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ABSTRACT 

 

Kohler, Laura Elizabeth (Ph.D., Civil, Environmental & Architectural Engineering)  

Statistical Modeling of On-Site Wastewater Treatment System Life Cycle Performance and 
Risk  

Thesis directed by Professor JoAnn Silverstein 

By 2050, it has been estimated that 70 percent of the world’s population will live in 

cities, concentrating waste as well as local environmental stresses.  At the same time, 

decentralized approaches to sanitation are projected to grow due to the capital cost of 

sewers and centralized treatment facilities. Yet the common belief that technology will 

assure the performance of on-site systems over their life cycle may lead to significant 

underestimation of the actual risks to public and environmental health from owner-

operated residential sanitation systems. Safe on-site storage, transformation and disposal 

of human waste require knowledge of how factors such as individual ownership, 

operations and management, and scale impact wastewater treatment reliability, risk and 

resilience under both normal and extreme conditions.  

This dissertation research is developed to fill a gap in performance-based 

knowledge of OWTS function, especially the likelihood of system failure over lifetime 

operation. As such, a data-based investigation of highly decentralized and privatized 

wastewater management represented by on-site wastewater treatment systems (OWTS) 

was conducted using data from OWTS located in Boulder County, Colorado. Data were 

acquired from County maintained repair permit application records, inspection 

documentation, and property attributes. Methods are developed to quantitatively diagnose 
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components that determine OWTS life cycle performance such as reliability, risk, fragility, 

and resilience by applying commonly used statistical modeling approaches based on the 

Generalized Linear Model regression method.  Statistical modeling is then applied to 

analyze two conditions not controlled by current OWTS design and siting regulations: 

owner behavior and weather-related hazards.  

Statistical model results confirm that owner-operations significantly affect life cycle 

OWTS functionality. Specifically, the results indicate the significant benefit of regulated 

inspections and maintenance as means to ensure that once installed, these systems 

continue to perform reliably and cost-effectively over their lifetime. Although a significant 

public information campaign (SepticSmart) has been maintained by the Boulder County 

Public Health Department, it is evident from the regression analysis that relying solely on 

public education about the importance of practices such as regular inspection and 

maintenance is insufficient to positively influence private owners’ decisions and prevent 

generation of externalities such as contaminant release from failed OWTS.  

A resilience framework is developed to demonstrate the degree to which 

decentralization influences systematic OWTS vulnerability to weather – both wetter-than-

average conditions and extreme storm events, independent of individual OWTS operations. 

Widespread natural hazards such as flooding are found to affect the frequency and degree 

to which OWTS function is lost, and more importantly delay their recovery, attributable in 

part, to a demand surge for both materials and repair services when multiple systems fail 

simultaneously. Longer recoveries are likely to have environmental and public health 

consequences due to the prolonged release of contaminants as well as secondary costs 

related to homeowner losses resulting from a failed OWTS. 
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Ultimately, the findings of this dissertation contribute to the decisions of planners, 

regulators and community stakeholders concerned with varying levels of wastewater 

treatment reliability, risk and resilience along the sanitation continuum from highly 

centralized and regulated collection and treatment infrastructure to relatively unregulated 

onsite systems operated by their owners. This research has demonstrated the importance 

of factors representing two heretofore unrecognized dimensions of OWTS life cycle 

performance – behavior of individual owners and enhanced vulnerability to natural 

hazards, and thus enables planners to decide if large-scale deployment of user-owned and 

operated sanitation is the best means to achieve health and environmental benefits with an 

acceptable degree of certainty.  
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CHAPTER 1: INTRODUCTION 

 

MOTIVATION 

Since the 17th century, several sanitation management strategies and technologies 

to insure the public good by preventing infectious disease and environmental degradation 

have been employed. These are part of a continuum of solutions with highly centralized, 

publically owned treatment works (POTWs; e.g. Deer Island Treatment Works receiving 8.7 

million m3/day) at one extreme and small cluster systems and residential scale on-site 

sanitation installations, which in the U.S. are typically limited to less than 8 m3/day, at the 

other (Zimmerman 2002). Unregulated on-site systems for collection, passive treatment 

and storage such as privies, vaults, and cesspools were replaced in the later half of the 19th 

century by centralized sewers better able to handle increasing wastewater flows as 

residential piped water supply and use of flush toilets became widespread and as the 

association of fecal waste with outbreaks of cholera and other water borne diseases 

became known (Cosgrove, 1909; Burian et al., 2000). Decentralized solutions—cluster and 

on-site systems—remained alternatives in communities where public sewer services were 

physically impractical or costly. While tradeoffs exist for every solution on the continuum, 

scientific knowledge, tradition, and prevailing public opinion has led many engineers, 

public officials and users to continue to favor centralized alternatives (Etnier et al., 2007; 

Pinkham et al., 2004; Nelson et al., 2000). One result is that research and development has 

been directed toward support of centralized wastewater systems. 
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Today, there is renewed interest in wider use of on-site wastewater treatment 

systems (OWTS) to provide sanitation coverage. Over the next 20 years, U.S. EPA estimates 

funding shortfalls of $122 and $148 billion for capital improvement and operations and 

maintenance of existing facilities, respectively (EPA 2002a). This gap has motivated greater 

attention to decentralized wastewater treatment, including OWTS, as a permanent part of 

sanitation infrastructure planning. In the U.S., in addition to the 25% of the population 

already served by OWTS, 30% of new developments use on-site wastewater treatment.  

Whereas traditionally OWTS served predominantly rural communities, over 47% of the 

OWTS population now exists in suburban, higher density areas and 3% in cities (EPA, 

2008). Outside of the U.S., OWTS are leveraged to provide sanitation services in both rural 

and urban communities that either currently use unimproved facilities or have no access 

altogether (WHO/UNICEF JMP 2015).  

While these systems are becoming more widely used, their performance is not 

necessarily as widely understood. In spite of well-developed on-site wastewater 

technologies, between 10% nationally and upwards of 50% of OWTS in some individual 

states fail (EPA, 2002b; Nelson et al., 1999). While environmental and public health risks 

associated with service disruptions and failure are assumed to be managed through 

dispersion and dilution under the historic paradigm, the aggregate potential impact of 

denser OWTS networks may, in fact, be comparable to centralized facilities (Weirich et al., 

2011).  Of course, OWTS performance estimates are largely speculative or based on 

anecdotal since no monitoring or reporting of treated water quality is required as it is for 

centralized systems. 
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OBJECTIVE 
  

The growing application of OWTS technologies, in addition to a lack of information 

about their performance variability drives my focus in sanitation research and my interest 

to add to the body of knowledge about OWTS performance. Consequently, the objective of 

this research is to develop statistical modeling approaches to quantitatively understand the 

life-cycle performance of highly decentralized, owner-operated sanitation systems. In 

addition to providing a quantitative basis to assess OWTS reliability, I have the goal of 

diagnosing conditions associated with OWTS failure and incorporating such information in 

decisions to guide the development of effective management strategies to improve 

reliability and promote sound economic choices. This required consideration of the human 

factors, heretofore largely ignored, that may predispose a system to failure, as well as 

individual weather and climate-related events that affect OWTS operations.  

 

CONTRIBUTION  

 The contribution of this dissertation is two-fold: First, I develop methodologies 

applying statistical modeling approaches commonly used to evaluate the performance of 

other infrastructure systems to quantitatively diagnose components that determine OWTS 

life cycle performance. Second, these data-driven approaches improve the quality, 

availability, and accessibility of information for decision makers. After installation, which is 

regulated by permits issued to assure compliance with site and equipment criteria, OWTS 

are largely unregulated. Yet, their operable life may be 50 years or longer. Given the 

general acknowledgement that an appreciable number of OWTS in fact fail after 

installation, a life cycle assessment of performance could play a large role in considering 
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approval of their use and regulation of their operation after installation (Etnier et al., 2005; 

Fane et al., 2004) 

 
 
DISSERTATION SUMMARY 
 

Three concepts support this dissertation and the development of the statistical 

modeling approaches to better understand various system properties characteristic of 

OWTS life cycle performance. Chapter 2 provides an overview of the relevant literature to 

these foundational concepts and clarifies the point of departure for this research.  

The first concept is life cycle performance, which provides systems framework to 

evaluate OWTS deterioration, repairs and replacements as related to inspection, and 

management strategies, which affect individual owner/operators and communities. The 

premise of this research is that life cycle performance attributes, namely reliability, risk, 

fragility, and resilience— which have been developed to assess defined infrastructure 

networks (transportation, water supply, electric power supply) can be applied to highly 

decentralized wastewater infrastructure, including OWTS. Each chapter of this dissertation 

will focus on one of these performance attributes to allow multidimensional comparison of 

sanitation alternatives along the centralization continuum. The second concept is the 

structure of performance models, including the model scale, sample selection, data 

collection, variable identification and statistical methods, which are described in more 

detail in Chapters 3 (Methods) through 7.  The third component addresses the role of 

(private) ownership of OWTS, one of the hypothesized determinants of OWTS life-cycle 

performance.   
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Chapter 4 is a description of the first phase of my research, including results of 

fitting a continuous distribution to OWTS data of documented repairs and replacements 

significant enough to require a permit and inspection, using a Generalized Additive Model 

for Location, Scale and Shape (GAMLSS). As stated above, in the absence of post-installation 

requirements for monitoring and reporting, OWTS operation and maintenance is largely 

done at the discretion of the owner, except in the event of a catastrophic failure. Chapter 4 

explores the relationship between owner-related factors and indicators of physical OWTS 

status; factors include the degree of community or institutional control; owner economic 

status; owner knowledge and owner self-interests. Since most household systems are not 

consistently maintained, the functionality of the system decreases over the system’s life 

affecting its reliability (EPA, 2002a). The study highlights the benefit of enforced 

inspections to reduce the annualized expected costs over a 40-year period due to repairs 

and replacements.  

While the first model illustrates the benefit of, for example, enforced inspections to 

OWTS function, public resistance to increasing regulation of OWTS in the U.S., including 

obligatory inspections and upgrades demonstrates the challenges associated with 

communicating residential and community level risks. Determining appropriate and 

enforceable performance measures in an industry with little history of performance-based 

regulation is challenging. Therefore, Chapter 5 reports the use of Extreme Value Analysis-

Points Over Threshold to communicate the risk of a poorly performing OWTS in terms of 

expected dollars lost, again relating the probability of poor performance (high risk OWTS) 

to a selection of user-operation practices. Chapter 5 highlights the trade-off between an 

enforced inspection management strategy versus ‘business as usual’ to illustrate the 
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benefit of observing OWTS instabilities through inspection before a catastrophic failure 

occurs.  

Transitioning from performance deterioration factors such as neglected 

management, Chapter 6 focuses on vulnerability, here called fragility, in response to 

external stressors such as annual weather and climate variation. Chapter 6 uses a GLM 

statistical approach to quantify the relationship between the total number and type of 

repairs in an OWTS sample and weather variation in each year. 

Poor management, in addition to aging and deterioration mechanisms can adversely 

affect the on-going function of OWTS, rendering them more vulnerable or fragile and less 

resilient to external stressors such as natural hazards. This relationship between reliability, 

fragility, time to recovery and overall system resilience motivates the research in the final 

chapter, Chapter 7, which connects measurement of fragility and repair recovery (rapidity) 

to determine OWTS resilience before and after the 2013 Boulder flood. It has become clear 

through the first phases of my research that consistent treatment (reliability) depends on 

human and societal variables that govern operation and maintenance in addition to science 

and technology factors. In Chapter 7, the variables that affect resilience under normal 

environmental conditions are in fact different from those after an environmental hazard 

event. Chapter 7 highlights the aggregate impact of OWTS failure on the recovery durations 

due to an effect called demand surge. In the case of OWTS, the demand for repair services 

affecting also material availability surpasses the supply, causing recovery delays. These 

recovery delays have additive cost due to the inconvenience of a failed, unusable system 

that fall on directly on system owners, in addition to environmental costs associated with 
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the release of untreated wastewater.    Chapter 7 also explores methods to estimate these 

costs to more accurately represent the risk of OWTS failure for future hazard events. 

Figure 1.1 visually summarizes the work completed for this dissertation. More 

detailed contributions are illustrated in Chapters 4, 5, 6 and 7 and are summarized in the 

conclusion section. 

 

Figure 1.1 Research Design 

 

RESEARCH CONTEXT 

The data for this dissertation is from OWTS in Boulder County Colorado. This focus 

on Boulder County is practical for several reasons. One, data are available from the repair 

permit documentation process that has been in place since the late 1940s; whereas no 

comprehensive treated water or ground water quality monitoring data exist for OWTS that 

are sufficient to form a sample. Furthermore, measures of performance vary because there 
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is no universal definition of ‘failure’. Repair permits were selected to serve as a reasonable 

proxy measure of failure in this dissertation.   

Second, the data available captures variability in geography with systems existing in 

the mountains and plains communities, affluence based on structural property value that 

varies greatly across the sample, and the density of OWTS from rural to more suburban 

areas in Boulder County.  

Lastly, wider application of OWTS technology has been accompanied by greater 

expectations of performance and consideration of new regulations that recognize the risks 

of denser networks of OWTS as mentioned earlier. A transfer of title inspection regulation 

was instated in 2008 and in 2014 Boulder County-specific regulations adapting permit 

terms, OWTS inspections stages, licensing of system contractors and cleaners, detailed soil 

evaluation procedures, design flow requirements and variance procedures, among other 

requirements were adopted in April and effective in May. Given the state guidelines for 

regulations, Boulder County has considered performance-based regulations such as 

renewable permits. This research directly addresses some of the uncertainties highlighted 

by the County about such regulations and their benefits. 

While the models herein are based on data from U.S. treatment systems, I propose 

that identified relationships between decentralization, owner operation, economic factors, 

and the degree of OWTS monitoring and regulation over the system life are broadly 

applicable to performance-based planning and management over a wide range of 

communities and cultures. 
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DISSERTATION FORMAT 

 This dissertation follows a journal article format. Chapters 4, 5, 6 and 7 are 

independent articles, which are related through topics described in this section but are 

formatted individually per journal publication requirements. Chapter 4 was published in 

February 2016 issue of Environmental Engineering Science, while other chapters have been 

submitted for review.  I respectfully ask that citations to the work in Chapter 4-7 reference 

the published versions and not this dissertation. References are listed both separately with 

each chapter/publication as well as in the bibliography at the end of this document. Finally, 

the appendices include the data and R codes for the models presented in each chapter. 
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CHAPTER 2: FUNDAMENTAL CONCEPTS  

 

LIFE CYCLE PERFORMANCE 

The system operations—often involving inspections, repairs and replacements— 

necessary to insure the safety of and benefits to users can be identified through conducting 

a holistic assessment of the system and its performance over time. This notion of 

performance over time is often referred to as life cycle performance, commonly considered 

to better manage structures and infrastructure systems such as buildings, roads, and 

bridges, among others (Rackwitz, 2000; Frangopol et al., 2001; Frangopol et al., 2004; 

Frangopol, 2010; Kumar & Gardoni, 2013, Bonstrom et al., 2014). Assessing a system’s 

performance over its life cycle can help determine its life span; reliability and the costs and 

benefits of different operation strategies; and the time and resources necessary to recover 

function after a disaster. Such analyses ultimately inform and aid complex planning and 

management decisions (Rackwitz, 2000). As such, these decision support assessments 

should integrate the uncertainties of all life cycle performance behaviors such as natural 

deterioration due to age and use, management-related reliability, and the occurrence and 

influence of hazardous events. The literature indicates that probabilistic approaches are 

both popular and appropriate for this type of assessment, especially as they relate to 

structure and infrastructure systems (Kumar & Gardoni, 2013). 

Life cycle performance applications for structure and large-scale infrastructure 

systems continue to grow. In 1976, Yang included the effects of deterioration on the 

development and spread of cracks on aircraft. The analysis incorporated the cost of aircraft 

inspections and necessary repairs to avoid serviceability failures—meaning the failure of 
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the system to meet certain performance criteria rather than an ultimate failure—due to 

crack propagation influenced by age (Yang, 1976).  The focus on serviceability failures is 

crucial for age- and management- dependent deteriorating systems because the long term 

reliability of such systems can decrease with time and result in multiple serviceability 

failures over the system’s life or even inhibit system resilience given a more catastrophic 

event (Kumar & Gardoni, 2013). 

In addition to serviceability failures, ultimate failures described as the complete 

collapse or breakdown of systems—are also of concern and occur often as the result of 

external stressors such as climate related events—for instance, hurricanes, earthquakes, 

fires, and flooding—or neglected system management (Kumar & Gardoni, 2013). While 

ultimate failures may have low probability, they are high consequence events, therefore 

understanding the factors/events influencing ultimate failures to estimate occurrence 

probabilities and losses is important. Research by Oswald & Schuller (1984) and Mori & 

Ellingwood (1993) proposed methods that could be used to predict the time to a 

serviceability or ultimate failure, but not both at the same time. Later, Noortwijk & 

Frangopol (2004), Neves & Frangopol (2005), Kim et al. (2011) and Kumar & Gardoni 

(2013) developed approaches to include them simultaneously, approximating more closely 

the performance complexity of the systems.   

In terms of performance recovery after a failure event, Bruneau et al. (2003) 

established one of the first conceptual frameworks to measure resilience. Bruneau et al. 

(2003) suggested that resilience could be characterized based on four system properties: 

robustness, rapidity, redundancy, and resourcefulness. Robustness has been defined as the 

ability to withstand or absorb stressors. Rapidity is the time to restored performance after 
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an event. Resourcefulness is the capacity to mobilize resources in response to a loss in 

performance and system redundancy refers to the system components that can satisfy 

some level of function in the event of a hazard-induced disruption (Bruneau et al. 2003). 

Employing these system properties, Bonstrom & Corotis (2014; 2015) applied a time-

dependent reliability approach to quantify seismic resilience based on the robustness and 

restoration time of a building portfolio after an earthquake event. The integration of prior 

performance reliability and how it affects disaster resilience provides life cycle 

performance information helpful to prioritize cost-effective mitigation strategies to 

improve resilience. 

Life cycle reliability studies related to specifically decentralized sanitation services 

are less common. Weirich et al. (2011) employed a modeling approach to determine the 

impact of decentralization on a wastewater facility’s ability to meet NPDES discharge 

standards. The study used statistical modeling to compare the performance of centralized 

and decentralized treatment facilities, analyzing the relationships between treatment plant 

capacity and effluent quality. The model confirmed that treatment plant capacity and 

loading influence the reliability, stability and resilience of facilities treating between 40 and 

400,000 m3/day (Weirich et al., 2011). Life cycle analyses of competing technology 

configurations for decentralized wastewater treatment, e.g. constructed wetlands versus 

anaerobic digestion, compare the environmental impact over the systems service life—

resources consumed and emissions produced such as CO2 and Nitrogen (Emmerson et al., 

1995; Dixon et al., 2003; Machado et al., 2007; Foley et al., 2009; Fuchs et al., 2011).  These 

studies primarily focus on manufacturing, the initial installation, and input energy costs 

due to assumed on-going performance and prescribed maintenance tasks under 
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hypothetical and typically ideal performance conditions (Dixon et al., 2003; Machado et al., 

2007; Fuchs et al., 2011). Since OWTS do not exist in controlled laboratories, these ‘simple’ 

systems gain complexity in practice at the user interface, where seemingly simple 

operation and maintenance tasks necessary for system functionality are neglected due to 

the high uncertainties inherent in human behavior. Furthermore, external stressors such as 

those related to weather and climate that may be less disruptive in larger systems have 

unknown effects on performance at the very decentralized (single residence) scale. Even 

fewer studies exist related to OWTS disaster resilience (Johannessen et al. 2014) and 

probabilistic studies relating time- and management-related reliability (potentially 

dictated by ownership) and resilience as seen in Bonstrom & Corotis (2014; 2015) are non-

existent.  

 

CURRENT APPROACHES TO EVALUATE OWTS LIFE-CYCLE PERFORMANCE 

Given this added complexity, part of the challenge in applying a holistic approach to 

attain useful information about OWTS stems from uncertainties, due in part to the lack of 

data, about the extent to which ownership, user-practices and external stressors influence 

OWTS life cycle performance.  

A number of OWTS studies model performance but do so by estimating failure risks 

based on initial design and siting factors, rather than actual system operation.  This section 

discusses existing methodologies used for modeling OWTS properties related to life cycle 

performance. 

OWTS treatment performance has been widely studied in the lab and at the field 

scale. Some of the studies have produced tools to quantify the risks of on-site wastewater 
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systems failure. To date there exist several well-developed OWTS treatment models. Table 

2.1 summarizes existing models, their input variables, and the intended contribution with 

regards to planning and managing OWTS. 

Table 2.1 Existing OWTS performance models 

 
Risk Based Model & Description Variables 
Onsite Sewage Risk Assessment System (OSRAS) 

 Assesses, using GIS management methodology, 
individual system contributions to the additive 
risk of sewage contamination in sensitive 
environments 

 Spatial landscape and infrastructure data is 
used to rank the risk of each land parcel and 
analyse the spatial data layers to identify areas 
with a higher probability of system failure 

 

Independent 

 Technology classification 

 Catchment configuration 

 Soil characteristics 

 Slope 

 Climate 

 Hydraulic Loading 

 Lot size 

 Maintenance frequency 

 Management practices 
 

 
Dependent 

 ‘Failure’ defined as unacceptable surcharge or seepage of effluent from a designated 
land application area 
 

References:  (Brown & Root Service, 2001; Kenway & Irvine, 2001) 

Development Assessment Module (DAM) 

 Extracts the relevant GIS data for a location of 
the proposed onsite effluent management 
system to predict the extent and direction of 
an OWTS effluent plume to evaluate its 
potential impact on water quality 

 Determines the level of risk associated with 
installing an OWTS in a particular area 

Independent 

 Soil characteristics 

 Slope 

 Climate 
Dependent 

 Magnitude and direction of OWTS effluent plume 
 
References: (McGuinness & Martens, 2003) 
 

Trench TM 3.0 

 Asses sites for absorption trench/bed suitability 

 Uses water balance or nutrient balance methods 
to size disposal systems 
 

Independent 

 Catchment configuration (location, 
land use, etc.) 

 Soil characteristics 

 Slope 

 Climate  

 Hydraulic loading 

 Aspect 

 Setback distances 

 Floodplain 

 Wastewater characteristics 
 

 
Dependent 

 Site capability (i.e. expected design area, disposal system, slope, surface discharge, flood 
potential, wastewater volume, etc.)  

 Environmental sensitivity 

 Size and design 
 
References: (Cromer 1999a, Cromer 1999b) 
 

Methods for Assessment, Nutrient Loading and 
Geographic Evaluation of Watersheds (MANAGE) 

 Identifies potential at risk areas using relatively 
simple GIS-based vulnerability mapping  

 Examines surface runoff and infiltration; and 
acknowledges the influence of soil type and 
riparian areas on pollutant transport  

 

Independent 

 Technology classification 
• Catchment configuration 
• Soil characteristics 
 
References: (Joubert, et al. 2004) 

Integrated Risk Framework for Onsite 
Wastewater Treatment Systems 

 A risk framework based on the Australian 
Standard AS4360: 1999 Risk Management 

Independent 

 Soils renovation ability 

 Lot size 

 Slope 
 

 Suitable setback distances from water 
resources 

 Development with the identified floodplain 
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(AS/NZS 4630. 1999) to identify low, medium, 
and high risk areas to better manage OWTS in a 
regional or catchment scale 

Dependent 

 Hydraulic Failure  

 Groundwater and surface water contamination with chemical pollutants  

 Microbial contamination of ground/surface water  
 
References: (Carroll, et al. 2006) 
 

Better Assessment Science Integrating Point and 
Non-point Sources (BASINS) 

 Performs TMDL studies for larger river basins 
that can be subdivided into multiple smaller 
watersheds 

 Consists of Hydrological Simulation Program 
Fortran (HSPF) and Soil Water Assessment Tool 
(SWAT) 

 

Independent 

 Catchment configuration (land cover, land permeability, reach length, etc.) (Using 
HSPF) 

• Climate  

 Snow, surface & groundwater hydrology 
 
References: (USEPA) (Chen & Herr, 2002) 

Watershed Analysis Risk Management 
Framework (WARMF) 

 Simulates the hydrology and calculated the 
nutrient TMDL to estimate water quality 
impact at a watershed scale 

Independent 

 Catchment configuration (land cover, reach length, slope, width, aspect, etc.) (Using 
USGS DEM) 

 Climate 

 Snow, surface and soil hydrology 
 
References: (EPRI) (Chen & Herr, 2002) 

     

First the models tend to be deterministic, with outputs based on the forward 

evaluation of failure given both physical and operational factors, rather than long-term 

performance data. Furthermore, virtually no studies that quantify OWTS resilience, 

including recovery, exist. The general conclusion is that poor performance (frequent 

failures) is attributed to inadequate site and soil assessment and characterization. Onsite 

Sewage Risk Assessment System (OSRAS), Development Assessment Module (DAM), 

Methods for Assessment, Nutrient Loading and Geographic Evaluation of Watersheds 

(MANAGE), TrenchTM 3.0 and the Integrated Risk Framework models identify potential 

risk areas, wherein placing an OWTS may result in failure given a site’s soil, topographical, 

and hydrological characteristics (Brown & Root Services, 2001; Kenway & Irvine, 2001; 

McGuinness & Martens, 2003; Cromer, 1999a, 1999b; Joubert, et al., 2004; Carroll et al., 

2006). Better Assessment Science Integrating Point and Non-point Sources (BASINS) and 

Watershed Analysis Risk Management Framework (WARMF) differ in that they are used 

primarily to estimate the nutrient TMDL and overall water quality impact on a watershed, 
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based on treatment assumptions stemming from controlled experiments or limited field 

data (Chen & Herr, 2002).  

While the risk models provide useful insight for OWTS design and permitting 

practices and are often integrated into regulations, OWTS continue to fail indicating that a 

purely physical-technological basis for predicting performance ignores significant factors 

related to ownership such as system maintenance, owner knowledge, and usage.  

 

OWTS OWNERSHIP AND MANAGEMENT CHALLENGES 

The ownership, operation and management challenges of OWTS are distinct from 

those of centralized wastewater systems. For OWTS, the cost and upkeep are typically the 

responsibility of homeowners, concentrating the financial risk of failure and adding a level 

of operation and maintenance complexity to outwardly simple technologies. This user-

ownership characteristic must be recognized for accurate prediction of OWTS 

performance. 

Technological advances have been introduced to enhance OWTS reliability and 

treatment (e.g., pressure systems, subsurface drip systems, Glendon Biofilter® systems, 

sand filter systems, mound STUs, sand-lined drain fields, ATU (Aerobic Treatment Unit) 

systems, and recirculating filter systems). While they are more effective in removing 

pathogens and nutrients, many of these advances demand even more of system owners due 

to the added maintenance of mechanical components such as aerators, pumps, valves, 

recirculation equipment and effluent filters.  These practices at the user/technology 

interface directly influence the life cycle performance of technologies (D’Amato et al., 2008) 

to suggest that more technology is not sufficient to address performance instability. 
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Policies to address poor OWTS management and system failures typically have 

centered on user-educational initiatives. The results from a keyword search for “education” 

and “septic system OR tank” illustrate the customary role of education as a means to 

address failing OWTS (Mohamed, 2009). The search returned over 1.1 million hits relating 

to government initiatives to provide information to homeowners based on the belief that 

homeowners neglect maintenance because their systems are “out of sight and out of mind” 

(Mohamed, 2009; Schueler, 2000; McKenzie, 2002). Nevertheless, even where educational 

interventions are in place, OWTS continue to fail. A study in Ohio evaluated homeowner 

responses to OWTS education programs by comparing homeowner behavior before and 

after the program. The results show an increase in knowledge but only a slight change in 

operation behavior (Silverman, 2005).  

A 2009 study provides insight on why homeowners do not maintain their septic 

systems theorizing that users do not properly operate and maintain their systems because 

it is not in their economic self-interest to do so and that educating households on the 

consequences is a deficient response (Mohamed, 2009).  

Part of the challenge of ensuring OWTS functionality stems from their characteristic 

as impure public goods which have attributes of both common property resources (CPRs) 

associated with public goods such as environmental quality and open access resources 

(OARs), which have undefined ownership, such as the right to discharge contaminants into 

the environment, and are often privatized. As an OAR, an OWTS creates externalities that 

generate public costs associated with environmental degradation or threats to public 

health (Turvev, 1963; Hardin, 1968). Regulatory mechanisms are difficult to impose on 

impure goods. Consequently, without regulations, the private responsibility of OWTS 
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operation and maintenance necessary for the protection of the public resource, i.e., the 

environment, creates an incentive to opt out of potentially costly maintenance activities, 

since opting in may offer no immediate benefit to the individual owner/user and opting out 

is seen as having a small and even undetected impact (Hardin, 1968). This theory 

concludes that “the divergence between private and public costs points to policies in which 

households should be required to internalize the externalities of utilizing septic systems” to 

prevent the general degradation of environmental quality (Mohamed, 2009, 48).  

 

RESEARCH GOALS 
 

No matter how well designed and managed a system is, all systems including those 

for wastewater treatment are vulnerable to instability and failure, although small 

decentralized wastewater systems may be overall less reliable and less resilient (Weirich et 

al., 2011). Despite the fact that many inoperative OWTS remain in use beyond a design life 

on the order of 30 to 40 years (EPA, 2002b), design lives are, in fact, finite and result from 

an aging process whereby slow degradation, poor management and sudden environmental 

hazards contribute to their failure and performance recovery (Kumar & Gardoni, 2013). 

The process of performance, degradation, failure and repair or replacement over time 

describes OWTS life cycle performance and is the basis of this dissertation.  

As described in the previous section, existing approaches to quantify the life cycle 

properties of performance focus primarily on the technological components as a means to 

identify prescriptive siting and installation controls. The existing models however, do not 

incorporate post implementation performance, except as a projection of initial design. 

While the importance of ownership as it relates to operation and maintenance over the 
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system’s lifetime is mentioned, factors related to system operations and maintenance are 

not represented in the models. Furthermore, the existing models do not incorporate 

uncertainty, which is necessary to describe highly variable OWTS function over a life cycle. 

To address the gap, this dissertation uses probabilistic methodologies and 

performance-related data to better understand the life cycle properties commonly required 

for planning and management decisions of larger structure and infrastructure systems such 

as long-term reliability (discussed in Chapters 4 and 5) and resilience to external stressors 

such as extreme weather events (discussed in Chapters 6 and 7). To visualize the 

relationship of these components, I have adapted a conceptual framework for resilience 

measurement proposed by Bonstrom & Corotis (2014), which abstracts building portfolio 

resilience to earthquake hazards. Figure 2.1-a is a resilience curve where resilience is 

characterized by the four properties from Bruneau et al. (2003)—robustness (which 

hereafter will be referred to as ‘fragility’ or the inability to withstand or absorb stress), 

rapidity, redundancy and resourcefulness. Figure 2.1-b plots actual data from well- (low 

risk) and poorly-performing (high risk) OWTS from Boulder County to illustrate the prior 

performance variability before an extreme event, for example, the 2013 Boulder Flood. 

Figure 2.1-b shows the relative loss in performance with each type of repair recorded by the 

County—minor repairs (with an estimated loss of 25%), moderate (reducing functionality 

by 50%) and major repairs (causing an arbitrary reduction in OWTS function of about 

75%). The purpose of the detail in Figure 2.1-b is to show that even under “normal” 

conditions, OWTS performance is variable. Chapters 4 and 5 of this dissertation focus on the 

private ownership attribute of OWTS and specific practices at the user/technology 

interface to better understand that variability over time. Fragility and rapidity as they 
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relate to disaster resilience are investigated in Chapters 6 and 7. The overarching objective 

is to provide information to support informed decisions about OWTS as an appropriate 

sanitation solution as well as management strategies as the number of OWTS continues to 

grow. 

 

Figure 2.1 Conceptualization of OWTS life-cycle performance (based on graphic from Bonstrom & Corotis, 
2014) where minor repairs constitute a 25% loss in function, moderate repairs a 50% loss, and major repairs 
a 75% loss. The purpose of this figure is to show the deviation from 100% performance over a sample of 39 
high and low risk systems’ lives. The percentages are mere estimations of performance loss to illustrate the 
point. 
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CHAPTER 3: RESEARCH METHODS OVERVIEW  
 

 

This section presents an overview of the data collection and quantitative analysis 

methods used to address my research questions. These methods include data collection 

and organization, variable identification, and a summary of methods of data analysis that 

are elaborated in Chapters 4-7. 

 

DATA COLLECTION AND ORGANIZATION 

Because OWTS operation and maintenance are not regulated, practices vary widely 

and performance and failure data are scarce. Most performance-based data are limited to 

failure events that directly impact public health or are obtained from homeowners’ 

applications for permits to replace or repair failing systems (EPA, 2002b). While the 

reported inspections and permits provide insight to actual system performance, they are 

still limited in that they only identify failures according to codes and do not measure 

groundwater contamination resulting from onsite system failures (EPA, 2002b). 

Furthermore, their assimilation requires a significant effort. As a result, many of the models 

listed in Table 2.1 above are limited to interpolation and extrapolation of sparse data 

(Brown & Root Services, 2001). Moreover, their output is expected contaminant discharges 

to the subsurface environment rather than the status of the on-site installation itself. 

I selected Boulder County, Colorado as the study site. The County is located in the 

Boulder Creek-St. Vrain Creek watersheds in the northeastern part of the State. The County 

has a population of approximately 295,000 residents (121,500 households) in an area of 
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195,000 hectares (1.5 persons/hectare). The geographic terrain, which stretches from the 

Continental Divide to the Plains (Figure 3.1); economic activities, which include 

professional services, manufacturing and farming; and the income status of residents are 

diverse. Just over 62% of the population lives in owner-occupied units, with a median value 

of $358,000 (2014 dollars). The educational level of the residents is high with 94% holding 

a high school degree or higher and 58% of residents over 25 years old holding a Bachelor’s 

degree or higher. In 2010, the median household income was $69,407 (2014 dollars) but 

over 13% of the population had income below the poverty level (U.S. Census Bureau, 

2014).  

There are 14,300 OWTS serving approximately 50,000 residents in the County as 

well as 21 treatment facilities with NPDES permits serving the rest of the population, with 

design flow rates ranging from 6 to 49,000 m3/d (Weirich et al., 2015).  Permitted 

wastewater discharge from POTWs total 110,000 m3/d.  Estimated flow from the 14,300 

OWTS is approximately 27,000 m3/d, based on an estimated capacity of 2 m3/d. I have 

collected data to produce a performance measure from public records such as legal 

documents, OWTS repair permit applications, and Boulder County Tax Assessor’s data to 

determine the life-cycle costs and risks of residential sanitation systems.  



 

  

2
3

 

 

Figure 3.1 Boulder County map. Wright Water Engineers, cited in https://blogs.svvsd.org/water/colorado-watersheds/
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Data 

The Boulder County Public Health Department has a robust process for issuing 

permits for installation of OWTS, and has undertaken efforts to inspect systems installed 

without permits, many of them 50 or more years old (Colorado Department of Public 

Health and the Environment, 2013). The County also has maintained records dating back to 

the late 1940s documenting minor and major OWTS repair permits, legal documents, and 

inspections. The database of the County’s repair permits was queried to create three input 

data sets—one consisting of repair and replacement documentation for permitted OWTS 

and each system’s residential attributes which are described and used in Chapters 4 and 5, 

another which enumerates annual sample repair frequency and is described in detail in 

Chapter 6, and the third which focuses on flood-impacted OWTS and is described in Chapter 

7. 

 

Dependent Variable 

For Chapters 4 and 5, the product of frequency and magnitude (costs) of repairs over 

the period of record forms the performance measure. While not all repairs are associated 

with a failure and/or contaminant release, exceeding some lifetime cost of repair implies 

performance instability sufficient to trigger significant intervention by County Health 

Department staff and/or certified OWTS servicers.  

Each County record of a repair is classified by severity into minor, moderate, and 

major categories, following the determination of BCPH staff, and assigned an associated 

cost based on the County’s posted estimates for the various categories of repairs, as 

described in Chapter 4. The dependent variable, repair severity, is the sum of all repair costs 
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over the expected OWTS service life of 40 years, which is the sample average number of 

years from the final inspection date recorded on the installation permit to the date of the 

most recent recorded failure. The 40-year reference life is the minimum timeframe to 

capture approximately 80-90% of all major infrastructure expenditures (Pitterle et al., 

2008). For Chapter 6, the total number of each type of repair was enumerated for each year 

from 1979-2015 to correlate repairs to variations in climate/weather variables in each 

year. Lastly, for Chapter 7, the dependent variable is a measure of performance recovery 

calculated from the time an owner submits a repair permit application to the date of the 

final inspection.  

 

Independent Variables 
 

Using the Boulder County Assessor’s Tax database, property inspection documents, 

and repair/replacement applications, ten independent variables were defined – which are 

described in Chapter 4 and used in both Chapters 4 and 5. The independent variable data for 

each OWTS were coded and stored along with the corresponding repair severity values, and a 

unique location based on the latitude and longitude of the land parcel. The climate and 

weather independent variables from National Oceanic and Atmospheric Administration 

(NOAA) and stream flow independent variable from U.S. Geological Survey (USGS) are used 

and further described in Chapter 6. 

 

DATA ANALYSIS 

This dissertation uses a suite of statistical methods to observe relationships 

between the defined dependent and independent variables of the sample OWTS population 
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to identify trends that can then be applied to answer questions about the life-cycle 

performance of the larger OWTS population (Dowdy et al., 2004).   

Various degrees of regression analysis and hierarchical or multilevel modeling have 

been used in this dissertation, including Generalized Linear Models (GLM), Generalized 

Additive Models for Location, Shape, and Scale (GAMLSS), and Extreme Value Analysis-

Points Over Threshold (EVA-POT). Hierarchical models consist of several models organized 

in a tree or tiered structure where each model is connected to the other models through a 

link and where the additive model typically improves the overall model’s ability to capture 

the sample characteristics. The hierarchical structure can capture both the impact of 

traditional covariates and the influence of geographical space and time. Individual methods 

will be discussed in the chapters where they are applied. 
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CHAPTER 4: MODELING ON-SITE SYSTEM RELIABILITY DEPENDENCE ON OWNER 
BEHAVIOR 

 
 
Kohler, L., Silverstein, J. and Rajagopalan, B. (2016) Predicting Life Cycle Failures 
Of On-Site Wastewater Treatment Systems Using Generalized Additive Models. 
Environmental Engineering Science. 33(2): 112-124. doi:10.1089/ees.2015.0275. 
 
 
Keywords: generalized linear model; on-site wastewater treatment; performance-
based regulation, sanitation 
 

 

ABSTRACT 

Poor performance of on-site wastewater treatment systems (OWTS) poses local and 

regional risks to public health and environmental quality. In the US, local regulations 

control system design via permits issued at the time of installation. However, regulatory 

focus on one-time controls does not account for factors that influence performance after 

installation, notably asset management choices made by residential property owners. We 

develop a statistical method to predict performance over the OWTS life cycle in order to 

identify vulnerabilities and potential controls that reduce the risk of failure and 

contaminant release. A regression model based on Generalized Additive Models for 

Location, Scale and Shape (GAMLSS) uses data from public records of reported OWTS 

failures, repairs and replacements, inspections, and assessed property values from Boulder 

County, Colorado, which has 14,300 OWTS.  Severity of required system repairs and 

replacements over a 40-year period was associated with five factors: structural value, 

house square footage, the number of required inspections, the homeowner expenditures 

and the frequency of OWTS upgrades. Model results suggest that mandatory inspections 
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through a mechanism such as renewable permits would significantly reduce life cycle 

repair/failure frequency and severity, lowering OWTS costs to owners and reducing public 

exposure to wastewater contaminants. 

 
 
INTRODUCTION  
 

In the U.S. the array of strategies and technologies for wastewater collection, 

treatment, and discharge form an organizational continuum from centralized publically 

owned wastewater collection and treatment works (POTWs) to owner-operated on-site 

wastewater treatment systems (OWTS).  POTWs treat wastewater flows from 10 to over 

106 m3/day and operate with discharge permits issued through the National Pollutant 

Discharge Elimination System (NPDES) that require regular monitoring and reporting of 

compliance. The capacity range of OWTS serving a family or small commercial enterprise is 

much narrower, with flows typically less than 8 m3/day (Crites and Tchobanoglous, 1998). 

Permits are typically issued by local agencies at the time of installation with no 

requirements for monitoring or reporting of performance unless the OWTS fails and 

triggers regulatory action.  

POTWs and OWTS have a historical relationship. As the association of faecal waste 

with outbreaks of cholera and other water borne diseases became known in the latter half 

of the nineteenth century, unregulated on-site systems for collection, passive treatment 

and storage using privies, vaults, and cesspools were replaced by centralized sewer 

systems better able to handle increasing wastewater flows as residential piped water 

supply and use of flush toilets became widespread (Cosgrove, 1909; Burian et al., 2000). As 

a result, centralization and modernization of wastewater treatment have been linked, and 
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while the technologies for on-site systems have improved, scientific knowledge, tradition, 

and prevailing public opinion lead many engineers, public health officials, policy makers 

and the general public to favor centralized infrastructure over owner/user operated 

systems (Burian et al., 2000; EPA 1997, 2002b; Etnier et al., 2005, 2007). Because of this 

history, OWTS may be inaccurately associated with isolated rural residences or considered 

a temporary solution to be replaced by centralized collection and treatment.  

In fact, reliance on OWTS to provide a significant portion of global sanitation is 

growing especially in regions where no sanitation infrastructure exists. Currently, 

decentralized, typically user-owned and maintained on-site wastewater treatment systems 

serve approximately 25% of the population in the U.S. (EPA, 2003, 2008a) with over 25 

million OWTS installed in suburban, high population density areas (EPA, 2008a). Due to 

continued land development outside existing collection system boundaries, limited 

treatment plant capacity, and the cost of new centralized wastewater infrastructure, 

approximately 30% of new residential developments in the U.S. are constructed with septic 

systems (EPA, 1997, 2002a, 2002b, 2003). In 2005 it was estimated that OWTS served 

approximately 26 million homes, many in urbanized communities, discharging four billion 

gallons of effluent per day (U.S. Census Bureau, 2006). The City of Los Angeles, for instance, 

has over 11,500 residential OWTS and many are located near impaired water bodies with 

elevated levels of nitrate and coliform indicator bacteria (“LA Sewers”, 2013).  

However, unlike centralized facilities operating with NPDES permits, the 

performance of OWTS is not routinely documented, since monitoring of operations or 

discharged water quality is not required. The U.S. EPA estimates that 10 to 20% of OWTS in 

fact do not treat wastewater to acceptable levels (EPA, 2003) and some states estimate 
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failure rates to be as high as 50% (EPA, 2002b). While one individual system failure may 

not pose a public health threat because the impacts are localized, the aggregate 

contaminant release from a cluster of poorly performing OWTS can have negative local and 

watershed-scale consequences.  A survey of state water quality agencies ranked OWTS as 

the third greatest threat to groundwater quality, behind underground storage tanks and 

landfills (EPA, 1998).  

Part of the challenge of ensuring OWTS functionality stems from their characteristic 

as impure public goods which have attributes of both common property resources (CPRs) 

associated with public goods such as environmental quality and open access resources 

(OARs), which have undefined ownership and are often privatized. As an OAR, an OWTS 

creates externalities that generate public costs associated with environmental degradation 

or threats to public health (Turvev 1963; Hardin 1968). Without controls, the private 

responsibility of OWTS operation and maintenance required for the protection of the 

public resource, i.e., the environment, creates an incentive to opt out of potentially costly 

maintenance activities, since opting in may offer no immediate benefit to the individual 

owner/user and opting out is seen as having a small and even undetected impact. Public 

Goods Theory implies that some regulation of the private right to use the environment as a 

waste sink is necessary to prevent the general degradation of environmental quality 

(Mohamed, 2009).  

A comprehensive review of state-based OWTS regulations conducted by D’Amato et 

al. (2004), found that while most states regulate OWTS, regulations are by no means 

uniform. Furthermore, those states that have more extensive controls focus on installation, 

siting and design factors contributing to OWTS failure, which have been widely studied.  
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Existing OWTS performance models incorporate spatial, topographical, hydrologic, and 

other physical characteristics to identify locations where installing an OWTS may result in 

a high risk of failure (Oosting and Joy, 2011; Carroll et al., 2006; Hudson, 1986; Brown and 

Root Services, 2001; Kenway et al., 2001; McGuinness and Martens, 2003; Cromer, 1999a, 

1999b; Joubert et al., 1996; Chen and Herr, 2002). However, a significant fraction of 

properly designed OWTS fail, indicating that technology-based design standards are not the 

only factors influencing system performance over what is presumed to be a very long life 

cycle on the order of 30 years or more (EPA, 2002b). OWTS may be designed and operated 

in a way that optimizes treatment performance and decreases both the frequency and 

resulting reparative costs of OWTS malfunctions, ultimately improving the overall system 

performance life (McKinley and Siegrist, 2011).  

The premise of this research is that reliance on design-based standards is insufficient 

to insure OWTS performance over the system life, and that the role of factors associated 

with system maintenance, owner knowledge, and usage must be considered. Moreover, as 

demand for use of increasingly sophisticated OWTS technologies for removal of nutrients 

or emerging trace contaminants grows; the number and complexity of owner-dependent 

operations will likely increase. Increasing dependence on OWTS as a global sanitation 

strategy underscores the need to understand how human/social variables such as 

organization, user motivation and knowledge influence operation of OWTS (Kaminsky and 

Javernick-Will, 2013). 

Statistical modelling has been applied only recently to performance-based 

diagnostics of wastewater systems. Multivariate regression analysis using Generalized 

Linear Models (GLM) has been used to model treatment system response to water quality 
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and wastewater variables (e.g., Weirich et al., 2011, 2015; Towler et al., 2013) adapting an 

approach used more widely in stochastic weather generation (e.g., Verdin et al., 2015; 

Kleiber et al., 2012, 2013; Furer and Katz, 2007). Weirich et al. (2011) used GLM to predict 

the likelihood of POTW compliance with NPDES permit discharge limits using Discharge 

Monthly Report data in the U.S. EPA Integrated Compliance Information System (ICIS) 

(EPA, 2008b). Applying a similar inductive statistical approach to characterize OWTS 

performance would allow us to observe what practices, if any, differentiate well- and poor- 

performing OWTS based on the historical performance of real systems over a defined life. 

 

OBJECTIVES 

The objective of this study is to i) identify user-associated factors that affect lifetime 

OWTS performance and ii) develop a predictive model to guide effective management of 

these systems by owners, environmental and public health agencies, and servicers.  

Since no public data analogous to ICIS are available for on-site systems, the first 

component of this study is acquisition of data from OWTS permit and tax assessment 

records. In the absence of effluent quality data, information on costs associated with 

inspection, maintenance, repair and replacement of OWTS components, which are public 

records, serve as a surrogate measure of poor performance. It should be noted that 

modelled outcomes based on this type of data also may provide highly communicable 

cost/benefit information to stakeholders, especially OWTS owners.  

Because OWTS records are typically collected and maintained by county health 

departments, Boulder County Colorado was chosen as the site for data collection. The 

Boulder County Public Health Department oversees permitting for 14,300 OWTS and also 
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conducts comprehensive permit and public education programs (“SepticSmart Program”, 

2015).  Variables generated from collected data are then subjected to a regression 

modelling approach, Generalized Additive Models for Location, Scale and Shape (GAMLSS) 

(Rigby and Stasinopoulos, 2005) in order to select the post-installation factors associated 

with the level of OWTS performance over the system’s expected life. The predictive model 

will enable regulators to define actionable management guidelines for post-installation 

practices that can be incorporated into county or state regulations to improve OWTS 

reliability and save owners the costs of catastrophic failure.  Additionally, the model will 

provide a means to communicate wastewater management alternatives and associated 

financial trade-offs to communities in a quantifiable and comparable way.  

 

METHODS 

The methods of this study are discussed in the three following sections: (1) data 

collection; (2) selection of the performance indicator and ten user-associated independent 

variables; and (3) development of the GAMLSS method for simulation of OWTS 

performance. 

 

Data collection  

The Boulder County OWTS study site is located in the Boulder Creek-St. Vrain Creek 

watershed in northeastern Colorado, encompassing an area of approximately 190,000 

hectares and 300,000 residents (U.S. Census Bureau, 2015). There are over 14,300 OWTS 

in the County serving approximately 50,000 residents as well as 21 POTWs with a total 

capacity of 110,000 m3/d serving the rest of the population (BCPH, 2013; EPA, 2008b). 
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Estimated flow from the 14,300 OWTS is approximately 27,000 m3/d, based on a 

residential flow of 2 m3/d (EPA, 1980). OWTS are located in highly variable terrain 

including mountain communities at elevations exceeding 2600 m and residents on the 

eastern plans at 1600 m. Approximately two-thirds of the OWTS for which the County has 

any records received permits at the time of installation.  

The OWTS sample consisted of failed or poorly functioning systems selected by 

searching the database of repair permits maintained by the Boulder County Public Health 

(BCPH) Department. Repair permits were screened to select for OWTS having conditions 

associated with visible failures such as wastewater surfacing, odor or mechanical 

malfunctions resulting in system repairs, replacement or reported functional breakdown. 

The search returned 215 properties with reported OWTS failures from 2003 to 2013. While 

the permit database contains applications dating back over 50 years, records of specific 

reasons for permits did not begin until 2003, limiting the documented failures to post-2003 

repair permits. That said, many of the early repair permits available documented visible 

failures, but the evidence exists in the form of hand written notes on the permit 

applications and therefore was not searchable in the database. From 215 OWTS in the 

original sample, only systems that had a County-approved inspection at the time of 

installation were selected for analysis. This reduced the number of properties in the sample 

from 215 to 120. Using only permitted sites provides a control for siting and design criteria 

set by the County. The fact that over half the failed systems in the County met initial design 

and siting standards supports the premise of this study that design standards are not 

sufficient to ensure performance.  
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The selected OWTS sample is distributed throughout the County area (See Figure 

4.1) and captures variability in neighborhood/community affluence, housing density, and 

distance to professional OWTS servicers. The breadth of geographic and demographic 

attributes of the sample is selected to enable the application of results in other 

communities/regions.  

Information in the repair permit applications for each of the 120 OWTS, primarily 

scanned hand-written originals, was coded to define a failure measure and quantified 

attributes of the properties and the owners’ operation and maintenance history.  

 

Figure 4.1 Geographic distribution of sampled OWTS repair permits in Boulder County, Colorado. Source: 
Boulder County Public Health (2013) 

 

Variable definition 

Dependent variable  

Failure has been generally defined as not meeting some designated performance 

standard (Etnier et al., 2005). However, there is no recognized definition of OWTS failure. 
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Failure has been commonly used in the OWTS industry and in the literature to specify 

major operational faults described above and loss of equipment integrity such as cracking 

of septic tanks and/or piping. For this study the failure measure for each OWTS is the sum 

of the estimated cost of all repairs requiring a permit, annualized to a 40-year period of 

record from 1973 to 2013. Thus failure incorporates both the frequency of major repairs 

and their magnitude, producing the dependent variable (Y) of annual repair severity 

expressed in U.S. dollars. 

Repairs were classified into minor, moderate, and major, using cost estimates 

provided by BCPH staff, as described in the next section. The 40-year life cycle was selected 

based on the average length of time between the installation inspection and the date of the 

most recent repair permit.  

For this study, a minor repair, defined by BCPH, is any repair to the septic tank or 

pipes. Moderate repairs refer to extraordinary maintenance or replacement of the soil 

treatment unit (STU). Failure of both the septic tank and STU constitutes a major repair 

often requiring replacement of all OWTS components.  

    The cost estimates for minor, moderate and major repairs are based on the results of 

an informal survey of OWTS installers and servicers conducted by the BCPH over 10 years 

ago. Due to property slope, size, water table levels, soil substrate, and location, the cost of any 

type of repair can vary widely. For example, the BCPH estimated cost of a moderate repair of 

the STU ranged from $4,860 to $21,800. However, the estimates provide relative 

benchmarks for minor, moderate and major repair costs adequate for modelling the severity 

distribution, which can be updated as new cost information is available. The average of the 

range of estimated repair costs for each category were: minor, $3,066; moderate, $9,173; and 
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major, $14,866. The repair cost does not include the cost of the repair permit, which is 

uniform for all repairs, or the cost to hire an engineer for more significant restorations. 

Engineering costs were excluded from this study because they vary greatly based on 

attributes associated with the system’s location and design complexity. While this 

information affects the total cost of repair, the infrastructure and labour costs of each repair 

type included in our analyses differentiate between the types of failures and their relative 

severity. 

Figure 4.2 shows the sample distribution of the annualized repair severity variable as 

a histogram along with admissible probability density functions, which will be further 

discussed in the OWTS Repair Severity Model section. The data appear to be categorical in 

nature even though cost of repair is a continuous variable. Approximately 60% of the sample 

has a repair severity value estimated to be $372 per year.  

 

Figure 4.2 Distribution of OWTS annual repair severity data measured as cost (USD) compared to the Weibull 
and Gamma regressions for the 120 OWTS in the sample. 
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Independent variables  

Using information from the Boulder County Assessor’s property tax database, 

property inspection documents, and repair/replacement applications, ten independent 

variables were defined, which map to six categories that previous researchers have related 

to long-term OWTS performance (Kaminsky and Javernick-Will, 2013). The categories are 

technical, referred to herein as physical status (PHYS); organizational (ORG) related to the 

degree of community or institutional control; economic status of owner (ECON); owner 

knowledge of system operation (KNOW); user motivation (UM), related to interests 

affecting owner choices, and other (OTHER). The ten variables related to these categories 

are described in Table 4.1. The independent variable values for each OWTS for the 40-year 

period from 1973 – 2013 are coded and stored with the associated annual repair severity 

values, and unique land parcel ID for each OWTS site.  
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Table 4.1 Independent variables hypothesized to influence OWTS performance with definitions, sources and category type. 
 

Variable  Symbol Variable definition Relation to Variable Category 

     
Property 
transfer 
inspections 

PT The number of property transfers 
after-2008 with documented 
inspections. 

The Property Transfer regulation effective since 2008 states that prior to property 
sale or title transfer, the owners of the dwelling have to obtain a certified inspection 
and disclose any system issues to the buyer. The value represents the frequency of 
regulated system inspection. 

ORG 

     
Property sales 
(after 2008) 

PS Total number of times a property changed 
ownership after 2008 

 UM/ 
KNOW 

Property sales 
(before 2008) 

EPS Frequency of title transfers and sales 
between 1973 and 2008 

UM/ 
KNOW 

     
Loan 
inspections 

LI Total number of documented OWTS 
inspections that occurred as a result of a 
loan application. 

Prior to 2008, Boulder County recorded non-mandatory OWTS inspections 
recommended by some mortgage lenders, such as. USDA, VA and FHA, with further 
tests and repairs if problems were found. 

ORG 

     
Water supply WS 0=private water supply (i.e. wells and 

cisterns) 
1=public water supply (i.e. supplied by 
municipality or water district) 

Availability of private water supplies may be associated with greater demand and 
OWTS loading (Nauges and Van den Berg, 2006).  OWTS owners with private wells 
may be more likely to protect their water source. 

UM/ 
OTHER 

     
Structural 
value 

SV Assessed value of structure, excluding 
land value, in USD 

The structural value of the house is used as a proxy for income and ability to pay for 
repairs and maintenance (Nieswiadomy and Molina, 1989). 

ECON 

     
Living area LA Living area in square feet  Statistically, larger homes consume more water, increasing the wastewater load to 

the system (Mayer and DeOreo, 1999). 
ECON/ 
PHYS 

     
Change in 
bedroom 
count 

RC The difference between the number of 
bedrooms when the permit was issued 
and at the time of the last repair  

The number of bedrooms is considered to be associated with OWTS loading and 
typically is used to specify OWTS sizing.  
 

PHYS 

     
Change in 
bathroom 
count 

BC The difference between the number of 
bathrooms when the permit was issued 
and at the time of the last repair 

Number of bathrooms is a greater factor in OWTS loading than the number of 
bedrooms, although then two are often related. 

PHYS 

     
Upgrades UP Cost of OWTS upgrades resulting from 

added bedrooms 
Upgrades can be systems retrofitted to accommodate increased hydraulic loading.  PHYS 
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OWTS Repair Severity model 

We used a variation of the Generalized Linear Model (GLM) regression method to 

evaluate the relationship between the annual repair severity of the sample OWTS 

population and the independent variables in Table 4.1. The application of the identified 

relationships is then used to predict the estimated annual repair severity of the larger 

OWTS population (Dowdy et al., 2004). 

The GLM provides a more flexible approach to regression than a standard linear 

regression model. In the GLM, the response variable, Y, is assumed to be a realization from 

any distribution in the exponential family. 

Y ~ G(𝜽)                (1) 

where G(.) is any exponential type distribution and 𝜽 is the set of parameters that define G. 

A link function, η, relates the expected value of 𝜽 and consequently that of Y(𝜽), as a linear 

function of independent variables or covariates X, as follows: 

𝜂(𝐸(𝜽)) = 𝑿𝜷𝑇                  (2) 

where 𝜂 (.) is the link function, βT is the vector of model parameters, and X is the set of 

covariates. The residuals are defined as: 

ε = Y – E (Y)                      (3) 

They are assumed to be normally distributed and uncorrelated as with a standard linear 

regression (McCullagh and Nelder, 1989). E(Y) is the expected value of the Y determined 

from the model. 

Standard linear models require Y to be from a Normal distribution. Consequently, to 

model variables which are non-negative, positively skewed, discrete, or binary violates the 

normality assumption and thus cannot be readily modeled using a standard linear model. 
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Assuming a binomial distribution for the response variable reduces the GLM to a logistic 

regression; a Poisson distribution makes it a Poisson regression model, etc. (McCullagh and 

Nelder, 1989). Of course, a Normal distribution assumption reduces this to a standard 

linear regression. The ability to model a variety of distributions in the exponential family is 

the major advantage of GLM (McCullagh and Nelder, 1989). Replacing G(.) with an extreme 

value distribution allows this approach to model extremes as shown in the modeling of 

extremes in water turbidity by Towler et al. (2013).  

Since every OWTS in the sample was repaired at least once, the response variable Y 

for all 120 systems is greater than zero and a positively skewed distribution – as displayed in 

Figure 2. The gamma distribution has been used in a GLM of POTW compliance data that also 

are positively skewed (Weirich et al., 2011). However, the OWTS data have long tails due to 

members of the sample with extremely high or low values of repair severity, and the Weibull 

distribution is better suited to capture tail behavior compared to the Gamma distribution 

(e.g., Katz et al., 2002). While GLM provides computational flexibility, the assumption that the 

dependent variable Y must be represented by a distribution in the exponential family 

restricts its ability to model data using, for example, a Weibull distribution, which is not part 

of this family. Further, the GLM framework is largely for modeling a single parameter of the 

distribution with a link function. To overcome this limitation, Rigby and Stasinopoulos 

(2005; 2001) and Akantziliotou et al. (2002) introduced generalized additive models for 

location, scale, and shape (GAMLSS). GAMLSS relaxes the exponential family distribution 

constraint for the response variable and allows a larger distribution family, including those 

with long tails such as Weibull. Furthermore, it can admit additive functions of the 

independent variable that can be linear or nonlinear, providing more flexibility in modeling. 
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Like GLM, for GAMLSS, a smooth link function, 𝑔𝑘(. ), transforms the expectation of 

each parameter in the representative Y distribution, 𝑓(𝑦𝑖|𝜃
𝑖),  to a set of predictors. The 

probability distribution function is conditional on 𝜃𝑖  where 𝜃𝑖 = (𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑘) is a vector 

of k parameters, where k depends on the distribution type. 

𝑔𝑘(𝜃𝑖𝑘) = 𝜂𝑘 = 𝑿𝑘𝛽𝑘 + ∑ ℎ𝑗𝑘𝑥𝑗𝑘
𝐽𝑘
𝑗=1                (4) 

Each parameter, 𝜃𝑖𝑘 , is related to the set of explanatory variables, 𝑿𝑘, and a parametric 

vector, 𝜷𝑘. The term ∑ ℎ𝑗𝑘𝑥𝑗𝑘
𝐽𝑘
𝑗=1  represents the random component and can be either a semi-

parametric or non-parametric additive model (Rigby and Stasinopoulos, 2005). 

To determine the impact of user operations on the expected annual repair severity of 

OWTS over a 40-year period, all independent variables and variable interactions were 

incorporated in the GAMLSS model using the GAMLSS package in the open-source 

statistical program R (http://www.r.project.org)), and all combinations of variables were 

tested to determine the distribution parameters, 𝜃𝑖 , using the Akaike Information Criteria 

(AIC, Akaike, 1974). AIC selects a best model by considering all the possible subsets of the 

independent variables from the fit model. For each model, the generalized Akaike 

Information Criteria (GAIC), specific to GAMLSS, is calculated as: 

𝐺𝐴𝐼𝐶 = −2ℓ̂(𝜃)  + (𝑁 ∗ 𝑘)                    (5) 

where ℓ̂(𝜃) is the logarithm of the model likelihood function reflecting the subset of 

explanatory variables that are obtained from iterated weighted least squares method 

(IWLS), N is the penalty for additional parameters, which has a default value of 2, typical 

for AIC, and k is the number of model parameters.  The model with the lowest GAIC is 

selected as the ‘best model’ (Stasinopoulos et al., 2008). 
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Cross validation 

To evaluate the model performance on an independent data set, a random number 

of observations, ~15% of the total data set or about 18 points, are dropped. The model is 

fitted to the remaining ~85% of the data and used to predict the dropped values and 

performance measure such as R2 (square of the correlation coefficient between the 

observed and model predicted values) and RMSE (root mean squared error) are computed. 

This is repeated a thousand times and the measures are displayeyd as boxplots to provide 

insights into the variability of the model skill. 

 

Sensitivity Analysis 

The range of cost estimates for minor, moderate, and major repairs motivated us to 

consider the sensitivity of the Weibull model to changing costs. Because the BCPH cost 

estimates are over 10 years old, the possibility of underestimating the annual repair 

severity is the greater concern. Therefore the sensitivity analysis consists of generating two 

new models using the following repair cost conditions. Model II: sensitivity to the cost of 

major repairs only by retaining the average cost for the minor and moderate repairs used 

in the original model (Model I), but increasing the cost for the major repairs to the high 

value of the range; and Model III: increasing the cost of repairs for all repair categories to 

the high value in the range.  
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RESULTS 

A GAMLSS model belonging to the Weibull distribution family was fit to the 

dependent variables and annual repair severity data, using the log link function. The 

GAMLSS model of repair severity is represented as 

𝑌~𝑊𝐸𝐼(𝜇, 𝜎)                     (6) 

where 𝑌 is the response variable, annual repair severity, and 𝜇 and 𝜎 are the scale and 

shape parameters, respectively, of the Weibull distribution (WEI). The best model of the 

scale and shape parameters based on GAIC resulted in the following expressions.  

𝑙𝑜𝑔 𝐸(𝜇) = 5.96 + 7.54𝑒 − 8 ∗ 𝑆𝑉 + 2.96𝑒 − 5 ∗ 𝐿𝐴 − 0.05 ∗ 𝑈𝑃 − 1.4 ∗ 𝑃𝑇 − 0.10 ∗ 𝑃𝑆 −

1.21 ∗ (𝑈𝑃 ∗ 𝑃𝑇) − 0.001 ∗ (𝑆𝑉 ∗ 𝑃𝑇) − 1.40𝑒 − 6 ∗ (𝑆𝑉 ∗ 𝑃𝑇) − 1.64 ∗ (𝑃𝑇 ∗ 𝑃𝑆) (7) 

𝑙𝑜𝑔 𝐸(𝜎) = 1.023            (8) 

Equations 6 and 7 indicate that OWTS performance is related to five of the ten 

individual independent variables and four combinations of the variables. The individual 

factors selected are the assessed structural value of the home (SV), square footage of the 

home (LA) — both are considered proxies for household affluence or ability to pay, the 

number of complete required system inspections (PT) as a result of the 2008 Boulder 

County Property Transfer regulation for OWTS, the total number sales after 2008 where a 

property transfer inspection was not documented (PS), and the frequency and cost of 

OWTS upgrades resulting from adding a bedroom (UP).  

The expected value of the shape parameter 𝐸(𝜎) is a constant estimated by fitting a 

Weibull distribution to the observed data. It is common in these models with smaller 

number of data such as the case here, that the GAIC criteria keeps the shape parameter 

constant, as varying the shape parameter can make the model fit highly variable and the 
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results difficult to interpret. The nonlinear combination of the five variables describing 

both the scale and shape parameters creates the Weibull distribution for each observation; 

therefore, each OWTS observation has a unique scale with a constant shape.  

The Analysis of Variance (ANOVA) table (model I in Table 4.2) shows the significance 

of each variable in the model based on its p-value.  

Table 4.2 Reliability model (Model 1) ANOVA table and model sensitivity to repair cost estimates.  

 
μ coefficients 

 Model I Model II Model III 

GAIC 1533.79 1769.30 1766.75 

Covariate Influence Estimate Std. Error P-value Estimate P-value Estimate P-value 

(Intercept) + 5.96 0.09 <0.001 6.62 <0.001 6.85 <0.001 

RC  -- -- -- 0.13 0.082 -- -- 

SV + 7.54e-7 3.23e-7 0.82 4.99e-7 0.197 -- -- 

LA + 2.96e-5 5.02e-5 0.56 -- -- -- -- 

UP - 0.05 0.08 0.53 0.38 0.122 -0.05346 0.59 

PT - 1.4 0.42 0.001 -0.32 0.054 -0.36371 0.02 

PS - 0.10 0.08 0.20 -0.12 0.336 -0.06832 0.47 

UP*PT - 1.21 0.40 0.003 -1.99 <0.001 -1.84926 0.003 

PT*PS - 1.64 0.44 <0.001 -2.00 <0.001 -1.83440 <0.001 

LA*PT - 0.001 2.08e-4 <0.001 -- -- -- -- 

SV*UP  -- -- -- -2.60e-6 0.001 -- -- 

UP*PS  -- -- -- 0.37 0.091 -- -- 

SV*PT + 1.40e-6 3.16e-6 <0.001 -- -- -- -- 

σ coefficients 

(Intercept)  1.023 0.07 <0.001 0.776 <0.001 0.853 <0.001 

* Shaded entries are the variables that are consistently associated with repair severity in all three scenarios 
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The significance threshold was set at 0.1 (i.e. 90% confidence) for this study. The four 

combined variables: UP*PT, LA*PT, SV*PT, and PT*PS are significant at greater than 90% 

confidence. Of the individual variables, only the number of property transfers after 2008 

when a full inspection was required met the significance criterion. While not all of the 

individual variables are significant at 90% confidence or higher (i.e. p-value < 0.01) in the 

best model, the best model from GAIC or other such criteria selects the group of variables 

that jointly improve the estimation of annual repair severity. However, the variables that 

are not significant tend to have coefficient values close to zero. With one exception, an 

increase in the value of individual and combined factors including the variable number of 

required inspections after 2008, PT, was associated with a decrease in annual repair 

severity, as reported under model I in Table 4.2, column 2.  

 

Model Diagnostics 

The GAMLSS model (Equations 6 and 7) provides the best estimate of the two 

parameters of the Weibull distribution describing the repair severity for each observation 

as a function of the selected independent variables. Consequently, the median and the 95% 

confidence intervals can be obtained from the estimated sample distribution. While a 

predictive model encompassing both extreme and the median results would be ideal, the 

primary concern is whether the model is a good predictor of annual repair severity for the 

average OWTS. Average system performance as reflected by the expected annual repair 

severity over the system’s life is a potential decision factor for homeowners and can aid 

community and regional planning and management decisions when comparison of the 

costs of on-site and centralized systems is desirable.  
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The observed values and the predicted annual repair severity costs have an R2 of 

0.406 indicating that the model captures ~40% of the overall variability. R2 values less than 

50% are acceptable in behavioral and social science fields where typically the precentage 

of variance accounted for is smaller given the inherent variability of human nature (Hunter 

and Schmidt, 2004). Futhermore, even with a low R2 value, the presence of statistically 

significant predictors still allow important conclusions to be drawn about how variations in 

the predictor values are associated with changes in the annual repair severity. 

Figure 4.3 shows the annual repair severity in dollars for each system in the sample 

compared to the model expected value and 95% confidence interval.  

 

Figure 4.3 Predicted annual repair severity (USD) and 95% confidence limits using the fitted Weibull 
distribution parameters compared to the observed values for all 120 OWTS in the sample. 

 

The figure shows that the model under-predicts the extremes and predicts well near the 

central values for annual repair severity. This suggests that there are additional variables 
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that potentially contribute to the likelihood of either highly performing systems–those 

requiring few repairs—, and systems requiring frequent and costly major repairs that are 

ultimately more vulnerable to failure. The confidence intervals (Figure 4.3) are asymmetric 

and shifted in the same direction as the repair severity, suggesting that they are able to 

capture the variability well – unlike traditional regression approaches, which provide 

symmetric intervals.  Figure 4.4 shows the observed and modeled values for annual repair 

severity as boxplots as a function of the significant and highly influential variable, of 

number of property transfers after 2008 with required inspections (PT). No property had 

more than one required inspection after 2008; however even one inspection had a clear 

beneficial impact on annual repair severity, as captured in the Weibull regression. 

 

Figure 4.4 Relationship between predicted (Weibull) and actual annual repair severity costs and the number 
of property transfer inspections for 120 OWTS.  



 

 49 

Figure 4.5 has spatial plots of 

the observed and predicted values of 

annual repair severity. While OWTS 

requiring moderate to major repairs 

are distributed throughout the 

County, the model does capture some 

spatial clustering of systems that had 

a history of higher-cost repairs.  

As mentioned in the model 

description, the model residuals have 

to satisfy the assumption of normality, 

independence and constant variance 

(i.e. homoscedasticity). These provide 

a set of measures for testing the model adequacy shown in Figure 4.6. The histogram 

supports the assumption of normally distributed residuals, and the ACF is minimal 

suggesting independence of the residuals. The heteroscedasticity plot shows no clear trend 

in residuals as a function of the estimated value of Y. Some of the structure in this latter plot 

is perhaps due to the categorical nature of the data. From the autocorrelation plot it is 

apparent that while the correlation appears to be minimal, there is significant 

autocorrelation at the first lag – i.e., one residual is correlated with the other, indicative of 

spatial correlation. This could be due to local factors such as topography, age of the 

neighborhood, etc. Hierarchical models where in the residuals are modeled as a spatial 

Gaussian process are attractive alternatives to capturing the residual structure.  

 
Figure 4.5 GIS map of observed annual repair severity (a) 
compared to the model estimates of annual repair severity 
(b). The windows zoom in on a selection of OWTS in and 
around the city of Boulder (refer to Figure 1) to highlight 
the model’s ability to capture annual repair severity based on 

the selected covariates. 
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Figure 4.6 GAMLSS model diagnostic plots. (a) residuals histogram showing Normality, (b) Autocorrelation 
Function (ACF) distribution, and (c) constant variance plot of residuals testing for error heteroscedasticity. 

 

Model Cross Validation 

The variability of the predicted RMSE and R2 skill measures during cross-validation 

are shown as boxplots in  Figure 4.7. The relatively large variability in R2 and RMSE is to be 

expected since the extremes cannot be modelled well without including them in the model 

fitting. The spread of both the skill indicators illustrates that the model is best applied to 

prediction within the original sample range and is least efficient in predicting extreme 

values of annual repair/replacement severity. The R2 values of the cross-validation models 

ranges from approximately 0.1 to 0.8. and reflects the possibility that in each simulation 

some number of extreme values could be dropped resulting in under- or over-prediction of 

annual repair severity. However, the low median RMSE value of approximately $134 
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indicates that a significant portion of the predictions differ only slightly from the annual 

repair severity observations even after dropping 15% of the data. 

 

Figure 4.7 Skill of Wiebull model of annual repair severity model skill as distributions of R2 (a) and RMSE (b) of 
iterated regressions with 15% of observations dropped RMSE in hundreds of dollars. 

 

Model Sensitivity to Cost Estimates 

Table 4.2 has the results of the sensitivity analysis comparing the original simulation 

(model I), based on the average cost in each repair category to results from simulations 

using cost estimates in models II and III. The covariates consistently associated with annual 

repair severity are UP, PT, PS and the interaction between the number of upgrades and 

property transfer inspections (UP:PT). Additionally, their influence on the likelihood of a 

high cost annual repair severity is consistently negative with one exception in model II 

where the likelihood of a high annual repair severity increases with an increased number of 

system upgrades. As the severity weighting is shifted using higher repair cost estimates, 
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some of the covariates relevant in the initial GAMLSS model, e.g., LA, become insignificant 

to determining annual repair severity. However, the coefficient estimates of those variables 

in the initial model (model I) are approximately zero indicating that even in the initial 

model they have a lesser influence on annual repair severity than the highlighted more 

robust variables. Figure 4.8 shows the adjusted annual repair severity distributions based 

on the different cost estimates as well as the representative Weibull fit to each distribution.   

 

Figure 4.8 Estimated cost distributions for Models I, II and III and their Weibull representation. 
 

Figure 4.9 illustrates the sensitivity of the residuals of the GAMLSS model to changes in cost 

estimates. Positive residuals in Figure 4.9 indicate an overestimation of annual repair 

severity; whereas, negative residuals reveal an underestimation of repair/replacement 

costs. Residuals based around zero demonstrate where the predicted value is close to the 

real annual repair severity value. 
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Figure 4.9 Sensitivity of model skill to repair cost estimates used to calculate annual repair severity. Model I is 
the original Weibull regression using the average of BCPH cost ranges for all repair categories; Model II is the 
Weibull regression substituting a higher cost estimate for major repairs; Model III is the Weibull regression 
with the higher cost estimate for all three categories of repairs.  

 

In general, both positive and negative residuals increased along with cost estimates for 

both major and all repairs implying greater uncertainty in predictions of repair severity. 

This is not unexpected as the predicted annual repair severity values also increases as a 

function of higher costs.  

 

DISCUSSION  
 

Public Good theory provides a policy framework for recommending increased 

regulation of OWTS (Mohamed, 2009). Health and environmental impacts of appreciable 

levels of OWTS failure and repair, aggravated by the growing density of these systems, is 

additional motivation for new regulations requiring regular inspection and maintenance. 
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However, new regulations have associated costs for both individual owners and for local 

health departments charged with maintaining records and processing permits.  Results of 

this study provide data-based support for mandatory inspections that reduce repair 

frequency and cost over the OWTS life, and a credible estimate of the benefits of increased 

oversight.  In fact, the predicted benefit of inspections is conservative, since the Boulder 

County inspection/repair requirement only takes effect when a property is transferred. It 

may well be the case that a universal requirement for regular OWTS inspections through 

means such as a renewable permit would have an even larger benefit in improving OWTS 

reliability. 

Two factors, SV and LA, have been considered as indicators of household affluence 

(Harlan et al., 2009). The GAMLSS model showed a slight positive association of both with 

annual repair severity. Interestingly, this result goes against the common assumption that 

an increased ability to pay increases the likelihood of homeowner attention to maintenance 

and system performance. This counterintuitive result could be attributed to the location of 

these homes. In Boulder County many larger high-value homes outside POTW service areas 

are located in mountainous areas far from maintenance services. Some may have soil 

treatment units located in terrain where a failure may not be noticed by either residents or 

neighbors. Additionally, more expensive homes may be sold less often, so that structural 

value is negatively related to mandatory inspections.  

Finally, UP was associated with a decrease in predicted annual repair severity for 

OWTS. One explanation is that when a home’s size is increased through remodeling and 

construction, the County requirement for expanded or appropriately upgraded systems 

would have an effect similar to property transfer inspections resulting in less frequent and 
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less severe repairs. The relationship suggests that increasing system capacity also may 

benefit performance. 

While individual variables such as inspections and repairs associated with property 

transfers, sales after 2008 and system upgrades decrease the likelihood of a high annual 

repair severity, inclusion of combined variables, especially those containing post-2008 

property transfers, improved the Weibull model skill.   An interaction between individual 

variables with the same influence on the likelihood of a high annual repair severity 

amplifies those individual performance effects and increases the overall skill of the model. 

However, the small coefficient values for some of the combined variables such as structural 

value and regulated property transfers indicates that their effect on the expected value of 

annual repair severity was small. In general, LA and SV in combination with PT allow the 

model to discriminate between what might be considered a moderate range and a high 

range of annual repair severity values. While removing the two variables is an option given 

their p-values, they not only improve the skill of the model but also minimize GAIC 

compared to model versions without them. This indicates that while household affluence 

may not directly relate to annual repair severity, both indicator variables provide a non-

arbitrary amplification of the highly significant covariate, PT, and capture the non-linear 

effect of the interaction on OWTS performance. 

Some spatial clustering of OWTS repair severity (Figure 4.5) and autocorrelation of 

residuals (Figure 4.6) suggest that not all factors determining OWTS failure are captured in 

the Weibull regression. Both geographic clustering and autocorrelation may be explained 

by factors such as weather, soil and groundwater conditions, distance from OWTS servicers 

and from other residences. As an attractive extension of this research, the relationship 
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between OWTS repair severity and location can be explored using spatial modeling of the 

GAMLSS model residuals in a hierarchical modeling approach or a Bayesian method (e.g., 

Verdin et al., 2015). Another potential extension of this study exists in the discretized 

characteristic of the data (Figure 4.2), which lends itself to a categorical modeling approach 

using a binomial or multinomial logistic regression analyses (e.g., Towler et al., 2013) to 

estimate risk, particularly quantifying the likelihood of high repair severity occurrences.  

 

SUMMARY  

As the use of owner-operated on-site sanitation technologies increases, life cycle 

costs and long-term sustainability, including environmental and health impacts become 

more relevant to reducing the risk of human and environmental exposure to wastewater 

contaminants. This research identified factors unique to minimally regulated OWTS that 

may guide future planning to enable better OWTS management over the system life. In the 

absence of comprehensive monitoring data, the product of the cost and frequency of 

system repairs and replacement, annualized over a 40-year lifetime, denoted as “annual 

repair severity”, is proposed as a measure of system failure. Data from 120 OWTS in 

Boulder County, Colorado are fit by regression (GAMLSS) modelling, with the best fit 

provided by the Weibull distribution. In general, variables associated with conscientious 

owner management of OWTS were predictive of long-term system integrity. The most 

important was the frequency of inspections by professional servicers, typically 

accompanied by maintenance and minor repairs. This result suggests that mandatory 

inspections through a mechanism such as renewable permits would significantly reduce 

life cycle repair/failure frequency and severity, lowering OWTS costs to owners and 
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reducing public exposure to wastewater contaminants. The statistical model is skilled at 

predicting repair severity in the mid-range of the data distribution with an expected annual 

repair/replacement cost between $350 and $400 per year, over the 40-year life cycle. The 

observed and modelled annual repair severity values were correlated with an R2 value of 

0.406, with larger discrepancies at the high values of annual repair severity, which fell in 

the range of $600 to $800 per year. The model dependence on inspection frequency as a 

principal determinant of repair severity was not sensitive to the cost estimates assigned to 

each category, indicating general applicability of the model results.  
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CHAPTER 5: MODELING RISK OF FAILURE USING EXTREME VALUE ANALYSIS 
 
 
Kohler, L., Silverstein, J. and Rajagopalan, B. (Out for Review) Risk-Cost Estimation Of On-
Site Wastewater Treatment System Repairs Using Extreme Value Analysis. Water 
Environment Research.  
 
 
Key words: on-site wastewater treatment systems, failure risk, extreme value analysis, 
decision analysis 
 

 

ABSTRACT 

Owner resistance to increasing regulation of on-site wastewater treatment systems 

(OWTS), including obligatory inspections and upgrades, moratoriums and cease-and-desist 

orders in communities around the U.S. demonstrate the challenges associated with 

managing risks of inadequate performance of owner-operated wastewater treatment 

systems. As a result, determining appropriate and enforceable performance measures in an 

industry with little history of these requirements is challenging. To better support such 

measures, we develop a statistical method to predict lifetime failure risks, expressed as 

costs, in order to identify operational factors associated with costly repairs and 

replacement. A binomial logistic regression is used to fit data from public records of 

reported OWTS failures, in Boulder County, Colorado, which has 14,300 OWTS.  High-

performing OWTS with repairs and replacements below the threshold of $9,000 over a 40-

year life are associated with more frequent inspections and upgrades following home 

additions. OWTS with a high risk of exceeding the repair cost threshold of $18,000 are 

analyzed in a variation of extreme value analysis (EVA), Points Over Threshold (POT) 

where the distribution of risk-cost exceedance values are represented by a generalized 
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Pareto distribution. The resulting estimated costs for OWTS in the high-risk category over a 

40-year expected life ranged from $18,000 to $44,000.  

 

INTRODUCTION 

Over the next 20 years, the U.S. EPA estimates $122 billion and $148 billion in 

funding shortages for capitalization of new wastewater infrastructure and continued 

operation and maintenance of existing facilities, respectively (EPA 2002a). The gap in 

available funds in part may account for greater interest in more decentralized wastewater 

treatment, including user operated on-site wastewater treatment systems (OWTS), as a 

permanent part of sanitation infrastructure planning both in the U.S. and globally. In the 

U.S., approximately 25% of the population is currently served by OWTS, and 30% of new 

housing developments have OWTS.  

In regions of the U.S., wider application of OWTS technology has been accompanied 

by greater expectations of performance and consideration of new regulations that 

recognize the risks of denser networks of OWTS (e.g., State of Colorado recommended 

transfer of title inspection and renewable permit policy for County level adoption and 

control (Colorado Department of Public Health and the Environment, 2013), State of 

California Proposed New Statewide Policy (California Water Boards, 2011) officially 

adopted in 2012 (California Water Boards, 2012)). Yet in spite of well-developed on-site 

wastewater technologies, the U.S. Census Bureau estimated OWTS failure rates between 

10% and 20% (EPA 2002b), while in some individual states failure rates are upwards of 

50% (Nelson, Dix and Shepard 1999).  
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Existing risk management 

OWTS primarily rely on oversized septic tanks and soil treatment units to produce 

extended waste residence times that enable slow processes like fine-particle sedimentation 

and ambient temperature anaerobic digestion for the separation and transformation of 

contaminants, especially pathogens, with no energy or mechanical inputs (Crites and 

Tchobanoglous 1998). However, OWTS conditions are highly dynamic on multiple time 

scales of days, months, seasons, and years, and even conservative designs are unlikely to 

obviate the resulting variability of OWTS performance, especially over the longer time scale 

associated with factors such as solids overflow, loss of tank integrity, and clogging of the 

soil treatment unit (STU) (McKinley and Siegrist, 2011). Furthermore, under the historic 

paradigm that OWTS serve isolated rural residences the environmental and public health 

risks associated with either intermittent service disruptions or even catastrophic failure 

are assumed to be managed through dispersion and dilution. Yet, with increasing use, the 

aggregate impact of denser networks of OWTS may in fact be comparable to or exceed that 

of centralized facilities, especially when considering poorly removed constituents such as 

nutrients. 

Technological advances may reduce some OWTS performance variability, but those 

advances alone have not addressed failure rates observed in systems that meet design 

standards. Safe on-site storage, transformation and disposal of fecal waste require 

knowledge of how factors such as monitoring, inspection, maintenance, costs and owner 

knowledge influence performance. These owner-dependent operational factors are 

different from design and permit-based standards but greatly influence the functionality of 

OWTS (D’Amato et al., 2008).  
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Although OWTS are often characterized as passive processes requiring infrequent, if 

any, operation and maintenance, regular maintenance activities such as pumping solids, 

repairs and replacements require owner management. In addition to logistical demands, 

financial responsibility falls on individual residents. Unlike centralized collection and 

treatment systems, there is no mechanism for distributing the costs of significant repairs or 

replacement. For example, if a catastrophic failure occurs in a centralized service, the 

connection fee and monthly rates often include anticipated system repairs and 

replacements. In the event these are exceeded, public utilities are able to issue tax-

guaranteed bonds and while wastewater rates may increase, the cost is still spread over a 

larger number of ratepayers and over time. Pearson (2007) reported that residential 

customers of very small community water systems serving 25 to 100 people paid 89% of 

the revenue for operations, while residents served by larger systems with more than 

100,000 people paid only 50% of the operating revenue. If an OWTS fails, 100% of the cost 

of replacement falls on a single homeowner—typically as a lump sum cost.  

Some home insurance policies may cover damage as a result of surfacing effluent, 

but rarely pay the costs for repair and replacement of OWTS components. Special policies 

covering septic system repair cost hundreds of dollars per year and do not cover many 

failures or repairs due to extreme weather, neglected maintenance, construction accidents 

or misuse (Pro-SeptTM, 2014).  In any case, the financial risk of failure is transferred to the 

homeowner with or without insurance. Moreover, the likelihood of choosing to purchase 

insurance is further reduced without a clear understanding of the financial risks and 

effective avoidance measures. 
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The risk of one or more high-cost repair has been defined for other systems as the 

product of the probability of loss of service and the consequence. In the case of an essential 

service such as an OWTS, a monetized consequence is the dollar amount for system repairs 

and/or replacements (Pinkham et al., 2004; Fane et al., 2004). In previous research we 

found an association between more frequent OWTS maintenance and the annualized cost 

of lifetime repairs (Kohler et al., 2015). However, there is a strong incentive for 

homeowners to postpone even basic maintenance services because they are costly, failures 

in subsurface components are not apparent, and OWTS are not subject to monitoring and 

reporting regulations. Public education may encourage owners to be proactive in managing 

their OWTS, but the combination of the economic disincentive and the belief that an 

individual system failure had little impact on others outweighs persuasion in many 

instances (Mohamed, 2009). 

 

Study objective 

From an asset management standpoint, a goal for decentralized wastewater services 

is to install and manage systems that deliver treatment to protect receiving water quality for 

the lowest overall cost (AMSA, 2002). Many of these, including design, manufacturing, 

installation, routine maintenance, and salvage, may be reliably estimated based on known 

equipment costs and professional service fees. However, the likelihood of OWTS failures 

over the system life and the associated costs – a so-called risk-cost model, does not exist. In 

a study of OWTS near the Chesapeake Bay, asserted the benefit of moving away from 

lumped safety factors to account for performance uncertainty and measure reliability 
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towards a more objective way of assessing and communicating risk to stakeholders and 

assigning financial responsibility (Gujer, 2006). 

The goal of this study is to quantify risks of OWTS service disruption and enable 

incorporation of risk associated OWTS failure as a factor in land use planning, regulatory 

activities and owner engagement.  In previous research, we showed that a statistical 

approach using Generalized Additive Models for Location, Scale and Shape (GAMLSS) fit to 

data from OWTS repair permit applications, system inspection documentation, and tax 

assessor’s information in Boulder County, Colorado was able to predict life cycle 

repair/replacement costs for a county-wide OWTS sample (Kohler et al., 2015). However, 

the GAMLSS model skill was relatively low in modeling cost-based failure risks at the 

extreme ranges of the sample for either the poorest (highest risk) or best (lowest risk) 

performing systems. Yet characterizing the risk factors for these two populations may have 

the greatest value for risk communication and decision-making, especially decisions by 

owners who assume the burden of a cost-based risk. We therefore apply extreme value 

analysis-peak over threshold (EVA-POT) analysis of the Boulder County OWTS data to 

improve the estimates of risk at the extremes of OWTS failure profiles.  The risk model also 

provides an economic basis of comparison with other sanitation/wastewater management 

technologies incorporating uncertainty. Finally, many OWTS failures such as STU clogging, 

ponding, overflow and septic tank leakage represent uncontrolled release of contaminants 

to the environment and/or human exposure. While quantifying discharges from failing 

OWTS is beyond the scope of this study, the cost-based risk model may provide a 

secondary measure of water quality and health impacts.  
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METHODS 

Data  

The input data consisted of coded OWTS permit information, including repair and 

replacement documentation, residence descriptions and assessed value for 120 sites 

described in an earlier paper (Kohler et al., 2015). The geographical distribution of the 120 

systems encompasses the full range of topographic and demographic characteristics of the 

Boulder County, and represents an overall OWTS population of 14,300 OWTS.  

 

Variable definition 

Dependent variable  

For this study, the product of frequency and magnitude (costs) of repairs over the 

period of record forms the performance measure. While not all repairs are associated with 

a failure and/or contaminant release, exceeding some lifetime cost of repair implies 

performance instability sufficient to trigger significant intervention by County Health 

Department staff and/or certified OWTS servicers.  

Each County record of a repair is classified by severity into minor, moderate, and 

major categories, following the determination of BCPH staff, and assigned an associated 

cost based on the County’s posted estimates for the various categories of repairs, as 

described by Kohler et al. (2015). The dependent variable, repair severity, is the sum of all 

repair costs over a service life of 40 years, which is the sample average number of years 

from the final inspection date on the installation permit to the date of the most recent 

recorded failure. Other researchers have suggested that a 40-year life cycle captures 
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approximately 80-90% of the range of wastewater infrastructure expenditures for initial 

capital and major replacement costs (Pitterle, 2009). 

Figure 5.1 shows the histogram of the total repair severity variable along with a 

kernel density estimation of the probability density function. Although, the continuous 

distribution is shown, the data has clear grouping with approximately 60% of the sample 

with repair severity value estimated at approximately $15,000 over the 40-year service 

life.  Visually, threshold values of < $9,000 and > $18,000 were used to define the high- and 

low-risk subpopulations that have extreme values of repair severity.  The high- and low risk 

extremes were represented by a subset of 17 and 24 systems, respectively. The basis for 

the choice of these thresholds is described in the Extreme Value Analysis section. 

 

Figure 5.1 Distribution of OWTS repair severity data measured as cost (USD) of the 120 sample observations.  
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Independent variables 

From the Boulder County Assessor’s 

Tax database, property inspection 

documents, and repair/replacement 

applications, ten independent variables were 

used – which are described in Kohler et al. 

(2015); and also listed in Table 5.1 along with 

their abbreviations. The independent 

variable data for each OWTS were coded and 

stored with the corresponding repair severity 

values, and a unique location based on the latitude and longitude of the land parcel. 

 

Extreme Value Analysis  

Extreme Value Analysis (EVA) is used to model extreme events (Coles, 2001), i.e. the 

events in the tails of the distribution, which are often underestimated by regression 

techniques that rely on the exponential family of distributions. One EVA model, Peaks-

Over-Threshold, is used to model events that are outside a selected threshold. Once a 

threshold is selected two components are modeled - (i) the probability of exceedance (over 

or under) the threshold and (ii) the magnitude of exceedance. The probability of 

exceedance is modeled using a logistic regression – which is a Generalized Linear Model 

(GLM), and a Generalized Pareto Distribution (GPD) for the magnitude of exceedance, 

together forming the method EVA-POT (Coles, 2001). These two components are described 

below. 

Table 5.1 Independent variables hypothesized 
to influence OWTS performance risk. 

 

Variable  Symbol 

Property transfer inspections PT 

Property sales (after 2008) PS 

Property sales (before 2008) EPS 

Loan inspections LI 

Water supply WS 

Structural value SV 

Living area LA 

Change in bedroom count RC 

Change in bathroom count BC 

Upgrades UP 
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The cumulative distribution function of the GPD for values exceeding the threshold, 

μ, is specified by three parameters:  location, 𝜇 – the threshold, scale, 𝜎, and shape, 𝜉. 

Generally, the cumulative distribution function of the GPD is: 

𝐹(𝜉,𝜇,𝜎)(𝑥) = {
1 − (1 +

𝜉(𝑥)

𝜎
)

−1 𝜉⁄

 𝑓𝑜𝑟 𝜉 ≠ 0

1 − exp (−
𝑥

𝜎
)          𝑓𝑜𝑟 𝜉 = 0

             (1)  

 The threshold can be user-specified - e.g. one with significance in a decision-making 

context or it can be selected in a quasi-objective manner.  In the latter, different thresholds 

are selected and for each, the scale and shape parameters are estimated. The parameters 

are plotted against the threshold value and the region where the parameters remains 

stable is used to select the threshold. Selecting a threshold that is both relevant to the user 

and falls with the stable region of the plot is preferred (Coles, 2001).  

The threshold converts the observed data, in this case the repair severity cost, to a 

binary series of 0 and 1, with one representing an exceedance event. This binary response 

variable series is modeled as a Poisson process or logistic regression (Coles, 2001) as a 

function of covariates (independent variables). We use the logistic regression, which is one 

of the GLMs (McCullagh and Nelder, 1989) with a Binomial parent distribution:  

G(𝐸(𝑌𝑖 𝑛𝑖⁄ )) = 𝐺(𝑝𝑖) = 𝑋𝛽 + 𝜀         (2) 

where G(.) is the logit link function, X is the set of predictors or independent variables, 

E(Yi/ni ) is the expected value of the proportion of Yi taking on the value one (also referred 

to as pi or the probability of event i),  and ε is the error, assumed to be normally distributed. 

G(.) takes the form:  

𝐺(. ) = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log (
𝑝𝑖

1−𝑝𝑖
)            (3) 
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The best combination of logistic regression predictors is selected based on minimizing 

Akaike Information Criteria (AIC), which is a standard approach (Akaike, 1974). 

The performance of the logistic regression model, which estimates the probability of 

the two categories is typically quantified using the Brier skill score (BSS). BSS is a special 

case of Ranked Probability Skill Score (RPSS), which is widely used to evaluate weather and 

climate forecasts (Weigel et al., 2007). BSS takes the form: 

𝐵𝑆𝑆 = −
𝐵𝑆−𝐵𝑆𝑟𝑒𝑓

𝐵𝑆𝑟𝑒𝑓
            (4) 

which specifies the mean-squared error of probability forecasts (BS) for a dichotomous 

event compared to a reference forecast (BSref ), also referred to as constant climatology 

forecast, which is often an unskilled estimate of the outcome. The constant climatology or 

unskilled forecast is the proportion of the sample count in each risk category. For example, 

the proportion of OWTS in the high risk category, above threshold, is (17/120) and that of 

the lower risk, below threshold, is 103/120.  The BSS can take on values from – ∞ to 1; a 

BSS of 1 indicates perfect forecast, a value of 0 indicates the model is no better than the 

constant climatological or unskilled forecast and negative values indicate worse 

performance (Brier, 1950).  

 To capture non-stationarity of the magnitude of exceedance, the parameters of the 

GPD can also be allowed to vary as a function of independent variables or covariates. It is 

common to vary the scale parameter using a GLM of the form: 

log(𝜎(𝑥)) = 𝛽0,𝜎 + 𝛽1,𝜎𝑥1 + ⋯ + 𝛽𝑛,𝜎𝑥𝑛                                                                          (5) 

where the variables x1, x2, …, xn are the covariates which can include time in order to 

consider a temporal trend, and β are the coefficients. The shape parameter is generally not 
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varied as it tends to be sensitive especially for short data sets with variability, but it too can 

be varied if desired (Katz et al., 2002). 

The best combination of covariates for the GPD parameter is selected based on 

likelihood ratio test (Katz et al., 2002; Gilleland, 2015). In this, the likelihood value is 

calculated for two candidate models and compared using a theoretical F-distribution for 

significance to select the better model. This is repeated until for possible pairs of models 

and the last model left standing is the best.    

The EVA-POT method has been applied to model hot spells and heat waves (e.g., 

Furrer et al., 2010; Khaliq et al., 2005) and in stochastic weather generators (e.g., Furrer 

and Katz, 2007) to generate precipitation extremes. 

Risk models such as those described by Young and Belz (2003) and CSIRO Urban 

Water (2003) have been developed for centralized water and wastewater asset 

management. These models estimate the risk of pipe failure under various management 

scenarios (Pinkham et al., 2004). We employ an analogous method to evaluate risk and 

performance uncertainties over a defined time period for OWTS infrastructure. For each 

facility the estimates of the categorical probability combined with the expected value of the 

GPD, from the EVA-POT analysis, can be combined to estimate the expected risk. 

 

RESULTS  

The EVA-POT was implemented in the statistical programming language R (R Core 

Team, 2013), using specifically the extRemes package and library (Gilleland and Katz, 

2011). The selection of thresholds is first presented, followed by the probability of 

threshold exceedance considering both the lower and upper thresholds to identify user 
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operational factors characteristic of well- and poorly- performing OWTS. Lastly, the 

magnitude of threshold exceedance associated with high risk OWTS is presented along 

with the financial risk in terms of dollars lost due to frequent and severe system repairs 

and failures.  

 

Repair Severity Cost Thresholds  

Lower Threshold  

Figure 5.2a shows that the shape and scale parameters for the low risk OWTS are 

stable for expected 40-year repair costs of approximately $9,000 and the data exhibits a 

break around this value, thus, we selected this as the lower threshold. The monthly 

wastewater utility charge for the City of Boulder provides a basis of comparison for the 

OWTS annual repair severity threshold values. The current wastewater utility billing rate 

for City residents is $5.76 per 1,000 gallons of water use, based on an “average winter 

consumption” (AWC) scale, which omits most outdoor use (City of Boulder, 2015). For 

Boulder, the AWC for a household is approximately 5,000 gallons/month (Mayer et al., 

1999) producing a bill of $28.80/month or just over $345 per year. The City wastewater 

rate reflects a recent increase for capital cost of collection system replacement, and also 

includes costs of capital bond servicing and is therefore not precisely comparable to OWTS 

repair costs, which do not include the cost of initial installation. However, in comparison, 

the low severity threshold of $225 per year, 35% below the local average wastewater 

utility rate, appears to be a reasonable indicator of a low risk-cost OWTS.  
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Figure 5.2 Analysis of model parameters given different thresholds for the POT method. (a) Lower-end repair 
severity threshold evaluation. (b) Upper-end repair severity threshold evaluation. The threshold axis is in 
thousands of U.S. dollars. 

 

Upper Threshold  

For the upper (high risk) threshold the stable region appears to start at ~$18,000 

(Figure 5.2b), and includes approximately 15% of the Boulder County OWTS sample. The 

high risk-cost threshold ($450/year over a 40-year life) is 30% higher than the local 

average wastewater utility service rate.  

 

Threshold Exceedance Probabilities 

In determining risk, we considered both the probability of being below the lower 

repair severity threshold and above the upper threshold to identify those owner 

maintenance practices and residence attributes (referred to in Kohler et al., 2015) and their 

influence on well- and poorly- performing OWTS. 

The best binomial logistic regression models for the lower and upper thresholds 

were obtained separately and are shown in Tables 5.2 and 5.3, respectively. Referring to 
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Tables 5.2 and 5.3, the estimate column indicates the change in the log-likelihood of a low- 

or high- risk category of repair severity, given unit changes in the relevant explanatory 

variables. For ease of interpretation we use the risk ratio or odds ratio which is the ratio of 

the probability of the risk category versus the non-risk category, these are show in the risk 

ratio columns of Tables 5.2 and 5.3. Odds ratio values less than 1 decrease the odds of the 

OWTS being in the risk category, while values greater than 1 increase the likelihood. For 

example, a unit increase in the number of bedrooms added (RC) to the home decreases the 

likelihood of being below the low threshold or being in the lowest risk category while it 

increases the likelihood of repair costs exceeding the high repair severity threshold. The 

significance of increasing house size it supported by the result that relationship for RC is 

consistent for the high- and low-risk models. An increase in sales after 2008 accompanied 

by a certified inspection (PS) and property transfer inspections (PT) over the 40-year 

period respectively decreases the risk of high OWTS repair and replacement costs (Table 

5.3) and increase the likelihood of OWTS falling in the low risk population (Table 5.2), also 

a consistent result for the high- and low-risk regression models.  

 
Table 5.2 Binomial logistic regression model coefficients, odds ratios, and model significance to determine 
likelihood of an OWTS being experiencing low repair severity costs. The p-values indicate that each of 
variables is significant at > 90%. 

 
Coefficients 

 Variable 
Notations 

Estimate Odds Ratio Pr(>|z|) 

(Intercept)  -1.42   <0.001 
Change in No. Bedrooms RC -1.25 0.30   0.082 
No. Property Transfer Inspections PT 2.10 8.20   0.002 
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Table 5.3 Binomial logistic regression model coefficients, odds ratios and model significance that are 
characteristic of exceeding a high repair severity cost threshold. The p-values indicate that each of variables is 
significant at levels of 88% or above 

 
Coefficients 

 Variable 
Notations 

Estimate Odds Ratio Pr(>|z|) 

(Intercept)  -2.46  <0.001 
Change in No. Bedrooms RC 0.60 1.82   0.121 
Property Transfer Before 2008 EPS 0.33 1.39   0.082 
Property Transfers After 2008 PS -1.65 0.19   0.121 

 

Model Skill and Cross-validation 

Figure 5.3 demonstrates the skill of the logistic regression models. Figure 5.3a shows 

the histogram (i.e. distribution) of the model estimated probability of being below the low 

repair severity threshold for the subset of OWTS observed in the low risk category, while 

Figure 5.3b illustrates the probability distribution for exceeding the high-risk threshold for 

the subset of systems observed in the high risk category. The vertical red line in each 

histogram of specifies the constant climatological or unskilled estimate based on the 

portion of the total OWTS population in the low- and high- risk categories. The 

climatological probability for the low-risk category is 0.2, suggesting that an OWTS has a 

20% chance of being in the low risk category based purely on the sample fraction. For the 

high-risk model the climatology is 0.14 or a 14% chance of being in the high-risk category. 

The fact that the bulk of the distribution of model predictions of cost risk are below 0.2 for 

low-risk systems and above 0.14 for the high-risk population, confirms that the chance of 

incurring either significantly lower or higher lifetime repair costs is not random and 

moreover is accounted for by the two covariates noted above. The calculated BSS for the 
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low- and high- risk models are 0.61 and 0.70, respectively, supporting the graphs in Figure 

5.3. 

(a)          (b) 

 

Figure 5.3 Each histogram illustrates the forecasted probability of being below the low (a) and above the high 
(b) repair and replacement cost threshold for the subset of OWTS actually observed as low- and high- risk, 
respectively. The red line specifies the constant climatology for each model as a reference for communicating 
each model’s performance.  
 

 

To evaluate the regression model’s performance in a predictive mode or on 

independent data set - 15% of the observations are dropped at random. The models are 

fitted on the rest of the data and the dropped points are predicted. The BSS is then 

computed for the predictions. This method is also known as drop-15% cross validation. A 

thousand cross validation simulations were performed and the BSS values are displayed as 

boxplots in  Figure 5.4.  The median BSS value close to 1 for both models illustrates each 
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model’s ability to forecast OWTS risk better than an unskilled or average estimate of risk of 

20% and 14% for the low risk OWTS and high risk OWTS, respectively. However, the 

variability of each model’s predictive skill is apparent. The spread in the BSS values 

suggests the need to include additional variables in the model. For instance, OWTS 

location-related factors that may contribute to some of the model uncertainty are not 

incorporated. However, both logistic models show good predictive skill and thus are useful 

for identifying high-risk systems or clusters of systems to target management strategies 

using a risk-based approach.  

 

Exceedance Magnitude for High-Risk OWTS  

Whereas the operational characteristics of OWTS below the lower threshold offer 

information about how homeowners might mitigate their risk, OWTS above the upper 

threshold and their estimated magnitude of threshold exceedance provide a means to 

communicate OWTS performance risk to homeowners paying for OWTS repairs and 

replacements and to planners making risk-informed decisions. Therefore, for the 

exceedance magnitude we show results only for the sample set exceeding the upper 

threshold. 

The degree to which an individual OWTS exceeds the repair and replacement cost 

threshold offers a means to estimate the consequence of performance uncertainty or risk 

through financial range of costs associated with poorly-performing OWTS. Based on the 

$18,000 repair and replacement cost threshold, the OWTS repair severity cost exceedances 

where modeled using the GPD, described in the previous sections. The best model for the 

scale parameter of the GPD, based on the likelihood ratio test is shown in Table 5.4 – the 
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AIC and BIC values for all the eight combinations are also shown confirming the best model 

with the minimum values of these criteria.   

Table 5.4 The scale parameter of the GPD was related to various independent variable combinations while the 
shape parameter was held constant. The GPD that minimized both the AIC and BIC was selected as the ‘best 
fit’ model. 

 
Variables combinations making up the scale parameter of the GPD  AIC BIC 

Null (a) 82.24 83.21 
RC (b) 84.24 85.69 
RC + PT (c) 86.24 88.18 
RC + PT + PS (d) 88.24 90.67 
PT + PS (e) 86.24 90.67 
PT*PS (f) 88.24 90.67 
PT*PS + SV + LI (g) 58.58 61.98 
PT*PS +SV+ LI + EPS (h) 74.60 78.48 

 
The scale parameter of the GDP for the best-fit model is a function of the product of 

the number of property transfer-related inspections (PT) and property sales after 2008 

when inspections were mandated (PS), along with 

home structure value (SV) and loan inspections 

(LI) (see configuration (g)). No property had more 

than one required inspection after 2008; however 

even one inspection had a clear beneficial impact 

on approximating the repair severity cost 

distribution with more certainty. The four variable 

combinations enable the model to predict the 

magnitude by which each system exceeds the 

$18,000 repair and replacement cost threshold with more accuracy, i.e. produces a 

narrower range of costs. For each OWTS the scale parameter is estimated from the above 

model and thus, the corresponding GPD, from which the median threshold exceedance 

repair cost is estimated. The boxplot in Figure 5.5 shows the quartile distribution of 

 

 
Figure 5.5 Median threshold exceedance 
cost (in USD) from the GPD distribution for 
each OWTS. 
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magnitude from each OWTS 

exceedance distribution, with a 

median value of over $15,000, or a 

median total cost risk of over 

$33,000 in lifetime repairs. The 

quantile-quantile (Q-Q) plot of the 

historic repair costs versus the 

model estimates are shown in Figure 

5.6, along with the unit slope line 

and confirm the predictive skill of the GPD model.   

 

Cost-based Risk for High Risk OWTS 

Regulation of OWTS management over the system life is a substantial change to the 

approach of existing regulation in the U.S. Public resistance to new regulations, such as 

obligatory OWTS upgrades, moratoriums on installation of new systems, and in extreme 

cases cease-and-desist orders demonstrate the challenges associated with communicating 

residential and community level OWTS performance risks (e.g. State of California: Bolina 

(Bolinas Community Public Utility District (BCPUD), 2001; 2011) Monte Rio (Kahn, 2007); 

State of Colorado: Eldorado Springs (Oulton, 2001; Bain, 2002). As a result, determining 

appropriate and enforceable performance measures in an industry that has been long 

established to focus on equipment design, siting and installation is challenging. Households 

that have always been connected to OWTS may be motivated to push back on new 

regulations that interfere with how they maintain their systems, especially if they add cost. 

 
Figure 5.6 Quantile-quantile plots for the ‘best-fit’ POT model 
where the scale parameter of the GPD is a function of property 
transfer inspections, property sales after 2008, structural value, 
and the number of loan inspections (see (g) in Table 5.4).  
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Therefore the ability to evaluate the benefits and costs of regulatory changes and provide 

support for community planning decisions is useful to public health agencies, owners and 

the public.  

Combining both the binomial logistic regression and the GPD model provides a basis 

for communicating the risk of financial losses due to OWTS repairs and replacement. The 

probability of exceeding the high repair severity threshold from the binomial logistic 

regression multiplied by, for example the median value from the GPD exceedance 

magnitude distribution, specifies the risk of the system in terms of dollars lost. The 

combined model not only predicts the number of repair severity threshold excesses in a 

community but also enables a planner to approximate with some degree of certainty the 

range of repair and replacement costs associated with the exceedance. Together the 

frequency and cost specify the distribution of risk for each system. Risk-costs in addition to 

common life cycle cost serve as tool to enable a quantitative comparison of WWTPs of 

different sizes and scales. Figure 5.7 illustrates financial loss distribution for the 120 OWTS 

in Boulder County based on the model compared to the actual financial losses due to 

system repairs and replacements. The expected financial loss is calculated as: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 = 𝑝1 ∗ ($18,000 + 𝑒𝑥𝑐) + 𝑝0 ∗  𝑛𝑜𝑛𝑒𝑥𝑐     (6) 

where p1 is the probability of exceeding the high-cost threshold, exc is the median cost by 

which the repair/replacement cost is estimated to exceed the $18,000 cost threshold, and  

p0 is the probability of not exceeding the threshold multiplied by the consequence of non-

exceedance, nonexc. The actual repair severity costs range between $3,066 and $18,000; 

therefore, three levels of non-exceedance where used for comparison and seen in Figure 

5.7. 
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 Figure 5.8 shows the spatial distribution of the expected losses predicted for each 

OWTS in the sample. Interestingly, clusters of high-risk OWTS are located in two 

neighborhoods, Eldorado Springs and near Crestview Estates subdivision (BCPH, 2004, 

 

5
1
0

1
5

2
0

2
5

3
0

(a)

E
x
p

e
c
te

d
 R

e
p

a
ir
 S

e
v
e

ri
ty

 (
T

h
o

u
s
a
n

d
s
 o

f 
U

S
D

)

(b) (c)

5
1
0

1
5

2
0

2
5

3
0

(d)

A
c
tu

a
l 
R

e
p
a
ir

 S
e
v
e
ri

ty
 (

T
h
o

u
s
a

n
d

s
 o

f 
U

S
D

)

Figure 5.7 Based on the median cost 
prediction from the GPD, the left boxplots 
illustrate the spread of the expected 
financial losses for the 120 OWTS in 
Boulder County. The financial loss is 
calculated as the probability of exceeding 
the high-cost threshold multiplied by the 
magnitude of the exceedance plus the 
probability of not exceeding that threshold 
multiplied by the magnitude associated 
with non-exceedance. Boxplot (a) uses the 
lower-end magnitude of non-exceedance = 
$3,066, (b) uses the median magnitude = 
$9,000, and (c) applies the high-end 
magnitude associated with not exceeding = 
$18,000. The right boxplot shows the 
actual repair severity distribution for the 
OWTS sample. 

 

 

Figure 5.8 Spatial plot of OWTS in Boulder 
County and each system’s expected financial 
loss based on the probability and financial 
consequence of exceeding the high-end 
threshold in addition to the probability and 
consequence of not exceeding the threshold. 
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2016). Boulder County identified both areas as high-risk based on risk factors such as age, 

density, slope and undocumented performance of OWTS in those areas. The figure also 

demonstrates the model’s potential for targeting OWTS performance-based management 

strategies as well as longer term sanitation planning decisions. 

Since inspections and resulting minor repairs are associated with reduced risk, we 

can estimate the financial trades-off between management strategies, i.e., between 

inspections enforced through a renewable permit and the no action alternative. Table 5.5 

compares the cost of regular inspections, the life cycle expected financial loss range for low 

and medium risk OWTS, and the expected financial loss of high risk OWTS. With a regulated 

inspection every 5 years, the cost associated with OWTS repairs and replacements would 

be expected to be less than the expected costs in Table 5.5. While OWTS inspections cannot 

prevent all system repairs, recurrent inspections do provide an opportunity to reduce the 

likelihood of a catastrophic failure and associated high repair/replacement costs.  

Table 5.5 40-year life cycle cost comparison of OWTS inspections, the repair cost severity range for low and 
moderate-risk systems and the expected costs associated with high-risk systems. 

 
Cost of 

Inspection* 
Property Transfer Certificate Expected Repair Costs of 

Low and Moderate Risk 
OWTS 

Expected Costs for High 
Risk OWTS 

$3,000 $50 $3,066 - $17,932 >$18,000 - $28,000 
 
*At $375 per inspection, once every five years for 40 years (ABC Septic Inspection, 2012) 

 

 

DISCUSSION  

We have developed a new approach to relate the risk of failure of OWTS in terms of 

expected life cycle costs to homeowners as a function of owner/user-related factors such as 

maintenance practices.   
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Data from 120 OWTS in Boulder County, Colorado was fit to a GLM where the 

response variable, repair severity measured as cost, was modeled as a binomial distribution 

based on two repair cost thresholds, which defined categories of OWTS as being at very low 

or high risk of failure. We found an inverse relationship between high repair severity (costs) 

and inspections, which is consistent with a 2015 study characterizing the performance 

variability of OWTS where required inspections associated with property transfers and 

sales decreased the likelihood of extremely high life cycle costs annualized over a 40-year 

life cycle (Kohler et al., 2015). The opposite relation was found when property was 

transferred without an inspection, which suggests that one benefit of inspections is 

education of new owners. (e.g., Boulder County, Colorado, “SepticSmart” Program). While 

property transfer inspections are not a comprehensive form of regulation in Boulder 

County, their efficacy suggests a potential benefit of mandating inspections through some 

instrument like a renewable permit to protect individual homeowners and the general 

public from the cost of catastrophic failure of OWTS. In general, variables associated with 

effective maintenance practices were predictive of low-risk OWTS. The skill of the 

regression models produced Brier Skill Scores of 0.69 and 0.7 for the low-risk and high-risk 

OWTS categories, respectively.  

Characterizing high-risk OWTS in terms of their probability of occurrence combined 

with an estimated cost magnitude offers a means to communicate the risk of performance 

instability to relevant stakeholders, both homeowners and local public health agencies that 

make community level sanitation decisions. 

When dealing with extremes, the occurrence of the event—such as with weather 

events or natural disasters—may have a low probability of occurrence but the consequence 
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of occurrence is large. In applying this principle to OWTS, we modeled the overall risk of 

significant system failure as measured by expected costs using a Points Over Threshold 

(POT) method of extreme value analysis where the distribution of cost exceedances was 

represented by the generalized Pareto distribution. We find that while the probability of 

exceeding the repair and replacement cost threshold of $18,000 is low, the financial 

consequences associated with failure are as large as $35,000 for OWTS life cycle repair and 

replacement costs, ten times the cost of a low-risk system.  

 

CONCLUSION 

We expect that communicating the magnitude of the risk expressed as expected 

costs may have a greater impact on homeowners’ maintenance decisions and acceptance of 

greater regulatory oversight than educational messages based on environmental 

protection. Another premise of this research is that failure risk based on readily available 

data from existing public records of repairs and replacements should be a good surrogate 

for environmental and public health effects for which data are much more difficult to 

obtain on a scale large enough to enable predictive models.  Identification of high risk on-

site wastewater systems based on costs also can help public health agencies deploy limited 

enforcement resources more effectively and assist planners in making decisions about 

siting and permitting OWTS in new developments. 
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CHAPTER 6: FRAGILITY OF ON-SITE SYSTEMS RELATED TO CLIMATE/WEATHER 
VARIABLES  
 
 
 
Kohler, L., Silverstein, J. and Rajagopalan, B. (In Preparation) Modeling On-Site 
Wastewater Treatment System Performance Fragility To Hydroclimate 
Stressors. Water Science and Technology.  
 
 
Key words: on-site wastewater treatment systems, resilience, weather effects 

 

ABSTRACT 

Climate projections throughout the U.S., for this century, indicate increasing variability and 

extremes of rainfall, temperature and stream flow, which poses risks to subsurface 

infrastructure such as on-site wastewater treatment systems (OWTS). We propose a new 

approach to assessing the climate-induced OWTS fragility - the degree to which an OWTS 

loses functionality, as a step to characterizing the resilience of decentralized, owner 

operated wastewater treatment systems. We used the frequency and severity of OWTS 

failures (i.e. repairs) as a measure of fragility and modeled them as a function of 

hydroclimate variables, which include precipitation, temperature and stream flow 

attributes. In this, the frequency of each type of repair (minor, moderate and severe) was 

modeled using a generalized linear model (GLM) with a Poisson distribution link function... 

We demonstrate this model using OWTS failure data from Boulder County in Colorado. The 

results show that precipitation events influence OWTS fragility (minor repairs) and loss of 

OWTS functionality (severe repairs) is impacted by high temperatures, incidences of 

wetter-than-normal months, and the magnitude of peak stream flow in the watershed. 

These results offer the unique prospects of using climate information for modeling OWTS 
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fragility and consequently resilience, to enable their efficient management by owners and 

town planners.  

 

INTRODUCTION 

Natural hazards associated with changing climate and related weather events 

threaten both the physical and functional integrity of infrastructure including wastewater 

collection and treatment systems. Subsurface components of these systems are particularly 

vulnerable to flooding and stresses from saturated soils. Moreover, delays in recovery from 

disruptive events pose risks to the public and environment through exposure to 

wastewater constituents through direct contact with released wastewater, groundwater 

and drinking water contamination. During Hurricane Sandy, for instance, 11 billion gallons 

of untreated and partially treated sewage flowed into rivers, bays, canals, and in some 

cases, city streets, a consequence of record storm-surge flooding (Kenward et al., 2013). 

U.S. EPA and local authorities issued advisories warning citizens of the known health 

implications of contaminated waters and how to prevent exposure (New York City 

Department of Environmental Protection, Connecticut Department of Public Health & EPA, 

2012). However, no information has been available on storm damage to on-site wastewater 

treatment systems including those that serve 10-40% of the populations in Sandy-affected 

states (EPA, 2002). While the association is widely acknowledged, the connection between 

weather and OWTS failure has yet to be demonstrated (Amador et al., 2014; Morales et al., 

2015; UNICEF & GWP, 2014). 

OWTS make up approximately 25% of the sanitation infrastructure in the U.S., with 

over 30% of new developments served by on-site technologies (EPA, 2002). Outside of the 
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U.S., on-site technology is leveraged to provide sanitation services in communities that 

either currently use unimproved facilities or have no access to safe disposal of fecal waste 

(WHO & UNICEF, 2015). Even under normal environmental conditions, the failure rate of 

OWTS is significant – as high as 50% in some regions of the US. Climate change projections 

of trends toward more frequent precipitation and flooding events could heighten the risk of 

failure of sanitation systems dependent on buried storage tanks and subsurface discharge 

through unsaturated soil (Kirtman et al., 2013). Understanding the response of OWTS to 

weather-related risks and their recovery behavior should therefore be considered in future 

planning and design of these systems. Because of widespread and growing reliance on 

decentralized on-site wastewater treatment, we propose a resilience framework for 

decision making with regard to acceptance and regulation of this technology. 

 Bruneau et al. (2003), 

suggests that resilience is 

characterized by four system 

properties: robustness, 

rapidity, redundancy, and 

resourcefulness. Rapidity is 

the time required to restore 

performance (TRECOVER - TO in 

Figure 1, where TO is the time of the initiating event and TRECOVER is that time when system 

performance is restored). Resourcefulness is the capacity to mobilize resources during 

recovery and is a determinant of rapidity. These attributes are relevant to assessing OWTS 

resilience (Bruneau et al., 2003). Redundancy also is a component of system resilience, 

 
Figure 6.3 Conceptual framework for resilience measurement (adapted 
from Bonstrom & Corotis (2014) 
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related to robustness as well as rapidity (McDaniels et al., 2008); however this attribute is 

not typically a strong component of highly decentralized systems such as OWTS (Rocky 

Mountain Institute, 2004). While all four properties affect resilience, system vulnerability 

to stressors—both extreme and non-extreme—and the degree a system loses functionality 

can directly affect the time and resources required to recover performance. Therefore, we 

define fragility as the difference between 100% of the expected level of OWTS performance 

and robustness, which is the level of performance after a significant perturbation (refer to 

Figure 6.1). McDougall (2009) further breaks down fragility into Design and Natural 

fragility. Natural fragility describes the distribution of infrastructure system performance 

outcomes, i.e. failure frequency and the degree of failure, when operations are outside of 

conditions assumed by the engineer. Natural fragility reflects performance reliability under 

real world conditions, compared to reliability under purely designed conditions (i.e. Design 

fragility) (McDougall, 2009).  

We propose to assess OWTS Natural fragility in order to evaluate resilience of 

decentralized, owner operated wastewater treatment systems to climate-related stressors. 

In this investigation, we hypothesize that OWTS Natural fragility—expressed as the 

frequency distribution of failure—is associated with annual hydroclimate patterns. We use 

a surrogate measure of OWTS failure, using severity-based categories of documented 

OWTS repairs. Using repair permit records, climate and weather data collected from the 

U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geologic 

Survey (USGS), a Generalized Linear Model (GLM) regression method is used to 

characterize Natural fragility and its association with temperature, rainfall and stream flow 
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conditions. Since we examine only Natural Fragility in this investigation, to simplify we will 

refer to it here within as merely fragility. 

 

METHODS 
 
Data  

Repair permit data were 

collected for 225 OWTS in the 

Boulder-St. Vrain Creek watershed in 

northeastern Colorado, regulated by 

the Boulder County Public health 

Department. The geographic 

distribution shown in Figure 6.2 

encompasses the full range of 

topographic and demographic 

characteristics of Boulder County, and represents an overall OWTS population of 14,300.  

 

Variable definition 

Dependent variable  

The frequency of repairs over the period of record from 1979 to 2015 is the fragility 

measure. While not all repairs are associated with a complete failure and associated visible 

contaminant release, the frequency and the severity of repairs provides a measure of 

decrease in system performance. 

 
Figure 6.4 Geographic distribution of OWTS in Boulder County 
Colorado 
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Each documented repair is classified into minor, moderate, and major categories, 

based on a rating system used by the Boulder County Public Health (BCPH) Department 

(Kohler et al., 2016) and recorded for the 225 OWTS in the sample. A minor repair is any 

repair to the septic tank or lateral pipes. Moderate repairs refer to extraordinary 

maintenance to or replacement of the soil treatment unit (STU). Failure of both the septic 

tank and STU constitutes a major repair often requiring replacement of the entire system. 

The dependent variable, annual repairs, is the annual sample frequency of each type of 

repair. The distribution of each type of repair serves as an indicator of fragility for the 

sample population. Failures associated with minor and moderate repairs exhibit partial 

losses of function and lower degrees of fragility; whereas, major repairs result from a near 

complete loss of performance, representing the highest degree of fragility. Similar to Kohler 

et al. (2016), the sample consists of only permitted OWTS to control for compliance with 

siting, design, and installation criteria set by the County. 

Figure 6.3 shows the distribution of each category of repair over the period of record 

from 1979 to 2013, indicating an increased repair frequency starting in 2007. Between 

2007 and 2008, Boulder County Public Health (BCPH) reformed their practices regulating 

OWTS installation, permitting and maintenance. The county initiated the EPA Septic Smart 

program with a goal to inspect and approve permits for all OWTS in the County by 

December 31, 2023. More important, in 2008, the County adopted a new regulation, 

enforcing professional system assessments and required repairs at the time of any 

property sale (“Septic Smart Program”, 2015). We concluded that the rise in repairs after 

2007, apparent in Figure 6.3, reflects increased frequency of reporting after the County’s 

initiative to permit systems and add a regulation. The association of this factor with repair 
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severity was determined earlier (Kohler et al., 2016). Thus for fragility modeling we use 

data until 2006, removing the period of the trend that is a mainly a result of policy actions 

and not climate related.  

 

Figure 6.3 Frequency distribution of minor (a), moderate (b), and major (c) repairs from 1979-2015. The 
dashed vertical line indicates the introduction of Septic Smart and a new inspection regulation. 

 
Independent Variables 

Both temperature and precipitation have recognized effects on OWTS performance. 

Temperature extremes can affect biological activity, flow and mixing within the primary 

treatment unit (septic tank or vault) and treatment processes in the biomat of the STU. For 

example, when temperatures are less than 5 oC the bacterial removal rate of E.coli in the 

STU has been estimated at less than 20%; whereas temperatures closer to 20 oC have three 

times the removal rate (Morales et al., 2015). Precipitation can have a physical and 

therefore visible impact from excess hydraulic loading during high rainfall and snowmelt 

events above the level set out in design criteria for the STU. Groundwater infiltration and 

inflow through inadequately sealed covers can cause septic tank overflows resulting in STU 

clogging as well as physical damage to the STU (Morales et al., 2015). Less visible impacts 
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include the reduction of vertical separation distances between the OWTS and water table 

as well as increased transport of nutrients and pathogens through soil. 

Annual temperature and precipitation profiles for the study location were obtained 

from the National Climatic Data Center of NOAA. The number of months with precipitation 

totals over 10.16 cm (4.0 inches) was included to represent uncharacteristically wet 

conditions and the potential soil saturation effects on OWTS performance. As a reference, 

in Boulder County April and May are typically the wettest months with precipitation totals 

of 6.22 cm (2.45 inches) and 7.75 cm (3.05 inches), respectively, from 1948 to 2005 (Desert 

Research Institute, 2005). Monthly rainfall totals over 10.16 cm have occurred only 43 

times in a 38-year period (a less than 10% probability of occurrence). The frequency of 

days over 1.2 cm were included to capture the effects due to severe single rainstorm events 

that occur over a shorter period of time and impact the system through surface runoff. 

Return periods based on storm duration calculated using precipitation measurements from 

the Boulder Station indicate that while 1.2 cm seems small, the average recurrence 

intervals for 1.2 cm rainfall event in Boulder County ranges between 10-20 years for a 

storm enduring 5-min to 1-2 years for a 30-min storm (NOAA, 2013).  

Annual stream flow is selected as another independent variable based on its 

contribution to shallow groundwater levels through interflow (data from USGS gage 

06730500). While the interaction mechanisms between ground and surface water are 

complex, hydrographs are commonly used to estimate ground water recharge either 

directly or using water balance models (Mau & Winter, 1997; Sophocleous, 2002; Yeh et al., 

2007). Stream flows being an integrator of precipitation, soil moisture and watershed 

response, is an excellent surrogate for subsurface conditions. 
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Table 6.1 lists each variable. The variables coded with “_S” are recorded from April 

to October to capture rainfall precipitation versus the annual total, which includes snow 

equivalents.  

Table 6.1 Annual frequency and severity precipitation and temperature independent variables 

 Code Explanation 

Frequency of 
Temperature 

Extremes 

DT90 No. of days per year with maximum temperature greater than or 
equal to 32 oC (90oF) 

DT00 No. of days per year with minimum temperature less than or equal 
to -18 oC (0oF) 

Frequency and 
Magnitude of 
Precipitation 

DP05_S No. of days per year with precipitation greater than or equal to 1.2 
cm (0.5 in) (Apr-Oct) 

TPCP Total annual precipitation in centimeters (inches) 
MR40_S No. of months per year with monthly precipitation totals above 

10.16 cm (4.0 inches) (Apr-Oct) 
Surface/groundwater 

Flows 
PEAK_FL Annual peak flow in m3/s (cubic feet per second) 

 

Model Development 

We propose to use a generalized linear model (GLM) to model the fragility, i.e., 

response repair frequency, Y, as a function of hydroclimate variables identified above. 

GLMs are finding wide application due to their flexibility in modeling non-Gaussian 

features and ease of implementation – such as for space-time weather generation (Verdin 

et al., 2014); wastewater quality modeling and resiliency (Weirich et al., 2011; 2015) and 

recently to OWTs repair magnitude (Kohler et al., 2016).     

Since the time of introduction of Septic Smart and the inspection regulation are 

known, we instead break the time series data into two regions—pre- and post- Septic 

Smart, as mentioned above. Assuming the repair reporting requirements were constant 

before 2007, we consider the occurrence of OWTS repairs in each year from 1979 to 2006 

for all 225 systems, the response variable Y for all 225 systems is, consequently, an annual 

count of repairs  
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In the GLM, the response variable, Y, is allowed to be a realization from any 

distribution in the exponential family. 

Y ~ G(𝜽)           (1) 

where G(.) is any exponential type distribution and 𝜽 is the set of parameters that define G. 

Assuming a Poisson distribution reduces the GLM to a Poisson regression model with 

parameter 𝜇 (McCullagh & Nelder, 1989). The canonical link function for the Poisson 

distribution, the log link, is as follows: 

𝐿𝑜𝑔(𝜇) = 𝛼 + 𝜷𝑿          (2) 

where 𝜇 is the expected value of Y, E(Y). The log of 𝜇 is then a linear function of the 

explanatory variable(s), X, and a random component 𝛼. Consequently, 𝜇 is a multiplicative 

function of X. 

𝜇 = 𝑒𝛼𝑒𝜷𝑿            (3) 

The residuals of the model are assumed to be normally distributed and uncorrelated as 

with a standard linear regression (McCullagh & Nelder, 1989).  

The best combination of GLM predictors is selected based on minimizing Akaike 

Information Criteria (AIC), which is a standard approach (Akaike, 1974). 

  

RESULTS AND DISCUSSION 
 

It can be seen from Table 3 the expected number of repairs in a given year in each 

category is modulated by a combination of precipitation, temperature and precipitation-

related attributes, namely the frequency of extreme temperatures (days over 32 oC), 

incidences of wet months (months with rainfall totals over 10.16 cm) and the magnitude of 
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peak flows in Boulder Creek. Table 6.2 highlights the significant variables at 90% for each 

category of repair.  

Table 6.2 Significant model coefficients 

 
Given the log link function, a unit change in x has a multiplicative effect on 𝜇. For 

ease of interpretation we included 𝑒𝛽 in Table 6.2. Where 𝑒𝛽 > 1, the variable increases the 

expectation of Y and where 𝑒𝛽 < 1, it decreases the expectation. If 𝑒𝛽 is close or equal to 1, 

this means that the expected outcome is not related to the covariate, x. For instance, for 

minor repairs, a unit increase in the number days with temperatures exceeding 32 oC 

increases the expectation or mean number of repairs in a given year by a factor of 1.048. 

Therefore, the expectation of minor OWTS function losses can be described as: 

𝜇𝑚𝑖𝑛𝑜𝑟 = 𝑒−1.862 ∗ 𝑒0.047𝑥𝐷𝑇90        (4) 

Temperature extremes have been recognized for their effects on OWTS 

performance. Researchers describe increased digestion during warmer months due to 

“spring turnover“ increasing both the amount of solids accumulation in the tank as well as 

the amount that leave the tank due to interrupted settling (D’Amato, 2008). While solids 

increase in warmer temperatures, settling and solids removal decrease often due to gas 

eruption during increased digestion. Water demanding activities, which often increase 

seasonally, can overwhelm septic tanks and increase the amount of solids entering the STU 

 Minor Moderate Major 

R2 0.38 0.53 0.70 

 Est 𝒆𝜷 p Est 𝒆𝜷 p Est 𝒆𝜷 p 

Intercept (α) -1.862 0.155 0.008 -0.932 0.394 0.074    
DT90 0.047 1.048 0.007       
DT00          
TPCP          

DP05_S          
MR40_S       0.527 1.694 0.025 

PEAK_FL    0.001 1.001 0.056 -0.001 0.999 0.022 



 

 102 

(Crites & Tchobanoglous, 1998). Temperature extremes may not directly affect the 

integrity of the primary treatment unit; however, the physical consequences of 

temperature on septic tank processes leading to clogging and/or solids overflow—often 

require maintenance services. Furthermore, service providers typically assess the integrity 

of the system upon their visit, which may explain the correlation between minor repairs 

and temperature in that more damage is identified during these periods— tank and/or 

sewer damages, which would have potentially gone unnoticed.  

Moderate performance losses seem to be associated with one variable, peak stream 

flow (PEAK_FL), which is an indicator of surface and subsurface moisture conditions 

through interflow. The GLM expectation of moderate function losses is: 

𝜇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 = 𝑒−0.932 ∗ 𝑒0.001∗𝑃𝐸𝐴𝐾_𝐹𝐿        (5) 

The influence of flow on moderate fragility is relatively small. Since 𝒆𝜷 is nearly 1, 

this indicates that, in fact, the covariate has little influence on the expected number of 

moderate repairs in a year. Only when the peak flow is substantially high would we see an 

effect on expected repair. This is a reasonable relationship, given that the highest flows 

would influence the groundwater table level and in turn compromised performance of the 

STU. Surface runoff related to a high annual peak flow event may also influence the 

performance of the secondary treatment unit. 

The highest degree of fragility—represented by major repairs—is associated with 

two variables, the occurrence of wet months, MR40_S, and PEAK_FL. The variables describe 

the expected number of major repairs in each year as: 

𝜇𝑚𝑎𝑗𝑜𝑟 = 𝑒0.527∗𝑀𝑅40_𝑆 ∗ 𝑒−0.001∗𝑃𝐸𝐴𝐾_𝐹𝐿       (6) 
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A unit increase in the number months with rainfall exceeding 10.16 cm increases 

the mean number of repairs in a given year by 1.694, where a unit increase in the peak flow 

of Boulder Creek dampens the expectation by a factor of 0.999, which is nearly 1 indicating 

that peak flow has little effect on the expected number of repairs. In extremely wet months, 

saturated soil conditions impact infiltration of septic tank effluent. Figure 6.4a shows the 

total precipitation each month from 1979 to 2006 and the 10.16-cm threshold. The most 

significant association of OWTS fragility and weather was with systems requiring major 

repairs – typically equivalent to replacement, and suggests that OWTS are especially 

vulnerable to an extended period (month) of higher than normal precipitation.  Figure 6.4b 

is a time series of the observed major repairs representing the near complete loss of OWTS 

performance in each year and the expected major repairs predicted by the GLM. In years 

with at least one month where rain exceeded 10.16 cm, OWTS failures occur also at a 

higher frequency. Over the 27 year period, considering only April to October for rainfall 

events, 23 months (of 189 months) surpassed 10.16 cm. Figure 6.4b shows that OWTS 

fragility is associated with frequency of high rainfall months (e.g. 1995 was a wet year and 

high monthly rainfall conditions account for 3 of the 5 reported OWTS failures that year.  
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Figure 6.4 Monthly rainfall totals from 1979 to 2006 (a). Observed major repairs over that same period and 
expected repairs as determined by the GLM, indicating major fragility.  

 

Figure 6.5 has quantile-quantile scatter plots for each repair category. The GLM 

model of expected repair frequency, 𝜇, in each category as a function of weather related 

covariate accounts for approximately 38%, 53% and 70% of the variability in the number 

of minor, moderate and major repairs, respectively, from 1979 to 2006. 

 

Figure 6.5 Quantile-Quantile plots for the minor (a), moderate (b) and major (c) repairs (fragility) models. 
 

While hydroclimate-related variables capture a significant portion of the variability 

of repairs year to year, other variables such as OWTS user-operational variables identified 

previously by Kohler et al. (2016) also influence the observed variability. The GLM results 
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indicate that hydroclimate attributes exert a significant influence on OWTS fragility, 

measured as the degree to which a system loses function, which is represented here by 

categories of repair. 

 

CONCLUSION 

A statistical method based on GLM was developed for modeling the effect of 

hydroclimate on the degree of OWTS fragility over a period of uniform regulation of OWTS 

systems in Boulder County, Colorado, from 1979 to 2006. The relationship between the 

frequency of minor, moderate, and major repairs and high temperature and precipitation 

was evaluated using a generalized linear model (GLM) where a Poisson distribution 

represented the number of repairs in a given year. The results show that variability in the 

frequency of OWTS repairs and replacements each year can be attributed, in part, to 

weather, particularly uncharacteristically wet months with rainfall over 10.16 cm and 

annual peak stream flow. The principal outcome of this study is a validated foundation for 

the relationship between OWTS performance/failure and weather variability, with 

implications for siting, design and vulnerability assessment. Furthermore, using future 

projections of hydroclimate, this method provides the foundation to estimate the changes 

in fragility due to climate and explore potential insurance options to mitigate the risk of 

future extremes. 
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Kohler, L., JoAnn Silverstein and Rajagopalan, B. (In preparation) Resilience of On-
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ABSTRACT 

In 2013, record rainfall in the Front Range area of Colorado led to what was estimated as a 

1000-year storm, which resulted in a 100-year flood event. As a result, Boulder County 

Public Health reported 34 OWTS failures directly attributed to the flood and over 400 

failures and subsequent repairs occurring after 2013, which also may have been flood-

related. The 2013 Front Range Colorado flood provides a unique opportunity to assess 

OWTS resilience at the watershed scale after an extreme storm-flooding event. A resilience 

framework is developed to demonstrate the degree to which decentralization influences 

systematic OWTS vulnerability to weather, independent of individual OWTS operations. 

Here resilience is characterized by three system prosperities:  the degree to which systems 

lose function (fragility), time necessary to restore performance (rapidity), and costs 

incurred while performance is compromised (resourcefulness). The findings illustrate that 

widespread natural hazards such as flooding are found to affect the frequency and degree 

to which OWTS function is lost, and more importantly delay their recovery, attributable in 

part, to a demand surge for both materials and repair services when multiple systems fail 

simultaneously. Longer recoveries are likely to have environmental and public health 
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consequences due to the prolonged release of contaminants as well as secondary costs 

related to homeowner losses resulting from a failed OWTS. 

 

INTRODUCTION 

In 2013, record rainfall in the Front Range area of Colorado led to what was 

estimated as a 1000-year storm, which resulted in a 100-year flood event. Three episodes 

of torrential rain on September 11-12 and September 15 measured more than 17 inches in 

the climatology favored upslope areas of the Front Range, which is approximately 85% of 

the annual average. A large area in eastern Colorado also received between 8 to 17 inches 

of precipitation during the peak of the event (NOAA, 2014).  As a result, 14 Colorado 

counties including Boulder—the hardest hit county—experienced significant flooding 

causing damages to infrastructure including those for wastewater collection and treatment 

(MacClune et al. 2014; CBDG_DR, 2015). 

The wastewater treatment facilities in Lyons, Longmont and Boulder experienced 

various degrees of failure ranging from complete shutdown to restricted operations in the 

Boulder facility (MacClune et al. 2014). Due to the resourcefulness of its operators, the 

Boulder facility remained functional, partially treating 190,000 m3/d (50 MGD) wastewater 

augmented by infiltration and inflow from surcharging of sewers, a significant increase 

from typical flows of 53,000 m3/d (14 MGD), and double the rated capacity of the plant 

(95,000 m3/d) (MacClune et al. 2014). During the event, on-site wastewater treatment 

systems (OWTS), which serve over 14,000 properties in Boulder County, were also 

disrupted to varying degrees. OWTS reliance on buried storage tanks and subsurface 

discharge through unsaturated soil makes them particularly vulnerable to high rates of 
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precipitation and flooding. In addition to soil saturation impeding effluent percolation, over 

1,100 debris flows and 200 landslides after September 2013 were triggered on slopes 

where soils were over 100% saturated, resulting in three deaths and significant property 

and road damage. It was estimated that as much as 1,000 years of accumulated sediment 

deposited in the Boulder County foothills was washed away in the flood equivalent to 

scouring depth of 0.2 to 0.5 m, often down to bedrock (Gentes, 2015; Anderson et al., 2015; 

Ebel et al., 2014).  Boulder County Public Health (BCPH) reported 34 OWTS failures directly 

attributed to the flood and over 400 failures and subsequent repairs occurring after 2013, 

which also may have been flood-related. (Erin Dodge, personal communication, February 

15, 2016).  

The extensive damage: 19,000 homes destroyed, over the State, and subsequent 

dislocation, 11,000 people evacuated, not only add to the total amount necessary for 

reconstruction in terms of materials, equipment, and labor costs, but they also transfer 

social and environmental costs (MacClune et al. 2014). Delays in OWTS restoration pose 

threats to public and environmental health through exposure to wastewater constituents, 

and a complete OWTS failure can prevent the occupant from using the system – effectively 

rendering the property uninhabitable, until it has been repaired (Boulder County, Colorado, 

2014a, 32). These added risks make understanding OWTS failure and recovery critical to 

anticipating secondary impacts related to health risks, prolonged evacuation, and strain on 

limited material and labor resources. Especially severe social impacts occurred in Boulder 

County among displaced low-income households due to the lack of affordable or even 

available rental properties (CDBG_DR, 2015). 

As use of OWTS continues to grow along with the likelihood of extreme precipitation 
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events, widespread failures of systems that discharge to the subsurface and associated 

costs would be expected to increase as well. The 2013 Front Range Colorado flood provides 

a unique opportunity to test this relationship and assess OWTS resilience at the watershed 

scale after an extreme storm-flooding event.  

 

Quantifying the concept of network resilience  

Bruneau et al. (2003) developed one of the first conceptual frameworks for 

quantifying community resilience after a seismic event based on four system properties: 

robustness, redundancy, rapidity and resourcefulness. Later studies (Norris et al., 2008; 

Argonne, 2010; Bonstrom & Corotis, 2014) used similar determinants to quantify resilience 

of networked resources, critical infrastructure, and building portfolios, respectively. Kohler 

et al. (2016) proposed an approach based on the Bruneau et al. (2003) framework to assess 

OWTS fragility, an attribute which is a complement to robustness, defined as the degree to 

which an OWTS loses function after an initiating extreme event. This was a first step to 

characterizing the resilience of decentralized, owner operated wastewater treatment 

systems exposed to severe climate-related stressors. However, the study did not 

incorporate the other components of resilience: rapidity, resourcefulness or redundancy 

(Kohler et al., 2016). The challenge for a complete evaluation of OWTS resilience is the lack 

of an accepted methodology and readily available performance data to assess OWTS 

performance resilience in the aftermath of hazards such as floods to guide OWTS design 

and planning decisions. 

This study has two objectives. The first is to adapt the conceptual framework 

proposed by Bruneau et al. (2003) to analyze Boulder County OWTS resilience after the 
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2013 flood in terms fragility, rapidity and resourcefulness. The second is to test one of the 

proposed benefits of decentralized wastewater systems, namely that risk is dispersed by 

decentralization, which rests on the implicit assumption that failures of decentralized 

systems are independent (Booz Allen & Rocky Mountain Institute, 2004).  However, in a 

regional disaster when loss of function is widespread and simultaneous, restoration of 

decentralized facilities such as buildings or OWTS may be far more difficult, impeding 

recovery and increasing associated costs (Olsen & Porter, 2011).   We have used spatial 

analysis (Geographical Information System (GIS)) to assess resilience of a regional OWTS 

network after an extreme event. 

 

METHODS 

The methods employed in this study include: (1) OWTS sample data collection from 

Boulder County, Colorado; (2) definitions and coding of the OWTS resilience dimensions: 

fragility, rapidity, and resourcefulness; and (3) Geographical Information System (GIS) 

programming used to integrate the dimensions to determine resilience for the OWTS in 

Boulder County. 

 

Data  

Data used in this study of the 14,300 OWTS located in the Boulder-St. Vrain Creek 

watersheds were obtained from a permit database maintained by the Boulder County 

Public Health (BCPH) Department. The sample represents the portion of OWTS, which 

received permits either at the time of installation or later for repairs.  (Approximately one-

third of the OWTS in the County do not have any permits on record.) Two sample cohorts 
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were selected from the permit database as a basis for comparison of performance before 

and after the 2013 flood. Information about each OWTS and their corresponding property 

can be assessed either directly through a “check septic system records” search on the BCPH 

webpage by entering the property ID as well as through the Boulder County Tax Assessor’s 

property search tab on their webpage.   

The first cohort consisted of 150 OWTS based on a selection provided by BCPH of 

588 OWTS requiring permits between 2003 and 2013. Based on 588 properties, a 

preliminary selection was made for those permitted systems requesting repairs because 

they explicitly ‘Found out my system [was] failing’. Similar to the total population, 

approximately 30% of the sample of reported failed systems was also NOT permitted and 

was omitted resulting in a sample of 150 permitted systems, which is about 25% of 2003-

2013 cohort sample.  We have reported the results of statistical modeling of the risk of 

individual OWTS failures associated individual owners’ monitoring (inspection) and 

maintenance practices using this data set (Kohler et al., 2016). The second cohort included 

490 properties whose owners filed applications for repair or replacement after the flood of 

September 2013, between January 2014 and February 2016. Thirty-four of these were 

specifically designated as flood damaged, which exempted them from the typical repair 

permit application fee of $1,023 (Boulder County, 2016a). To achieve equal representation 

of this second cohort, a random selection of 25% of the OWTS in the original 2014 to 2016 

subset were selected, resulting in 123 OWTS. 

Figure 7.1 shows specifically the post-flood OWTS population (490 total OWTS), 

where the red points specifically identify the flood damaged OWTS (34 OWTS). The added 

layer shows the spatial distribution of peak rainfall values over the storm period from 
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September 9 to September 13, 2013. The repair permits specifically documented for flood 

damage tended to be located in areas that received rainfall of 8 – 10 inches or greater (Erin 

Dodge, personal communication, February 15, 2016) though a statistical comparison of the 

spatial distributions on the entire post-2014 OWTS data sets and their association with 

rainfall levels would be important to support this inference. An exception was OWTS 

located near the town of Lyons, which is located on St. Vrain Creek and while the rainfall 

totals were low that region experienced severe surface flooding.  

 

Figure 7.1 Hardest hit areas during the 2013 flood event layered with failed OWTS in Boulder County.  

 

The resilience study is therefore based on the combination of the two cohorts, 150 

and 123, making the total sample size for this investigation 273. For each of the 273, the 
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permit application date, final inspection date, and repair type for each repair for each of the 

273 OWTS in the sample were recorded from scanned hand-written repair permit 

applications found the Boulder County Assessor’s tax database. The similar geographic 

distribution of the permit sample and the two study sub-sample in Figure 7.2 indicates that 

the resilience sub-sample is a reasonable geographic representation of the repair permit 

sample encompassing the pre- and post-flood period between 2003 and 2016.  

 
Figure 7.2 Spatial distribution of sample OWTS from the County Public Health Department repair permit 
database from 2003 to 2016 and sub-sample OWTS randomly selected for the resilience analysis.  

 

Although the County OWTS permit database dates back to the 1940’s, the 

occurrence of permitted repairs is affected by regulations. Starting in 2007, BCPH made a 

significant change to OWTS regulations to require inspection and necessary repairs during 

property transfer, resulting in more frequent issuance OWTS repair permits Kohler et al. 

(2016a). We therefore selected the resilience comparison sample to cover a pre-flood 
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period of 2007 to 2013, assuming the frequency of repair permit applications remained 

constant after that year. While each of the 273 sample OWTS initially belonged to a subset 

of OWTS queried based on the date of one repair application, every repair from 2007 to 

2016 for each system was recorded, resulting in a history of repair over the two time 

periods, 2007-2013 and 2014-2016. For example, some systems that were selected in the 

post-2014 cohort also had repairs earlier between 2007 and 2013. 

 

Variable Definition 

Methods for quantifying 

fragility, rapidity and 

resourcefulness are described 

in the following. As noted 

earlier, we define OWTS 

vulnerability to stressors and 

the degree a system loses 

functionality after a singular 

event as fragility; the time required for restoration of the pre-event level of performance is 

rapidity; and costs incurred while performance is compromised, including material, labor 

and costs associated with inconvenience to residents who cannot occupy their homes 

without a functional wastewater system is resourcefulness. Figure 7.3 depicts the 

conceptualization adapted from Bruneau et al. (2003) highlighting the three dimensions 

relevant to OWTS resilience.  

 

 
Figure 7.3 Conceptual framework for OWTS resilience showing 
temporal aspects of fragility, resourcefulness and rapidity. 
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Fragility 

One measure of fragility we considered is frequency of OWTS repair permits over 

the pre-and post-flood periods. However, with three exceptions, OWTS in both sub-samples 

had no more than one repair. Instead, the severity of the repair was chosen as a measure of 

fragility to test the hypothesis that the OWTS network fragility was greater during the 2013 

flood.  Repair types were classified into minor, moderate, and major depending on the 

components requiring repairs. Failures associated with minor and moderate repairs 

resulted partial losses of function and were assigned lower degrees of fragility, 1 and 2, 

respectively; whereas, major repairs result from a near complete loss of function, 

representing the highest degree of fragility, assigned the value 3. Systems with more than 

one repair were assigned a 4 as the highest degree of function loss.  The ranked values 

were normalized based on the maximum value of the fragility ranking. Table 7.1 lists each 

repair type associated with a level of lost function, its ranking and the scaled fragility score 

that was calculated for each of the 273 systems during the pre- and post- flood period. The 

histogram in Figure 7.4 shows the frequency of each type of repair over the full 2007 to 

2016 period based on the 273 OWTS in the sample (this figure does not include the 3 

systems with more than one repair). After the flood, there were consecutive years with a 

high frequency of OWTS requiring major repairs due to near complete loss of function. To 

assess the fragility of OWTS over an equivalent time period, the repair total from 2011 and 

2012 was compared to the total from 2014 and 2015. The boxplots in Figure 7.5 illustrate 

the shift in fragility after the countywide flood event compared to the loss of individual 

OWTS function that occurred through mechanisms such as age deterioration, poor 

management, and isolated weather events during the 2 years prior. 
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Rapidity 

Rapidity—a dimension not currently addressed in OWTS literature but covered in 

structure and infrastructure resilience literature—is the time required to restore 

performance represented by TRECOVER - TO in Figure 7.3, where TO is the time of the initiating 

event and TRECOVER is that time when system performance is fully restored) (Bruneau et al., 

2003; McDaniels et al., 2008; Bonstrom & Corotis, 2014). A study of 209 wastewater 

treatment facilities in the U.S., operating with National Pollutant Discharge Elimination 

System (NPDES) permits, modeled the recovery time after a permit violation using effluent 

water quality data. The study found that rapidity ranged from two to five months, with 

small facilities more likely to experience the longest recovery time, typically making them 

less resilient after a process upset resulting in a permit violation (Weirich et al., 2011). 

Comparable information about the post-failure recovery of OWTS under either normal or 
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Figure 7.4 Illustrates the degree of OWTS functional loss from 
2007 to 2016 based on the 273 OWTS in the study sample 

Figure 7.5 Fragility for the 2-year period 
before and after the flood 
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extreme environmental conditions based on treated water quality does not currently exist. 

In this study, rapidity is 

measured by the duration between the 

date of issue for the OWTS repair 

permit, To, and the date of final 

inspection of the system, TRECOVER, 

certifying that the OWTS was repaired 

in accordance with County design 

guidelines in the regulations. Over 50 

OWTS had incomplete repairs as of 

March 1, 2016. Since we did not want to 

discard them from the study because 

their existence in itself is an interesting 

finding, they were assigned the date 

March 5, 2016 (the date the information was entered) to represent the duration of the 

recovery period to date, recognizing that many of the OWTS will not be fully repaired until 

later in 2016. The permit application dates for these 54 incomplete repairs range between 

June 2014 and February 2016. Approximately 63%, 20%, and 17% of the 54 had applied 

for major, moderate, and minor repairs, respectively.  

Table 7.1 presents the categories of rapidity using an ordinal scale. Rapidity ranges 

and their rankings were based on typical pre-flood recovery durations where recovery 

periods extending over 6 months specify longer than typical durations under normal 

Table 7.1 Fragility Score 

Repair Type Ranking Scaled Fragility 

Minor 1 0.25 

Moderate 2 0.50 

Major 3 0.75 

> 1 Repair 4 1 

 

Table 7.2 Rapidity Score 

Recovery Duration Ranking Scaled Rapidity 

< 60 days 1 0.2 

61-180 days 2 0.4 

181-270 days 3 0.6 

271-365 days 4 0.8 

> 365 days 5 1 
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environmental conditions. The ranked values were then normalized based on the highest 

value for the ranking to calculate each OWTS’s scaled value for rapidity. 

 
 

Resourcefulness  

Bruneau et al. (2003) and more recently Norris et al. (2008) define resourcefulness 

as the capacity to identify problems and mobilize resources (i.e. monetary, physical, 

technological and informational). While resourcefulness is complex and goes beyond 

monetary resources to recover, here resourcefulness is determined by both OWTS fragility 

and rapidity.  We define it as the ability to anticipate the monetary resources necessary to 

mitigate all consequences of OWTS failure, including costs associated with displacement 

during OWTS repair, in addition to physical repair costs in the event of a future natural 

hazard. The shaded area under the recovery curve in Figure 7.3 represents resourcefulness, 

with the consequences of fragility monetized as the dollar amount assigned to loss of OWTS 

performance over the recovery period as well as estimated repair/replacement costs of 

material and labor. Environmental costs resulting from the release of wastewater into the 

environment also accrue, but the estimation of those costs is outside of the scope of this 

study. 

To calculate resourcefulness, we focus on the major repairs where a near complete 

loss of OWTS function occurred. Here we make the assumption that for the period the 

system is not functioning, the owners are displaced or a temporary alternate – a portable 

chemical toilet, is required (University of Minnesota Extension, 2011).  

The insurance industry provides what is referred to as loss-of-use coverage when 

the residence is not livable due to an insured loss from a flood or other catastrophic event 
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(American Insurance Association, 2009). However, flood insurance does not provide 

money for renting temporary housing unless the main structure is damaged or destroyed, 

and septic systems are not covered in flood insurance policies (FEMA, 2012).  FEMA may 

provide some assistance through the Direct Housing Assistance Program covering rentals 

up to 18 months after the date of disaster declaration after which tenants are expected to 

have a permanent housing plan (CDBG-DR, 2015). The 18–month FEMA end date was 

March 15, 2015 for Boulder County, so relocation costs for repairs after that are 

responsibility of the tenants. The Department of Housing and Urban Development (HUD) 

has provided assistance through the final of three Community Development Block Grants 

for Disaster Recovery (CDBG‐DR) allocated to Boulder County since 2013.  CDBG_DR can 

grant up to $50,000 for the repair or replacement of flood-impacted OWTS, including the 

connection to municipal utilities or 2 years of temporary rental assistance or up to $20,000.  

However, allocations are based Area Median Income (AMI) and currently only 20% of the 

funds have been granted for OWTS repair and 16% for housing assistance (Boulder County, 

2014b; 2015).  As such, predominantly the finance of reconstruction of a failed septic 

system after the flood and any related inconvenience falls directly on the homeowner 

(Boulder County, 2015), making an estimation of this cost critical to communicate the true 

cost of OWTS failure after a natural disaster.  

To estimate this cost, = resourcefulness, we apply loss-of-use method used by 

insurers, which determines the amount granted to a particular property owner to relocate 

based on the property’s monthly mortgage rate plan (American Insurance Association, 

2009). The monthly mortgage rate for residences with flood-related OWTS repairs is 

calculated using the BankRate Mortgage Calculator, an interest rate of 4.5 %, and a 30-year 
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term.  

For those OWTS requiring major repairs before the flood, we estimate the 

resourcefulness per month required to recover performance as the average cost for the 

repair, $14,866 as determined by BCPH (2013), and the cost of the property’s mortgage 

rate based on the total assessed value of the property from the Assessor’s tax database. For 

those major repairs after the flood, resourcefulness per month of recovery is comprised of 

the monthly mortgage, the average cost of the repair plus a 10% repair cost increase. The 

increase is based on a survey of 5 Boulder County OWTS installers who suggested costs 

increased between 10-20% after the flood (OWTS Service Provider Survey, 2014). Olsen & 

Porter (2011) similarly found that demand surge increases reconstruction costs after 

disasters by 20% or more.  

As a secondary measure of the occupancy-related costs in resourcefulness estimates, 

we calculate the minimum cost to the resident for a portable toilet rental as an alternative 

to temporary relocation. Then the rental cost of a portable chemical toilet per month of 

recovery is added to the physical repair cost described above.  Monthly rental of chemical 

toilets are estimated to range between $100-300, though prices vary based on service 

requirements and overall rental duration (United Site Services, Inc., 2015). For this study, 

we chose to apply the minimum rental value, $100 per month, as a conservative estimate 

for recovery resources. 
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Resilience Assessment  

Combining the fragility 

and rapidity dimensions 

produces a multi-faceted 

definition of resilience and 

provides an opportunity to 

estimate the resourcefulness 

necessary to improve OWTS 

resilience.  

The fragility and rapidity 

scaled scores were combined to 

specify four levels of post-

disaster resilience. Using Geographical Information System (GIS) queries in ArcGIS, the 

spatial distribution of each OWTS attribute—fragility, rapidity and the resulting measure of 

resilience—were plotted based on the parcel ID and geographical coordinates of each of 

the sample OWTS in Boulder County. The lowest ranking corresponds with the highest 

level of resilience with minor to moderate OWTS failure and rapid recovery, while the 

highest ranking (lowest resilience) relates generally to severe failure and slow recovery 

(Figure 7.6). Figure 7.7 illustrates the occurrence of high, moderate, low and extremely low 

resilient OWTS based on the 273 OWTS in the study sample after the 2013 flood event 

compared to a pre-flood baseline recovery measurement. While both the pre- and post- 

flood values are calculated similarly, the pre-flood failure events are considered 
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independent of each other, whereas the failures after 2013 are attributed to the 

countywide disaster. 

 

Figure 7.7 Occurrence of OWTS in each category of resilience after the 2013 Flood compared to a baseline 
measure of recovery for independent failures, repairs and replacements before 2013. 

 
 
 
RESULTS AND DISCUSSION 

For each of the 273 OWTS in the study sample, fragility and rapidity were calculated 

both for repairs before and after the 2013 flood. The two dimensions were then combined 

to determine the resilience level of each system after the flood event as well as estimate the 

resourcefulness required to mitigate the burden of major or complete OWTS failure in the 

future. Each section below describes each determinant—fragility and rapidity—and their 

combination. 
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Fragility 

 Figure 7.8a and 7.8b below show the distribution of failure type throughout the 

county before and after the 2013 flood. Visually, the total number of required OWTS 

repairs and their fragility 

distributions before and after the 

flood appear to be consistent, 

though the post-flood period of 

record is less than 3 years while the 

pre-flood period is 7 years. An 

important distinction between pre- 

and post-flood fragility is that 

independence between each failure 

occurrence can be assumed before 

the flood, but this assumption of 

independence does not apply to the 

post flood population. Generally, it 

appears that OWTS that have lost 

near complete function (major 

repairs) tend to dominate each population. This may be due to the fact that these repairs 

are associated with visible failure, while minor and moderate repairs may be more difficult 

to identify without an inspection, resulting in fewer identifications overall.  

 

 

 
Figure 7.8 Distribtion of fragility before and after the flood. 
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Rapidity 
 
 Unlike the fragility 

distribution, across the sample 

rapidity shifts significantly after 

the 2013 flood to longer 

recovery times as compared to 

the more rapid recovery of 

OWTS from 2007 to 2013. Figure 

7.9a and 7.9b show the 

distribution of OWTS throughout 

Boulder County pre- and post- 

flood, respectively. A series of 

boxplots also compare the 

median recovery duration across 

the entire sample and their 

variation after 2013. The 

recovery distribution for repairs 

from 2003-2013 are in Figure 7.10a, where Figure 7.10b and 7.910c show rapidity for the 

sample of the 34 flood-related repairs based on the permit application date (i.e. the date 

the owner applied for a repair permit to address the failure) and from the actual date of the 

flood (i.e. the date the damage occurred) to the final inspection date, respectively. To be 

consistent for the sake of comparison, we define rapidity as the duration between the 

permit issue date and the final inspection, though it is interesting to see that for the 

 
Figure 7.9 Distribution of rapidity before and after flood. 
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population of systems directly affected by the flood, the true recovery period was 

significantly longer. This relationship indicates that there not only exists a recovery delay 

but as well a reporting or permitting delay. Furthermore, Figure 7.9d indicates that not only 

directly flood-impacted OWTS suffered from recovery delays but also all repairs after 2013 

up to the present day still undergo significant delays.  

 To verify the statistical significance of the difference at 95%, we used a simple t-test, 

which confirmed that, on average, recovery after the flood has been slower or rather 

rapidity has been lower compared to the recovery durations before the flood.  

 The increased number of repair calls, reconstruction delays related to backlog and 

inaccessible properties, and increased demand of material and equipment affecting their 

costs and availability all influence recovery time. After the flood, delays were attributed to 

initial debris removal, identified as critical in order for reconstruction to begin. For 

example, Mosqueda & Porter (2007) reported that the storm surge in Hurricane Katrina 

moved considerable quantities of debris onto properties near the shore along the 

Mississippi coast, limiting access to the properties for repair. Though the amount of debris 

as a result of the 2013 flood may not have been equivalent to the quantity associated with 

Katrina, many of the OWTS with long recovery durations were located in the canyons, 

where roads, bridges and culverts were damaged limiting access to properties (MacClune 

et al. 2014). In addition to debris, persistent floodwaters, elevated groundwater levels and 

shifts in the 100-year and 500-year flood plains have delayed the issue of both building and 

OWTS repair permits in certain areas (Boulder County, 2015). Areas where these 

hydrological and topographical transformations occurred, once suitable for OWTS, may no 

longer be appropriate for decentralized buried sanitation solutions, therefore repair 
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permits have been withheld so alternatives can be discussed. Lastly, these physical 

challenges in addition to the shear number of applications after the flood overwhelm 

permitting and inspections offices, restricting the number of permits issued and the rate of 

final repair inspections.  

 
Figure 7.10 Recovery durations for (a) OWTS repairs from 2007-2013, (b) flood-specific repairs based on the 
permit issue date, (c) flood-specific repairs based on the approximate date of the system failure (entered as 
September 12, 2013, the peak of the storm event), and (d) all other repairs from 2014-2016. 

 

 

Resilience  

Figure 7.11a and 7.11b display the resilience rankings for each of the 273 OWTS after 

the flood compared to a baseline measurement of recovery for repair before 2013. As 

mentioned, the distribution of fragile OWTS before and after the flood appears to be 

random throughout the county with a total repair increase during the post-flood period. 

Rapidity, on the other hand, decreases significantly. The dominance of the rapidity 

dimension as a determinant of resilience is apparent in Figure 7.11. Minor to moderate 

failures with slow recovery rates lead to less resilient OWTS, whereas, major failures that 

are addressed rapidly specify highly resilient systems. 
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Resourcefulness 

Demand surge among the other factors mentioned affect OWTS resilience after a 

widespread disaster. Olsen and Porter (2011) describe demand surge to include demand 

increases in materials, labor, equipment, financing, or some combination that outpace their 

supply after a natural disaster. Major catastrophes, such as earthquakes, hurricanes, and 

wildfires often create a demand surge for materials and labor, resulting in increased costs 

to replace damaged property (Federal Alliance for Safe Homes and The Actuarial 

Foundation 2006).  Here the overburdened supply may also be the number of certified 

service providers in the county to address OWTS failures. Increased repairs over a short 

period of time can cause backlog stressing the services available, in part delaying recovery 

and causing OWTS after the flood to be less resilient. 

This lack of OWTS resilience, however, has a distinct financial consequence for 

homeowners. While some resources exist to mitigate the financial burden of OWTS failure 

through CDBG‐DR, both the costs of OWTS repair as well as costs associated with a delayed 

recovery primarily fall directly on the individual system owners. Information about the 

 
Figure 7.11 Distribution of OWTS resilience before and after 
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degree of failure—here we focus on major fragility—and the duration of recovery create a 

foundation for estimating resourcefulness to anticipate costs of future disasters in terms of 

their cost to system owners. The costs to occupy another residence during the restoration 

of the failed OWTS compared to the cost of renting a portable chemical toilet are plotted in 

Figure 7.11 and 7.12, respectively.  

 
Figure 7.12 Resourcefulness based on displacement Figure 7.13 Resourcefulness based on a rented 

toilet 
 

Recognizing the resourcefulness increase after the 2013 flood illustrates recovery 

response of OWTS given a widespread disaster and their financial burden in comparison to 

failures that result from smaller isolated events, poor management, or slow system 

degradation. While these values are merely estimates, they illustrate the severity of a 

widespread disaster such as the Boulder flood and its affect on immediate recovery, as well 

as its impact on recovery and costs up to four years after the event.  

 

CONCLUSION 

This study examines the effects of decentralization on the resilience of wastewater 

treatment systems in the face of extreme events and develops a framework to quantify 
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OWTS resilience based on an overlay of resilience determinants, namely the time and costs 

required for an OWTS to restore operation after varying degrees of failure. Widespread 

natural hazards such as flooding were found to affect the frequency and degree to which 

OWTS function is lost, and more importantly delay their recovery.  Flood impacts to not 

only OWTS but also other infrastructure systems stress the resources available both 

directly after the event and for several years into the future. Olsen and Porter (2011) 

describe these stresses and consequent cost increases as demand surge where the 

supply—for materials and services—is overburdened by a sudden and widespread demand 

when multiple systems fail simultaneously. The longer recoveries of OWTS have costs 

related to homeowner losses resulting from a failed OWTS as well as likely have 

environmental and public health consequences due to the prolonged release of 

contaminants. This investigation evaluated the costs associated with displacement when a 

property was rendered unlivable due to a failed sanitation system. The amount necessary 

to cover the costs of a completely inoperative OWTS including displacement costs or the 

rental costs of a temporary facility, range between $15,000 and $60,000 after the flood--

costs which are directly related to OWTS repair delay. Where there does exist some 

financial support for OWTS repairs and relocation cost through CDBG‐DR grants, the totals 

allotted are limited to up to $50,000 and $20,000 for OWTS repairs and relocation 

assistance, respectively. Approximately, 20% and 16% of the CDBG‐DR grants have been 

distributed for OWTS repairs and relocations costs in Boulder since the 2013 event, leaving 

a large portion of the cost and inconvenience to be managed by homeowners.  
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CHAPTER 8: SUMMARY & CONCLUSIONS 

 

SUMMARY 

Chapters 4-7 of this research each address the dimensions that describe life cycle 

OWTS performance, motivated by the growing reliance on decentralized sanitation and the 

dearth of knowledge about its reliability. The ultimate purpose of this study is to provide 

guidance for better-informed OWTS regulatory policies and a more complete 

representation of the risks associated with these systems.  In general, OWTS are regulated 

through a permit issued at the time of installation insuring compliance with equipment 

design and physical siting criteria for subsurface discharge through a soil treatment unit 

(STU).  Unlike centralized treatment facilities, which must monitor and report water 

quality data under NPDES permit requirements, there is no monitoring of treated water 

quality or even system physical integrity.  In order to carry out performance-based 

diagnostic monitoring of OWTS performance, a secondary measure, the frequency of 

system disruptions severe enough to require repair/replacement actions and associated 

costs over a 40-year assumed life cycle, repair severity, was designated as the performance 

response variable.   

Chapter 4 focuses on quantifying OWTS repair severity as a function of owner 

behavior and policy-related factors operative after installation. A multiple regression 

method, Generalized Additive Models for Location, Scale and Shape (GAMLSS), was used to 

simulate OWTS repair/failure data in Boulder County Colorado between 1973 and 2013.  A 

Weibull distribution provided the best fit to estimate annual repair costs between $200 for 

systems with a record of inspection and maintenance to over $370 for OWTS with no prior 
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inspections. The most significant predictor variables were either property transfer 

inspections alone or combinations of inspections with permitted upgrades and property 

sales made under a new regulation promulgated by the County in 2008. The result 

highlights the importance of requiring owners to obtain professional inspections in 

determining long-term OWTS functionality. In general, monitoring is an important 

component of infrastructure reliability. Public health and environmental agencies have 

sponsored numerous efforts to provide public information on best inspection and 

maintenance practices for OWTS, including one campaign in initiated by the U.S. EPA and 

adopted by Boulder County called “Septic Smart.” However, the relative invisibility of 

OWTS fixtures and the cost of inspections and maintenance are incentives for homeowners 

to opt out of voluntary inspections until significant system failures such as sewage ponding 

or backups occur. The results of Chapter 4 support the economic model proposed by 

Mohammed (2009), that the mixed private-public nature of OWTS constitutes an impure 

public good where private economic choices often outweigh public interests in 

environmental quality. In Boulder County, even the less-than-universal requirement for 

inspection during a property transfer had a beneficial effect on homeowner costs. It can be 

expected that wider coverage through a system of renewable permits or mandatory 

maintenance contracts would obtain even greater benefits in terms of environmental 

quality and homeowner costs. 

Chapter 5 presents new methods to communicate failure risk to OWTS owners, in 

order to incentivize good management practices at the household level by communicating 

tradeoffs between the preemptive costs of monitoring and maintenance required by 

performance-based regulations and the costs of system failure, major repair and 
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replacement. Homeowners in many communities have resisted the imposed costs of active 

OWTS regulation due to their added financial burden unaccompanied by evidence of their 

benefit.  In the end, Chapter 5, using Extreme Value Analysis –Points Over Threshold, 

determines failure risk in terms of the probability of an OWTS performing poorly resulting 

in repair costs above a selected threshold ($18,000) signifying that the system is high-risk 

and the consequence in terms of the dollar amount of threshold exceedance. It was found 

that increasing the number of bedrooms in a home with an OWTS increases the risk of the 

system incurring a major repair replacement with costs over the threshold, while required 

inspection at the time of property transfer significantly decreases the risk of over-the-

threshold repair costs. Chapter 5 results highlight the benefit of inspection and 

maintenance in a risk framework. The model also enables comparison of the cost of regular 

monitoring through a mechanism such as a renewable permit to the risk-cost of the no 

action alternative. Overall, the added cost of inspection appears to be advantageous in two 

respects: the lifetime risk of repair/failure costs is less than the cost of inspections over the 

same period and also smaller regular maintenance costs are less than the financial burden 

of a single large expenditure after failure. 

In addition to owner behaviors, OWTS are vulnerable to other factors exerted after 

installation, which are not typically considered in design and siting guidelines. Most 

notable of these is weather. Buried septic tanks may receive infiltration and inflow through 

cracks or inadequately sealed risers and subsurface treatment and discharge through the 

soil treatment unit can be impaired by saturated soil conditions after significant rainfall. 

Chapter 6 covers a study of the fragility of an OWTS population measured as predicted 
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repairs/replacements attributable to annual variations in precipitation, stream flow and 

temperature.  

A Generalized Linear Model (GLM) method was used to test the association between 

weather-related variables and the frequency of OWTS failures in Boulder County, measured 

as frequency and magnitude of repairs over the period of 1979 to 2006, by fitting permit 

data to a Poisson distribution.  The significant predictor variables (significant at 90% with 

p values ≤ 0.1) for major OWTS repairs were the number of months in any year that rainfall 

exceeded 10.16 cm (4 in) and the peak recorded stream flow in the major County 

watershed, Boulder Creek. For comparison, the average monthly rainfall in the Boulder 

Creek drainage is 4.39 cm (1.73 in), so the 10.16-cm threshold of the independent variable 

signifies a much wetter than average month. The R2 value for the GLM fitted to major repair 

permit data was 0.70.  

A method for evaluating the resilience of OWTS in response and recovery from an 

historic (1,000-year) storm event that occurred in Boulder County in September 2013 is 

proposed and demonstrated in Chapter 7. Severe flooding and erosion resulted in multiple 

simultaneous OWTS failures, and the analysis therefore considered OWTS resilience as an 

attribute of the aggregated County systems damaged by the flood. Resilience is comprised 

of fragility, here, the sudden loss of system function after a hazard event, and measured as 

repair and replacement frequency between January 2014 and February 2016 and the time 

to recover OWTS function, measured as the time between the flood event and the final 

inspection of the restored OWTS (rapidity). It was found that there was a significant 

increase in the annual frequency of major OWTS repairs in the two years following the 

flood, compared with the period 2003 – 2013. Moreover, the time to recover is significantly 
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increased after the flood disaster when multiple systems are damaged. Extended recovery 

time after the flood can be attributed to demand surge, a phenomenon in which the 

demand—in this case materials, labor, and overall OWTS repair services—surpasses the 

supply (Olsen & Porter, 2011). In addition to recovery time, a survey of OWTS installers 

revealed that their post-flood charges to owners increased by approximately 10%. Chapter 

7 also estimated the financial consequences of a demand surge for individual homeowners 

monetized as the cost of relocating residents over the extended recovery period, and as a 

less-acceptable alternate, the rental cost of a portable toilet. The total amount of each 

alternative over the recovery duration plus the cost of repair makes up a third component 

of resilience, resourcefulness, which represents the estimated costs associated with 

recovery that falls directly on system owners. These estimates illustrate the expected cost 

associated with OWTS failure and delayed recovery as the result of a widespread disaster 

that are currently not included in the communication of OWTS risk to homeowners.  Given 

increasing probability of extreme storm-related hazards, consideration should be given to 

these system owner costs associated with the difficulty of maintaining resilient wastewater 

systems. There exists a great opportunity to develop insurance policies, either as flood 

insurance or home insurance add-ons, that would alleviate some of financial risk for 

individual system owners. Policies could be mandated but subsidized based on proof of 

maintenance records or signed management contracts from certified service providers. 

 

CONTRIBUTION 
 

Overall, this research contributed to the quality, availability, and accessibility of 

information about key components of OWTS life cycle performance for decision makers. 
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Figure 8.1 summarizes the contributions made in each chapter of this dissertation. 

 

Figure 8.1 Dissertation summary of knowledge needs, related research questions and contributions of results 
to understanding OWTS life-cycle performance.  

 

An important contribution of this dissertation is the data-driven performance-based 

methodologies described in Chapters 4-7 that identify connections between post 

installation factors such as owner operational practices and weather events and 

wastewater treatment outcomes expressed as risk of failures and related repair costs. 

Dependence of OWTS function on both design and operational characteristics has been 

recognized previously, but not formally analyzed due to a lack of the most common 

treatment performance measure, water quality.  

Use of a secondary measure, repair/replacement frequency and cost data 

documented in public records produced two benefits. First is a quantitative means of 

measuring lifetime failure risk as a function of common owner behaviors, and second is 

producing an effective means of communicating best practices in the form of economic 
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risks that are especially persuasive to two key stakeholders – private OWTS owners and 

regulators.  Results of the study indicate that merely publicizing environmental and public 

health risks of OWTS failure have not been effective at incentivizing owner best practices. 

The use of cost provides an alternative that illustrates the tradeoffs between properly 

operating OWTS and long-term costs related to repairs and replacements.  

Modeling OWTS reliability as repair severity in Chapters 4 and 5 illustrates the 

economic benefits of embedding best practices for lifetime OWTS operation in regulations 

and other policy measures. A variety or proscriptive mechanisms such as renewable 

permits and required maintenance contracts between owners and installers and incentives 

such as access to State Revolving Fund money or rebates for upgrades and subsidized 

insurance similar to government-subsidized flood insurance.  

The impact of weather, especially extreme weather, on OWTS function has never 

been reported or analyzed in a resilience framework, such as is presented in Chapters 6 and 

7. Yet in many locations where these systems are now or will be relied on for universal 

sanitation, resilience to extreme weather events that can severely disrupt decentralized 

wastewater systems on a large geographic scale should be considered in wastewater 

system needs assessment and planning.  Consideration of fragility and resilience 

characteristics of OWTS exposed to extreme weather events can motivate improved 

emergency planning, technological advances and even changes to land use and 

development practices.  

The singular outcome of this dissertation is that reliable treatment of wastewater in 

OWTS systems cannot be achieved by existing design regulations enforced only at 

installation. Rather dynamic conditions such as owner behavior and weather conditions 
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exerted over the system lifetime must be considered. By incorporating the influence of 

ownership as well as the consequence of scale when it comes to natural hazards, we can 

enable risk-informed decisions related to OWTS management and planning that ultimately 

result in more sustainable sanitation solutions.   

 

LIMITATIONS & SUGGESTIONS FOR FUTURE RESEARCH  

The limitations of this dissertation relate to availability, quality and quantity of 

OWTS data. Because OWTS operation and maintenance are not regulated, practices vary 

widely and performance and failure data are scarce. In this investigation, performance-

based data were obtained from homeowners’ applications for permits to replace or repair 

failing systems (EPA, 2002b). While the reported inspections and permits offer insight to 

actual system performance, they are still limited in that they only identify compromised 

function exceeding a relatively high threshold. They do not consider less disruptive 

degraded performance that still results in groundwater contamination and possible health 

risks. Permit applications are hand written documents, many of which date back to the late 

1940s. Chapters 4 and 5 analyses incorporate permit applications and inspection reports 

dating back to 1973 and required coding to allow quantitation of independent variables.  

Some counties have considered electronic submission of inspection and permit 

applications, as has been done in many states for NPDES Discharge Monthly Report data 

from municipal treatment facilities. Such a system would greatly improve reliability and 

accessibility of OWTS data to researchers as well as public agencies.  

Repair/replacement costs were a component of the severity measure reported in 

Chapters 4 and 5. Variability in site slope, vegetation, soil characteristics, setbacks from 
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surface water bodies, water table levels, and accessibility repair costs can vary widely, for 

example, from $4,860 to $21,800 for a moderate repair that includes replacing the soil 

treatment unit. Repair costs were estimated using an informal survey conducted by the 

Boulder County Health Department in the 1990’s and have not been updated. Although a 

sensitivity analysis revealed that raising costs did not change the statistical model skill, 

more accurate cost data would be a great benefit to homeowners, insurers and public 

agencies charged with risk communication. 

 
 
CONCLUSIONS 

 
The goal here has not been to discredit OWTS as a desirable sanitation solution, but 

rather to characterize the challenges and costs associated with their long-term 

sustainability. No doubt OWTS will continue to play a role in the future of sanitation in the 

U.S. as well as more globally. As an engineer, I believe it to be my responsibility to 

characterize the risks associated with treatment of domestic wastewater in OWTS and 

identify those factors that cause OWTS failure and reduce their resilience in order to guide 

technology innovations and management decisions producing cost-effective performance 

and minimizing public health and environmental risks. Statistical modeling in this research 

has enabled identification of the challenges associated with ensuring a public good within 

the constraints of private ownership.  

In the absence of treated water quality data, performance of OWTS over a life cycle 

of 40 years has been quantified as the repair severity, using failure-associated repair permit 

data from a sample representing 14,300 OWTS in Boulder County, Colorado. 
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Statistical methods using the GAMLSS multivariate regression method and extreme 

value analysis indicated that regulation requiring inspection and maintenance significantly 

reduced both the probability and magnitude of OWTS failures.  Both regulation and 

financial incentives should be considered to insure a desirable level of OWTS performance 

over their lifetime. 

Improved monitoring and reporting requirements will enable more accurate life-

cycle assessment of OWTS performance in a sustainability context that considers economic, 

social and environmental outcomes of privatized and decentralized wastewater 

management. 

OWTS in general are highly vulnerable to weather conditions, particularly 

precipitation leading to saturated soil and, in the extreme, flooding.  The annual frequency 

of months where rainfall was approximately two times the Boulder Creek drainage 

monthly average and peak stream flow in the watershed were significantly associated with 

major repairs in that year, accounting for 70% of repair data variability.   

An extreme flood in 2013 resulted in greater than normal OWTS damage requiring 

major repair and significantly longer time required for restoring damaged OWTS possibly 

the result of a demand surge, which has been reported to delay recovery of other 

infrastructure from earthquakes and floods.  

It is in the public interest to reduce heightened economic risks to OWTS owners 

resulting from natural hazards such as floods, possibly by publicly-subsidized insurance 

and emergency planning that reduces the system recovery time. 
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APPENDIX A: DATA COLLECTION 
 
Data was collected from: http://maps.bouldercounty.org/boco/PropertyViewer 
 
1. Each property ID, provided by the Boulder County Public Health (BCPH) department 

permit database search, was entered into the property search bar as pictured below. 
 

 

 

2. Under the assessment tab for the property, there is information about each property 
deed, the actual and assessed structural value of the home, the living area, and the 
assessed number of bedrooms and bathrooms for the property. Clicking the septic 
system tab leads to the permit record for the system. This record has information about 

http://maps.bouldercounty.org/boco/PropertyViewer
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the permit type as well as the permit date and final inspection date. Since BCPH 
categorizes permit types into only minor and major repairs, I had to differentiate major 
repairs further by going into the wastewater system documents for this system tab.  
 

 

3. The wastewater system 
document for this system tab 
leads to the any file documents 
associated with that property ID, 
including: scanned, hand-written 
permit documents, design 
drawings, loan inspection 
documents, legal documents, 
property transfer certificates, 
and miscellaneous. 

 
4. Here I have accessed one of 
the permits to illustrate the 
source of certain independent 
variables. 
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APPENDIX B: DATA 
 
RELIABILITY DATA (For CHAPTER 4) 

 
BOULDER COUNTY OWTS ATTRIBUTE DATA 

PARCEL_NO2 
PRE2008
_DEED 

H
2
O 

STRUCT_
VAL 

DELT
A_BE

D 

DELT
A_BA

TH 
LIVE_AR

EA 
PROP_

YR 
LOAN
_INSP 

M
I
N 

M
O
D 

M
A
J 

NO_AD
D/UPG
RADE 

TOT_ 
REPAIR RS RS_ANN 

RS_ 
CATE

G 

PROP
_TRA
NS_IN

SP 

POS
T200
8_D
EED 

POST2
008_SA

LES 
146336000022 0 0 465100 1 0 4813 1900 0 1 0 1 0 2 17.932 448.3 3 0 0 0 
146130007003 1 0 185800 0 0 1040 1976 0 0 1 0 0 1 9.173 229.325 1 0 0 0 
146114002011 1 1 400000 0 0.75 1547 1969 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
146114009003 2 1 480400 0 0 2280 1972 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146103007006 3 0 309700 0 0 1612 1972 1 1 0 0 0 1 3.066 76.65 1 0 0 0 
131727405008 2 0 270200 2 2 3840 1972 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
120112000025 2 0 342300 0 0.75 1352 1942 0 0 1 0 2 1 9.173 229.325 1 0 0 0 
119711100032 2 0 224400 0 0.5 1648 1968 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
131727404005 2 1 212900 0 1 1163 1972 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146102002010 0 1 244500 0 0 1450 1963 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
131711000020 1 0 217400 1 0.25 1246 1970 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
131919004003 0 1 97633 0 0 960 1971 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
120520414003 0 1 157100 0 0 1484 1965 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146123011004 3 1 434500 0 0 2597 1972 4 0 0 1 1 1 14.866 371.65 2 0 2 2 
157701107006 0 0 235200 0 0 1626 1966 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
157716200003 3 0 200800 0 1 3599 1958 5 0 0 1 0 1 14.866 371.65 2 0 0 0 
120111000007 0 0 284393 0 0 1102 1947 3 0 0 1 1 1 14.866 371.65 2 0 0 0 
146514009009 3 1 157500 0 0 1510 1966 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
132109000004 3 0 275000 0 1.75 3097 1949 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
158129000008 5 0 115100 0 0 1364 1974 2 1 0 0 0 1 3.066 76.65 1 0 0 0 
146104006005 0 0 260600 0 0 2240 1960 0 0 0 1 0 1 14.866 371.65 2 0 1 1 
146111006007 3 0 270000 0 0.25 1526 1978 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
131933000006 6 0 128400 0 0 660 1962 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146533100037 1 1 137500 1 0 1864 1900 0 0 1 1 0 2 24.039 600.975 3 0 0 0 
158136002002 1 0 117500 0 0.5 1200 1972 2 0 0 1 1 1 14.866 371.65 2 0 0 0 
157504001003 3 0 257000 0 0 1222 1963 2 0 1 1 0 2 24.039 600.975 3 0 0 0 
157701109002 0 0 258500 0 0 2197 1966 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
145912009002 0 0 101182 0 0 915 1914 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
157701306014 3 0 163200 0 0.5 1613 1962 4 0 0 1 1 1 14.866 371.65 2 0 0 0 
158136001009 1 0 160200 0 0.5 3606 1960 0 0 0 1 1 1 14.866 371.65 2 0 1 1 
146111001001 1 0 350400 0 0 1220 1965 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146104004006 3 0 216700 0 0.5 1660 1972 2 0 0 1 1 1 14.866 371.65 2 0 1 1 
157701306010 2 0 222300 1 0.75 2044 1963 1 0 0 1 0 1 14.866 371.65 2 0 1 1 
157712203003 2 0 521100 1 1.25 2742 1969 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
120520414013 3 1 160000 0 0 1488 1964 1 0 0 1 0 1 14.866 371.65 2 0 1 1 



 

 

1
6
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158112000009 1 0 136900 1 0 684 1968 0 0 1 0 0 1 9.173 229.325 1 0 0 0 
146514016021 1 1 162800 0 0 960 1969 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
131506000005 0 1 564500 0 0 4098 1976 0 1 1 0 1 2 12.239 305.975 2 0 0 0 
131726309001 1 0 172600 0 0 1456 1966 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146307000002 1 0 205300 2 0 2334 1948 0 0 0 1 1 1 14.866 371.65 2 0 0 0 
145907000030 1 0 300100 0 0 1117 1915 3 0 0 1 1 1 14.866 371.65 2 0 1 1 
157712203019 3 0 392800 2 0.75 1733 1967 1 0 0 1 0 1 14.866 371.65 2 0 1 1 
131930004005 3 1 200000 0 1 1139 1962 2 0 0 1 1 1 14.866 371.65 2 0 1 1 
157702000002 5 0 211000 0 0 2334 1975 3 0 2 0 0 2 18.346 458.65 3 0 0 0 
146115001007 1 1 382900 0 0.75 2372 1974 1 0 1 1 0 2 24.039 600.975 3 0 0 0 
146527000013 1 1 287400 0 0 1488 1960 0 1 1 0 0 2 12.239 305.975 2 0 1 1 
158136101015 2 0 180200 0 1 2587 1965 1 0 0 1 0 1 14.866 371.65 2 0 1 1 
131935013004 3 1 271000 1 1.25 1859 1966 3 1 0 1 0 2 17.932 448.3 3 1 0 1 
146127000011 4 0 456600 1 1.5 1218 1965 3 1 0 0 0 1 3.066 76.65 1 0 0 0 
120522311004 3 1 143700 0 0 1092 1972 1 1 0 0 0 1 3.066 76.65 1 1 0 1 
146112000041 2 0 200350 0 0 1644 1964 2 1 0 1 0 2 17.932 448.3 3 0 0 0 
146314000014 3 1 237000 1 0.25 2146 1967 2 0 0 1 0 1 14.866 371.65 2 0 1 1 
146515005004 2 0 165200 0 0 1417 1963 0 0 0 1 0 1 14.866 371.65 2 1 0 1 
120524000037 3 1 121100 1 0 950 1973 1 0 1 1 0 2 24.039 600.975 3 0 0 0 
146118000029 3 0 129127 0 0 2474 1905 0 1 2 0 1 3 21.412 535.3 3 0 0 0 
132103000011 0 0 131800 1 0 951 1940 0 1 0 1 1 2 17.932 448.3 3 0 0 0 
157933000014 1 0 99800 2 0 816 1971 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
146336004009 2 1 199700 0 0.75 1525 1967 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
157931003002 3 0 127800 0 0 1872 1970 3 0 0 1 1 1 14.866 371.65 2 0 0 0 
146115004002 4 1 438800 1 0.5 1685 1977 4 0 0 1 0 1 14.866 371.65 2 0 1 1 
131935009011 4 1 214500 0 0 1848 1966 2 1 0 0 0 1 3.066 76.65 1 1 0 1 
146104017001 1 0 481400 0 0 2965 1973 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146532101001 2 1 119400 0 0 1222 1965 2 0 0 1 0 1 14.866 371.65 2 0 1 1 
146122000022 2 0 516100 0 0.75 2852 1966 3 1 0 0 0 1 3.066 76.65 1 0 0 0 
131711000012 2 1 355500 0 0 1288 1971 0 0 0 2 0 2 29.732 743.3 3 0 0 0 
146114012010 3 1 329300 0 0.75 1587 1974 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
120521000006 1 1 260000 1 1.75 3493 1965 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146104023001 3 0 365800 2 0 2880 1966 1 0 1 1 1 2 24.039 600.975 3 0 0 0 
131930003003 3 1 201500 0 0 1303 1911 2 0 1 0 1 1 9.173 229.325 1 0 1 1 
146515003004 2 1 178900 1 0.25 1750 1963 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146520000017 2 0 673200 0 1.25 2556 1919 4 1 0 0 1 1 3.066 76.65 1 0 0 0 
157701411002 0 0 399000 0 1.25 2860 1964 0 0 0 1 0 1 14.866 371.65 2 0 1 1 
146104017008 1 0 298100 1 0 1320 1966 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
119725000028 1 0 125000 0 0 1200 1977 1 1 0 0 0 1 3.066 76.65 1 0 0 0 
157702000004 2 0 371200 0 0 2378 1915 2 1 0 0 0 1 3.066 76.65 1 0 0 0 
157712102005 1 0 534300 0 0 2896 1966 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
157931001031 4 0 162800 0 0 1996 1953 3 0 1 0 0 1 9.173 229.325 1 0 1 1 
146317304001 1 0 221400 0 0 1612 1950 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
131720000042 0 1 320000 0 0.25 2964 1977 2 1 0 0 0 1 3.066 76.65 1 1 1 2 
146528400016 1 1 689300 0 0.25 3323 1969 0 0 0 1 0 1 14.866 371.65 2 0 1 1 
146336014005 1 0 236200 0 0 2819 1965 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
146336011001 0 1 219000 0 0.5 1604 1968 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
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120522305005 3 1 165000 2 0 1775 1967 3 0 0 1 1 1 14.866 371.65 2 0 0 0 
146514010002 1 1 145000 0 0 1004 1969 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
120334000001 3 0 457200 0 0 2944 1974 1 0 0 2 0 2 29.732 743.3 3 0 0 0 
131730003002 1 1 255500 2 0.5 2303 1965 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
120319011005 3 1 151000 0 0 1064 1973 3 2 1 1 0 4 30.171 754.275 3 0 0 0 
146130003018 0 0 214600 0 0 1305 1973 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
120520414010 0 1 120000 0 0 1292 1964 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
157720000016 0 0 323300 0 1.25 1824 1973 1 1 0 0 0 1 3.066 76.65 1 0 0 0 
131508301001 2 1 183300 0 0 1919 1964 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
157932002016 1 0 86900 0 0 1232 1973 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
157932000036 2 0 132100 1 0.75 2771 1961 1 0 0 1 1 1 14.866 371.65 2 0 0 0 
131524000001 0 1 242300 2 0.5 2139 1900 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146532103021 3 1 121000 0 0 944 1965 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
131517000019 0 1 249500 2 0 936 1964 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
157513403003 6 1 356600 0 0 4878 1976 0 1 0 0 0 1 3.066 76.65 1 1 0 1 
119724000003 0 0 183600 1 0.25 1664 1967 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146318100032 0 0 251900 0 0 1104 1961 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
157711002013 2 0 575000 0 1.75 4426 1966 2 0 0 1 0 1 14.866 371.65 2 0 1 1 
146121000020 2 0 411500 1 0.25 2649 1965 2 0 1 1 0 2 24.039 600.975 3 0 1 1 
131935001010 2 1 212500 0 0.25 1350 1973 1 1 0 1 0 2 17.932 448.3 3 1 0 1 
146515010001 0 1 151200 0 0 1426 1964 0 1 0 0 0 1 3.066 76.65 1 1 0 1 
146322203006 0 1 338400 0 0 2569 1966 2 1 0 0 0 1 3.066 76.65 1 0 0 0 
145911001002 0 0 178200 0 0 1746 1900 0 0 0 1 0 1 14.866 371.65 2 0 0 0 
146114008003 1 1 250000 1 0 1436 1967 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
131925000002 1 1 113800 0 0 699 1953 1 1 0 0 0 1 3.066 76.65 1 0 0 0 
145932000023 3 0 130800 0 0.25 832 1970 0 1 0 0 0 1 3.066 76.65 1 0 1 1 
157716200009 1 0 164500 0 0 1260 1960 0 1 0 0 1 1 3.066 76.65 1 1 0 1 
131730000006 4 0 373400 0 1.25 2086 1972 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
120334000014 2 0 202400 0 0 1860 1969 2 0 0 1 0 1 14.866 371.65 2 0 0 0 
131712001004 3 1 255900 0 0.75 2651 1975 0 0 0 1 0 1 14.866 371.65 2 1 0 1 
146529002005 1 0 285600 1 0.5 2091 1971 1 0 0 2 0 2 29.732 743.3 3 0 0 0 
146114016002 4 1 400000 0 1.25 3233 1967 5 0 0 1 0 1 14.866 371.65 2 0 1 1 
157713001006 2 0 187600 0 0 1320 1962 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
146114011005 1 1 423500 1 0 1888 1967 1 0 0 1 0 1 14.866 371.65 2 0 0 0 
146532101010 2 0 148300 0 0.75 2090 1965 3 0 0 1 0 1 14.866 371.65 2 0 0 0 
131703006005 1 1 199000 0 0 2122 1978 2 0 1 0 0 1 9.173 229.325 1 0 0 0 
120329401001 1 0 148300 0 0 1104 1972 0 0 0 1 0 1 14.866 371.65 2 0 1 1 
120528330001 0 1 125700 0 0.5 1801 1967 0 1 0 0 0 1 3.066 76.65 1 1 0 1 

 
 
 
 
 
 
 
 
 
 



 

 

1
6

3
 

 

RISK DATA (For CHAPTER 5) 

OWTS RISK CATETGORY DATA 

PARCEL_NO2  RS_CATEG_303_528 RS_CATEG_200_400 RS_BI_LOW RS_BI_HIGHa RS_BI_HIGHb  
146336000022 See GAMLSS Date for 

variables: 
Pre2008_deeds through 

RS_ANNUAL 

2 3 0 1 0 See GAMLSS Data for 
variables:  

PROP_TRANS_INSP through 
POST2008_SALES 

146130007003 1 2 1 0 0 

146114002011 2 2 0 0 0 
146114009003  2 2 0 0 0 
146103007006  1 1 1 0 0  
131727405008  2 2 0 0 0  
120112000025  1 2 1 0 0  
119711100032  2 2 0 0 0  
131727404005  2 2 0 0 0  
146102002010  2 2 0 0 0  
131711000020  2 2 0 0 0  
131919004003  2 2 0 0 0  
120520414003  2 2 0 0 0  
146123011004  2 2 0 0 0  
157701107006  2 2 0 0 0  
157716200003  2 2 0 0 0  
120111000007  2 2 0 0 0  
146514009009  2 2 0 0 0  
132109000004  2 2 0 0 0  
158129000008  1 1 1 0 0  
146104006005  2 2 0 0 0  
146111006007  2 2 0 0 0  
131933000006  2 2 0 0 0  
146533100037  3 3 0 1 1  
158136002002  2 2 0 0 0  
157504001003  3 3 0 1 1  
157701109002  2 2 0 0 0  
145912009002  2 2 0 0 0  
157701306014  2 2 0 0 0  
158136001009  2 2 0 0 0  
146111001001  2 2 0 0 0  
146104004006  2 2 0 0 0  
157701306010  2 2 0 0 0  
157712203003  2 2 0 0 0  
120520414013  2 2 0 0 0  
158112000009  1 2 1 0 0  
146514016021  2 2 0 0 0  
131506000005  2 2 0 0 0  
131726309001  2 2 0 0 0  
146307000002  2 2 0 0 0  
145907000030  2 2 0 0 0  
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157712203019  2 2 0 0 0  
131930004005  2 2 0 0 0  
157702000002  2 3 0 1 1  
146115001007  3 3 0 1 1  
146527000013  2 2 0 0 0  
158136101015  2 2 0 0 0  
131935013004  2 3 0 1 0  
146127000011  1 1 1 0 0  
120522311004  1 1 1 0 0  
146112000041  2 3 0 1 0  
146314000014  2 2 0 0 0  
146515005004  2 2 0 0 0  
120524000037  3 3 0 1 1  
146118000029  3 3 0 1 1  
132103000011  2 3 0 1 0  
157933000014  2 2 0 0 0  
146336004009  2 2 0 0 0  
157931003002  2 2 0 0 0  
146115004002  2 2 0 0 0  
131935009011  1 1 1 0 0  
146104017001  2 2 0 0 0  
146532101001  2 2 0 0 0  
146122000022  1 1 1 0 0  
131711000012  3 3 0 1 1  
146114012010  2 2 0 0 0  
120521000006  2 2 0 0 0  
146104023001  3 3 0 1 1  
131930003003  1 2 1 0 0  
146515003004  2 2 0 0 0  
146520000017  1 1 1 0 0  
157701411002  2 2 0 0 0  
146104017008  2 2 0 0 0  
119725000028  1 1 1 0 0  
157702000004  1 1 1 0 0  
157712102005  2 2 0 0 0  
157931001031  1 2 1 0 0  
146317304001  2 2 0 0 0  
131720000042  1 1 1 0 0  
146528400016  2 2 0 0 0  
146336014005  2 2 0 0 0  
146336011001  2 2 0 0 0  
120522305005  2 2 0 0 0  
146514010002  2 2 0 0 0  
120334000001  3 3 0 1 1  
131730003002  2 2 0 0 0  
120319011005  3 3 0 1 1  
146130003018  2 2 0 0 0  
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120520414010  2 2 0 0 0  
157720000016  1 1 1 0 0  
131508301001  2 2 0 0 0  
157932002016  2 2 0 0 0  
157932000036  2 2 0 0 0  
131524000001  2 2 0 0 0  
146532103021  2 2 0 0 0  
131517000019  2 2 0 0 0  
157513403003  1 1 1 0 0  
119724000003  2 2 0 0 0  
146318100032  2 2 0 0 0  
157711002013  2 2 0 0 0  
146121000020  3 3 0 1 1  
131935001010  2 3 0 1 0  
146515010001  1 1 1 0 0  
146322203006  1 1 1 0 0  
145911001002  2 2 0 0 0  
146114008003  2 2 0 0 0  
131925000002  1 1 1 0 0  
145932000023  1 1 1 0 0  
157716200009  1 1 1 0 0  
131730000006  2 2 0 0 0  
120334000014  2 2 0 0 0  
131712001004  2 2 0 0 0  
146529002005  3 3 0 1 1  
146114016002  2 2 0 0 0  
157713001006  2 2 0 0 0  
146114011005  2 2 0 0 0  
146532101010  2 2 0 0 0  
131703006005  1 2 1 0 0  
120329401001  2 2 0 0 0  
120528330001  1 1 1 0 0  
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FRAGILITY DATA (For CHAPTER 6) 

REPAIR FREQUNCY IN EACH YEAR 
YEAR MINOR MODERATE MAJOR TOTAL 

1973 0 1 1 2 
1974 0 1 1 2 
1975 0 0 0 0 
1976 0 0 1 1 
1977 1 1 0 2 
1978 0 0 0 0 
1979 0 0 0 0 
1980 2 2 0 4 
1981 0 0 2 2 
1982 0 0 1 1 
1983 2 1 0 3 
1984 2 0 2 4 
1985 1 0 1 2 
1986 3 0 0 3 
1987 0 2 2 4 
1988 1 1 1 3 
1989 0 1 1 2 
1990 0 1 1 2 
1991 1 1 1 3 
1992 0 1 2 3 
1993 1 1 1 3 
1994 1 0 0 1 
1995 1 1 1 3 
1996 0 0 1 1 
1997 0 0 2 2 
1998 0 0 5 5 
1999 0 1 1 2 
2000 1 1 2 4 
2001 1 1 1 3 
2002 0 0 2 2 
2003 0 0 0 0 
2004 0 1 3 4 
2005 0 1 1 2 
2006 5 2 1 8 
2007 0 2 14 16 
2008 1 0 16 17 
2009 6 5 11 22 
2010 6 3 16 25 
2011 12 2 26 40 
2012 4 3 10 17 
2013 0 0 1 1 
2014 3 0 2 5 
2015 4 1 3 8 
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ANNUAL CLIMATE DATA FROM NOAA 

YEAR DT90 DT00 DP05 DP10 TPCP TPCP_SI DP05_S DP10_S TPCP_S TPCP_W MR25_S MR30_S MR40_S MR50_S 
1979 30 7 14 5 22.51 57.18 10 4 15.59 6.92 2 2 1 1 
1980 55 5 6 1 22.91 58.19 5 1 18.63 4.28 0 0 0 0 
1981 28 2 8 1 23.65 60.07 7 1 20.02 3.63 1 1 1 0 
1982 20 4 10 6 22.26 56.54 9 5 19.82 2.44 4 3 2 0 
1983 45 8 12 3 22.22 56.44 4 2 12.98 9.24 4 1 1 1 
1984 37 5 8 3 18.03 45.8 7 2 13.58 4.45 2 1 1 0 
1985 40 10 9 2 15.33 38.94 6 2 8.94 6.39 1 0 0 0 
1986 21 2 9 3 16.83 42.75 6 3 12.08 4.75 3 2 1 0 
1987 31 5 11 4 15.98 40.59 6 3 6.19 9.79 2 1 1 1 
1988 37 3 12 1 16.59 42.14 6 1 9.61 6.98 1 1 0 0 
1989 21 10 9 0 15.84 40.23 7 0 12.41 3.43 2 0 0 0 
1990 22 7 7 1 14.98 38.05 6 1 12.63 2.35 1 1 1 0 
1991 15 3 11 2 13.45 34.16 10 2 8.51 4.94 3 2 0 0 
1992 6 1 7 3 12.65 32.13 2 1 3.41 9.24 1 1 0 0 
1993 12 7 12 1 12.22 31.04 10 1 6.2 6.02 3 2 0 0 
1994 30 2 8 2 13.35 33.91 4 1 6.77 6.58 2 1 0 0 
1995 34 1 19 4 12.34 31.34 4 1 7.2 5.14 4 3 3 1 
1996 20 13 15 3 14.33 36.4 11 3 7.89 6.44 3 2 1 0 
1997 9 4 15 4 15.76 40.03 14 4 9.95 5.81 4 3 2 2 
1998 28 1 10 3 16.23 41.22 8 1 11.52 4.71 2 2 2 0 
1999 16 0 10 3 16.51 41.94 8 3 14.69 1.82 3 1 1 1 
2000 51 0 9 1 16.78 42.62 7 1 12.2 4.58 1 0 0 0 
2001 41 1 9 4 17.46 44.35 8 4 12.48 4.98 2 1 0 0 
2002 53 3 8 2 16.53 41.99 7 2 12.72 3.81 1 1 0 0 
2003 41 4 9 6 16.91 42.95 7 4 8.22 8.69 4 1 0 0 
2004 14 5 19 5 16.74 42.52 17 4 11.18 5.56 4 3 1 1 
2005 32 2 13 2 16.66 42.32 11 2 12.96 3.7 3 1 0 0 
2006 44 4 13 2 14.96 38 8 1 7.97 6.99 2 1 0 0 
2007 45 5 7 2 14.13 35.89 5 1 7.33 6.8 0 0 0 0 
2008 33 5 9 4 14.31 36.35 8 4 10.29 4.02 2 1 1 0 
2009 13 6 9 4 14.27 36.25 7 3 9.17 5.1 3 2 1 1 
2010 33 2 11 7 15.75 40.01 8 6 9.71 6.04 3 2 0 0 
2011 40 8 16 7 17.27 43.87 13 7 12.06 5.21 3 1 1 1 
2012 59 1 10 3 20.18 51.26 9 2 17.06 3.12 1 1 1 0 
2013 43 8 11 7 20.33 51.64 10 7 16.44 3.89 3 2 2 1 
2014 18 10 11 2 21.64 54.97 8 2 15.42 6.22 3 2 2 0 
2015 5 3 11 3 21.16 53.75 9 3 16.71 4.45 2 2 2 1 
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BOULDER CREEK AT LONGMONT FLOW DATA 

agency_cd site_no peak_dt peak_tm peak_va peak_va_si peak_cd gage_ht 
USGS 6730500 7/29/27 6:00 407 11.52495656 5 3 
USGS 6730500 6/4/28 9:00 694 19.65189153 5 3.84 
USGS 6730500 7/23/29 15:00 530 15.00792869 5 3.4 
USGS 6730500 8/18/30 5:00 353 9.995846847 5 2.94 
USGS 6730500 5/29/31 9:00 369 10.44891639 5 2.88 
USGS 6730500 7/13/32 10:00 128 3.624556364 5 1.86 
USGS 6730500 5/4/33 NA 670 18.97228722 5 NA 
USGS 6730500 5/10/34 NA 388 10.98693648 5 3 
USGS 6730500 5/28/35 NA 1110 31.43169972 5 4.62 
USGS 6730500 6/17/36 NA 366 10.36396585 5 2.99 
USGS 6730500 6/26/37 NA 680 19.25545568 5 3.97 
USGS 6730500 9/3/38 NA 4410 124.8772935 5 6.94 
USGS 6730500 4/24/39 NA 390 11.04357017 5 3.23 
USGS 6730500 7/3/40 NA 174 4.927131307 5 2.34 
USGS 6730500 6/22/41 NA 738 20.89783278 5 3.78 
USGS 6730500 4/24/42 NA 1790 50.6871554 5 4.81 
USGS 6730500 5/19/43 NA 553 15.65921617 5 3.44 
USGS 6730500 4/14/44 NA 970 27.46734119 5 4.13 
USGS 6730500 5/30/45 NA 702 19.87842631 5 3.51 
USGS 6730500 7/19/46 NA 178 5.040398693 5 2.39 
USGS 6730500 6/23/47 NA 2040 57.76636705 5 5.22 

USGS 6730500 
10/15/4

7 NA 721 20.41644639 5 3.55 
USGS 6730500 6/7/49 NA 2020 57.20003012 5 5.2 
USGS 6730500 8/3/51 NA 1540 43.60794375 5 5 
USGS 6730500 5/24/52 NA 1990 56.35052472 5 5.45 
USGS 6730500 5/29/53 NA 247 6.994261108 5 3.15 
USGS 6730500 1/14/54 12:30 26 0.736238011 2,5 NA 
USGS 6730500 8/19/55 NA 336 9.514460455 5 3.66 
USGS 6730500 6/10/79 NA 1040 29.44952046 5 4.23 
USGS 6730500 5/1/80 NA 1990 56.35052472 5 5.04 
USGS 6730500 5/29/81 NA 387 10.95861963 5 2.74 
USGS 6730500 5/13/82 NA 770 21.80397188 5 3.6 
USGS 6730500 5/19/83 NA 2090 59.18220938 5 4.82 
USGS 6730500 4/24/84 NA 560 15.85743409 5 2.92 
USGS 6730500 6/10/85 NA 448 12.68594727 5 2.85 
USGS 6730500 6/9/86 NA 508 14.38495807 5 2.86 
USGS 6730500 6/9/87 NA 981 27.77882651 5 3.57 
USGS 6730500 5/20/88 NA 540 15.29109716 5 2.71 
USGS 6730500 6/4/89 NA 623 17.64139543 5 2.9 
USGS 6730500 6/12/90 NA 392 11.10020386 5 2.4 
USGS 6730500 6/20/91 NA NA 17.24495957 NA NA 
USGS 6730500 8/24/92 NA 609 40.20992216 5 2.92 
USGS 6730500 6/18/93 NA 1420 14.07347276 5 4.23 
USGS 6730500 10/18/9 NA 497 65.12874716 5 2.76 
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3 
USGS 6730500 5/17/95 NA 2300 39.64358523 5 5.29 
USGS 6730500 5/26/96 NA 1400 49.83765 5 4.51 
USGS 6730500 6/7/97 8:15 1760 16.02733517 5 5 
USGS 6730500 4/26/98 13:15 566 41.62576449 5 3.17 
USGS 6730500 5/1/99 1:00 1470 34.82972131 5 4.58 
USGS 6730500 7/17/00 7:00 1230 10.67545117 5 4.33 
USGS 6730500 5/6/01 0:15 377 6.739409489 5 2.75 
USGS 6730500 5/24/02 9:15 238 35.11288977 5 2.6 
USGS 6730500 5/31/03 12:15 1240 21.94555611 5 4.34 
USGS 6730500 7/24/04 3:45 775 21.37921918 5 3.77 
USGS 6730500 5/24/05 14:30 755 34.26338438 5 3.75 
USGS 6730500 7/9/06 20:15 1210 17.92456389 5 4.31 
USGS 6730500 4/25/07 7:30 633 19.25545568 5 3.51 
USGS 6730500 8/16/08 22:00 680 23.87110168 5 3.64 
USGS 6730500 6/2/09 23:30 843 40.20992216 5 3.81 
USGS 6730500 6/14/10 11:15 1420 32.28120511 5 4.53 
USGS 6730500 7/13/11 18:45 1140 20.52971378 5 4.63 
USGS 6730500 7/8/12 7:15 725 252.3031031 5 3.89 
USGS 6730500 9/13/13 NA 8910 36.81190057 1,2 NA 
USGS 6730500 6/1/14 15:45 1300 

 
5 12.74 

USGS 6730500 2/17/15 NA NA 
 

NA NA 
  



 

 

1
7

0
 

 

RESILIENCE DATA (For CHAPTER 7) 

Prop_ID PRE_RECOV PRE_RECOV_R POST_RECOV POST_RECOV_R PRE_FRAG PRE_FRAG_R POST_FRAG POST_FRAG_R RESIL_PRE RESIL_POST 
131919001042 137 2 0 0 Major 3 0 0 5 0 
146130007003 77 2 0 0 Moderate 2 0 0 4 0 
146114002011 77 2 0 0 Major 3 0 0 5 0 
146114009003 97 2 0 0 Moderate 2 0 0 4 0 
146103007006 20 1 0 0 Minor 1 0 0 2 0 
145936000034 12 1 0 0 Minor 1 0 0 2 0 
119711100032 17 1 0 0 Major 3 0 0 4 0 
131727404005 53 1 0 0 Major 3 0 0 4 0 
146132000023 7 1 0 0 Minor 1 0 0 2 0 
131711000020 20 1 0 0 Major 3 0 0 4 0 
131924007011 853 5 0 0 Major 3 0 0 8 0 
146123011004 109 2 0 0 Moderate 2 0 0 4 0 
157701107006 34 1 0 0 Major 3 0 0 4 0 
157716200003 92 2 0 0 Major 3 0 0 5 0 
120111000007 60 0 0 0 Major 3 0 0 3 0 
146514009009 14 1 0 0 Major 3 0 0 4 0 
132109000004 253 3 0 0 Major 3 0 0 6 0 
120318203002 59 1 0 0 Moderate 2 0 0 3 0 
146104006005 49 1 0 0 Major 3 0 0 4 0 
131933000006 97 2 0 0 Moderate 2 0 0 4 0 
146114033001 53 1 0 0 Major 3 0 0 4 0 
146533100037 58 1 0 0 Major 3 0 0 4 0 
157504001003 76 2 0 0 Major 3 0 0 5 0 
157701109002 13 1 0 0 Major 3 0 0 4 0 
145912009002 73 2 0 0 Major 3 0 0 5 0 
157701306014 22 1 0 0 Major 3 0 0 4 0 
158136001009 36 1 0 0 Major 3 0 0 4 0 
146111001001 28 1 0 0 Major 3 0 0 4 0 
131519000026 49 1 0 0 Major 3 0 0 4 0 
145925000001 40 1 0 0 Minor 1 0 0 2 0 
157701306010 20 1 0 0 Major 3 0 0 4 0 
157712203003 84 2 0 0 Major 3 0 0 5 0 
131505008001 47 1 0 0 Moderate 2 0 0 3 0 
120520414013 41 1 0 0 Major 3 0 0 4 0 
145926000026 47 1 0 0 Moderate 2 0 0 3 0 
146514016021 83 2 0 0 Major 3 0 0 5 0 
131726309001 58 1 0 0 Major 3 0 0 4 0 
120330005002 0 0 104 2 0 0 Moderate 2 0 4 
157712203019 14 1 0 0 Major 3 0 0 4 0 
157702000002 9 1 0 0 Major 3 0 0 4 0 
146115001007 28 1 0 0 Moderate 2 0 0 3 0 
146527000013 57 1 0 0 Moderate 2 0 0 3 0 
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158136101015 48 1 0 0 Major 3 0 0 4 0 
132115002008 63 2 0 0 Moderate 2 0 0 4 0 
131935013004 8 1 0 0 Minor 1 0 0 2 0 
146129000003 26 1 0 0 Major 3 0 0 4 0 
146112000041 2 1 0 0 Minor 1 0 0 2 0 
146335400003 13 1 0 0 Minor 1 0 0 2 0 
146326006011 606 5 0 0 Moderate 2 0 0 7 0 
146314000014 20 1 0 0 Major 3 0 0 4 0 
120524000037 64 2 0 0 Major 3 0 0 5 0 
146118000029 6 1 0 0 Minor 1 0 0 2 0 
157933000014 62 2 0 0 Major 3 0 0 5 0 
157931003002 59 1 0 0 Major 3 0 0 4 0 
131935009011 21 1 0 0 Minor 1 0 0 2 0 
146532101001 69 2 0 0 Major 3 0 0 5 0 
146122000022 43 1 0 0 Minor 1 0 0 2 0 
131711000012 72 2 0 0 Moderate 2 0 0 4 0 
146114019011 78 2 0 0 Moderate 2 0 0 4 0 
131726303012 52 1 0 0 Moderate 2 0 0 3 0 
120521000006 28 1 0 0 Major 3 0 0 4 0 
131930003003 52 1 0 0 Moderate 2 0 0 3 0 
131924007071 96 2 0 0 Major 3 0 0 5 0 
146515003004 55 1 0 0 Major 3 0 0 4 0 
157701411002 99 2 0 0 Major 3 0 0 5 0 
146104017008 78 2 0 0 Major 3 0 0 5 0 
157702000004 52 1 0 0 Minor 1 0 0 2 0 
157931001031 43 1 0 0 Major 3 0 0 4 0 
146317304001 56 1 0 0 Major 3 0 0 4 0 
131720000042 61 2 0 0 Minor 1 0 0 3 0 
146528400016 15 1 0 0 Major 3 0 0 4 0 
146336014005 37 1 0 0 Major 3 0 0 4 0 
146336011001 24 1 0 0 Major 3 0 0 4 0 
120522305005 56 1 0 0 Major 3 0 0 4 0 
146514010002 98 2 0 0 Major 3 0 0 5 0 
131730003002 8 1 0 0 Major 3 0 0 4 0 
131930010001 41 1 0 0 Major 3 0 0 4 0 
120319011005 135 2 0 0 Minor 1 0 0 3 0 
146130003018 50 1 0 0 Major 3 0 0 4 0 
120510000011 105 2 0 0 Major 3 0 0 5 0 
157720000016 17 1 0 0 Minor 1 0 0 2 0 
131508301001 48 1 0 0 Moderate 2 0 0 3 0 
157932002016 53 1 0 0 Major 3 0 0 4 0 
157932000036 125 2 0 0 Major 3 0 0 5 0 
131524000001 48 1 0 0 Major 3 0 0 4 0 
146532103021 62 2 0 0 Major 3 0 0 5 0 
157513403003 12 1 0 0 Minor 1 0 0 2 0 
119724000003 53 1 0 0 Major 3 0 0 4 0 
157711002013 398 5 0 0 Major 3 0 0 8 0 
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146121000020 55 1 0 0 Major 3 0 0 4 0 
131935001010 27 1 0 0 Minor 1 0 0 2 0 
158107000052 21 1 0 0 Minor 1 0 0 2 0 
146515010001 24 1 0 0 Minor 1 0 0 2 0 
146322203006 39 1 0 0 Minor 1 0 0 2 0 
145911001002 7 1 0 0 Minor 1 0 0 2 0 
146114008003 258 3 0 0 Moderate 2 0 0 5 0 
131925000002 4 1 0 0 Major 3 0 0 4 0 
145932000023 0 0 485 5 0 0 Minor 1 0 6 
157716200009 62 2 0 0 Minor 1 0 0 3 0 
131730000006 43 1 0 0 Major 3 0 0 4 0 
120334000014 49 1 0 0 Major 3 0 0 4 0 
131712001004 38 1 0 0 Major 3 0 0 4 0 
146114016002 214 3 0 0 Major 3 0 0 6 0 
157713001006 0 0 754 5 0 0 Major 3 0 8 
157922003002 447 5 0 0 Minor 1 0 0 6 0 
146114011005 98 2 0 0 Major 3 0 0 5 0 
146532101010 30 1 0 0 Major 3 0 0 4 0 
120329401001 414 5 0 0 Major 3 0 0 8 0 
120528330001 6 1 0 0 Minor 1 0 0 2 0 
120111000008 60 0 60 0 Major 3 Minor 1 0 1 
131506000005 62 2 0 0 Moderate+Minor 4 0 0 6 0 
146127000011 14 1 31 1 Minor 1 Minor 1 2 2 
132103000011 65 0 0 0 Minor_Major 4 0 0 0 0 
146336000022 74 2     Moderate 2     4 

 131727405008 278 4     Major 3     7 
 120112000025 14 1 285 4 Major 3 Major 3 4 7 

146102002010 54 1     Major 3     4 
 131919004003 146 2     Major 3     5 
 120520414003 55 1     Major 3     4 
 158129000008 123 2     Minor 1     3 
 146111006007 39 1     Major 3     4 
 158136002002 33 1     Major 3     4 
 158136001009 24 1     Major 3     4 
 146104004006 36 1     Major 3     4 
 158112000009 51 1     Moderate 2     3 
 146111000024 120 2     Major 3     5 
 146307000002 60 1     Major 3     4 
 145907000030 50 1     Major 3     4 
 131930004005 35 1     Major 3     4 
 146114005011 51 1     Moderate 2     3 
 120522311004 7 1     Minor 1     2 
 157714000012 60               

  145925001001 225 3     Major 3     6 
 146515005004 3 1     Major 3     4 
 146336004009 45 1     Major 3     4 
 146115004002 22 1     Major 3     4 
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146104017001 44 1     Major 3     4 
 146114012010 99 2     Major 3     5 
 146104023001 67 2     Moderate 2     4 
 146520000017 49 1     Minor 1     2 
 119725000028 15 1     Minor 1     2 
 157712102005 14 1     Major 3     4 
 120334000001 26 1     Major 3     4 
 120520414010                 

  146104001004 33 1     Moderate 2     3 
 131517000019 36 1     Major 3     4 
 146318100032 37 1     Major 3     4 
 146529002005 56 1     Moderate 2     3 
 131703006005     1405 5     Major 3 

 
8 

158107000034 64 2     Major 3     5 
 146114008003 252 3     Major 3     6 
 131913005005     39 1     Major 3 

 
4 

131719001002     55 1     Major 3 
 

4 
120113000025     61 2     Moderate 2 

 
4 

131919002010     214 3     Major 3 
 

6 
131913005004     120 2     Major 3 

 
5 

120113000061     130 2     Major 3 
 

5 
131930002008     47 1     Major 3 

 
4 

131930000015     221 3     Minor 1 
 

4 
131930003004     150 2     Moderate 2 

 
4 

120336000001     267.5 4     Major+Minor 4 
 

8 
120319102004     50 1     Major 3 

 
4 

119711400050     150 2     Major 3 
 

5 
132104003007     642 5     Major 3 

 
8 

146133000024     64 2     Major 3 
 

5 
131724002003 35 1 383 5 Minor 1 Moderate 2 2 7 
146114021001     77 2     Major 3 

 
5 

146104013010     61 2     Major 3 
 

5 
131722207006     147 2     Major 3 

 
5 

146103006030     439 5     Major 3 
 

8 
146114010015     49 1     Major 3 

 
4 

146133001014     72 2     Major 3 
 

5 
119702000054     611 5     Major 3 

 
8 

131930000009     68 2     Major 3 
 

5 
157926201005     181 3     Major 3 

 
6 

157515000007     18 1     Major 3 
 

4 
119930000012     80 2     Moderate 2 

 
4 

120113000059     68 2     Major 3 
 

5 
146325000035     589 5     Major 3 

 
8 

131718000007     19 1     Major 3 
 

4 
120520411004     385 5     Major 3 

 
8 

157701305002     550 5     Major 3 
 

8 
158109003011     35 1     Moderate 2 

 
3 
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146102000004     111 2     Moderate 2 
 

4 
146513000030     79 2     Major 3 

 
5 

119711400073     189 3     Major 3 
 

6 
146133007009     251 3     Major 3 

 
6 

146532004003     502 5     Major 3 
 

8 
120522316003     441 5     Major 3 

 
8 

119726409006     342 4     Major 3 
 

7 
119702000038     85 2     Major 3 

 
5 

131702000029 350 4 90 2 Major 3 Moderate 2 7 4 
145912000122     382 5     Major 3 

 
8 

131508301018     449 5     Moderate 2 
 

7 
158118017009     50 1     Moderate 2 

 
3 

157712202012     449 5     Major 3 
 

8 
146512300008     249 3     Major 3 

 
6 

120519000033     410 5     Major 3 
 

8 
157931004005     47 1     Major 3 

 
4 

157712304002     21 1     Major 3 
 

4 
157714000017     373 5     Major 3 

 
8 

158321209009     319 4     Moderate 2 
 

6 
120522000006     345 4     Minor 1 

 
5 

119713000007     148 2     Major 3 
 

5 
120113000058     65 2     Major 3 

 
5 

158321221003     304 4     Minor 1 
 

5 
158118001006     181 3     Major 3 

 
6 

146124210002     75 2     Major 3 
 

5 
146336000050     196 3     Major 3 

 
6 

119930002002     124 2     Major 3 
 

5 
120520408005     96 2     Major 3 

 
5 

146532004004 7 1 296 4 Minor 1 Major 3 2 7 
119935000017     51 1     Major 3 

 
4 

131505009004     55 1     Moderate 2 
 

3 
119726008001     50 1     Major 3 

 
4 

119712000034     214 3     Major 3 
 

6 
131715000019     221 3     Moderate 2 

 
5 

131522002002     116 2     Major 3 
 

5 
146111006009     27 1     Major 3 

 
4 

120328000001     151 2     Major 3 
 

5 
157712308022     243 3     Moderate 2 

 
5 

131719000034     243 3     Moderate 2 
 

5 
157523000004     179 2     Major 3 

 
5 

158108005002     211 3     Major 3 
 

6 
157504004003     196 3     Moderate 2 

 
5 

119712000103     157 2     Major 3 
 

5 
131723000005     57 1     Major 3 

 
4 

131720000030     135 2     Major 3 
 

5 
131521000007     85 2     Major 3 

 
5 

158321220002     155 2     Minor 1 
 

3 
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146313200011     172 2     Major 3 
 

5 
119934415002     114 2     Major 3 

 
5 

131717001007     117 2     Moderate 2 
 

4 
158321003010     60           

  146322400020     114 2     Major 3 
 

5 
120325000030     80 2     Major 3 

 
5 

131727000010     80 2     Moderate 2 
 

4 
132108002002     67 2     Moderate 2 

 
4 

132109002003     22 1     Major 3 
 

4 
146103004003     16 1     Major 3 

 
4 

120319011001     16 1     Major 3 
 

4 
120112000051     19 1     Major 3 

 
4 

146513000037     23 1     Major 3 
 

4 
146325000033     12 1     Major 3 

 
4 

131720000017     597 5     Moderate 2 
 

7 
157716000052     310 4     Moderate 2 

 
6 

158118012009     74 2     Major 3 
 

5 
157712308017     8 1     Minor 1 

 
2 

146514014006     70 2     Minor 1 
 

3 
131935009013     7 1     Minor 1 

 
2 

158105004004     91 2     Minor 1 
 

3 
158136008005     7 1     Minor 1 

 
2 

146115002002     20 1     Minor 1 
 

2 
131710003001     68 2     Minor 1 

 
3 

132115007009     221 3     Minor 1 
 

4 
146111007001     121 2     Minor 1 

 
3 

146529005004     165 2     Minor 1 
 

3 
131924007047     11 1     Minor 1 

 
2 

157711000046     1 1     Minor 1 
 

2 
131727407001     546 5     New   

 
5 

120520414014     14 1     Minor 1 
 

2 
146320100020     26 1     Minor 1 

 
2 

146104022001     37 1     Minor 1 
 

2 
157505004003     18 1     Minor 1 

 
2 

131930004013     1 1     Minor 1 
 

2 
158118013005     14 1     Minor 1 

 
2 

158321219007 152 2 530 5 Major 3 Minor 1 5 6 
131935003002     114 2     Minor 1 

 
3 
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NON-FLOOD SPECIFIC REPAIR RECOVERY DURATIONS 
PARCEL_NO2 APP_DATE FINAL_INSP DAYS_RECOV_PERM 

146521000011 1/6/14 3/18/14 71 
146119000002 1/6/14 2/18/16 773 
146531000006 1/10/14 3/18/14 67 
120336000001 1/10/14 4/21/14 101 
146527003003 1/21/14 4/22/14 91 
146122008011 1/22/14 12/4/14 316 
131704001001 1/23/14 2/18/16 756 
131704001001 1/23/14 2/18/16 756 
157505000027 2/25/14 9/2/14 189 
120319102004 2/26/14 4/7/14 40 
120319012004 2/27/14 6/16/14 109 
131522000007 2/28/14 3/19/14 19 
157712306002 3/6/14 2/18/16 714 
119711400050 3/11/14 3/31/14 20 
157710002001 3/17/14 7/31/15 501 
146124214002 3/28/14 2/18/16 692 
145934000015 3/31/14 2/18/16 689 
146318402001 4/3/14 7/22/15 475 
132104003006 4/10/14 2/18/16 679 
132104003007 4/10/14 2/18/16 679 
119735000025 4/10/14 7/16/14 97 
146336011009 4/11/14 4/24/14 13 
146304000006 4/14/14 5/5/14 21 
131532001001 4/15/14 7/14/14 90 
146133000024 4/16/14 5/27/14 41 
119712000049 4/18/14 6/16/14 59 
146114006008 4/24/14 9/10/14 139 
131724002003 4/24/14 5/4/15 375 
158108007007 4/28/14 12/9/14 225 
120517000039 4/29/14 9/29/14 153 
146114021001 4/30/14 7/16/14 77 
146322400003 5/2/14 2/18/16 657 
132104002007 5/7/14 6/16/14 40 
146104013010 5/8/14 11/3/14 179 
146516008001 5/8/14 2/18/16 651 
131928000016 5/12/14 8/25/14 105 
131722207006 5/12/14 6/16/14 35 
131722207006 5/13/14 2/18/16 646 
157515000009 5/13/14 12/16/14 217 
146103006030 5/14/14 7/27/15 439 
157702001001 5/14/14 1/23/15 254 
157702001001 5/14/14 1/23/15 254 
158127008001 5/15/14 11/19/15 553 
146114010015 5/19/14 7/9/14 51 
146133001014 5/20/14 6/5/14 16 
119702000054 5/21/14 8/28/14 99 
131930000009 5/22/14 8/11/14 81 
157926201005 5/22/14 10/28/14 159 
146115005002 5/23/14 11/3/14 164 
131508000030 5/28/14 2/18/16 631 
146334402004 5/29/14 8/21/14 84 
157701300032 6/3/14 10/31/14 150 
146306002002 6/20/14 9/29/14 101 
146306002001 6/20/14 9/29/14 101 
131935014001 6/24/14 10/20/14 118 
146532000004 6/30/14 2/18/16 598 
158321219008 7/8/14 2/18/16 590 
158115001006 7/9/14 10/7/14 90 
157515000007 7/10/14 8/11/14 32 
146335400022 7/16/14 12/9/14 146 
119930000012 7/17/14 12/15/14 151 
120113000059 7/17/14 10/2/14 77 
146325000035 7/17/14 2/18/16 581 
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131718000007 7/21/14 8/27/14 37 
157504002003 7/22/14 10/16/14 86 
146336010004 7/24/14 10/1/15 434 
146522000019 7/28/14 2/18/16 570 
158112000027 7/29/14 11/13/14 107 
120520411004 7/30/14 8/24/15 390 
157701300028 8/11/14 12/16/14 127 
157721000010 8/11/14 11/25/14 106 
119934305004 8/11/14 2/18/16 556 
146120000015 8/21/14 12/16/14 117 
146506000002 8/21/14 12/9/14 110 
132118011001 8/21/14 2/18/16 546 
146530001014 8/22/14 7/30/15 342 
157701305002 8/27/14 2/18/16 540 
158109003011 8/28/14 10/23/14 56 
146102000004 8/29/14 11/26/14 89 
146513000030 9/10/14 11/14/14 65 
131930003001 9/11/14 3/30/15 200 
158321220001 9/22/14 5/5/15 225 
119735000020 9/26/14 11/12/14 47 
119711400073 9/26/14 12/8/14 73 
119711400075 9/26/14 12/8/14 73 
119712000052 9/26/14 11/26/14 61 
146133007009 10/2/14 6/12/15 253 
146325000037 10/3/14 10/20/15 382 
158108012002 10/3/14 6/23/15 263 
146532004003 10/7/14 2/18/16 499 
157915000021 10/9/14 12/16/14 68 
119724000006 10/10/14 2/18/16 496 
158136100019 10/20/14 8/20/15 304 
157926403003 10/20/14 1/15/15 87 
120115001003 10/21/14 2/2/15 104 
119726409004 10/21/14 12/10/14 50 
131721000010 10/22/14 1/5/16 440 
146132000021 10/23/14 2/18/16 483 
157711002012 10/29/14 2/18/16 477 
146134000041 11/6/14 12/2/14 26 
120330005002 11/10/14 2/3/15 85 
131723001002 11/13/14 2/18/16 462 
119701000016 11/13/14 12/22/14 39 
120522316003 11/14/14 12/8/15 389 
131519000022 11/17/14 4/13/15 147 
119714000001 11/18/14 6/25/15 219 
120517000018 11/19/14 2/18/16 456 
158136113003 11/20/14 10/18/15 332 
119726409006 11/21/14 8/31/15 283 
119702000038 11/24/14 1/21/15 58 
131702000029 11/25/14 2/18/15 85 
145912000122 12/2/14 2/18/16 443 
131508301018 12/4/14 2/18/16 441 
158118017009 12/4/14 12/23/14 19 
146114011004 12/4/14 3/30/15 116 
157712202012 12/4/14 2/18/16 441 
120332000016 12/9/14 2/18/16 436 
146512300008 12/9/14 8/13/15 247 
146102002004 12/9/14 2/18/16 436 
146118000084 12/11/14 12/30/14 19 
146334102004 12/15/14 1/20/15 36 
146126002001 12/16/14 3/26/15 100 
120519000033 12/24/14 2/18/16 421 
131512000022 1/5/15 2/18/16 409 
131527000003 1/6/15 2/23/15 48 
131527000003 1/6/15 2/18/15 43 
157931004005 1/6/15 2/19/15 44 
119711400013 1/8/15 7/20/15 193 
146534100010 1/16/15 2/9/15 24 
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146336012002 1/20/15 3/10/15 49 
157712304002 1/27/15 2/12/15 16 
120325000060 2/2/15 3/18/15 44 
158136004001 2/17/15 3/10/15 21 
120503000011 2/18/15 2/18/16 365 
157714000017 2/18/15 2/18/16 365 
157721000043 2/18/15 2/18/16 365 
157701300033 2/20/15 2/18/16 363 
158321209009 3/3/15 2/18/16 352 
158136109009 3/3/15 2/18/16 352 
146506000020 3/4/15 2/18/16 351 
120326000031 3/4/15 4/13/15 40 
120522000006 3/5/15 9/14/15 193 
132108003004 3/10/15 6/3/15 85 
119713000007 3/13/15 2/5/16 329 
131514000034 3/25/15 2/18/16 330 
120113000058 3/30/15 6/15/15 77 
157501000023 4/3/15 6/23/15 81 
158321211012 4/6/15 6/2/15 57 
146336000024 4/10/15 4/29/15 19 
132300000011 4/14/15 7/28/15 105 
120520412004 4/14/15 6/22/15 69 
146336006021 4/14/15 6/17/15 64 
158321221003 4/16/15 2/18/16 308 
120336000025 4/17/15 2/18/16 307 
157915000013 4/20/15 5/12/15 22 
158118001006 4/21/15 8/6/15 107 
146124210002 4/23/15 4/23/15 0 
146336000050 4/23/15 9/24/15 154 
120113000044 4/30/15 7/22/15 83 
119930002002 4/30/15 2/18/16 294 
120520408005 5/5/15 8/24/15 111 
146532004004 5/7/15 2/18/16 287 
119935000017 5/11/15 8/26/15 107 
157721000022 5/12/15 9/23/15 134 
132109002006 5/13/15 8/14/15 93 
146514017002 5/13/15 6/9/15 27 
146336014007 5/13/15 2/18/16 281 
146126000020 5/14/15 8/17/15 95 
131505009004 5/18/15 7/20/15 63 
146127000025 5/19/15 2/18/16 275 
146104004020 5/29/15 8/14/15 77 
158321217011 6/2/15 2/18/16 261 
119726008001 6/5/15 8/3/15 59 
119726008003 6/5/15 8/3/15 59 
119726008004 6/5/15 8/3/15 59 
119712000034 6/5/15 8/19/15 75 
158321220004 6/9/15 7/30/15 51 
146309005002 6/10/15 2/18/16 253 
131935015004 6/11/15 8/28/15 78 
131715000019 6/11/15 2/18/16 252 
157505002002 6/12/15 2/18/16 251 
157710002005 6/12/15 2/18/16 251 
131522002002 6/16/15 11/16/15 153 
146111006009 6/17/15 7/27/15 40 
146115002004 6/19/15 2/18/16 244 
119900000030 6/22/15 2/18/16 241 
120328000001 6/22/15 2/18/16 241 
119713000010 6/23/15 8/3/15 41 
146315000036 6/29/15 2/18/16 234 
146529004001 6/29/15 7/28/15 29 
157712308022 6/29/15 2/18/16 234 
157931006006 6/29/15 7/14/15 15 
146108000089 6/29/15 2/18/16 234 
131719000034 6/29/15 2/18/16 234 
157523000004 6/30/15 2/18/16 233 
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157932000045 7/1/15 8/10/15 40 
158321217007 7/9/15 11/10/15 124 
146317303003 7/17/15 2/18/16 216 
158108005002 7/27/15 2/18/16 206 
158118016011 7/29/15 10/6/15 69 
131512000022 7/30/15 2/18/16 203 
120112000008 8/3/15 9/28/15 56 
119735000068 8/5/15 2/18/16 197 
145701429001 8/5/15 2/18/16 197 
146114019003 8/6/15 9/2/15 27 
120112000027 8/6/15 2/18/16 196 
157926402008 8/10/15 2/18/16 192 
158321008001 8/12/15 2/18/16 190 
131936000003 8/12/15 2/18/16 190 
157504004003 8/13/15 2/18/16 189 
157915002010 8/13/15 2/18/16 189 
132104002010 8/17/15 2/18/16 185 
119712000103 8/17/15 2/18/16 185 
119712000103 8/17/15 2/18/16 185 
131723000005 8/24/15 2/18/16 178 
157701301004 8/24/15 2/18/16 178 
119935003003 8/24/15 11/2/15 70 
131900000107 8/25/15 2/18/16 177 
131720000030 8/25/15 10/26/15 62 
131521000007 8/25/15 2/18/16 177 
158321220002 8/26/15 2/18/16 176 
146313200011 8/27/15 2/18/16 175 
131926000006 8/28/15 2/18/16 174 
146315204001 9/1/15 2/18/16 170 
120503003003 9/1/15 2/18/16 170 
119726413011 9/4/15 2/18/16 167 
146114022001 9/4/15 2/18/16 167 
158115002008 9/8/15 2/18/16 163 
132109000018 9/10/15 2/18/16 161 
146506000024 9/11/15 2/18/16 160 
157713001009 9/15/15 12/29/15 105 
120113000031 9/15/15 2/18/16 156 
146316000019 9/15/15 2/18/16 156 
146531002003 9/16/15 2/18/16 155 
132129003021 9/17/15 2/18/16 154 
120325000009 9/18/15 11/17/15 60 
157701103013 9/23/15 2/18/16 148 
145928001021 9/23/15 2/18/16 148 
146510001001 9/23/15 12/21/15 89 
132127006001 9/25/15 2/18/16 146 
120330001004 9/28/15 2/18/16 143 
146530001006 9/30/15 2/18/16 141 
146503000009 10/5/15 2/18/16 136 
131924007053 10/6/15 2/18/16 135 
157701201004 10/12/15 2/18/16 129 
119934415002 10/13/15 2/18/16 128 
146129001001 10/14/15 2/18/16 127 
120131000013 10/15/15 2/18/16 126 
146111006006 10/19/15 2/18/16 122 
158136112003 10/22/15 2/18/16 119 
131717001007 10/22/15 2/18/16 119 
158321003010 10/23/15 2/18/16 118 
120530000013 10/26/15 2/18/16 115 
146130003009 10/26/15 2/18/16 115 
119711300033 10/30/15 2/18/16 111 
158118012005 10/30/15 2/18/16 111 
146322400020 11/3/15 12/1/15 28 
131511000024 11/3/15 1/12/16 70 
158320002004 11/3/15 2/18/16 107 
157933000040 11/3/15 2/18/16 107 
119934402002 11/9/15 2/18/16 101 



 

 180 

120325000030 11/10/15 2/18/16 100 
146114006008 11/10/15 2/18/16 100 
131520000035 11/12/15 12/17/15 35 
157711000047 11/13/15 2/18/16 97 
131727000010 11/13/15 2/18/16 97 
120524003003 11/17/15 2/18/16 93 
146529001006 11/17/15 2/18/16 93 
146334414004 11/18/15 2/18/16 92 
132108002002 11/19/15 2/18/16 91 
131505013001 11/20/15 2/18/16 90 
119726400033 11/20/15 2/18/16 90 
119723000040 11/20/15 2/18/16 90 
146314000029 12/2/15 2/18/16 78 
157714000002 12/3/15 2/18/16 77 
120507001005 12/4/15 2/18/16 76 
146316000035 12/7/15 1/14/16 38 
146531000017 12/8/15 10/15/96 -6993 
119935000015 12/16/15 2/18/16 64 
131913005001 12/17/15 2/18/16 63 
119712000093 12/18/15 2/18/16 62 
132124000009 12/23/15 2/18/16 57 
131726000006 12/29/15 2/18/16 51 
132109002003 12/29/15 2/18/16 51 
146103004003 12/29/15 2/18/16 51 
120319011001 1/5/16 2/18/16 44 
120112000051 1/7/16 2/18/16 42 
132127005001 1/12/16 2/18/16 37 
146512300007 1/27/16 2/18/16 22 
157510300004 1/28/16 2/18/16 21 
158311000012 2/1/16 2/18/16 17 
146513000037 2/1/16 2/18/16 17 
120507000034 2/4/16 2/18/16 14 
132104001002 2/8/16 2/18/16 10 
146324000035 2/8/16 2/18/16 10 
146325000033 2/8/16 2/18/16 10 
120320100018 1/9/14 4/16/14 97 
146132000008 2/6/14 4/15/14 68 
157712306007 4/16/14 7/15/14 90 
131720000017 5/19/14 2/18/16 640 
146532105023 8/11/14 9/26/14 46 
119726400010 10/20/14 1/21/15 93 
157716000052 3/16/15 2/18/16 339 
157501301005 4/27/15 2/18/16 297 
158108004005 6/25/15 2/18/16 238 
132124004003 7/17/15 8/31/15 45 
131730002004 11/9/15 2/18/16 101 
131934002001 1/17/14 2/18/16 762 
146119000002 2/10/14 2/18/16 738 
157501000005 2/19/14 6/2/14 103 
146114008011 2/20/14 2/23/15 368 
132300000011 3/3/14 2/18/16 717 
120516000006 3/7/14 5/20/15 439 
157712308009 3/12/14 8/18/15 524 
145926000004 3/19/14 9/23/14 188 
158313203002 3/25/14 6/24/14 91 
146318400027 3/31/14 2/18/16 689 
146513000001 4/18/14 2/18/16 671 
157931007001 4/18/14 2/18/16 671 
132121006003 4/18/14 2/18/16 671 
157701300015 4/29/14 2/18/16 660 
146114018008 5/8/14 10/21/14 166 
158128000015 5/9/14 6/17/14 39 
157701301016 5/28/14 10/6/14 131 
146104013006 5/29/14 2/18/16 630 
131727000019 6/25/14 2/18/16 603 
145701000028 7/17/14 2/18/16 581 
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131934009003 8/26/14 2/18/16 541 
132121002001 9/11/14 2/18/16 525 
157712306006 9/17/14 10/30/14 43 
158118012009 9/22/14 11/20/14 59 
131521000003 9/29/14 9/24/15 360 
157926403007 10/2/14 2/18/16 504 
146325000037 10/3/14 10/20/15 382 
146511201002 10/9/14 9/22/15 348 
146127000033 11/14/14 2/18/16 461 
131727006003 1/9/15 2/18/16 405 
120125001007 1/26/15 2/18/16 388 
119735000038 3/9/15 2/18/16 346 
119726004012 3/11/15 2/18/16 344 
158107000037 3/12/15 2/18/16 343 
157702000033 3/19/15 2/18/16 336 
132129006006 4/14/15 2/18/16 310 
146117000106 4/20/15 2/18/16 304 
120317000050 4/23/15 2/18/16 301 
158136100052 5/8/15 1/5/16 242 
145725000006 5/21/15 2/18/16 273 
132115004003 5/29/15 2/18/16 265 
146511203002 6/8/15 2/18/16 255 
131703000025 7/31/15 2/18/16 202 
119725007006 8/7/15 2/18/16 195 
146520000022 8/12/15 2/18/16 190 
131713005002 8/13/15 2/18/16 189 
157701311002 8/25/15 2/18/16 177 
158136100048 8/27/15 2/18/16 175 
158313104001 9/11/15 12/22/15 102 
146522007004 9/11/15 2/18/16 160 
145928003004 9/15/15 2/18/16 156 
157926201002 9/30/15 2/18/16 141 
158117000003 10/9/15 2/18/16 132 
157712100003 10/15/15 2/18/16 126 
146521007009 10/19/15 2/18/16 122 
146118000046 10/21/15 2/18/16 120 
157932000065 10/23/15 2/18/16 118 
146322200001 10/26/15 2/18/16 115 
146104019007 10/28/15 2/18/16 113 
131732001088 11/2/15 2/18/16 108 
146114032002 12/3/15 2/18/16 77 
120509005001 1/27/16 2/18/16 22 
146121000052 9/9/14 8/27/15 352 
131930011005 11/19/15 2/18/16 91 
131722204001 1/7/14 2/18/16 772 
131924009003 1/9/14 1/22/14 13 
145922000004 2/5/14 5/1/14 85 
146529000011 2/11/14 4/22/14 70 
157712308017 3/3/14 3/20/14 17 
131728000015 3/12/14 7/17/14 127 
146514014006 3/25/14 6/19/14 86 
146114024001 4/8/14 5/7/14 29 
146119000092 4/8/14 4/29/14 21 
146532103003 4/14/14 5/15/14 31 
131518301003 4/14/14 5/5/14 21 
146108000078 4/24/14 5/20/14 26 
131935009013 5/16/14 6/4/14 19 
120335001005 5/20/14 7/23/14 64 
131930000029 5/20/14 12/17/14 211 
145911003013 5/20/14 2/18/16 639 
131933000011 5/23/14 7/2/14 40 
146336006020 6/11/14 6/24/14 13 
145900000040 6/11/14 2/18/16 617 
145914000011 6/11/14 2/18/16 617 
158105004004 6/18/14 9/16/14 90 
146132000006 7/1/14 8/22/14 52 
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146130000030 7/9/14 7/29/14 20 
146315200005 7/9/14 8/19/14 41 
131935009010 7/10/14 10/8/14 90 
158315000034 7/16/14 10/21/14 97 
158136105005 7/23/14 9/11/14 50 
119735000014 7/29/14 1/28/15 183 
146513000007 8/4/14 2/18/16 563 
158321219011 8/11/14 10/21/14 71 
119711400010 8/14/14 9/2/14 19 
157729000030 8/25/14 12/23/14 120 
158136008005 8/28/14 9/15/14 18 
146116000004 8/29/14 2/18/16 538 
158321221001 9/3/14 2/18/16 533 
146531003004 9/4/14 12/4/14 91 
132121002001 9/10/14 2/19/15 162 
146117000055 9/12/14 10/30/14 48 
146133007010 10/2/14 6/12/15 253 
119934409003 10/7/14 8/31/15 328 
158127000034 10/10/14 7/9/15 272 
158136118008 10/28/14 1/13/15 77 
146532103014 11/6/14 11/21/14 15 
146112000057 11/24/14 12/3/14 9 
131530013002 12/15/14 1/12/15 28 
146536000012 12/19/14 1/15/15 27 
157720003003 1/20/15 4/2/15 72 
146308003004 1/30/15 2/2/15 3 
146114010006 2/3/15 4/2/15 58 
145914003001 2/13/15 6/23/15 130 
145701405008 2/23/15 2/18/16 360 
146127002008 3/11/15 4/7/15 27 
131713005001 3/13/15 3/18/15 5 
146115002002 3/16/15 4/15/15 30 
157501304008 3/27/15 4/7/15 11 
131520000036 4/3/15 5/18/15 45 
119934305003 4/6/15 6/15/15 70 
158136109008 4/17/15 2/18/16 307 
146133007006 4/20/15 7/9/15 80 
146114009005 4/24/15 9/22/15 151 
146130001001 4/24/15 5/14/15 20 
120336000001 5/7/15 2/18/16 287 
146114015005 5/17/15 9/28/15 134 
158104008006 5/18/15 6/23/15 36 
157729002001 5/18/15 5/21/15 3 
131710003001 5/18/15 2/18/16 276 
120509005002 5/27/15 7/1/15 35 
120332002001 6/8/15 7/31/15 53 
146529004018 7/6/15 10/6/15 92 
145921000005 7/7/15 8/4/15 28 
146114004015 7/8/15 9/23/15 77 
146322400006 7/8/15 8/11/15 34 
146532105006 7/8/15 9/1/15 55 
131702005005 7/13/15 2/18/16 220 
146127000011 7/13/15 1/25/16 196 
146103002001 7/15/15 2/18/16 218 
132115007009 7/17/15 2/18/16 216 
120313000002 7/17/15 11/24/15 130 
146114007005 7/20/15 2/18/16 213 
131508304013 7/21/15 8/12/15 22 
146318431001 7/31/15 9/2/15 33 
146111007001 8/4/15 12/7/15 125 
146519001004 8/13/15 2/18/16 189 
146123002005 8/24/15 2/18/16 178 
132127005003 8/27/15 2/18/16 175 
131526001013 8/31/15 9/14/15 14 
146529005004 9/4/15 2/18/16 167 
146135105003 9/8/15 2/18/16 163 
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157900100012 9/8/15 2/18/16 163 
146532101006 9/14/15 2/18/16 157 
131924007047 9/14/15 10/29/15 45 
158107000003 9/15/15 10/1/15 16 
145926000026 9/29/15 11/5/15 37 
120329400003 10/2/15 12/9/15 68 
145905000001 10/8/15 1/6/16 90 
146114018013 10/9/15 2/9/16 123 
120516000005 10/15/15 2/18/16 126 
146114018007 10/15/15 12/2/15 48 
146114005010 10/19/15 2/18/16 122 
131703000012 10/21/15 2/18/16 120 
157711001005 11/5/15 12/9/15 34 
157716000020 11/9/15 12/10/15 31 
132127006003 11/12/15 2/18/16 98 
131514000034 11/18/15 2/18/16 92 
158136100055 11/19/15 2/18/16 91 
157711000046 12/1/15 12/2/15 1 
131727407001 12/8/15 2/18/16 72 
120520414014 12/11/15 1/5/16 25 
146320100020 12/14/15 1/28/16 45 
146104022001 12/17/15 2/10/16 55 
131719000004 12/23/15 2/18/16 57 
120112000002 12/23/15 1/20/16 28 
146532104020 12/29/15 2/18/16 51 
157505004003 1/28/16 2/18/16 21 
158320002003 2/1/16 2/18/16 17 
131722207006 2/1/16 2/18/16 17 
157513407007 2/4/16 2/18/16 14 
146532101014 2/8/16 2/18/16 10 
131930004013 4/7/14 4/9/14 2 
146114010012 4/30/14 8/18/14 110 
158118013005 6/17/14 7/8/14 21 
146118000077 6/24/14 7/24/14 30 
131924007058 7/10/14 9/17/14 69 
132300000011 7/30/14 5/15/15 289 
158321219007 9/8/14 2/18/16 528 
157513405003 10/14/14 2/18/16 492 
131935003002 10/26/15 2/18/16 115 

 
FLOOD SPECIFIC REPAIR RECOVERY DURATIONS 

PARCEL_NO2 APP_DATE FINAL_INSP DAYS_RECOV_PERM DAYS_RECOV_FLOOD 
131913005005 1/3/14 3/10/14 66 173 
146118000036 1/24/14 9/8/15 592 720 
131719001002 3/14/14 6/6/14 84 261 
131906000001 4/25/14 7/9/14 75 294 
146127000010 5/5/14 7/2/15 423 652 
120113000025 5/7/14 12/18/14 225 456 
131726304003 5/12/14 9/3/14 114 350 
120112000025 6/24/14 4/13/15 293 572 
119903004005 8/1/14 11/10/14 101 418 
131919002010 8/6/14 12/9/14 125 447 
146117000101 8/8/14 10/8/14 61 385 
119934305005 8/11/14 6/29/15 322 649 
120100000046 9/10/14 12/22/14 103 460 
131913005004 10/7/14 

 
NA NA 

146530001028 11/10/14 6/30/15 232 650 
146111000016 11/25/14 3/23/15 118 551 
146114008016 1/12/15 

 
NA NA 

131930003004 1/12/15 6/15/15 154 635 
146111017002 1/16/15 7/27/15 192 677 
120111000020 1/21/15 4/13/15 82 572 
157712302005 3/11/15 

 
NA NA 

120111000008 3/30/15 8/19/15 142 700 
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120113000061 7/15/15 
 

NA NA 
132115006008 7/30/15 

 
NA NA 

146511000009 10/20/15 
 

NA NA 
132109006004 11/3/15 

 
NA NA 

131919004007 12/3/15 
 

NA NA 
131930002008 12/3/15 

 
NA NA 

146118000018 12/9/15 
 

NA NA 
157711002002 12/18/15 

 
NA NA 

157710000005 1/13/16 
 

NA NA 
120336000022 6/23/14 11/5/14 135 413 
131930000015 7/24/15 

 
NA NA 

146119000032 10/27/15 
 

NA NA 

 
PRE_FLOOD REPAIR RECOVERY DURATIONS 
PARCEL_NO2 APP_DATE FINAL_INSP DAYS_RECOV_PERM 
146336000022 7/26/11 10/11/11 77 
131919001042 6/5/03 10/20/03 137 
146130007003 8/23/06 11/8/06 77 
146114002011 9/13/06 11/29/06 77 
146114009003 9/27/06 1/2/07 97 
146103007006 10/24/06 11/13/06 20 
131727405008 10/30/06 8/14/07 288 
145936000034 11/2/06 11/14/06 12 
120112000025 2/7/07 3/23/07 44 
119711100032 2/16/07 3/5/07 17 
131727404005 4/20/07 6/12/07 53 
146132000023 5/8/07 5/15/07 7 
146102002010 5/11/07 8/29/07 110 
131711000020 5/17/07 6/6/07 20 
131919004003 5/17/07 10/16/07 152 
120520414003 6/11/07 10/8/07 119 
131924007011 8/1/07 12/1/09 853 
146123011004 8/10/07 11/27/07 109 
157701107006 8/29/07 10/2/07 34 
157716200003 8/30/07 11/30/07 92 
120111000008 10/12/07 12/11/07 60 
120111000007 10/12/07 12/11/07 60 
146514009009 10/19/07 11/2/07 14 
132109000004 10/23/07 7/2/08 253 
158129000008 12/12/07 5/20/08 160 
120318203002 12/18/07 2/15/08 59 
146104006005 1/29/08 3/18/08 49 
146111006007 4/10/08 5/23/08 43 
131933000006 6/6/08 9/11/08 97 
146114033001 6/13/08 8/5/08 53 
146533100037 6/24/08 8/21/08 58 
158136002002 6/26/08 8/4/08 39 
157504001003 7/1/08 9/15/08 76 
157701109002 8/13/08 8/26/08 13 
145912009002 8/19/08 10/31/08 73 
157701306014 9/2/08 9/24/08 22 
158136001009 9/3/08 10/9/08 36 
146111001001 9/10/08 10/8/08 28 
131519000026 9/11/08 10/30/08 49 
145925000001 9/18/08 10/28/08 40 
146104004006 9/30/08 11/12/08 43 
157701306010 10/8/08 10/28/08 20 
157712203003 11/18/08 2/10/09 84 
131505008001 1/21/09 3/9/09 47 
120520414013 3/3/09 4/13/09 41 
158112000009 3/24/09 6/5/09 73 
145926000026 4/15/09 6/1/09 47 
146514016021 4/17/09 7/9/09 83 
146111000024 4/20/09 8/20/09 122 
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131506000005 4/22/09 6/23/09 62 
131726309001 4/28/09 6/25/09 58 
146307000002 5/26/09 7/27/09 62 
120330005002 11/13/14 2/25/15 104 
145907000030 6/1/09 7/28/09 57 
157712203019 6/2/09 6/16/09 14 
131930004005 6/15/09 7/27/09 42 
157702000002 6/23/09 7/2/09 9 
146115001007 6/24/09 7/22/09 28 
146527000013 6/30/09 8/26/09 57 
158136101015 7/16/09 9/2/09 48 
146114005011 7/22/09 9/17/09 57 
132115002008 7/27/09 9/28/09 63 
131935013004 9/1/09 9/9/09 8 
146127000011 9/1/09 9/15/09 14 
120522311004 9/3/09 9/16/09 13 
157714000012 11/10/09 1/11/10 62 
146129000003 11/12/09 12/8/09 26 
146112000041 12/16/09 12/18/09 2 
145925001001 12/18/09 9/16/10 272 
146335400003 1/6/10 1/19/10 13 
146326006011 1/21/10 9/19/11 606 
146314000014 2/16/10 3/8/10 20 
146515005004 3/3/10 3/11/10 8 
120524000037 3/8/10 5/11/10 64 
146118000029 3/12/10 3/18/10 6 
132103000011 4/5/10 6/9/10 65 
157933000014 4/6/10 6/7/10 62 
146336004009 4/7/10 5/28/10 51 
157931003002 4/9/10 6/7/10 59 
146115004002 4/27/10 5/20/10 23 
131935009011 5/5/10 5/26/10 21 
146104017001 5/7/10 6/23/10 47 
146532101001 5/21/10 7/29/10 69 
146122000022 6/2/10 7/15/10 43 
131711000012 6/7/10 8/18/10 72 
146114012010 6/18/10 9/28/10 102 
146114019011 6/30/10 9/16/10 78 
131726303012 7/9/10 8/30/10 52 
120521000006 7/28/10 8/25/10 28 
146104023001 7/29/10 10/12/10 75 
131930003003 8/17/10 10/8/10 52 
131924007071 8/25/10 11/29/10 96 
146515003004 9/28/10 11/22/10 55 
146520000017 10/1/10 11/30/10 60 
157701411002 10/6/10 1/13/11 99 
146104017008 10/25/10 1/11/11 78 
119725000028 11/12/10 12/8/10 26 
157702000004 11/15/10 1/6/11 52 
157712102005 11/17/10 12/2/10 15 
157931001031 11/29/10 1/11/11 43 
146317304001 12/17/10 2/11/11 56 
131720000042 12/29/10 2/28/11 61 
146528400016 1/3/11 1/18/11 15 
146336014005 1/31/11 3/9/11 37 
146336011001 3/14/11 4/7/11 24 
120522305005 3/23/11 5/18/11 56 
146514010002 4/8/11 7/15/11 98 
120334000001 4/18/11 5/17/11 29 
131730003002 4/26/11 5/4/11 8 
131930010001 4/29/11 6/9/11 41 
120319011005 5/2/11 9/14/11 135 
146130003018 5/5/11 6/24/11 50 
120520414010 6/10/11 7/27/11 47 
120510000011 6/20/11 10/3/11 105 
157720000016 6/21/11 7/8/11 17 
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131508301001 6/30/11 8/17/11 48 
157932002016 7/11/11 9/2/11 53 
146104001004 7/19/11 8/30/11 42 
157932000036 7/28/11 11/30/11 125 
131524000001 7/28/11 9/14/11 48 
146532103021 8/3/11 10/4/11 62 
131517000019 8/10/11 9/22/11 43 
157513403003 8/12/11 8/24/11 12 
119724000003 8/18/11 10/10/11 53 
146318100032 8/26/11 10/5/11 40 
157711002013 8/31/11 10/2/12 398 
146121000020 10/6/11 11/30/11 55 
131935001010 10/13/11 11/9/11 27 
158107000052 10/18/11 11/8/11 21 
146515010001 10/24/11 11/17/11 24 
146322203006 10/21/11 11/29/11 39 
145911001002 10/21/11 10/28/11 7 
146114008003 10/27/11 7/11/12 258 
131925000002 11/28/11 12/2/11 4 
145932000023 6/17/13 10/15/14 485 
157716200009 1/18/12 3/20/12 62 
131730000006 1/18/12 3/1/12 43 
120334000014 1/24/12 3/13/12 49 
131712001004 1/27/12 3/5/12 38 
146529002005 2/2/12 4/6/12 64 
146114016002 3/12/12 10/12/12 214 
157713001006 3/23/12 4/16/14 754 
157922003002 4/4/12 6/25/13 447 
146114011005 4/17/12 7/24/12 98 
146532101010 4/17/12 5/17/12 30 
131703006005 4/26/12 4/30/12 4 
120329401001 5/1/11 6/18/12 414 
120528330001 5/2/12 5/8/12 6 
158107000034 6/1/12 8/9/12 69 
157701405003 6/8/12 4/25/14 686 

 
 

RESOURCEFULNESS ESTIMATES BASED ON DISPLACEMENT COSTS AND 
TEMPORARY CHEMICAL TOILET RENTALS 

PROP_ID RESOURCE_POST RESOURCE_PORT_POST RESOURCE_PRE RESOURCE_PORT_PRE 
146336000022 

    131727405008 
  

42164.4 15792.67 
120112000025 33594.63 15816 15712.98 14912.67 
146102002010 

  
19838.41 15046 

131919004003 
  

19755.83 15352.67 
120520414003 

  
17564.52 15049.33 

158129000008 
    146111006007 
  

17632.5 14996 
158136002002 

  
16271.09 14976 

158136001009 
  

16273.78 14946 
146104004006 

  
17589.33 14986 

158112000009 
   

15036 
146111000024 

  
27614.2 15266 

146307000002 
  

27080.16 15066 
145907000030 

  
17419.7 15032.67 

131930004005 
  

16343.83 14982.67 
146114005011 

   
15036 

120522311004 
   

14889.33 
157714000012 

   
15066 

145925001001 
  

44013.1 15616 
146515005004 

  
15062.95 14876 

146336004009 
  

18834.1 15016 
146115004002 

  
17805.11 14939.33 
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146104017001 
  

20628.3 15012.67 
146114012010 

  
24242.92 15196 

146104023001 
   

15089.33 
146520000017 

   
15029.33 

119725000028 
   

14916 
157712102005 

  
17181.11 14912.67 

120334000001 
  

16994.45 14952.67 
120520414010 

   
14866 

146104001004 
   

14976 
131517000019 

  
18671.01 14986 

146318100032 
  

18537.98 14989.33 
146529002005 

   
15052.67 

131703006005 118153.28 19549.33 
 

14866 
158107000034 

  
19453.46 15079.33 

146114008003 
  

39964.53 15706 
131913005005 19375.27 14996 

  131719001002 21374.36 15049.33 
  120113000025 

    131919002010 19822.4 15579.33 
  131913005004 19960.2 15266 
  120113000061 23940.7 15299.33 
  131930002008 18623.69 15022.67 
  131930000015 

    131930003004 
    120336000001 33091.59 15757.67 

  120319102004 18627.62 15032.67 
  119711400050 17588.9 15366 
  132104003007 30914.87 17006 
  146133000024 21412.42 15079.33 
  131724002003 

  
29474.08 14982.67 

146114021001 25795.47 15122.67 
  146104013010 21625.48 15069.33 
  131722207006 33294.94 15356 
  146103006030 51297.15 16329.33 
  146114010015 22692.74 15029.33 
  146133001014 21897.78 15106 
  119702000054 43121.32 16902.67 
  131930000009 18456.63 15092.67 
  157926201005 23135.15 15469.33 
  157515000007 17599.05 14926 
  119930000012 

    120113000059 19676.33 15092.67 
  146325000035 36139.07 16829.33 
  131718000007 18258.75 14929.33 
  120520411004 39702.98 16149.33 
  157701305002 69357.02 16699.33 
  158109003011 

    146102000004 
    146513000030 18724.94 15129.33 

  119711400073 20655.56 15496 
  146133007009 33224.9 15702.67 
  146532004003 73854.02 16539.33 
  120522316003 32038.68 16336 
  119726409006 20852.29 16006 
  119702000038 19496.58 15149.33 
  131702000029 

  
14866 16032.67 

145912000122 20765.59 16139.33 
  131508301018 

    158118017009 
    157712202012 82889.31 16362.67 

  146512300008 33536.26 15696 
  120519000033 35492.49 16232.67 
  157931004005 18245.82 15022.67 
  157712304002 18695.97 14936 
  157714000017 49130.35 16109.33 
  158321209009 
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120522000006 
    119713000007 20619.49 15359.33 

  120113000058 19838.18 15082.67 
  158321221003 

    158118001006 21650.41 15469.33 
  146124210002 35604.1 15116 
  146336000050 29058.69 15519.33 
  119930002002 21307.72 15279.33 
  120520408005 22082.62 15186 
  146532004004 39279.38 15852.67 
 

14889.33 
119935000017 18691.21 15036 

  131505009004 
    119726008001 17819.45 15032.67 

  119712000034 21116.31 15579.33 
  131715000019 

    131522002002 36007.14 15252.67 
  146111006009 18799.13 14956 
  120328000001 249978.59 15369.33 
  157712308022 

    131719000034 
    157523000004 69733.62 15462.67 

  158108005002 23622.53 15569.33 
  157504004003 

    119712000103 27224.38 15389.33 
  131723000005 18044.08 15056 
  131720000030 34746.04 15316 
  131521000007 21796.43 15149.33 
  158321220002 

    146313200011 20384.74 15439.33 
  119934415002 18587.99 15246 
  131717001007 

    158321003010 
    146322400020 22255.9 15246 

  120325000030 21632.95 15132.67 
  131727000010 

    132108002002 
    132109002003 16858.68 14939.33 

  146103004003 17505.41 14919.33 
  120319011001 17073.04 14919.33 
  120112000051 17781.89 14929.33 
  146513000037 17744.45 14942.67 
  146325000033 17213.76 14906 
  131720000017 

    157716000052 
    158118012009 18258.59 15112.67 

  157712308017 
    146514014006 
    131935009013 
    158105004004 
    158136008005 
    146115002002 
    131710003001 
    132115007009 
    146111007001 
    146529005004 
    131924007047 
    157711000046 
    131727407001 
    120520414014 
    146320100020 
    146104022001 
    157505004003 
    131930004013 
    158118013005 
    158321219007 
  

18349.69 15372.67 
131935003002 
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APPENDIX C: RELIABILTY R CODE 

 
#### GAMLSS/ WEI BULL USI NG ANNUAL REPAI R SEVERI TY #### 
 
i nst all. packages(" MASS") 
i nst all. packages("fit di strpl us") 
i nsall. packages("sm") 
i nst all. packages("st at s4") 
i nst all. packages("gaml ss") 
i nst all. packages("car") 
i nst all. packages("scatt erpl ot 3d") 
 
li brary( ADGof Test) 
li brary( MASS)  
li brary(fit di strpl us) 
li brary(sm)  
li brary(st at s4) 
li brary( gaml ss) 
li brary(car) 
li brary(scatt er pl ot 3d) 
 
 
#### DATA #### 
owt s<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_GAMLSS_ MULT_3_10_2015. csv", na. stri ng
s=" NA", header =TRUE)  
OWTS <- owt s[ 1: 120,] 
 
#### VI SUAL GOODNESS OF FIT FOR Y #### 
ydat a=OWTS$RS_ANNUAL[ 1: 120]  
N=l engt h(ydat a) 
N1=N- 1 
 
xeval =seq( mi n(ydat a)-sd(ydat a), max(ydat a) +sd(ydat a),l engt h=120)  
neval =l engt h(xeval ) 
 
# Gamma 
zgamma=fit di st(ydat a, "gamma", opti m. met hod=" L- BFGS- B",l ower =0.05) 
xdensi t ygamma=dgamma( xeval , shape=zgamma$esti mat e[ 1], scal e=1/ zgamma$esti mat e[ 2]) 
 
# Wei bull 
zwei bull =fit di st(ydat a, " wei bull ", opti m. met hod=" L- BFGS- B",l ower =0.05)  
xdensi t ywei bull =dwei bull(xeval, shape=zwei bull $esti mat e[ 1], scal e=zwei bull $esti mat e[ 2]) 
 
# Nonpar ametri c Ker nel  Densit y Esti mati on 
ker nel pdf = sm. densi t y(ydat a, eval.poi nt s=xeval , add=FALSE, lty=1, lwd=4)  
 
# pl ot t he hi st ogr am and overl ay t he PDFs 
par( mfr ow=c( 1, 1)) 
hi st(ydat a, xl ab=" Annual  Repai r Severit y ( USD)", yl ab="", probability=T,  mai n="", yli m=r ange( c( 0, 0. 007)), breaks=ncl s) 
titl e( mai n=" Annual  Repai r Severit y Based on Repai r Fr equency and Cost") 
li nes(xeval , xdensi t ygamma,l wd=2, lty=3, col ="bl ack") 
li nes(xeval , xdensi t ywei bull,l wd=2,l ty=5, col ="bl ack") 
li nes(xeval , ker nel pdf $esti mat e,l wd=2,lt y=1, col ="bl ack") 
 
poi nt s(76. 65, 0, pch=17, cex=1. 6, col=" bl ack") 
#abl i ne(v=76. 65, col ="darkgr een",lwd=2)  
 
poi nt s(229. 33, 0, pch=18, cex=1. 6, col ="bl ack") 
#abl i ne(v=229. 33, col ="or ange",l wd=2)  
 
poi nt s(371. 65, 0, pch=19, cex=1. 6, col ="bl ack") 
#abl i ne(v=371. 65, col ="darkr ed",l wd=2)  
 
l egend( 500, 0. 006, c(" Gamma"," Wei bull","Ker nel  Densi t y"),lty=c( 3, 5,1), l wd=c( 2. 5, 2. 5), bt y="n")  
 
l egend( 445, 0. 004, c(" Mi nor"," Moderat e"," Maj or"), pch=c( 17, 18, 19),  
col =c("bl ack","bl ack","bl ack"),titl e=" Annuali zed Cost Per Repai r Type", bt y="n")  
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#### GOODNESS OF FI T #### 
# Empi ri cal or SAMPLE quantil es and Empi ri cal Percentil es.  
empper cent = 1: N/( N+1)    # Wei bul l pl otti ng positi on 
 
# Get t he quantil es correspondi ng t o t he empi ri cal percentil es from # t he fitt ed PDF model . Al so get t he model  percentil es 
correspondi ng # t o t he empi ri cal quantil es.  
ydat asort = sort(ydat a)    # Sort ed ori gi nal dat a 
 
# I F GAMMA 
modquant 2=qgamma( empper cent ,shape=zgamma$esti mat e[ 1], scale=1/ zgamma$esti mat e[ 2]) 
modper cent 2=pgamma( ydat asort,shape=zgamma$esti mat e[ 1], scal e=1/ zgamma$esti mat e[ 2]) 
 
op <- par( mfr ow=c( 1, 3)) 
 
# Pl ot t he Empi ri cal CDF wi t h t he Model  CDF ( Gamma)  
pl ot(ydat asort, emppercent, xl ab="Repai r Severit y", yl ab=" CDF ( F(x))", mai n="") 
li nes(ydat asort, modper cent 2, col ="red") 
 
# Quantil e pl ot ( Gamma)  
pl ot( modquant 2, ydat asort, xl ab="Model  (or Theor eti cal ) Quantil es", yl ab=" Emp. Quantil es", mai n="") 
li nes( modquant 2, modquant 2) 
 
# Pr obability Pl ot ( Gamma)  
pl ot( modper cent 2, emppercent, xlab=" Model  (or Theor eti cal ) Percentil es", yl ab=" Emp. Per centil es", mai n="")  
li nes( modper cent 2, modper cent 2) 
 
par( op) 
 
 
# I F WEI BULL 
modquant 3=qwei bull(empper cent,shape=zwei bull $esti mat e[ 1], scal e=zwei bull $esti mat e[ 2]) 
modper cent 3=pwei bull(ydat asort, shape=zwei bull $esti mat e[ 1], scal e=zwei bull $esti mat e[ 2]) 
 
op <- par( mfr ow=c( 1, 3)) 
 
# Pl ot t he Empi ri cal CDF wi t h t he Model  CDF ( Wei bull) 
pl ot(ydat asort, emppercent, xl ab="Repai r Severit y", yl ab=" CDF ( F(x))", mai n="") 
li nes(ydat asort, modper cent 3, col ="red") 
 
# Quantil e pl ot ( Wei bull) 
pl ot( modquant 3, ydat asort, xl ab="Model  (or Theor eti cal ) Quantil es", yl ab=" Emp. Quantil es", mai n="") 
li nes( modquant 3, modquant 3) 
 
# Pr obability Pl ot ( Wei bull) 
pl ot( modper cent 3, emppercent, xlab=" Model  (or Theor eti cal ) Percentil es", yl ab=" Emp. Per centil es", mai n="") 
li nes( modper cent 3, modper cent 3) 
 
par( op) 
 
 
#### GAMLSS #### 
# By semi - par ametri c, we mean t hey need a par ametri c di stri buti on  
# f or t he response vari abl e, 
# alt hough t hey can cope wi t h a wi de range of di stri buti ons such as # Poi sson, negati ve bi nomi al,  
# l ognor mal , Wei bull, et c. These GAMLSS model s ar e t hus "semi " i n  
# t he sense t hat t he modeli ng of t he act ual  
# par amet ers, such as t he mean or l ocati on (as f uncti ons of t he  
# expl anat ory vari abl es), may i nvol ve 
# usi ng non- par ametri c smoot hi ng f uncti ons, such as f or exampl e,  
# cubi c smoot hi ng spli nes.  
 
# The dat a i s fit t o a Gamma ( GA) and a Wei bull ( WEI ) di stri buti on 
op <- par( mfr ow=c( 2, 1)) 
 
mGA <- hi st Di st(ydat a, " GA", densi ty=TRUE, mai n="(a)", yli m=c( 0, 0. 008), xl ab=" Annual  Repai r Severity", yl ab="") 
 
mWEI  <- hi st Di st(ydat a, " WEI ", densi t y=TRUE, mai n="(b)", yli m=c( 0, 0.008), xl ab=" Annual  Repai r Severity", yl ab="") 
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par( op) 
 
GAI C( mGA, mWEI ) 
 
# Accor di ng t o t he GAI C, t he Wei bul l i s t he best fit f or t he dat a  
 
 
#### WEI BULL MODEL VI SUAL DI AGNOSTI CS #### 
pl ot( mWEI ) 
 
#### K- S Test  
fitdi str(ydat a," wei bull ") 
ks.t est(uni que(ydat a),"pwei bull", scal e=390. 3910213, shape=2. 4976403)  
ad.t est(ydat a, pwei bull,scal e=390.3910213, shape=2. 4976403)  
fitdi str(ydat a,"gamma") 
ks.t est(uni que(ydat a),"pgamma",rat e=0. 010730424, shape=3. 738835369)  
ad.t est(ydat a, pgamma, r at e=0. 010730424, shape=3. 738835369)  
 
# The t est i s a one-si ded t est and the hypot hesi s t hat t he  
# di stri buti on i s of a specifi c f or m is rej ect ed if t he t est  
# st ati sti c, A, i s great er t han t he criti cal val ue.  
 
 
#### GAMLSS MODEL WI TH WEI BULL #### 
# The Wei bull fitti ng f uncti on WEI () uses t he l og li nk f or mu and  
# si gma;  
# t her ef or e, t he st andar d errors are f or l og( mu) and l og(si gma).  
 
#### MODEL 1 #### ( Const ant Sigma)  
# Fi tti ng a model  wi t h 11 pr eli mi nary expl anat ory vari abl es 
m01 <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + 
              LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a=na.omi t( OWTS),f ami l y=WEI )  
 
# m01 <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED + l og( STRUCT_VAL) + l og( LIVE_AREA) + 
# LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a=na. omi t( OWTS),f ami l y=WEI )  
 
# The comment ed out command test s vari abl e si gnifi cance t he of  
# LI VE_AREA and STRUCT_VAL consi deri ng t hei r magni t ude by t aki ng t he  
# l og. 
 
# st epGAI C. VR() i s based on st epAI C() wi t h t he addi ti onal pr opert y that all ows sel ecti on of t er ms f or any sel ect ed di stri buti onal  
par amet er. 
 
model 1 <- st epGAI C. VR( m01, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LIVE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + ( STRUCT_VAL + LI VE_AREA + PROP_TRANS_I NSP + 
POST2008_DEED +NO_ADD. UPGRADES) ^2) # Si gma (shape) i s hel d const ant  
 
# model 1 <- st epGAI C. VR( m01, scope=~PRE2008_DEED + H2O + DELTA_BED + # l og( STRUCT_VAL) + l og( LI VE_AREA) + 
LOAN_I NSP + NO_ADD. UPGRADES +  
# PROP_TRANS_I NSP + POST2008_DEED + ( STRUCT_VAL + LIVE_AREA +  
# PROP_TRANS_I NSP + POST2008_DEED +NO_ADD. UPGRADES) ^2)  
# Si gma (shape) i s hel d const ant  
 
resi dual s1=r esi dual s( model 1) 
mu_ mod1=exp( pr edi ct( model 1, what =" mu")) 
si gma_mod1=exp( pr edi ct( model 1, what ="si gma")) 
 
expY1<- vect or(l engt h=N)  
f or (i i n 1: N){ 
expY1[i] =mu_ mod1[i]*gamma(( 1/ si gma_mod1[i])+1)  
   
} 
 
cor(ydat a, expY1)  
 
 
# MANUAL DI AGNOSTI CS ( MODEL 1) 
par( bg = ' whi t e' ) 
op <- par( mfr ow=c( 2, 2), cex. axi s=1.5, cex.l ab=1. 15, cex. mai n=1. 5, mar=c( 5, 5, 4, 2)) 
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# QQnor m 
# qqnor m( ydat a- expY1, mai n=" Nor mal  Q- Q Pl ot of Model  Resi dual s") 
# qqli ne(ydat a- expY1)  
 
# qqnor m(r esi dual s1, mai n=" Q- Q Pl ot") 
# qqli ne(resi dual s1) 
 
 
# Hi st ogr am of resi dual s 
# hi st(ydat a- expY1, xl ab=" Model  Resi dual s", mai n=" Nor mality of t he  
# Resi dual s") 
 
hi st(resi dual s1, xl ab=" Model  Resi dual s", mai n="a") 
 
 
# Aut ocorrel ati on 
# acf(ydat a- expY1, mai n=" Aut ocorrel ati on of Model  Resi dual s") 
 
acf(resi dual s1, mai n="b") 
 
# pl ot(expY1, (ydat a- expY1), xl ab=" Fi tt ed Annual  Repai r Severit y ( Y)", yl ab=" Model  Resi dual s") 
# abli ne( 0, 0) 
 
pl ot(expY1, (resi dual s1), xl ab=" Fi tted Annual  Repai r Severity ( Y)", ylab=" Model  Resi dual s", mai n="c") 
abl i ne( 0, 0) 
 
par( op) 
 
 
# R2 pl ot ( Obs vs Expect ed Val ue) 
pl ot(ydat a, expY1, xl ab=" Obser ved Annual  Repai r Severit y ( USD)", yl ab=" Pr edi ct ed Annual  Repai r Severity ( USD)", mai n="")  
abl i ne( a=0, b=1) 
r2=0. 406 
myl abel  = bquot e(it ali c( R)^2 == .(for mat(r2, di git s = 3))) 
t ext(x = 600, y = 240, l abel s = myl abel ) 
 
 
#### MODEL VS OBSERVATI ON PLOTS (t o show model  skill) #### 
# CI li ne pl ot ( USI NG expY2)  
op <- par( mfr ow=c( 1, 1)) 
Yu<- vect or(l engt h=N)  
Yl <-vect or(l engt h=N)  
 
f or (i i n 1: N){ 
  expY1[i] =mu_mod1[i]*gamma(( 1/si gma_mod1[i])+1) 
  Yl[i] =qwei bull(0. 025, si gma_ mod1[i], mu_mod1[i]) 
  Yu[i] =qwei bull(0. 975, si gma_mod1[i], mu_mod1[i]) 
} 
 
pl ot( OWTS$RS_ANNUAL, t ype="l ", xl ab=" Observed OWTS", yl ab="Annual  OWTS Repai r Severit y ( USD)", yli m=c( 0, 900), 
col ="9",l wd=2, lty=4) 
li nes( expY1, col ="2",lty=1,l wd=" 2.5") 
li nes( Yu, col ="8",lty="l ongdash",l wd=" 1") 
li nes( Yl ,col ="8",lty="l ongdash",l wd=" 1") 
l egend("t opri ght", c("95- percent CI"," Obser vati ons"," Model  Pr edi cti ons"),lty=c( 2, 4, 1), l wd=c( 2, 2, 2. 5), col=c("8","9","2"), bt y="n") # 
gi ves t he l egend li nes t he correct col or and wi dt h        
par( op) 
 
#### Scatt er Pl ot #### 
 
boxpl ot( OWTS$RS_ANNUAL~OWTS$PROP_TRANS_I NSP, col = "gai nsbor o", boxwex = 0. 25, at = 0:1- 0. 15 , xl ab = " Pr opert y 
Tr ansf er I nspecti ons", 
        yl ab = " Annual  Repai r Severity ( USD)", x. axi s=c( 0, 1), xaxt =' n' , ann=FALSE)  
boxpl ot(expY1~OWTS$PROP_TRANS_I NSP, add = TRUE,  
        boxwex = 0. 25, at = 0: 1+0. 15 ,col = " whi t e", xaxt =' n' , ann=FALSE) 
l egend( 0. 70, 753, c(" Observati on", " Model  Pr edi cti on"), 
       fill = c("gai nsbor o", " whi t e")) 
axi s(si de=1, at =c( 0, 1)) 
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#### CROSS VALI DATI ON #### 
# Get t he cross vali dat ed esti mat es … 
Y<- ydat a 
X<- as. matri x(cbi nd( OWTS$STRUCT_VAL , OWTS$LI VE_AREA , OWTS$NO_ADD. UPGRADES , OWTS$PROP_TRANS_I NSP , 
OWTS$POST2008_DEED, OWTS$NO_ADD. UPGRADES* OWTS$PROP_TRANS_I NSP,  
OWTS$LI VE_AREA* OWTS$PROP_TRANS_I NSP, OWTS$STRUCT_VAL* OWTS$PROP_TRANS_I NSP, OWTS$PROP_TRANS_I
NSP* OWTS$POST2008_DEED)) 
 
# Dr op some % of poi nt s, fit t he model  and pr edi ct t he dr opped  
# poi nt s … 
li brary( ar ul es) 
nsi m = 1000 
r mseskill = 1: nsi m 
corskill =1: nsi m   
N = l engt h( Y) 
 
N15 = round( 0. 15* N)   # Dr op 15% of poi nt s 
i ndex=1: N 
 
f or(i i n 1: nsi m){ 
  drop=sampl e(c( 1: N), N15)  
  keep=set diff(i ndex, dr op) 
   
  x=X[ keep,] 
  y=Y[ keep]  
   
  zz<- gaml ss(y~x, f ami l y=WEI ) 
   
  x = as. matri x( X[ dr op,]) 
  y=Y[ dr op]  
   
  Nx=l engt h(y) 
  mu_zz<-vect or(l engt h=Nx)  
  si gma_zz<-vect or(l engt h=Nx)   
  yhat <-vect or(l engt h=Nx)                  
   
   
  f or (j i n 1: Nx){ 
    
mu_zz[j] =exp(coef(zz)[ 1] +coef(zz)[2] *x[j, 1] +coef(zz)[ 3]*x[j, 2] +coef(zz)[ 4]*x[j, 3] +coef(zz)[ 5]*x[j, 4] +coef(zz)[ 6]*x[j, 5] +coef( zz)[ 7]*(x[j, 3]*
x[j, 4])+coef(zz)[ 8]*(x[j, 2]*x[j, 4])+coef(zz)[ 9]*(x[j, 1]*x[j, 4])+coef(zz)[ 10]*(x[j, 4]*x[j, 5])) 
    si gma_zz=exp( get El ement(zz,"si gma. coeffi ci ent s")) 
    yhat[j] =mu_zz[j]*gamma(( 1/ si gma_zz) +1)  
     
  } 
   
  yhat =as. vect or(yhat) 
  #yhat =pr edi ct(zz, newdat a=dat a.frame( x),t ype="r esponse") 
  #r mseskill[i] =mean(( Y[ dr op]-yhat)^2) 
  #r mseskill[i] =mean((( Y[ dr op] -yhat)/ sd( Y[ dr op]))^2) 
  r mseskill[i] =r mse( Y[ dr op], yhat) 
  corskill[i] =cor( Y[ dr op], yhat) 
} 
 
# Pl ot fitt ed R2 and fitt ed RMSE on boxpl ot s …  
op <- par( mfr ow=c( 1, 2)) 
boxpl ot(corskill ^2, yl ab=" R- Squar ed", mai n="a") 
poi nt s(0. 406, col ="red3", pch=19, cex=1. 5) 
boxpl ot(r mseskill, yl ab=" Root - Mean- Squar e- Error", mai n="b", xl ab="*RMSE i n USD") 
poi nt s(133. 9259, col ="red3", pch=19, cex=1. 5) 
par( op) 
 
#### MODEL 2 #### ( Mu and Si gma bot h vary) 
m02 <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED +  DELTA_BATH + STRUCT_VAL + LI VE_AREA + 
LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a=na. omi t( OWTS),f ami l y=WEI )  
 
# Sel ecti on of t er ms f or sel ect ed distri buti onal  par amet er, i n t hi s # case bot h scal e ( mu) and shape (si gma)  
m_ mu2 <-st epGAI C. VR( m02, what=" mu", scope=~PRE2008_DEED + H2O + DELTA_BED + DELTA_BATH + STRUCT_VAL + 
LI VE_AREA + LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + (STRUCT_VAL + LI VE_AREA 
+ PROP_TRANS_I NSP + POST2008_DEED +NO_ADD. UPGRADES) ^2) 



 

 194 

 
m_si gma2 <-st epGAI C. VR( m_ mu2, what ="si gma", scope=~PRE2008_DEED + H2O + DELTA_BED + DELTA_BATH + 
STRUCT_VAL + LI VE_AREA + LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP+POST2008_DEED)  
 
model 2=m_si gma2 
resi dual s2=r esi dual s( model 2) 
 
# Compar ed t o Model  2 ( modeli ng mu ( Scal e) and si gma ( Shape)) 
op <- par( mfr ow=c( 2, 2)) 
pl ot( model 2) 
par( op) 
 
op <- par( mfr ow=c( 2, 2)) 
pl ot( model 2, t s=TRUE)  
par( op) 
 
# Model  2 ( model  bot h mu and si gma)  
mu_ mod2=exp( pr edi ct( model 2, what =" mu")) 
si gma_mod2=exp( pr edi ct( model 2, what ="si gma")) 
 
zz2=qwei bull(0. 5, shape=si gma_mod2, scal e=mu_ mod2)  
cor(zz2, ydat a) 
 
op <- par( mfr ow=c( 1, 1)) 
pl ot(ydat a, zz2, xl ab=" Repai r Severity Observati ons", yl ab=" Repai r Severit y Model  Pr edi cti ons ( Medi an)") 
abl i ne( a=0, b=0) 
par( op) 
 
# Y pr ed compar ed t o E( Y) usi ng the expect ed val ue equati on and each # mu and si gma det er mi ned from each observati on 
n=l engt h( mu_ mod2)  
 
expY2<- vect or(l engt h=n) 
f or (i i n 1: n){ 
  expY2[i] =mu_mod2[i]*gamma(( 1/si gma_mod2[i])+1) 
   
} 
 
cor(ydat a, expY2)  
 
 
# MANUAL DI AGNOSTI CS ( MODEL 2) 
par( bg = ' whi t e' ) 
op <- par( mfr ow=c( 2, 3)) 
 
 
# QQnor m 
qqnor m( ydat a- expY2, mai n=" Normal  Q- Q Pl ot of Model  Resi dual s") 
qql i ne(ydat a- expY2)  
 
qqnor m(r esi dual s2, mai n=" Nor mal  Q- Q Pl ot of Model  Resi dual s") 
qql i ne(resi dual s2) 
 
 
# Aut ocorrel ati on 
acf(ydat a- expY2, mai n=" Aut ocorrelati on of Model  Resi dual s") 
 
acf(resi dual s2, mai n=" Aut ocorrel ation of Model  Resi dual s") 
 
 
# Hi st ogr am of resi dual s 
hi st(ydat a- expY2, xl ab=" Model  Resi dual s", mai n=" Nor mality of t he Resi dual s") 
 
hi st(resi dual s2, xl ab=" Model  Resi dual s", mai n=" Nor malit y of t he Residual s") 
 
 
# R2 pl ot ( Obs vs Expect ed Val ue) 
pl ot(ydat a, expY2, xl ab=" Annual  Repai r Severity Obs ( USD)", yl ab=" Annual  Repai r Severit y Pr edi ct ( USD)") 
abl i ne( a=0, b=1) 
r2=0. 408 
myl abel  = bquot e(it ali c( R)^2 == .(for mat (r2, di git s = 3))) 
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t ext(x = 600, y = 240, l abel s = myl abel ) 
 
pl ot(expY2, (ydat a- expY2), xl ab="Fi tt ed Annual  Repai r Severit y ( Y)", yl ab=" Model  Resi dual s") 
abl i ne( 0, 0) 
 
pl ot(expY2, (resi dual s2), xl ab=" Fi tted Annual  Repai r Severity ( Y)", ylab=" Model  Resi dual s") 
abl i ne( 0, 0) 
 
par( op) 
 
 
#### MODEL VS OBSERVATI ON PLOTS (t o show model  skill) #### 
 
# CI li ne pl ot ( USI NG expY2)  
op <- par( mfr ow=c( 1, 1)) 
Yu<- vect or(l engt h=N)  
Yl <-vect or(l engt h=N)  
 
f or (i i n 1: N){ 
  expY2[i] =mu_mod2[i]*gamma(( 1/si gma_mod2[i])+1) 
  Yl[i] =qwei bull(0. 025, si gma_ mod2[i], mu_mod2[i]) 
  Yu[i] =qwei bull(0. 975, si gma_mod2[i], mu_mod2[i]) 
} 
 
pl ot( OWTS$RS_ANNUAL, t ype="l ", xl ab=" Observed OWTS", yl ab="Annual  OWTS Repai r Severit y ( USD)", yli m=c( 0, 900), 
col ="bl ue4",l wd=" 2") 
li nes( expY2, col ="darkr ed",l wd=" 2") 
li nes( Yu, col ="darkr ed",lty="l ongdash",l wd=" 1") 
li nes( Yl ,col ="darkr ed",lty="l ongdash",l wd=" 1") 
l egend("t opri ght", c("95- percent CI"," Obser vati ons"," Model  Pr edi cti ons"),lty=c( 2, 1, 1), 
l wd=c( 1, 2, 2), col =c("darkr ed","bl ue4","darkr ed"), bt y="n") # gi ves t he legend li nes t he correct col or and wi dt h        
par( op) 
 
 
#### MODEL 3 #### ( Mu and Si gma Vary; No DELTA_BATH)  
m03 <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED  + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED,dat a=na. omi t( OWTS),f ami l y=WEI ) 
 
 
# Sel ecti on of t er ms f or sel ect ed distri buti onal  par amet er, i n t hi s case bot h scal e ( mu) and shape (si gma)  
m_ mu3 <-st epGAI C. VR( m03, what=" mu", scope=~PRE2008_DEED + H2O + DELTA_BED  + STRUCT_VAL + LI VE_AREA + 
LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + ( PROP_TRANS_I NSP + 
POST2008_DEED+LOAN_I NSP+STRUCT_VAL + LI VE_AREA +                                                                                 LOAN_I NSP + 
NO_ADD. UPGRADES) ^2) 
 
m_si gma3 <-st epGAI C. VR( m_ mu3, what ="si gma", scope=~PRE2008_DEED + H2O + DELTA_BED  + STRUCT_VAL + LI VE_AREA 
+ LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP+POST2008_DEED)  
 
model 3=m_si gma3 
resi dual s3=r esi dual s( model 3) 
 
 
#### MODEL 3 DI AGNOSTI C PLOTS #### 
# Compar ed t o Model  3 ( modeli ng mu ( Scal e) and si gma ( Shape)) 
op <- par( mfr ow=c( 2, 2)) 
pl ot( model 3) 
par( op) 
 
op <- par( mfr ow=c( 2, 2)) 
pl ot( model 3, t s=TRUE)  
par( op) 
 
# Model  3 ( model  bot h mu and si gma)  
mu_ mod3=exp( pr edi ct( model 3, what =" mu")) 
si gma_mod3=exp( pr edi ct( model 3, what ="si gma")) 
 
zz3=qwei bull(0. 5, shape=si gma_mod3, scal e=mu_ mod3)  
cor(zz3, ydat a) 
 
op <- par( mfr ow=c( 1, 1)) 
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pl ot(ydat a, zz3, xl ab=" Repai r Severity Observati ons", yl ab=" Repai r Severit y Model  Pr edi cti ons ( Medi an)") 
abl i ne( a=0, b=0) 
par( op) 
 
# Y pr ed compar ed t o E( Y) usi ng the expect ed val ue equati on and each # mu and si gma det er mi ned from each observati on 
n=l engt h( mu_ mod3)  
 
expY3<- vect or(l engt h=n) 
f or (i i n 1: n){ 
  expY3[i] =mu_mod3[i]*gamma(( 1/si gma_mod3[i])+1) 
   
} 
 
cor(ydat a, expY3)  
 
 
# MANUAL DI AGNOSTI CS ( MODEL 3) 
par( bg = ' whi t e' ) 
op <- par( mfr ow=c( 2, 3)) 
 
 
# QQnor m 
qqnor m( ydat a- expY3, mai n=" Normal  Q- Q Pl ot of Model  Resi dual s") 
qql i ne(ydat a- expY3)  
 
qqnor m(r esi dual s3, mai n=" Nor mal  Q- Q Pl ot of Model  Resi dual s") 
qql i ne(resi dual s3) 
 
 
# Aut ocorrel ati on 
acf(ydat a- expY3, mai n=" Aut ocorrelati on of Model  Resi dual s") 
 
acf(resi dual s3, mai n=" Aut ocorrel ation of Model  Resi dual s") 
 
 
# Hi st ogr am of resi dual s 
hi st(ydat a- expY3, xl ab=" Model  Resi dual s", mai n=" Nor mality of t he Resi dual s") 
 
hi st(resi dual s3, xl ab=" Model  Resi dual s", mai n=" Nor malit y of t he Residual s") 
 
 
# R2 pl ot ( Obs vs Expect ed Val ue) 
pl ot(ydat a, expY3, xl ab=" Annual  Repai r Severity Obs ( USD)", yl ab=" Annual  Repai r Severit y Pr edi ct ( USD)") 
abl i ne( a=0, b=1) 
r2=0. 380 
myl abel  = bquot e(it ali c( R)^2 == .(for mat(r2, di git s = 3))) 
t ext(x = 600, y = 240, l abel s = myl abel ) 
 
pl ot(expY3, (ydat a- expY3), xl ab="Fi tt ed Annual  Repai r Severit y ( Y)", yl ab=" Model  Resi dual s") 
abl i ne( 0, 0) 
 
pl ot(expY3, (resi dual s3), xl ab=" Fi tted Annual  Repai r Severity ( Y)", ylab=" Model  Resi dual s") 
abl i ne( 0, 0) 
 
par( op) 
 
 
#### MODEL VS OBSERVATI ON PLOTS (t o show model  skill) #### 
# CI li ne pl ot ( USI NG expY3)  
op <- par( mfr ow=c( 1, 1)) 
Yu<- vect or(l engt h=N)  
Yl <-vect or(l engt h=N)  
 
f or (i i n 1: N){ 
  expY3[i] =mu_mod3[i]*gamma(( 1/si gma_mod3[i])+1) 
  Yl[i] =qwei bull(0. 025, si gma_ mod3[i], mu_mod3[i]) 
  Yu[i] =qwei bull(0. 975, si gma_mod3[i], mu_mod3[i]) 
} 
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pl ot( OWTS$RS_ANNUAL, t ype="l ", xl ab=" Observed OWTS", yl ab="Annual  OWTS Repai r Severit y ( USD)", yli m=c( 0, 900), 
col ="bl ue4",l wd=" 2") 
li nes( expY3, col ="darkr ed",l wd=" 2") 
li nes( Yu, col ="darkr ed",lty="l ongdash",l wd=" 1") 
li nes( Yl ,col ="darkr ed",lty="l ongdash",l wd=" 1") 
l egend("t opri ght", c("95- percent CI"," Obser vati ons"," Model  Pr edi cti ons"),lty=c( 2, 1, 1), 
l wd=c( 1, 2, 2), col =c("darkr ed","bl ue4","darkr ed"), bt y="n")  
par( op) 

 
SENSITIVITY ANALYSIS (USING MODEL 1 (ABOVE)) 

li brary( gaml ss) 
li brary(fit di strpl us) 
 
#### DATA ( ORI GI NAL) #### 
owt s1<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_GAMLSS_ MULT_3_10_2015. csv", na. stri ng
s=" NA", header =TRUE)  
OWTS1 <- owt s1[ 1: 120,] 
 
# Fi tti ng a model  wi t h 11 pr eli mi nary expl anat ory vari abl es 
m01a <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED,dat a=na. omi t( OWTS1),f ami l y=WEI ) 
 
# st epGAI C. VR() i s based on st epAI C() wi t h t he addi ti onal pr opert y  
# t hat all ows sel ecti on of t er ms f or any sel ect ed di stri buti onal  
# par amet er. 
 
model 1a <- st epGAI C. VR( m01a, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + ( STRUCT_VAL + LI VE_AREA + PROP_TRANS_I NSP + 
POST2008_DEED +NO_ADD. UPGRADES) ^2) # Si gma (shape) i s hel d const ant  
 
resi dual s1a=r esi dual s( model 1a) 
mu_ mod1a=exp( pr edi ct( model 1a,what =" mu")) 
si gma_mod1a=exp( pr edi ct( model 1a, what ="si gma")) 
 
expY1a<- vect or(l engt h=N)  
f or (i i n 1: N){ 
  expY1a[i] =mu_mod1a[i]*gamma( (1/ si gma_mod1a[i])+1)  
   
} 
resi dual s1a. 1=expY1a- OWTS1$RS_ANNUAL 
 
 
#### DATA ( MAX VALUES USED FOR RS) ####  
owt s2<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_GAMLSS_ MULT_MAX_ALL. csv", na. stri ngs
=" NA", header =TRUE)  
OWTS2 <- owt s2[ 1: 120,] 
 
m01b <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED,dat a=na. omi t( OWTS2),f ami l y=WEI ) 
 
 
# st epGAI C. VR() i s based on st epAI C() wi t h t he addi ti onal pr opert y  
# t hat all ows sel ecti on of t er ms f or any sel ect ed di stri buti onal  
# par amet er. 
 
model 1b <- st epGAI C. VR( m01b, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + 
                        LOAN_I NSP + NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + (STRUCT_VAL + LI VE_AREA 
+ PROP_TRANS_I NSP + POST2008_DEED +NO_ADD. UPGRADES) ^2) # Si gma (shape) i s hel d const ant  
 
resi dual s1b=r esi dual s( model 1b) 
mu_ mod1b=exp( pr edi ct( model 1b,what =" mu")) 
si gma_mod1b=exp( pr edi ct( model 1b, what ="si gma")) 
 
expY1b<- vect or(l engt h=N)  
f or (i i n 1: N){ 
  expY1b[i] =mu_mod1b[i]*gamma( (1/ si gma_mod1b[i])+1)  
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} 
 
resi dual s1b. 1=expY1b- OWTS2$RS_ANNUAL 
 
 
#### DATA ( MAX VALUE OF REPAI R USED FOR MAJ OR REPAI RS I N RS) ####  
owt s3<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_GAMLSS_ MULT_MAX_ MAJ OR. csv", na. str
i ngs=" NA", header =TRUE)  
 
OWTS3 <- owt s3[ 1: 120,] 
 
m01c <- gaml ss( RS_ANNUAL~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED,dat a=na. omi t( OWTS3),f ami l y=WEI ) 
 
 
# st epGAI C. VR() i s based on st epAI C() wi t h t he addi ti onal pr opert y  
# t hat all ows sel ecti on of t er ms f or any sel ect ed di stri buti onal  
# par amet er. 
 
model 1c <- st epGAI C. VR( m01c, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED + ( STRUCT_VAL + LI VE_AREA + PROP_TRANS_I NSP + 
POST2008_DEED +NO_ADD. UPGRADES) ^2) # Si gma (shape) i s hel d const ant  
 
resi dual s1c=r esi dual s( model 1c) 
 
mu_ mod1c=exp( pr edi ct( model 1c,what =" mu")) 
si gma_mod1c=exp( pr edi ct( model 1c, what ="si gma")) 
 
expY1c<- vect or(l engt h=N)  
f or (i i n 1: N){ 
  expY1c[i] =mu_mod1c[i]*gamma( (1/ si gma_mod1c[i])+1) 
   
} 
resi dual s1c. 1=expY1c- OWTS3$RS_ANNUAL 
 
op <- par( mfr ow=c( 1, 1)) 
pl ot(resi dual s1a. 1,t ype="l ", xl ab="Obser ved OWTS", yl ab=" Model  Resi dual s", yli m=c(-900, 900), col ="4",l wd=2. 5, lty=1) 
li nes(resi dual s1b. 1, col ="2",lty=2,lwd=" 2. 5") 
li nes(resi dual s1c. 1, col ="5",lty=5,l wd=" 2. 0") 
l egend("bott oml eft", c(" Model  I"," Model  II"," Model  III"),lty=c( 1, 2, 5), l wd=c( 2. 5, 2. 5, 2), col =c("4","2","5"), bty=" n") # gi ves t he l egend 
li nes t he correct col or and wi dt h        
 
par( op) 
 
op <- par( mfr ow=c( 1, 1)) 
pl ot(resi dual s1a,t ype="l ", xl ab=" Sampl e OWTS", yl ab=" Nor mali zed Quantil e Model  Resi dual s", col ="4",lwd=2, lty=1)  
li nes(resi dual s1b, col ="2",lty=2,l wd=" 2") 
li nes(resi dual s1c, col ="3",lty=5,l wd=" 1. 5") 
l egend("t opl eft", c(" Model  I"," Model II"," Model  III"),lty=c( 1, 2, 5), l wd=c(2, 2, 1. 5), col =c("4","2","3"), bt y="n") # gi ves t he l egend li nes t he 
correct col or and wi dt h        
 
par( op) 
 
### Dat a Hi st wi t h Wei bull Fit f or each model  
ydat a1=OWTS1$RS_ANNUAL[ 1:120]  
Na=l engt h(ydat a1) 
N1=Na- 1 
 
xeval 1=seq( mi n(ydat a1)-sd(ydat a1), max(ydat a1) +sd(ydat a1),l engt h=120)  
neval 1=l engt h(xeval 1) 
 
# Wei bull 
zwei bull 1=fit di st(ydat a1, " wei bull", opti m. met hod=" L- BFGS- B",l ower =0. 05) 
xdensi t ywei bull 1=dwei bull(xeval 1,shape=zwei bull 1$esti mat e[ 1], scale=zwei bull 1$esti mat e[ 2]) 
 
ydat a2=OWTS2$RS_ANNUAL[ 1:120]  
Nb=l engt h(ydat a2) 
N2=Nb- 1 
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xeval 2=seq( mi n(ydat a2)-sd(ydat a2), max(ydat a2) +sd(ydat a2),l engt h=120)  
neval 2=l engt h(xeval 2) 
 
# Wei bull 
zwei bull 2=fit di st(ydat a2, " wei bull", opti m. met hod=" L- BFGS- B",l ower =0. 05) 
xdensi t ywei bull 2=dwei bull(xeval 2,shape=zwei bull 2$esti mat e[ 1], scale=zwei bull 2$esti mat e[ 2]) 
 
ydat a3=OWTS3$RS_ANNUAL[ 1:120]  
Nc=l engt h(ydat a3) 
N3=Nc- 1 
 
xeval 3=seq( mi n(ydat a3)-sd(ydat a3), max(ydat a3) +sd(ydat a3),l engt h=120)  
neval 3=l engt h(xeval 3) 
 
# Wei bull 
zwei bull 3=fit di st(ydat a3, " wei bull", opti m. met hod=" L- BFGS- B",l ower =0. 05) 
xdensi t ywei bull 3=dwei bull(xeval 3,shape=zwei bull 3$esti mat e[ 1], scale=zwei bull 3$esti mat e[ 2]) 
 
# pl ot t he hi st ogr am and overl ay t he PDFs 
par( mfr ow=c( 1, 3)) 
hi st(ydat a1, xl ab=" Annual  Repai r Severit y ( USD)", yl ab="", probability=T,  mai n="", yli m=r ange(c( 0, 0. 007)), breaks=ncl s) 
 
titl e( mai n=" Model  I") 
li nes(xeval 1, xdensi t ywei bull 1,l wd=2,lt y=5, col ="bl ack") 
 
hi st(ydat a2, xl ab=" Annual  Repai r Severit y ( USD)", yl ab="", probability=T,  mai n="", yli m=r ange(c( 0, 0. 007)), breaks=ncl s) 
 
titl e( mai n=" Model  II") 
li nes(xeval 2, xdensi t ywei bull 2,l wd=2,lt y=5, col ="bl ack") 
 
hi st(ydat a3, xl ab=" Annual  Repai r Severit y ( USD)", yl ab="", probability=T, mai n="", yli m=r ange(c( 0, 0. 007)), breaks=ncl s) 
 
titl e( mai n=" Model  III") 
li nes(xeval 3, xdensi t ywei bull 3,l wd=2,lt y=5, col ="bl ack") 
 
par( op, xpd=TRUE)  
l egend("t opri ght", " Wei bull ",lty=5, lwd=2. 5, bt y="n")  
 
op <- par( mfr ow=c( 1, 3)) 
hi st(expY1a, mai n=" Model  I", xl ab=" Annual  Repai r Severity ( USD)") 
hi st(expY1b, mai n=" Model  II", xl ab=" Annual  Repai r Severity ( USD)") 
hi st(expY1c, mai n=" Model  III", xl ab=" Annual  Repai r Severity ( USD)") 
par( op) 
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APPENDIX D: RISK R CODE 

#### BI NOMI AL LOGI T USI NG GLM #### 
i nst all. packages(" MASS") 
i nst all. packages("verifi cati on") 
 
li brary( MASS)  
li brary(verifi cati on) 
li brary( ar ul es) 
 
 
#### DATA #### 
owt s<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_ MULT. csv", na.stri ngs=" NA", header =TRUE)  
owt s[ 1: 5,] 
OWTS <- owt s[ 1: 120,] 
 
ydat a=OWTS$RS_ANNUAL[ 1: 120]  
N=l engt h(ydat a) 
N1=N- 1 
 
#### MODEL 1: LOWER THRESHOLD ( LOW RI SK OWTS) #### 
# RS<303 -->1; Severit y < 9. 173  
# OWTS$RS_BI _LOW<- cut( OWTS$RS_ANNUAL, br eaks=c( 0, 303,755), l abel s=c( 0, 1)) 
 
hi st( OWTS$RS_ANNUAL, xl ab=" Annual  Repai r Severit y ( USD)", mai n="", probability=FALSE, br eaks=16)  
poi nt s(303, 0, pch=17) 
 
N = l engt h( OWTS$RS_BI _LOW)  
p1 <- l engt h( OWTS$RS_BI _LOW[ OWTS$RS_BI _LOW == 1])/ N 
p0 <- l engt h( OWTS$RS_BI _LOW[ OWTS$RS_BI _LOW == 0])/ N 
cli mo <- c(p1, p0) 
 
gl m. out = gl m( RS_BI _LOW~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a = OWTS,  f ami l y=bi nomi al (l ogi t)) 
summar y( gl m. out) 
anova( gl m. out, t est =" Chi sq") 
 
model 1=st epAI C( gl m. out, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED +PROP_TRANS_I NSP* POST_DEED, di recti on="backwar d")  
summar y( model 1) 
anova( model 1, t est =" Chi sq") 
 
yfit 1=pr edi ct( model 1,t ype="r esponse") 
 
#### BRI ER SKI LL SCORE ( MODEL 1: LOWER THRESHOLD) #### 
bri er(as. numeri c( OWTS$RS_BI _LOW), yfit 1, baseli ne=cli mo) $bs  
# Perf ect Scor e i s 0 
bri er(as. numeri c( OWTS$RS_BI _LOW), yfit 1, baseli ne=cli mo) $ss  
# Perf ect Skill i s 1 
 
## HI ST OF PROBABI LTY OF BEI NG BELOW THRESHOLD ## 
hi st( model 1$fitt ed, xl ab=" Pr obability of Exceedance", mai n=" Pr obability Di stri buti on of Low Thr eshol d Exceedance") 
 
## HI ST OF LOW RI SK OWTS ## 
combo1<- cbi nd( OWTS$RS_BI _LOW, model 1$fitt ed) 
fitted_sub<- subset(combo1, OWTS$RS_BI _LOW==1)  
hi st(fitt ed_sub[, 2], xl ab=" Model  Forecast Pr obability of Low Ri sk OWTS", mai n="") 
abl i ne(v=0. 2, col ="red",l wd=2. 5) 
poi nt s(fitt ed_sub[, 2],rep( 0, 24)) 
 
## HI ST OF LOW RI SK OWTS COMPARED TO COVARI ATES ## 
covr el at e<-cbi nd( OWTS$RS_BI _LOW, model 1$fitt ed, OWTS$PROP_TRANS_I NSP, OWTS$POST2008_SALES)  
covr el at e_sub<- subset(covr el at e,OWTS$RS_BI _LOW==1)  
 
hi st(covr el at e_sub[, 3], xl ab=" No. of Pr opert y Tr ansf er I nspecti ons", yl ab=" Count of Low Ri sk OWTS wi t h Attri but e", xaxt =' n' , mai n="") 
axi s(si de=1, at =seq( 0, 1), l abel s=seq( 0, 1)) 
hi st(covr el at e_sub[, 4], xl ab=" No. of Sal es aft er 2008", yl ab=" Count of Low Ri sk OWTS wi t h Attri but e", xaxt =' n' , mai n="") 
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axi s(si de=1, at =seq( 0), l abel s=seq(0)) 
axi s(si de=1, at =seq( 1, 2), l abel s=seq( 1, 2)) 
 
## Dr op some % of poi nt s, fit t he model  and pr edi ct t he dr opped point s … 
Y<- OWTS$RS_BI _LOW 
X<- as. matri x(cbi nd( OWTS$PROP_TRANS_I NSP, OWTS$DELTA_BED))  
 
nsi m = 1000 
bs1 = 1: nsi m 
bss1=1: nsi m 
N = l engt h( Y) 
 
N15 = round( 0. 15* N)    #dr op 15 % of poi nt s 
i ndex=1: N 
 
f or(i i n 1: nsi m){ 
  drop=sampl e(c( 1: N), N15)  
  keep=set diff(i ndex, dr op) 
   
  x=X[ keep,] 
  y=Y[ keep]  
   
  zz<- gl m( y~x, f ami l y=bi nomi al (l ogit)) 
   
  x = as. matri x( X[ dr op,]) 
   
  yhat =pr edi ct(zz, newdat a=dat a.frame( x),t ype="r esponse") 
   
  bs1[i] =(yhat- Y[ dr op])^2/l engt h(yhat) 
  bss1[i] =(1-(bs1[i])/ cli mo[ 1]) 
} 
 
 
#### MODEL 2: UPPER THRESHOLD ( HI GH RI SK OWTS) #### 
# RS > 448 -->1; Severit y > 17. 932 ( ~18) 
# OWTS$RS_BI _HI GHa<- as.f act or(cut( OWTS$RS_ANNUAL, br eaks=c( 0, 448, 755), l abel s=c("0","1"))) 
 
hi st( OWTS$RS_ANNUAL, xl ab=" Annual  Repai r Severit y ( USD)", mai n="", probability=FALSE, br eaks=16)  
poi nt s(448, 0, pch=17) 
 
N = l engt h( OWTS$RS_BI _HI GHa)  
p1 <- l engt h( OWTS$RS_BI _HI GHa[ OWTS$RS_BI _HI GHa == 1])/ N 
p0 <- l engt h( OWTS$RS_BI _HI GHa[ OWTS$RS_BI _HI GHa == 0])/ N 
cli mo. a <- c(p1, p0) 
 
gl m. out. a = gl m( RS_BI _HI GHa~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a = OWTS,  f ami l y=bi nomi al (l ogi t)) 
summar y( gl m. out. a) 
anova( gl m. out. a, t est =" Chi sq") 
 
model 2a=st epAI C( gl m. out. a, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED +PROP_TRANS_I NSP* POST2008_DEED, 
di recti on="backwar d")  
summar y( model 2a) 
anova( model 2a, t est =" Chi sq") 
 
yfit 2a=pr edi ct( model 2a,t ype="r esponse") 
 
#### BRI ER SKI LL SCORE ( MODEL 2: UPPER THRESHOLD) #### 
bri er(as. numeri c( OWTS$RS_BI _HI GHa), yfit 2a, baseli ne=cli mo. a) $bs  
# Perf ect Scor e i s 0 
bri er(as. numeri c( OWTS$RS_BI _HI GHa), yfit 2a, baseli ne=cli mo. a) $ss  
# Perf ect Skill i s 1 
## HI ST OF PROBABI LTY OF BEI NG BELOW THRESHOLD ## 
hi st( model 2a$fitt ed, xl ab=" Pr obability of Exceedance", mai n=" Pr obability Di stri buti on of Hi gh Thr eshol d Exceedance") 
 
## HI ST OF HI GH RI SK OWTS ## 
combo2<- cbi nd( OWTS$RS_BI _HI GHa, model 2a$fitt ed) 
fitted_sub2<- subset(combo2, OWTS$RS_BI _HI GHa==1)  
hi st(fitt ed_sub2[, 2], xl ab=" Model  For ecast Pr obability of Hi gh Ri sk OWTS", mai n="") 
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abli ne(v=0. 14, col ="red",l wd=2. 5) 
poi nt s(fitt ed_sub2[, 2],rep( 0, 17)) 
 
## Dr op some % of poi nt s, fit t he model  and pr edi ct t he dr opped point s … 
li brary( ar ul es) 
Y<- OWTS$RS_BI _HI GHa 
X<- as. matri x(cbi nd( OWTS$POST2008_DEED, OWTS$PRE2008_DEED, OWTS$DELTA_BED)) 
 
nsi m = 1000 
bs2 = 1: nsi m 
bss2=1: nsi m 
N = l engt h( Y) 
 
N15 = round( 0. 15* N)    #dr op 15 % of poi nt s 
i ndex=1: N 
 
f or(i i n 1: nsi m){ 
  drop=sampl e(c( 1: N), N15)  
  keep=set diff(i ndex, dr op) 
   
  x=X[ keep,] 
  y=Y[ keep]  
   
  zz<- gl m( y~x, f ami l y=bi nomi al (l ogit)) 
   
  x = as. matri x( X[ dr op,]) 
  
  yhat =pr edi ct(zz, newdat a=dat a.frame( x),t ype="r esponse") 
   
  bs2[i] =(yhat- Y[ dr op])^2/l engt h(yhat) 
  bss2[i] =(1-(bs2[i])/ cli mo. a[ 1]) 
} 
 
 
#### BRI ER SKI LL SCORE BOXPLOTS FOR LOWER- AND UPPER- THRESHOLD #### 
op <- par( mfr ow=c( 1, 2)) 
boxpl ot(bss1, yl ab=" Bri er Skill Score", mai n="(a)") 
boxpl ot(bss2, yl ab="", mai n="(b)") 
par( op) 
titl e( mai n=" Model  Pr edi cti ons Skill") 
 
 
#### TESTI NG OTHER THRESHOLDS #### 
#### UPPER THRESHOLD ( Wi t h Onl y 10% I n Hi gh Ri sk Cat egory) 
# RS > 458 -->1  
OWTS$RS_BI _HI GHb<- as.f act or(cut( OWTS$RS_ANNUAL, br eaks=c( 0, 448, 755), l abel s=c("0","1"))) 
 
N = l engt h( OWTS$RS_BI _HI GHb)  
p1 <- l engt h( OWTS$RS_BI _HI GHb[ OWTS$RS_BI _HI GHb == 1])/ N 
p0 <- l engt h( OWTS$RS_BI _HI GHb[ OWTS$RS_BI _HI GHb == 0])/ N 
cli mo. b <- c(p0, p1) 
 
gl m. out. b = gl m( RS_BI _HI GHb~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a = OWTS,f ami l y=bi nomi al (l ogi t)) 
summar y( gl m. out. b) 
anova( gl m. out. b, t est =" Chi sq") 
 
model 2b=st epAI C( gl m. out. b, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, di recti on="backwar d")  
summar y( model 2b) 
anova( model 2b, t est =" Chi sq") 
 
yfit 2b=pr edi ct( model 2b, t ype="r esponse") 
 
bri er(as. numeri c( OWTS$RS_BI _HI GHb), yfit 2b, baseli ne=cli mo. b) $bs  
# Perf ect Scor e i s 0 
bri er(as. numeri c( OWTS$RS_BI _HI GHb), yfit 2b, baseli ne=cli mo. b) $ss  
# Perf ect Skill i s 1 
 
# Too f ew OWTS f all above t he 458 t hr eshol d t o dr aw any concl usi ons 
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#### LOW RI SK OWTS Model  Forecast s #### 
New_RS_BI _LOW<- cbi nd( OWTS$RS_BI _LOW,  yfit 1, OWTS$PARCEL_NO2)  
New_RS_BI _LOW1<- subset( New_RS_BI _LOW,  OWTS$RS_BI _LOW==1)  
hi st( New_RS_BI _LOW1[, 2], xl ab=" Pr obability of Low Ri sk OWTS", yl ab="", mai n=" Ri sk For ecast f or OWTS Obser ved i n Low Ri sk 
Cat egory") 
wri t e. csv( New_RS_BI _LOW, " New_RS_BI _LOW. csv") 
 
#### HI GH RI SK OWTS Model  Forecast s #### 
New_RS_BI _HI GH<- cbi nd( OWTS$RS_BI _HI GHa, yfit 2a, OWTS$PARCEL_NO2)  
New_RS_BI _HI GH1<- subset( New_RS_BI _HI GH, OWTS$RS_BI _HI GHa==1)  
hi st( New_RS_BI _HI GH1[, 2], xl ab=" Pr obability of Hi gh Ri sk OWTS", yl ab="", mai n=" Ri sk For ecast f or OWTS Observed i n Hi gh Ri sk 
Cat egory") 
wri t e. csv( New_RS_BI _HI GH, " New_RS_BI _HI GH. csv") 
#### THRESHOLD PLOT #### 
 
li brary(sm)  
ydat a=OWTS$Severit y[ 1: 120]  
N=l engt h(ydat a) 
N1=N- 1 
xeval =seq( mi n(ydat a)-sd(ydat a), max(ydat a) +sd(ydat a),l engt h=120)  
neval =l engt h(xeval ) 
 
# Nonpar ametri c Ker nel  Densit y Esti mati on 
ker nel pdf = sm. densi t y(ydat a, eval.poi nt s=xeval , add=FALSE, lty=1, lwd=4)  
 
par( mfr ow=c( 1, 1)) 
hi st( OWTS$Severit y, xl ab=" Repai r Severit y (Thousands of USD)", yl ab="", probability=T, mai n="", br eaks=16) 
poi nt s(8, 0, pch=25, cex=1. 60,l wd=2,bg=" whi t e") 
poi nt s(18, 0, pch=24, cex=1. 60,l wd=1. 5, bg="bl ack") 
li nes(xeval , ker nel pdf $esti mat e,l wd=2,lt y=1, col ="bl ack") 
 
l egend( 22, 0. 3, c("Low Ri sk Thr eshol d"," Hi gh Ri sk Thr eshol d"," Ker nel  Densit y"), pch=c( 25, 17, NA), lty=c( NA, NA, 1), l wd=2, bt y="n") # 
gi ves t he l egend li nes t he correct col or and wi dt h        
 
 
 

EXTREME VALUE ANALYSIS – POINTS OVER THRESHOLD 
 
i nst all. packages("ext Remes") 
i nst all. packages("i smev") 
 
li brary( ext Remes)  
li brary(i smev) 
li brary( MASS)  
 
#### LOAD DATA #### 
owt s<-
read. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ CSV/ OWTS_CSV_ MULT. csv", na.stri ngs=" NA", header =TRUE)  
owt s[ 1: 5,] 
OWTS <- owt s[ 1: 120,] 
 
#### THRESHOLD SELECTI ON #### 
# Choose a t hreshol d l ow enough (l ower vari ance), but hi gh enough t hat t he  
# assumpti ons f or t he GPD ar e val i d (l ower bi as) 
op <- par( mfr ow=c( 2, 2)) 
gpd.fitrange( OWTS$Severit y, umi n=0, umax=14, ni nt =7)  
gpd.fitrange( OWTS$Severit y, umi n=12, umax=20, ni nt =8)  
par( op) 
#### PLOT TOTAL SEVERI TY OVER 40 YR #### 
op <- par( mfr ow=c( 1, 1)) 
pl ot( OWTS$Severit y, xl ab = " Sampl e Syst ems", yl ab = " Annual  Repair Severit y  (Thousand USD)", pch = 1, cex=0. 75)  
abl i ne( h=18, col ="darkr ed") 
par( op) 
 
 
#### FI T MODEL USI NG ext Remes #### 
op <- par( mfr ow=c( 2, 4)) 
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fit 0 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP") 
pl ot(fit 0,t ype=" qq", mai n="(a)") 
 
fit 1 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~DELTA_BED)  
pl ot(fit 1,t ype=" qq", mai n="(b)") 
 
lr.t est(fit 0,fit 1)  
# If t he p-val ue i s small er t han al pha,t hen t he deci si on i s t o rej ect t he  
# null hypot hesi s i n f avor of t he model  wi t h mor e par amet ers.  
 
fit 2 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~DELTA_BED+PROP_TRANS_I NSP)  
pl ot(fit 2,t ype=" qq", mai n="(c)") 
 
lr.t est(fit 0,fit 2) 
 
fit 3 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~DELTA_BED + PROP_TRANS_I NSP + POST2008_DEED)  
pl ot(fit 3,t ype=" qq", mai n="(d)") 
 
lr.t est(fit 0,fit 3) 
 
fit 4 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~PROP_TRANS_I NSP + POST2008_DEED)  
pl ot(fit 4,t ype=" qq", mai n="(e)") 
 
lr.t est(fit 0,fit 4) 
 
fit 5 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~PROP_TRANS_I NSP* POST2008_DEED)  
pl ot(fit 5,t ype=" qq", mai n="(f)") 
 
lr.t est(fit 0,fit 5) 
 
fit 6 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~PROP_TRANS_I NSP* POST2008_DEED + STRUCT_VAL + 
LOAN_I NSP)  
pl ot(fit 6,t ype=" qq", mai n="") 
 
lr.t est(fit 5,fit 6) 
lr.t est(fit 0,fit 6) 
 
fit 7 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~PROP_TRANS_I NSP* POST2008_DEED +STRUCT_VAL+ 
LOAN_I NSP + PRE2008_DEED)  
pl ot(fit 7,t ype=" qq", mai n="(h)") 
 
lr.t est(fit 5,fit 7) 
 
l ook0 <- summar y(fit 0, sil ent =TRUE)  
l ook0 <- c(l ook0$AI C, l ook0$BI C)  
l ook1 <- summar y(fit 1, sil ent =TRUE)  
l ook1 <- c(l ook1$AI C, l ook1$BI C)  
l ook2 <- summar y(fit 2, sil ent =TRUE)  
l ook2 <- c(l ook2$AI C, l ook2$BI C)  
l ook3 <- summar y(fit 3, sil ent =TRUE)  
l ook3 <- c(l ook3$AI C, l ook3$BI C)  
l ook4 <- summar y(fit 4, sil ent =TRUE)  
l ook4 <- c(l ook4$AI C, l ook4$BI C)  
l ook5 <- summar y(fit 5, sil ent =TRUE)  
l ook5 <- c(l ook5$AI C, l ook5$BI C)  
l ook6 <- summar y(fit 6, sil ent =TRUE)  
l ook6 <- c(l ook6$AI C, l ook6$BI C)  
l ook7 <- summar y(fit 7, sil ent =TRUE)  
l ook7 <- c(l ook7$AI C, l ook7$BI C)  
 
# Lower AI C/ BI C i s bett er. 
names(l ook0) <- names(l ook1) <- names(l ook2) <- names(l ook3) <- names(l ook4) <- names(l ook5) <-c(" AIC", " BI C") 
l ook0 
l ook1 
l ook2 
l ook3 
l ook4 
l ook5 
l ook6 
l ook7 
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#### PLOT BEST FI T (6) #### 
op <- par( mfr ow=c( 1, 1)) 
fit 6 <- f evd( Severit y, OWTS, t hreshol d=18, t ype=" GP", scal e.f un=~PROP_TRANS_I NSP* POST2008_DEED + STRUCT_VAL + 
LOAN_I NSP)  
pl ot(fit 6,t ype=" qq", mai n="") 
par( op) 
 
 
#### MODEL VS OBSERVATI ON PLOTS (t o show model  skill) #### 
shape_fit 6=fi ndpars(fit 6)$shape 
scal e_fit 6=fi ndpars(fit 6)$scal e 
 
# CI li ne pl ot ( USI NG expY2)  
op <- par( mfr ow=c( 1, 1)) 
med<- vect or(l engt h=N)  
Yu<- vect or(l engt h=N)  
Yl <-vect or(l engt h=N)  
 
f or (i i n 1: N){ 
  med[i] =qevd( 0. 50, scal e=scal e_fit6[i], shape=1,t ype=" GP") 
  Yl[i] =qevd( 0. 25, scal e=scal e_fit 6[i],shape=1,t ype=" GP") 
  Yu[i] =qevd( 0. 75, scal e=scal e_fit 6[i],shape=1,t ype=" GP") 
} 
 
#### RS > 448 -->1 #### Severit y > 17. 932 ( ~18) #### 
# OWTS$RS_BI _HI GHa<- as.f act or(cut( OWTS$RS_ANNUAL, br eaks=c( 0, 448, 755), l abel s=c("0","1"))) 
 
N = l engt h( OWTS$RS_BI _HI GHa)  
p1 <- l engt h( OWTS$RS_BI _HI GHa[ OWTS$RS_BI _HI GHa == 1])/ N 
p0 <- l engt h( OWTS$RS_BI _HI GHa[ OWTS$RS_BI _HI GHa == 0])/ N 
cli mo. a <- c(p1, p0) 
 
gl m. out. a = gl m( RS_BI _HI GHa~ PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED, dat a = OWTS,f ami l y=bi nomi al (l ogi t)) 
summar y( gl m. out. a) 
anova( gl m. out. a, t est =" Chi sq") 
 
model 2a=st epAI C( gl m. out. a, scope=~PRE2008_DEED + H2O + DELTA_BED + STRUCT_VAL + LI VE_AREA + LOAN_I NSP + 
NO_ADD. UPGRADES + PROP_TRANS_I NSP + POST2008_DEED +PROP_TRANS_I NSP* POST2008_DEED, 
di recti on="backwar d")  
summar y( model 2a) 
anova( model 2a, t est =" Chi sq") 
 
yfit 2a=pr edi ct( model 2a,t ype="r esponse") 
 
 
#### PLOT PROBABI LI TY OF EXCEEDANCE #### 
emed<- yfit 2a* med 
eYu<- yfit 2a* Yu 
eYl <-yfit 2a* Yl  
 
pl ot(emed, t ype="l ", xl ab=" Observed OWTS", yl ab=" Expect ed Repai r Severit y of Exceedance ( Thousands of USD)", 
yli m=c( 0, 25), col ="navy",l wd=2, lty="soli d") 
 
li nes( eYu,lt y=1,l wd=2, col ="oli vedrab") 
li nes( eYl ,lty=1,l wd=2, col ="oli vedr ab3") 
l egend("t opri ght", c(" Upper Quartile"," Medi an","Lower Quartil e"),lty=c( 1, 1, 1), 
l wd=c( 2, 2, 2), col =c("oli vedr ab","navy","oli vedr ab3"), bt y="n") # gi ves the l egend li nes t he correct col or and wi dt h        
par( op) 
 
#### DATA FOR GI S #### 
wri t e. csv( emed," MED_SEV. csv") 
 
 
#### BOX PLOT OF EXCEEDENCE SEVERI TY #### 
emed<- yfit 2a*( med+18) 
eYu<- yfit 2a*( Yu+18) 
eYl <-yfit 2a*( Yl +18) 
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ExpRi sk<- emed+( 18*( 1-yfit 2a)) 
ExpRi sk_l ow<- emed+( 3. 6*(1-yfit 2a)) 
ExpRi sk_Hi gh<- emed+( 9*(1-yfit 2a)) 
wri t e. csv( ExpRi sk," ExpRi sk. csv") 
wri t e. csv( ExpRi sk_Hi gh," ExpRi sk_Hi gh. csv") 
 
op <- par( mfr ow=c( 1, 4), mar =c( 5, 6,4, 0)) 
boxpl ot( ExpRi sk_l ow, yl ab=" Expected Repai r Severit y (Thousands of USD)", mai n="(a)", yli m=c( 5, 30))  
par( bt y=' n' , cex.l ab=1. 75, cex. mai n=1. 5, cex. axi s=1. 75) 
boxpl ot( ExpRi sk_Hi gh, yl ab="", mai n="( b)", yli m=c( 5, 30), axes=F)  
par( bt y=' n' , cex. mai n=1. 5, cex. axi s=1. 75) 
boxpl ot( ExpRi sk, yl ab="", mai n="(c)", yli m=c( 5, 30), axes=F)  
par( bt y=' n' , cex. mai n=1. 5, cex. axi s=1. 75) 
boxpl ot( OWTS$Severit y, yl ab=" Actual  Repai r Severi t y ( Thousands of USD)", mai n="(d)", yli m=c( 5, 30)) 
par( bt y=' n' , cex.l ab=1. 75, cex. mai n=1. 5, cex. axi s=1. 75)  
par( op) 
 
op <- par( mfr ow=c( 1, 1)) 
RS<- cbi nd( ExpRi sk, OWTS$Severity) 
boxpl ot( RS, yl ab=" Repai r Severity (Thousands of USD)", names=c("Expect ed"," Act ual ")) 
par( op) 
 
op <- par( mfr ow=c( 1, 1)) 
par(cex.l ab=1. 25, cex. axi s=1. 5, bt y=' o' , mar =c( 4, 10, 4, 10)) 
boxpl ot( med, yl ab=" Medi an Amount Over $18, 000 ( Thousands of USD)") 
par( op)  
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APPENDIX E: FRAGILITY R CODE 

#### UPLOAD ANNUAL FREQUENCY OF MI NOR, MODERATE AND MAJ OR REPAI RS ####  
REPAI R_TS<-r ead. csv("/ Users/l aur akohl er/ Document s/ CU_Research/ OWTS_Dat a/ RESI LI ENCE 
/ OWTS_REPAI R_TS_CSV. csv", na. stri ngs=" NA", header =TRUE)  
 
#### UPLOAD BC PEAK STREAM FLOW ( LONGMONT) #### 
PEAK_FLOW<-r ead. csv("/ Users/laur akohl er/ Document s/ CU_Research/ OWTS_Dat a/ RESI LI ENCE 
/ BC_PeaK_Long. csv", na. stri ngs="NA", header =TRUE)  
 
#### UPLOAD NOAA CLI MATE DATA #### 
NOAA_CLI M<-r ead. csv("/ Users/l aur akohl er/ Document s/ CU_Research/ OWTS_Dat a/ RESI LI ENCE 
/ NOAA_Cl i mat eDATA2. csv", na. stri ngs=" NA", header =TRUE)  
 
i nst all. packages(‘ ‘ MASS’ ’) 
i nst all. packages(‘ ‘verifi cati on’ ’) 
i nst all. packages(‘ ‘ ms m’ ’) 
i nst all. packages(‘ ‘l ocfit’ ’) 
 
li brary( MASS)  
li brary(verifi cati on) 
li brary( ms m)  
li brary(l ocfit) 
 
 
LAG_TPCP<- c( 23. 1, NOAA_CLI M$TPCP)  
LAG2_TPCP<- c( 13. 5, 23. 1, NOAA_CLI M$TPCP)  
 
MI N_DATA<-
as. dat a.frame( cbi nd( REPAI R_TS$YEAR[ 7: 34], REPAI R_TS$ MI NOR[ 7: 34], NOAA_CLI M[ 1: 28, 2: 13], PEAK_FLOW$peak_va[ 29: 56], L
AG_TPCP[ 1: 28], LAG2_TPCP[ 1: 28])) 
MI N_DATA<- na. omi t( MI N_DATA)  
col names( MI N_DATA) <-
c(" YEAR"," R_MI N"," DT90"," DT00"," DP05"," DP10","TPCP"," DP05_S" ," DP10_S","TPCP_S"," TPCP_ W", " MR25_S"," MR30_S"," MR40
_S"," PEAK_FL"," PREV_TPCP","LAG2_TPCP")  
 
MOD_DATA<-
as. dat a.frame( cbi nd( REPAI R_TS$YEAR[ 7: 34], REPAI R_TS$ MODERATE[ 7: 34], NOAA_CLI M[ 1: 28, 2: 13] , PEAK_FLOW$peak_va[ 29:
56], LAG_TPCP[ 1: 28], LAG2_TPCP[ 1: 28], REPAI R_TS$ MI NOR[ 6: 33])) 
MOD_DATA<- na. omi t( MOD_DATA)  
col names( MOD_DATA) <-
c(" YEAR"," R_MOD"," DT90"," DT00"," DP05"," DP10","TPCP"," DP05_S"," DP10_S","TPCP_S","TPCP_W", " MR25_S"," MR30_S"," MR4
0_S"," PEAK_FL"," PREV_TPCP","LAG2_TPCP"," R_MI N_LAG")  
 
MAJ_DATA<-
as. dat a.frame( cbi nd( REPAI R_TS$YEAR[ 7: 34], REPAI R_TS$ MAJ OR[7: 34], NOAA_CLI M[ 1: 28, 2: 13], PEAK_FLOW$peak_va[ 29: 56], L
AG_TPCP[ 1: 28], LAG2_TPCP[ 1: 28])) 
MAJ_DATA<- na. omi t( MAJ_DATA)  
col names( MAJ_DATA) <-
c(" YEAR"," R_MAJ"," DT90"," DT00"," DP05"," DP10","TPCP"," DP05_S"," DP10_S","TPCP_S","TPCP_ W" ," MR25_S"," MR30_S"," MR4
0_S"," PEAK_FL"," PREV_TPCP","LAG2_TPCP")  
 
TOT_DATA<-
as. dat a.frame( cbi nd( REPAI R_TS$YEAR[ 7: 34], REPAI R_TS$TOTAL[ 7: 34], NOAA_CLI M[ 1: 28, 2: 13], PEAK_FLOW$peak_va[ 29: 56], L
AG_TPCP[ 1: 28], LAG2_TPCP[ 1: 28])) 
TOT_DATA<- na. omi t( TOT_DATA)  
col names( TOT_DATA) <-
c(" YEAR"," R_TOT"," DT90"," DT00"," DP05"," DP10","TPCP"," DP05_S"," DP10_S","TPCP_S","TPCP_ W" ," MR25_S"," MR30_S"," MR4
0_S"," PEAK_FL"," PREV_TPCP","LAG2_TPCP")  
 
 
#### MI NOR REPAI RS #### 
pl ot( MI N_DATA$R_ MI N~MI N_DATA$YEAR, yl ab=" No. Mi nor Repai rs Each Year", xl ab="year") 
 
## Fi t GLM 
gl m_ mi n0<-
gl m( R_MI N~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPC
P+LAG2_TPCP, dat a=MI N_DATA,fami l y="poi sson", na. acti on = na. excl ude)  
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gl m_ mi n1<-st epAI C( gl m_mi n0, 
scope=~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPCP+L
AG2_TPCP, di recti on="backwar d") 
summar y( gl m_mi n1) 
 
## RI SK Rati os 
exp( 0. 04694)   # DT90 
 
ypt _mi nor =pr edi ct(gl m_mi n1, t ype="r esponse") 
 
pl ot(ypt _mi nor, MI N_DATA$R_ MI N,xl ab=" Model  Pr edi ct ed Repai r Fr equency", yl ab=" Observed Repai r Fr equency") 
cor(ypt _mi nor, MI N_DATA$R_ MI N) 
 
 
 
 
#### MODERATE REPAI RS #### 
pl ot( MOD_DATA$R_ MOD~ MOD_DATA$YEAR, yl ab=" No. Moder at e Repai rs Each Year", xl ab="year") 
## Fi t GLM 
gl m_ mod0<-
gl m( R_MOD~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPC
P+LAG2_TPCP, dat a=MOD_DATA,f ami l y="poi sson", na. acti on = na.excl ude)  
gl m_ mod1<- st epAI C( gl m_ mod0, 
scope=~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPCP+L
AG2_TPCP, di recti on="backwar d") 
summar y( gl m_mod1)  
 
## RI SK Rati os 
exp( 0. 0007118)   # PEAK_FL 
 
ypt _mod=pr edi ct(gl m_mod1, t ype="r esponse") 
 
pl ot(ypt _mod, MOD_DATA$R_ MOD, xl ab=" Model  Pr edi ct ed Repai r Frequency", yl ab=" Obser ved Repai r Fr equency") 
cor(ypt _mod, MOD_DATA$R_ MOD)  
 
 
#### MAJ OR REPAI RS #### 
pl ot( MAJ_DATA$R_ MAJ~MAJ_DATA$YEAR, yl ab=" No. Maj or Repai rs Each Year", xl ab="year") 
 
## Fi t GLM 
gl m_ maj 0<-
gl m( R_MAJ~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPC
P+LAG2_TPCP, dat a=MAJ_DATA, fami l y="poi sson", na. acti on = na. excl ude) 
gl m_ maj 1<-st epAI C( gl m_maj 0, 
scope=~DT90+DT00+TPCP+DP05+DP05_S+DP10+DP10_S+TPCP_S+MR25_S+MR30_S+MR40_S+PEAK_FL+PREV_TPCP+L
AG2_TPCP, di recti on="backwar d") 
summar y( gl m_maj 1) 
 
## RI SK Rati os 
exp( 0. 5765813)  # MR40_S 
exp(-0. 0010120) # PEAK_FL 
 
ypt _maj =pr edi ct(gl m_ maj 1,t ype="response") 
 
pl ot(ypt _maj , MAJ_DATA$R_ MAJ, xl ab=" Model  Pr edi ct ed Repai r Fr equency", yl ab=" Observed Repai r Fr equency") 
cor(ypt _maj , MAJ_DATA$R_ MAJ)  
 
 
#### TOTAL REPAI RS #### 
pl ot( TOT_DATA$R_TOT~TOT_DATA$YEAR, yl ab=" Tot al No. OWTS Repai rs", xl ab=" Year") 
 
## Fi t GLM 
gl m_t ot 0<-
gl m( R_TOT~DT90+DT00+TPCP+DP05+MR40_S+PEAK_FL+PREV_TPCP+LAG2_TPCP, dat a=TOT_DATA,f ami l y="poi sson", na. ac
ti on = na. excl ude) 
gl m_t ot 1<-st epAI C( gl m_t ot 0, 
scope=~DT90+DT00+TPCP+DP05+MR40_S+PEAK_FL+PREV_TPCP+LAG2_TPCP, di recti on="backwar d") 
summar y( gl m_t ot 1) 
 
ypg_t ot =pr edi ct(gl m_t ot 1) 
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ypt _t ot =ypg_t ot  
wri t e. csv(ypt _t ot," Model Pr edRFr equency. csv") 
 
pl ot(ypt _t ot, TOT_DATA$R_TOT, xl ab=" Model  Pr edi ct ed Repai r Fr equency", yl ab=" Observed Repai r Frequency") 
cor(ypt _t ot, TOT_DATA$R_TOT)  
 
op <- par( mfr ow=c( 1, 3)) 
pl ot( MI N_DATA$R_ MI N, ypt _mi nor,yl ab=" Model  Pr edi ct ed Repai r Fr equency", xl ab=" Observed Repai r Fr equency", 
cex.l ab=1. 25, cex. axi s=1. 2, mai n="(d)") 
abl i ne( 0, 1, col ="dark red", lty=2) 
cor(ypt _mi nor, MI N_DATA$R_ MI N) 
 
pl ot( MOD_DATA$R_ MOD, ypt _mod, yl ab=" Model  Pr edi ct ed Repai r Frequency", xl ab=" Obser ved Repai r Fr equency", 
cex.l ab=1. 25, cex. axi s=1. 2, mai n="(e)") 
abl i ne( 0, 1, col ="dark red", lty=2) 
cor(ypt _mod, MOD_DATA$R_ MOD)  
 
pl ot( MAJ_DATA$R_ MAJ, ypt _maj , yl ab=" Model  Pr edi ct ed Repai r Fr equency", xl ab=" Observed Repai r Fr equency", 
cex.l ab=1. 25, cex. axi s=1. 2, mai n="(f)") 
abl i ne( 0, 1, col ="dark red", lty=2) 
cor(ypt _maj , MAJ_DATA$R_ MAJ)  
 
par( op) 
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APPENDIX F: RESILIENCE R CODE 

RAPIDITY 
 
#### DATA #### 
PRE_FLOOD<-r ead. csv("/ Users/laur akohl er/ Document s/ CU_Research/ OWTS_Dat a/ RESI LI ENCE / Boul der Count y 
Dat a/ RecovTI ME_Pr eFLOOD. csv", na. stri ngs=" NA", header =TRUE)  
POST_FLOOD<-r ead. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ RESI LI ENCE / Boul der Count y 
Dat a/ RecovTI ME_Post FLOOD. csv", na. stri ngs=" NA", header =TRUE)  
POST_FLOOD_NONFLOOD<-r ead. csv("/ Users/l aur akohl er/ Document s/ CU_Resear ch/ OWTS_Dat a/ RESI LI ENCE / Boul der Count y 
Dat a/ RecovTI ME_NonFl oodPost FLOOD. csv", na. stri ngs=" NA", header=TRUE)  
 
PRE<- PRE_FLOOD$DAYS_RECOV_PERM 
POST<- POST_FLOOD$DAYS_RECOV_PERM 
POST_FL<- POST_FLOOD$DAYS_RECOV_FLOOD 
POST_NF<- POST_FLOOD_NONFLOOD$DAYS_RECOV_PERM 
   
op <- par( mfr ow=c( 1, 4), mar =c( 5. 1,5. 1, 4. 1, 2. 1)) 
boxpl ot( PRE, yli m=c( 0, 800), yl ab=" Days", mai n="(a) Pr e- Fl ood Recovery", cex.l ab=1. 25, cex. axi s=1. 2) 
boxpl ot( POST, yli m=c( 0, 800), yl ab=" Days", mai n="( b) Fl ood Recovery from Per mi t Dat e", cex.l ab=1. 25,cex. axi s=1. 2)  
boxpl ot( POST_FL, yli m=c( 0, 800), yl ab=" Days", mai n="(c) Fl ood Recovery from Fl ood Dat e", cex.l ab=1.25, cex. axi s=1. 2)  
boxpl ot( POST_NF, yli m=c( 0, 800), yl ab=" Days", mai n="(d) Post -2014 Non- Fl ood Speci fi c Recovery", cex.l ab=1. 25, cex. axi s=1. 2) 
par( op) 
 
## NOTE: 235 OWTS i n t he Post-2014 Repai rs Subpopul ati on have not act uall y been repai red;  
## used dat e of dat a entry 2/ 18/ 2016 t o show some of t he del ay but many of t hem may t ake much l onger  
 
var.t est( PRE, POST)  
## p-val ue gr eat er t han 0. 05 was obt ai ned, so can assume t hat t he two vari ances ar e homogeneous 
 
 
## Fi nd t abul at ed val ue of F 
qf(0. 95, 149, 19) ## comput ed =0.9496 and t abul at ed =1. 9203 
## The val ue of F comput ed i s l ess t han t he t abul at ed val ue of F, whi ch l eads us t o accept t he null hypot hesi s of homogenei t y of 
vari ances.  
 
## T-t est ## 
t.t est( PRE, POST, var. equal =TRUE, pai red=FALSE)  
## p-val ue l ess t han 0. 05 was obtai ned, so concl ude t hat t he aver ages of t wo gr oups ar e si gnifi cantl y different (rej ect t hat null t hat 
t hey ar e si mil ar) 
 
## Fi nd t abul at ed val ue of t (0. 975 i nst ead of 0. 95 because a 2 t ail ed t est) 
qt(0. 975, 168) 
 
## t-comput ed i s l ess ( mor e?) t han t he t abul at ed t-val ue f or 18 degrees of freedom, whi ch   
## confi r ms t hat we rej ect t he null 
 
 
## COMPARI SON: Ti me t o recover from r epai r per mi t appli cati on vs. fl ood event  
op <- par( mfr ow=c( 1, 2)) 
 
boxpl ot( POST, yli m=c( 0, 800), yl ab=" Days", mai n=" Per mi t Appli cati on") 
boxpl ot( POST_FL, yli m=c( 0, 800), yl ab=" Days", mai n=" Fl ood ( Sept ember 13, 2013)") 
par( op) 

RESOURCEFULNESS 
 
#### DATA #### 
RESOURCE<-r ead. csv("/ Users/l aur akohl er/ Document s/ CU_Research/ OWTS_Dat a/ RESI LI ENCE / Boul der Count y 
Dat a/ RESOURCE_PRE_POST. csv", na. stri ngs=" NA", header =TRUE)  
 
PRE_ MAX<- RESOURCE$RESOURCEFULNESS_PRE 
POST_ MAX<- RESOURCE$RESOURCEFULNESS_POST 
PRE_ MI N<- RESOURCE$RESOURCEFULNESS_PORT_ MI N_PRE 
POST_ MI N<- RESOURCE$RESOURCEFULNESS_PORT_ MI N_POST 
 
op <- par( mfr ow=c( 1, 2), mar =c( 5. 1,5. 1, 4. 1, 2. 1)) 
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boxpl ot( PRE_ MAX, yl ab=" Resourcef ul ness ( USD)", yli m=c( 15000, 85000), mai n="(a) Pr e- Fl ood", cex.l ab=1. 25, cex. axi s=1. 2) 
boxpl ot( POST_ MAX, yl ab=" Resourcef ul ness ( USD)", yli m=c( 15000, 85000), mai n="(b) Post - Fl ood", cex. l ab=1. 25, cex. axi s=1. 2) 
par( op) 
 
op <- par( mfr ow=c( 1, 2), mar =c( 5. 1,5. 1, 4. 1, 2. 1)) 
boxpl ot( PRE_ MI N, yl ab=" Resour cef ul ness ( USD)", yli m=c( 14866, 17100), mai n="(a) Pr e- Fl ood", cex.l ab=1. 25, cex. axi s=1. 2) 
boxpl ot( POST_ MI N, yl ab=" Resourcef ul ness ( USD)", yli m=c( 14866, 17100), mai n="(b) Post - Fl ood", cex.lab=1. 25, cex. axi s=1. 2) 
par( op) 
 
 


