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We study dynamics of a generic quadratic diffeomorphism, a 3D generalization of the planar Hénon
map. Focusing on the dissipative, orientation preserving case, we give a comprehensive parameter
study of codimension-one and two bifurcations. Periodic orbits, born at resonant, Neimark-Sacker
bifurcations, give rise to Arnold tongues in parameter space. Aperiodic attractors include invariant
circles and chaotic orbits; these are distinguished by rotation number and Lyapunov exponents.
Chaotic orbits include Hénon-like and Lorenz-like attractors, which can arise from period-doubling
cascades, and those born from the destruction of invariant circles. The latter lie on paraboloids near
the local unstable manifold of a fixed point.

Since Hénon’s observation of strange, chaotic
attractors in his eponymous two-dimensional
map,1 this quadratic map has become a piv-
otal model to understand chaotic dynamics
in the plane.2,3 It is of much interest to un-
derstand the dynamics of higher-dimensional
generalizations of this map as models for the
onset and development of chaotic dynamics.
As a prototypical model, we study the so-
called 3D generalized Hénon map,4 which is
a quadratic normal form for several bifurca-
tion scenarios. Building upon previous work,
we study the periodic and aperiodic dynam-
ics of this map using a variety of visualizations
in both parameter and phase space. For ex-
ample, Arnold tongues, or resonant regions,
in parameter space correspond to attracting
periodic orbits in phase space. We compute
heteroclinic trajectories between orbits in the
tongues as well as in period-doubling cas-
cades. We also follow the evolution of invari-
ant circles as they bifurcate, some of which
can become complex chaotic attractors.

I. INTRODUCTION

The two-dimensional Hénon map1 is the quadratic
diffeomorphism of the plane: every such diffeo-
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morphism is conjugate to a map in the two-
parameter Hénon family. Prominent rigorous re-
sults for this diffeomorphism include that of Devaney
and Nitecki,5 who showed that the dynamics of its
bounded orbits are conjugate to a Smale horseshoe
in some parameter regimes, and that of Benedicks
and Carleson,6 who showed that when the Jacobian
is sufficiently small there are cases for which the map
has a transitive attractor with a positive Lyapunov
exponent. It was also shown that the horseshoe in
this map can be thought of as arising from an anti-
integrable limit, where the dynamics becomes non-
deterministic.7

Some of these results have been generalized to
higher-dimensional maps. For the three-dimensional
(3D) case it was shown in Ref. [8] that every
quadratic diffeomorphism with a quadratic inverse
is conjugate to the map L : R3 → R3

L(x, y, z) = (δz +G(x, y), x, y),

G(x, y) = α+ τx− σy + ax2 + bxy + cy2.
(1)

This analysis was later generalized to include
3D quadratic diffeomorphisms that have quartic
inverses,9 and to higher dimensions.10 The diffeo-
morphism (1) arises as a normal form in the volume
preserving (δ = 1) case near a fixed point with three
unit multipliers.11,12 It has also been shown to be a
normal form near a map with a saddle-focus fixed
point that has a quadratic homoclinic tangency.4,13
The theory of anti-integrability also applies to these
maps when α → −∞, see e.g., Ref. [14].

The map L has seven parameters, six in the
quadratic polynomial G and δ = detDL, the Ja-
cobian determinant. This parameter set can be re-
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duced, as noted in Ref. [8]: whenever a + b + c ̸= 0
and 2a+ b ̸= 0,a an affine coordinate transformation
allows one to set

a+ b+ c = 1 and τ = 0. (2)

Using this simplification, (1) depends only on
(α, σ, a, c) and the Jacobian δ.

The case (a, b, c) = (1, 0, 0) has been called “the 3D
Hénon map” since it only has one nonlinear term,
similar to the classical Hénon map.1 In a series of
papers starting with Refs. [4 and 13], Gonchenko
and collaborators focus on the formation of chaotic
attractors for this map.b These attractors are
shown to be “wild hyperbolic”c near the parameters
(α, σ, δ) = (14 ,−1, 1), where a pair of fixed points are
born with multipliers (−1,−1, 1). These attractors
are also “pseudo-hyperbolic,”d like the Lorenz attrac-
tor, implying that every orbit in the attractor has at
least one positive and one negative Lyapunov expo-
nent. According to Ref. [16], there are five types of
such attractors formed from the unstable manifold
of a fixed point, including “Lorenz-like” and several
“figure-eight” attractors.17 Moreover, there are infi-
nite cascades in parameter space of nearby systems
with Lorenz-like attractors.18 Chaotic attractors for
the non-orientable case have also been studied.19

Following Gonchenko et al., we will primarily
study the 3D Hénon case using the scaling (2) and
taking 0 < δ < 1, so that the map is volume con-
tracting and orientation preserving. We focus on two
examples:

(SC) Strongly Contracting: (a, c, δ) = (1, 0, 0.05),

(MC) Moderately Contacting: (a, c, δ) = (1, 0, 0.7),

allowing (α, σ) to vary. In §II, we recall basic bifur-
cation behavior of periodic orbits for a 3D map using
the trace and second trace of the Jacobian. These
bifurcation conditions are transformed to conditions
on (α, σ) for the fixed points of (1) in §III. Similar
bifurcation criterion were obtained for the 3D Hénon
map in Ref. [20] for the case that σ = δ, as well as

a If one of these is violated, other scaling transformations can
be found to eliminate two of the parameters.

b In their notation M1 = −α,B = δ,M2 = −σ.
c Nearby maps have Newhouse tangencies between stable and

unstable manifolds.15
d Its tangent space splits into a a strong stable subspace and

a complementary subspace that exponentially expands vol-
ume.

in Ref. [21] when σ = 0 for three and more dimen-
sions. In §IV, we prove that all bounded orbits of the
3D Hénon map lie within a finite cube about origin,
following the proof of a related theorem in Ref. [8].

The simplest bounded orbits are stable and peri-
odic. Parameter regions in the (α, σ)-plane contain-
ing such attractors, analogous to Arnold tongues,
are computed in §V, where we also compute hete-
roclinic manifolds between stable and unstable or-
bits. In §VI, we study aperiodic attractors, com-
puting the maximal Lyapunov exponent to distin-
guish between regular and chaotic cases. Regular
aperiodic attractors come in the form of invariant
circles, which we study in §VI A expanding upon
the volume-preserving case studied in Ref. [12]. In
§VI B, we find Hénon-like attractors for case (SC)
and discrete, Lorenz-like attractors22 for case (MC).
Additionally, we observe chaotic attractors arising
from bifurcations of invariant circles that are unlike
those in Refs. [23 and 24]; these also do not seem
to be related to the generalizations of Smale’s horse-
shoe to 3D found by Ref. [25].

II. BIFURCATIONS FOR 3D MAPS

For a fixed point ξ∗ = f(ξ∗) of a 3D map f , the
eigenvalues of the Jacobian A = Df(ξ∗) are given
by the zeros of characteristic polynomial

pA(λ) = det(λI −A) = λ3 − tλ2 + sλ− d. (3)

We refer to these as the multipliers of the fixed point.
Here t = tr(A) is the trace and d = det(A). An ex-
pression for the “second trace”, s, can be obtained
from the Cayley-Hamilton theorem: a matrix satis-
fies its own characteristic polynomial, A3 − tA2 +
sA − dI = 0. Multiplying this by A−3 implies that
s = d tr(A−1). Finally, multiplying the Cayley poly-
nomial by A−1 and taking the trace gives

s = 1
2

(
t2 − tr(A2)

)
. (4)

Of course, the multipliers can be related to the co-
efficients of (3) by the symmetric polynomials,

t = λ1 + λ2 + λ3,

s = λ1λ2 + λ1λ3 + λ2λ3,

d = λ1λ2λ3.

(5)

More generally, for an orbit, ξt = f(ξt−1), that
has period n, ξ0 = fn(ξ0), the Jacobian becomes

A = Dfn(ξ0) = Df(ξn−1)Df(ξn−2) . . . Df(ξ1)Df(ξ0).
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Thus, using the same process as above, we can find
a general expression for the trace and second trace
of a period-n orbit:

t = Tr(Dfn), s =
1

2
(t2 − Tr((Dfn)2)).

Following Ref. [26], the simplest, local
codimension-one bifurcations—saddle-node, period-
doubling and Neimark-Sacker—occur when at least
one multiplier has unit modulus. Each of these
occurs on a surface in (t, s, d), given in Table I.
Sections through these surfaces for four values of d
are shown in Fig. 1; similar figures can be found in
Ref. [8] for the case d = 1 and in Ref. [16], where
they are referred to as “saddle-charts.”

Saddle-node (SN) bifurcations require a unit mul-
tiplier, so that (3) gives pA(1) = 1 − t + s − d = 0.
This corresponds to a line in the (t, s)-plane, shown
in blue in Fig. 1. A period-doubling (PD) bifur-
cation occurs when there is a −1 multiplier, or
pA(−1) = −1 − t − s − d = 0; shown in red in
Fig. 1. The third codimension-one bifurcation, the
Neimark-Sacker (NS), occurs when there is a pair
of complex multipliers with unit modulus; it gener-
ically results in the creation of an invariant cir-
cle or pair of periodic orbits with differing stabil-
ities. Since |λ1,2| = 1, (5) gives λ3 = d, so that
pA(d) = d(d2 − td + s − 1) = 0. The resulting line,
s = d(t− d)+ 1, is shown in black in Fig. 1. Solving
for the complex multipliers gives

λ1,2 = e±2πiω = 1
2

(
t− d±

√
(t− d)2 − 4

)
, (6)

or that t− d = 2 cos(2πω), for rotation number ω.
Some codimension-two bifurcations occur along

the NS line when ω = p
q , and generically result in the

birth of a pair of period-q orbits. The endpoints of
the NS line occur where it intersects the SN and PD
lines at ω = 0 and ω = 1

2 , labeled (R1) and (R2),
respectively, in Table I. The table also shows the
period-three (R3) and period-four (R4) cases. Fi-
nally, the saddle-node flip (SNf) bifurcation point,
with multipliers (−1, 1,−d) is at the intersection of
the PD and SN lines.

A curve in parameter space along which there is
a double multiplier, say λ1 = λ2 = r, for r ∈ R,
corresponds to the transition from real to complex
multipliers. Using (5), this occurs when λ3 = d/r2

along the parametric curve

(t, s) =

(
d

r2
+ 2r, 2

d

r
+ r2

)
. (7)

This curve has two branches when d ̸= 0, one
of which has a cusp at r3 = d, i.e., at (t, s) =
3(d1/3, d2/3). When r = 1, this curve is tangent to
the SN line and crosses the R1 point, and when r =
−1 the curve is tangent to the PD line and crosses
the R2 point. Four segments of these curves, la-
belled by ranges of the double multiplier, are shown
in Fig. 1.

We also include representative configurations of
the multipliers in the complex plane relative to the
unit circle for each region of the (t, s) plane in Fig. 1.
For 0 ≤ d < 1, there exists a small triangular region
with all stable multipliers (|λi| < 1) that is bounded
by the SN, PD and NS lines with vertices R1, R2,
and SNf. Otherwise, the SN and PD lines divide
the plane into four regions where stability types of
the multipliers of the fixed points alternate between
having one unstable and two stable multipliers and
two unstable and one stable multiplier.

III. FIXED POINTS OF THE QUADRATIC MAP

We now apply the results of §II to fixed points of
(1) with parameter convention (2). The fixed points
have the form ξ± = (x±, x±, x±) where

x± = 1
2 (σ − δ + 1)±

√
αSN − α,

αSN ≡ 1

4
(σ − δ + 1)2,

(8)

provided α ≤ αSN . These are born in a saddle-node
bifurcation when α = αSN with x2

± = x2
SN = αSN .

Thinking of α as a bifurcation parameter, the form
(8) implies that there is a fixed point at x∗, say, when
α = α∗ ≤ αSN whenever (x∗ − xSN )2 = αSN − α∗,
or equivalently when

α∗ = x∗(2xSN − x∗). (9)

The stability of the fixed points is determined by
the linearization of (1),

DL =

2ax+ by −σ + bx+ 2cy δ

1 0 0

0 1 0

 ,

This is in companion form, implying that at a fixed
point the trace and second trace are

t± = (2a+ b)x±, s± = σ − (b+ 2c)x±, (10)

and the Jacobian is d = δ.
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CoD Bifurcation Multiplier (t, s)

1 Saddle-Node (SN) λ1 = 1 (t, t+ d− 1)

Period-Doubling (PD) λ1 = −1 (t,−t− d− 1)

Neimark-Sacker (NS) λ1,2 = e±2πiω (d+ 2 cos(2πω), 2d cos(2πω) + 1)

2 ω = 0
1

(R1) λ1,2 = 1 (d+ 2, 2d+ 1)

ω = 1
2

(R2) λ1,2 = −1 (d− 2, 1− 2d)

ω = 1
3

(R3) λ1,2 = e±2πi/3 (d− 1, 1− d)

ω = 1
4

(R4) λ1,2 = ±i (d, 1)

Saddle-Node Flip (SNf) λ1 = 1, λ2 = −1 (−d,−1)

TABLE I. Local bifurcations for a 3D map with Jacobian d, trace t, and second trace s. For each d, codimension-one
bifurcations lie on lines in the (t, s) plane, and codimension-two bifurcations at points. Since λ1λ2λ3 = d, for the NS
and resonant bifurcations, λ3 = d, and for SNf, λ3 = −d.
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FIG. 1. Codimension-one and two bifurcations in the (t, s)-plane for d = 0, d = 0.05, d = 0.5 and d = 1. The double multiplier
curves (7) and irrational NS points for ω = (

√
5− 1)/2 (Rg) and ω = 1/

√
2 (Rs) for the golden and silver means, respectively,

are also shown. Behavior at irrational points along the NS line will be discussed in §VI. The insets show the complex plane
with representative multiplier locations relative to the unit circle.

The fixed points lie on a line in the (t, s)-plane that can be found by eliminating x± and b from (10),

(1 + a− c)(s± − σ) = −(1− a+ c)t±, (11)
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and are born at the intersection of this line with the
SN line from Table I,

tSN = 1
2 (σ − δ + 1)(1 + a− c).

Moreover, (10) gives

s± − t± − δ + 1 = σ − δ + 1− 2x± = ∓2
√
αSN − α.

Since x− < xSN < x+, this implies that x+ lies be-
low and x− above the SN line in the (t, s) plane.
Therefore when 0 ≤ δ < 1, if there exists an attract-
ing fixed point, it must be ξ−.

Using the equations for the SN and PD lines in
Table I, the fixed points are born above the PD line
when tSN > −δ, or

(δ − σ − 1)(1 + a− c) < 2δ.

Provided a ̸= c, one of the fixed points undergoes
a period-doubling bifurcation at

xPD =
σ + δ + 1

2(c− a)
. (12)

An expression for the period doubling value of α is
obtained from (9): αPD = xPD(2xSN −xPD). Note
that for a fixed point to ‘double,’ it needs to exist,
thus we must have αPD ≤ αSN . In addition, when
xPD < xSN , the ξ− fixed point doubles, and when
xPD > xSN , the ξ+ point doubles.

Similarly, using (10) and the expression in Table I
for the NS bifurcation gives

xNS =
σ − δτ + δ2 − 1

δ(1 + a− c) + (1− a+ c)
, (13)

provided the denominator is nonzero. Of course, this
bifurcation only exists if the fixed points intersect
the NS line on the interval δ− 2 < t < δ+2. Again,
(9) can be used to determine the bifurcation value,
αNS .

When the parameters (a, c, δ) are fixed, the
generic bifurcation diagrams of Fig. 1 can be trans-
formed to corresponding diagrams for a fixed point
in the (α, σ) plane; details are given in Appendix A,
including criteria for codimension-two bifurcations.
The results are shown in Fig. 2 for the fixed point
ξ−—as this is the only fixed point that can be
attracting—for cases (SC) and (MC).

IV. BOUNDED ORBITS

In Ref. [8], it was shown that if the quadratic form
Q(x, y) = ax2 + bxy + cy2 is positive definite and

δ = 1, then there is a cube that contains all bounded
orbits of (1); equivalently, all points outside of this
cube escape to infinity. We show in this section that
a similar argument can be used for the case (a, b, c) =
(1, 0, 0), where Q is semi-definite, for any δ > 0.

Lemma 1. If (a, b, c) = (1, 0, 0), τ = 0, and δ > 0,
then all bounded orbits of the map (1) are contained
within the cube {(x, y, z) : |x|, |y|, |z| ≤ κ} where

κ = 1
2

(
|σ|+ δ + 1 +

√
(|σ|+ δ + 1)2 + 4|α|

)
.

(14)

Proof. For an orbit ξt = (xt, yt, zt) of the map (1),
yt = xt−1 and zt = xt−2, so the map is equivalent to
the forward and backward difference equations

xt+1 = δxt−2 + α− σxt−1 + x2
t , (15)

xt−3 = δ−1(xt − α+ σxt−2 − x2
t−1). (16)

There are three cases to consider that depend on
which term in the sequence xt−2, xt−1, xt is largest.

1. |xt| ≥ max (|xt−1|, |xt−2|): then (15) gives

xt+1 ≥ x2
t − (|σ|+ |δ|)|xt| − |α|,

giving a lower bound to the forward iterate.
Notice this inequality implies that the next it-
erate lies above an even, piecewise-parabolic
curve with negative vertical intercept. Thus
there exists κ > 0 such that whenever |xt| > κ,
we have

xt+1 ≥ x2
t − (|σ|+ |δ|)|xt| − |α| > |xt| > κ.

Here κ is the maximum root of x2
t −(|σ|+ |δ|+

1)|xt| − |α|, given by (14). This implies that
xt+1 > |xt| ≥ |xt−1|. Recursively applying this
argument to each forward step implies that

xt+k > xt+k−1 > . . . > xt+1 > |xt| > κ.

This is a monotone increasing sequence that
cannot have a finite limit: if it were to con-
verge, it would have to converge to one of
the fixed points x±, (8), but this is impossi-
ble since, by simple calculation, κ > |x±|.

2. |xt−2| ≥ max (|xt|, |xt−1|): then (16) gives

xt−3 ≤ δ−1(−x2
t−2 + (1 + |σ|)|xt−2|+ |α|),
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FIG. 2. Bifurcation curves for the fixed point ξ− of (1) for the case (SC) (δ = 0.05) and (MC) (δ = 0.7) as (α, σ) vary. The
fixed points do not exist to the right of the SN line, i.e., in the gray region. The double-multiplier curves (7) are shown for
|r| >

√
δ, as this range corresponds to a double multiplier for ξ−, see Appendix A for details.

giving an upper bound to the preimage. This
inequality is the space below an even, down-
ward facing piecewise parabola with a positive
vertical-intercept. As before, when |xt−2| > κ,

xt−3 ≤ δ−1(−x2
t−2 + (1 + |σ|)|xt−2|+ |α|)

< −|xt−2| < −κ.

Applying this argument recursively implies
that xt−k is a monotone decreasing sequence.
Again, the sequence must be unbounded.

3. |xt−1| ≥ max (|xt|, |xt−2|): using (16) gives

xt−3 ≤ δ−1(−x2
t−1 + (1+ |σ|)|xt−1|+ |α|) < −|xt−1|

whenever −|xt−1| < −κ. Recursively, this im-
plies xt−3 < −|xt−1| ≤ −|xt−2|, resulting in
the same scenario as (2).

Thus, bounded orbits of the map (1) with (a, b, c) =
(1, 0, 0), τ = 0, and δ > 0 must lie within a κ-cube
about origin.

To illustrate this result, we compute the volume of
bounded orbits, i.e. the volume of the basin of any
attractors, for the cases (SC) and (MC), see Fig. 3.
For each point on a 5002 grid in the (α, σ)-plane
for which the fixed points (8) exist (α ≤ αSN ), we
choose 503 initial conditions on a uniform grid in a
cube with bounds (14) that vary with (α, σ). An

orbit is declared to be unbounded if it leaves the
κ-cube within 200 iterates.

The selected parameters in Fig. 3 focus on the
triangular regions of Fig. 2 where ξ− is an attracting
fixed point. The bifurcation curves (dashed) and
codimension-two points are also shown (refer to the
legend in Fig. 2). Note that near the SN line, the
volume of bounded orbits in the κ-cube is small since
most are found near the fixed points, which are close
together.

V. PERIODIC ATTRACTORS

In this section we compute regions in parameter
space for which (1) has attracting periodic orbits. If
there is a unique, bounded attractor, it can easily be
found by choosing an appropriate initial condition
within the cube of Lem. 1 and iterating until the
orbit limits on the attractor. Once the transient is
removed, parameter regions of periodic behavior can
be computed by looking for recurrence.

Computed periodic regions are shown in Fig. 4 for
the two cases, (SC) and (MC). To compute these,
the initial point is set to ξ0 = 0 when neither of the
fixed points exist (i.e., to the right of the SN line in
the (α, σ)-plane) or to ξ0 = ξ− + (0.001, 0, 0), near
the fixed point. For each (α, σ) on a 10002 grid,
the map (1) is iterated T = 5000 times to eliminate
transients. The orbit is declared to diverge (white
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FIG. 3. The volume of bounded orbits for 503 initial conditions in the κ-cube for case (SC) (δ = 0.05) and case (MC) (δ = 0.7)
as a function of (α, σ). Bifurcation curves and points from Fig. 2 are also shown. Notice the color bar for case (SC) includes
larger values, with a maximum volume of 61.8. This is expected as it is more strongly contracting than case (MC), which has
a maximum volume of 31.9.

region) if |ξt| > κmax for some t ≤ T , where κmax

is the maximum of (14) over the studied parameter
region (κmax = 3.237 for (SC) and 4.632 for (MC)).
Otherwise the point ξT is iterated up to 90 more
steps, checking for return time, defined as the first
time, p, for which the distance

∥ξT+p − ξT ∥ < 10−4. (17)

Thus we find approximately periodic orbits up to
period 90; the period p is indicated by the color map
in Fig. 4. If an orbit is not periodic by this definition,
the point is colored black or gray; we will discuss the
dynamics in these regions in §VI.

Note that the initial condition, number of tran-
sient iterations, recurrence tolerance, and grid size
were strategically chosen to provide sufficient detail
at the pictured resolution but still lessen the com-
putational expense. Clearly, computations of precise
bifurcation boundaries would require more stringent
tolerances.

Since this method uses a single initial condition,
it cannot find cases where there are multiple attrac-
tors. Additionally, it is possible that the chosen
initial condition leads to an unbounded orbit when
there is still an attractor somewhere in the κ-cube.
Nevertheless, for almost all (α, σ) points that have
bounded orbits in Fig. 3, the orbit iterated in Fig. 4
is also bounded; therefore, with a few exceptions, it

does not appear that the orbit of ξ0 is unbounded
when there are other bounded orbits. We plan to
discuss such exceptional cases and the case of mul-
tiple attractors in future papers.

The largest, blue regions in Fig. 4 correspond to
period-one, where ξ− is attracting. This region is
bounded by the SN, PD, and NS curves seen in
Fig. 2. When the fixed point loses stability at the
PD curve an attracting period-two orbit is born;
the period-two (vivid orange) region is prominent
in Fig. 4(a), though there is also a thin period-
two region just below the PD curve in Fig. 4(b).
Period-doubling bifurcations leading to period-four
(magenta) and eight (red) are also seen in Fig. 4(a).
By contrast, in Fig. 4(b), the period-two orbit in
(MC) looses stability by a NS bifurcation, so a dou-
bling cascade is not seen in this case.

Resonant “tongues”, analogous to the Arnold
tongues found in circle maps, start along the NS
curve where ω is rational; these are prominent in
Fig. 4(b). Especially visible are the ω = 1

3 (yellow),
1
4 (magenta), 2

5 (dark green), and 3
7 (brown) tongues.

Bifurcation points along the NS curve for the first
two of these were indicated in Fig. 2 as R3 and R4.

Enlargements of case (SC), shown in Fig. 5, and
of case (MC), Fig. 7, provide more detail. In the
following two subsections, we show a few examples
of the corresponding orbits in phase space for the
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FIG. 4. Parameter dependence of the dynamics of (1) for (a) (SC) and (b) (MC) as (α, σ) vary. The white region corresponds
to orbits that diverge. Bounded, periodic attractors, for periods up to 90, are colored as shown in the color bar. The black
region corresponds to period > 90 or aperiodic, regular behavior, and the gray region to chaotic orbits, i.e., where the maximal
Lyapunov exponent µT > µo = 0.0003, see §VI.

period-doubling cascade and resonant tongues.

A. Period-Doubling Cascade

A supercritical period doubling bifurcation gener-
ically occurs when a real multiplier of an attract-
ing periodic orbit passes through −1, the PD line of
Fig. 1, and results in the creation of a stable orbit
of twice the period. As is well known from studies
of 1D maps, this behavior often recurs, resulting in
a cascade of doubling bifurcations that accumulates
leading to the formation of a chaotic attractor.2,3
Such a cascade is prominent in case (SC) seen in
Fig. 4(a) and its enlargement Fig. 5. Cascades are
also often seen at the ends of the resonant tongues;
most apparent for case (MC) in Fig. 7, which shows
a multitude of tongues radiating from the attracting
fixed point region.

To visualize the progression of the period-doubling
cascade in case (SC), we fix σ ≈ −0.291 along the
line segment shown in Fig. 5 and vary α. The four
(α, σ)-points (triangles) along this segment corre-
spond to the parameters used to find the orbits seen
in Fig. 6, which are pictured using triangles of the
same color. Figure 6 also shows the heteroclinic or-
bit that lies on the 1D unstable manifold of the fixed
point ξ− (black triangle), to the attracting orbit.
This unstable manifold is traced out by 500 iterates
of a set of 100 initial conditions starting in a ball of

radius 0.01 about ξ−. The first point, at α ≈ −0.248,
is a stable period-one orbit. It period doubles at
α ≈ −0.393, creating an attracting period-2 orbit,
shown for α ≈ −0.563 (orange triangles). The 1D
unstable manifold of ξ− is also shown in orange. As
α continues to decrease the doubling recurs forming
next a stable period-4 (magenta) and then a stable
period-8 (red). The parameters for these are listed
in Table II.

Also prominent in Fig. 5 are a number of shrimps,
common structures seen in two-parameter families
of one27,28 and two-dimensional maps.29 Shrimps are
prototypical structures formed by saddle-node bifur-
cations of periodic orbits in a ‘sea of chaos.’ These
structures will not be discussed further in this paper.

B. Resonant Tongues

At a resonant point, ω = p
q , on the NS curve,

a pair of period-q orbits are born when q ≥ 5.
These period-q orbits exist in a “tongue”-shaped re-
gion bounded by curves of SN bifurcations. While a
pair of periodic orbits still exist for the strongly res-
onant cases, q ≤ 4, the resonant regions can be more
complex.3 Near the NS curve of the fixed point, one
of these orbits is stable and is easily detected by our
recurrence algorithm. Such tongues are especially
prominent in Fig. 7 for case (MC).

The pair of orbits found within the tongues can
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FIG. 5. An enlargement of case (SC) from Fig. 4(a), providing more detail of the period-doubling cascade. The triangles along
the line segment show parameters used in Fig. 6. Also seen are a number of shrimps corresponding to period-5 (dark green),
period-7 (brown), etc. attracting orbits.

be used to find heteroclinic orbits from the period-q
saddle to its attracting counterpart. Examples for
q = 3 and 4 are seen for case (MC) in Fig. 8. The
parameters chosen in the respective tongues are indi-
cated in Fig. 7 by triangles and listed in Table II. To
visualize the heteroclinic orbits, a set of 100 initial
conditions are chosen in a ball of radius 0.01 about a
point on the period-q saddle, which is found by nu-
merically solving for a fixed point of Lq(ξ). The first
500 iterates of these points, shown in Fig. 8, trace
out the 1D unstable manifold of the saddle, and lie
on the 2D stable manifold of the period-q sink.

VI. APERIODIC ATTRACTORS

We now discuss the black and gray regions seen in
Fig. 4, and its enlargements Fig. 5 and Fig. 7. These
represent parameters for which there is an attrac-
tor that is either aperiodic or periodic with period
larger than 90. Possible aperiodic attractors include
invariant circles formed at an NS bifurcation with ir-
rational ω, as well as more complex, possibly chaotic
cases. In this section, we will distinguish between
regular and chaotic cases by computing the maximal
Lyapunov exponent. In a number of studies, multi-
ple Lyapunov exponents were calculated to charac-
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Case Behavior (α, σ) △ Color
δ = 0.05 fixed point (−0.24830,−0.29130) black

doubling bifurcation (−0.39312,−0.29130)

period-2 attractor (−0.56271,−0.29130) orange
quadrupling bifurcation (−0.97316,−0.29130)

period-4 attractor (−0.99417,−0.29130) magenta
octupling bifurcation (−1.08197,−0.29130)

period-8 attractor (−1.09922,−0.29130) red
δ = 0.7 period-3 attractor (−0.13557, 0.28892) yellow

period-4 attractor (0.10553, 1.00950) magenta

TABLE II. Parameters for Fig. 6 and Fig. 8 that correspond to the annotations in Fig. 5 and Fig. 7.

-1.5 -1 -0.5 0 0.5 1
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δ = 0.05

FIG. 6. Four orbits along the period-doubling cascade for case (SC) for parameters given in Table II. For each, the fixed point
is shown as a black triangle, and attracting orbits as triangles colored by period, using the same color scheme as Fig. 5. At
first, there is a single fixed point, and as α decreases, the fixed point shifts down and leftward, becoming a reflecting saddle
when it bifurcates creating a period-2 attractor (orange). This process repeats for period-4 (magenta) and period-8 (red). A
heteroclinic orbit of the same color connects the fixed point and attracting orbit.

terize the dimensionality of the unstable spaces of
attractors.16,22 Here we only compute one, as our
focus is simply the distinction between chaotic and
regular.

Formally, the Lyapunov exponent is

µ(ξ0; v0) = lim sup
n→∞

ln ∥vn∥
n

. (18)

for an initial point ξ0, and an initial vector v0, which
evolves linearly as vt = DL(ξt−1)vt−1. Note for a
generic initial vector, v0, this limits to the maximal
exponent (MLE). If there exists an attracting regular
orbit, then any initial condition in its basin will have
a non-positive MLE, whereas chaotic orbits will have

µ > 0.
Numerically, we approximate the lim sup of (18)

by choosing an increment ∆T , and computing

µT (ξ0; v0) = max
n∈[T,T+∆T )

ln ∥vn∥
n

. (19)

This approximates (18) for a “large” enough T and
∆T , up to some tolerance. We estimate the MLEs
for those bounded orbits that have periods larger
than 90. The initial point used for (19) is the point
used in the recurrence algorithm described in §V
found after 5000 + 90 iterates, and the initial vec-
tor is set to v0 = (1, 1, 1)/

√
3. To avoid overflow,

the length of vn is renormalized every 10 iterates.
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FIG. 7. An enlargement of case (MC) from Fig. 4(b) provides detail of the resonant tongues emanating from the NS line of
ξ−. Highlighted points include two triangles in the period-3 and 4 tongues, used for the phase portraits in Fig. 8. Also shown
are line segments starting at (αg , σg) and (αs, σs) along the NS line. These correspond to ω = 2/(1 +

√
5), the golden mean,

and ω = 1/
√
2, the silver mean. The behavior of orbits in phase space along these segments are discussed in §VIA.

As is well known, it is computationally expensive to
achieve convergence of MLEs. Indeed, since the os-
tensible error for (19) is O(T−1), we chose a thresh-
old appropriate for T ∼ 103−104: an orbit is deemed
regular if, µT ≤ µo = 3(10)−4. We selected the inter-
val ∆T = 100 as it gave reasonable convergence for
a number of trials. The time T in (19) is increased in
steps of ∆T until the error |µT −µT+∆T | < 10−4, or
until T reaches Tmax = 105. In this case, the MLE
is set to µTmax

. For the results in Fig. 4, µT is set
to µTmax

for 0.14% of the calculations for case (MC)

and 1.2% for case (SC).

Orbits with µT > µo are declared to be “chaotic”,
and colored gray, and those with smaller MLEs are
declared “regular” and colored black in the figures.
As seen in Fig. 4. there is a qualitative difference
between the two cases. For case (SC), there are very
few regular, aperiodic orbits— these are confined to
a narrow strip along the NS curve at the top of the
bounded region (4.3% of the aperiodic orbits). For
case (MC), however, there are large regions of reg-
ular, aperiodic behavior to the left of the NS curve
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FIG. 8. Two heteroclinic orbits for the (MC) case found in the period-3 (yellow, left) and 4 (magenta, right) tongues,
respectively. These orbits connect the periodic saddle orbit (black triangles) with its attracting periodic counterpart (yellow
and magenta triangles). See Table II for values of (α, σ).

(70% of the aperiodic orbits). In the following sub-
sections, we illustrate this difference by looking at
the corresponding behavior of orbits in phase space.

A. Regular Attractors

Regular, aperiodic orbits are primarily born on
the NS curve when the rotation number, ω, in (6), is

irrational. Such a bifurcation generically gives rise
to an invariant circle that persists for an interval
along a curve in parameter space that starts on the
NS curve.3 The rotation number will become ratio-
nal when the curve enters a resonant tongue. To
explore the structure of such circles, we study the
development of orbits in phase space for (MC) along
two lines in the (α, σ)-plane that start at an irra-
tional NS point, as illustrated in Fig. 7:

Rg : σg ≈ −0.03232, (αg0, αg1) ≈ (−0.25375,−0.45269), (20)
Rs : σs ≈ 0.62724, (αs0, αs1) ≈ (0.07064,−0.28960). (21)

The Rg segment starts at (αg0, σg), the NS bifurca-
tion for the golden mean, ω = 1

2 (
√
5− 1) ≈ 0.61803,

and the Rs segment starts at (αs0, σs), the NS bifur-
cation for the silver mean, ω = 1√

2
≈ 0.70711. Each

segment has fixed σ and ends when α reaches the
edge of the bounded region.

Figure 9 shows orbits along (20), starting just be-
low αg0 and moving towards αg1 in six panels. These
are projected onto the plane orthogonal to the line
x = y = z that contains the fixed points. This plane
is spanned by the orthogonal vectors

u = (−1, 1, 0), v = (1, 1,−2), (22)

and these are used as the axes in the figures. We
observe that the invariant circles appear to have a
one-to-one projection onto this plane and enclose the
projected fixed point ξ−, which projects to the ori-
gin (black triangle). Each panel consists of several
orbits; corresponding values of α are given. As α
decreases, an invariant circle grows, deforms, and bi-
furcates to periodic orbits when the segment passes
through resonant tongues.

An alternative visualization of the dynamics along
(20) is through its bifurcation diagram, seen in
Fig. 10(top, left). This shows a 1D projection onto
the x-axis for varying α. Invariant circles correspond
to dense segments and periodic attractors to isolated
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points in this diagram.
Following the analysis of Ref. [12], we compute

the rotation number of the orbits. Since the projec-
tion onto the (u, v) plane is one-to-one and encircles
the origin, the rotation number can be computed
by measuring the angle θt at time t counterclock-
wise from the vector u using the full range atan2
function. The time T approximation of the rotation
number is then

ωT =
1

2πT

T∑
t=1

θt. (23)

This sum is computed from the initial conditions
used for Fig. 7, after removing the transient as be-
fore. We choose T to be the return time (17), or, if
there is no such time, T = 5(10)5. For the purposes
of our illustrations, this gives sufficient accuracy. If
one desired higher accuracy computations, then the
sum in (23) could be replaced by a weighted average
as discussed in Ref. [30].

The rotation number and corresponding Lya-
punov exponent, (19), are shown as a function of α
in the bottom row of Fig. 10, aligned with the cor-
responding bifurcation diagrams for (20) and (21).

We do not observe chaotic orbits along (20)—µT

is essentially nonpositive, though small oscillations
up to the threshold µo reflect the difficulty in com-
puting the MLE. Note that when the dynamics are
conjugate to a rigid rotation (i.e., the orbit lies on
a circle), then there is a zero Lyapunov exponent.
Since the circle is attracting, this is what we observe
for the MLE in Fig. 7. When α ≈ αg0, the rotation
number ωT ≈ 0.618, as expected, and as α decreases,
the rotation number grows monotonically. When the
orbit passes through a resonant tongue, ωT becomes
a constant rational value and µT < µo since the re-
sulting periodic orbit is attracting. These align with
the periodic windows in the bifurcation diagram. Pe-
riodic windows visible in Fig. 10(left) are the period
eight (ω = 5

8 = 0.625) and the period 11 and 22
tongues. For the latter, ω = 7

11 ≈ 0.636, and—when
the orbit doubles—ω = 14

22 , the same value. Near
the period doubling in the 7

11 tongue, µT grows as
α decreases, reaching zero at the bifurcation point
α ≈ −0.433. The orbit diverges when α ≤ αg1.

The segment (21) crosses multiple tongues and
chaotic regions, as seen in Fig. 10(right). When
α ≈ αs, ωT ≈ 0.707, but as α decreases the rotation
number is not monotone. Note that when µT > µo,
calculations for ωT do not converge well since the
orbit is chaotic. As before, in the resonant tongues,

µT < µo and ωT is constant, and when there is an
attracting invariant circle, µT is close to zero. The
most visible tongues correspond to orbits of period
24 (ω = 17

24 ≈ 0.708), 31 and 62 (ω = 22
31 = 44

62 ≈
0.710), and 7 and 14 (ω = 5

7 = 10
14 ≈ 0.714). Note

that there are chaotic regions both before and after
the last tongue.

Phase portraits along (21) projected onto the
plane (22) are shown in a series of six panels in
Fig. 11; each corresponds to an interval annotated
in Fig. 10(right). Near αs0, we observe a family of
growing invariant circles that pass through windows
of periodicity as α decreases. Panels (c),(d), and
(f) show chaotic attractors; these occur when the
segment (21) passes through gray regions, so that
µT > µo, in Fig. 10(right). These attractors are born
with a structure like the invariant circle, but also
seem to fold around the neighboring, no-longer sta-
ble periodic orbits. In panel (f) the outer boundary
of the chaotic attractor appears relatively smooth,
and aligns with the former invariant circle, but its
interior is much more complex. This attractor is also
shown in 3D in Fig. 13(a).

B. Chaotic Attractors

As we have known since Feigenbaum’s classic
studies of 1D maps, chaos can arise from a self-
similar accumulation of period-doubling bifurca-
tions, i.e., a period-doubling cascade.2,3 As we have
seen for (1), cascades from the fixed point ξ−, Fig. 5,
or from higher period orbits, at the ‘ends’ of the
tongues, Fig. 7, do indeed lead to chaos.

When δ is small, the resulting chaotic attrac-
tors can resemble that of the 2D Hénon map. For
case (SC), where δ = 0.05, the heteroclinic orbits of
Fig. 6 show the beginning of the development of a
Hénon-like attractor through a period-doubling cas-
cade of the fixed point. Continuing beyond the end-
point of the segment in Fig. 5 leads to the attractor is
shown in Fig. 12(a), with a nearly 2D, horseshoe-like
shape. Note that for δ = 0, the map (1) is essentially
2D,e and for (a, c, α, σ) = (1, 0,−1.4,−0.3), its dy-
namics correspond to the classic Hénon map.1 Even
when δ = 0.05, these parameters are at the very
edge of the chaotic region after the period-doubling

e It becomes a semi-direct product of a linear map and a 2D
quadratic map.14
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FIG. 9. Attracting orbits found along (20), seen in Fig. 7, projected onto the plane (22). The black triangle at the origin is
the projected fixed point, ξ−. Each panel contains two or three orbits for values of α shown in the same color as the orbit. The
panels correspond to the intervals at the bottom of Fig. 10(left). (a) Invariant circles close to αg0. (b) An invariant circle and
two period-8 orbits. (c) Three invariant circles. (d) Period-19 (blue) and period-30 (green) orbits, with an invariant circle at
an intermediate α. These periodic orbits lie in windows too small to be visible in Fig. 10(left). (e) Two invariant circles and a
period-41 orbit at an intermediate α. (f) Period-11 (blue) and doubled period-22 (yellow) orbits. All of these orbits are regular,
as µT < µo along the entire segment, seen in Fig. 10(left). Orbits become divergent when α ≤ αg1.

cascade of the fixed point, close to an arm of the
period-5 shrimp in Fig. 5. The attractor for this
case is shown in Fig. 12(b).

In Ref. [22], parameters were found so that a 3D
quadratic map conjugate to (1) has a a discrete
Lorenz-like attractor. The corresponding parame-
ters for (1) are (a, c, δ, α, σ) = (1, 0, 0.7, 0,−0.815).
This case lies within the chaotic region below the
NS bifurcation of the period-two orbit shown in
Fig. 4(b). The resulting Lorenz-like attractor (with
a lacuna) is shown in Fig. 12(c). We refer to the
works of Gonchenko et al.16,22 for more discussion
of such attractors.

In §VI A, we saw the development of chaotic at-
tractors as α decreased along the segment (21), re-
call Fig. 11(c,d,f). A three-dimensional plot of panel
(f) is shown in Fig. 13(a) to better illustrate that
it appears to lie near a paraboloid that opens up
in the positive direction along the line x = y = z,
which is near the local unstable manifold of the fixed
point ξ−. To illustrate some of the variations in
geometry that can occur, five additional cases, us-
ing parameters in the gray region of Fig. 4(b) for
case (MC), are also pictured in Fig. 13. As before,

each of these appears to lie near a paraboloid. The
attractors in panels (a) and (b) have arms or tenta-
cles, some of which appear to go towards the fixed
point ξ−. By contrast, in panels (b) and (c), the at-
tractors more closely resemble invariant circles with
additional folds. Finally, in panels (e) and (f) the
attractors have an internal flower-like structure that
fills out an annular region on the paraboloid.

VII. CONCLUSIONS

Previous research on quadratic 3D maps has fo-
cused on the volume-preserving case8,12 or on the ex-
istence and development of chaotic attractors.4,16,22
Here, we have explored a broader range of parame-
ters and studied periodic and aperiodic, regular and
chaotic attractors.

The simplest bifurcations of a 3D map were dis-
cussed in §II using the trace and second trace of the
Jacobian as primary parameters and fixing the Ja-
cobian determinant. These results were applied to
the fixed points of the map (1) in §III. We focused
on two primary parameters: the more “structural”
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parameter σ, that controls the type of bifurcation
and, what can be viewed as the “primary unfolding”
parameter, α. Note that in our previous work on
anti-integrability, it was the limit α → −∞ that cor-
responded to a non-deterministic limit where the dy-
namics is conjugate to a shift on a set of symbols.14

For our numerical studies, we chose two cases for
the Jacobian δ: a strongly contracting case (SC)—
where the map is nearly 2D—and a moderately con-
tracting case (MC).

We showed in §IV that all bounded orbits of the
orientation preserving 3D Hénon map lie within a
cube about origin as illustrated in Fig. 3. Most
of the region of bounded orbits correspond to non-
chaotic situations, which could be an attracting fixed
point or orbits that arise from this point by doubling

or Neimark-Sacker bifurcations. However this figure
also shows protruding spikes from the region of sta-
bility, that may be related to attractors not born
from the fixed point. We hope to study these fur-
ther in the future.

To classify the behavior of bounded orbits, we
computed resonant regions in parameter space in §V;
these are analogous to the Arnold tongues of circle
maps. The resulting partition of the bounded re-
gion, Fig. 4, shows periodic and aperiodic attractors.
Using this, we are able to understand the develop-
ment of attracting periodic orbits and visualize their
codimension-one and -two bifurcations. Note that
our computations used the attractor arising from a
single initial condition. There will be cases with mul-
tiple attractors and cases for which the chosen orbit
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This attractor is shown in 3D in Fig. 13(a). Orbits become divergent for α ≤ αs1.
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is unbounded even when there might be attractors
elsewhere. But given the similarity between Fig. 3
and Fig. 4, the latter possibility is rare. We plan
to investigate the more complex, outlying cases in
future research.

Aperiodic attractors (defined to be attractors with
period greater than 90), were studied in §VI. We also
followed the evolution of invariant circles along sev-
eral curves in parameter space starting at points on
the NS bifurcation curve where the rotation num-

ber was irrational. We did not attempt to follow a
circle with fixed rotation number, though we expect
such a curve exists in a two-dimensional parameter
space and plan to do this in future research. Along
the parameter curves that we did follow, the invari-
ant circle has a varying rotation number. When this
becomes rational, the circle undergoes a resonant bi-
furcation, generically breaking up into a pair of peri-
odic orbits. Given the hyperbolic structure of these
attractors, this could lead to a ‘string of pearls’ bi-
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furcation as discussed in Ref. [12], that results in the
formation of bubbles from the stable and unstable
manifolds of the periodic orbits. Such bifurcations
were also seen for a normal form near a codimension-

two SN-NS bifurcation in Ref. [31]. These cases will
be analyzed in future work. As the curve leaves a
resonant tongue, an invariant circle can reform. In
some cases the destruction of the circle gave rise to
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chaotic attractors.
Some of the chaotic attractors we studied are well-

known: the discrete Lorenz and Hénon attractors
found in Refs. [1, 14, and 22]. More unusual are the
chaotic attractors with a paraboloid structure that
arise from the destruction of the invariant circles,
recall Fig. 13. These are not classified in Ref. [16]
and are not obviously related to the 3D generalized
horseshoes studied by Ref. [25]. We believe that fur-
ther study of such cases could lead to a broader
understanding of attractors that lie within higher-
dimensional generalizations of the Smale horseshoe.

Appendix A: Parameter space conversion

Here, the conditions for codimension-one and -two
bifurcations as seen in the last column of Table I in
terms of the trace and second trace are converted to
conditions on (α, σ). We are interested in the fixed
point ξ− of (1), given by (8), thus, t and s are given
by (10), and d = δ. We assume that τ = 0, as in (2).

Provided that there are no singularities, the
codimension-one bifurcation curves are easily found
using (9):

(SN) α = 1
4 (σ − δ + 1)2,

(PD) α = xPD(2xSN − xPD),

(NS) α = xNS(2xSN − xNS),

(A1)

for xSN = 1
2 (σ−δ+1), and xPD, xNS given by, (12),

(13), respectively. The NS bifurcation is restricted
to the interval δ − 2 < (2a+ b)xNS < δ + 2.

Again, provided there are no singularities, the
codimension-two bifurcations are all points that sat-
isfy (9), but also require an expression for σ. The
SNf bifurcation occurs at (t, s) = (−δ,−1). Using t
to solve for the fixed point, then gives

(SNf) xSNf = − δ

2a+ b
,

α = xSNf (2xSN − xSNf ),

σ = −1 + (b+ 2c)xSNf ,

where xSN is dependent on σ.
A Neimark-Sacker bifurcation with rotation num-

ber ω occurs at (t, s) = (2 cos (2πω)+δ, δ(t−δ)+1).
Solving for the fixed point then gives

(Rω) xRω =
2 cos (2πω) + δ

2a+ b
,

α = xRω(2xSN − xRω),

σ = 2δ cos (2πω) + 1 + (b+ 2c)xRω,

where, again, xSN is dependent on σ.
Lastly, recall that double multipliers, λ1,2 = r ∈

R, occur on the parametric curves (7). Using the
same process as above yields,

(λ1 = λ2) xr =
δ + 2r3

r2(2a+ b)
,

α = xr(2xSN − xr),

σ = 2 δ
r + r2 + (b+ 2c)xr,

for xSN dependent on σ. Since we are only con-
cerned with x− and we know x− < xSN , we choose
r such that xr < xSN . When enforcing (2), we ob-
tain the range |r| >

√
δ, otherwise xr = x+.
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