; however, we treat them as deterministic

parameters in this study.

Table 3.2: List of random and deterministic LIB inputs used in this study.

Random Input Nominal Value Distribution
rs,a [µm] 2 Gaussian, µ = 2, σ = 0.1354

rs,c [µm] 2 Gaussian, µ = 2, σ = 0.3896

εa 0.485 Uniform, [0.46, 0.51]
εs 0.724 Uniform, [0.63, 0.81]
εc 0.385 Uniform, [0.36, 0.41]
brugga 4 Uniform, [3.8, 4.2]
bruggs 4 Uniform, [3.2, 4.8]
bruggc 4 Uniform, [3.8, 4.2]
t0+ 0.363 Uniform, [0.345, 0.381]
D [m2 · s−1] 7.5× 10−10 Uniform, [6.75, 8.25] ×10−10

Ds,a [m2 · s−1] 3.9× 10−14 Uniform, [3.51, 4.29] ×10−14

Ds,c [m2 · s−1] 1× 10−14 Uniform, [0.9, 1.1] ×10−14

σa [S ·m−1] 100 Uniform, [90, 110]
σc [S ·m−1] 100 Uniform, [90, 110]
ka [m4 ·mol · s] 5.03× 10−11 Uniform, [4.52, 5.53] ×10−11

kc [m4 ·mol · s] 2.334× 10−11 Uniform, [ 2.10, 2.56] ×10−11

La [µm] 80 Uniform, [77, 83]
Ls [µm] 25 Uniform, [22, 28]
Lc [µm] 88 Uniform, [85, 91]

3.6 Numerical Example

In this section, we present a numerical example to demonstrate the application of our proposed UQ

approach to LIBs. The one-dimensional LiC6/LiCoO2 cell we consider here is studied in [236]. We present

our results for three different discharge rates of 0.25C, 1C, and 4C to study its effects on the propagation

of uncertainty. We note that assuming a constant discharge rate is an idealized scenario. Typically, the

battery loading varies over the course of the discharge process, depending on an application-dependent

usage of the battery. Hence, in addition to the previously mentioned uncertain parameters, the discharge rate

should also be considered as an uncertain input for the LIB model. For the sake of comparison, we treat

the discharge rate as a deterministic input in this study, while our proposed UQ framework can incorporate
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random discharge rates with no difficulties, perhaps, with a cost of running additional battery simulations.

For the spatial discretization of the LIB governing equations, we used the Finite Difference Method

on the non-uniform grids described in [194]. We also performed a mesh convergence analysis to ensure that

spatial discretization errors are inconsequential.

Remark 4. Working with a fine mesh and a small time step is advised when one employs sampling-based

UQ techniques since a coarse discretization may not return a converged/accurate solution for all samples. In

our calculations, we found that having 120 non-uniform grid points in each region and 26 non-uniform grid

points in the spherical solid particles are sufficient to obtain accurate realizations for all of the samples.

Moreover, constant time steps of 1.0, 0.1, and 0.05 seconds were used for 0.25C, 1C, and 4C rates of

discharge, respectively.

The cell model incorporating the nominal values in Table 3.2 is referred to as the deterministic model,

while the stochastic model uses the distributed input parameters of Table 3.2. The number of random inputs

of our stochastic LIB model is d = 19, which may be considered high. We use the CS technique in this

study to approximate the sparse PC coefficients since, in comparison to least squares regression, CS requires

smaller number of battery simulations.

Having at hand a deterministic LIB solver, the next step in sampling-based PC expansion is to generate

N realizations of model parameters listed in Table 3. To this end, we assign an independent random variable

ξk, k = 1, . . . , d, to each parameter, and consider an appropriate linear transformation of each ξk to match

the PDF of the corresponding parameter in Table 3.2. For Gaussian and uniform PDFs, we use ξk’s that are

standard Gaussians and uniformly distributed between [−1, 1], respectively. The independent samples of

ξ, i.e., {Ξ(i)}Ni=1, are used to generate N independent samples of the model parameters, for which the LIB

model is simulated to obtainN realizations of the output QoIs, {u(Ξ(i))}Ni=1. In our numerical experiments,

we simulate each battery realization until a cut-off potential of 2.8 V is reached. Then using {Ξ(i)}Ni=1 and

{u(Ξ(i))}Ni=1, we solve the BPDN problem in (3.23) to approximate the vector of PC coefficients α. These

in turn will be used to compute the statistics of u(ξ), such as the mean and variance given in (1.6) and (1.7),

respectively, as well as the total Sobol’ indices defined in (3.26).
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We find that a PC expansion of order p = 3 andN = 1000 battery simulations are needed to achieve a

validation error smaller than 1.0% as specified next. Following the cross-validation procedure described in

[59, Section 3.5], we divide the N = 1000 samples into Nr = 900 reconstruction and Nv = 100 validation

samples to estimate the optimum value of γ in (3.23), using which we compute the solution α from (3.23).

To verify the accuracy of the resulting PC expansion, we compute the validation error

relative error =
‖uv −Ψvαr‖2
‖uv‖2

, (3.29)

where uv is the vector ofNv = 1000 additional realizations of QoI (not used in computingα) and Ψv is the

measurement matrix corresponding to uv. Stated differently, the error in (4.23) determines the accuracy of

constructed PC model in predicting independent QoI realizations. In practice, there is no need to generate

additional samples for validation and we only used a larger number of validation samples to demonstrate the

accuracy and robustness of our proposed method.

Remark 5. In practice, we rely on the validation error to estimate the solution accuracy and decide to

possibly increase the total order of PC expansion p. When the validation error does not reduce by increasing

the number of numerically generated LIB samples for a given expansion order p, one may achieve smaller

validations errors by increasing p with a cost of increased number of LIB simulations.

Algorithm 4 summarizes the main steps in our proposed UQ framework for LIBs for a fixed PC

expansion order p.

Algorithm 4 Summary of the main steps in the proposed UQ framework for LIBs.
1: Identify uncertain parameters and their probability distributions (Section 3.5).
2: while the validation error in (4.23) is larger than a user-defined threshold do
3: Generate N realizations of the uncertain parameters based on their PDFs.
4: Perform deterministic LIB simulations to obtain the output QoI (Section 3.2).
5: Evaluate the corresponding realization of the PC basis (Section 3.3).
6: Perform the cross-validation approach in Algorithm 3 to optimally estimate γ.
7: Solve the BPDN problem in (3.23) to approximate the PC coefficients.
8: Increase N .
9: end while

10: Compute the statistics of the output QoI via (1.6) and (1.7) and the total Sobol’ indices via (3.26).
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3.6.1 Effects of input uncertainties on cell capacity

Capacity is defined as the available energy stored in a fully charged LIB and is one of the most

important factors affecting the battery performance. However, effects of LIB model uncertainties on capacity

estimation are not yet fully explored.

Fig. 3.2 demonstrates the effects of LIB model uncertainties in estimating the cell capacity. In Fig.

3.2(a), cell capacities as a function of the cell voltage obtained from deterministic and stochastic models are

presented for 0.25C, 1C and 4C rates of galvanostatic discharge. Shaded areas around the mean of stochastic

cell capacity represent three standard deviation intervals. As it can be seen, noticeable deviation from the

deterministic capacity starts when the cell voltage experiences a rapid drop-off. As the discharge rate is

decreased, the onset of this deviation happens at higher cell voltages, i.e., at φcell ≈ 3.7 V for I = 0.25C

and φcell ≈ 3.3 V for I = 1C. This plot shows that for low to medium rates of discharge, a deterministic

simulation of LIB overestimates the cell capacity. For 4C discharge rate, the mean of stochastic cell capacity

overlaps with the cell capacity predicted by the deterministic model. One may suspect that at high discharge

rates, input uncertainties have no significant effect on the cell capacity, but the probability bounds around

the mean of cell voltage for I = 4C suggest otherwise. As it can be seen, the largest standard deviation of

the cell capacity at the end of discharge is for the 4C discharge rate.

Fig. 3.2(b) shows the validation error in approximating the PC coefficients of the cell capacity. With

p = 3 and d = 19, the number of PC coefficients P = |I19,3| = 1540, which is larger than N = 1000. The

accurate solution approximation in this under-sampled setting is achieved by minimizing the l1 norm of α

in the BPDN problem (3.23).

A comparison of deterministic (solid line) and distributed (dashed line) cell capacities is also pre-

sented in Fig. 3.2(c). This plot suggests that the probability of achieving deterministic cell capacity when

the cell is subjected to assumed input uncertainties is very small for low to medium discharge rates, while

this probability is considerably larger for higher discharge rates.

An alternative sampling-based approach to compute the PC coefficients is the stochastic collocation

(SC) method [153, 259, 11]. The main idea behind the SC technique is to sample the output QoI at particular
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Figure 3.2: Comparison of stochastic and deterministic battery models for I = 0.25C, 1C and 4C rates of galvanostatic
discharge. (a) Stochastic and deterministic cell capacities as a function of the cell voltage. The shaded areas are
probability bounds of three standard deviations around the mean; (b) Relative error as a function of the cell voltage;
(c) PDFs of the cell capacity; (d) Comparison of the relative error obtained by the CS method and the level two
SC technique on a Clenshaw-Curtis grid [175] for 1C rate of discharge. Level three SC method requires 9976 LIB
simulations.

points in the stochastic space and then approximate the solution via interpolation or the solution statistics by

numerical integration. For high-dimensional problems, sparse tensor products first introduced by Smolyak

[226], which may be built upon the Clenshaw-Curtis abscissas, has been proposed to relax the curse-of-

dimensionality associated with full tensor products [175]. The accuracy of this method is controlled by the

so-called level parameter. The number of required LIB simulations increases with the magnitude of the

level parameter. SC may also be used to compute the PC coefficients via the projection equation αi =

E[u(·)ψi(·)]/E[ψ2
i ]. In particular, the numerator in this equation is a d-dimensional integral over Ω which
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may be computed using tensor product quadrature or cubature rules. Detailed description of these techniques

is beyond the scope of this paper and the interested reader is referred to the provided references.

In this study, we employ the SC technique with sparse tensor products based on Clenshaw-Curtis

abscissas to compare with the proposed CS approach. For the level parameter of two, one needs 761 LIB

simulations in the SC method. Fig. 3.2(d) compares the validation error in approximating the PC coefficients

of the cell capacity obtained by SC and CS methods for the cell discharged at 1C rate. As it can be seen, CS

with 761 samples results in the validation errors that are smaller (about one order of magnitude) than those

reported by the SC technique. Increasing the level parameter of the SC method to three, in order to increase

the accuracy, requires 9976 LIB simulations. A comparison between the level two SC and CS approaches

confirms the advantage of our proposed UQ framework, hence, we did not perform level three SC due to

the high computational costs. Since we use random samples in CS, unlike in the SC technique, the number

of samples are not dictated by the method and one may freely choose a minimum number of additional LIB

simulations to achieve the desired accuracy.

As discussed in Section 3.4, we compute the total Sobol’ indices given in (3.26) to identify the

most important random inputs. We assume that a random input ξk with a maximum total Sobol’ index

STk smaller than 0.01 has no significant effects on the variability of the output QoI and may be treated as

a deterministic input. This selection criteria is problem dependent and may be changed depending on the

application requirements. Fig. 3.3 shows the total Sobol’ indices associated with the cell capacity over a

course of discharge for I = 0.25C, 1C and 4C. In this paper, we only present significant Sobol’ indices, i.e.,

those with max(STk ) > 0.01, in the global SA plots. Moreover, the legends of the Sobol’ index plots are

sorted such that the first legend corresponds to the largest STk , while the last legend represents the smallest

Sobol’ index. The following observations from Fig. 3.3 are worthwhile highlighting:

• Independent of the discharge rate, porosity ε and Bruggeman coefficient brugg in anode, separator,

and cathode are among the most important random inputs. In other words, variation in the the cell

capacity is highly affected by uncertainty in tortuosity τ .

• For all three discharge rates, Fig. 3.3 shows that σa, σc, t0+, Ds,a, Ds,c, ka, kc, and rs,a are
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Figure 3.3: Global sensitivity analysis of the cell capacity for various discharge rates: (a) I = 0.25C; (b) I = 1C; (c)
I = 4C.

insignificant random inputs and their uncertainties have no important effects on the variability of the

cell capacity. Consequently, expensive and accurate quality control measures for these parameters

are not required when one aims at reducing the variations in cell capacity.

• As the discharge rate increases, uncertainties in the length of electrodes, i.e., La and Lc, become

less important, while the effects of variability in the length of separator Ls are more pronounced

for I = 4C.

• For I = 4C, the diffusion coefficient of the liquid phase D is an important random input, while for

low to medium rates, its corresponding Sobol’ index STD is smaller than 0.01.

• By increasing the discharge rate, the number of important random inputs at the end of discharge
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increases; two for I = 0.25C, four for I = 1C, and seven for I = 4C. In other words, for high

discharge rate LIB applications, accurate quality control measures are needed for a larger number

of LIB parameters.

• For low discharge rates, variability in the solid particle size rs has no significant effects on the

variations of the cell capacity.

In general, Fig. 3.3 suggests that in determining the most significant random inputs on the variations

of the LIB capacity, considering the discharge rate is crucial. Again, we emphasize that these observa-

tions may change when more accurate LIB models that account for cell degradations and other physical

phenomena are employed.

3.6.2 Statistics in normalized time

Since the input samples are different, the battery realizations reach the cut-off potential of 2.8 V at

different times. As an example, for 1C rate of discharge, some realizations of the battery reach the cut-off

potential before t = 3200 s while other realizations need more time, e.g., tmax = 3426 s. This asynchronous

behavior leads to non-smooth dependence of the cell voltage to random inputs and deteriorates the accuracy

of PC approximation when the battery approaches the end of discharge.

To overcome this issue, we introduce an uncertain time scaling t∗. In order to rescale the deterministic

realizations, we assume at t = 0, t∗ = 100, and we set t∗ = 0 when the battery reaches the cut-off potential

of 2.8 V. Hence, at t∗ = 100 the battery is fully charged and at t∗ = 0 it is fully discharged. This rescaling

approach enables us to maintain the accuracy of approximation over the entire discharge process without

increasing the computational cost or complexity of the problem. We note that our definition of t∗ involves a

constraint on the cell voltage, such that at t∗ = 0 the cell voltage for all realizations is equal to 2.8 V, which

translates to zero variability for the cell voltage at t∗ = 0. Our t∗ definition imposes no constraints on other

QoI such as solid and liquid phase concentrations.

3.6.3 Effects of input uncertainties on cell voltage and concentrations
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Quantification of the effects of input variations on the cell voltage and concentrations over the charge

or discharge processes could provide a better understanding of the cell behavior. In the following, we

present the effects of LIB input uncertainties on the stochastic behavior of the cell voltage φcell, liquid phase

concentration c, and solid phase concentration at the surface of the solid particle csurf
s as functions of the

normalized time t∗. In order to study the variations of c in all three main regions of the LIB, we compute c

at three different locations in the cell; middle of anode, separator and cathode. Similarly, csurf
s is computed

in the middle of electrodes.
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Figure 3.4: Effects of input uncertainties on the cell voltage for I = 0.25C, 1C and 4C rates of discharge. (a) Mean

and standard deviation of the cell voltage. The shaded areas are probability bounds of three standard deviations around

the mean; (b) Relative error.

Fig. 4.6(a) shows the mean and probability bounds of three standard deviations around the mean of

cell voltage as the functions of t∗ for I = 0.25C, 1C and 4C. Although at t∗ = 100, larger variabilities in φcell

correspond to higher discharge rates, φcell experiences its largest standard deviation at 1C rate of discharge,

highlighting again the importance of discharge rate on UQ analysis of the LIBs. The validation error of the

PC solution constructed from N = 1000 samples is displayed in Fig. 4.6(b). In fact, N = 1000 samples

were enough to accurately approximate c and csurf
s as well.

The corresponding total Sobol’ indices of the discharge curves in Fig. 4.6 are presented in Fig. 3.5,

from which we highlight that:
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Figure 3.5: Global sensitivity analysis of the cell voltage for: (a) I = 0.25C; (b) I = 1C; (c) I = 4C.

• Similar to the cell capacity, porosity ε and Bruggeman coefficient brugg in all three regions are

among the most important random inputs which contribute to the variability of the cell voltage for

all three discharge rates.

• For all three discharge rates, unlike the cell capacity, uncertainties in ka, kc, and rs,a contribute to

the cell voltage variations, although, their impacts are limited to the onset of discharge for low to

medium discharge rates.

• The uncertainty in σa, σc, Ds,a, and Ds,c has no significant effects on the variability of the cell

voltage.

• As the discharge rate increases, random parameters in separator, i.e., εs, bruggs, and Ls, contribute



more and more to the cell voltage variations, such that for 4C rate of discharge, εs becomes the

most important random input affecting the cell voltage variability. A similar behavior was observed

in Fig. 3.3.

• For I = 4C, variations in the cell voltage are highly affected by the uncertainties in the diffusion

coefficient of the liquid phaseD. Although, for low to medium discharge rates,D is an insignificant

random input, for high discharge rates, its Sobol’ index STD grows considerably. Moreover, unlike

the cell capacity, Li+ transference number t0+ has a high contribution in the cell voltage variability,

when the battery is discharged at 4C rate.

• Similar to the cell capacity, effects of uncertainties in the length of electrodes, La and Lc, on the

variations of φcell decreases as the rate of discharge increases.

Figs. 3.6(a)-(c) show the mean values of c and their three standard deviation bounds at three locations

for 0.25C, 1C and 4C rates of discharge. As the LIB is discharged at higher rates, larger concentration

gradients are developed across the cell to balance the migration of anions [90], as a result of which the

liquid concentration in the cathode approaches to zero near the end of discharge for 4C discharge rate (Fig.

3.6(c)). This may lead to zero concentrations in a region at the back of the cathode electrode, which means

the active materials may not be utilized further. This limits the capability of the LIB to be discharged at

higher rates. On the other hand, high concentrations in the anode electrode may be problematic when the

lithium salt/solvent system used has a solubility limit. For example, such a limit is 2100 mol/m3 for Lithium

Perchlorate in Propylene Carbonate at room temperature [90]. Consequently, analysis of the variability of

liquid phase concentration near the end of discharge may provide a more accurate understanding of the rate

limiting mechanisms associated with diffusion of lithium ions. As can be observed from this figure, our

definition of t∗ does not impose any constraints on c; hence, unlike the cell voltage, variability of c is not

equal to zero at t∗ = 0.

As mentioned in Section 3.5, it has been shown that σ andDs depend on the solid phase concentration.

Taking into account the variability in the solid phase concentration due to input variations may help to assess

such dependencies more accurately. A similar analysis is performed for the solid phase concentration at the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Mean and standard deviation of the liquid phase concentration c in the middle of anode, separator and
cathode for: (a) I = 0.25C; (b) I = 1C; (c) 4C rates of discharge. Mean and standard deviation of the solid phase
concentration csurfs in the middle of anode and cathode for: (d) I = 0.25C; (e) I = 1C; (f) 4C rates of discharge. The
shaded areas are probability bounds of three standard deviations around the mean.
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surface of the solid particle csurf
s . The mean values of csurf

s bounded by three standard deviations in the

middle of electrodes for I = 0.25C, 1C and 4C rates of discharge are also presented in Figs. 3.6(d)-(f). It

can be observed that the variability of csurf
s in the middle of the anode does not grow significantly as the

battery is discharged at low and medium rates, while for the high discharge rate, standard deviation of csurf
s

in both electrodes is increased monotonically over the course of discharge.

Fig. 3.7 shows the corresponding total Sobol’ indices of c in three regions for I = 0.25C, 1C and 4C

rates of discharge. We observe that for low to medium discharge rates, the influential random inputs on the

variability of c vary considerably from one region to another. As an instance, for I = 0.25C, variations in c

in the middle of cathode are mainly affected by uncertainty in εc, bruggc, and D, while in the anode, theses

variations are affected by the uncertainty in D, εc, bruggc, εa, brugga, εs, t0+, Lc, and bruggs. In other

words, for low discharge rates, variability of c in the anode is affected by the random inputs associated with

the other two regions, i.e., separator and cathode, while this is not true for the variation of c in the cathode.

Additionally, we note that:

• Similar to the cell capacity and voltage, uncertainties in σa, σc, Ds,a, and Ds,c have no significant

effects on the variability of c. Moreover, although reaction rate constants ka and kc appear in Figs.

3.7(d), (e), and (h), their impact on the variability of c is small.

• Despite the discharge rate in all three regions, uncertainty inD and t0+ has more pronounced effects

on the variation of c in both electrodes in comparison to separator.

• STD is increased in the electrodes and decreased in the separator as the LIB is discharged at higher

rates.

• Unlike the cell capacity and voltage, the effect of uncertainties in the length of the electrodes La

and Lc on the variations of c increases as the rate of discharge increases.
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Figure 3.8: Sensitivity analysis of the solid phase concentration for I = 0.25C, 1C and 4C rates of discharge. (a) csurfs

in the middle of anode with I = 0.25C; (b) csurfs in the middle of cathode with I = 0.25C; (c) csurfs in the middle of

anode with I = 1C; (d) csurfs in the middle of cathode with I = 1C; (e) csurfs in the middle of anode with I = 4C; (f)

csurfs in the middle of cathode with I = 4C.

A global SA of csurf
s in both electrodes is also presented in Fig. 3.8. We see that uncertainty in the

solid phase diffusion coefficient Ds has no significant effects on the variability of cell capacity, voltage and



75

liquid phase concentration. Surprisingly, Ds may be labeled as an insignificant random input even on the

variations of csurf
s in both electrodes for all three discharge rates. Moreover, the uncertainty in σa and σc

also has no impacts on the variability of csurf
s independent of the discharge rate. As the LIB experiences

higher discharge rates, the total Sobol’ index of rs,a decreases, while for rs,c, an increase in the total Sobol’

index is observed.

In overall, we see that in our stochastic LIB example, the uncertainty in σ and Ds has no significant

effects on the variability of the cell capacity, voltage and concentrations, hence, may be treated as determin-

istic inputs. Because of this, tight quality control measures are not needed for these parameters. On the other

hand, ε and brugg are the most important random inputs independent of the discharge rate, and require tight

quality control measures to reduce the LIB cell-to-cell variations. Moreover, we observe that the relative

contribution of uncertainty in the model parameters in the overall performance variability is highly affected

by the battery discharge rate.

We emphasize that the results presented in this section apply only to the LiC6/LiCoO2 cell we con-

sider in this study subjected to the input variabilities presented in Table 3.2. Any changes in these uncer-

tainties or cell chemistry/configuration may result in different observations. This is also the case if a more

accurate LIB model, which accounts for additional physical and chemical phenomena, is employed.

3.7 Summary and Conclusions

A sampling-based UQ approach was introduced to study the effects of input uncertainties on the

performance of the LIBs. The proposed UQ approach is based on polynomial chaos expansion framework

and hinges on a sparse approximation technique to achieve an accurate estimation of solution statistics with

a small number of LIB simulations. Additionally, the proposed method enables one to identify the most

important random inputs for any QoI such as capacity, voltage, and concentrations by performing a global

sensitivity analysis via computing the total Sobol’ indices. Such an analysis is helpful in designing more

efficient and targeted quality control measures, from material selection to cell assembly, and reducing the

manufacturing cost of the LIBs.

Performance of the proposed UQ approach was explored through its application to an LiC6/LiCoO2
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LIB discharged at three different rates. It was shown that the proposed UQ method can accurately compute

the variability in the output QoIs such as the cell capacity, voltage, and concentrations with a small number

of battery simulations, 1000 in this example. The global sensitivity analysis results corresponding to these

QoIs showed that the identification of the most important uncertain inputs is highly affected by the battery

discharge rate. For all three discharge rates, we found that the porosity and Bruggeman coefficient are

among the most significant uncertain parameters in the performance variability of the examined LIB.

We acknowledge that the LIB model we considered in this study suffers from many unmodeled phe-

nomena such as side reactions, stresses associated with volume changes, cell degradation, and temperature

dependence, which may affect the stochastic behavior of the cell. Since the proposed stochastic LIB model

is based on sampling, in order to include these phenomena in the model, more accurate LIB models can

be incorporated without changing the overall UQ framework. This may, however, increase the number of

required battery simulations and, hence, the overall computational cost. Additionally, the accuracy of the

uncertainty models we adopted for the LIB input parameters is limited by the available experimental data.

For some of these inputs, data are highly sparse or non-existent. We, therefore, resorted to assumptions

in describing the uncertainty. When data becomes available, these uncertainty models may be improved

accordingly.

The proposed UQ framework in this thesis was developed for forward propagation of the uncertainties

in the LIB simulations. Interesting future research directions include using this forward UQ framework

along with actual experimental data to infer battery model parameters as well as quantitative validation of

the model itself.



Nomenclature

D diffusion coefficient of the liquid phase [m−2 · s−1]

Ds diffusion coefficient of the solid phase [m−2 · s−1]

F Faraday’s constant = 97484 [C · mol−1]

I total current density across the stack [amp · m−2]

L width [m]

N number of samples

P number of PC basis functions of pth total order in di-

mension d

Sk first order Sobol’ index of kth random input

ST
k total Sobol’ index of kth random input

T temperature [K]

V open circuit potential of the active material [V]

Ω sample set

αi PC coefficients

ξ vector of input random variables

δ Kronecker delta or Dirac delta function

ε porosity of electrodes and stack

η over-potential in electrodes [V]

γ the truncation error tolerance of BPDN problem

κ electronic conductivity of the liquid phase [S · m−1]

κD liquid phase diffusional conductivity [S · m−1]

brugg Bruggeman coefficient

Id,p set of pth order multi-indices in dimension d

φcell cell voltage [V]

φe Li+ ion potential in liquid phase [V]

φs electron potential in the solid phase [V]

ψi multivariate PC basis functions

ρ(ξ) probability measure of random variable ξ

σ electronic conductivity of the solid phase [S · m−1]

τ tortuosity

a active particle surface area per unit volume of electrode

[m2 · m−3]

c salt concentration in liquid phase [mol · m−3]

cs lithium concentration in solid phase [mol · m−3]

csurf
s lithium concentration in solid phase at r = rs [mol ·

m−3]

d number of random inputs

iex exchange current density of an electrode reaction

[amp · m−2]

jvol volumetric reaction flux in the pore walls [amp ·m−3]

k reaction rate constant [m4 · mol · s]

p total order of the PC expansion

r micro-scale distance from the center of solid particle

[m]

rs solid particle size [m]
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t time [s]

t0+ Li+ transference number

x distance from anode [m]

Superscripts

eff effective value

h harmonic mean

j unit flux portion

o internal mixing portion

Subscripts

i multi-index

max maximum

a anode

c cathode

s separator





Chapter 4

Optimal Sampling Strategies for Regression-based PCEs

4.1 Introduction

As discussed in Section 1.2.1.2, non-intrusive approximations of the PC coefficients via sampling-

based techniques such as least squares regression (LSR) [113], pseudo-spectral collocation [258], Monte

Carlo sampling [149], and compressive sampling [59, 105] have been gaining more and more popularity as

they do not require modifications of the existing deterministic solvers. In this chapter, we consider the LSR

approach to determine the PC coefficients α and review the available sampling techniques for this problem.

The LSR technique was discussed in Section 1.2.1.2, but in order to keep this chapter self-contained, we

review the LSR approach in the context of PCEs in the following.

Let (Ω, T ,P) be complete probability space where Ω is the sample set (a.k.a. design space in the

context of design of experiments) and P is a probability measure on the σ−field T . Also assume that the

system input uncertainty has been discretized and approximated by random variables, such that the vector

ξ = (ξ1, · · · , ξd) : Ω → Rd, d ∈ N, represents the set of d independent random inputs with a joint PDF

denoted by ρ(ξ). The PC representation of the scalar finite variance output QoI denoted by u(ξ), in terms

of the orthogonal multivariate polynomials ψj(ξ), then reads

u(ξ) =
∞∑
j=1

αjψj(ξ), (4.1)

where αj are the deterministic PC coefficients to be determined. For computational purpose, the infinite

series in (4.1) may be truncated by retaining the first P terms as

u(ξ) =

P∑
j=1

cjψj(ξ) + ε(ξ), (4.2)
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where ε(ξ) represents the random truncation error. A detailed description of this truncation, construction

of the orthogonal PC bases ψj(ξ), and the convergence properties of the PC expansion in (4.2) has been

presented in Section 1.2.1.

Let us denote the ith realization of ξ by Ξ(i), generated randomly via Monte Carlo (MC) method, for

instance, according to ρ(ξ), and the corresponding realization of u(ξ) by u(Ξ(i)). Given the pair {Ξ(i)}Ni=1

and {u(Ξ(i))}Ni=1, withN being the number of independent samples, the discrete representation of (4.2) can

be written as

u = Ψc+ ε, (4.3)

where u = (u(Ξ(1)), · · · , u(Ξ(N)))T ∈ RN contains the realizations of the QoI u(ξ), Ψ(i, j) =

ψj(Ξ
(i)) ∈ RN×P is the measurement matrix containing samples of the PC basis, andα = (α1, · · · , αP )T ∈

RP is the vector of unknown PC coefficients, a.k.a. estimators, and the vector ε ∈ RN contains unknown

truncation errors between the solution realization u(Ξ) and the truncated PC approximation of u. A diago-

nal positive-definite matrix W is also introduced such that W (i, i) = w(Ξ(i)) is a function of the sample

points, which indeed depends on the sampling strategy, and will be discussed later in Section 4.4. The

unknown coefficients α may be approximated by solving the least squares problem

min
c
‖Wu−WΨα‖2, (4.4)

where ‖ · ‖2 is the standard Euclidean norm. WhenWΨ is full rank, the solution to (4.4) is computed from

the normal equation

(WΨ)T (WΨ)α = (WΨ)TWu. (4.5)

In general, a stable solution α to (4.5) requires N ≥ P samples of u [107]. For example, standard

sampling techniques such as MC requireN to be approximately 3-4 times larger than P . The computational

cost of constructing the PCE in (4.2) via (4.4) is controlled by the number of samples N . In complex

engineering applications obtaining the samples of the output QoI, u, may be quite expensive. Hence, ideally

we would like to reduce the number of samples N required for a stable and accurate solution recovery

in (4.4) to reduce the construction cost of the surrogate PCE model of u(ξ) in (4.2). Moreover, as we

saw in Section 1.2.1, the number of unknown PC coefficients, P , grows quickly as either the stochastic
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dimensionality of the problem, d, or the total order of the PCE, p, is increased. Consequently, accurate

approximation of c with a limited computational budget N for complex engineering systems which either

involve a large number of random inputs, i.e., d� 1, or require high-order PCEs becomes a critical task.

This has motivated researchers to explore different sampling strategies, beyond the random MC sam-

pling, for constructing the sample set {Ξ(i)}Ni=1 to achieve certain optimality, while maintaining LSR solu-

tion stability and accuracy. In general, one may categorize the sampling techniques for the LSR problem

into two groups: random and deterministic. Unlike random sampling, deterministic sampling techniques

attempt to select the sample points {Ξ(i)}Ni=1 in a deterministic fashion.

Among the early works on sampling techniques for regression-based PCEs, we mention [42] in which

Latin hypercube (LH) sampling is used instead of the standard MC sampling to improve the accuracy of PC

approximation. Recently, a random sampling technique referred to as asymptotic sampling was studied in

[107] based on asymptotic analysis of d-dimensional Legendre and Hermite polynomials. This approach

leads to sampling from a d-dimensional Chebyshev distribution for the case of Legendre polynomials, while

sampling uniformly from a d-dimensional ball with a radius determined by the total order of the PC ex-

pansion is advised for Hermite polynomials. Additionally, an importance sampling approach denoted by

coherence-optimal sampling was proposed in [107] which ensures an accurate computation of α with a

number of solution realizations that depends linearly on P (up to a logarithmic factor). Random sampling

from tensor product Gaussian quadrature points has been also proposed in [271], where the authors prove

an asymptotic (in PC order) stability of this method with a number of points which scales linearly (up to a

logarithmic factor) with P .

A quasi-Monte Carlo (QMC) method using the so-called low-discrepancy points was employed in

[159] to deterministically select the sample points for the regression-based PCE such that a stable and

accurate solution is achieved with a number of samples N proportional to the square of the size of PC

basis, P , up to logarithmic factors. Another deterministic sampling approach based on Weil’s theorem was

proposed in [272] which leads to a stable approximation in the Chebyshev basis with a number of samples

that scales quadratically in P .

In the context of design of experiments (DOE), optimal sampling of the design points {Ξ(i)}Ni=1 has
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received extensive attention in the statistics community and for many science and engineering applications

[25, 9, 84, 189, 83]. The alphabetic optimality criteria for DOE, a.k.a. classical optimality, either focus

on minimizing the error in estimating the unknown coefficients (a.k.a. parameters) α, e.g., D-, A-, and

E-optimal designs, or the error in the model prediction u, e.g., I-optimal design. These optimality criterion

are mostly based on some function of the information matrixMΨ given by

MΨ = ΨTΨ, (4.6)

when the standard LSR is considered, and

MΨ = (WΨ)T (WΨ), (4.7)

for the case of weighted LSR problem (4.4). For example, D-optimal criterion takes the determinant of

M−1
Ψ , denoted by |M−1

Ψ |, as an overall measure of the variance of the estimated regression coefficients

and constructs {Ξ(i)}Ni=1 such that |M−1
Ψ | is minimized. Among the limited works in the literature, which

has utilized the alphabetic optimality criteria in the context of regression-based PCE, we mention [268]

in which D-optimality criterion is used to generate the sample set. It was shown that a Fedorov-genetic

algorithm used to generate the D-optimal sample set could compute the PC coefficients accurately with a

smaller cost in comparison to other common sampling techniques. In [30], D-optimal criterion has been

employed to efficiently estimate the PCE-based Sobol’ indices via the LSR approach. Very recently, a

quasi-optimal sampling approach for the weighted LSR problem has been proposed in [219] which takes a

function that involves |MΨ| as the optimality measure.

As the literature review indicates, there are several recent studies that are dedicated to explore more

advanced sampling techniques to be used in the context of regression-based PCEs. In order to address this

growing interest among the researchers, we aim to report the most recent advancements in this area, as well

as providing a comprehensive review of the most popular sampling techniques available in the literature. In

addition, we propose alphabetic-coherence-optimal sampling techniques: hybrid methods which combine

the coherence-optimal approach of [107] with alphabetic optimality criteria. Our ultimate goal is to provide

practitioners with a collection of available options and a set of comparative studies as how these various

sampling techniques perform.
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4.2 Problem statement

The uncertain inputs ξ propagate through the physical system defined on a bounded domainD ⊂ RD,

D ∈ {1, 2, 3}, with boundaries denoted by ∂D, and governed by

L(x, t, ξ;u(x, t, ξ)) = 0, (x, t) ∈ D × [0, T ],

B(x, t, ξ;u(x, t, ξ)) = 0, (x, t) ∈ ∂D × [0, T ],

I(x, 0, ξ;u(x, 0, ξ)) = 0, (x, t) ∈ D × [0, T ],

(4.8)

where the differential operator L, initial conditions I, and boundary conditions B depend on the physics of

the problem and u(x, t, ξ) : D̄ × [0, T ]× Ω→ R is the solution to (4.8). For the sake of a clear and simple

notation, we suppress the dependence of u on x and t in the rest of this chapter.

4.3 Definitions and background

In Section 4.4, we provide a review of the the sampling techniques mentioned in Section 4.1. In order

to keep this chapter self-contained, we next review some important definitions which will be used in the

presentation of sampling strategies.

4.3.1 Coherence parameter definition

LetB2(Ξ) represent a uniformly least upper bound on the sum of the squares of the PC basis functions

defined as

B(Ξ) :=

√√√√ P∑
j=1

|ψj(Ξ)|2. (4.9)

The idea behind this definition is the fact that bounding the spectral radius of the weighted measurement

matrix WΨ yields a bound on the number of samples N necessary to compute the PC coefficients via

the LSR problem (4.4). This function has been used in [107, 45] (similarly in [108, 35] in the context

of compressive sampling via l1-minimization) to generate a condition-type number in order to guarantee a

stable solution to (4.4).

We also let G(Ξ) represent an upper bound on B(Ξ) for all Ξ ∈ Ω,

G(Ξ) ≥ B(Ξ), ∀ Ξ ∈ Ω. (4.10)
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We consider a set of random variables Y as a copy of ξ with a joint PDF given by

ρY (Ξ) := c2ρ(Ξ)G2(Ξ), (4.11)

with the normalizing constant c

c =

(∫
Ω
ρ(Ξ)G2(Ξ)dΞ

)−1/2

. (4.12)

We note that the set {ψj(Y )}Pj=1 is no longer (approximately) orthogonal under ρY . In other words, if

we sample the random inputs according to ρY , the PC bases are no longer orthonormal. Following the

discussion in [107, Section 2.1], the weight functions, i.e., W (i, i) = w(Ξ(i)) in (4.4), with Ξ(i) being the

ith realization of Y ,

w(Y ) =
1

cG(Y )
, (4.13)

are considered to provide (approximate) orthogonality to the set {w(Y )ψj(Y )}Pj=1.

In [107], the coherence parameter µ(Y ) given by

µ(Y ) := sup
Ξ∈Ω

P∑
j=1

|w(Ξ)ψj(Ξ)|2, (4.14)

is used to bound the realized spectral radius of WΨ, hence, bounding the number of required samples

N , for bounded polynomials, e.g., Legendre polynomials. For the cases in which µ(Y ) given by (4.14) is

infinite, i.e., for unbounded polynomials such as Hermite polynomials, a coherence parameter defined on

an appropriately truncated subset S of Ω is considered instead. The interested reader is referred to [107,

Section 2.2] for further details.

Notation 1. In order to have a clear and simple notation, we refer to all realized random vectors by Ξ

regardless of the sampling distribution used to generate these realizations. We also note that the weight

functions depend on the distribution used to generate Ξ.

4.3.2 Star discrepancy definition

Star discrepancy is a measure of the uniformity of the sample points and is used in the context of

low-discrepancy sequences for quasi-Monte Carlo sampling techniques discussed in Section 4.4.6.1. Given
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the sample set {Ξ(i)}Ni=1 in d-dimensional unit cube [0, 1)d, the star discrepancy D∗N of the set {Ξ(i)}Ni=1 is

defined as

D∗N := sup
J∈J ∗

∣∣∣∣ 1

N
·#{i : Ξ(i) ∈ J, 1 ≤ i ≤ N} − λd(J)

∣∣∣∣ , (4.15)

where J ∗ is the class of all subintervals J of [0, 1)d given by

J =
d∏

k=1

[0, vk)
d, 0 ≤ vk ≤ 1, (4.16)

#A denotes the number of elements of the setA, λd(J) is the Lebesgue measure of J [71]. A well uniformly

distributed set of points has a small star discrepancy [32, 173].

4.4 Sampling Techniques

In this section, we start reviewing the standard MC technique followed by the asymptotic and coherence-

optimal sampling methods presented in Sections 4.4.3 and 4.4.2, respectively. We then continue by stochas-

tic collocation via quadrature points and randomized quadrature samplings discussed in Section 4.4.4. In

Section 4.4.5, we provide a detailed description of the classical optimal designs and lay out a sequential tech-

nique to construct these designs. Finally, space-filling designs such as QMC and LH sampling techniques

which are popular in designing computer experiments are presented in Section 4.4.6.

4.4.1 Standard Monte Carlo sampling

The natural method of constructing the sample set {Ξ(i)}Ni=1, known as the standard MC, is by sam-

pling ξ according to the orthogonality measure ρ(Ξ) of the PC basis, for which the weights are w(Ξ) = 1.

For instance, standard MC sampling of the d-dimensional Legendre polynomials corresponds to sampling

from the uniform distribution on [−1, 1]d. For other polynomials, the corresponding sampling distributions

are listed in Table 1.1.

As shown in [107, Theorem 3.1], a MC sampling of the d-dimensional Legendre polynomials of

total order p gives a coherence parameter of µ(ξ) ≤ exp(2p), while µ associated with MC sampling of

the d-dimensional Hermite polynomials is bounded by µ(ξ) ≤ Cpη
p
p , with Cp being a constant and ηp a

function of p. For high-order PCE’s, µ is large and therefore N needs to be large. This is why, for those
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cases, alternative sampling distributions are needed to reduce the number of required samples. Convergence

analyses of the standard MC method for univariate and multivariate Legendre polynomials are also presented

in [160] and [161], respectively.

4.4.2 Coherence-optimal sampling

An important parameter that controls the stability of the LSR problem in (4.4) is the spectral radius

ofWΨ denoted by ρ(WΨ). In [107, Lemma 5.1], it is shown that the smaller ρ(WΨ) means more stable

and accurate solution to (4.4) could be obtained with a smaller number of samples N . This has motivated

the work in [107] to bound the number of samples required for an accurate and stable estimation of the PC

coefficients via the LSR problem by bounding ρ(WΨ). The coherence parameter µ defined in (4.14) has

been used in this work as a measure to bound ρ(WΨ), and in [107, Theorem 2.1] it is shown that reducing

µ reduces the number of required samples for a stable solution recovery in (4.4).

In order to minimize the coherence parameter µ in [107], samples of the inputs are drawn from an

alternative measure given by (4.11), i.e., fY (Ξ), instead of sampling from the orthogonality measure f(Ξ).

For arbitrary values of p and d, an optimal sampling approach, denoted by coherence-optimal sampling,

that takes G(Ξ) in (4.11) to be B(Ξ) given by (4.9) is proposed in [107]. Hence, the coherence-optimal

approach generates samples according to the measure fY (Ξ) given by

fY (Ξ) := c2f(Ξ)B2(Ξ), (4.17)

with the weight function w(Ξ) = 1/B(Ξ). An analytic expression for B(Ξ) is not generally available;

however, for a given set of PC basis, B(Ξ) can be evaluated at any arbitrary values of ξ. This, and to

avoid computing the normalization constant c, has motivated using a Markov Chain Monte Carlo approach

to sample from fY (Ξ) in (4.17). A Detailed description of this MCMC technique can be found in [107,

Section 4.3.1] and [108, Algorithm 1].

Following [107], the coherence-optimal sampling approach ensures a stable computation of α with

a number of solution realizations that depends linearly (up to a logarithmic factor in P ) on the number of

PC coefficients P . Moreover, through the application of this approach to various numerical examples, it
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was empirically observed that the coherence-optimal sampling leads to either similar or considerably more

accurate results in comparison to asymptotic and standard MC sampling techniques [107].

4.4.3 Asymptotic sampling

In the asymptotic regime (for p) G(Ξ) is taken to be an asymptotic envelope for the polynomials.

This approach denoted by the asymptotic sampling in [107] leads to sampling from a distribution with i.i.d.

Chebyshev components over [−1, 1], i.e.,

ρY (Ξ) :=
1

π
√

1− Ξ2
, (4.18)

with the corresponding weights given by

w(Ξ) :=

d∏
k=1

(1− Ξ2
k)

1/4. (4.19)

In [107, Theorem 3.2] it is shown that a coherence parameter of µ(Y ) ≤ 3d, regardless of the

relationship between d and p, holds when one samples from the Legendre polynomials according to (4.18)

and (4.19). This coherence parameter is independent of the total order of the approximation p, hence, making

the Chebyshev sampling suitable for the cases with p > d.

An asymptotic analysis of the Hermite polynomials which utilizes Hermite Functions suggests sam-

pling uniformly from a d-dimensional ball of radius
√

2
√

2p+ 1, with weights given byw(Ξ) := exp(−‖Ξ‖22/4)

[107, Section 3.2]. The corresponding coherence parameter is given by µ(Y ) = O((2p)d/2/Γ(d/2 + 1)),

with Γ being the Gamma function, which demonstrates a weaker dependence on p in comparison to d. We

refer the interested reader to [107, Section 3.2] for a detailed description of the uniform sampling from a

d-dimensional ball.

4.4.4 Stochastic collocation via quadrature points

A widely used sampling-based approach to compute the PC coefficients is the stochastic collocation

(SC) method [153, 259, 11, 47]. The main idea behind the SC technique is to sample the output QoI at

particular points, e.g., Gaussian quadrature points, in the stochastic space and then approximate the solution
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via interpolation or the solution statistics by numerical integration. SC may also be used to compute the PC

coefficients via the projection equation αi = E[uψi]/E[ψ2
i ]. In particular, the numerator in this equation is

a d-dimensional integral over Ω which may be computed using tensor product or sparse grids constructed

from, for instance, one-dimensional Gaussian quadrature points [46].

Although it has been shown that SC based on full tensor products is an effective technique for

low-dimensional stochastic problems [12], but it suffers from the so-called curse-of-dimensionality as the

stochastic dimensionality d is increased: the number of collocation points N in the full tensor products

grows exponentially fast as a function of d, i.e., N = (p + 1)d, where p is the total order of PCE in each

direction [259]. For high-dimensional problems, sparse tensor product spaces first introduced by Smolyak

[226] has been proposed to alleviate this issue associated with full tensor products [175].

In an attempt to relax the high computational cost of full tensor products in the context of regression-

based PCEs, Zhou et al. [271] proposed to randomly select a subset of samples from the full tensor product

based on Gaussian quadrature points with Gaussian quadrature weight functions w(Ξ). It was shown that

this sampling approach, denoted by randomized quadratures, is asymptotically (in order) stable with a

number of samples which scales linearly (up to a logarithmic factor) with P . The interested reader is

referred to [271] for further details on stability properties and convergence analysis of this method. Very

recently, a sampling technique based on deterministic selection of samples from full tensor grids is also

proposed in [212] as an alternative to randomized quadratures approach.

4.4.5 Optimal design of experiments

Planning an experimental procedure in order to determine the relation between the factors (a.k.a.

random inputs), either discrete or continuous, affecting a process and the output of that process prior to

performing the actual experiment is studied under the subject of design of experiments (DOE). Conducting

experiments could be very expensive and time-consuming, hence, it is of interest to extract as much as

information possible from a given amount of experimental effort which is addressed in the context of optimal

design of experiments (ODE). One of the earliest works on ODE was presented in 1918 by Smith [224], but

the major contributions took place a few decades later when Kiefer and co-workers explained the theory
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behind ODE and proposed a framework for practical implementation of the D-optimal designs [28].

In this work we are interested in model-based DOE where one approximates a complex system with

low-order polynomials. Similar to regression-based PCE, LSR is used to estimate the unknown coefficients

of the polynomial models in this context. Model-based ODE seeks selecting the realizations of the random

inputs such that some optimal properties are provided for the LSR problem. In the following we will review

a major class of model-based ODE known as alphabetic optimal designs.

4.4.5.1 Classical optimality criteria

In (4.2), the truncation error ε is a deterministic, but unknown parameter for each realization of the

random input parameters Ξ. In a statistical context, one may interpret the unknown deterministic error ε as

a random noise ε that has zero mean and an unknown variance σ2
ε . Consequently, a discrete representation

of (4.2) can be written as

u = Ψα+ ε, (4.20)

where the vector ε ∈ RN has elements with zero mean and an unknown variance σ2
ε . We also assume

that the errors in ε are uncorrelated, meaning that the off-diagonal elements of the covariance matrix of the

random noise ε are all equal to zero and all its diagonal elements are equal to σ2
ε . In addition, we assume that

ε does not depend on the choice of Ξ. With these assumptions, it can be shown that the covariance matrix

of the estimated coefficients var(α) obtained via the LSR solution of (4.20) is proportional to σ2
εM

−1
Ψ [83,

Page 9], where the information matrix MΨ is given in (4.6) for the LSR and in (4.7) for the weighted LSR

problems.

The diagonal elements of var(α) are the variances of the estimated coefficients α, while the off-

diagonal elements are the covariances between these estimators. In model-based ODE, it is of interest to

construct {Ξ(i)}Ni=1 such that the corresponding var(α) is the smallest among the all possible choices of

constructing the input samples. Consequently, several real-valued functionals of the information matrix,

i.e., φ(MΨ), known as alphabetic or classical optimality criteria in the literature, have been suggested as

the measures of smallness of the covariance matrix. Alphabetic optimal designs deal with the selection of

sample points {Ξ(i)}Ni=1 from the design space Ω such that the resulting optimality criterion φ(MΨ) has
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the smallest value among the all possible choices of the sample points [165]. Among the most popular

alphabetic optimality criteria we mention:

• D-optimality: An optimal design obtained by minimizing the determinant of the inverse of infor-

mation matrix, i.e., φD = |M−1
Ψ |1/P . This can be interpreted as minimizing the geometric mean

of the errors in the estimated coefficients α [73].

• A-optimality: Takes the trace of the inverse of the information matrix as the overall measure of the

average variance of the estimators. That is, φA = Tr(M−1
Ψ ) is minimized, where Tr(·) denotes

the trace operator. Stated differently, A-optimality measure minimizes the arithmetic mean of the

errors in the estimator.

• E-optimality: The largest eigenvalue of var(c) corresponds to the largest error of the estimator.

Consequently, the E-optimality criterion minimizes the largest eigenvalue λmin of the inverse of

the information matrix, i.e., φE = λmin(M−1
Ψ ) is minimized.

• I-optimality: An optimal design obtained by minimizing the normalized average variance of the

prediction u(Ξ) over the design space, i.e., φI =
∫

Ωψ
T (Ξ)M−1

Ψ ψ(Ξ)f(Ξ)dΞ, with ψ(Ξ) being

a realization of the PC basis {ψj}Pj=1.

Remark 6. We note that the measurement matrix Ψ, hence the information matrixMΨ, only depend on the

input sample set {Ξ(i)}Ni=1, and not the realization of the output QoI u.

Remark 7. We note that var(α) is equal to σ2
εM

−1
Ψ . In fact, since σ2

ε is an unknown proportionality

constant, it is common in the context of ODE to ignore the term σ2
ε , i.e., setting σ2

ε = 1 [101].

Remark 8. One can show that the I-optimal criterion simplifies to φI = Tr(MM−1
Ψ ), where the moment

matrix M is given by M =
∫

Ωψ
T (Ξ)ψ(Ξ)f(Ξ)dΞ (see for example [109, Page 5] or [166, Page 473]).

Due to the orthogonality of the PC basis functions, the moment matrix M is an identity matrix of size P

and, consequently, the I-optimal criterion reduces to A-optimal criterion, i.e., φI = Tr(M−1
Ψ ), when one

approximates the output via PCE.
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Remark 9. Instead of minimizing φD, φA and φE , one may alternatively maximize |MΨ|1/P , Tr(MΨ),

λmax(MΨ) to obtain D-, A- and E-optimal designs, respectively [5, 83].

As mentioned in Section 1, D-, A-, and E-optimal designs are referred to as estimation-oriented opti-

mal designs [123], meaning that these designs are focused on precise estimation of the unknown coefficients

α. On the other hand, prediction-oriented optimal designs such as I-optimal, a.k.a., Q-optimal [84], or

V-optimal [5] are developed to reduce the variance of the prediction u. I-optimal designs have received in-

creasing attention in the context of response surface designs, where the ultimate goal is to make predictions

[123]. There are more optimality criteria that are labeled by other letters in the literature and have been

introduced over the time. Discussion about these optimal measures is beyond the scope of the present work

and we refer the interested reader to [9, 189, 83, 132, 123] for more details on alphabetic optimal designs.

Next, we review the available techniques in the literature to construct D-, A-, and E-optimal designs.

4.4.5.2 Constructing optimal designs

In Section 4.1, we categorized ODE under deterministic sampling techniques for LSR problems. This

is in fact true only for limited cases of simple low-order polynomial models with a very limited number of

discrete random inputs (factors) where analytic expressions for the optimal designs are available, see, e.g.,

[118, 130, 53]. In general, however, the ODE optimization problems are solved numerically, often, involving

search through a large, but finite, number of randomly generated candidate designs. The selected optimal

design, therefore, depends on the choice of the candidate ensembles. This suggests that one may consider

ODE as (quasi-)random sampling techniques.

Heuristic exchange algorithms are among the earliest search methods proposed to construct optimal

designs [151, 227]. Exchange algorithms were originally developed for D-optimal designs since due to

the available simple update equation for the determinant of the information matrix (see Appendix C), they

are computationally more feasible in comparison to other criteria [83]. Moreover, it has been shown that

generally speaking, D-optimal designs perform well with respect to other criteria [9].

The original Fedorov exchange algorithm (FEA) proposed in [84] starts by generating a discrete

candidate set which includes Nc > N realizations of the input random variables, generated based on the
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orthogonality measure, for example, and the correspondingNc×P candidate measurement matrix Ψc. Next,

a non-singular initial design Ψ of size N ≥ P is selected randomly from Ψc and FEA iteratively modifies

the current design by exchanging a row ψi in Ψ with a row ψj in Ψc which corresponds to the maximum

reduction in the D-optimal measure φD = |M−1
Ψ |1/P . Let Ψold and Ψnew denote the measurement matrix

Ψ before and after the exchange, respectively. Using (C.1) the update formula for the determinant is

|ΨT
newΨnew|
|ΨT

oldΨold|
= 1 + ∆(ψi,ψj), (4.21)

where the Fedorov’s ∆-function is given by

∆(ψi,ψj) = d(ψj)−
[
d(ψi)d(ψj)− (d(ψi,ψj))

2
]
− d(ψi), (4.22)

d(ψi) = ψTi (ΨT
oldΨold)−1ψi,

d(ψi,ψj) = ψTi (ΨT
oldΨold)−1ψj .

Consequently, when theD-optimal design is constructed by maximizing |MΨ|1/P , the couple (ψi,ψj)

which correspond to the largest value of the Fedorov’s ∆-function are exchanged to provide the maximum

improvement in the optimality criterion. The algorithm stops when the largest value of the ∆-function is

smaller than a user specified threshold, e.g., 10−6 [84]. Convergence proof of the FEA can be found in [84].

At each iteration of the original FEA only one exchange is performed. A modified version of FEA

with multipe exchanges in each iteration was proposed in [48]. Other popular exchange algorithms include

DETMAX algorithm [162], Wynn’s algorithm [256], k-exchange algorithm [120], kl-exchange algorithm

[10], and coordinate exchange algorithm of [158] which does not require a candidate set. Performance

comparison between different exchange algorithms can be found in [48, 120, 187, 172]. A discussion on

details of these methods is beyond the scope of the present work and we refer the interested reader to the

references provided for further details.

For either high-dimensional problems, or the cases in which high order PCEs are required, the number

of coefficients to be estimated, P , may be very large. Consequently, the candidate measurement matrix

should have a large number of rows to properly cover the design space Ω. This results in a large number

of exchanges to be performed and eventually high computational costs. Moreover, for criteria other than
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D-optimality, there is no update formula similar to (4.21) for the simultaneous inclusion and exclusion of

the design points that can be used to expedite the exchange procedure.

In order to relax the computational complexity of constructing the alphabetic optimal designs, we

employ a simple sequential (greedy) technique in this work. The sequential algorithm starts with an empty

design and then one row from the candidate design corresponding to the largest improvement in the opti-

mality criterion is added to design. This procedure continues until a design with N rows is constructed. As

there is no exchange involved, this algorithm is considerably faster than FEA. Moreover, since only rows

are being added to the design in sequential construction of the ODE, one may employ the simple update

formula for the trace of inverse of matrix in D and expedite the construction of A-optimal designs obtained

via the sequential algorithm.

Algorithm 5 A sequential algorithm to construct alphabetic optimal designs. Adopted from [68, 219, 230].

1: • Input: Number of samples in the design N , number of samples in the candidate design Nc, orthogonality
measure f(ξ), optimality measure φ.

2: • Output: N × P optimal measurement matrix Ψ and the corresponding optimal sample set {Ξ(i)}Ni=1 based on
the optimality measure φ.

3: Generate Nc realizations of ξ, {Ξ(i)}Nc
i=1, and the corresponding Nc × P candidate measurement matrix Ψc.

4: Randomly select a row from Ψc to construct an initial 1× P design Ψ.
5: for i = 1 : N − 1 do
6: for j = 1 : Nc − i do
7: Compute the new optimality measure after adding a row from the remaining rows in Ψc to Ψ, i.e., φ(j) =

φ (Ψ ∪ Ψc(j, :)).
8: end for
9: Add a row from Ψc to Ψ that corresponds to the smallest optimality measure φ(j).

10: end for

A similar greedy scheme based on the sequential addition of design rows was first employed in

[68] to construct D-optimal designs. This technique has also been employed in [230] to construct D-

and A-optimal Bayesian designs. It was suggested that the sequentially generated optimal designs may

be improved further by FEA, but a noticeable improvement was not observed by authors in the context

of network performance inference [230]. A similar sequential algorithm has been used in [219] to con-

struct a set of quasi-optimal samples by maximizing an optimality measure as a function of |MΨ|, i.e.,

S(Ψ) :=
(√
|MΨ|/

∏P
j=1 ‖Ψj‖2

)1/P
, where Ψj is jth column of Ψ, for the weighted LSR problem.

Very recently, an accurate estimation of the PCE-based Sobol’ indices via the LSR technique has been re-

ported in [30] where the D-optimal sample set is generated using a similar greedy approach we employ
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in this work. Here we employ this sequential scheme to construct A- and E-optimal designs as well as

D-optimal designs.

Algorithm 5 presents the main steps in the construction of optimal designs via the sequential technique

used in this study. The following points are worth highlighting regarding this algorithm:

• As we are only adding new rows to the design in Algorithm 5, one may expedite the computation

of D- and A-optimality measures by employing the update formulas given in (C.1) and (D.1),

respectively. There is no update formula for the E-optimal designs, hence, their construction is

considerably more expensive in comparison to the other two optimality criteria.

• In computer experiments, including regression-based PCEs, unlike the real physical experiments,

replication of the samples is not allowed as there is no measurement noise in computer experiments

and their outputs are deterministic. Hence, it is crucial to search among the remaining rows of the

candidate measurement matrix Ψc to avoid having replicated rows in Ψ.

• For the case ofD-optimal designs, when the number of rows in Ψ is smaller than P , the determinant

of the corresponding information matrix is zero. To overcome this issue, a column-truncated version

of the candidate measurement matrix is here considered, where rows and columns are added to the

design simultaneously until a P × P design is constructed. After that, only rows are added to the

design. We refer the readers to [219, Section 3.3.1] for more details on this matter.

• In general, constructing the exact alphabetic optimal designs is known to be an NP-hard optimiza-

tion problem [151], thus finding a global optimal design becomes infeasible as the dimension of

the problem increases. Hence, an optimal design obtained by greedy search algorithms, such as

Algorithm 5, is in fact quasi-optimal rather than being globally optimal. Moreover, the alphabetic

optimal criteria, φ, are not convex and typically exhibit multiple local minima/maxima. In order

to increase the chance of finding the global optima, it is advised to run them multiple times with

different (random) initial designs.

• We note that according to the discussion in Remark 8, the resulting A-optimal design for the or-
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thogonal PCEs is also I-optimal.

In addition to the greedy algorithms discussed here, other techniques such as simulated annealing

(SA) [106, 157], genetic algorithms (GA) [163, 27], semi-definite programming (SDP) [199, 8] and pattern

search [112, 109] have been employed in the literature to construct alphabetic optimal designs. Moreover,

software packages such as JMP [101], POBE [154], AlgDesign [253], PopED [179, 87] and Gosset [110]

have been developed to construct ODE using the algorithms discussed here. We note that the majority of

the software packages for the construction of ODE are developed for scenarios where low-order (mostly

quadratic) polynomials are employed, hence, limiting the applicability of such packages for high-order

PCEs.

4.4.6 Space-filling designs

Space-filling designs form a class of sampling techniques that have received extensive attention in

the context of computer simulation experiments [135, 209, 188, 125]. As mentioned in Section 4.4.5.1,

computer experiments are deterministic and their output QoI is free of the measurement noise, and it is

usually assumed that the true response trend between the inputs and outputs of a computer model is not

known a priori. Designs capable of covering all of the portions of the design space Ω, hence the name

space-filling, have been proposed to reduce the error in computer experiments. In the following, we will

review two important space-filling designs, namely quasi-Monte Carlo (QMC) and Latin hypercube (LH)

sampling techniques.

4.4.6.1 Quasi-Monte Carlo sampling

To alleviate the slow convergence rate of standard MC technique, especially for high-dimensional

integrations in finance applications [252], researchers have proposed a deterministic version of the MC sam-

pling method based on the low-discrepancy sequences [54] known as quasi-Monte Carlo (QMC) technique

[32, 173, 159, 24]. It has been shown that for d-dimensional uniform random variables, a convergence rate

of approximately O(N−1(logN)d), which is asymptotically better than that of MC, can be expected from
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the QMC technique [32].

Unlike pseudo-random sequences used in standard MC, low-discrepancy sequences, a.k.a. quasi-

random, such as Hammersley set, Niederreiter, Halton, Faure, and Sobol sequences [156], are constructed

such that the maximal degree of uniformity is provided for the sample points drawn from a uniform dis-

tribution. A quantitative assessment of the degree of uniformity of a set of sample points is achieved by

calculating its discrepancy. Among the many definitions proposed for the discrepancy of a sequence, star

discrepancy D∗N , defined in Section 4.3.2, is one of the most widely used ones due to its simplicity.

In [159], a stable and accurate solution to the LSR problem in (4.4) is achieved with low-discrepancy

sample points and a number of samples N which is proportional to the square of P (up to a logarithmic

factor). To the best of our knowledge, the application of QMC sampling technique for regression-based

PCEs has not been extended to problems with non-uniform random inputs. For a detailed description of

QMC sampling approach for multivariate Legendre polynomials we refer the interested reader to [159].

Another class of space-filling designs, known as uniform design, which facilitate the same idea of

constructing samples with maximum degree of uniformity was proposed in [75]. Uniform designs are con-

structed based on alternative and computationally less expensive measures of the uniformity rather than the

star discrepancy D∗N used in QMC scheme [74]. Several methods such as good lattice method [78], op-

timization searching method [255], collapsing method [76], combinatorial construction method [269], and

Latin square method [77] have been proposed to construct uniform designs.

4.4.6.2 Latin hypercube sampling

Latin hypercube (LH) sampling, first introduced in [145], aims at selecting the sample set {Ξ(i)}Ni=1

such that these points cover all portions of the design space. LH sampling attempts to reduce the variance of

the estimator by selectingN sample points fromN equiprobable portions of the random space [97], which is

known as stratification of the probability distribution. In [232, 181], it is shown that the convergence rate of

the LH sampling is never worse than that of standard MC when N →∞. However, under some conditions

discussed in [145], e.g., when certain monotonicity conditions do not hold, LH may not be advantageous

over the standard MC in reducing the variance of the estimator. Algorithm 6 summarizes the main steps to
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generate {Ξ(i)}Ni=1 via LH sampling technique.

Algorithm 6 Summary of the Latin hypercube sampling approach.

1: Divide the PDF of each random variable {ξk}dk=1 into N equiprobable intervals.
2: Compute the sampled cumulative probability in the ith interval as Probi = i−1

N + ru
N , where ru is a uniform

random number drawn independently from [0, 1].
3: Compute the ith realization of random variable ξk, Ξ

(i)
k , via the inverse of its cumulative distribution function

(CDF), i.e., Ξ
(i)
k = F−1

ξk
(Probi).

4: Pair the N realizations of each random variable ξk with the N realizations of other variables.

Several modified versions of LH sampling such as orthogonal [265, 31, 266] and column-wise orthog-

onal LH designs [233], sliced and optimal sliced LH designs [190], and orthogonal-maximin LH designs

[127] have been proposed to improve the efficiency and accuracy of the LH sampling approach. Algorithm 6

is used when the random inputs {Ξk}dk=1 are independent from each other. For the correlated random inputs,

some extended/modified versions of LH sampling have also been proposed in the literature [114, 115, 201].

In addition to the space-filling designs we reviewed here, many other have been introduced over the

past few decades. Among them we mention maximin designs [119], a.k.a. sphere packing designs, in which

the minimum distance between pairs of designs points is maximized, maximum entropy designs [217],

which takes the entropy as a measure of the uniformity of the samples, Gaussian process integrated mean

squared-error (IMSE) designs minimizing the variance of prediction [117, 198], and recently maximum

projection designs [126].

Remark 10. Although alphabetic optimal designs are developed for real world physical experiments, but

these designs have also been successfully employed for computer experiments. As an example, we mention

the work in [122], which compares D- and I-optimal designs with space-filling designs such as Latin hy-

percube, uniform, sphere packing, and maximum entropy, in terms of reducing the prediction variance for

high-order polynomials. It was shown that D- and I-optimal designs result in prediction variances smaller

than those obtained by space-filling designs. A similar comparison was also made in [121].

Next, we explore the performance of some selected sampling techniques when applied to different

stochastic problems.
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4.5 Numerical Examples

In this section, we study the empirical performance of six different sampling methods by considering

three numerical examples. In the first example, the recovery of randomly generated functions is investi-

gated. Next, a nonlinear Duffing oscillator under free vibration which requires high order PC expansions is

considered. And finally, we examine the application of a subset of the reviewed sampling techniques to the

stochastic remaining useful life (RUL) prediction of Lithium-ion batteries (LIBs).

We consider standard MC (Section 4.4.1), coherence-optimal (Section 4.4.2) and Latin hypercube

(Section 4.4.6.2) techniques denoted by Standard, coh-opt and LH sampling, respectively. In addition, we

introduce hybrid sampling methods, denoted by alphabetic-coherence-optimal, that combine coherence-

optimal technique with alphabetic optimality criteria. To construct these sample sets, the Nc realizations

of ξ in the third line of Algorithm 5 are generated via the coherence-optimal technique of Section 4.4.2.

Consequently, the corresponding Nc × P candidate measurement matrix Ψc to be used in the sequential

construction of D-, A-, and E-optimal designs will be already optimal in a sense that it yields to a small

coherence parameter µ, hence the names D-coh-opt, A-coh-opt, and E-coh-opt, respectively. We note that

the largerNc in Algorithm 5, the higher the quality of the sequentially constructed design and the associated

computational cost.

To verify the accuracy of the regression-based PC model constructed with N independent samples,

we compute the relative error of the resulting PC expansion in predicting independent realizations of the

QoI as

relative error =
‖uv −Ψvα‖2
‖uv‖2

, (4.23)

where uv is the vector of Nv additional realizations of QoI (not used in computing α) and Ψv is the

measurement matrix corresponding to uv.

Remark 11. Because of the random nature of the discussed sampling techniques, the results presented in

the following are obtained by averaging 60 independent replications using N samples to compute α and

Nv realizations to evaluate the relative error in (4.23).
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4.5.1 Manufactured functions

In the first example, we consider the reconstruction of manufactured PC expansions, where the coef-

ficients α are prescribed to generate u. Specifically, we consider the model

u(Ξ(i)) =

P∑
j=1

αjψj(Ξ
(i)), i = 1, · · · , N, (4.24)

where each αj is generated independently from a standard normal distribution. Each realization u(Ξ(i))

is then generated by evaluating the right-hand-side of (4.24) at a set of N samples of ξ. Additionally, we

assume that there is independent, normally distributed additive noise in the evaluation of u(Ξ(i)) with a

standard deviation of 0.03 · |u(Ξ(i))|. The PC expansion is then recovered successfully if the least squares

solution yields a relative error ≤ 0.02.
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Figure 4.1: Legendre recovery probability as a function of sample size N . (a) (p, d) = (2, 15); (b) (p, d) = (4, 4); (c)
(p, d) = (15, 2).



101

N/P
1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

0

0.2

0.4

0.6

0.8

1

N/P
1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

0

0.2

0.4

0.6

0.8

1

N/P
1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

0

0.2

0.4

0.6

0.8

1

A-coh-opt sampling
D-coh-opt sampling
E-coh-opt sampling
D-opt sampling
Coh-opt sampling
LH sampling
Standard sampling

(a) (b)

(c)

Figure 4.2: Hermite recovery probability as a function of sample size N . (a) (p, d) = (2, 15); (b) (p, d) = (4, 4); (c)
(p, d) = (15, 2).

Figs. 4.1 and 4.2 represent the probability of a successful recovery of the manufactured solution as a

function of the number of samples N to the number of unknowns P for the case of Legendre and Hermite

polynomials, receptively. Three different scenarios, i.e., a high-dimensional case with (p, d) = (2, 15), a

moderate case of (p, d) = (4, 4), and a high-order case with (p, d) = (15, 2) are considered in these figures.

In this example, we consider Nc = 4N for each value of the oversampling ratio N/P . The following

observations are worth highlighting regarding Figs. 4.1 and 4.2:

• For the high-order case (p, d) = (15, 2), both standard and LH sampling techniques demonstrate

a poor performance in recovering the solution such that for the case of Hermite polynomials, they

both fail to recover the solution even for large sample sizes, e.g., N = 10P . These two methods

perform significantly better for the high-dimensional, low-order case (p, d) = (2, 15), but are yet
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worse than the other sampling techniques for the moderate case (p, d) = (4, 4).

• Coherence-optimal approach results in a more accurate solution recovery in comparison to the

standard and LH sampling methods, especially, for the high-order case (p, d) = (15, 2).

• In all cases, alphabetic-coherence-optimal techniques outperform the other sampling methods.

They are significantly better than the standard and LH techniques for the high-order case (p, d) =

(15, 2). Their advantage becomes more significant when the oversampling ratio N/P is small.

• Among the alphabetic-coherence-optimal techniques, D-coh-opt is slightly better than A-coh-opt,

while E-coh-opt is the worst of three. To justify this, we note that E-optimal designs only consider

the largest error of the estimator, while the geometric and arithmetic mean of the errors are consid-

ered in D- and A-optimal designs, respectively. Given that, it is generally accepted that E criterion

uses less information in comparison to D and A criteria and provides less accurate results [18].

• The main difference between the alphabetic-coherence-optimal technique and the alphabetic op-

timal design is that in the former approach the candidate ensemble Ψc is generated based on the

coherence-optimal technique while in the latter Ψc is constructed via random sampling from the or-

thogonality measure f(Ξ). To highlight the importance of constructing Ψc via coherence-optimal

approach, we also report the results of the classical D-optimal design, denoted by D-opt in Figs.

4.1 and 4.2, in which the candidate measurement matrix of Algorithm 5 is constructed by drawing

samples from f(Ξ) randomly. Although D-opt sampling performs fairly good for the the high-

dimensional case in comparison to the alphabetic-coherence-optimal techniques, its accuracy is

drastically reduced when the total order of the expansion, p, is increased.

4.5.2 Nonlinear Duffing oscillator

The second problem of interest in this study is to quantify the uncertainty in the displacement so-

lution u(ξ, t) of a nonlinear single degree-of-freedom (DOF) Duffing oscillator [147] under free vibration
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described by

ü(ξ, t) + 2ω1ω2u̇(ξ, t) + ω2
1(u(ξ, t) + ω3u

3(ξ, t)) = 0,

u(ξ, 0) = 1, u̇(ξ, 0) = 0,

(4.25)

where the uncertain parameters {ωi}3i=1, describing the motion of the oscillator, are given by

ω1 = 2π (1 + 0.2 ξ1),

ω2 = 0.05 (1 + 0.05 ξ2),

ω3 = −0.5 (1 + 0.5 ξ3),

(4.26)

with {ξi}3i=1 being i.i.d. uniform random variables U(−1, 1).

Although the stochastic dimensionality of this problem is not high, i.e., d = 3, due to the presence of

nonlinearities, high order PC expansions are required in order to preserve the accuracy of approximation for

large instances of t. This high-order approximation requirement is highlighted in Fig. 4.3 where we report

the mean and standard deviation of the relative error of the standard MC sampling approach in estimating

the displacement at t = 4 seconds as a function of the total order of expansion p. In this experiment,

we assumed N = 20P to make sure that we have enough samples for the cases with large p values and

considered an additional Nv = 10000 validation samples in (4.23) to compute the relative error.
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Figure 4.3: Mean and standard deviation of the relative error of standard sampling with N = 20P samples in estimat-
ing the displacement u(Ξ, 4) versus the total order of PCE.

We considered a high order PCE, i.e., p = 9, for this problem to examine the performance of sampling
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techniques. The pair (p, d) = (9, 3) corresponds to P = 220 unknown PC coefficients to be approximated.

Since P is large, and we need to have N ≥ P for an stable LSR solution, the issue of choosing the best

sampling approach for this problem becomes critical.
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Figure 4.4: Mean and standard deviation of the relative error in estimating the displacement u(Ξ, t) with a 9th order
PCE and: (a)-(b): N = 242, (c)-(d): N = 440, (e)-(f): N = 660.

Fig. 4.4 demonstrates the mean and standard deviation of the relative error in predicting Nv = 10000
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independent realizations of the displacement obtained by different sampling methods. Three oversampling

ratios of 1.1, two and three which correspond to N = 242, 440 and 660 samples, respectively, have been

considered. Following [168], we assume Nc = b1.5P log(P )c, where P is the number of unknown PC

coefficients and is given in (1.5).

Again, the long-time integration issue we discussed earlier is observed here as well; that is indepen-

dent of the sampling technique, the relative error is slightly increased over time when p is kept constant.

One possible approach to address this issue is to employ Multi-Element generalized Polynomial Chaos

(ME-gPC) in which the total order of expansion is adjusted over the time. Discussion on ME-gPC is beyond

the scope of this paper and we refer the interested reader to [248] on this subject.

As it is shown in Fig. 4.4, the alphabetic-coherence-optimal techniques result in smaller values for

the relative error in comparison to the other methods, with D-coh-opt and A-coh-opt to perform slightly

better than E-coh-opt. This superiority is signified in Figs. 4.4a-b where an oversampling ratio of 1.1 is

used. These plots suggest that for the case of high-order PC expansions, the alphabetic-coherence-optimal

techniques are the most suitable sampling methods, in particular, when the number of samples is slightly

larger than the number of unknown coefficients P . For the applications where evaluation of the QoI is com-

putationally expensive, we prefer to approximate the PCE with a minimum number of solution realizations,

usually with N slightly larger than P .

The standard MC and LH techniques provide the least accurate results, specially, for the case of

N = 242 where the oversampling ratio is low. In this case, these two methods fail to accurately approximate

the solution as the error is not only large, but it is also highly variable as suggested by Fig. 4.4b. As the

number of samples is increased, MC and LH methods perform considerably better such that with N = 440

samples, both techniques result in acceptable relative errors.

Similar to the previous example, the relative error obtained by the coherence-optimal approach falls

somewhere between the error reported by MC and LH methods and the alphabetic-coherence-optimal tech-

niques. By comparing Figs. 4.4a, 4.4c, and 4.4e, it can be seen that the coherence-optimal results converge

to the alphabetic-coherence-optimal results at a higher rate in comparison to MC and LH methods as N is

increased.
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4.5.3 Stochastic prediction of remaining useful life of batteries

The last problem of interest in this study is the model-based stochastic estimation of the remaining

useful life (RUL) of Lithium-ion batteries (LIBs). RUL of LIBs is defined as the amount of time before

the battery health falls below a defined threshold, e.g., reaching the cut-off potential at the end of discharge

[202], and is studied under the context of prognostics and health management (PHM) [239]. For the sake of

completeness, a brief introduction to model-based prognostics of LIBs with an emphasis on RUL predictions

is presented in the following.

4.5.3.1 Model-based prognostics

In general, prognosis approaches may be categorized as data-driven and model-based [14, 206]. A

mathematical representation of the system based on the physics of the problem is used in model-based

methods while data-driven techniques use system monitoring data instead [206]. Both techniques have been

successfully employed to predict the RUL of batteries [220, 202, 143, 142, 51, 204]. Here, we focus on

model-based RUL estimation for LIBs which is suitable for online health monitoring.

Let us assume that the system model is given by the following set of equations,

ż(t) = f(t, z(t),θ(t),ν(t),vp(t)), (4.27)

y(t) = h(t, z(t),θ(t),ν(t),vm(t)), (4.28)

where z(t) is the state vector, f is the state equation, θ(t) is the model parameter vector, ν(t) is the input

vector, vp(t) is the process noise vector, y(t) is the output vector, h is the output equation, and vm(t) is the

measurement noise vector.

As illustrated in [202, Fig. 1], the computational framework for prognostics and RUL predictions

includes three main steps: estimation of the state z at time tp, prediction of the future states, and finally

RUL computation. Kalman or particle filtering approaches may be employed within a Bayesian framework

to estimate the state vector z using the output data measured up to time tp. Both Eqs. (4.27) and (4.28)

should be used in the estimation step. Following [202], in this study we assume that the estimated state

vector at time tp is given and we focus on the prediction and RUL computation steps.
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Having at hand the estimated z up to time tp, predicting the future states of the system is the next step

to compute the RUL. In the prediction step, only the state space model in (4.27) is used since no measured

data is available for t > tp. Here, the goal is to predict the occurrence of an event E defined with respect to

the states, parameters, and inputs of the system [50]. Using a set ofm constraints {κi}mi=1, one may define an

acceptable region of performance for the system. The constraint κi : R→ B maps a given point in the joint

state-parameter space given the current inputs, i.e., (z(t),θ(t),ν(t)), to a Boolean domain B := {0, 1},

where κi = 1 if the constraint is satisfied, and zero otherwise [202]. One may combine these individual

constraints into a single threshold function TEOL : R→ B as

TEOL(z(t),θ(t),ν(t)) =

 1, 0 ∈ {κi(z(t),θ(t),ν(t))}mi=1,

0, otherwise,
(4.29)

where the subscriptEOL denotes the end of life. In (4.29), violation of any constraints results in TEOL = 1.

Then, one may define the end of life at time tp, E(tp), as the earliest time at which TEOL = 1, i.e.,

E(tp) := inf{t ∈ R : t ≥ tp ∧ TEOL = 1}. (4.30)

Given E(tp), the RUL at time tp, R(tp), is then given by

R(tp) := E(tp)− tp. (4.31)

For the case of LIBs, the event E we are interested in predicting is the end of discharge. TEOL is then

specified as V < Vcutoff, where Vcutoff is a user specified cut-off voltage and V is the terminal voltage of the

battery. Hence, the only constraint in predicting the RUL of LIBs is κ1 : V > Vcutoff.

4.5.3.2 An electrical equivalent circuit model for LIBs

In order to facilitate the application of the model-based RUL estimation for the online health moni-

toring of LIBs, the mathematical model described by Eqs. (4.27) and (4.28) is desired to be computationally

inexpensive. Hence, we consider an empirical model of the LIB, which captures its major dynamics, except

the temperature effects, based on the electrical equivalent circuit shown in Fig. 4.5. This model has been

employed in [202, 203, 205] to simulate a battery used to power an unmanned aerial vehicle. Charge of the
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LIB qb is held by the capacitance Cb. The nonlinear Cb captures the open-circuit potential and concentra-

tion over-potential. The non-linear voltage drop due to surface over-potential is captured by Rsp − Csp, Rs

models the ohmic drop, and Rp represents the parasitic resistance that accounts for self-discharge [203].

Cb

Ib
Csp

Isp

Rsp

Cs
Is

Rs

Rp

Ip

I

V

Figure 4.5: LIB equivalent circuit model [205].

Denoting the LIB maximum capacity and charge by Cmax and qmax, respectively, the LIB state of

charge, SoC, is given by

SoC = 1− qmax − qb
Cmax

. (4.32)

The concentration polarization resistance Rsp is a non-linear function of SoC,

Rsp = Rsp0 +Rsp1 exp[Rsp2(1− SoC)], (4.33)

where Rsp0, Rsp1, and Rsp2 are empirical parameters [203]. Cb is also given by

Cb = Cb0 + Cb1SoC + Cb2SoC
2 + Cb3SoC

3, (4.34)

with Cbi, i = 0, 1, 2, 3, being constants determined empirically. The model parameters of the considered

cell are shown in Table 4.1.

Voltage drops across the individual circuit elements and their associated currents and charges are

governed by the set of equations presented in Table 4.2 where I denotes the battery discharge current. The

terminal voltage of the cell V is then given by V = Vb − Vsp − Vs. We assume that in this example

Vcutoff = 16V, hence, κ1 : V > 16.

Different uncertainty sources such as uncertainty in the future inputs, state, model and process noise

have been identified for the stochastic RUL estimations [203, 50, 206, 51, 202, 200, 205]. We refer the
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Table 4.1: LIB model parameters [205].

Parameter Value
Rsp0 0.0272 Ω
Rsp1 1.087 × 10−16 Ω
Rsp2 34.64
Rs 0.0067 Ω
Rp 10000 Ω
Cb0 19.8 F
Cb1 1745 F
Cb2 -1.5 F
Cb3 -200.2 F
Cs 115.28 F
Csp 316.69 F
qmax 31100 C
Cmax 30807 C

readers to the provided references for more details on the sources of uncertainty for this problem. In this

example, we assume that the battery is discharged at a constant current (in Amps) represented by a random

variable following a Beta distribution with shape parameters α = 21.2 and β = 31.8. As mentioned earlier,

we assume that the state estimates are already obtained via a Bayesian framework. For this example, we

consider an estimation of the state variables, qb, qsp, and qs, given in [202, Figs. 5-7], respectively, with a

coefficient of variation (COV) of 0.1. Whenever the estimated state is equal to zero, we assume its standard

deviation is equal to 0.1. In addition, three process noise terms with zero mean normal distributions and

variances of 0.1, 10−4, and 10−6 are considered in the state equations describing qb, qsp, and qs, respectively.

Assuming that there is no model uncertainty, the total stochastic dimensionality of this problem is then

d = 7. We note that the corresponding PC basis function for this problem consists of Jacobi and Hermite

polynomials which correspond to Beta and normal random variables, respectively.

Fig. 4.6 shows the relative error of the sampling techniques in estimating the RUL of LIB at t =

0, 200, 400, and 600 seconds. Similar to the previous example, 10000 independent samples are used to

Table 4.2: Equations describing the electrical equivalent circuit model for LIBs [205].

Governing equation
Voltages Vb = qb/Cb, Vsp = qsp/Csp, Vs = qs/Cs, Vp = Vb − Vsp − Vs

Currents Ip = Vp/Rp, Ib = Ip + I, Isp = Ib − Vsp/Rsp, Is = Ib − Vs/Rs

Charges q̇b = −Ib, q̇sp = Isp, q̇s = Is
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Figure 4.6: Mean and standard deviation of the relative error in estimating the RUL; (a)-(b): p = 2, P = 36, N = 37,
(c)-(d): p = 3, P = 120, N = 121.

compute the relative error. Since model-based RUL predictions are mainly used in online applications

where fast computations are critical, we limit the number of sample points in this example to beN = P +1,

which corresponds to 36 and 121 samples for the second and third order PCEs, respectively, given d = 7.

Similar to the previous example, we assumedNc = b1.5P log(P )c. Fig. 4.6 demonstrates that similar to the

high-order PC expansions, alphabetic-coherence-optimal techniques perform better that other methods for

the high-dimensional problems as well when the oversampling ratio is low. Moreover, it can be seen that for

the case of d > p with low oversampling ratios, coherence-optimal method is not necessarily advantageous

over the standard MC and LH samplings.

It is shown in Fig. 4.6c-d that the D-coh-opt approach results in the smallest errors. We next com-

pare compare the PDF of the predicted RUL obtained by a third order PCE, obtained using the D-coh-opt
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approach, with a MC solution in Fig. 4.7. Although the results obtained by these two different approaches

are overlapped, we note that 20× 106 solution realizations are used in constructing the MC solution, while

D-coh-opt-based PCE only requires 121 samples. This highlights the significant advantage of PCE approach

equipped with optimal sampling methods over the traditional UQ techniques for the online RUL prediction

of LIBs.

4.6 Summary and Conclusions

We provided a comprehensive review of the sampling techniques available in the literature for polyno-

mial chaos expansions via least squares regression. We also proposed a hybrid sampling approach denoted

by alphabetic-coherence-optimal technique in in which, given the same sample size, a combination of al-

phabetic optimal designs, such as D-, A-, and E-optimal, and the coherence-optimal technique results in

more accurate approximations of the PC coefficients in comparison to other sampling methods.

In order to provide a road map for the practitioners seeking the best sampling method for their

stochastic problem to be solved by regression-based PCE, we compared the empirical performance of the

selected sampling techniques by their application to three stochastic problems with high-order and/or high-

dimensional PCEs constructed with multidimensional Legendre, Hermite and Jacobi polynomials. Our
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observations suggest the following considerations in selecting the most suitable sampling method for the

regression-based PCE based on the total order of expansion p, stochastic dimension d and the oversampling

ratio N/P :

• High-order PCE with p > d: We observed that for stochastic problems in which high-order ex-

pansions are required to capture an accurate solution, the alphabetic-coherence-optimal techniques

deliver the most accurate approximations. We note that these sampling approaches are computation-

ally more expensive in comparison to the other methods discussed in this study, but we emphasize

that for the real world engineering applications where a singe realization of the output QoI may

be very expensive, the extra computational cost for sampling is frequently acceptable and may be

negligible. Among the alphabetic-coherence-optimal techniques, D-coh-opt results were slightly

better than those obtained by A-coh-opt. In our experiments, we observed that the construction of

the D-coh-opt sample sets is considerably faster than A-coh-opt samples, hence, we recommend

D-coh-opt sampling technique for the high-order PC expansions.

• High-dimensional PCE with d > p: Although the alphabetic-coherence-optimal techniques still

perform better than the other methods for the case of d > p, the standard MC and LH sampling

methods may also deliver accurate approximations when low-order expansions are sufficient to

approximate a high-dimensional QoI. In such cases, one may employ standard MC, LH, or other

advanced space-filling sampling techniques discussed in this study as they may be less computa-

tionally expensive than the alphabetic-coherence-optimal approach.

• The oversampling ratio N/P : In the numerical examples provided in this study, it was observed

whenN is 3-4 times larger than the number of PC coefficients, one can expect that the standard MC

and LH sampling methods exhibit a fairly acceptable performance in approximating the unknowns

for moderate d and p. But as either of the stochastic dimensionality d or the expansion order

p is increased, even with a fairly large oversampling ratio these methods may fail to deliver an

accurate PC approximation. For the cases with small values ofN/P , alphabetic-coherence-optimal

techniques outperform other methods, specially when high-order PCEs are employed.
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We also note that the sequential technique we used to construct the alphabetic-coherence-optimal

samples may be substituted with more advanced exchange algorithms that may eventually improve the qual-

ity of the sample set further. Although, we note that for the high-dimensional and/or high-order polynomials

that correspond to large P values, exchange algorithms may be computationally very expensive, hence, fast

and efficient construction of the sample set based on the alphabetic optimality criteria will remain an open

question in the context of non-convex optimization when the number of unknowns P is large.
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Appendix A

Derivation of deterministic and stochastic updates

A.1 Linear system (2.12) for ul0,1, ul0,2, and λl0 updates

We assume all unknowns are fixed except the vector ul0,1. Taking the derivative of π in (2.4) with

respect to ul0,1, l = 1, . . . , r, leads to the following linear system

r∑
l′=1

(
E
[
φl1φ

l
2K1φ

l′
1φ

l′
2

]
ul
′

0,1 − E
[
φl1φ

l
2φ

l′
1φ

l′
2

]
C1λ

l′
0

)
= E

[
φl1φ

l
2f1

]
, l = 1, . . . , r. (A.1)

Similarly, the ul0,2 updates are performed through

r∑
l′=1

(
E
[
φl1φ

l
2K2φ

l′
1φ

l′
2

]
ul
′

0,2 + E
[
φl1φ

l
2φ

l′
1φ

l′
2

]
C2λ

l′
0

)
= E

[
φl1φ

l
2f2

]
, l = 1, . . . , r. (A.2)

The derivative of π with respect to deterministic vector λl0 of the Lagrange multipliers satisfies

r∑
l′=1

(
E
[
φl1φ

l
2φ

l′
1φ

l′
2

]
CT

2 u
l′
0,2 − E

[
φl1φ

l
2φ

l′
1φ

l′
2

]
CT

1 u
l′
0,1

)
= 0, l = 1, . . . , r. (A.3)

Putting (A.1), (A.2), and (A.3) together results in the linear system of (2.12) for ul0,1, ul0,2, and λl0

updates.

A.2 Linear system (2.17) for φl1(ξ1) updates

We first remind that in φl1(ξ1) updates the vectors ul0,1, ul0,2, and λl0 are fixed at their current values

obtained from (2.12). As the solution to (2.12) satisfies the constraints in (A.3), the term E
[
λT
(
CT

2 u2 −CT
1 u1

)]
in (2.4) corresponding to the the interface condition vanishes for any {φl1(ξ1)}rl=1 and {φl2(ξ2)}rl=1. There-
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fore, the φl1(ξ1) updates correspond to minimization of π. More precisely, plugging the separated represen-

tation (2.9) into condition (2.14), we arrive at∫ ∫ ( r∑
l′=1

ul
T
0,1φ

l
2(ξ2)K1(ξ1)ul

′
0,1φ

l′
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)
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(A.4)

where ρ1(ξ1) and ρ2(ξ2) are the joint probability density functions of ξ1 and ξ2, respectively. One can

rewrite (A.4) as ∫ ( r∑
l′=1

ul
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which, if the integrands are continuous, is equivalent to
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It is straightforward to check that (2.15) – with its components given in (2.16) – is the matrix repre-

sentation of (A.5). A similar approach can be used to derive (2.17).
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Wiener chaos coefficients of a lognormal random field

Let κ(x, ξ) = exp(G(x, ξ)) be a lognormal random field, where G(x, ξ) is a Gaussian random

field given by the Karhunen-Loève expansion G = Ḡ +
∑d

j=1
√
τjgj(x)ξj . Here, Ḡ is the mean of G,

{τj}dij=1 and {gj(x)}dij=1 are, respectively, d largest eigenvalues and the corresponding eigenfunctions of the

covariance function of G, and {ξj}dj=1 are i.i.d. normal Gaussian random variables.

Following [246], the coefficients κi(x) in the Hermite polynomial chaos expansion κ(x, ξ) ≈
∑
j∈Id,p

κj(x)ψj(ξ)

can be computed by

κi(x) =
κ̄√
i!

d∏
j=1

[√
τjgj(x)

]ij , (B.1)

where κ̄ = exp
[
Ḡ+ var[G]

2

]
, and

√
i! =

∏d
j=1 ij !.
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Matrix determinant update formula

LetA be an invertible matrix of size P × P , and let b and a be two vectors of size P . Then

|A± baT |
|A|

= 1± aTA−1b. (C.1)

Proof. WhenA = I , we have I 0

aT 1


 I ± baT b

0 1


 I 0

∓aT 1

 =

 I b

0 I ± aTb

 .
Taking the determinant of both sides results in |I ± baT | = 1± aTb. Finally, one may write |A± baT | =

|A(I ±A−1yaT )| = |A|(1± aTA−1b).



Appendix D

Matrix trace update formula

Let A be an invertible matrix of size P × P , and let b and a be two vectors of size P . Additionally,

assume 1± aTA−1b 6= 0. Then

Tr
(
(A± baT )−1

)
= Tr

(
A−1

)
∓ Tr

(
A−1baTA−1

1± aTA−1b

)
. (D.1)

Proof. Sherman-Morrison rank-one update formula states

(A± baT )−1 = A−1 ∓
(
A−1baTA−1

1± aTA−1b

)
, (D.2)

which can be easily verified by substituting (D.2) in identity (A±baT )(A±baT )−1 = I . Taking the trace

of both sides of (D.2) completes the proof.
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