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Tang, Lei (Ph.D., Applied Mathematics)

Parallel Efficiency-based Adaptive Local Refinement

Thesis directed by Prof. Thomas A. Manteuffel

New adaptive local refinement (ALR) strategies are developed, the goal of which is to reach

a given error tolerance with the least amount of computational cost. This strategy is especially

attractive in the setting of a first-order system least-squares (FOSLS) finite element formulation

in conjunction with algebraic multigrid (AMG) methods in the context of nested iteration (NI).

To accomplish this, the refinement decisions are determined based on minimizing the predicted

‘accuracy-per-computational-cost’ efficiency (ACE). The nested iteration approach produces a se-

quence of refinement levels in which the error is equally distributed across elements on a relatively

coarse grid. Once the solution is numerically resolved, refinement becomes nearly uniform. Effi-

ciency of the algorithms are demonstrated through a 2D Poisson problem with steep gradients, and

2D reduced model of the incompressible, resistive magnetohydrodynamic (MHD) equations.

Accommodations of the ALR strategies to parallel computer architectures involve a geomet-

ric binning strategy to reduce communication cost. Load balancing begins at very coarse levels.

Elements and nodes are redistributed using parallel quad-tree structures and a space filling curve.

This automatically ameliorates load balancing issues at finer levels. Numerical results produced on

Frost, the NCAR/CU Blue Gene/L supercomputer, are presented for a 2D Poisson problem with

steep gradients, a 2D backward facing step incompressible Stokes equations and Navier-Stokes

equations. The NI-FOSL-AMG-ACE approach is able to provide highly resolved approximations

to rapidly varying solutions using a small number of work units. Excellent weak and strong scal-

ability of parallel ALR are demonstrated on up to 4,096 processors for problems with up to 15

million biquadratic elements.
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Chapter 1

Introduction

Adaptive finite element methods (AFEMs) are being used extensively to approximate solu-

tions of partial differential equations (PDEs) containing local features; see, e.g., [6, 24, 26, 38, 43].

Consider a PDE, or a system of PDEs, written abstractly as

Pu = f in Ω ⊂ Rd, (1.1)

with u ∈ V and appropriate boundary conditions. Let T be a regular partition [10] of the domain,

Ω, into elements. Define the mesh size, h = max{diam(τ), τ ∈ T }. The refinement process starts on

a coarse grid, T0 (level = 0), and iteratively refines and approximates the PDE on levels ` = 1, 2, ...

until the error satisfies a certain criterion. At each level, some elements are refined in h by splitting

them into sub-elements, and some are refined in p by increasing the element order. In [32,33], this

concept is described in the following form:

Solve→ Estimate→ Mark→ Refine. (1.2)

The goal of adaptive mesh refinement is to construct a sequence of grids that converge to an optimal

grid. A grid, Topt, (or the associated finite element space Vopt), is called optimal if it is capable of

approximating the solutions of a given PDEs to certain accuracy with the least number of degree

of freedom (DOF). Equivalently, denoted by uT ∈ VT the numerical solutions to a given system of

PDEs. Let ET = ||u−uT ||V be norm of the error. Then, the Topt is considered as an optimal grid

if for a given number of DOF, write N > 0,

Topt = arg min
|T |=N

||u− uT ||V . (1.3)
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Here, |T | is the dimension of the finite element space, VT , that is associated with T . In one di-

mension, it has been proved that this is accomplished by equally distributing the error over all

elements; [26]. It is believed that this also holds for higher dimensions. Based on this premise,

a simple method to mark elements for refinement was introduced by Babuška [26]: an element is

marked for refinement if its local error is within a certain factor of the largest local error at that

level. In [24], a more complicated algorithm, called the threshold-based marking, was proposed:

ALGORITHM 1 (Threshold-based Marking). Given a parameter 0 < θ ≤ 1, construct a minimal

subset T̂ of T such that ∑
τ∈T̂

ε2τ ≥ θ
∑
τ∈T

ε2τ , (1.4)

and mark all elements in T̂ for refinement.

The AFEMs in [32, 33] start with this approach, then further mark elements based on os-

cillation terms. This marking approach often produces satisfactory results. With a proper choice

of θ, one can establish the convergence of the AFEM as well as near optimality of the finest grid.

However, the real computational cost was not addressed. Also, the proper choice of θ is different

for various problems and unknowns a priori. We argue that the goal of AMR should take into

account the real computational cost, meaning, the goal should be to achieve the optimal grid with

the least amount of work. To do that would require the value of θ to be free to change on each

level. A large fraction of elements may need to be refined at the coarser levels when the grids are

too coarse to resolve the local features of the solution. Then, at intermediate levels, refinement

should concentrate on the elements containing relatively large error. Lastly, at finer levels, once

the error is equally distributed, near global refinement is preferred.

A new approach, described in [8], was developed to address this issue. The algorithm refines

elements that minimize a ‘work-times-error-reduction’ efficiency factor (WEE) at each refinement

level. Later, in [22], it was shown that the WEE algorithm was inefficient for problems with

spatial dimension, d, less than the polynomial degree, p, of the finite element space. Another
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algorithm, which determined the fraction of elements to be refined, r, by optimizing the ‘accuracy-

per-computational-cost’ efficiency factor (ACE) was proposed and analyzed in [3,22,34]. The ACE

algorithm was applied to first-order system least-sqares (FOSLS) finite element methods in the

conjunction with algebraic multigrid (AMG) in the context nested iteration (NI). The NI-FOSLS-

AMG approach yields measures that allows us to estimate the error reduction and computational

cost, which can be used to make the refinement decisions based on optimizing computational

efficiency. The results show that the ACE algorithm is capable of effectively and efficiently detecting

the solution’s local features.

Even with efficient and effective AMR, more computing resources are almost always de-

sired to achieve the ever-increasing demands on solution resolution. Currently, massively parallel

distributed memory machines are being built to accommodate this continual need for greater com-

puting power. For this reason, this thesis focuses developing the parallel efficiency-based adaptive

refinement techniques and the software implementation of the NI-FOSLS-AMG approach in par-

allel. The main contribution of this thesis is to provide the parallel PDE solver package, Parallel

FOSPACK (pFOSPACK ). The package uses the FOSLS methodology for discretization, and em-

ploys AMG, (accelerate by Conjugate Gradient (CG)), to solve the discretized equations. The

design goal is to develop a scalable, efficient, and easy-to-use PDE solver to support numerical

simulations for large scale applications. Extending efficiency-based refinement strategies in parallel

utilizes geometric binning strategies. Elements are grouped into bins based on local error, then

refinement decisions can be made based on treating each bin as abstract element. Once a bin

is marked for refinement, all elements in that bin are refined. This thesis demonstrates that the

parallel ACE(pACE)-like algorithms based on geometric binning produces results similar to the

original serial algorithms, but greatly reduces the communication cost. Scaling dynamical AMR

in parallel is challenging. Difficulties in communications, load balancing, and mesh interactions

must be overcome. In pFOSPACK, load balancing starts on coarser grids, where the computation

and communication are relatively cheap. At each refinement level, a space filling curve (SFC) and

parallel tree structures are used to redistribute nodes and elements among processors in order to
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preserve locality of the new partition and, thus, reduce communication cost. This thesis shows that

the NI-FOSLS-AMG-pACE algorithm yields equal distribution of error on finer levels, which leads

to near uniform refinement. Uniform refinement requires no further load balancing. Tests on Frost,

the CU/NCAR Blue Gene/L super computer, demonstrate excellent strong and weak scalabilities.

This thesis is organized as follows. In chapter 2, the basic concepts of the NI-FOSLS-AMG

approach are described. Notations used in this thesis are also introduced. The efficiency-based

adaptive local refinement strategies are formulated in chapter 3. Numerical results of applying the

NI-FOSLS-AMG-ACE approach to a 2D Poisson equation with steep gradients and a 2D reduced

model of the incompressible, resistive magnetohydrodynamic (MHD) equations are discussed. We

show that, by using ALR strategies, we are able to resolve the physics using only 10% of the

computational cost used to approximate the solutions on a uniformly refined mesh within the

same error tolerance. Next, accommodation of the efficiency-based ALR strategies in parallel is

discussed in chapter 4. Details of mesh partitioning, load balancing strategies, and communication

issues come afterward. Numerical efficiency and parallel scalability of the NI-FOSLS-AMG-pACE

approach are demonstrated by various tests on Frost. Lastly, conclusions are formulated in chapter

5.



Chapter 2

Preliminaries

This chapter describes the basic concepts behind the NI-(Newton)-FOSLS-AMG approach

and introduces notations used in the rest of the thesis. The FOSLS approach yields locally sharp

error indicator which is almost computationally free and fits in the ALR framework. Using AMG

in the context of nested iterations, measures can be computed to estimate both error reduction and

computational work. This makes NI-FOSLS-AMG a great candidate for developing efficient multi-

level adaptive PDE solvers. This chapter provides theoretic foundations for developing efficiency-

based ALR schemes in Chapter 3. Although we focus on NI-FOSLS-AMG, it is worthwhile to point

out that ACE-like ALR schemes can be used together with other descretization methods and linear

solvers.

2.1 Discretization Methods

2.1.1 FOSLS methodology

First-order system least squares (FOSLS) is a special type of finite element method that

reformulates a PDE as a system of first-order equations and poses the problem as a minimization

of a functional. Here, the first-order differential terms appear quadratically and, thus, the functional

norm is equivalent to a norm meaningful to the problem. To illustrate the basic concepts of FOSLS,

consider the PDE written abstractly in (1.1). Introducing new variables, we arrive at a first-order

system:

Liu = fi, i = 1, 2, ...,M. (2.1)
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Assuming fi ∈ L2(Ω) and Li is linear, consider the associated FOSLS functional given by

G(u, f) =

M∑
i=1

||Liu− fi||20,Ω, (2.2)

where ||u||0,Ω =
√∫

Ω |u|2 is the L2-norm. The minimization problem is

u = arg min
v∈V
G(v; f). (2.3)

Here, V is an appropriate Hilbert space, usually (equivalent to) a product of H1 spaces. The

minimizer u satisfies G′(u)[v] = 0, which is the Fréchet derivative of G in the direction v ∈ V; that

is

G′(u)[v] = lim
α→0

G(u + αv; f)− G(u; f)

α
. (2.4)

This yields the equivalent weak form:

find u ∈ V such that

< Lu,Lv >=< f ,Lv > ∀ v ∈ V,
(2.5)

where < Lu,Lv >=
∑

i < Liu,Liv > is the usual L2 inner product in the product space.

In many cases, under general regularity assumptions, the weak form is continuous and coercive

in V; see, e.g., [16, 17]. That is, there exist positive constant c1 and c2 such that

continuity < Lu,Lv >≤ c2||u||V ||v||V ∀ u, v ∈ V,

coercivity < Lu,Lu >≥ c1||u||2V ∀ u ∈ V.
(2.6)

In other words, the FOSLS functional G(u; f) is “elliptic” with respect to the V norm; That is, its

homogeneous part, G(v; 0), is equivalent to the squared V norm:

c1 ≤
G(v; 0)

||v||2V
≤ c2 ∀ v ∈ V. (2.7)

By The Riesz Representation Theorem, ellipticity guarantees the existence and uniqueness of

the solution, u. Let Vh ⊂ V be a finite-dimensional subspace of V. Often, it consists of continuous

piecewise polynomials. Note that the discretization can be written as the minimization problem

uh = arg min
vh∈Vh

G(vh; f). (2.8)
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Well-posedness of (2.8) follows directly from the ellipticity, (2.6). Therefore, the FOSLS formulation

is not restricted by any strict stability conditions such as the inf-sup or Ladyzhenskaya-Babška

(LBB) condition; see, e.g., [10, 13]. While not a necessary condition, if V is a product of H1

spaces, then ellipticity also enables an optimal multigrid solver of the discrete system [17]. That is,

standard multigrid solvers converge with factors, 0 < ρ < 1 , bounded uniformly in mesh size, h.

The introduction of the new dependent variables increases the number of DOF, much like

mixed finite element methods. However, unlike mixed methods, FOSLS yields a symmetric positive

definite algebraic system that is, in general, more amenable to multilevel solution techniques.

2.1.2 Linearization

Newton-like linearization processes are often used for solving nonlinear PDEs. Starting with

an initial guess, one computes the next iterate by solving a linear approximation of the nonlinear

problem in a small neighborhood of the current iterate. If the initial guess is in the attraction basin,

then a sequence of iterates converges to the exact solution of the nonlinear problem. In the context

of least-squares methods, depending on where the linearization appears in the solution process,

two types of methods are usually used. The first method, called Newton-FOSLS, linearizes the

PDEs in the neighborhood of the current approximate and then applies the least-squares method

to the linearized problem. The second method, called FOSLS-Newton, first constructs a nonlinear

least-square problem and then approximates this with a linear problem (see [20,37]). In literature,

the Newton-FOSLS corresponds to Gauss-Newton-like approach, and the FOSLS-Newton to the

Full-Newton approach. These two approaches behave similarly near the exact solution of the

nonlinear problem, so the choice is based mostly on convenience of implementation. Because of

the reduced expense of Gauss-Newton-like approaches, they tend to be more popular in practice.

Similarly, we choose the Newton-FOSLS approach over FOSLS-Newton because of its simplicity.

A more detailed description of the Newton-FOSLS method is given below. One can refer to [37]

and references therein for more details.
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Newton-FOSLS

To illustrate the concept of Newton-FOSLS, consider a nonlinear first-order differential op-

erator, L : V → VL, where V is often equivalent to a subspace of a product of H1+δ(Ω) spaces for

δ ∈ (0, 1). Here, we take the solution space in H1+δ instead of purely H1 since nonlinear terms often

consists of a product of first order derivatives of u ∈ V. In R2 , Sobolev embedding theorem [1]

implies that

||u||∞,Ω ≤ C||u||1+δ,Ω, ∀u ∈ H1+δ(Ω), (2.9)

where || · ||1+δ,Ω is the fractional Sobolev space norm. This equality ensures that VL ⊂ L2 so that

the usual L2 least-square functional can be applied. To solve the nonlinear PDE associated with

L:

L(u) = f , in Ω, (2.10)

one can first linearize (2.10) in a neighborhood of a given initial guess, u0 ∈ V, by truncating high

order terms in its Taylor series:

L(u) ≈ L(u0) + L′(u0)[u− u0], (2.11)

where L′(u0)[u− u0] is the Fréchet derivative of L at u0 in the direction [u− u0]. This leads to a

linear approximation of the nonlinear problem at u0:

L′(u0)[δu] = f − L(u0). (2.12)

The least-square functional for (2.12) becomes

G(u0 + δu; f) = ||L′(u0)[δu]− (f − L(u0))||20. (2.13)

Minimizing the linearized functional (2.13) yields

< L′(u0)[δu],L′(u0)[v] >=< L′(u0)[v], f − L(u0) > ∀ v ∈ V. (2.14)

The next approximation is obtained by adding the correction to the current iterate:

u1 = u0 + δu. (2.15)
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The n-th Newton step can be written abstractly as

un+1 = un + L′(un)−1 (f − L(un)) . (2.16)

The discrete problem is to apply FOSLS approach to solve for δuhn ∈ Vh ⊂ V such that

< L′(uhn)[δuhn],L′(uhn)[vh] >=< L′(uhn)[vh], f − L(uhn) > ∀ vh ∈ Vh. (2.17)

If the weak form in (2.17) is continuous and coercive, then there exists a unique solution.

The convergence of Newton-FOSLS strongly depends on a good initial guess. An efficient

and effective technique of obtaining initial guesses is the strategy of nested iteration. Details are

discussed in the next section.

2.2 Algebraic Solver

Nested iteration (NI), or full-multigrid [14] (FMG) as it is called in the multigrid context,

involves starting the solution process on a relatively coarse grid, where the computational cost is

relatively cheap. The solution on the coarse grid is used as an initial guess for the problem on

the next finer grid. Since the objective on each grid is to minimize the FOSLS functional, the

coarse-grid solution should provide a good starting guess. On each refinement level, solving dis-

crete minimization problem (2.8) involves fast iterative solvers applied to the matrix equations. If

the FOSLS functional is equivalent to a product H1 norm, then there exists an optimal multilevel

solution algorithm [45]. Experience shows that, in this context, AMG also yields an approximate

solution to the discrete equations associated with quasi-uniform grids in optimal time with conver-

gence factor, ρ, bounded uniformly below 1, independent of mesh size h. AMG methods, together

with the NI strategy and local refinement, provide a powerful approach for approximating solutions

of PDEs. Numerical and theoretical results confirm that the overall cost of such a scheme resides

predominantly in the cost of the finest-level processing. The total cost is usually cheaper than

solving the problem directly on the finest grid, which generally is not even known in advance.

The NI strategy presents a special opportunity for AMG methods. In general, AMG requires

a substantial setup phase. The NI approach with local refinement yields a hierarchy of quasi-
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nested block-structured grids. That is, the coarsest grid may be irregular, but subsequent grids

are increasingly more structured. This hierarchy, together with AMG, may reduce or eliminate the

need for a setup phase at each level. This will be investigated in future work.

The NI strategy is efficient and effective for obtaining a good initial guess for Newton-FOSLS.

The computed solution from the previous coarser level minimizes the nonlinear functional in the

coarser space. It is likely to lie into a small neighborhood of the solution on the next finer level.

Theory developed in [20] shows that, under rather mild hypotheses, for a sufficiently fine coarsest

grid, the NI approach based on one Newton step per refinement level using a fixed number of

multigrid cycles produces a final approximation to the solution of the first-order system that is

H1 accurate to the level of discretization error. However, fixing number of multigrid cycles and

number of Newton steps at each refinement level might not be efficient in terms of accuracy-per-

computational-cost. In fact, at some point, doing more work on the coarser grid might not be

as efficient as moving to the finer grid. For example, to locally refine a portion of the domain

containing a large amount of error might give more error reduction than continuing to solve on the

coarse grid. Similarly, on the same level, it might be more efficient to relinearize and perform a new

Newton step than to continue to resolve the current Newton step. The number of multigrid cycles,

as well as Newton steps, should vary depending on how the grids are refined on each refinement

level. Strategies to decide how accurately to solve each Newton step and when to stop the Newton

iteration and proceed to the next finer grid are described in [2]. Results in [2–5], and later in

this thesis, show the NI-Newton-FOSLS-AMG approach with ALR and stopping criteria based

on accuracy-per-computational-cost is able to solve complicated system of PDEs, such as Navier-

Stokes and MHD, in a small amount of work units. We briefly describe the NI strategy below;

see [2] for more details.

The basic principle is to have the most accuracy-per-computational cost. Let G and G denote

the nonlinear functional and linearized functional at the current Newton step, respectively. With

the linearized functional and AMG convergence factor, one can estimate how much error of the

linear system is being reduced and at what cost. Similarly, by checking the nonlinear functional and
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the number of Newton steps being performed, one can estimate the accuracy-per-computational cost

for solving the nonlinear system. These estimates are then used to establish stopping parameters

for linear as well as nonlinear iterations.

For linear problems, the idea is to stop linear iterations on the coarse grid once moving to

the fine grid is more efficient. Denote by G2h
∗ and Gh∗ the discretization error, measured by the

functional, on grids h and 2h, respectively. Let u2h
i be the approximate solution at the ith iteration

and G2h
i be the associated numerical error, measured by the functional. Furthermore, denote by d

the dimension of the problem, i.e., R2 or R3. Keep in mind that the AMG convergence rate, ρ, is

considered as a constant on grids 2h and h. On grid 2h, one can write the linear functional at the

ith iteration as

G2h
i = (1 + ε2hi )G2h

∗ , (2.18)

where ε2hi G
2h
∗ is the square of the algebraic error. Assume the algebraic error converges with

convergence factor ρ. Then, one more iteration would give

G2h
i+1 ≈ (1 + ρ2ε2hi )G2h

∗ . (2.19)

Instead of doing the (i+1)st linear iteration, using u2h
i as the initial guess on grid h, and performing

one iteration would give

Gh1 ≈ (1 + ρ2εh0)Gh∗ . (2.20)

Doing an AMG cycle on grid h is more expensive than on grid 2h. What should be used in (2.20)

is the effective reduction

ρ
1

Wh/W2h , (2.21)

where Wh
W2h

is the work ratio between grid h and 2h. For uniform refinement it is 1
22d

. For ALR, it

is given in the next chapter. The effective error reduction moving to the next grid is written

Gh1 ≈
(

1 +
(
ρ

1
Wh/W2h

)2

εh0

)
Gh∗ . (2.22)

If Gh1 ≤ G2h
i+1, then it is more efficient to move to grid h.
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The problem remains to determine the particular ε2hi such that this happens. We call this

number ε2hs . In [2], the relation between the algebraic error on grid 2h, ε2hs G
2h
∗ , algebraic error on

grid h, εh0G
h
∗ , and the difference between the discrete error among grids, Gh∗ −G2h

∗ , is written

ε2hs G
2h
∗ +

(
G2h
∗ −Gh∗

)
= εh0G

h
∗ . (2.23)

Using this, one can compute

ε2hs =

((
ρ

1
Wh/W2h

)2

− 1

)
(1− Gh∗

G2h
∗

)

ρ2 −
(
ρ

1
Wh/W2h

)2 . (2.24)

The stopping criteria for linear problem is described

ALGORITHM 2. Stopping Criterion for Linear Problem

• Compute ε2hs by (2.24)

• At each linear iteration, compute G2h
i by

G2h
i =< A2hx2h

i , x
2h
i > −2 < b2h, x2h

i > +||f ||20. (2.25)

Here f is the right hand side of the continuous problem and A2hx2h = b2h is the matrix

system obtained from the associated discrete problem.

• If

G2h
i ≤ (1 + ε2hs )G2h

∗ , (2.26)

then stop linear iteration and go to next refinement level.

Algorithm (2) requires that the AMG convergence rate, ρ, and functional reduction, Gh∗
G2h
∗

, between

grids 2h and h are known in advance. AMG convergence rate, ρ, can be measured at run time. For

uniform refinement, reduction can be estimated using the standard finite element error estimate.

As for ALR, reduction from the previous grid can be used. Details are discussed in Chapter 3.

Discretization error, G2h
∗ , is usually unknown, but it can be computed using three consecutive

iterations. Details can be found in [2, 4, 5].
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Stopping criteria for the nonlinear iteration is rather complicated. The bottom line is that

once the current Newton step approximation is within a small fraction of the discrete solution to

the full nonlinear problem, then more accuracy-per-computational-cost is gained by moving to a

finer grid. We give the algorithm below, see [2, 3, 5] for complete details.

ALGORITHM 3. Stopping Criterion for Nonlinear Problem

Let u2h
∗ be the exact solution to the nonlinear problem on grid 2h, and u2h

i be the discrete

solution to the ith Newton step. At each Newton step

• Solve the linearized problem L′(u2h
i )[δu2h

i ] = f − L(u2h) using FOSLS.

• Stop linear iteration according to the stopping criteria in algorithm 2.

• Compute the nonlinear functional G(u2h
i+1) = G(u2h

i + δu2h
i ) and the difference functional

Gd(δu2h
i ) = ||L(u2h

i + δu2h
i )−

(
L(u2h

i ) + L′(u2h
i )[δu2h

i ]
)
||20. (2.27)

• If

Gd(δu2h
i )

G(u2h
i + δu2h

i )
< η, (2.28)

then stop solving on grid 2h and move to the next grid. Here η is a given tolerance. A

typical choice is η = εs, where εs is computed by (2.24).
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2.3 A Sharp and Reliable A-posteriori Error Estimate

The second step in the refinement loop is to estimate the error locally. An effective local a

posteriori error estimate is crucial to adaptive refinement. It needs to be easily computable and

accurately approximate the actual error. If the error estimate is reliable, then refining elements

with a large error estimate leads to equal distribution of the error, which is crucial to reducing the

load balancing cost on fine levels when computing on a parallel machine. In [43], Verfüth breaks a

posteriori error estimation into four categories:

(1) residual estimation,

(2) solution of local problems,

(3) hierarchical basis error estimates,

(4) averaging methods.

Many AFEMs are based on residual estimates. For example, in [24], the estimate,

ε2τ =
∑

Γ∈∂τ\∂Ω

dΓ||[∂nuh]||20,Γ, (2.29)

is used for adaptive refinement of the Garlerkin finite formulation for Poisson equation, where Γ is

an edge/face of element τ , dΓ is the edge/face size, and [∂nu
h] is the jump of the normal derivative of

uh across Γ. Later, in [32,33], a local equation residual is added for solving the advection-diffusion

equation

ε2τ = h2
τ ||f +∇ ·A∇uh − b · ∇uh − cuh||20,τ +

∑
Γ∈∂τ\∂Ω

dΓ||[∂nuh]||20,Γ. (2.30)

Our method, like the methods mentioned above, is also based on residual estimation. Because

the functional value is zero at the solution, the FOSLS functional itself is a measure of the total

error in a given approximation. It provides both absolute and relative error measures, as well as

global and local error estimates, that are much simpler and potentially sharper than conventional

error estimators. To illustrate this, for any element τ ∈ T , define the local FOSLS functional,

Gτ (uh; f) =

M∑
i=1

||Liuh − fi||20,τ . (2.31)
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Writing ετ =
√
Gτ (uh; f), the ellipticity in (2.7) implies that

1

c2
ε2τ =

1

c2
Gτ (uh − u; 0) ≤ ||uh − u||2V,τ (2.32)

and

||uh − u||2V ≤
1

c1
G(uh − u; 0) =

1

c1

∑
τ∈T

ε2τ . (2.33)

An error estimator, ετ , that satisfies an inequality of type (2.32) is called locally sharp. It implies

that if ετ is large, then the error is large within that element. In the literature, an inequality of

type (2.33) is called a reliability bound; see [43]. Note that a small sum of local estimators, ετ ,

implies a small global error.

Compared to the a posteriori bounds, (2.29) and (2.30), the local FOSLS functional is com-

putationally inexpensive since it only involves a numerical integral within each element, while (2.29)

and (2.30) require information from neighbor elements. This greatly simplifies implementation and

communication in parallel. Another unique feature that the local FOSLS functional has is the local

sharpness. It was shown in [32, 33] that either (2.29) or (2.30) can be a sharp lower bound for

the local error unless the grid is already fine enough to resolve oscillatory features of the problem.

In that case, an additional term, called the oscillation, is added. But, generalizing that idea to

complicated systems of PDEs such as Navier-Stokes and MHD is not straightforward. The local

FOSLS functional, on the other hand, has no such difficulty.
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2.4 Refinement

In this section, we discuss the method for subdividing elements into subelements. The FOSLS

methodology allows us to use simple bisection of elements. Here we describe the algorithm in the

context of quadrilaterals in two dimensions and hexahedral elements in three dimensions. The

quadrilateral elements are partitioned into four sub-elements of equal area, and the hexahedral

elements are partitioned into eight sub-elements of equal volume. In the AFEM context, trian-

gles (tetrahedron in three dimensions) are often employed as finite elements, which requires more

attention in the subdivision stage to ensure conforming elements. The newest vertex routine in

conjunction with simple bisection is often used there; see [33]. Although the simple methods we

employ produce hanging nodes, the FOSLS method handles this situation easily. Hanging nodes

are nodes along element edges or faces, in which the edge or face is shared by multiple elements,

and the nodes are not defined for some elements; see Fig. 2.1. If conforming elements for FOSLS

(a) Possible grid after refinement without clean-up stage (b) grid after a clean-up stage is used to maintain 2-to-1
balance

Figure 2.1: A mesh resulting in slave nodes and master nodes; the red solid circle marks slave
nodes, the blue solid circle marks master nodes. The arrows represent explicit correlations between
slave and master nodes.

discretization are desired, each slave node is dependent on its master nodes at the endpoints of the

edge or the face on which it is hanging through an explicit algebraic constraint. Explicit correlations

between slave nodes and master nodes are established, see Fig. 2.1(b).
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Although not required for FOSLS convergence, we perform an additional clean-up stage in

our implementation so that two adjacent elements sharing an edge or a face should not differ in

edge size by a factor greater than 2. Such a constraint is often referred to as the balance condition

or 2-to-1 balance constraint [41, 42]. This clean-up stage helps to improve AMG convergence by

reducing stencil size. Also, it helps track local features that are not stationary during a time-

dependent simulation. Implementing the 2-to-1 balance constraint can be difficult in parallel. It

depends on the data structure to represent the mesh, details are discussed in Chapter 4.

Remark. Although not pursued here, FOSLS is particularly amenable to non-conforming

finite element spaces; see Berndt’s lemma (Theorem 5.2) [9]



Chapter 3

Efficiency-based Adaptive Local Refinement

This chapter describes the ACE-like adaptive refinement algorithms in serial for NI-Newton-

FOSLS-AMG approach. Numerical heuristics and the original ACE algorithm are introduced. Two

variations of the ACE algorithm are also proposed. The first requires a fixed increase of DOF. The

second forces a fixed anticipated error reduction. This is similar to the threshold-hold refinement

algorithm except that an element is allowed to be refined more than once at a single level. These

two variations can be generalized to circumstances in which other quantities are important in the

simulation. For instance, one can force a fixed error reduction of the ||div u||20 term to improve

conservation in Stokes and Navier-Stokes problems. Finally, another algorithm, which minimizes

the ‘anticipated-overall-computational-work’ efficiency factor (NACE) is developed. This method

differs from the ACE algorithm and its variations in that the marking decision is made by the most

accuracy-per-computational cost on all finer refinement levels instead of the next finer levels.

NI-Newton-FOSLS-AMG yields measures that allow us to estimate the anticipated error re-

duction and computational cost, which is used to make the refinement decisions based on optimizing

computational efficiency. The performance of the efficiency-based adaptive refinement algorithms,

applied to NI-Newton-FOSLS-AMG, is compared for a 2D Poisson problem with steep gradients

and a time-dependent nonlinear 2D reduced model of the incompressible, resistive magnetohy-

drodynamics (MHD) equations. The numerical results show that all of the ACE-like algorithms

used with NI-Newton-FOSLS-AMG are capable of approximating the solutions within the same

error tolerance with much less computational cost than the threshold-based refinement and uni-
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form refinement. Possibilities of extending the ACE-like algorithms to the context other than

NI-Newton-FOSLS-AMG is discussed at the end of this chapter.

3.1 Efficiency-based Adaptive Local Refinement for NI-FOSLS-AMG

Recall that the goal of efficiency-based refinement strategies is to reach a certain error tol-

erance with the least amount of computational cost. Given a potential refinement strategy, one

needs to estimate

• the reduction in the functional norm of the error and

• the computational cost of solving the resulting system of equations.

These estimates are established in the next two sections.

3.1.1 FOSLS Approximation Heuristics

Assume the solution space, V, is a product of H1(Ω) Sobolev spaces. For any tessellation,

Th, with mesh size, h, let Vh be the finite-dimensional subspace consisting of continuous piecewise

polynomials of degree p. Define Ihu to be the interpolation of the exact solution, u, into the

subspace Vh. Then, there exists a constant, C, independent of u, such that

||Ihu− u||1 ≤ Chs|u|s+1 (3.1)

for 0 < s ≤ p. Here, || · ||1 is the H1(Ω)-norm and | · |s+1 is the Hs+1(Ω) semi-norm, (c.f. [10]). We

further assume that the solution, u, is smooth enough, i.e., u ∈ Hp+1(Ω), so that (3.1) is valid for

s = p. The following error bound is used to estimate the functional reduction:

G(uh; f) :=
∑
τ∈Th

Gτ (uh; f) ≤
∑
τ∈Th

Gτ (Ihu; f)

≤ c2||Ihu− u||21

≤ c2C
2h2p|u|2p+1.

(3.2)



20

Similar bound holds for the local interpolate error:

ε̂2τ := Gτ (Ihu; f) ≤ Dh2p
τ |u|2p+1,τ

≤ Dh2p
τ Mp+1,τHτ ,

(3.3)

where D is independent of u and hτ , Hτ is the area of element τ , and Mp+1,τHτ is a bound on

|u|2p+1,τ . We assume that D and Mp+1,τ are relatively constant over element τ . Moreover, we

assume Ihu is close enough to uh so that bound (3.3) holds for local FOSLS functionals:

ε2τ := Gτ (uh; f) ≈ Gτ (Ihu; f) ≤ Dh2p
τ Mp+1,τHτ . (3.4)

Modifications of the assumptions might be necessary for certain situations, for example, when

the solution contains a singularity (c.f. [22]) or the grid is not fine enough to resolve features

of the solution. In such cases, these assumptions can be adaptively monitored so that run-time

adjustments can be made.

ε2

(a) Parent element

1
64ε2

(b) Single refinement

1
642ε

2

(c) Double refinement

Figure 3.1: Double refinement and local functional reduction for biquadratic element.

If element τi is split in two in each dimension, then we have 2d new elements, τi,1, ..., τi,2d , in

Rd. Using (3.4) as an asymptotic bound, we can estimate the local functional after refinement:

2d∑
j=1

ε2τi,j ≈ D(
hτi
2

)2pMp+1,τi

Hτi

2d
2d ≈ 1

22p
ε2τi . (3.5)

Next, assume that the error is equally distributed among τi,j , which yields

ε2τi,j ≈
(

1

22p+d

)
ε2τi . (3.6)
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To give a little insight as to what this means, suppose quadratic elements are used in R2. Then

the functional in each child element should be about 1
64 of its parent. If an element is allowed

to be refined twice, its grand-children are expected to have a local functional of about 1
4096 of its

grandparent; see Fig. 3.1. This suggests local errors can be reduced quickly and equally distributed

if multiple refinements are correctly implemented.

3.1.2 Work estimate for NI-AMG

Here, we develop a procedure to estimate the computational work depending on the refine-

ment decision made at each level. Let ` denote the refinement level, with ` = 0 the coarsest and

` = L the finest grid. The following level-dependent definitions are made:

• N` =number of elements at level `;

• G`(uh; f) = FOSLS functional at level `;

• ε2i = G`,τi(uh; f) = local functional on each element, τi, at level `;

• M`(u
h; f) =

√
G`(uh; f) = error at level `.

The goal is to ensure that elements that contain large local error are refined first. This yields

equally distributed error on the finer levels. The algorithm starts by ordering the elements at level

` so that

ε21 ≥ ε22 ≥ ... ≥ ε2N` . (3.7)

Let r ∈ [0, 1] be the fraction of elements to be refined versus the total number of elements. Define

E`(r), the associated fraction of the functional on the elements to be refined; that is,

E`(r) =

∑
i≤rN` ε

2
i∑N`

i=1 ε
2
i

. (3.8)

Although, as defined, the functional distribution function, E(r), is piecewise constant on a mesh

of size 1
N`

. Consider a smooth interpolationof E(r), then, E(r) is monotonically increasing and

concave down from E`(0) = 0 to E`(1) = 1, that is, E′`(r) ≥ 0 and E′′` (r) ≤ 0. The derivative
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E′`(0) can be used to indicate whether the functional is equally distributed. If it is large, then

the functional is dominant in the first few elements. For example, in Fig. 3.2, when the error is

dominated in the first two elements, the derivative at r = 0 is much greater than 1.
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Error is much larger in first 2 elements

Uniformly distributed error

Figure 3.2: Fraction of functional versus the fraction of elements to be refined.

The algorithm allows an element to be refined more than once at each level. Let ri ∈ [0, 1] be

the fraction of elements to be refined i times at level `. Let m be the maximum refinements allowed

on a single level. Writing r = (r1, r2, ..., rm) and combining the functional distribution (3.8) and

the functional reduction heuristic (3.5), we estimate the functional reduction as a function of r:

γ`(r) = 1− E`(r1) +
m−1∑
k=1

1

22kp
[E`(rk+1)− E`(rk)] +

1

22mp
E`(rm). (3.9)

For the work required to achieve this reduction, the main concern is the increase in the DOF.

Assuming simple bisection of the elements, the anticipated increase in DOF is easily computed.

We have

N`+1 ' η`(r)N`, (3.10)

where

η`(r) = 1− r1 +
m−1∑
k=1

2kn(rk+1 − rk) + 2mdrm. (3.11)
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Assume that the AMG convergence factor is bounded by 0 < ρ < 1 uniformly in mesh-size.

This value can be determined dynamically during computation. We further assume that, at each

level, AMG V-cycles are applied until the discretization error, M`(u
h; f), is resolved. Then, the

anticipated number of V-cycles, κ`+1(r), is determined by

ρκ`+1 =
M`+1

M`
=
√
γ`(r)). (3.12)

Solving for κ`+1 gives

κ`+1(r) =

⌈
1

2

log γ`(r)

log ρ

⌉
. (3.13)

In a real simulation, a certain number of V-cycles are needed to extrapolate the discretization

error. Denoting this number by ncycmin, we have

κ`+1(r) = max

(⌈
1

2

log γ`(r)

log ρ

⌉
, ncycmin

)
. (3.14)

Now, the work on the next level, `+ 1, is given by

W`+1(r) = [cs + cvκ`+1(r)]×N`+1 = [cs + cvκ`+1(r)]× η`(r)×N`, (3.15)

where cs and cv represent the respective set-up cost and cost factor for a V-cycle.

Remark. The nested iteration strategies proposed in Chapter 2. stop the linear iteration

once the algebraic error is within a certain range, see the quantity described in (2.24), of the

discretization error. That leads to a variation of equation (3.12)

ρκ`+1 ≥
√
ε`+1
s M`+1√
ε`+1
0 M`+1

=

√
ε`+1
s√
ε`+1
0

, (3.16)

where ε`+1
s is computed using (2.24), i.e.,

ε`+1
s =

((
ρ1/η`(r)

)2 − 1
)

(1− γ`(r))

ρ2 −
(
ρ1/η`(r)

)2 , (3.17)

and ε`+1
0 is computed using (2.23)

ε`+1
0 =

ε`s + (1− γ`(r))

γ`(r)
. (3.18)
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3.1.3 Efficiency-based Marking Strategies

Let ET = GL
G0 be the desired total factor of reduction from the initial functional. We wish to

find an overall refinement strategy that minimizes the total work required to achieve a reduction of

the functional by the factor ET . That is, we want to find a sequence, {r`}..., to minimize the total

work:

WT =
L∑
`=1

W` with
L−1∏
`=0

γ` = ET . (3.19)

Here, W` is the work at level ` and γ` is the functional reduction between level ` and `+ 1. Several

difficulties arise in the solution of such a minimization problem. The choice of r` depends on the

functional distribution, E`, which is unavailable before refinement is performed at level `. We can

estimate the distributions at finer levels based on heuristics (3.5) and the functional distribution

at coarser levels. Such estimates are often not accurate enough, especially when the grid is not fine

enough to resolve the solution.

Our first approach to (3.19) is based on optimization of the accuracy-per-computational-cost

in the move from grid ` to grid `+ 1. Define the effective functional reduction measure as follows:

γ`(r)
1

W`+1(r) . (3.20)

The ACE algorithm, first developed in [22,34], marks elements for refinement based on minimizing

the anticipated effective functional reduction.

ALGORITHM 4 (ACE). At level `, order the elements so that

ε21 ≥ ε22 ≥ ... ≥ ε2N` .

Allow m-multiple refinements, e.g., m = 1, 2, 3. Let r = (r1, r2, ..., rm) with 0 ≤ rm ≤ ... ≤ r1 ≤ 1.

Find

ropt = arg min
r
γ`(r)

1
W`+1(r) , (3.21)

or

ropt = arg min
r

log γ`(r)

W`+1(r)
. (3.22)
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Then, refine the first driN`e elements i times, i = 1, 2, ...,m.

In some instances, however, the ACE algorithm only refines a few elements. This may be optimal

for the move from grid ` to grid level ` + 1, but, if this happens at all levels, then the total work

(3.19) will be unnecessarily large. Although cs and ρ are factored into the algorithm, the above

behavior may occur if ρ is very close to 1.0 and cs is not large relative to the cost of one V-cycle.

Furthermore, if elements are allowed to be refined more than twice, finding ropt can be expensive

at finer levels. One modification that reduces this expense is the use of bins, which we discuss in

Chapter 4.

Below, we propose three variations of the ACE algorithm. The first two, ACE-DOF and

ACE-Reduc, enforce fixed increase in the DOF and a fixed reduction of the functional, respectively.

The third algorithm, NACE, attempts to optimize (3.19). Numerical results in Chapter 3.2 indicate

that all the ACE algorithms used with NI-FOSLS-AMG are able to approximate the solutions to

the same accuracy with much less computational cost than the threshold-based refinement and

uniform refinement.

As indicated above, the algorithm ACE-DOF has the goal of forcing ACE to refine a certain

number of elements such that the number of elements at the next level is a prescribed factor of the

number that would result from performing a single refinement globally.

ALGORITHM 5 (ACE-DOF). On level `, order the elements so that the local functional is

decreasing. Assume m ≥ 2. Given a parameter 1 < θDOF ≤ (2d)m. Find

ropt = arg min
r

log γ`(r)

W`+1(r)
with η`(r) ' θDOF . (3.23)

In particular, one can choose θDOF = 2d such that the number of elements at next level is

the same as the number that would result from a single global refinement.

The second variation finds the optimal fraction, ropt, by fixing the anticipated functional re-

duction such that it is a prescribed factor of the anticipated functional reduction that would result
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from a single global refinement.

ALGORITHM 6 (ACE-Reduc). At level `, order the elements so the local functional is decreasing.

Assume m ≥ 2. Given a parameter ( 1
22p

)m ≤ θReduc < 1. Find

ropt = arg min
r

log γ`(r)

W`+1(r)
with γ`(r) ' θReduc, (3.24)

or

ropt = arg min
r
W`+1(r) with γ`(r) ' θReduc. (3.25)

All of the above algorithms are developed based on optimization between two consecutive

levels, which we refer to as local optimization in this context. Of course, this does not guarantee

global optimization; that is, optimization of the entire solution process. We also devise a mark-

ing algorithm that minimizes the ‘anticipated-overall-computational-cost’ efficiency, as defined in

(3.19), (which we call NACE). Let

εT,` =
GL
G`

(3.26)

be the overall functional reduction needed from the current functional to the desired tolerance. Let

K`(r) = d
log (εT,`)

log (γ`(r))
e. (3.27)

In order to obtain GL, assume we repeat γ`(r) reduction K`(r) times. The anticipated total work

to accomplish this is

WT,`(r) = [cs + cvκ`+1(r)]
(
η` + η2

` + ...η
K`(r)−1
`

)
N`

= [cs + cvκ`+1(r)]

(
η`(r)K`(r) − 1

)
η`(r)− 1

N`,

(3.28)

where κ`+1(r), the anticipated number of V-cycles associated with reduction γ`(r), is defined in

(3.14). Now, the NACE algorithm is described.
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ALGORITHM 7 (NACE). At level `, order the elements so that the local functional is decreasing.

The refinement decision is made by finding ropt to minimize the estimated remaining total work

given by (3.28). This is equivalent to finding

ropt = arg min
r

log

(
(cs + cvκ`+1(r))

η`(r)K`(r) − 1

η`(r)− 1

)
, (3.29)

where κ`+1, η`, and K` are given by (3.14), (3.11), and (3.27), respectively.

While this algorithm cannot guarantee optimal work as defined in (3.19), it attempts to take into

consideration the total work required on all remaining levels.
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3.2 Numerical Results

This section presents numerical results for ACE-like algorithms in the context of a serial

computer architecture. The first test is a Poisson equation with steep gradients and flats. The

second test involves a system of time dependent MHD equations.

3.2.1 Poisson Equation

Consider the Poisson problem on the unit square, Ω = (0, 1)× (0, 1),
−∆p = f(x, y) in Ω,

p = g on ∂Ω.

(3.30)

The equivalent first-order system we study here is

−∇ · U = f in Ω,

U = ∇p

∇× U = 0

p = g on ∂Ω,

τ · U =
∂g

∂τ
,

(3.31)

where U is a vector of auxiliary unknowns and τ is the unit vector tangent to ∂Ω. H1-ellipticity of

the corresponding FOSLS functional is shown in [17].

3.2.1.1 Test Problem: Steep Gradients and Flats

Define the function

p1(r, θ) =



1 r ≤ 0.7,

h1(r) 0.7 ≤ r ≤ 0.8,

0 r ≥ 0.8,

(3.32)
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where (r, θ) is the polar coordinate centered at the origin and h1 is a unique degree 7 polynomial

such that p1 ∈ H4(Ω). Similarly, define the function

p2(r′, θ′) =



2 r′ ≤ 0.7,

h2(r′) 0.7 ≤ r′ ≤ 0.8,

0 r′ ≥ 0.8,

(3.33)

where (r′, θ′) is the polar coordinate centered at (1, 0) and h2 is a unique degree 7 polynomial such

that p2 ∈ H4(Ω).

Figure 3.3: Exact solution

The right-hand side, f , and boundary data, g, are chosen such that the exact solution is

given by

p(x, y) = p1(x, y) + p2(x, y). (3.34)

The 3D plot of p displayed in Fig. 3.3 shows a large gradient within two thin strips with constants

elsewhere. For a given mesh size and approximation order, the error should be relatively large in

the thin strips. To get an accurate approximation, the refinement algorithm needs to concentrate

elements there to effectively resolve these gradients.

3.2.1.2 Results

All ACE algorithms are applied to test problem (3.30) with bi-quadratic elements. Refinement

stops when the functional is reduced by a factor of 10−7. Elements are allowed to be refined at
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most twice at each level. The finest grids and functional distribution are depicted in Fig. 3.4.

They are consistent with the anticipated mesh because the finest resolution encompasses the strips

containing the large gradient. Furthermore, we see that all schemes result in equal distribution

of error on the finest grids. In Fig. 3.4, we assign colors to each element according to the size of

local functional in such a way that the first color represents local functionals in the range [ε2max,

1
8ε

2
max], the second color represents the range [1

8ε
2
max, 1

82
ε2max] and so forth. If we only consider

the functional distribution within the steep gradients, since the solution is flat elsewhere, then it

is observed that all ACE schemes result in only three colors within the two thin strips. In other

words, local functionals only differ by a factor of 1
512 . Since the error is the square root of the

functional, local errors are only different by approximately a factor of 1
22 .

(a) ACE: mesh after nine levels of refinement (b) ACE-DOF: mesh after six levels of refinement

(c) ACE-Reduc: mesh after eight levels of refinement (d) NACE: mesh after five levels of refinement

Figure 3.4: Locally-refined meshes and functional distribution
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To investigate the behavior of each scheme, we tabulate various relevant values with respect

to each refinement level. These results are given in Tables 3.1, 3.2, 3.3, and 3.4. All schemes

work as expected. A large fraction of elements are refined at the initial levels when grids are too

coarse to resolve features of the solution. For instance, Table 3.1 shows that more than 50% of the

elements containing nearly 96% of the error are refined at the first 5 refinement levels. Then, at

the intermediate levels, once local features of the solution are exposed, a small fraction of elements

that contain large local error are refined, e.g., in Table 3.1, only 34% of the elements are refined

at level 6 and 7. In particular, at refinement level 6, 0.63% of the elements containing nearly

28% of the error are refined twice, which speeds up the process of equal-distribution of the error.

Later, at finer levels, since error is fairly equally distributed, a large fraction of elements are refined

once again. For example, in Table 3.1, 82% of the elements are refined at refinement level 9. To

show that ACE eventually results in nearly global refinement, more refinement levels are required;

however, this exceeds the memory limit of our machine. We give such an example in the parallel

section. Furthermore, the last column in each table shows that the anticipated functional reduction,

γest, provides an accurate estimate to the actual reduction at finer levels. This verifies the FOSLS

approximation heuristics derived in Chapter 3.1.1.

Next, to demonstrate the efficiency of each scheme, we compute the total computational cost

in terms of a work unit (WU) on the finest grid, defined as the amount of computation required to

perform one matrix vector multiplication on the finest grid. The total computational cost is, then,

given in terms of the total work units (TWU):

TWU =

∑L
`=1(Cs + ncyc`)× (ν1 + ν2)× σ` × nnz`

nnzL
. (3.35)

Here, ν1 and ν2 are the number of pre- and post-relaxations, respectively, σ` is the operator com-

plexity of the AMG solver at level `, nnz` is the number of nonzeroes at level `, ncyc` is the

number of AMG cycles performed at level `, and Cs is defined as the set up cost in terms of the

cost of a single V-cycle on level `. For this test problem, V (1, 1)-cycles are employed and the set up

cost is proportional to 30.0 V-cycles. Results show that the total work to solve the linear systems
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` G` N` nnz` r1 r2 E(r1) E(r2) η` ncyc γest(γact)
1 1.37e+5 16 9,801 63% 0.00% 96% 00% 2.87 4 0.10(0.49)
2 6.70e+4 46 29,709 52% 0.00% 98% 00% 2.56 4 0.08(0.42)
3 2.85e+4 130 84,277 52% 0.00% 99% 00% 2.57 4 0.07(0.19)
4 5.49e+3 364 234,237 56% 0.55% 98% 16% 2.74 4 0.07(0.11)
5 5.92e+2 1,114 664,061 53% 2.33% 98% 46% 2.88 4 0.05(0.09)
6 5.48e+1 3,505 2,093,261 34% 0.63% 92% 28% 2.09 4 0.12(0.13)
7 7.33e+0 7,756 4,595,173 34% 0.04% 91% 02% 2.02 4 0.15(0.15)
8 1.14e+0 16,213 9,531,203 69% 0.12% 98% 06% 3.09 4 0.08(0.08)
9 1.01e-1 51,157 29,884,277 82% 0.27% 99% 09% 3.50 4 0.07(0.07)
10 7.62e-3 181,633 105,595,645

Table 3.1: ACE, σL = 1.899, set up 171.804 WU, solve 22.907 WU.

` G` N` nnz` r1 r2 E(r1) E(r2) η` ncyc γest(γact)
1 1.37e+5 16 9,801 81% 6.25% 98% 29% 4.19 4 0.06(0.42)
2 5.77e+4 67 41,873 60% 10.45% 99% 59% 4.04 4 0.03(0.25)
3 1.44e+4 298 184,313 59% 10.40% 99% 82% 4.01 4 0.02(0.05)
4 6.99e+2 1,333 809,373 64% 9.00% 99% 76% 4.00 4 0.02(0.02)
5 1.60e+1 5,920 3,573,901 70% 7.62% 99% 49% 4.00 4 0.04(0.05)
6 7.84e-1 25,153 15,128,019 80% 5.01% 99% 47% 4.00 4 0.04(0.04)
7 3.12e-2 103,444 61,036,269

Table 3.2: ACE-DOF, σL = 1.983, set up 160.695 WU, solve 21.426 WU.

` G` N` nnz` r1 r2 E(r1) E(r2) η` ncyc γest(γact)
1 1.37e+5 16 9,801 100% 0.00% 100% 00% 4.00 4 0.065(0.48)
2 6.60e+4 64 38,025 47% 1.56% 99% 13% 2.59 4 0.065(0.39)
3 2.59e+4 169 102,677 46% 1.18% 99% 14% 2.52 4 0.065(0.13)
4 3.24e+3 472 284,901 57% 1.27% 99% 11% 2.86 4 0.065(0.07)
5 2.39e+2 1,492 888,377 58% 1.14% 99% 17% 2.86 4 0.065(0.09)
6 2.16e+1 4,627 2,741,061 60% 0.63% 98% 22% 2.87 4 0.065(0.09)
7 1.95e+0 13,849 8,169,677 70% 0.86% 98% 27% 3.20 4 0.065(0.08)
8 1.52e-1 45,448 26,632,607 81% 0.51% 99% 17% 3.49 4 0.065(0.07)
9 1.06e-2 160,897 93,704,707

Table 3.3: ACE-Reduc, σL = 1.994, set up 173.298 WU, solve 23.106 WU.

` G` N` nnz` r1 r2 E(r1) E(r2) η` ncyc γest(γact)
1 1.37e+5 16 9,801 100% 50% 100% 93% 10.00 4 0.010(0.228)
2 3.11e+4 160 104,967 46% 23% 99% 86% 5.16 4 0.014(0.095)
3 2.96e+3 958 653,599 72% 29% 99% 97% 6.63 4 0.006(0.008)
4 2.45e+1 6,868 5,511,917 36% 01% 97% 50% 2.18 4 0.061(0.065)
5 1.59e+0 15,277 12,768,435 56% 55% 95% 95% 9.18 4 0.057(0.029)
6 4.58e-2 153,064 108,988,185

Table 3.4: NACE, σL = 2.220, set up = 158.112 WU, solve 21.082 WU.
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throughout all levels is about 22 work units, and the total set up cost is between 158 and 173 work

units. To illustrate what these numbers mean, we take the finest grid resulting from the original

ACE, set up the FOSLS discrete problem, and solve it using AMG with a zero initial guess. The

results in Table. 3.5 show that the NI-FOSLS-AMG-ACE method requires only about 137% of the

work of solving the problem directly on the same finest grid. That is, the process of discovering

the optimal grid requires an overhead of 37% of the cost of solving on that grid.

Method Setup Cost ncyc Solve Cost Total Work
NI-FOSLS-AMG-ACE 171.80 4 22.91 194.71

FOSLS-AMG 113.94 11 37.98 141.92

Table 3.5: Comparison of NI-FOSLS-AMG-ACE and applying FOSLS-AMG directly to the finest-
grid, ncyc is the number of V-cycles used on the finest grid.
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Figure 3.5: Comparison of all ACE schemes, where a work unit is defined as the cost of one matrix
vector multiplication on the finest grid of ACE.

Next, we see from Table. 3.4 that the NACE scheme takes the least levels of refinement to

reach the error tolerance due to a lot more double refinements. This may lead to possible over-

refinement and less accurate grids, which is indeed the case; see Fig. 3.5(a), where the functional-

versus-number-of-elements curve and work units are depicted. The convergence rates of ACE, ACE-

DOF, and ACE-Reduc approach the optimal rate of quadratic elements, while the convergence rate

of the NACE scheme is slightly slower. Double refinements also have the potential of introducing
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more nonzeroes in the resulting matrices, e.g., the NACE scheme results in more nonzeroes in the

finest-grid matrix than ACE and ACE-Reduc, but fewer elements. To compare the computational

work required to reach a certain functional value, we compute the work units in terms of relaxation

on the finest grid of ACE, which contains 105,595,645 nonzeroes. The ACE scheme (and its two

variations) results in smaller functional values compared with the NACE scheme. It appears that,

for this test, when the work units equal 180, the functional resulting from NACE is almost an order

of magnitude larger than the functional using the ACE scheme, as seen in Fig. 3.5(b).

Lastly, we compare four schemes by computing the total work ratio

WR =

∑Li
`=1(C0 + ncyc`,i)× (ν1 + ν2)× σ`,i × nnz`,i∑Lnace

`=1 (C0 + ncyc`,nace)× (ν1 + ν2)× σ`,nace × nnz`,nace

and total functional reduction ratio

FRR =
GLi
GLnace

relative to NACE, and the effective functional reduction ratio

WR1/FFR

in Table. 3.6. It appears that the original ACE and ACE-Reduc have the best efficiency. However,

this is the ideal case. In real simulation, many levels of refinement often result in a lot of overhead,

e.g., in parallel, the cost of communication and load-balancing must be considered, methods such

NACE employing more aggressive marking might be a better choice.

Ratio to NACE ACE ACE-DOF ACE-Reduc NACE

Work Ratio 1.0528 0.5692 0.9424 1.000

Functional Reduction Ratio 0.1663 0.6819 0.2318 1.000

Effective Functional Reduction Ratio 0.1820 0.5104 0.2120 1.000

Table 3.6: Comparison of effective functional reduction of all ACE schemes.

Comparison to Threshold-based Marking Scheme

We conclude our analysis of the Poisson equation by comparing the original ACE algorithm

with the threshold-based marking scheme (1.4). Three threshold-based algorithms that refine 40,
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Figure 3.6: Comparison of threshold-based schemes with refinement of 40, 60, and 90 percent of
the functional at each level, and the ACE scheme.

60, and 90 percent of the functional at each refinement level are considered. Work units for

Fig. 3.6(b) are defined as one relaxation on the finest grid of ACE. It is shown in Fig. 3.6(a) that

the convergence rate of ACE is the same as the best convergence rate of the three threshold-based

algorithm. For the same amount of work, the ACE scheme results in the smallest functional value

compared with the threshold-based schemes. For example, when work units = 200, ACE results in

a functional one order of magnitude less than threshold-based refinement schemes. This is expected

since the ACE algorithm is based on optimizing computational efficiency.

3.2.2 Magnetohydrodynamics

In this section, an incompressible, resistive magnetohydrodynamics (MHD) test problem is

investigated. The results in [4,5] show that methods such as nested iteration and first-order system

least-squares are capable of solving the nonlinear MHD systems in a minimal amount of work units.

Here, the various forms of adaptive mesh refinement described above are applied to a tokamak test

problem [18, 19, 36, 40]. A reduced set of MHD equations is obtained that models a “large-aspect-

ratio” tokamak, with non-circular cross-sections. The magnetic B-field along the z-direction, or

the toroidal direction, is very large and mostly constant. In this context, we are able to look at

plasma behavior in the poloidal cross-section. The 2D reduced model is described by the following
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equations:

1√
Re
∇× u−

√
Reω = 0, (3.36)

1√
Re
∇ · u = 0, (3.37)

1√
Re

∂u

∂t
− u× ω − j×B−

√
Re∇p+

1√
Re
∇⊥ω = f , (3.38)

1√
SL
∇×B−

√
SLj = 0, (3.39)

1√
SL
∇ ·B = 0, (3.40)

1√
SL

∂B

∂t
+

1√
ReSL

(u · ∇B−B · ∇u) +
1√
SL
∇⊥j = g. (3.41)

The x-direction denotes the periodic poloidal direction in the tokamak, whereas the y dimension

represents a thin annulus in the poloidal cross section. In this 2D setting, vorticity, ω, and current

density, j, are both scalar variables. The remaining variables are the fluid velocity, u, the fluid

pressure, p, and the magnetic field, B. The equations have been scaled using the Reynolds number,

Re, which is the ratio of fluid speed to viscosity, and the Lundquist number, SL, which is the ratio

of fluid speed to magnetic resistivity. This scaling produces a first-order system that is amenable

to algebraic multigrid methods in the FOSLS context, as shown in [4].

One important application of MHD physics is the study of instabilities that can occur in

tokamak fusion reactors. One such instability, the island coalescence problem, is described below.

The various ACE schemes are applied to see which one most efficiently captures the magnetic

reconnection that results from this instability.

3.2.2.1 Test Problem: Island Coalescence

This test problem simulates an island coalescence in the current density arising from pertur-

bations in an initial current density sheet. A current density sheet in the toroidal direction of the

tokamak is perturbed, resulting in an instability that causes a reconnection in the magnetic field

lines and the merging of two islands in the current density field. This produces a sharp peak in



37

current density where the magnetic field lines reconnect. This region is known as the reconnection

zone, and the point at which the magnetic field lines break is known as the X point. See [7,28,36]

for more detail. We choose a low enough resistivity (i.e., Lundquist number above 50, 000) in order

to observe the interesting physics. For the following simulations, we define

Ω = [−1, 1]× [−1, 1],

Re = SL = 50, 001.

The initial conditions at equilibrium are

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

 sinh(2πy)

k sin(2πx)

 , (3.42)

u0(x, y) = 0, (3.43)

ω0(x, y) = 0, (3.44)

j0(x, y) = ∇×B0 =
2π(k2 − 1)

(cosh(2πy) + 0.2 cos(2πx))2
, (3.45)

p0(x, y) =
(1− k2)

2

(
1 +

1

(cosh(2πy) + 0.2 cos(2πx))2

)
, (3.46)

where k = 0.2. These initial conditions are perturbed away from equilibrium as follows:

δB0(x, y) =

 −ε 1
π cos(πx) sin(π y2 )

1
2ε

1
π cos(π y2 ) sin(πx)

 , (3.47)

δj0(x, y) = ε cos(π
y

2
) cos(πx), (3.48)

where ε = −0.01. The boundary conditions are periodic in x and Dirichlet for the current density

and vorticity on the top and bottom of the domain. We also have n ·u and n ·B known on the top

and bottom. Again, the FOSLS formulation, (3.36)-(3.41), is H1 elliptic.
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3.2.2.2 Results

The problem was run to time 15τA with a timestep of 0.1τA, using a BDF-2 implicit time-

stepping scheme. Here, τA is the time in Alfvén units. It is the time needed for an Alfvén wave

to travel across the domain [7, 40]. By this time, the islands have coalesced and the large peak in

current density has occurred at the reconnection point. Using both uniform refinement and the

ACE schemes, the instability was captured. With ACE employed, the grids evolve over time to

refine in areas with steeper gradients. In this problem, as time progresses, a steep gradient occurs

at the reconnection point. This is seen in Fig. 3.7. We expect, then, that most of the refinement

occurs in this region, which is indeed the case. Next, a comparison of the 4 ACE schemes is done

Figure 3.7: Numerical solution using adaptive refinement. SL = Re = 50, 001. Top Left: Current
Density at Time 4τA. Top Right: Current Density at Time 15τA. Bottom: Zoomed in plot of
current density peak at Time 8τA.

relative to uniform refinement. The functional is reduced to the same order of magnitude in all
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cases. The work at one time step is calculated by first determining the work of all the V-cycles

on a given refinement level for that particular scheme. These values, times the number of matrix

nonzeroes for the level, are then summed over all grids and divided by the number of nonzeroes on

the finest refinement level for the given problem. In Table 3.7, the work unit values given are with

respect to the finest level of the given refinement scheme. They are an average over all time steps.

To compare two schemes, the average work unit value is multiplied by the fine-grid nonzeroes for

that scheme and then the ratio is taken. This ratio is defined as the Work Ratio in Table 3.7.

Similarly, the Element Ratio column is the ratio of elements on the finest grid of the adaptive

scheme compared to the number of elements on the finest grid of the uniform scheme.

Uniform Ratio to Uniform

Work Units Avg Elements
80.473 13,380

ACE

Work Units Avg Elements Work Ratio Element Ratio
9.789 1,779.9 0.12 0.13

ACE-DOF

Work Units Avg Elements Work Ratio Element Ratio
29.610 3,040.7 0.37 0.23

ACE-Reduc

Work Units Avg Elements Work Ratio Element Ratio
23.513 3,083.0 0.29 0.23

NACE

Work Units Avg Elements Work Ratio Element Ratio
22.907 2,895.2 0.28 0.22

Table 3.7: Average number of work units per timestep using uniform refinement versus various
ACE refinement. All values are relative to finest grid of uniform refinement. A total of 45 time
steps were performed to compute the averages.

The results show that using adaptive refinement greatly reduces the amount of work needed,

compared to that of using uniform refinement. ACE requires 12% of the work that uniform refine-

ment requires. The physics is more localized in this problem, especially by the time the reconnection

begins to develop and, thus, the refinement is more localized. It appears that, for this problem,

ACE gives the best efficiency. The functional is reduced to the same order of magnitude in all

cases, but original ACE needs fewer elements. The ACE-DOF and ACE-Reduc schemes appear
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to add unnecessary elements just to get a certain total number or to reduce the functional more

than is needed. The NACE scheme also appears to be less efficient. In this case, although the

NACE scheme puts the elements in almost the same places as the ACE scheme, and reduces the

functional to the same level. It uses more work to get there. Because in some steps, it either

over refines or under refines. For instance, it tends to refine more elements at coarser levels since

large overall functional reduction is expected. At finer levels, the NACE scheme tends to refine less

number of elements just in order to reach a small amount of overall functional reduction since the

functional at the current level is close to the final functional tolerance. However, it is still on par

with the ACE-DOF and ACE-Reduc schemes. Qualitatively, all 4 ACE schemes appear to capture

the coalescence of the two islands; see Fig. 3.8.

Figure 3.8: Current density at time = 40τA. (a) Uniform Refinement. (b) Original ACE. (c)
ACE-DOF. (d) ACE-Reduc. (e) NACE.

Comparison to Threshold-based Schemes

As a comparison to the threshold-based schemes described above, the island problem was also

run using these schemes with values of 40, 60, and 80%, for the number of elements to refine. Com-

parisons were made at various time steps throughout the run. While all different schemes captured

the qualitative behavior of the island coalescence problem, the threshold schemes often required
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more elements and more work units to resolve the problem to the same functional values. Figures

3.9 and 3.10 give a comparison of the schemes for time step 20 (t = 2τA) and time step 80 (t = 8τA),

respectively. These figures show the relationship between number of elements on the finest grid

versus functional and the relationship between the number of work units and functional. At time

step 20, the solution is still rather smooth and ACE appears to get the optimal grid, requiring fewer

elements and less work units to get to the same functional value as the threshold-based schemes.

At time step 80, the reconnection has taken place and steep gradients have developed. At this

time, all schemes appear to require more work and elements to resolve the physics. However, ACE

is no worse than any of the threshold-based schemes. While ACE picked the optimal refinement

pattern from the efficiency measures while running, the best threshold method required knowing

the correct percentage ahead of time.
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Figure 3.9: Comparison between ACE and threshold-based schemes at time step t = 2τA.

3.3 Conclusions

In this chapter, efficiency-based refinement algorithms for the FOSLS finite element method

with algebraic multigrid solvers in the context of nested iteration (NI-FOSLS-AMG) are devel-

oped. The algorithms choose which elements to refine based on optimizing computational efficiency,

taking into account both error reduction and computational cost. Two efficiency measures are
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Figure 3.10: Comparison between ACE and threshold-based schemes at time step t = 8τA.

considered: predicted ‘accuracy-per-computational-cost’ (ACE) and the new ‘anticipated-overall-

computational-cost’ (NACE). The use of the FOSLS local functional as a sharp a posteriori error

estimate along with NI-AMG methods allows parameters to be computed that are used to estimate

the current measures. In addition, several “flavors” of these efficiency-based schemes are tested to

determine whether adding certain constraints to the efficiency measure, such as the total number

of elements to add or the total amount of error to be reduced, would make it easier to obtain a

near optimal grid. Numerical tests show that all of the efficiency-based algorithms effectively and

efficiently capture local features of the solution. For the linear test problem, all schemes perform

equally well, suggesting that the standard ACE scheme is sufficient without any extra constraints.

For the more complicated nonlinear time-dependent MHD problem, this also is the case. In fact,

the constrained schemes appear to at times perform unnecessary work, making them less optimal.

However, all schemes greatly reduce the amount of computational cost for solving these problems

to a specified accuracy compared to the cost of uniform refinement. In addition, in comparing the

ACE scheme to threshold-based schemes, ACE either outperformed the threshold-schemes or was

no worse than the best threshold-based method at any given time step. As the optimal refinement

strategy varies over time steps, choosing a scheme such as ACE, which can adaptively choose the

optimal refinement strategy is preferable in the case in which many time steps are needed and the
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physics can change dramatically.

Several aspects still need to be studied. In this work, a generic AMG solver was used.

Deterioration in the AMG convergence for increased timestep size as well as Reynolds and Lundquist

numbers are observed in the MHD test. Even a slight improvement in the AMG algorithm would

greatly reduce the total work units required to achieve a specified accuracy. AMG algorithms

specifically designed for systems of PDEs are a topic of current research. This might involve the

use of newly developed adaptive multigrid algorithms described more in [11, 12]. In addition, the

hierarchy of the grids resulting from adaptive refinement might be used to reduce or eliminate

the set up phase of AMG at each level. A new multigrid solver might be developed for problems

arising from adaptive refinement procedures. This would involve including more of the geometry or

structure of the grids into the multilevel solver. Since the problems that would use such schemes,

such as MHD, which is used in a variety of applications, including fusion energy physics and space

weather, are gaining increased interest, it is to reasonable to tune the numerics for such specific

problems.

Many aspects of the adaptive refinement algorithms can be improved. The FOSLS approxi-

mation heuristics introduced in Chapter. 3.1.1 require certain smoothness assumptions. When the

solution contains singularities, for instance, one might want to adaptively determine the strength of

the singularity and appropriately apply graded refinement techniques rather than splitting elements

into subelements with equal size in each direction. This will be explored in future research.

Finally, it is observed that more computational resources are required at certain time steps in

order to fully resolve the local physics near the reconnection zone during the MHD simulation. This

makes the parallelization of the NI-Newton-FOSLS-AMG-ACE approach necessary. To efficiently

construct a sequence of grids that converge to a near optimal grid, communication cost must be

taken into account. Modifications of the ACE algorithm to yield efficient parallel implementation

involve grouping elements based on local functional values. Load balancing issues are addressed by

redistribution of elements and nodes based on a space filling curve (SFC). The use of SFC preserves

locality properties of local grids and thus reduces communication cost. Communication patterns
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and interactions between local grids are managed by parallel tree (or forest) structures. Details of

the parallelization and evidences of its efficiency are discuessed in the next chapter.



Chapter 4

Parallel Implementation

To accommodate the continual need for greater computing power, it is imperative to imple-

ment NI-Newton-FOSLS-AMG and the efficiency-based ALR algorithms in parallel for two- and

three- dimensional problems. In this chapter, the parallel implementation is detailed. Clearly, a

global sort of the local functional values is not efficient, especially in a massively parallel environ-

ment. A binning strategy is developed that groups elements according to local functional values.

Then, marking decisions are made for bins based on the most accuracy-per-compuational-cost.

Options for binning strategies and the parallel efficiency-based ALR algorithms are discussed in

Chapter 4.1.

Scaling adaptive local refinement in parallel on thousands of processors is considered a big

challenge. Efficient parallel mesh structures and algorithms are crucial to overcome difficulties in

communications, load balancing, and grid interactions. Chapter 4.2 describes details of the parallel

tree (or forest) based mesh structure, load balancing algorithms based on a space filling curve, and

the grid partitioning strategies.

Next, in chapter 4.3, we describe the software package that implements NI-FOSLS-AMG-

ACE-like algorithms in parallel. Numerical tests including Poisson equation with steep gradients

and flats, backward facing step Stokes problem, and backward facing step Navier-Stokes problem are

presented in chapter 4.4. We study both the numerical performance and the parallel scalability in

various of situations. Results show that the NI-FOSLS-AMG approach with the parallel efficiency-

based ALR algorithm is capable of reaching the same accuracy with significantly less computational
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work as well as CPU time with uniform refinement. Parallel scalability up to O(103) processors are

also demonstrated.

4.1 Parallel Efficiency-based Marking Strategies

4.1.1 Parallel Binning Strategies

The main difficulty with parallelization of ACE-like algorithm is the global sort of local

functional values. The usual way to deal with this problem in parallel is binning (or coloring).

The heuristics developed in chapter 3 indicate that refining elements that contains similar local

functionals would result in similar error reduction per cost. Therefore, it is reasonable to group

elements according to local functionals into bins, and treat each bin as an abstract element in the

ACE-like marking schemes. The heuristics on estimate of error reduction and work, the ideas of

multiple refinements, and marking decisions based on optimization of efficiencies are easily extended.

The question now becomes

• What binning strategy should be used?

To answer this question, two major aspects are considered:

• Elements are grouped together such that the marking schemes produce results similar to

those without using bins.

• The binning strategy should be capable of greatly reducing communication cost in parallel.

Recall how the efficiency-based marking algorithm works in serial. The marking decision is made

by finding the optimum of a given efficiency measure function that depends on how local functional

are distributed, i.e., the functional distribution function, E(r), given by (3.8). A binning strategy

can be seen to be equivalent to applying a piecewise linear interpolation, IhE(r), to E(r), (see

Fig 4.1). Since the efficiency function (either ACE or NACE) is a smooth function depending on

E(r), decisions based on optimizing the efficiency using IhE(r) should produce similar results if
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IhE(r) is close to E(r). Now, the choice of a binning strategy becomes the question of how best to

interpolate E(r) with as few nodes as possible.

Toward that end, let ε2max and ε2min be the maximum and minimum nonzero local functional

value among all elements, respectively. Here, elements that contain zero local functional values

always land to the last bin. Let nBin be the number of bins to be created. Consider the following

binning strategies:

(1) Geometric binning: choose 0 < q < 1, create bins such that the first bin has elements with

local functional values in the range of [ε2max, qε
2
max], the second bin has elements with local

functional values in [qε2max, q
2ε2max], etc.

(2) Linear binning: create bins such that the ith bin has elements with local functional values

in the range of [ε2max − (i− 1) ∗ δ, ε2max − i ∗ δ].

(3) Equal size binning: create bins such that the number of elements in each bin is roughly a

constant and such that elements in the ith bin contain local functional values no less than

elements in the (i+ 1)st bin.

When error distribution is close to uniform among elements, all binning strategies would results in

the same decision: nearly uniform refinement. We care about the case when large error concentrates

in a small fraction of elements. In this situation, good piecewise linear interpolation to such function

requires more resolution near zero, where the derivative of the function to be interpolated is large.

It is easy to see that geometric binning makes such an interpolation; see Fig 4.1. Linear binning

does well to approximate the curve close to 0, but tends to group all of the rest elements into only

the last bin. Equal size binning, on the contrary, tends to group elements with small local errors

into different bins, which is not necessary.

The next question is the choice of the proper q for the geometric binning strategy. For a

given number of bins, say nBin, one can compute q such that

qnBinε2max = ε2min ⇒ q = e

(
log

ε2min
ε2max

)
/nBin

. (4.1)
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Figure 4.1: Binning strategies applied to functional distribution: local error concentrates in the
first a few elements.

Geometric Binning Strategy

The discussion below shows that q can be chosen based on the smoothness of the solution and

the order of finite elements, which can dynamically determine the number of bins needed. Consider

element τi of polynomial degree p. Assume τi has local functional ε2i . A single h-refinement of

τ results in 2d children, namely τi,j , j = 1, 2, ..., 2d. FOSLS approximation heuristics in chapter

(3.1.1) show that each child element is expected to have local functional

ε2i,j ≈
1

22p+d
ε2i , for j = 1, 2, ..., 2d. (4.2)

We argue that one can choose q = 1
22p+d

so that if an element in the ith bin is refined, and the

(i+ 1)st bin is not refined, then children elements from refining the ith bin will land in the (i+ 1)st
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bin. Doing this hopefully results in only a small number of bins on finer levels, which leads to equal

distribution of error and nearly uniform refinement, which can reduce or eliminate load balancing

issues on finer grids. To finish the discussion of binning strategies, we present the algorithm with

p = 2 and d = 2. It is straightforward to give the algorithm for other combinations of p and d.

ALGORITHM 8. Parallel Geometric Binning Algorithm

(1) MPI Allreduce to get maximum local functional εmax.

(2) Set up bins such that the ith bin consists of local functional range [( 1
64)iεmax, (

1
64)i−1εmax].

(3) Each processor counts its local contribution to each bin: number of owned elements and

local functional values.

(4) MPI Allreduce again to get the global bin information: number of elements and functionals

in each bin.

Communications only occur at step (1) and step (4) and only consist of a few integers and double

precision numbers. Although the communications are Allreduce-type, since the message sizes are

quite small, they can be done quickly through Butterfly-like algorithms.

4.1.2 Parallel Efficiency-based Marking Strategies

Parallel ACE-like marking algorithms are described:

ALGORITHM 9. Parallel ACE (pACE). At each refinement level

(1) Create geometric bins using algorithm (8).

(2) Each processor treats bins as abstract elements, mark bins for refinement based on the most

accuracy-per-computational-cost.

(3) Each processor finds its local elements in the marked bins, and mark them for refinement.
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Apparently, communication only happens in step (1), which is almost negligible. The parallel

NACE algorithm is similar, the only difference is that the NACE efficiency measure is used in

step (2). For the other two variations of ACE, ACE with fixed DOF and ACE with fixed Error

reduction, the geometric binning strategy might not work well. Instead, equal size binning is more

suitable for ACE-DOF. The binning strategy in which each bin contains almost the same amount

of local functional value is better for ACE-Reduc. Since the serial tests show that all ACE-like

algorithms work similarly, this thesis focuses on the performance of the pACE algorithm. Research

on the different types of binning algorithms and variations of the pACE algorithm remains for

future study.
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Figure 4.2: Comparison between ACE and pACE: FOSLS functional vs number of elements for
Steep Gradients.

To finish this section, we compare the numerical results of pACE and the serial ACE algorithm

applied to the Poisson problem with steep gradients. Starting with 4× 4 biquadratic elements, the

FOSLS functional versus the number of elements for ACE and pACE are plotted in Fig. 4.2(a).

The pACE algorithm produces almost identical result as ACE in terms of error per DOF. One of

the objectives of geometric binning is to reduce the number of bins at fine levels, which is confirmed

in Fig. 4.2(b). It is also observed from Fig. 4.2(b) that most elements are grouped in the first three

bins. This shows that the pACE algorithm, using the geometric binning strategy, tends to equally
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distribute local errors at finer levels. More evidence will be given in the numerical test section.

4.2 Parallel Adaptive Mesh Refinement

In [23], Most popular parallel AMR methods fall into two categories, structured AMR

(SAMR) and unstructured AMR (UAMR) (see [23]). SAMR methods represent the PDE solu-

tion on a composite of nested and structured grids (or patches as they are called in SAMRAI

library [44]). Solution accuracy is maintained by careful interpolation between the nested grids,

which generally results in difficulties for high order elements and irregular domains. Load balancing

issues, communication patterns among patches, and grid interactions are challenges to scale dy-

namic SAMR in parallel. Examples of SAMR implementation include SAMRAI [44], Chombo [21],

and PARAMESH [30]. SAMR methods have been shown to scale to O(103) processors. Since

pFOSPACK allows high-order discretization and irregular domains, SAMR is not a good choice.

Contrary to SAMR methods, UAMR methods typically employ a single (often conforming

triangle- or tetrahedral-) mesh generated by locally refining and/or coarsening elements. High-

order elements and irregular meshes are no longer difficulties. However, maintaining the conforming

property in the refinement process is rather complicated and expensive in parallel. One example of

UAMR is Pyramid [35]. There are a few reasons to not choose UAMR. First, pFOSPACK employs

quadrilateral or hexahedra elements. Secondly, maintaining conforming meshes in the refinement

process is not required, i.e., hanging nodes are allowed and the continuous solutions are obtained

through constraints between slave and master nodes. Lastly, FOSLS is particularly amenable to

nonconforming finite element spaces. Therefore, choosing UAMR methods results in extra overhead

but does not improve the convergence of the FOSLS approximations.

In addition to the SAMR and UAMR methods mentioned above, parallel AMR techniques

that use space filling curves and parallel tree (or forest) structures were implemented and analyzed

in [42]. These methods are considered intermediate between SAMR and UAMR. Therefore, we

call these methods semi-unstructured AMR (SUAMR) in this thesis. SUAMR methods usually

employ quadrilateral or hexahedra elements. Hanging nodes are allowed during refinement and
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are handled through master-slave constraints and the 2-1 balance refinement. When SUAMR were

initially introduced, they usually required the domain to be embedded into a unit square(or cube),

and the coarse mesh to be uniform such that each element can be associated with a leave of a

complete quadtree (or octree in 3D). Adaptively refining the mesh is then equivalent to refining

the associated tree. Pre-order traversal of all leafs results in a Lebesgue space filling curve that

connects all active elements, which can then be used for load balancing and grid repartitioning.

An example of SUAMR implementation is the Octor library [42]. To extend SUAMR methods for

irregular domains the whole domain is first broken to pieces. Then each piece is embedded in or

transformed to a regular domain. Separate tree structures and space filling curves are generated

for each piece. Next, trees are grouped to form a forest by connecting segments of space filling

curves. Adaptive refinement of the mesh is equivalent to refining the forest. An example of SUAMR

implementation for irregular domains is ALPS [15], which is built upon Octor. Results in [15] show

that SUAMR methods are scalable to O(104) processors. SUAMR methods greatly simplify the

implementation compared to UAMR methods. On the other hand, SUAMR methods are capable

of dealing with high-order elements and irregular domains in the contrary of SAMR methods. Since

the purpose of pFOSPACK is to provide a parallel scalable software for high-order elements and

irregular domains, SUAMR methods are used in the implementation.

4.2.1 Space Filling Curves, Parallel Tree Structure and Load Balancing

Details of SUAMR methods and implementation in pFOSPACK are described in this section.

They are organized as follows:

• Space filling curves, parallel tree structure, grid partitioning and load balancing,

• 2-to-1 balance refinement.

Algorithms are illustrated through a simple example in the unit square, but, as mentioned above,

it can be generalize for irregular domains.
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A space filling curve (SFC) is a curve whose range contains the entire 2-dimensional unit

square (or more generally an N-dimensional hyprecube). Due to its good locality-preserving be-

havior, it is often used in for grid partitioning in parallel to reduce communication cost. Popular

SFCs include Lebesgue curve (or Z-curve or Morton-order), and the Hilbert curve (see Fig. 4.3).

(a) Lebesgue curve (b) Hilbert curve

Figure 4.3: Space filling curves

The Lebesgue curve is particularly interesting because of its correspondence to the quad tree

structure. For example, starting with one square element that covers the unit square, a single h-

refinement results in 4 children. The parent-children correspondence can be represented by a quad-

tree, see Fig. 4.4(a). Suppose that leaves associated with each child element is ordered according

to lexicographic order. A pre-order traversal of the quad-tree gives exactly a Lebesgue space filling

curve that connects the four children elements. If the grid is partitioned to 4 processors, one can

partition the curve into four equal segment, and assign the ith segment to the i-processor (see

Fig. 4.4). Now, suppose element #1 is refined, which gives four children elements, #5,#6,#7,#8.

The corresponding tree is expanded (or refined), performing a pre-order traversal of the active
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Figure 4.4: Initial grid partition based on space filling curve.

leaves gives the following order,

#5→ #6→ #7→ #8→ #2→ #3→ #4,

which gives a Lebesgue curve that connects active elements in the refined mesh. Equal partition of

the curve yields the new partition of elements

(#5,#6)→ proc #0

(#7,#8)→ proc #1

(#2,#3)→ proc #2

(#4)→ proc #3

The next step is to decide owners of nodes, this is done based on the current partition of elements.

The following rules are used

ALGORITHM 10. Partition of nodes

(1) Bottom-left node of each element is owned by the processor who owns the element.

(2) Nodes who have not been assigned owners in step 1 are owned by the processor who owns

the majority of the adjacent elements. If more than one such processors exist, then the

processor with higher rank becomes the owner. For example, node (0.5, 1.0) in Fig 4.5(b) is

owned by processor #3 (red) instead of processor #2 (chocolate).
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(a) Quadtree after local refinement
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(b) Grid partition after local refinement

Figure 4.5: Grid partition after refinement. Owners of elements and nodes are assigned based on
SFC.

Now that we know owners of elements and nodes, communications are performed according to the

new partition. After that, global numbers are assigned to each node such that nodes owned by

processor i always come after nodes owned by processor i − 1. For example, in Fig. 4.6, processor

#0 owns nodes #1,#2, processor #1 owns nodes #3, ...,#6, and so forth. Our implementation

assumes that each processor is responsible for assembling the rows associated with unknowns at

owned nodes. This leads to extra ghost nodes and elements might need be gathered from other

processors. Ghost nodes and elements are defined as not owned by this processor, but are connected

to any owned node. They are illustrated in Fig. 4.6 as nodes colored in white and elements colored

in light grey. The very last step is to remove redundant nodes and elements, such elements and

nodes are defined as not connected to any owned node. This step is to save memory usage. To

summarize, the grid partitioning and load balancing methods are described as follows:

ALGORITHM 11. Grid partition and load balancing

After each refinement level, do

(1) Refine the parallel tree according to refinement: if an element is refined, then the corre-

sponding leaf becomes a parent tree node, children leaves are added to the tree. This step is

performed within each processor, no need for communication.
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Figure 4.6: Local mesh in each processor after load-balancing: owned elements are colored in dark
grey, ghost elements are colored in light grey, owned nodes are colored in red, and ghost nodes are
colored in white.

(2) Each processor performs a pre-order traversal of the locally refined new tree. This gives a

local space filling curve within each processor.

(3) Now, each processor knows the size of its local SFC. Perform an MPI Allreduce to get the

local SFC size from every processor.

(4) Create a new partition of elements by dividing the SFC into roughly equal segments. Use

the new partition of elements to decide a new partition of nodes, i.e., assign an owner to

each node using algorithm 10.
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(5) Send and receive nodes and elements based on the new partition.

(6) Assign a global number to each node: each processor assigns global numbers to owned nodes

first such that processor #i owns nodes k, k + 1, ..., k + ` and processor #i+ 1 owns nodes

k + `+ 1, k + `+ 2, ..., k + `+m.

(7) Each processor builds local node-node connections and node-element connections and uses

them to gather ghost nodes and elements.

(8) Each processor performs a cleanup step to remove nodes and elements that are not connected

to any owned node.

Most communications occur at step (5); however, we argue that since we start load balancing at

coarser grids and pACE results in near uniform refinement at finer levels, communication cost would

be small at finer levels. We finish this section by giving the grid partitions at different refinement

levels of the Poisson problem with steep gradients running on 32 processors; see Fig 4.7. Although

the refinement at level 7 is not close to uniform refinement, it is observed that the partition at

level 7 and level 8 does not change dramatically, therefore the data movement among processors

is small. Also, it is noticed that grid partition based on the Lebesgue space filling curve preserves

the locality quite well.
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(a) Grid partition at level 1 (b) Grid partition at level 2 (c) Grid partition at level 3

(d) Grid partition at level 4 (e) Grid partition at level 5 (f) Grid partition at level 6

(g) Grid partition at level 7 (h) Grid partition at level 8

Figure 4.7: Grid partitions for Steep Gradients at different refinement levels based on SFC.
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4.2.2 2-to-1 Balance Refinement in Parallel

The 2-to-1 balance refinement described in chapter enforces an extra marking step, (we call it

clean-up), after the applying the standard pACE marking scheme. The main purpose is to improve

AMG convergence rate as it is shown in Table. 4.1.

level 1 2 3 4 5 6 7 8 9 10

With clean-up 0.15 0.13 0.14 0.16 0.18 0.19 0.18 0.18 0.20 0.21

Withour clean-up 0.15 0.13 0.37 0.48 0.58 0.59 0.70 0.71 0.72 0.77

Table 4.1: Average Boomer AMG convergence for Poisson equation with steep gradients.

Difficulties arise from two aspects:

• It requires element-element correspondence: each element needs to know its neighbor ele-

ments that share edges. The introduction of hanging nodes complicates the algorithm,

• Ripple propagation effects, i.e., marking one element for refinement in one processor might

require refinement of its neighbors, which may greatly increase the communication cost if

not handled properly.

The first difficulty is handled easily using the parallel tree structure. Instead of sending and

receiving edge and node information, one can find neighbor elements through parent and sibling

nodes in the corresponding tree. In fact, element-element correspondence needs not be built from

the scratch at each refinement level. It can be updated at the same time as the tree is refined. Only

small communications are required. One can update the element-element correspondence within

each processor, then cross processor correspondence can be figured out by a MPI Gather-like

algorithm followed by a MPI Scatter-like algorithm. For example, consider an element, τ , which

is shared by more than one processors. Without loss of generality, we can assume that element

τ , is owned by processor W , and is shared (as ghostelements) by processor S, E, and N . Here,

we use W,S,E,N to label the processors such that processor W only contains the west neighbors,

processor S only contains the south neighbors, and so forth. After local refinement within each
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processor, each processor should update the neighbor elements on the west, south, east, and north

side, respectively. In order to update the cross processor neighbor elements, one can first gather all

updated neighbor information from processors S,E,N to the owner processor W . Now, processor

W should have the updated neighbor information of τ in each side. Next, processor W scatters the

updated neighbor information to processors S,E,N . Notice that communications only occur for

elements that are shared among processors, i.e., elements that lie on processor boundaries. Notice

that on finer levels, the number of elements that lie on processor boundaries is a lot smaller than the

total number of elements in each processor. The communication cost for updating element-element

correspondence is small. For example, in R2, let Ne be the number of elements and np be the

number of processors. This gives roughly Ne
np elements per processor. One can estimate the number

of processor boundary elements in each processor as roughly
√

Ne
np . Noting that each quadrilateral

element has four neighbors, the total communication cost is

O

(
2× 4× np

√
Ne

np

)
. (4.3)

Thi is, on average,

O

(
2× 4×

√
Ne

np

)
. (4.4)

per processor.

To overcome the second difficulty, the method described in [41] is employed, which also utilizes

the parallel tree structure. The algorithm uses a two-stage balancing schemes. Local balancing on

each processor is first performed, followed by balancing across the interprocessor boundaries. This

process repeats until no more balancing is needed. The prioritized ripple propagation algorithm

proposed in [42] is used for balancing interprocessor boundaries.

4.3 Parallel FOSPACK

One of the main contributions of this thesis is the implementation of the NI-Newton-FOSLS-

AMG-pACE algorithm in parallel FOSPACK (pFOSPACK ). pFOSPACK is the software package

developed by the computational math group at CU Boulder. The package is written in Fortran
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and C++ based on MPI. It uses the FOSLS methodology for PDE discretization and employs

either the AMG solver BoomerAMG from HYPRE [25] or Smoothed Aggregation Multigrid solver

parSAMIS, developed by the CU computational math group, to solve the discretized equations.

The design goal is to develop a scalable, efficient, and easy-to-use PDE solver to support numerical

simulations for terascale/petascale applications.

4.4 Performance Study

This section provides various numerical tests on Frost, a four-rack IBM Blue Gene/L system

with 4096 computing nodes. Each node has two cores. Normally one core works for computing and

the other one takes care of communication. Therefore, overlapping computation and communication

is available for improving parallel efficiency.

We analyze both numerical performance and parallel scalabity of the NI-Newton-FOSLS-

AMG-pACE algorithm together with SFC-based SUAMR. For the numerical performance, we focus

on whether the results verify the following pACE heuristics.

• Refinements yields near equal distribution of error on finer levels, which leads to near

uniform refinement.

• Starting load-balancing on very coarser levels helps to ameliorate load balancing issues at

finer levels.

Meanwhile, results to verify the efficiency and effectiveness of the algorithms are also provided.

They include error versus number of elements, figures of grid alignments at different refinement

levels, comparisons to uniform refinement, etc.

For the study of parallel scalability, results of strong scaling and weak scaling are presented.

Since each computing node of Frost only has 512MB memory, which makes testing strong scaling

quite difficult since even the largest problem that fits in a small number of processors soon becomes

less computationally dominant on a larger number of processors. To overcome this difficult, we

break the strong scaling tests into a set of tests, which consist of a small, medium, and large
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problem scaled on different numbers of processors. Weak scaling tests normally require a fixed

problem size per processor as the number of processors increases. However, we can only keep the

problem size per processor roughly a constant for parallel AMR. Proper scalings are performed to

compute the weak efficiency. Details are described below.

4.4.1 Preliminaries of Parallel Scalability

Definitions of strong scaling, weak scaling, speedup, and parallel efficiency are reviewed very

briefly here. Strong scaling usually refers to fixing a problem size, testing how the overall run

time behaves with respect to increasing number of processors. Weak scaling means to increase the

problem size when the number of processors are increased; most of time, problem size per processor

is roughly fixed. Speedup is defined as

Snp =
T1

Tnp
, (4.5)

where T1 is the execution time of running the problem on a single processor and Tnp is the execution

time of running on np processors. In the ideal case, if no communication happens, if the problem

is perfectly equally distributed to each processor, and ignoring all hardware bottlenecks, then

Snp = np. This is called ideal speedup. For most problems, increasing the number of processors

usually leads to more communication and less computation per processor. Speedup is expected to

decay as the number of processors, p, increases. When one wants to test speedup, Snp, for large

number of processors, np, usually a large test problem is used. Otherwise small problem leads to

many idle processors that makes the test less meaningful. However, it is unlikely that the large

problem can fit into one processor. T1 becomes unavailable. In this situation, usually the problem

is tested on the smallest possible number of processors that can hold the problem, denoted by

npmin. Then speedup is usually computed by

Snp =
npminTnpmin

Tnp
. (4.6)
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Formula (4.6) is mostly used in this thesis due to the memory limitations on Frost. Parallel

efficiency, Enp is defined as

Enp =
Snp
np

. (4.7)

In reality, parallel efficiency is mostly used for weak scaling. Assume the problem size per processor

is fixed. Let Tw,1 and Tw,np represent the overall runtime on a single processor and np processors,

respectively. Parallel efficiency can be computed by

Enp =
Tw,1
Tw,np

. (4.8)

Tw,np is expected to increase due to communications, whereas Enp usually decreases. For our AMR

tests, problem size per processor can only be roughly controlled; formula (4.8) must be modified.

Let W1 and Wnp be the global problem size on 1 and np processors, respectively. Define the weak

scalability efficiency as

Enp =
Wnp/(np× Tnp,w)

W1/T1,w
, (4.9)

meaning work per processor per run time executed on np processors normalized by work per run

time executed on a single processor.

4.4.2 Poisson Equation

The first test problem is the Poisson equation with steep gradients and flats, defined in

chapter 3.2. Test results are analyzed in two categories:

• Numerical performance is analyzed based on error convergence and work units.

• Parallel performance is discussed in terms of scalability and efficiency. Both weak scaling

and strong scaling are tested.

4.4.2.1 Numerical Performance

Numerical results presented in this section come from a run on 1, 024 processors with an

average of 4 elements on the coarsest grid. Refinement stops when the global FOSLS functional
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reaches O(10−6). Local functional distribution and grid alignment at different refinement levels are

plotted in Fig. 4.8. Various relevant values with respect to each refinement level are tabulated in

Table. 4.2.

(a) Functional distribution at level 1 (b) Functional distribution at level 2

(c) Functional distribution at level 3 (d) Functional distribution at level 5

(e) Functional distribution at level 8 (f) Functional distribution at level 9

Figure 4.8: Poisson with steep gradients: locally-refined mesh and functional distribution.

We make a few observations. First, the pACE algorithm behaves similar to the ACE algo-
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` r1 E(r1) N` G` ncyc σ ρ

1 1.00 1.00 4,096 2.43e+02 4 1.42 0.21
2 0.24 1.00 7,036 1.71e+01 4 1.46 0.21
3 0.50 1.00 17,944 1.33e+00 4 1.51 0.23
4 0.53 0.96 47,245 1.72e-01 4 1.52 0.23
5 0.90 1.00 176,224 1.18e-02 4 1.48 0.22
6 0.13 0.72 248,068 3.85e-03 4 1.49 0.23
7 0.93 1.00 944,353 2.50e-04 4 1.46 0.20
8 0.98 1.00 3,735,118 1.61e-05 4 1.44 0.19
9 0.99 1.00 14,814,997 1.03e-06 4 1.44 0.19

Table 4.2: NI-FOSLS-AMG-pACE for steep gradients: relative setup cost Cs ≈ 19.80, setup 77.79
WU, solve 15.59WU, overall runtime 74.59 sec.

rithm in serial. It refines a large fraction of elements at coarser levels when grids are too coarse to

resolve the local features of the solution. Later, at the intermediate levels, refinements are concen-

trated in a small fraction of the elements where large errors are detected; see refinement from level

5 to level 6 in Table. 4.2. After that, refinement becomes nearly uniform since the error is fairly

equal-distributed; see level 8 and level 9. Efficiency of the algorithm can be reflected by either work

units or CPU time. It takes just a little more than 1 minute to construct and solve the problem

on a nearly optimal grid with roughly 15 million biquadratic elements, 60 million nodes with 180

million unknowns and order O(109) nonzeroes in the finest grid matrix. Another observation is

that refinement on the finest grid is almost uniform refinement, which requires zero load balancing.

In Fig. 4.9, percentages of ALR functions, mark, refine, and balance, of overall runtime at each

refinement level are given. On the finest level where near uniform refinement is performed, the load

balancing cost is zero. In addition, because the load balancing starts on very coarse level, load

balancing cost is controlled at finer levels. Time consumed by load-balancing at each refinement

level remains below 6% of the overall runtime.

The comparison of the NI-FOSLS-AMG-pACE solution process to applying FOSLS-AMG

directly to the constructed finest grid is given in Table. 4.3. The overhead is only 4.6%, which is

better than the serial results. This is because refinement is close to uniform refinement at finer

levels and that work increases by a factor of 4.0, which implies that the work on coarser levels is
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Figure 4.9: Percentage of ALR functions of total runtime per refinement level.

Method Setup Cost ncyc Solve Cost Total Work
NI-FOSLS-AMG-pACE 77.79 4 15.59 92.79

FOSLS-AMG 57.02 11 31.68 88.70

Table 4.3: Steep gradients: comparison of NI-FOSLS-AMG-pACE and applying FOSLS-AMG with
random initial guess to the finest grid.

relatively less expensive compared to the work on the finest level.

To verify that pACE algorithm based on the geometric binning strategy results in near equal-

distribution of error on finer levels, we give the binning results on each refinement level; see Fig 4.10

and Fig. 4.11. Refinement starts with more elements landing in lower bins at coarser levels (see

Fig. 4.10(a) and Fig. 4.10(b)). Then since the first few bins are refined and error is more equally

distributed, more and more elements land in higher bins; see Fig. 4.10(c) to Fig. 4.11(b). At the very

fine levels, almost all elements land in the first one or two bins; see Fig. 4.11(c) and Fig. 4.11(d).

This shows the nearly equal-distribution of error. The ratio between the largest local functional

value and the smallest local functional value is bounded by 1
642

. Note that local error is the square

root of the local functional. This gives that the minimum local error is about a factor 1
64 of the

maximum local error. A geometric binning strategy that creates bins less aggressively might give
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better results in terms of equal distribution of error. This remains for future study.
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(a) Binning results at level 1
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(b) Binning results at level 2
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(c) Binning results at level 3
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(d) Binning results at level 4
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(e) Binning results at level 5

Figure 4.10: Steep gradients: geometric binning results from refinement level 1 to refinement level
5.

We conclude our discussion of the numerical performance by comparing pACE and uniform
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(a) Binning results at level 6
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(b) Binning results at level 7
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(c) Binning results at level 8
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(d) Binning results at level 9

Figure 4.11: Steep gradients: geometric binning results from refinement level 6 to refinement level
9.

refinement; see Fig 4.12. First of all, pACE is able to reach the same accuracy with only 20%

of the elements that were required by uniform refinement. Secondly, pACE only takes slightly

more than 20 work units (including all costs), which is roughly 22
68 ≈ 35% of uniform refinement.

Lastly, measured in CPU time, the overall run time of pACE is only 30% of uniform refinement,

considering that uniform refinement does not need to do any load balancing, the results show the

NI-FOSLS-AMG-pACE approach is promising on O(103) processors.
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(a) Functional vs. Number of elements

0 10 20 30 40 50 60 70
10 5

10 4

10 3

10 2

10 1

100

101

102

103

Work units

FO
SL

S 
fu

nc
tio

na
l

FOSLS functional vs total work units

 

 
pACE: setup  19.8
Uniform: setup  14.0

(b) Functional vs Work units
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Figure 4.12: Steep gradients: comparison between ALR and uniform refinement running in 1,024
processors. Work unit is equivalent to one matrix-vector multiplication on the finest grid of uniform
refinement.

4.4.2.2 Parallel Performance Study

Parallel scalability of NI-FOSLS-AMG-pACE together with SFC-based AMR is discussed in

this section.

Strong Scaling

Test results of strong scaling for steep gradients are first discussed in this section. Speedups are

given in Fig 4.13 for four different test problem. The smallest problem has 0.27 million elements,

two intermediate problems have 1.06 million and 3.74 million elements, and the largest problem

has 10 million elements. Results show that strong scaling speedups are close to optimal. For
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instance the small problem with 0.27 million elements has speedup 100 at 128 processors, which is

about a 100/16 = 6.25 speedup over the runtime on 16 processors, (the optimal speedup is 8). For

the largest problem of 10.52 million elements, the overall run time in 4, 096 processors results in

speedup 3.0 over the runtime on 1, 024 processors, which is 75% of the ideal case.
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Figure 4.13: Strong scalability for steep gradients: speedups based on total runtime versus the num-
ber of processors for four different problem sizes. The largest problem has 10.52 million biquadratic
elements, which is roughly 10, 000 elements per processor.

Weak Scaling

Figure 4.14 and 4.15 provide evidence of the weak scalability of pACE on the steep-gradient problem

using pFOSPACK. Figure 4.14 plots the breakdown of the overall runtime into two major categories:

numerical PDE solves (error estimate, matrix assembling, linear solver setup, and AMG-CG solve)

and ALR functions (marking, refining, and load balancing). Problem size is roughly a constant

per processor: roughly 15,000 biquadratic elements per processor at the finest level. The cost of

all ALR functions are all controlled within 20% of the overall runtime from 2 to 4, 096 processors.

Despite np = 4, 096, runtime of all ALR functions is almost the same as the AMG-CG solves, which

is nearly optimal for Poisson-type equations (only 4 iterations per refinement level). In other words,

cost of all ALR functions is comparable to 4-AMG-CG iterations per refinement. For np = 1, 024,
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that is equivalent to only 15.59 work units.

Fig. 4.15 is the parallel efficiency for weak scaling from 1 to 4, 096 processors. Here, parallel

efficiency is defined as the total work units per processor per total run time for a given number of

processors, normalized by the total work units per total run time for single processor. Work unit

from the finest grid of np = 4, 096 is used for all calculation. A parallel efficiency of 1.0 indicates

perfect weak scaling. As we discuss before, it is hard to have exact weak scaling in ALR, we have

to normalize the total work units per processor. Given that ALR functions remains roughly 4

AMG-CG iterations per refinement, it is not surprising to see the weak scaling parallel efficiency

remains above 50% from np = 1, ..., 4, 096.
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Figure 4.14: Weak scalability for steep gradients: breakdown of total run time into different com-
ponents related to numerical PDE functions (green, yellow, orange, and red) and ALR functions
(light and dark blue). Problem size increases at roughly 15,000 biquadratic elements per processor
(at finest refinement level). The most expensive ALR operation is RefineMesh, which takes up to
10% of the runtime. Overall, ALR takes less than 20% of the overall run time.
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Figure 4.15: Weak scalability for steep gradients: parallel efficiency measured in total work units
per processor per total run time, normalized by the total work units per total run time for a single
processor, with number of processors from 1 to 4,096. Parallel efficiency remains above 50%.
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4.4.3 Stokes Equation on the Backward Facing Step
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Figure 4.16: Domain for backward facing step.

Compressible Stokes equations in a backward facing step domain, see figure 4.16, is the

second problem on which we test pACE implementation in pFOSPACK. As a system of PDEs,

it is more challenging for discretization and linear solvers. Particularly, the stokes flow in the

backward facing step domain is singular at the corner, which implies that the local error reduction

near the singularity does not follow the FOSLS approximation heuristics. Possible remedies include

applying a weighting function to the equations where singularities appear [29], or/and employing

graded mesh refined towards the corner [22, 26]. Here, we use a weighting function to un-weight

the corner in order to test the following:

• If the FOSLS approximation heuristics did not hold, would the NI-Newton-FOSLS-AMG-

pACE algorithm still be efficient and effective?

• Does pACE result in near uniform refinement on finer levels? If not, how would that affect

the parallel performance?

Let u = (u1, u2)T , where u and v are the velocities in the x- and y-direction and let p be the

pressure. The Stokes equation is given by

−∆u +∇p = 0 in Ω,

∇ · u = 0 in Ω,

(4.10)
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with boundary conditions

u1 = 38.4(1− y)(y − 0.5) on W,

u1 = 0 on N,S,H,V,

u2 = 0 on W,N,E,S,V,H,

p = 0 on E.

(4.11)

Define U = (Ui,j)i,j=1,2 = (∇u1,∇u2), the gradient of the velocity. The velocity-velocity-

gradient formulation of Stokes equations is given by

U−∇ut = 0 in Ω,

−(∇ ·U)t +∇p = 0 in Ω,

∇ · u = 0 in Ω,

∇×U = 0 in Ω.

(4.12)

Write U11 = ∂xu1, U12 = ∂yu1, U21 = ∂xu2, and U22 = ∂yu2. Notice that ∇ · u = 0 implies that

U11 + U22 = 0, thus U22 can be eliminated in (4.12) to get

U =

 U11 U12

U21 −U11

 . (4.13)

The corner induces singularity in the analytic solutions. We have (U,u, p) ∈ (Hσ)3×(H1+σ)2×Hσ,

where σ ≈ 0.52. This leads to the derivatives of p and Ui,j not in L2, and the L2 FOSLS functional

does not converge. A weighted FOSLS formulation is used here; see [29] for details. We have

Gw(U,u, p; f) = ||U−∇ut||20 + ||w(−(∇ ·U)t +∇p)||20 + ...

||∇ · u||20 + ||w∇×U||20,
(4.14)

where w is the weighting function. Let r be the distance from the corner, choose

w =


( r

.125

)α
, r < 0.125,

1 otherwise.

(4.15)
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We use α = 5
2 for our test; hopefully, that can recover the quadratic convergence for biquadratic

finite element space. The Heuristics is that wp and wUi,j lies in the weighted-Sobolev space Hσ
α .

That would give O(hα+σ−1) ≈ O(h2.2) order convergence rate for the weighted-FOSLS functional.

Remark. The way in which we construct the weighting function follows [29]. However, theory

there can be applied in a straight forward manner to the first-stage, weighted FOSLS functional

G1
w(U, p; f) = ||w(−(∇ ·U)t +∇p)||20 + ||w∇×U||20. (4.16)

Since we don’t weight the other two terms, it is likely the convergence rate will be dominated by

the smoothness of u, which would yield O(h2σ) = O(h1.04). Numerical tests in the next section

show the weighted-FOSLS functional converges like O(h2.8), which is not the optimal convergence

for quadratic elements, but obviously better than O(h1.04). In addition, when the ALR grid is

sufficiently fine, slow convergence rate, close to O(h), of FOSLS functional is observed, which

confirms the theoretic lower bounds. Figuring out the correct weights can significantly improve the

accuracy, but that is beyond this thesis.

Remark. Computed velocity u and streamlines, φ, of the fluid velocity field are given in figure

4.17. It is computed by an auxiliary solve:

∇⊥φ = uh. (4.17)

Boundary conditions of φ are computed by taking an integral along the inflow boundary, W .

4.4.3.1 Numerical Performance

Local functional distribution and grid alignments are given in figure 4.18. The region near

the corner is highly refined. Interestingly, another corner at the intersection of vertical boundary

V and south boundary S gets refined several times. Another observation is that large numerical

error occurs on the vertical boundary and the horizontal boundary, where the first derivative of

the weighting function is discontinuous. This might result in large numerical error at fine grids.

All of these aspects lead to modifications to the weighting function, and lead to violations to the
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(a) X-velocity

(b) Y-velocity

(c) Streamline

Figure 4.17: Computed solution of backward facing step Stokes.

FOSLS approximation heuristics. That explains, in Table 4.4, why refinements behave as we expect

before level 10: it refines everywhere when grid is too coarse, then concentrates on elements that

contain large error. Once local error is equally distributed, refinement tends to uniform refinement.

However, after refinement level 10, where there are 0.26 million biquadratic elements, additional
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(a) Functional distribution at level 1 (b) Functional distribution at level 16

(c) Locally refined mesh at the finest level (d) Grid alignment and partition near corner singularity

Figure 4.18: Stokes: locally refined mesh and functional distribution

features, due to flaws in the discretization, are found. Refinement becomes concentred on the

features again and the slower convergence of the functional after level 10 also indicates heuristics

for pACE do not hold. pACE might not be optimal at that point. However, results in Table 4.4

show that the NI-FOSLS-AMG-pACE approach is quite robust. It does not tend to over solve at

each grid from level 12 to level 16. To verify this, we tried another test with fixed 350 AMG-CG

iterations from level 13 and 16. Numerical error at each grid is just slightly improved. The finest

level contains 2.66 million elements with FOSLS functional 3.71 × 10−7. However, it costs more

than 6 times work to reduce the finest grid error by roughly 2%.

Lastly, we compare the pACE algorithm to uniform refinement in Fig. 4.19. Because of the

existence of corner singularity, it is not surprising that pACE is able use nearly 1% number of

elements to reach the same accuracy as uniform refinement. Functional versus work units and CPU
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` r1 r2 E(r1) E(r2) N` G` ncyc σ ρ
1 1.00 0.000 1.00 0.00 6,144 9.99e-01 51 1.55 0.94
2 0.03 0.000 0.79 0.00 6,633 2.03e-01 41 1.55 0.96
3 0.01 0.000 0.88 0.00 6,849 3.86e-02 42 1.55 0.94
4 0.03 0.000 0.86 0.00 7,434 9.75e-03 14 1.55 0.81
6 0.30 0.034 1.00 0.75 17,190 2.96e-04 33 1.56 0.90
8 0.92 0.006 1.00 0.42 65,991 1.52e-05 81 1.56 0.96
10 1.00 0.005 1.00 0.31 266,841 1.95e-06 41 1.57 0.95
12 0.01 0.005 0.63 0.63 287,433 1.77e-06 20 1.55 0.98
13 0.18 0.000 0.79 0.00 439,965 9.61e-07 51 1.54 0.98
14 0.33 0.000 0.88 0.00 867,555 5.69e-07 51 1.55 0.98
15 0.19 0.000 0.91 0.00 1,370,745 4.34e-07 51 1.52 0.98
16 0.34 0.000 0.94 0.00 2,752,761 3.78e-07 53 1.50 0.98

Table 4.4: NI-FOSLS-AMG-pACE for Stokes, relative setup cost Cs ≈ 31.7, setup 213.76 WU,
solve 338.22WU, overall runtime 271.36 sec. Here σ is the AMG grid complexity.

Method Setup Cost ncyc Solve Cost Total Work
NI-FOSLS-AMG-pACE 214 53 338 552

FOSLS-AMG 95 193 579 674

Table 4.5: Stokes: comparison of NI-FOSLS-AMG-pACE to applying FOSLS-AMG with random
initial guess to the finest grid.

time also demonstrate the great improvement of using pACE over uniform refinement.

4.4.3.2 Parallel Performance Study

Three problems of different sizes are tested for strong scaling speedup. Results are similar

to steep gradients tests in section 4.4.2.2. The smallest problem has speedup 90 in 128 processors,

which is 90/16 ≈ 5.65 speedup over the runtime in 16 processors. Compared to the idea speedup,

128/16 = 8, this represent about 70% of the ideal speedup. The speedup for the largest problem

size, 2.75 million elements, is close to 3000/512 ≈ 6.0, compared to the ideal speed up 8, which

is about 75% of the ideal speedup. These results are excellent when we consider the fact that the

presence of the singularity require more load balancing on the finer grids.

Figure 4.21 and 4.22 provide data with which to evaluate weak scaling. Like the test in section

4.4.2.2, figure 4.21 breaks overall run time into two categories: numerical PDE solve (error estimate,

matrix assembling, linear solver setup, and AMG-CG solve) and ALR functions (marking, refining
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Figure 4.19: Stokes: comparison between ALR and uniform refinement running on 1,024 processors.
Work unit is equivalent to one matrix-vector multiplication on the finest grid of uniform refinement.

and load balancing). It is important to point out that, for the Stokes equations, the majority of

overall runtime is numerical PDE functions. ALR operations take less than 10% of the overall run

time. This results in weak scaling parallel efficiency that is above 70% for np = 1, 2, ..., 1, 024, 60%

for np = 2, 048, and above 50% for np = 4, 096.
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Figure 4.20: Strong scalability for Stokes: speedups based on total runtime versus the number
of processors for three different problem sizes. The largest problem has 2.75 million biquadratic
elements, which is roughly 5, 400 elements per processor.
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Figure 4.21: Weak scalability for Stokes: breakdown of total run time into different components
related to numerical PDE functions (green, yellow, orange, and red) and ALR functions (light and
dark blue). Problem size increases at roughly 6,000 biquadratic elements per processor (at finest
refinement level). ALR functions takes less than 10% of overall time.
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Figure 4.22: Weak scalability for Stokes: parallel efficiency measured in total work units per
processor per total run time, normalized by the total work units per total run time for a single
processor. With increasing number of processors from 1 to 4,096, parallel efficiency remains above
50%.
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4.4.4 Navier Stokes Equation on the Backward Facing Step

(a) Streamline, Re = 1.0

(b) Streamline, Re = 50.0

(c) Streamline, Re = 500.0

Figure 4.23: Recirculation zones with respect to different Reynolds numbers.

This section discusses the numerical approximation and parallel performance of pACE applied
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to the steady-state incompressible Navier-Stokes equations:

− 1

Re
∆u + u · ∇u +∇p = f in Ω,

∇ · u = 0 in Ω,

(4.18)

where Ω is the backward facing step domain described in the previous section. Here Re denotes

the Reynolds number. To simplify our test, we choose f = 0.

Similar to the Stokes equations, define the velocity-gradient tensor, U = (Ui,j)2×2 = ∇ut to

get the velocity velocity-gradient pressure formulation of the Navier-Stokes equations:

U−∇ut = 0 in Ω,

− 1

Re
(∇ ·U)t + Utu +∇p = 0 in Ω,

∇ · u = 0 in Ω,

2

Re
∇×U = 0 in Ω,

∇tr(U) = 0 in Ω.

(4.19)

The factor 2
Re appears here to improve AMG performance. We satisfy the trace free term exactly

by eliminating U22, i.e., let

U =

 U11 U12

U21 −U11

 . (4.20)

Then, the trace-free equation can be ignored. Applying the Newton-FOSLS approach to (4.19) at

current iterate (Un,un, pn) yields the linearized system

δUn −∇δutn = −Un +∇utn in Ω,

− 1

Re
(∇ · δUn)t + δUt

nun + Ut
nδun +∇δpn =

1

Re
(∇ ·U)tn −Ut

nun −∇pn in Ω,

∇ · δun = −∇ · un in Ω,

2

Re
∇× δUn = − 2

Re
∇×Un in Ω.

(4.21)

The same weighting function, w, used for solving the Stokes equations is applied to equations

(2) and (4) in (4.21). The Navier-Stokes equations are more difficult to solve than the Stokes

equations because of the nonlinearity. The nonlinear term becomes more dominant as the Reynolds
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number increases, which brings more challenges to discretizations and linear solvers. For example,

recirculating flow is formed by a backward facing step. The recirculation zone spreads out with

increasing Reynolds number in a certain range, as it is illustrated in figure 4.23, where streamlines

of the fluid velocity field are given for Reynolds number Re = 1, 50, 500, respectively. Numerical

results will show not only the great power of super computers, but also, actually more importantly,

good mathematics, which are required for accurately resolving features of the flow.

4.4.4.1 Numerical Performance

(a) X-velocity

(b) Y-velocity

Figure 4.24: Computed solution of backward facing step Navier-Stokes, Re = 500.0.

We take Reynolds number Re = 500 for most of the tests in this section. The computed

velocity uh = (uh1 , u
h
2) are depicted in figure 4.24. Roughly 1.8 million biquadratic elements exist

on the finest grid, and are distributed nearly equally to 1,024 processors. Refinement patterns
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in figure 4.25 show that most refinements are made near the corner, where the singularity is lo-

cated. Refinements also follow the flow downstream and occurs near outflow boundary. Careful

examination of the refinement process reveals that elements close to outflow boundary only appear

when grid is sufficiently fine. In our parallel weak scaling tests, such refinements never happena

on ALR grid with number of elements less 0.6 million, (or with FOSLS functional greater than

10−5). We suspect this is due to inaccurate boundary conditions along the outflow boundary. To

be more specific, boundary conditions v = 0.0 at x = 25.0 is only an approximation. Despite the

length of the tube, with Reynolds number Re = 500, the flow is not yet fully developed, while the

boundary conditions at the outflow assume fully developed flow. This causes some inaccuracy near

the outflow, and hence, some additional refinement when the grid is very fine.

(a) Locally refined grid at the finest level

(b) Functional distribution near corner singularity (c) Functional distribution near outflow boundary

(d) Grid alignment near corner singularity (e) Grid alignment near outflow boundary

Figure 4.25: Navier-Stokes: locally refined mesh and functional distribution
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` r1 r2 E(r1) E(r2) N` G` Newton ncyc σ ρ
1 1.00 0.00 1.00 0.00 6,144 1.07e-02 5 438 1.17 0.96
2 0.04 0.00 0.71 0.00 6,918 2.94e-03 2 236 1.17 0.97
3 0.16 0.00 0.72 0.00 10,305 8.22e-04 3 341 1.18 0.98
4 0.29 0.00 0.79 0.00 19,314 2.78e-04 1 71 1.22 0.96
5 0.78 0.00 0.95 0.00 64,434 1.00e-04 2 205 1.37 0.98
6 0.57 0.00 0.89 0.00 175,437 3.43e-05 3 371 1.44 0.98
7 0.03 0.00 0.41 0.00 191,424 2.78e-05 1 14 1.45 0.88
8 1.00 0.00 1.00 0.00 765,696 7.08e-06 3 340 1.51 0.98
9 0.03 0.00 0.45 0.00 832,839 6.45e-06 1 13 1.51 0.92
10 0.42 0.00 0.82 0.00 1,877,244 5.92e-06 1 36 1.52 0.95

Table 4.6: NI-Newton-FOSLS-AMG-pACE for Navier-Stokes, relative setup cost Cs ≈ 33.7, setup
320.41 WU, solve 682.69WU, overall runtime 263.54 sec.

Method Setup Cost Newton ncyc Solve Cost Total Work
NI-Newton-FOSLS-AMG-pACE 320 1 36 682 1002

Newton-FOSLS-AMG 153 6 503 1509 1662

Table 4.7: Navier-Stokes: comparison of NI-Newton-FOSLS-AMG-pACE to applying Newton-
FOSLS-AMG with zero initial guess to the finest grid. Setup cost for Newton-FOSLS-AMG takes
into account matrix assembling and AMG setup at each Newton step.

Various values at each refinement level are tabulated in Table 4.6. The number of Newton

steps performed verifies the theory developed in [20] that only one Newton step is needed at finest

level since solutions from previous grid provide “a very good initial” guess. In fact, it is so good

that only one Newton step is required to bring the error to within discretization error on that

grid. The efficiency and effectiveness of NI-Newton-FOSLS-AMG-pACE can be best demonstrated

by comparing the total cost of the NI-Newton-AMG-pACE to the cost of assuming the optimal

grid is known and applying Newton-FOSLS-AMG to the final grid. The choice of initial guess

for the Newton-FOSLS-AMG method applied directly to the finest grid is important. Our tests

show that with random initial guess normally, the Newton iteration normally fails to converge

because the random initial guess lies outside of the attraction basin of the Newton-FOSLS method.

Alternatively, a zero initial guess leads to a first Newton step that is equivalent to solving Stokes

equations in the same domain. This provides a better initial guess. However, as shown in Table

4.7, zero initial guess results in 6 Newton steps to converge. The entire solve requires 503 AMG-CG
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iterations and 6 times of matrix assembling and AMG setup. Compared to that, the NI-Newton-

FOSLS-AMG-pACE method only takes one Newton step on the finest grid (with 36 AMG-CG

iterations) to converge to the desired solution. Although thet NI-Newton-FOSLS-AMG-pACE

method takes more Newton steps on the coarser levels, but solve on the coarser levels is relatively

cheaper than on the finer levels. As a result, the overall cost of the NI-Newton-FOSLS-AMG-pACE

method compared to the cost of applying Newton-FOSLS-AMG directly to the finest grid is about

a factor of 60%. That is 40% saving.

To finish our discussion of the NI-Newton-FOSLS-pACE algorithm, we compare pACE to

uniform refinement. Table 4.8 and Table 4.6 indicate that pACE is able to reach a functional value

of 3.43×10−5 with 0.17 million elements. Compared to that, uniform refinement takes 1.57 million

to have the same accuracy, which is about 9 times as large as with pACE. When considering CPU

time, pACE is also the winer. It takes half of the CPU time of uniform refinement, but can drop

the functional one order of magnitude lower.

` N` G` Newton ncyc σ ρ
1 6144 1.07e-02 5 438 1.17 0.96
2 24,576 1.40e-03 4 578 1.18 0.98
3 98,304 2.49e-04 2 189 1.40 0.97
4 393,216 8.60e-05 1 135 1.47 0.98
5 1,572,864 3.80e-05 2 473 1.52 0.98

Table 4.8: NI-Newton-FOSLS-Uniform, overall runtime 525.54 sec.

4.4.4.2 Parallel Performance Study

Strong scalability results are presented for three different test problems. Speedups are excel-

lent, in particular for the largest problem (see figure 4.26). For weak scaling, figure 4.27 demon-

strates that the cost of the ALR functions for the Navier-Stokes problem is almost negligible relative

to numeric PDE solves. One important thingin this figure is the light blue listed as “EstError”.

That includes every time the linear, nonlinear, and difference functional is computed after each

Newton step to decide whether more Newton steps are needed. Computing and storing local error
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Figure 4.26: Strong scalability for Navier-Stokes: speedups based on total runtime versus the num-
ber of processors for three different problem sizes. The largest problem has 1.80 million biquadratic
elements, which is roughly 3, 600 elements per processor.

indicators is done only once per level. Figure 4.28 demonstrates the excellent weak scaling parallel

efficiency. Parallel efficiency remains above 60% up to np = 4, 096. This is, again, not surprising,

since load balancing is less significant than numerical PDE solves for Navier Stokes.

4.5 Conclusions

Parallel efficiency-based adaptive refinement algorithms are proposed and are applied to a 2D

Poisson equation with steep gradients, 2D backward facing step Stokes equations, and nonlinear,

incompressible, backward facing step Navier-Stokes equations. Numerical results show that if

FOSLS approximation heuristics hold, then the NI-Newton-FOSLS-AMG-pACE approach results

in equal distribution of local error and near uniform refinement on finer levels. That greatly reduces

load balancing cost. Using Frost, the CU/NCAR BlueGene L, we demonstrate excellent strong and

weak scalability up to 4, 096 processors of problem size 15 million biquadratic elements.
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Figure 4.27: Weak scalability for Navier-Stokes: breakdown of total run time into different com-
ponents related to numerical PDE functions (green, yellow, orange, and red) and ALR functions
(light and dark blue). Problem size increases at roughly 6,000 biquadratic elements per processor
(at finest refinement level). ALR functions takes less than 2% of overall time.
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Figure 4.28: Weak scalability for Navier-Stokes: parallel efficiency measured in total work units
per processor per total run time, normalized by the total work units per total run time for a single
processor. With increasing number of processors from 1 to 4,096, parallel efficiency remains above
60%.



Chapter 5

Discussion

5.1 Concluding Remarks

In this thesis, efficiency-based refinement algorithms for the FOSLS finite element method

with algebraic multigrid solvers in the context of nested iteration (NI-FOSLS-AMG) are devel-

oped. The algorithms choose which elements to refine based on optimizing computational efficiency,

taking into account both error reduction and computational cost. Two efficiency measures are

considered: predicted ‘accuracy-per-computational-cost’ (ACE) and the new ‘anticipated-overall-

computational-cost’ (NACE). The use of the FOSLS local functional as a sharp a posteriori error

estimate along with NI-AMG methods allows parameters to be computed that are used to estimate

the current measures. In addition, several “flavors” of these efficiency-based schemes are tested to

determine whether adding certain constraints to the efficiency measure, such as the total number

of elements to add or the total amount of error to be reduced, would make it easier to obtain a

near optimal grid. Numerical tests show that all of the efficiency-based algorithms effectively and

efficiently capture local features of the solution. For the linear test problem, all schemes perform

equally well, suggesting that the standard ACE scheme is sufficient without any extra constraints.

For the more complicated nonlinear time-dependent MHD problem, this also is the case. In fact,

the constrained schemes appear to at times perform unnecessary work, making them less optimal.

However, all schemes greatly reduce the amount of computational cost for solving these problems

to a specified accuracy compared to the cost of uniform refinement. In addition, in comparing the

ACE scheme to threshold-based schemes, ACE either outperformed the threshold schemes or was
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no worse than the best threshold-based method at any given time step. As the optimal refinement

strategy varies over time steps, choosing a scheme such as ACE, which can adaptively choose the

optimal refinement strategy, is preferable in the case in which many time steps are needed and the

physics can change dramatically.

The modifications of the ACE-like ALR algorithms designed for parallel computers employ

binning strategies that group elements into bins based on the local errors. Then, each bin is treated

as an abstract element in the efficiency-measure formula. This is equivalent to using piecewise linear

interpolation to approximate local functional distribution function. Refinement decisions are made

according to bins by optimizing computational efficiency. Several binning strategies are developed.

Equal size binning creates bins such that each bin has roughly the same number of elements, which,

in particular, fits for parallel ACE with a constraint on the DOF. The geometric binning strategy

groups elements according to the FOSLS approximation heuristics on local functional reduction,

tends to provide a better approximation to the functional distribution, and, thus, usually produces

better results. Tests demonstrate that the parallel ACE ALR algorithm based on geometric binning

keeps the nice numerical properties of their serial counterparts and is capable of greatly reducing

communication. Load balancing starts at very coarser grids. Elements and nodes are redistributed

using a space filling curve and parallel tree structures at each refinement level. The SFC preserves

locality of each grid partition and, thus, reduces communication cost. Numerical tests demonstrate

that the NI-FOSLS-AMG-pACE approach tends to equally distribute local errors on finer levels,

near uniform refinements are used. Together with load balancing performed on coarser levels, load

balancing is no longer required. Tests on Frost demonstrate the numerical accuracy, effectiveness

and efficiency of this approach. Weak and strong scaling tests show excellent parallel scalability

and efficiency up to 4, 096 processors with problem size 25 million biquadratic elements.

5.2 Future Works

Several aspects still need to be studied. In this work, a generic AMG solver was used.

Deterioration in the AMG convergence for increased timestep as well as Reynolds and Lundquist
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numbers are observed in the MHD test and Navier-Stokes test. Even a slight improvement in the

AMG algorithm would greatly reduce the total work units required to achieve a specified accuracy.

AMG algorithms specifically designed for systems of PDEs are a topic of current research. This

might involve the use of newly developed adaptive multigrid algorithms described more in [11,12].

In addition, the hierarchy of the grids resulting from adaptive refinement might be used to reduce

or eliminate the set up phase of AMG at each level, which normally takes a large fraction of the

overall run time on each refinement level. A new multigrid solver might be developed for problems

arising from adaptive refinement procedures. This would involve including more of the geometry

or structure of the grids into the multilevel solver. The problems that would use such schemes,

such as Stokes, Navier-Stokes, and MHD, are used in a variety of important applications, including

fusion energy physics and space weather. It is to reasonable to tune the numerics for such specific

problems.

Many aspects of the adaptive refinement algorithms can be improved. The FOSLS approxima-

tion heuristics introduced in chapter 3 require certain smoothness assumptions. When the solution

contains singularities, for instance, one might want to adaptively determine the strength of the

singularity and appropriately apply graded refinement techniques rather than splitting elements

into subelements with equal size in each direction. The diffusion algorithm used to redistribute

elements based on the SFC needs improvement. For example, load balancing is not necessary if

load in only one or two out of thousands of processors is not balanced. Also pFOSPACK should

allow for reading irregular meshes generated by third party software such as Cubit. This will allow

pFOSPACK to test more realistic problems. Finally, time stepping should be added for parallel

MHD tests. This will be explored in future research.
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