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 Implications to Space Weather Modeling 

Thesis directed by Professor Daniel N. Baker 

 

 It has long been noted the distinct periodicities in the electron flux response in the outer 

belts are associated with solar wind speed periodicities.  The well-organized high-speed streams 

in the solar wind drive the flux, most commonly resulting in 27, 13.5 and 9-day peaks in the 

periodogram during the declining phase of the solar cycle.  The distribution of peak power across 

L-shells is calculated and a connection is made with the P1 peak in the impulse response 

function.     

 Next, the periodogram estimates the power spectrum relating weak, diffuse periodicities 

in the number of coronal mass ejection occurrences to relativistic electron flux periodicities.  

Because coronal mass ejections occur preferentially during ascending phases of the solar cycle, 

this supplements the distinct periodicities from high-speed streams evident during declining 

phases of the solar cycle. 

 Finally, the successful estimation of exogenous coefficients in an autoregressive 

exogenous (ARX) model is shown to require excitation at all pole frequencies in the transfer 

function between the output and the input.  Specifically, the solar wind speed should excite all 

pole frequencies in the electron flux response for complete identification.  Additionally, because 

only the first two autoregressive coefficients are dominant, system identification of eight 

coefficients in an ARX time series model via the Kalman filter suggests a lower order ARX 

model, such as the stochastic linear oscillator may be more appropriate. 
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1.  Introduction 

 

 

1.1 Roadmap: 

 

 

 The classical Greeks considered the two “ideal” plane shapes, the line and the circle.  

Extending these spatial shapes along a time axis, dynamic prediction is most natural when 

physical models place emphasis on either linear or cyclic behavior.  This thesis treats cyclic and 

quasi-cyclic processes in the solar wind and electron radiation belt as well as linear predictive 

models for electron flux from records of solar wind speed.   Because this effort has been 

preceded by similar investigations noting recurrence in solar wind and electron flux 

characteristics in the radiation belts, it is important to begin these investigations with a brief 

history.  Next, the stage is set, presenting a background concerning features of the solar corona 

and characteristics of the fast and slow solar wind.  Because different structures are responsible 

for elevating relativistic electron flux depending on the solar cycle phase, high-speed streams 

(HSS) effective during the declining phase are introduced.  Second, Coronal Mass Ejections 

(CME) effective during ascending phases of the solar cycle, are discussed.  Third, the literature is 

reviewed to establish comprehensively the role storms driven by co-rotating interaction regions 

(CIRs) and storms driven by CME‟s in enhancing the electron flux in the radiation belt.  Three 

superposed epoch analyses (SEA‟s), from Miyoshi and Kataoka [1], Turner et al. [2], and 

Kanekal [3], illustrating the behavior of the solar wind speed (driver) during CIR and CME-

driven storms are discussed.  A follow-up of this comparison for solar wind is made for electron 

flux (response), using results from Borovsky and Denton [4], and Kanekal.  These three sections 

conclude the Introduction. 
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 The first section in Chapter 2, Dynamic comparison of the periodicities, describes data 

sources used to determine the power spectrum for the solar wind speed and relativistic electron 

flux.  Because graphically illustrating periodicity with the periodogram requires estimating the 

power spectrum, the second section presents useful concepts necessary for power spectral 

estimation and “ideal” examples of power spectra from Gelb[5], although such ideal examples 

are seldom realized in practice. 

 It would be fortunate if power spectral estimation with actual data containing noise were 

straightforward, however there are many pitfalls for the uninitiated.  Realistic power spectral 

estimation of noisy processes from actual measurements necessarily requires a tradeoff between 

consistent estimation and frequency resolution.  This tradeoff is made by windowing, the subject 

of the third section. 

 It is only after making the tradeoff that the first original results showing periodograms for 

the relativistic electron flux and solar wind speed for a wide variety of L-shells and over the full 

length of SC-23 can be presented in the fourth section.  In the fifth and final section, the Welch 

periodogram is used to determine the distribution of L-shell locations with the maximum power 

throughout 1994-2006 containing solar cycle 23 (SC-23).  The peak in the power distribution is 

later associated with the P1 peak in the impulse response function for electron flux with the solar 

wind speed obtained through singular value decomposition by Vassiliadis et al [6,7].  This 

observation reconfirms the role of HSS in the solar wind to enhancing electron flux noted by 

Vassiliadis et al.    

Strong distinct peaks in the power spectrum with definite periodicity from HSS are not 

the only features of the electron flux and solar wind power spectra.  The electron flux and solar 

wind power spectra from ascending phases of the solar cycle may also contain weak diffuse 
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peaks.  The third chapter, Spectral estimation of CME number, provides evidence relating the 

weak 36-day peak in the electron flux power spectrum during the ascending phase of SC-23 to 

the periodicity in CME number.   

 A recent investigation by Lara et al. [8] describes short-period periodicity in CME 

number during SC-23, obtained by estimating the power spectrum with the maximum entropy 

method.  Because this method often produces noisy peaks, Lara et al. reinforce their estimation 

with wavelet methods.  This thesis further reinforces this estimation using the Lomb-Scargle [9, 

10], and Welch‟s [11] periodogram.  Because the SOHO LASCO catalog of CME onset times is 

incomplete, the Lomb-Scargle algorithm for estimating the power spectrum with unevenly 

spaced data is a natural choice.  Alternatively, I generate synthetic data with the same statistical 

properties to fill in missing data and estimate the power spectra with the Welch periodogram.  

Specifically, missing entries in CME number are filled in drawn from a Poisson distribution after 

establishing the time between CME onsets follows an exponential distribution.  These two 

methods further reinforce 94, 45, 36, 28, and 23-day periodicities found by Lara et al.  Together 

these two results along with the maximum entropy periodogram from Lara .et al. establish a 

consensus.  The periodicities established in the consensus are related to the electron flux 

periodogram during ascent phases in the solar cycle.          

 Chapter 4 moves the focus from establishing the periodicities to their potential 

significance for a space weather model using linear estimation.  First, the autoregressive 

exogenous time series (ARX(4,4) ) is chosen to model the electron flux response to the solar 

wind speed.  The collection of eight system coefficients in the ARX(4, 4) model will defines the 

time series which best “fits” the input/output stream (i.e. solar wind speed /electron flux records).  

Subsequently the recursive nature of the Kalman filter is presented, and the criterion used to 
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optimally estimate the state (i.e. collection of eight system coefficients) under consideration.  

The next two sections 4.5 and 4.6 outline the nature of solutions to the Kalman filter equations, 

along with the ARX (4, 4) time series modeled by the signal model.  Both, the series of state 

estimates from the Kalman filter, and the state of the system modeled by the time series will be 

Normal stochastic processes.  Section 4.7 describes specifically how the optimal state estimate 

and error covariance from the Kalman filter can be obtained in a cyclic and recursive manner.  

This manner is most amenable to solving with a computer algorithm.  

 With the substantial mathematical formalism behind us, I use the computer algorithm to 

determine the system coefficients in a trivial case with zero-noise, and zero forcing.  The signal 

model with known (i.e. prescribed) system coefficients generates a set of measurements to be 

input into the Kalman filter.  Filter validation consists of identifying (in this case recovering 

known) system coefficients.  In the zero-noise case, recovery of the autoregressive coefficients is 

sudden, and recovery of the exogenous coefficients will be impossible.  The Kalman filter 

validates these results.  Section 4.9 continues by examining the performance of the filter with 

white noise input (the autoregressive moving average (i.e. ARMA) process), and coefficient 

identification using periodic measurements.  

 The filter results will reveal the following. 

 1.  The simulated ARX(4, 4) time series with prescribed autoregressive coefficients will 

have two particular frequencies corresponding to the poles in the transfer function.  When the 

forcing function has a frequency remote from the two pole frequencies (case a), identification of 

the exogenous coefficients is unsuccessful. 

 2.  When the forcing function has frequencies near one (either) of the pole frequencies 

(cases b and c), identification of the exogenous coefficients is unsuccessful. 
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 3.  When the forcing function is contains frequencies near both of the pole frequencies 

(case d), identification of the exogenous coefficients is successful. 

 4.  Because white noise contains a wide spectrum of (ideally all) frequencies, white noise 

input allows for successful exogenous coefficients given sufficient time. 

Collectively, results 1-3 along with our study of periodicities imply the success of a linear 

analysis to predicting coefficients in the ARX model will depend on frequency characteristics of 

the solar wind speed (forcing). If the frequency characteristics excite all of the system “modes”, 

the exogenous coefficients can be identified.  The dependence of power spectrum for the solar 

wind on solar cycle phase suggests system identification of exogenous (i.e. forcing) coefficients 

in a linear predictive model will also be solar cycle phase dependent. 

As a final note, actual solar wind speed measurements and logarithm electron flux 

measurements from 1994-2004 are input into the Kalman filter, and the eight system coefficients 

in an ARX(4,4) model identified.  The dominance in the first two autoregressive coefficient 

suggests a simpler model may be more appropriate. 

This roadmap summarizes the organization used in the forthcoming thesis.  I now 

proceed with a history of earlier investigations into solar wind and electron flux periodicities.             

 

1.2  History of Periodicities in the Solar Wind and Radiation Belts. 

 

 

 

 Kristian Birkeland‟s contention in 1896, that the Sun emitted beams of electrons, which 

were responsible for geomagnetic disturbances on Earth was revolutionary for its time [12-14].  

A. Harvey noticed that magnetic storms tended to occur at 27-day intervals and attributed this 

recurrence to electron beams, an idea first proposed by Birkeland [13, 15].  Four years earlier, 
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the eminent Lord Kelvin considered a terrestrial magnetic storm should require the Sun to radiate 

160 trillion horsepower, which he reckoned was 346 times the total power in solar radiation [16].  

(Today we know he vastly underestimated the Sun‟s luminosity).   He dismissed the association 

between sunspots and magnetic storms as compelling but coincidental [14,16,17].  Putting aside 

Kelvin‟s estimate for a stronger argument, Kivelson and Russell cite A. Schuster‟s remark that 

an electron beam from the Sun should break up due to electrostatic repulsion [17].  The Sun-

Earth connection was far from established. 

 Full acceptance of particles from the Sun and the 27-day association between storms and 

solar wind speed had to await the opening days of the space age.  The launching of Mariner 2 in 

1962 provided indisputable evidence for an omnipresent solar wind, and the association of a 27-

day period for solar wind speed with M-region solar storms.  The M- regions (the term used by 

Snyder, Neugebauer and Rao [15]) emit high-speed plasma from the Sun. 

 Our retrospective fifty years later reveals a few weaknesses in this characterization of the 

solar wind.  For example, Snyder et. al concluded that there was no strong correlation between 

solar activity and solar wind speed, and no obvious relationship between cosmic ray intensity 

and plasma speed; (these are both at odds with our current understanding).   Despite these false 

contentions, today we appreciate the in-situ capability of spacecraft developed after 1957, which 

has greatly improved space physics studies.  

 An early investigation by Baker, et al. [18] found both proton and electron fluxes at 

synchronous orbit L = 6.6 Re. were elevated in response to the solar wind speed, (see    

 Figure 1.1).  The daily average proton fluxes from the lowest Hi-P energy channel 400-500 KeV 

and (channels Hi-P 5,6,and 7) 1 MeV to 2.1 MeV from the charged particle analyzer (CPA) 

instrument onboard the geosynchronous satellite 1976-059A are shown in the top panel.  The 



 7 

middle panel shows the daily average electron flux from the high- energy electron unit of the 

energetic particle sensor (EPS), which measures the flux above seven thresholds from 0.2 to 2.0 

MeV [19].   The bottom panel shows 3-hour averages of the solar wind speed from the LASL-

experiment onboard NASA satellites IMP-7 and IMP-8.                 

 
Figure 1.1:  Solar Wind Speed Proton Fluxes Electron Fluxes, Baker et al. [18]. 

 

 

It is evident from Figure 1.1, that the electron and proton fluxes are elevated after a two to three 

day lag time to increases in solar wind speed. 

 Paulikas and Blake [20] also associated relativistic electron flux in the outer belt with a 

27-day periodicity in solar wind speed from HSS.  They investigated daily averaged electron flux 

measurements at low energy 140-600 KeV, and higher energy > 700 KeV, from the Aerospace 

Corporation Experiment onboard ATS-6 during July to December 1974 and 1976-7, during the 
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late declining phase of SC-20.  Jack Gosling at Los Alamos provided them a tape of hourly solar 

wind velocity measurements, indicating unusually fast high-speed streams over 700 km/sec 

during solar rotation 1935, along with slower high-speed streams barely 600 km/sec during two 

solar rotations 1963 and 1964.  They observed a strong correlation between the increase in 

electron flux and the passage of the high-speed stream.  Between one and two days after the peak 

solar wind velocity from the stream, the electron flux builds to a maximum.  It is also interesting 

that they noted the recovery back to the earlier electron flux level did not follow the fall in solar 

wind speed.  

 The correlation from Paulikas and Blake also indicated a 12-hr delayed response of the 

lower energy electron flux to the solar wind speed.  At the higher energy, there was a 36-hr 

delayed response.  These correlations demonstrated the electron flux response follows solar wind 

driving with an energy-dependent delay.  

 Baker, et al., [21] also observed recurrent 27-day flux increases using 3-10 MeV electron 

flux measurements from the spectrometer for energetic electrons (SEE) from the LANL 

spacecraft 1979-053 and 1982-019.  After solar maximum, during the descent phase from late 

1981-1984, they noted frequent flux increases.  Their superposed epoch analysis (SEA) 

demonstrated the electron flux builds up for 2-3 days after the peak in solar wind velocity, and 

decays 3-4 days afterward.  They noted the full width at half maximum for the peak was 2.5 

days.  They also advanced the possibility the high-energy electrons are energized externally and 

transported by channeling Jovian electrons between two successive co-rotating interaction 

regions (See Figure 1.2).  A digression into the follow-up to this idea illustrates the point that 

observing periodicities can either suggest or discard relevant acceleration mechanisms, adding 

motivation for studying these periodicities.   
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 For example, indications of external transport of high-energy electrons from Jupiter 

would require electron flux peaks at 13-month intervals, i.e. the synodic period of 

Jupiter as viewed from the Earth.  Christon, et al. [22] failed to see any significant correlation in 

electron flux at geosynchronous orbit from the LANL charged particle 

 

 

  

Figure 1.2:  Co-rotating Streams Channeling Jovian Electrons to the Earth, Baker et al. [21] 

 

analyzer onboard S/C 1976-059A (0.2-2 MeV electrons) or S/C 1979-053 and S/C1982-019 (3-7 

MeV electrons) from 1976-1984 for 7 possible 13-month periods.   

 However, the absence of the 13- month periodicity is not the only evidence weakening 

the theory of Jovian origin.  More recently, Li, et al. suggest external transport cannot be the sole 
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cause of energetic electrons.  These electrons require internal acceleration mechanisms within 

the magnetosphere because there is insufficient phase space density in 20-200 KeV (i.e. seed) 

electrons in the solar wind to supply the outer radiation belt [23].  In any case, attributing the 

electron acceleration mechanism to the Jovian magnetosphere is only a change of venue and 

unsatisfying.  It raises the question, how are electrons accelerated to relativistic energies at 

Jupiter?   

 A. Nishida presented a recirculation model for non-adiabatic acceleration of electrons in 

the Jovian magnetosphere [24].  One can consider it as similar to a “four-stroke” engine 

operating in a cycle.  The four phases of the cycle are inward radial diffusion, pitch angle 

scattering, cross-L diffusion at low altitude, and isotropization (see Figure 1.3).    

 The key is that the all energy gained from betatron acceleration during inward diffusion 

would be lost during transport outward which would be required for the process to work in a 

cycle.  However, pitch angle scattering changes the transverse kinetic energy of the electrons so 

that the transverse kinetic energy given back in the outward process; isotropization (the same 

amount gained in inward diffusion) does not match the current transverse kinetic energy of 

electron, potentially allowing the electron to keep some energy at the end of the process. 

Monte-Carlo simulations by Nishida have shown how this process could work in the Jovian 

magnetosphere [25].  However, the failure to find a significant 13-month interval peak in the 

electron flux weakens the support for a Jovian origin. 

 Recirculation continues to be a viable mechanism to explain electron energization.  

Fujimoto and Nishida [26], and Baker et al.[27] present evidence that a similar mechanism may 

be responsible for energizing electrons in the Earth‟s outer radiation belt, preserving 

recirculation as a possibility without requiring Jovian electrons.   
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Figure1.3:  The Four Elements of the Recirculation Process Energizing Jovian Electrons, adapted 

from Nishida [24] 
 

  

 This history for earlier investigations of periodicity in the solar wind and outer radiation 

belt continues with the introduction of linear predictive modeling to study periodicity in 

relativistic electron flux.  Using a linear continuous-time (aka Weiner) filter Baker, et al. [28] 

noted 27, 54, and 81 day periodicities in the relativistic electron flux, peaks of 27 and 13 days in 

solar wind speed, and peaks of 27 and 54 days in geomagnetic indices from auto-correlations and 

cross-correlations for these quantities.  They determined similar impulse response matrices using 

the planetary index, Kp, and the AE index as input time series.  One motivation behind this 

extension was their possible use as a proxy if solar wind speed measurements were unavailable.  

The electron flux measurements investigated were from the Spectrometer for Energetic Electron 
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Sensor (SEE) onboard two geosynchronous LANL satellites S/C 1979-053 and 1982-019 from 

1981 to 1984.  The fluxes were small during 1982-1983, the early declining phase of SC-21, and 

were larger in the late declining phase during 1984-5.  They determined the impulse response 

matrix from a matrix equation relating the auto-covariance of the input time series (e. g. the solar 

wind speed) to the cross-covariance from the input-output time series (from the solar wind speed 

with the relativistic electron flux together).   

 The impulse response in figure 1.4 from Baker et al. below shows the electron flux peaks 

2 days after passage of the high-speed stream; the full width at half-maximum (FWHM) is ~ 2-

1/2 days . 

  

Figure 1.4:  The Electron Flux Impulse Response to Solar Wind Speed, Baker et al.  [28]  

  

 Finally, Baker et al. note the impulse response for electron flux from solar wind 
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driving strongly resembles similar impulse responses using geomagnetic indices as an input 

justifying their use as a proxy if needed.  However, they remark the solar wind speed falls more 

rapidly to zero than auroral electrojet (AE) or planetary index (Kp).  This indicates the solar 

wind speed is closer to the central cause for enhanced electron flux, than indices also driven by 

the flux. 

This summary of earlier investigations into periodicities associated with solar rotation is 

representative, and not exhaustive.  It could be supplemented using many references cited from 

these investigations.  The last study that I will mention by Gibson et al. uses the declining phase 

from two different solar cycles to demonstrate differences in electron belt response [29].   

 During the solar minimum phase of SC-22, an international campaign, the Whole Sun 

Month (WSM), was launched to study high-speed streams at 1 AU from August 10, to 

September 8, 1996.  The Whole Heliospheric Interval (WHI), March 20 to April 16, 2008, 

marked a similar second campaign during the late minimum phase of SC-23.  Although the two 

campaigns studied solar minimum for succeeding solar cycles, the high-speed streams emanating 

from solar coronal holes were profoundly dissimilar and had dramatic effects on the > 2 MeV 

electron flux response, and auroral electron power (see figure 1.5).  

 Gibson et al. also presented coronagraphs in extreme ultraviolet (EUV) from the Solar 

Orbiting Heliospheric Observatory (SOHO) showing coronal holes as dark regions within a light 

background, and noticed differences in their morphology.  The solar disk during WHI was 

marked with large low latitude coronal holes, where during WSM the coronal holes at solar 

minimum were smaller and polar.  In general, during solar minimum, the Sun‟s magnetic field is 

strongly dipolar and aligned with the rotation axis. Fast solar wind is directed mainly along polar 

field lines.  Consequently, the Earth in the ecliptic sees little of this fast solar wind.  On the other 
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hand, the Earth, in the Sun‟s ecliptic can intercept high-speed streams emanating from low-

latitude coronal holes so the average solar wind speed should be higher during WHI than WSM 

(because low latitude coronal holes were more frequent).  This explains the higher fractional 

durations of sustained solar wind speed above 450 km /sec, during (WHI) 55%, than during 

(WSM) 31%.   

 In Figure 1.5, Gibson et al. show the power spectrum from a Lomb-Scargle periodogram 

by Emery et al. [29,30] for frequencies present in auroral power, solar wind velocity and 

radiation electron belt flux above 2 MeV, during WSM and WHI.  During WSM distinct 

periodicities in the range from 3 to 100 days were not apparent, with only small peaks in power 

at 27 and 13 days.  During WHI, the power spectrum showed sharp 27, 13.5 and 9-day 

periodicities in auroral power, solar wind velocity and radiation belt flux.   

 

 

Figure 1.5:  Lomb-Scargle Periodograms for Solar Wind Speed, Auroral Power and Electron 

during WSM and WHI, taken from Gibson et al. [29] 

 

 The 27-day periodicity in solar wind speed has a natural association with the rotation of 

the Sun‟s corona.  The 13.5-day periodicity can be explained readily by a two-sector pattern in 
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the magnetic field from a tilted helio-sheet [31].  However, until recently the 9-day periodicity 

was somewhat mysterious.  The study of areas from coronographs by Vrsnak et al. has found an 

association with a triangular distribution of coronal holes on the Sun [32, 33].   

 One may also note auroral electron power is not the only terrestrial effect exhibiting a 9-

day periodicity of solar origin.  Lei et al. has observed the 9-day periodicity in the neutral density 

in the thermosphere [34] during the descent phase of SC-23, including the WHI.   

 The earliest reference I could find noting the nine-day periodicity in the solar wind speed 

was from Verma and Joshi [35] during solar cycles 20 and 21 (1972-1984) from instrumentation 

(unspecified in the reference) onboard Pioneer 10.  This early observation from SC-20, 21 along 

with the descending phase of SC-23 leading to solar minimum SC-24 suggests the 9-day period 

for solar wind speed is not an infrequent event, unlikely to recur. 

 Using daily averaged solar wind speed measurements from PIONEER obtained from the 

OMNIWEB database, Figure 1.6 shows a Welch periodogram estimating the power spectrum in 

solar wind speed for one year starting June 14, 1975 to Mid - June 1976, concluding SC-20.  

Features distinguishing the Welch periodogram from other power spectral estimations are 

provided in section 2.3.2.  I used linear interpolation to fill in missing solar wind speed 

measurements.  Because there are only 366 data points, resolving long periods is difficult.  The 

period range shown is limited to [0, 40] days.  The periodogram for solar wind speed shown in 

Figure 1.6 shows a strong 9-day peak, a weaker 13-day peak, and strong 27-day peaks, with 

increasing width. 

 

1.3   Solar Cycle Phase Influences   
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Radiation and the solar wind are responsible for the energy, momentum and mass entry 

into the magnetosphere.  Because this thesis focuses on the role of solar wind speed to energizing 

electrons in the Earth‟s outer radiation belt, I will only briefly discuss radiation; although the 

 
Figure 1.6:  Welch Periodogram for the Solar Wind Speed Measured by  Pioneer 10  June 14, 

1975 - June 14, 1976 

 

 

photographs below using visible light will illustrate crucial differences in the Sun‟s corona 

throughout the solar cycle.           

   The high temperature solar corona emits ultraviolet and x-rays; invisible radiation which 

is potentially hazardous, while the photosphere (surface) is visible to our eyes.  The left 

photograph in figure 1.7, from the High Altitude Observatory (HAO), shows the corona during a 

solar eclipse on February 16, 1980 when the Sun was near the solar maximum of SC-20.   
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Figure 1.7:  White Light Photographs of the Occulted Solar Corona. (left) Solar Maximum; 

(right), Solar Minimum  from Low [36] 

 

 The pointed “church steeples” radiating from the corona are helmet streamers, which 

form a boundary between open field lines and closed ones within the streamer.  Closed loops 

within the streamers are cooler than the surroundings and appear dark in contrast.  The small 

bright spot at the base of many streamers in these diagrams indicates a solar prominence.  At 

times, the solar prominence may erupt and blow out the streamer from the Sun, which is one-way 

to form a CME (Kivelson and Russell [17]).  The association of CME‟s with solar flares suggests 

there may be other ways [17].               

 By contrast, the right photograph from HAO shows the corona during a period of solar 

minimum on November 3, 1994.  The right of the photograph shows one helmet streamer.  The 

extended dark regions at the poles of the Sun are coronal holes.  These dark regions define open 

field lines to interplanetary space.  Closed field lines cover the solar equatorial region.   
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 Leaving aside for the moment transient phenomena such as CME‟s, the solar wind 

consists of fast and slow winds.  A clock diagram for solar wind speed based on measurements 

from the SWOOPS (Solar Wind Observations Over the Poles of the Sun) experiment onboard 

Ulysses, is shown if figure 1.8.  The left hand diagram illustrates the latitude dependence of the 

solar wind speed for solar minimum during the first orbit (1994-6).  The right hand diagram 

illustrates the same dependence for solar maximum during the second orbit (2000-2002).  The 

sunspot number below shows the solar activity for each Ulysses orbit.  

 

 

Figure 1. 8:  Solar wind speed latitude dependence from Ulysses [37]. 
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 The Ulysses mission during solar minimum show the slow wind (~ 400 km/sec) with 

high variability fills the equatorial region.  The fast wind (~ 800 km/sec) with low variability fills 

the remaining region.  During solar maximum, the fast wind appears in many high speed-streams 

which are not limited in elevation and the slow wind appears everywhere outside of these 

streams.  Because the Earth is in the ecliptic plane, closely aligned with the solar equatorial 

plane, it sees mainly a slow wind during solar minimum.  However, HSS, which emanate from 

trans-equatorial coronal holes, may also occur during solar minimum.  When the coronal holes 

persist for several solar rotations, the HSS in the solar wind periodically drive the Earth‟s 

magnetosphere including the radiation belt, the focus of this study. 

 The fixity of the 27-day periodicity in HSS may seem surprising given that the equatorial 

regions of the Sun rotate faster than Polar Regions.  The rotation rate so described regards the 

Sun‟s surface (i.e. the photosphere).  The corona and coronal holes rotate more rigidly than the 

photosphere and the period is only weakly latitude dependent [38].  Although the latitude 

dependence in rotation period varies with solar cycle phase, this dependence is small and 

ignorable for our purpose [39]. 

 

1.3.1.     High-Speed Streams (HSS) during the declining phase  

 

 Investigations of the 27-day periodicity cited earlier in the Introduction shows a definite 

trend towards the declining phase and solar minimum.  In a critical assessment of these 

investigations, it is important to note negative results as well as positive ones to best illustrate 

this trend.  As mentioned in the Introduction, Paulikas and Blake in their 1979 paper found 

periodicities in the electron flux from ATS-6 during the declining part of the SC-20.  In an earlier 
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1976 paper, they associated the observed enhanced electron flux with the passage of magnetic 

sector boundaries during this declining phase.  Because the magnetic sector boundaries in the 

solar wind rotate with the Sun, this association with enhanced electron fluxes was a natural 

explanation for the observed 27-day (or a sub-multiple) periodicity.   

 However, they also mention in that 1976 paper, an earlier effort to determine a relation 

using ATS-1 data from late 1966 to 1968 during an ascending phase of the solar cycle rather than 

descending phases.  They found they could not correlate the sector boundaries with enhanced 

flux using ATS-1 measurements [40].   

 Later, in this 1976 paper they contend the solar activity level determines the extent of the 

modulation of the enhanced flux from the solar wind.   They concluded that during high solar 

activity, the presence of magnetic storms masks the periodic modulation of the enhanced electron 

flux.  For another negative finding, Baker, Blake, Klebesadel, and Higbie, also note only 

infrequent and sporadic flux increases during the ascending phase of SC-21, from 1979-1981, 

(see reference 21).  In view of both positive and negative findings, today we can say that a 27-

day periodicity in the solar wind speed due to high-speed streams, most prevalent in the 

declining phase of the solar cycle, drives a similar periodicity in the relativistic electron flux. 

 

1.3.2.     Coronal Mass Ejections (CME) during the Ascending Phase 

 

 Fast solar wind from HSS can efficiently accelerate electrons to relativistic energies.  

During 2003 to 2005 the time series for solar wind speed superposed on the time series of 

SAMPEX 2-6 MeV electron flux measurements strongly suggests the electron flux in enhanced 
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when the solar wind speed exceeds 500 km./sec [41].  However, CME‟s can also drive fast solar 

wind and enhance electron flux. 

 Miyoshi and Kataoka conducted a SEA; henceforth referred to SEA-MK of CME and 

CIR driven storms during SC-23.  They distributed the events into CIR driven storms, CME 

driven storms and great CME driven storms.  They defined their epoch time at minimum storm-

time disturbance index (Dst).  The maximum solar wind speed in CIR driven storms occurred 

with a twelve-hour lag from the epoch time and was approximately 570 km/sec.  Alternatively, 

the maximum speed for CME driven storms occurred at the epoch time and was barely 500 

km/sec.  Miyoshi and Kataoka define “great” storms, if the minimum Dst was below -130 nT.  

Their SEA-MK showed the great storms had a maximum speed (also at epoch time) of 600 

km/sec.   

 In general, the plasma speed in CME driven storms is somewhat lower than CIR driven 

storms; (note that the SEA-MK shows it still is at or exceeds 500 km/sec on average, and 

remains capable of enhancing electron flux).  One should note, however that fast solar wind 

exceeding 800 km/ sec. is always the result of powerful CME‟s.  For example, the solar wind 

from two CME‟s driven shocks during the Halloween storm October 29-30 2003, reached 1850 

km /sec [42].   

 Because CME‟s can enhance relativistic flux, it is appropriate to examine their 

prevalence over the solar cycle.  In Figure 1.9, the blue plot shows the total 7-day total CME 

number, obtained by distributing CME onset times from the (SOHO/LASCO) CME catalog into 

weeks throughout SC-23.  The red plot shows the 7-day total sunspot number obtained from the 

OMNIWEB database, divided by 4 for ease of comparison.  This scaling does not alter the 

conclusion.   
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 Figure 1.9  Comparing CME Number to Sunspot Number during SC-23. 

  

 I should warn, Figure 1.9 shows zero CME number during times when the LASCO 

coronagraph is not operating.  The longest downtime interval was 114 days from late June to 

mid-October 1998.  The second longest downtime was 44 days throughout late December 1998 

to early February 1999.  Removing these two intervals leaves 18 downtimes each from four to 

ten days, and the remaining 700 downtimes are shorter than 4 days.  The 7-day averaging results 

in non-zero CME number in all but the two longest downtimes.   

 Figure 1.9 shows CME‟s occur most frequently during solar maximum.  For SC-23 this 

was approximately May to August 2000.  They may average more than 4 per day during solar 

maximum up from 2-3 per week during solar minimum.  In addition, the CME number follows 

the solar activity cycle convincingly during the ascending phase of SC-23.   However, the 
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number of CME‟s after 2004 shown in Figure 1.9 is greater than anticipated from the 

diminishing sunspot number leading into SC-24. 

 Gibson et al. compared the minimum leading into SC-24 during WHI to the preceding 

solar minimum during WSM noting among other differences, more numerous and stronger high-

speed streams, a weaker solar polar field, lower solar wind density and lower speed both 

measured at the Sun‟s poles for this most recent minimum SC-24.  It would be interesting to see 

if the CME number tracks the sunspot number for a more typical solar minimum.  Unfortunately, 

the SOHO launch in December 1995 was too recent to provide the SOHO/LASCO catalog of 

CME onset times sufficiently long before earlier solar minimums.        

 

1.4  Superposed Epoch Analysis (SEA) 

 

 The superposed epoch analysis (SEA) is a graphical technique where several time series 

of a common class of data (e.g. solar wind speed) is plotted relative to an epoch time set at zero 

after defining an epoch time (e.g.  the time of minimum Dst), common throughout the class of 

data.  Several SEA‟s will be presented throughout the remainder of the introduction. 

  

1.4.1.   Relevant Solar Wind Driver Differences between CIR and CME driven storms.   

  

 Before introducing differences between CIR and CME drivers, I should qualify that 

storm occurrences are not equivalent to electron flux enhancement.  Geomagnetic storms may 

elevate electron flux in the outer belt; however, only about ½ of the storms enhance radiation belt 

flux; ¼ lower the electron flux, and ¼ leave the flux unchanged [see Reeves et al., 43].  
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Nevertheless, Reeves et al. found high solar wind speed increases the probability of large flux 

enhancement in the outer belt.              

 Turner et al. conducts a SEA (referred to as SEA-T) similar to Miyoshi and Kataoka for 

solar wind conditions from 91 CIR-driven storms and 118 CME –driven storms from 1995-2005.  

The solar wind speed from CIR drive storms peaked approximately 12-15 hours after the 

minimum Dst epoch, just as in the (SEA-MK).  The solar wind speed for CME driven storms 

experienced no delay.  The peak solar wind speed from SEA-T for CIR driven storms was 550 

km/sec, the peak for CME driven storms was 525 km/sec, close to the speeds from SEA-MK.   

 I supplement the SEA-MK and SEA-T with Kanekal‟s SEA for solar wind speed for the 

two years, 1994 and 1997.  In order to avoid confusion I note, unlike the earlier SEA‟s, Kanekal 

defines the epoch time as the day where the solar wind velocity attains a maximum.  The solar 

wind velocity is normalized to one at the epoch time.  This SEA for 1994-5 for high-speed 

stream events (top) shown in figure 1.10 demonstrates the solar wind speed declines more slowly 

for HSS (i.e. CIR) events than for CME events.   

The average solar wind speed was 685 km/sec and 556 km/ sec. for high-speed stream 

and CME events respectively.  Minimum Dst values were -43 nT and -69 nT for high-speed 

streams and CME events respectively. 

The SEA-MK already introduced the solar wind speed differences between CIR and CME driven 

storms.  It has long been established, that the southern component of the magnetic field also 

plays an important role to electron flux enhancement.  Paulikas and Blake (1976), use the half-

wave rectifier as an analogy to energy entry into the magnetosphere, cite earlier references the 

role of southern Bz, and describe this importance as the commonly accepted view in their 1979 

paper.  The minimum southern Bz component from SEA-T averages -12 nT for CME-driven and 
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-7 nT for CIR driven storms.  The southern Bz component for both CIR and CME storms from 

SEA-MK is -10 nT, along with -15 nT experienced during great storms.    

 

 

Figure 1.10:  Superposed Epoch Analysis from Kanekal [3].  Top: SEA from HSS Events; 

Bottom: SEA from CME Events 
   

 

The SEA-T shows the Bz becomes most negative (i.e. southern Bz peaks) approximately 

1-hour before the minimum Dst for CIR driven storms, recovers to the pre-storm levels within 
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about 4-hours, and holds tightly to these levels.  Alternatively, the CME driven storms show a 

prolonged recovery time of 1-day, with greater variance from the pre-storm levels.  The SEA-

MK finds the same prolonged recovery time to a lesser extent.    

The southern Bz allows magnetic field lines to reconnect more readily, increasing energy 

transfer so difference in the peak and recovery of Bz, demonstrates differences in the 

effectiveness of CIR‟s and CME‟s to enhanced electron flux.  Great storms with Bz below -15 

nT, should enhance the relativistic electron flux even further.  Approximately 1/3 of CME‟s have 

magnetic clouds within them [44].  This cloud contains frozen-in magnetic field lines, which 

may rotate through large angles.  In figure 1.11, taken from Burlaga [45], the second panel shows 

the elevation angle of the field lines relative to the ecliptic as a function of time for June 19-22, 

1980.  In figure 1.11, the elevation angle δ changes from +90 degrees to –90 degrees in a 16-hour 

interval on June 20, establishing a 4-hour period with southern Bz component, suggesting this 

cloud in particular should be geo-effective.  One can almost visualize the opening of the Earth‟s 

dayside magnetopause with the southern components in the cloud as a “key turning in a lock”.  

In addition to the characteristics associated with the solar wind, it is appropriate to 

examine the electron belt response to the storm-time disturbance index Dst, a measure of ring 

current energy and a definitive indicator of geomagnetic storms.  The SEA-T determines the 

minimum Dst for as -70 nT, and -130 nT for CIR and CME driven storms respectively.  The 

SEA-MK gives -130 nT for both values, with -200 nT for great storms.  Both analyses show the 

Dst for CIR driven storms recovers more slowly to pre-storm levels. Although the Dst given in   

SEA-T is limited to two days after epoch, the Dst given in SEA-MK show Dst recovery for CIR-

storms remains incomplete after 4 days. 
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Figure 1.11:  Magnetic Cloud Characteristics from Helios 1 Adapted from Burlaga [45].  Panels 

1-6   From Top:   1. Magnetic Field; 2. Elevation Angle; 3. Azimuth Angle; 4. Speed; 5. Density; 

6. Temperature 
   

 

 

1.4.2.     Different Electron Flux Responses 

  

 The picture beginning to emerge from SEA-T and SEA-MK shows CIR driven storms as 

weaker (a Dst which is less negative) with a longer recovery period than CME driven storms.  

Differences in the pattern of minimum Dst and recovery time affect the electron flux in the 

radiation belts.  Borovsky and Denton summarize twenty-one differences between CIR and CME 
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driven storms [4].  This section will discuss only differences relevant to electron flux 

enhancement.   

 Borovsky and Denton reconfirm the difference in prevalence of both CIR and CME 

driven storms with solar cycle phase, and confirm the CIR driven storms associated with HSS 

have a  27-day period, where the CME driven storms have irregular recurrence (quasi-

periodicity).  The most relevant difference from Borovsky and Denton relates directly to the 

relativistic electron flux.   

Figure 1.12 shows the period from 1993 to 2002 sorted in 27.27-day long rows, 

associated with the Carrington rotation.  The black squares in the grey background illustrate 

periods of enhanced geomagnetic activity evidenced by a planetary index Kp exceeding 4
+
.  The 

red lines indicate the lines where the geosynchronous electron flux in the 1.1 - 1.5 MeV channel 

of the Synchronous Orbit Particle Analyzer (SOPA) energetic particle instrument, exceeds 30 

counts/cm^2/ sec/ster /KeV.  The yellow dots indicate CIR‟s for years 1994-6 from the 

McPherron catalog of stream interfaces but the catalog does not include a “block” of black 

squares from mid 1999 to early 2000, from day 19 to 24, which shows a 27-day recurrence not 

associated with solar minimum. 

Another notable feature is the two to three day delay between CIR streams and electron 

flux enhancement shown in the figure as the interval from the yellow dot to the red bar is a 

commonly observed feature and is consistent with the impulse response delay obtained from the 

linear predictive analysis by Baker et al.  Figure 1.12 demonstrates CME driven storms are less 

effective in enhancing electron flux. 
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Figure 1.12:  High Electron Flux Associated with CIR and CME-driven storms, from  

Borovsky and Denton [4]  

 

Relativistic Electron flux storm-time behavior shown in Figure 1.12 is limited to 

geosynchronous altitude L = 6.6.  The SAMPEX 2-6 MeV electron flux measurements available 

at L-shells from 1.1 to 10, has allowed Kanekal to complete a SEA for relativistic electron flux. 



 30 

Figure 1.13 shows the L-shells between 2 and 7 during 1994 when high-speed streams were 

prevalent (top), and during 1997 when CME,s were prevalent (bottom).  

Note the epoch time is defined as the time where the solar wind achieves its maximum 

speed.  The rise time and decay time for relativistic electron flux from CIR-driven events with 

associated high-speed streams is 2 and 2 ½ days respectively.  For CME events, the rise time is 

approximately 3 days and the decay time is four days.  This decay time is longer for CME events 

than for CIR events.  

As pointed out by Kanekal, the longer rise and decay times for electron flux response 

noted for CME events relative to CIR events is quite puzzling in light of the SEA from Kanekal 

for the solar wind speed shown in figure 1.10. This figure indicates the solar wind driver has a 

lengthier rise and decay time for CIR events than CME events.  It is reasonable to expect the 

relativistic electron flux response (rise and decay times) to mimic the solar wind driver.   

Moreover, Kanekal‟s result is not an isolated case.  In their SEA for electron flux > 2 

MeV, Miyoshi and Kataoka also find the recovery and enhancement of electron belt flux is faster 

and stronger in CIR-driven storms than in CME-driven storms, in concert with Kanekal‟s 

finding. 

Summarizing, this subsection 1-2 has discussed solar cycle influences to the solar wind 

driver and the relativistic electron belt response.  High-speed streams are prevalent in the 

declining phase of the solar cycle.  Coronal mass ejections are more frequent during the 

ascending phase of the solar cycle.   

This closes a lengthy introduction presenting the history of investigations of periodicities 

in solar wind speed and relativistic electron flux.  In addition, the introduction presented 
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differences in prevalence during solar cycle phase and in effectiveness of HSS and CME‟s 

storms to energizing electrons in the radiation belt. 

 

   
Figure 1.13:  Superposed Epoch Analysis of Electron Flux. ILWS Workshop 2006 GOA, 

February 19-24, 2006 [3]
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2.  Dynamic Comparison of Periodicities 

  

 Investigating periodicities in the solar wind speed and relativistic electron flux in the 

outer belt requires that we estimate the power spectrum for these measurements. 

This first section will detail the data sources for these measurements.   

 

2.1.  Data Sources 

 

 

 In brief, solar wind speed measurements for the 1994-2010 are available on the 

OMNIWEB database.  The Proton-Electron Telescope (PET) onboard the Solar Anomalous, the 

Magnetospheric Particle Explorer (SAMPEX) provides logarithmic electron flux measurements 

from 2 – 6 MeV at ninety L-shells between 1 and 10.  The SAMPEX measurements are 

incomplete after 2004, although the two year period from 2004-2006 has only a 30 day data gap.  

In general after 2004, I supplement (i.e. replace for 2004-2006) the SAMPEX measurements 

with measurement from two GOES satellites, which provide geosynchronous electron flux 

measurements greater than 2 MeV, from 2004-2010.  Unfortunately, GOES relativistic electron 

flux measurements are limited to geosynchronous altitude L = 6.6.  The detailed description for 

the three data sources for this section is provided below.      

 

2.1.1  The Proton Electron Telescope (PET) onboard SAMPEX. 

 

 The SAMPEX satellite was launched July 3, 1992 into a high inclination (81.7-degree) 

orbit with a 98-minute period.  The altitude above the Earth surface varies from 520 to 670 km. 

[46].  This nearly polar orbit cuts the Earth‟s dipole magnetic field to allow the instruments to 

record electron flux measurements for a large range of L-values.        
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 The PET instrument is a stack of solid-state detectors to measure the flux for electrons in 

three energy ranges: The ELO channel measures 2-6 MeV, the EHO channel measures 4-15 

MeV, and the EWG (Electron Wide Geometry) channel that measures energies 4-30 MeV [47].  

The only SAMPEX measurements presented in this thesis are from the ELO channel. 

 The electron flux measurements are highly variable.  This thesis treats the SAMPEX 

electron flux using a procedure outlined in Kanekal et al. [48].  A summary of this procedure 

follows.  First,  the electron flux measurements are distributed into 90 L-shell bins 0.1 L wide to 

span the range from L = 1.1 to 10.  This sorting is based on satellite location using the 

International Geomagnetic Reference Field (IGRF).  Daily averaging for ~ 16 orbits smoothes 

the relativistic electron flux.  Kanekal et al. take the base 10 logarithm before averaging to 

decrease the sensitivity of the average to unreliable measurements, i.e. outliers.  In addition, 

Kanekal et al. remove outliers, which are defined as measurements over an order of magnitude 

higher than the measurements in the neighboring bins.  Most often, these outliers are due to a 

faulty dead-time correction.  Finally, a 3-bin running average smoothes these binned values. 

 

2.1.2  The Energetic Particle Sensor Onboard GOES 

 

 The GOES (Geostationary Operational Environmental Satellite) are weather satellites, 

located over the Earth‟s equator at geostationary altitude (35790 km).  This thesis uses electron 

flux > 2 MeV measured from the Energetic Particle Sensor (EPS) onboard GOES-11 for years 

2004-6, and 2009; and uses the EPS onboard GOES-12 for years 2006-2008.  GOES-11 is 

located at 135 degrees west longitude, over the mid-pacific ocean, and GOES 12 is located 75 
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degrees west longitude over the Amazon river.  Because of its restricted altitude and zero 

inclination orbit, measurements of particle flux are limited to L = 6.6. 

 The EPS on GOES satellites consist of a telescope detector and three dome detectors 

(numbered 3, 4, and 5 in Baker et al. [46].  The telescope detector measures lower energy 

protons, and alpha particles.  Dome detector three onboard GOES separately measures the 

relativistic electron flux > 0.6 MeV, and > 2.0 MeV.  This consists of three sets of silicon barrier 

detectors 1500 μm. thick, surrounded by an aluminum moderator to provide the energy threshold 

for electrons [49].  The specific daily averaged electron flux measurements from 2004 to 2010 

for GOES, for energy channels > 0.6 MeV (unused) and > 2.0 MeV, were obtained from the 

National Weather Service, Space Weather Prediction Center website [50].  

 

2.1.3  OMNIWEB 

 

 

 The daily averaged solar wind speed was obtained from the OMNI WEB Data Explorer 

on website, maintained by the National Space Science Data Center (NSSDC) [51].  In general, 

the solar wind variables are compiled from 15 satellites, and three spacecraft  

( ISEE-3, WIND, and ACE ).  A listing of every spacecraft along with the time span for 

inclusion into the database is given in Table 2 of the OMNI 2 documentation [52].  Because I 

consider the period from 1994 to 2010, that only WIND, ACE, IMP-8, and Geotail are 

operational and can potentially supply the solar wind speed over any part of that period.  After 

2005, only ACE and Wind were operational.  The WIND orbit is difficult to characterize, but it 

orbits mostly between L1 and L2 Lagrange points.  The ACE spacecraft loiters around the L1 

Lagrange point, approximately 1.5 million km sunward from the Earth; IMP-8 is an Earth 

satellite.  Measurements from these WIND, ACE and Geotail are time shifted to the Earth and 



 35 

hourly averaged before they are included in the OMNI 2 database.  Measurements from the IMP-

8 satellite are local and do not require time-shifts.         

 In addition to solar wind speed, the OMNI 2 Database has supplied me with the 27-day 

averaged sunspot number, and the interplanetary magnetic field. The sunspot number 

characterizes the phase in the solar cycle shown in figure 1.7. 

 

2.2   Estimating the Power Spectrum 

 

 The standard practice in treating periodic processes is to use an interpretation in terms of 

frequency, instead of period.  The two interpretations although inversely related are equivalent.  

Because it is likely to be cumbersome discussing periodicity without adhering to standard 

practice, I will discuss the concepts in this section, in terms of frequency, not period. 

 The introduction has already provided examples of several tools used for the associating 

relativistic electron flux measurement to solar wind speed measurement time-series.  Plotting the 

time series usually gives the first indications of a recurring pattern of measurements.  This 

technique is especially effective when a physical basis suggests specific frequencies.  For 

example, observing that the solar wind speed from high-speed streams recurs every 27 days, 

might suggest an association with the rotation of the Sun.  It might also suggest looking for a 

corresponding frequency in the relativistic electron flux.  This correspondence can be motivated 

by considering the electron flux to be the response to the solar wind speed (driving force or 

driver). 

 As an example, we may examine this idea by suggesting at least tentatively, that the 

relativistic electron flux in the outer belt responds linearly to the solar wind.  It is well known the 
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response of a linear system to an impressed frequency, matches the impressed frequency in 

steady state.  Therefore, it is reasonable to look for frequencies in the electron flux, which match 

frequencies in the solar wind (i.e. examine the time series for the same 27-day recurrence 

period).   

 Plotting the time series and overlaying sinusoids with judiciously chosen frequencies and 

comparing is quite effective.  However, there are better mathematical algorithms and concepts to 

determine frequencies present in time series, which are less subject to human discriminating 

abilities.  One such concept, can be interpreted in continuous time (Fourier transform) or discrete 

time (Fourier analysis).  Because the discrete time concepts are easier to interpret, a brief 

discussion of Fourier analysis follows.  After defining the periodogram and its characteristics, I 

give simple and useful examples for the power spectral density (PSD) and auto-correlation from 

Gelb [5]. 

 

2.2.1  The periodogram, power spectral density and autocorrelation 

 

 One can usually assume a time series of data (usually physical measurements) x(n), 

consists of a sum of (circular) trigonometric functions with discrete frequencies. 
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The (discrete) Fourier series, X(jω) in equation 2.1 of the data is given as a function of complex 

frequency.  The Fourier analysis becomes the Fourier transform in the continuum limit shown 

after the arrows on the far right side of the equation.  
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 For statistical applications, a least-squares analysis is often desired.  More broadly, for 

some physical applications, squaring the time series is justified.  For example, if the time series 

were current measurements, squaring the series (for constant resistance) would give us power.  

This motivates referring to the periodogram as the PSD.  The preference to treat real rather than 

complex variables provides yet another reason to square the time series.   

 The average square of Fourier transform of the time-series X(jω) defines the 

periodogram, IN(ω) below: 
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Redefining a double summation index m, leads to equations 2.3 and 2.4.  The equivalent form for 

the periodogram is given by: 
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where the coefficients cxx(m),  are the autocorrelation estimate defined as:  
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Equation 2.3 demonstrates the periodogram is the Fourier transform of the auto-correlation 

estimate (equation 2.4) of the square of the time series.  The autocorrelation and PSD are dual to 

each other.  That is, the PSD represents the time series in the frequency domain, the 

autocorrelation represents the time series in the time-domain.  The transformation between 

representations is the Fourier and Inverse Fourier transform respectively.      
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2.2.2  Common Examples of Power Spectral Density and Autocorrelation 

 

 

 Figure 2.1 from Gelb shows a few useful examples for the autocorrelation function and 

the power spectral density for four common stationary stochastic processes.  The abscissa for the 

autocorrelation is the time lag, the abscissa for the power spectrum is the frequency.  The 

ordinate is amplitude for autocorrelation and power for the PSD for each example.   

 White noise shown in the top panel, is perfectly correlated with itself for time t = 0, 

otherwise there is identically zero (i.e. no) correlation.  Such a series is entirely unpredictable, 

and contains no predictive information.  The Fourier transform of the delta-function 

autocorrelation results in the power spectrum for white noise, which is constant i.e. all 

frequencies contribute equally to the power spectrum.  This mathematical artifice is useful as an 

approximation but white noise across all frequencies would contain infinite total power, which 

would be unphysical.   

 The term “white” noise is borrowed from optics, where the term “white” light is 

often used.  Sir Isaac Newton recognized that a glass prism separates “white” sunlight into its 

constituent frequencies (i.e. colors).  The solar radiation spectrum is approximately flat for 

frequencies receptive to the human eye (4000-7000 A).  Glass in the prism filters the light 

selectively by presenting a frequency dependent index of refraction to the light resulting in 

separating the observed colors.  Hence, white light is an approximately equal mixture of all 

frequencies. 

The delta function autocorrelation from white noise has an infinitesimal correlation time 

τ (lag) approaching zero.  Earlier values of the random variable are entirely independent of later 

values.  Alternatively, one can conceive of processes where the value of a random variable   
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Figure 2.1:  Power Spectrum and Autocorrelation for some common stochastic Properties 

Adapted from Gelb [5]. 
 

 

 relates more strongly to earlier values   For example, it may be natural to describe the process by 

introducing a finite autocorrelation time τ so that value of the random variable at some later time 

relates in a steadily decreasing manner to the earlier value. 

 The second panel down on the left shows the autocorrelation for a first-order Markov 

process with finite autocorrelation time τ.  The autocorrelation decreases as an exponential 

function with increasing time lag τ (i.e. autocorrelation time).  The white-noise process 

investigated earlier is equivalent to this process in the infinite beta limit, where beta shown in the 
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autocorrelation equation in the second panel is the inverse of the e-folding time parameter.  The 

panel on the right shows (a rather poor graphic representation of the proper equation shown, the 

representation appears to dip at zero) the corresponding power spectral density with the shape of 

a Cauchy distribution.  This PSD is often called “red” noise since it favors low frequencies over 

high ones.  This particular stochastic process is often obtained from the output from passing 

white noise (input) through a low-pass filter.  The process can be simulated with a RC filter 

model     

 The third panel, down on the left shows the autocorrelation for a sinusoidal process, 

which is the focus of this section.  The PSD is a pair of frequencies located at discrete points on 

the abscissa.  It is appropriate to note that because our focus is real-valued data, the PSD is even 

with respect to the y-axis, so that in the remaining sections, I consider only positive values.  

Reflection around the ordinate will provide negative frequencies if needed.  Characteristics of 

mechanical and electrical components in systems may drift and be treated by random bias shown 

in the fourth panel.  I will not use random bias in this thesis.       

 

2.3  The Tradeoff between Consistent Estimation and Frequency Resolution     

 

 The autocorrelation and PSD for the few examples from preceding sections along with 

definition and characteristics of the periodogram should facilitate the discussion of spectral 

estimation.  Spectral estimation with the periodogram consists of determining frequencies in the 

mean square of the time series (see Equation 2.2).  It would seem finding Fourier coefficients 

should be a simple matter.  In practice the mathematical procedure, which may be arduous 

involving integrals calculated analytically often done as textbook exercises, is beset with 
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difficulties when applied to actual time series data even after evaluating the numerical integrals.  

The following section addresses the two difficulties encountered in spectral estimation.  The first 

difficulty encountered is obtaining a consistent estimate of the power spectrum can be 

circumvented by averaging periodograms.  However, averaging periodograms leads to lower 

frequency resolution.  This tradeoff is treated with the examples below.  

 

2.3.1  Difficulties obtaining a consistent estimate 

 

 Several textbooks demonstrate the difficulty in obtaining a consistent estimate by 

calculating the variance and covariance assuming a white noise signal [11, 53, 54].  Oppenheim 

and Schaefer provides the variance and covariance of the periodogram below [11]: 
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  where ω1  = 2π k /  N, and ω2 = 2π l  /  N.   

 

The variance σ
2 

, and similarly the square of the variance is equal to 1 for a un variance white-

noise signal.  The equation 2.6 demonstrates the covariance is zero unless ω1 = ω2.  For ω1 = ω2, 

equation 2.5 demonstrates the variance is approximately one, independent of N.  Because the 

variance maintains itself at approximately one as N increases, but the covariance approaches zero 
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at intervals 2 pi / N, as N increases, long record lengths with large N exhibit large fluctuations.  

This observation is contrary to the expectation that the estimate of the power spectrum should 

improve with larger sets of measurements. 

 Oppenheim and Schaefer gives a white-noise example for N = 14, 51, 135, and 452, 

showing increasing fluctuations with increasing record length N.  Figure 2.2 below shows results 

from Oppenheim and Schaefer.  Although, the expected power spectrum for the white-noise 

power spectrum should be flat, the simulation demonstrates the variance around (any) chosen 

constant value increases as N increases.    

This difficulty is not limited to the special case of white noise.  Oppenheim and Schaefer 

argue for similar difficulties in obtaining an estimate of the power spectrum are encountered 

when “colored” noise processes are considered by passing white-noise through a linear system.  I 

also offer the relevant statement from Brown and Hwang [53], “Recall that it is the average 

periodogram that is a measure of the spectral density function.  Averaging may not be essential 

in the analysis of deterministic signals, but it is for random signals.” …  “In either event, analog 

or digital, some form of averaging is essential when analyzing noise”. 

One way to circumvent the difficulty in obtaining a consistent estimate of the PSD is to 

average K periodograms each with length M = N / K, to keep M small and the variance bounded.   

This averaging is part of Bartlett‟s procedure.  The variance of the average of K periodograms is 

calculated in detail in Oppenheim and Schaefer.  The resulting variance is inversely proportional 

to K so that as K gets large, the variance goes to zero.  Therefore, the average of K periodograms 

is a consistent estimate of the power spectrum, as desired.  However, for fixed record length N, 

increasing K, means decreasing M.  As a result, the bias in the average of K periodograms is 
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larger than the bias for the periodogram with length N.  This bias shows up as a decrease in 

spectrum resolution when averaging the K periodograms. 

  

Figure 2.2:  Consistent power spectrum estimation becomes more difficult as the record length 

N, increases 
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Figure 2.3, shows the Fourier spectrum for daily averaged electron flux from SAMPEX 

for L-shell 4.5 during the two-year period 1994-1996.  The cyan curve in the right hand plot 

results from averaging 731 daily averaged values / 20 (the length of each periodogram) or 

approximately 36 periodograms.  The black curve averages over fewer periodograms etc.  The 

figure demonstrates the best frequency resolution comes from averaging the fewest number of 

periodograms, or conversely, the as the number of periodograms averaged increases (length L 

decreases), the frequency resolution becomes poorer.  The poor resolution asserts itself when 

many periodograms are averaged, although the most consistent estimate of the frequency occurs 

when the number averaged is high. 

 

  
Figure 2.3:  Poor Frequency Resolution Resulting From Averaging Over Many Periodograms 

  

Summarizing, estimating the power spectrum from data necessarily involves a tradeoff.  

When the number of data points (N) becomes large, the variance in the periodogram (i.e. spectral 
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estimate) does not approach zero and the periodogram is not a consistent estimate of the power 

spectrum.  To circumvent this problem, averaging or “windowing” is a common technique.  The 

data with length N is divided into K segments of segment length M, and the K periodograms are 

averaged.   This leads to consistent estimation.  However, dividing the data into K segments and 

averaging, results in poorer frequency resolution as the segment length M decreases.  

 Power spectrum estimation requires choosing the length M and the window type 

appropriately.  In practice, the size of the window influences the periodogram more strongly than 

the window type.  The type is important to eliminating sidelobes, but I will not consider this 

issue.  Some specific types are: 1. Modified Bartlett, 2. Daniell, 3. Tukey-Hamming, 4. Tukey-

Hanning, 5. Parzen, and 6. Bartlett-Priestly.  Only small differences in the power spectrum were 

apparent between types.  Figure 2.4 shows the scaled power spectrum for the solar wind speed 

near the main peak at 27 days along with a periodogram for the electron flux. Differences in type 

for other period intervals (regions) which are not shown in the figure supported the conclusion 

reached in this region.  Because type differences did not result in significantly different power 

spectrum estimates, the periodograms for solar wind speed from OMNIWEB and relativistic 

electron flux from SAMPEX and GOES, use the Hamming window.   

 

2.3.2  The Welch Periodogram 

 

 Welch‟s algorithm estimated periodograms used in this chapter.  This algorithm averages 

the data segments first before taking Fourier transforms.  In addition to averaging (windowing), 

Welch‟s algorithm uses overlapping data segments so the periodograms for each segment are not 

independent.  Together, both features lead to smoothing the power spectrum and variance 

reduction; both are desirable [11].  The degree of overlap was controllable for our 
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implementation, but I chose to accept the 50% overlap between data segments, the default for the 

routine PWELCH in the MATLAB signal processing toolbox.  

 

     
 Figure 2.4:  The Power Spectrum for the Solar Wind Showed Only Small  

 Differences in Window Type   

  

 Figure 2.5 shows the power spectrums for relativistic electron flux in the ELO range 

(blue) from SAMPEX at L = 6.5, and daily averaged solar wind speed (red) during 1994-6 when 

the solar cycle was at solar minimum.  Along with the main 27-day peaks, narrow peaks at sub-

harmonic peaks at 13.5 and 9 days also show up in the figure for both solar wind speed and 

relativistic electron flux. Our choices for overlap and window size effectively reproduce the 

expected peaks in the solar wind speed power spectrum, and show remarkable agreement 

between solar wind speed and electron flux.  Because we expected a 27-28 day periodicity in the 

solar wind speed, we used the zero-mean time series in daily averaged solar wind speed to 
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choose a good window size for the Fourier transform algorithm, PWELCH.   The size M = 200 

(approximately 28% of the total 730 day data set) was sufficiently large to demonstrate the 27-28 

day peak with some clarity (see the red trace in figure 2.5 below).  Unless otherwise stated, the 

criteria for window size will be set at approximately 30% of the total data length N.    

 

 

  
Figure 2.5 Periodogram for Solar Wind Speed (Red) and Electron Flux (blue) at L = 6.5, during 

the descending solar cycle phase leading to minimum SC-23. 

 

 

 With the choice of algorithm; PWELCH, the window size; (30%), and the window type; 

Hamming, all characteristics needed to define the periodogram to estimate the power spectrum 

are set.  The next section will show periodograms demonstrating relations between power spectra 

of solar wind speed and electron flux which vary with L-shell and throughout the solar cycle. 
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 The record of relativistic electron flux from SAMPEX is logarithmic (to base 10) 

imposes a degree of artificiality to the process of implementing the measurements and estimating 

the power spectrum.  The base 10 choice is accidental; another choice of basis is related to that 

choice by a particular multiplicative factor.  This introduces a multiplicative factor to the power 

spectrum, which allows rescaling.  The rescaling for the electron flux periodogram shown in 

figure 2.5 is set so the power (i.e. amplitude) of the scaling in the 27-day main peak matches the 

main peak in the solar wind during the time interval considered.  This method of rescaling will 

be maintained throughout this thesis, unless otherwise stated. 

 

2.4 First Results: Solar Wind Speed / Electron Flux Periodicities 

 

2.4.1  HSS during the descent to minimum phase of SC-23. 

 

 Although HSS were seen at practically all heliospheric latitudes during solar maximum 

(see figures 1.7 and 1.8), these streams are disorganized and do not lead to distinct periodicities.  

During the descent to minimum phase of the solar cycle, the Earth in the ecliptic (near the solar 

equator), generally encounters a slow wind.  When HSS do emanate from a trans-equatorial 

coronal hole, and they persist over several solar rotations, they are not masked by disorganized 

streams as they might be during solar maximum.  Instead, evidence of these streams show up in a 

distinct series of peaks in the power spectra.  These peaks are displayed in Welch periodogram 

estimates of the power spectra for solar wind speed (driving force), and in the electron flux 

(response).     
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 Figure 2.6 a-f show periodograms for the solar wind speed plotted along with 

periodograms for the electron flux at six L-shells during the descent to solar minimum  

  
Figure 2.6:  Solar Wind Periodograms and Electron Flux Dependence on L-shell (1994-1996). 

 

  

phase leading into SC-23.  The periodograms shown in figure 2.5 are repeated in panel c of 

figure 2.6 for the L-shell corresponding to the field line near geosynchronous orbit.  Every panel 
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shows the same solar wind speed power spectrum in order to compare with the 2-6 MeV electron 

flux from SAMPEX/PET.  Both electron flux at all L-shells and solar wind speed periodograms 

estimate a spectrum with 27-day and 13.5-day peaks.  

 During 1994-1996, the shape of the broad peak in the electron flux periodogram agrees 

with the periodogram of solar wind speed at high L-shells, indicating a similar electron flux 

response for frequencies near the main peak, as well as directly at the main peak where rescaling 

enforces the periodograms to have equal power.  It is interesting to note that the periodograms at 

lower L-shells display “tails” at slightly longer times than the main period, which are not 

reflected in the solar wind speed.  The tail in the periodogram for electron flux at higher L-shells 

disappears as L increases to agree with the shape of the solar wind speed spectrum at the highest 

L-shell shown (L = 9.5).  I have no explanation for this tail. 

 The power in the secondary (13.5-day) peak in the electron flux agrees with the 

secondary peak in the solar wind speed for intermediate L-shells with best agreement at 

approximately L = 6.5.  Tertiary and higher order peaks at sub-harmonic frequencies (sub-

multiples of the 27-day period) for electron flux and solar wind speed are weak.   

 Comparing the electron flux responses can suggest physical content to examining 

frequency domain analyses to the solar wind and electron flux.  For any particular periodicity, 

the power transfer from solar wind to electron radiation belts across a variety of L-shells can be 

examined by comparing the differing electron flux responses from different L-shells noting they 

respond to the (same) solar wind speed. 

For example at L = 6.5 shown in panel c of figure 2.6, the periodogram for electron flux 

approaches the periodogram for solar wind speed near the 13-day peak.  This suggests the power 

with this frequency (inverse period) in the solar wind drives the electron flux at the same 
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frequency efficiently.  Panels b and d of figure 2.6 show the electron flux periodogram for at L = 

5.5 and 7.5 respectively, has slightly less power near the 13-day peak than the electron flux 

periodogram at L = 6.5, which nearly approaches the power in the solar wind speed periodogram 

(the same for all L-shells).  This suggests the power transferred to the radiation belts from the 

solar wind near the 13-day peak at these L-shells is slightly less than the power transferred at L = 

6.5.  Similarly, panels a and e indicate the power transferred near the 13-day peak at L = 4.5 and 

L = 8.5 respectively is much less than the power transferred to the L-shell at 6.5 or L-shell at 5.5.                     

 

2.4.2  HSS during the descent to minimum phase of SC-24 

 

 Dissimilarities in the solar minimum leading into SC-24 from SC-23 cited in the 

introduction motivate us to examine the periodograms for the descent to solar minimum phase 

during SC-24, shown in Figure 2.7 for the one-year period 2005-2006.  Because the interval has 

been reduced to one-year, the range of periods in the spectral estimation has been reduced from 0 

to 60 days to 0 to 30 days.  Focusing on the solar wind speed periodograms, the most striking 

observation is the appearance of a strong narrow tertiary peak at a 9-day period.  Broader main 

and secondary peaks in the power spectrum for solar wind speed have lower strength, although 

the main peak averaged over its broad frequency range may contain more power than the narrow  

9-day peak. 

  

 The 9-day peak before Solar Minimum during this time interval has already been noted 

(see refs [29-35]), and is associated with high-speed streams from trans-equatorial coronal holes 

(see ref [33]). As before, the electron flux periodogram is rescaled so that the power in the main 
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peak matches the power in the main peak in the solar wind speed.  No special significance should 

be attributed to power in the main peak of the electron flux periodogram, which is shown in 

 

   

Figure 2.7:  Solar Wind Speed and Electron Flux Periodograms during 2005 (Solar Minimum)  
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arbitrary units.  Only ratios of the power in the periodograms at the various frequencies are 

relevant.  However, there is one caveat which should be brought to attention. 

 In Panels a and b the main peak in electron flux is scaled to the main peak in the solar 

wind speed periodogram, but the main peak in the electron flux occurs at a significantly different 

frequency at L-shells below than the main peak for solar wind speed.  Artificial rescaling the 

electron flux periodogram to the main peak in the solar wind speed is misleading in panels a and 

b.     

 Unlike the earlier interval approaching solar minimum for SC-23, this interval leading to 

SC-24 shown in the figure, demonstrates a broad main peak in electron flux which best matches 

the solar wind speed power spectrum at intermediate, not the highest, L-shells.  Diverting away 

from the main peak and focusing on the entire periodogram shows the solar wind speed and 

electron flux power spectrum best agree for L-shells at 6.5.  The agreement in (relative) strength 

in the power spectra at L = 6.5 for the tertiary peak is notable and not artificial, because the 

power is rescaled to the strength of the main peak, rather than the strongest (i.e. 9-day) peak. 

 The periodograms for electron flux and solar wind speed at L = 6.5 (panel f of figure 2.7) 

best agree in the periods of the peaks (placement along the abscissa), and relative strength of the 

tertiary to main peak.  The periodogram for electron flux at L = 5.5 (panel d of figure 2.7) 

displays the greatest peak power at the 9-day period in response to the solar wind speed at a 

similar period.  It is inconsequential that the power at the tertiary peak shown in this 

periodogram (as well as panels c and e) exceeds the power at the tertiary peak for the solar wind 

speed.  Only ratios of power relative to a fixed reference, in this case the power at the period of 

the main (~27-day) peak in solar wind speed is important.  Therefore, the power (~ 4.3 units) at 
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the tertiary peak in the electron flux from the solar wind speed is greatest at L = 5.5, somewhat 

less (~3.5 units) at L = 6.0, etc.  The power transfer to the radiation belts due to the solar wind is 

greatest at L = 5.5, and is reduced to approximately 2.35 at L = 6.5, and reduced to 1.2 at L = 

4.5. 

 During the previous considered solar minimum leading to SC-23 (years 1994-1996), 

there was agreement at the 9 day peak for L-shells between 4.4 and 7.0, although this agreement 

is less noticeable since the 9-day peak power throughout this interval did not dominate the other 

peaks to a comparable degree.  Although generalizing from one two-year time interval (1994-

1996) and one one-year interval (2005) can only be tentative, the solar wind speed has the 

greatest power transfer to electron flux at L-shells ~ 5.0 – 7.0 for frequencies near the tertiary 

peak at solar cycle phases leading to solar minimum.  

 In both the descent phases leading to SC-23 and SC-24 the relative power in the 

secondary and tertiary peaks from L = 5 - 7 for solar wind speed and electron flux agrees quite 

closely.  Outside of this range in L, the peak locations for solar wind speed and electron flux 

along the abscissa agree, although there is sometimes considerable disagreement in the relative 

power and power transfer.  For the most part, there is similar frequency response of the electron 

flux to the solar wind speed for a broad range of L-shells, i.e. the outer radiation belt exhibits a 

large degree of spatial coherence to the solar wind forcing [55-57]. 

 Up to this point, spectral estimation has been restricted to looking at the descending 

phase of the solar cycle leading to solar minimum.  It is time to examine the frequency response 

of the electron flux to the solar wind speed for ascending phases of the solar cycle.  It will be 

evident in the following analysis that the electron flux response during the ascending phases of 
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the solar cycle does not maintain the tight connection and may exhibit frequencies, not present in 

the solar wind speed.  This is likely to be the result of quasi-periodicities related to CME‟s 

 

2.4.3  Electron Flux Response Dependence on Solar Cycle Phase   

  

 The panels a-f in Figure 2.8 show periodograms comparing the power spectrum for solar 

wind speed with the power spectrum for 2-6 MeV logarithmic electron flux from SAMPEX at L 

= 6.5 for six two–year intervals from 1994 – 2006.  Panel g in Figure 2.8 plots the 216-day 

running average of the 27-day sunspot number during this total 12-year period to roughly 

illustrate the phase of the solar cycle for each of the panels a-f.  The six two-year periods 

demarcate SC-23 into the following separate phases, a) descent SC-22 leading into solar 

minimum SC-23, b) solar minimum SC-23, c)  Ascending SC-23, d) solar maximum SC-23, e) 

early descent after solar maximum SC-23, and f) descent SC-  23 leading to solar minimum SC-

24. 

Panel a shows remarkable agreement regarding both the power and peak placement 

between the solar wind speed periodograms (red dotted), and the log electron flux periodogram 

(blue solid) during the descending phase leading into SC-23.  The discussion of figure 2.7 has 

already noted the small tail in the electron flux periods longer than the main peak at 27 days 

becomes smaller as higher L-shells are considered. 

The power (y-axis) in the next three panels b-d, for ascending and maximum phases of 

SC-23 is rescaled down by a factor of 3 in the same units as panel a.  If the same scale were used, 

these periodograms would appear flat when compared to panel a, obscuring distinct frequencies, 
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which are present.  Note that panels e and f rescale upward by a factor of two compared to panels 

b-d.   

 

   
Figure 2.8:   Welch periodograms estimating power spectral density at L = 6.5 in the range [0,60] 

days over the two-year intervals a) 1994-1996; b) 1996-1998; c) 1998-2000; d) 2000-2002; e) 

2002-2004; f)  2004-2006,  and g) Corresponding Solar Cycle Phases. 
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 During solar minimum SC-23 (panel b) the electron flux periodogram shows a peak with 

a 36-day period which is not present in the periodogram for the solar wind speed, although it is 

interesting to note the solar wind speed periodogram has developed an asymmetry (i.e. a “tail”).  

In the next section of this thesis, quasi-periodicity will suggest this rather weak (recall the power 

rescaling exaggerates the peak size relative to panel a) peak may be the result of a CME 

occurrences rather than high-speed streams. 

 The electron flux periodogram during the ascending phase of the solar cycle from panel c 

displays peaks at 16 and 39 days that are unmatched in the solar wind speed.  Conversely, the 

solar wind periodogram displays a 27-day periodicity, which is unmatched in the electron flux.  I 

can present no satisfactory explanation for these features, although the rescaling of power by a 

factor of three relative to panel may be exaggerating the significance of the disagreement in the 

periodograms.  In addition, I can note the caveat mentioned earlier.  The 39-day peak in the 

electron flux periodogram in panel c was rescaled to match in amplitude with the 27-day peak in 

the solar wind periodogram.  Rescaling by matching amplitudes in main peaks when they are 

located far apart may be misleading.          

 The solar wind periodogram during solar maximum from panel d illustrates a narrow 13-

day periodicity along with a broader 23-day periodicity.  The strong 13-day period in the solar 

wind is unmatched in the electron flux.  This disagreement in electron flux with solar wind is 

difficult to explain.  The weak 23-day periodicity in the electron flux may be associated with 

CME occurrences (see next section).   

 The peak locations along the abscissa for periodograms for solar wind speed and electron 

flux in descending phases after solar maximum (panels e and f), agree for periods between 

twelve and thirty days.  The solar wind periodogram in panel f shows a strong narrow 9-day 
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periodicity, a somewhat broader and weaker 13-day periodicity, and a broad and still weaker 27-

day periodicity.  The power from the electron flux periodogram agrees at the main (27-day) 

peak, but is weaker for secondary and tertiary peaks, opposite the trend exhibited by peaks in the 

solar wind speed periodogram.  One hopes for periodograms leading into the minimum SC-24 

(panel f) which are as similar in organization as the periodograms leading into minimum SC-23 

(panel a).  The atypical nature of the SC-24 alluded to in the introduction may be partly 

responsible for the discrepancies shown in panel f.    

 

2.5  The Electron Flux Power Distribution across L-Shells  

  

 Rescaling the logarithm of the electron flux measurements so that the power in the main 

peak of the power spectrum matches the power in the main peak in the solar wind speed power 

spectrum facilitates the comparison between force and response.  However, because each two-

year time interval rescaled differently, the rescaling makes it difficult to compare the electron 

flux response in one interval to the response in another interval.  In this section, the electron flux 

power is compared without rescaling.  All two-year intervals considered use a base-10 logarithm 

of the SAMPEX electron flux, allowing the direct comparison of the power spectra for electron 

flux for different intervals.            

 The ninety L-shells and six two-year data intervals suggest a forbidding set of potential 

comparisons for electron flux power.  The comparisons should be limited to investigating a 

particular relevant feature.  Here, the maximum power for the range of L-shells from 4 to 8 for 

each of the two-year intervals is the feature.  Figure 2.9 shows the maximum power for any peak 

in the power spectrum with periods between 10 and 60 days, for each of 41 equally spaced L-

shells in the range from 4.0 to 8.0.  The three panels in the figure shows the maximum power 
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curves obtained for the six two-year intervals grouped in pairs, selected because of the similarity 

in the shape of the plotted curves.   The periodograms estimating the peaks in the power 

spectrum use the same type and window size as earlier periodograms.  The power in arbitrary 

units displays a different scale than the earlier periodograms because the estimated power 

spectral density is not rescaled and the base-10 logarithm of the electron flux measurements is 

used instead.             

 The top panel in Figure 2.9 shows the maximum power in any peak in the range from 10 

to 60 days for solar minimum (red) and solar maximum (black).  The L-shell with the maximum 

power overall is in the range from 4.7 to 5.1 for either case.  Similarly, the middle panel shows 

the maximum power during the two-year interval leading to solar minimum SC-23 (blue), and 

the two-year interval following the solar maximum SC-23 (magenta).  The L-shell with 

maximum power is approximately 5.5 to 5.8 in both of these cases.  The remaining two-year 

intervals (cyan and green) are shown in the bottom panel of Figure 2.9.  The power is distributed 

nearly equally, across the L-shells from 5-8, with greater power distributed to increase roughly 

linearly moving towards lower L-shell from 5 to 4.  The maximum power occurs at L = 4. 

 The top (middle, bottom) panel shows the greatest (least, intermediate) agreement 

between curves.  However, this assessment must be weighed along with the observation that the 

two-year intervals are separated by four years in the top panel, eight years in the middle panel, 

and six years in the bottom panel. 

Summarizing, the two-year intervals corresponding to the solar minimum and maximum 

phases and the two-year intervals preceding and following these phases have a maximum power 

within the [0,60] day interval at approximately L = 5.0 and L = 5.6 respectively.  The two 

remaining two-year intervals suggest a transition interval where the power distribution is mostly            
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Figure 2.9:  Power Distribution Across L-shell Throughout SC-23.   

 

 

flat across L-shells from five to eight, but peaks strongly at lower L from 4 to 5.  I will not 

discuss the transition interval further, and will concentrate on locations (from L = 5.0 to L = 5.6) 

of maximum power in the four two-year intervals, 1994-1996, 1996-1998, 2000-2002, 2002-

2004.  In particular, I offer these L-shell locations are associated with the peak in the impulse 

response function from Vassiliadis et al.  [6,7].             

 Vassiliadis et al. give the impulse response, H (τ;L)  as a function of the L-shell and a 

time lag τ, defined through the relation below: 
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where, Ts = 5 days, T = 20 days, Vsw are solar wind measurements and je are electron flux 

measurements.  The (output) SAMPEX measurements from 1993 – 2001 and (input) solar wind 

speed measurements determine the impulse response function, H through singular value 

decomposition.  A plot of the impulse response in two variables is given in Figure 2.10 below 

from Vassiliadis et al.  We may focus on a constant time lag of ~2.5 days and examine the 

location of the P1 peak at approximately L = 5.4.  This is reasonably close to the L-shell 

containing the most power from the top two panels in Figure 2.8.  Although this agreement could 

be coincidental, it is difficult to find another connection (e.g. plasma pause location, locations of 

maximum relativistic flux, etc.) for this particular L-value.  Moreover, it is not difficult to posit a 

connection between the L-shell of the maximum electron flux response to a unit disturbance in 

the solar wind speed (i.e the impulse response), with the L-shell of the maximum power spectral 

density for the electron flux.    

However, I am obliged to offer contrary evidence to this connection.  Vassiliadis et al. 

(2003) present a plot showing the dependence of the radial extent of the P1 region with solar 

cycle phase.  The P1 peak moves inward (towards smaller L-shell) as time progresses from 1996-

2001, from L = ~6.0 to L = 4.2, where our maximum power L-shell varies from L = ~5.7 to L = 

5.1, and does not vary significantly from solar minimum to solar maximum.  Despite this 

difference in variation, the connection between the P1 peak and the maximum power location is 

likely.     
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Figure 2.10 Impulse Response Function from Solar Wind to Electron Flux from Vassiliadis et al.  

[7]  
 

 In light of a possible connection between the P1 peak in figure 2.10 and the maximum 

power distribution with L-shell given in figure 2.9 begs the question: What causes the peak in the 

P1 region?  Vassiliadis et al. suggests ULF waves generated by hydrodynamic shear may 

energize seed electrons from magnetic substorms by resonant absorption.  More broadly, 

Vassiliadis (2003) attributes the P1 peak in the impulse response to high-speed streams in the 

solar wind, shocks, and products of interplanetary coronal mass ejections (ICME‟s) which may 

replenish seed electrons necessary for energization. 
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 Although many issues are unresolved, it is appropriate to turn our attention away from 

distinct strong periodicities from high-speed streams, to consider what power spectral estimation 

can determine regarding weak “quasi-periodicities”.  This is the subject of the following section.  
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3.  The Spectral Estimation of CME number 

 

 The previous section demonstrated strong periodicities in the solar wind velocity drive 

strong periodicities in the electron flux in the electron radiation belt.  High-speed streams from 

coronal holes during the declining phase of the solar cycle cause the distinct peaks with 27-day, 

13-day, and 9-day periods seen in the periodograms for solar wind speed and electron flux.  

However, as mentioned in the introduction, CME‟s can also drive solar wind and enhance 

electron flux in the radiation belt.  In addition, an earlier comparison between solar wind speed 

and electron flux periodograms during 1996-1998 noted an electron flux 36-day peak, which was 

not present in the solar wind speed periodogram (figure 2.8, panels b, d).  Therefore, we may 

conclude that there may be periodicities in the electron flux, which may not be present in the 

solar wind.  In addition, high-speed streams are not the only driver of fast solar wind and 

elevated electron flux.           

 However, the 36-day peak in the electron flux periodogram in panels b and d, are weak 

periodicities occurring during or shortly after the solar minimum phase of SC-23.  The 

appearance of the peak may be misleading because the power is scaled to highlight differences in 

the solar wind speed and electron flux power spectrum.  Plotted along the same scale as panel a, 

the periodograms in panel band d would both appear flat, with no strong dominant peaks (i.e. 

quasi-periodicity).  Quasi-periodicity and the possible connection with CME‟s provide 

motivation for applying spectral estimation techniques to CME characteristics.       

 At the outset, I must grant a concession and restatement, which I addressed in the 

introduction.  Not every CME will enhance high-energy electron flux, however occurrences of 

CME‟s increase the probability for electron flux enhancement (see Reeves).  Therefore, I chose 
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to calculate periodograms to estimate the power spectrum for CME number in order to compare 

them to weak periodicities evident in the electron flux in the outer belt.   

 Investigating periodicities in the CME number is not unprecedented.  Lara et al. observed 

193, 94, 45, 36, 33, 28, 25, and 23 day periodicities in CME number estimating their power 

spectrum using the maximum entropy method [8].  Presenting the power spectral estimation 

without a brief explanation for this method, would be unsatisfying.  The procedure for this 

method follows. 

 

3.1  The Maximum Entropy Method [58]: 

 

 First, the frequencies f, are mapped into the z-plane using the equation: 

 exp(2 ).z if   

The Δ shown in the equation is the sampling time.  Given this mapping as a function of 

frequency f, the transfer function as a function of frequency f, is given by: 

 

0

1
( ) .

P j
j

j

H z
a z






  

The upper index on the summation, P, is the order of the maximum entropy method model.  In 

order to determine the transfer function H(z) as a function of frequency, the coefficients aj are 

required.  These coefficients are equal to the autocorrelation function evaluated at k = 0, 1, 2, 

…P.  
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The square of the absolute value of the transfer function H
2
(z), as a function of f is the power 

spectral density.  A more comprehensive treatment of the algorithm and concepts supporting this 

method appears in Numerical Recipes [59].     

 Figure 3.1 from Lara et al. shows their result for the frequency spectrum for the number 

of CME‟s.  The numbers above the peaks in the figure correspond to the period in days.  The 

level dashed line provides the three-sigma level of confidence.  The blue dash-dotted line shows 

the periodogram obtained using their wavelet method.  The broadness in the peak in the 

frequency range corresponding to 23-50-day periods offers little support for the frequencies they 

obtain with the MEM method.  The Lomb-Scargle and Welch periodograms affirm their 

frequencies more convincingly.       

  Before discussing the data procedure used by Lara et al. in detail, we may examine why 

weak discrete periodicities are evident in CME number.  CME‟s transport magnetic field flux out 

from the solar interior to the solar wind and ultimately into the outer heliosphere.  Because the 

interior, photosphere and corona are rotation, (all at different rates), the magnet flux is being 

wound and twisted.  CME‟s are one mechanism for removing contorted magnetic flux from the 

Sun [60].            

 Lara et al.  treats small data gaps by averaging the number of CME‟s over a period 

determined by the Carrington rotation period divided by 9, or approximately 3 days.  Major gaps 

were padded with zeros.  This generated a 1219-point series.  Because large numbers of 

observations generate noisy peaks via the maximum entropy method, they generate the power 

spectrum with 300 coefficients in their autocorrelation function.  This is 25 % of the entire data 

set.  This smoothes the resulting power spectrum somewhat.  The technique of selecting the 

number of coefficients is reminiscent of choosing window size for the Welch periodogram.    
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 Nevertheless, their power spectrum contains still several noisy peaks, a limitation of this 

method.  With regard to the maximum entropy method, Numerical Recipes in FORTRAN 

contains the warning, “Some experts recommend the use of this algorithm in conjunction with 

more conservative methods …and to avoid being fooled by spurious spectral features.” [59].  

Although the Lomb-Scargle periodogram I will present will be at least as noisy as this one, the 

warning provides justification for reexamining these spectral peaks with two more methods to 

lend support to their results. 

 The first method I will use will supply missing measurement data from the CME onset 

time record with synthetic data, in order to use the Welch periodogram with windowing as in the 

earlier section.  Next, I will use the Lomb-Scargle periodogram, developed specifically for  

 

  

Figure 3.1:  Maximum Entropy Method Periodogram for CME Number from Lara et al. [8] 
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unevenly spaced data, to estimate the power spectrum for CME number.  I will then compile a 

list of periodicities estimated from all three methods Lara‟s maximum entropy, Lomb-Scargle, 

and Welch to reach a consensus.  My spectral estimation begins by enumerating and sorting 

CME onset times from the Solar Heliospheric Observatory / The Large Angle and Spectrometric 

Coronagraph (SOHO/LASCO) CME catalog.    

 

 

3.2  The SOHO / LASCO CME  Catalog 

 

 

 The Virtual Solar Observatory (VSO) tool on website provides CME onset times from 

the CME catalog [61].  The SOHO spacecraft operates in a halo orbit around the L1 Lagrangian 

point.  LASCO onboard SOHO are a set of three occulting coronographs, which examine the sun 

and detect CME‟s.  A spectrometer is also included in LASCO for composition studies [62].   

 In order to generate sufficient statistics, all CME‟s in the catalog were enumerated in this 

study with either, C2 or C3 visibility.  The SOHO / LASCO CME catalog also supplies a file of 

downtime intervals in which the LASCO was not operating.  It is important to keep downtime in 

mind when searching for periodicities in the CME number obtained from the onset times. 

Performing Fourier transforms on data sets with missing data can introduce spurious frequencies 

in the periodogram. 

 There were 11406 onset times for C2 / C3 CME occurrences during 1996 to 2007 listed 

in the SOHO/LASCO Catalog.  However, there were 720 data gaps listed with durations varying 

between 3 hours to 110 days.  Sorting these gaps by decreasing duration provided the most 

serious downtimes highest in the list.  Continuous operating times or “gaps” in the downtimes 
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were established, this list sorted so the longest operating interval would appear first.  Table 1 lists 

the 20 longest operating intervals and their respective durations. 

 

Operating Interval     Duration (Days) 

2000/07/17 19:54 - 2000/03/29 00:14 110.82 

2003/01/31 19:25 - 2002/10/23 04:26 100.62 

2000/10/25 19:40 - 2000/07/20 21:28 96.92 

1999/09/19 12:30 - 1999/06/19 11:58 92.02 

2004/03/20 07:40 - 2004/01/06 09:20 73.93 

1999/05/17 21:26 - 1999/03/07 01:45 71.82 

2003/05/06 00:50 - 2003/02/27 18:16 67.27 

2007/05/24 01:24 - 2007/03/19 21:42 65.15 

2005/02/28 16:54 - 2004/12/25 19:48 64.88 

2001/11/06 20:53 - 2001/09/04 20:36 63.01 

2001/06/27 21:54 - 2001/04/26 20:28 62.06 

2002/01/14 21:43 - 2001/11/15 08:07 60.57 

2001/04/20 19:31 - 2001/02/23 21:18 55.93 

2009/01/12 17:54 - 2008/11/20 21:12 52.86 

2005/08/08 17:46 - 2005/06/18 18:17 50.98 

1997/05/31 12:28 - 1997/04/13 16:36 47.83 

1997/10/24 10:18 - 1997/09/08 01:15 46.38 

2002/05/31 23:26 - 2002/04/16 01:40 45.91 

2006/06/02 07:36 - 2006/04/19 20:53 43.45 

2001/01/14 20:30 - 2000/12/02 19:31 43.04 

 

Table 1:  Days of Uninterrupted LASCO Service Sorted by Duration 

 
 

 

3.3   Approximating Missing Data  

 

 

 Table 1 shows the longest uninterrupted service from March to Mid-July 2000 is 110 

days.  This interval is separated by roughly three days from the third longest interval of 97 days.  

Merging these two intervals would give us 207 days with only one 3- day interruption roughly 

midway.  However, on average one can expect about 4 CME‟s per day during this period of solar 
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maximum and about 1 per day during solar minimum. Estimation using the Welch periodogram 

is sensitive to inaccuracies caused by data gaps.  

 Generating synthetic data to fill in gaps, rather than ignoring them is another way to 

confront the missing data problem.  It is best practice to use known statistical characteristics of 

the data present to generate and fill in the missing data.  The first step is to plot CME onset times 

on a timeline, examine the distribution of inter-arrival times, and determine the statistical 

characteristics exhibited by CME onset times.   

 After following this procedure, the exponential distribution provided a good fit to waiting 

(inter-arrival) times between CME onsets in the catalog, during the longest uninterrupted period, 

March to Mid-July 2000.  The mean waiting time was 4.47 hours, or roughly five CME‟s per 

day. Next, the exponential distribution was fit to the waiting time distribution during a period 

near solar minimum.  The mean waiting time determined by the fit was 20.67 hours, or roughly 

one CME per day (see Figure 3.1). 

 The e-folding time (the mean waiting time between CME onsets) fully characterizes the 

exponential distribution.  Reexamining figure 1.9 from the introduction leads us to expect 

differences in the waiting time with solar cycle phase, because clearly the 27-day number of 

CME‟s displayed has strong time dependence.        

 Given that the waiting time between CME‟s is an exponential distribution, one seeks a 

discrete probability distribution with the property that the inter-arrival time between events is an 

exponential distribution.  The Poisson distribution (equation shown below) has this property [e.g. 

63,64]: 

 ( ) exp( ), 0, 1, 2,... .
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The mean waiting time λ, characterizes the Poisson distribution.  The index k can takes all non-

negative integers.  The routine DRNPOI from the IMSLLIB FORTRAN library provides non-

negative random integers to simulate the discrete probability distribution and fill in missing data 

with specified statistical characteristics.  Specifically, every interval of missing data is associated 

with phases of the solar cycle, and the Poisson random number generator uses the corresponding 

mean waiting times to generate the synthetic (simulated) data with the requisite characteristics.  

After filling in missing measurements, the power spectrum can be estimated as before with 

Welch periodograms.  

 

Figure 3.2:  Exponential Waiting Time Distribution between CME Occurrences during Solar 

Maximum (left) and Solar Minimum (right)  

        

 

 Although this process is preferable to ignoring or linearly interpolating missing data, 

estimating the power spectrum with actual measurements is desirable.  Including actual 

measurements would reinforce periodicities in the data.  This procedure is similar to adding 

white noise to a signal, which will increase the zero-frequency component.  This will degrade 

any periodicities present, but it will not introduce new frequencies (periods) in our periodograms. 
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3.4  The Lomb-Scargle Periodogram [9,10] 

 

 This periodogram was developed for astronomical applications where regularly spaced 

data was the exception, not the rule.  Press and Rybicki provide a good informal description of 

its workings [65].  Briefly, given observation times ti and data values hi, the time-offset τ is 

defined as:  
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The Lomb-Scargle estimate of the power spectrum as a function of frequency is defined below: 
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where, the overbar on h indicates the sample mean, and square sigma is the unbiased sample 

variance. 

 The time offset defined above allows the power spectrum estimate P(ω) to be 

independent of shifting all times ti by any particular constant (for all the observation times).  This 

translation time invariance is a comforting feature, however more importantly the appendix 

supplied in Scargle, demonstrates the power spectrum estimate P(ω) has the same probability 

distribution as one obtained from evenly spaced data.   

 There are several shortcomings of the power spectrum estimate P(ω) given above.  We 

shall see the Lomb-Scargle periodogram is very noisy when compared to the Welch 

periodograms.  Moreover, the noisiness does not diminish as the number of observations 

increases.  The frequencies of the peak of the spectral estimate also suffer from spectral leakage 
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and aliasing, so that one is not sure that all frequencies with significant amplitude in the 

spectrum are actual or aliased from higher frequencies.  Scargle addresses many of the criticisms, 

which several earlier investigators have advanced.  However, it is important to keep in mind the 

limitations of the Lomb-Scargle periodogram, and if possible, reinforce it with other spectral 

estimations and include windowing.         

 

3.5  Spectral Estimation for CME Number 

3.5.1  Lomb-Scargle 

 

 This section provides the spectral estimation from the Lomb periodogram calculated 

using the FORTRAN subroutine LSONE from Numerical Recipes.  Because the Lomb-Scargle 

algorithm may be applied to unevenly spaced data, filling in the missing daily records of CME 

number throughout SC-23 with synthetic data will degrade the estimate and is unnecessary.     

 The Lomb-Scargle periodogram determined from sorting the LASCO CME onset times 

into numbers per day is shown in Figure 3.2, for two different ranges of periods.  Figure 3.2 

shows a close-up of periods less than 40 days, and 26 b. extends that range to 100 days. The 

estimated periodogram is very noisy, but we can interpret the peaks by comparing with the 

earlier results by Lara et al. 

 Peaks at 94, 45, 36, 33, 28 and 23 days found earlier with the maximum entropy method 

are evident.   The Lomb-Scargle periodogram did not reveal a peak at 25 days as Lara et al. 

found.  The Lomb-Scargle periodogram shows peaks at 39, 54, 60, and 66 days, and possibly 

others, which were not found using the maximum entropy method.   In the range considered, 

their 94, 36, 33 and 28 day peaks are highest, in the Lomb-Scargle result the 36, 23, 60 and 45-
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day peaks are the highest.  Averaging by windowing (if it were available), both periodograms 

might smooth them, and increase the agreement by down-selecting spurious noisy frequencies.  

 

  

Figure 3.3: Lomb-Scargle Periodogram for CME Number For SC-23 (1996-2007). 

 

 

  Given that we are comparing results using different measurement input with two noisy 

estimators of the power spectrum, there is rough agreement in the periods listed between the 

Lomb-Scargle and the maximum entropy method. 

 

3.5.2  Welch‟s method with Synthetic Data. 

 

 Finally, I present results from Welch‟s method to estimate the power spectrum from the 

LASCO CME record.  The missing data gaps are filled with synthetic data as described earlier.  

First, in the top panels of Figure 3.3, I present the results without windowing to retain the 

noisiness of the spectral estimation in order to compare on equal terms with the maximum 

entropy and Lomb-Scargle methods.  In the lower panels of figure 3.3, I use a window M = 500.  

With daily CME numbers for 11 years, N is approximately 4000 points.  A 50% window overlap 
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averages over approximately 15 periodograms (Eight periodograms from 4000/500, with 7 

overlapping periodograms).   

 Comparing the lower figures to the upper ones, shows the effect of windowing reinforces 

some periods, notably one at 45 days, and weakens others.  For example, the 23-day peak has 

dropped considerably, the 12-day peak is absent, and the 30, 36, and 94-day peaks are 

broadened.  The 27 and 30-day peak has merged into one broad peak at approximately 28 days.  

In view of the requirement that consistent power spectrum estimation requires windowing, the 

lower panels in figure 3.3 are better representations of the power spectrum.   

  

Figure 3.4:  Welch Periodogram for CME Number Including Synthetic Data:  Top Panels 

show noisy periodograms without averaging, bottom panels show windowed periodograms 
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3.5.3  The Consensus 

 

Table 2 below demonstrates the agreement between the maximum entropy, the Lomb 

Scargle, and Welch periodograms.  The set intersection of the first three columns provides the 

consensus given in the last column. 

The agreement in the location of peaks in the power spectrum between the maximum 

entropy method and Welch‟s method with synthetic data is striking.  By a two to one vote, the 

Lomb periodogram seems to include many spurious frequencies.  The maximum entropy method 

includes 25 and 33-day peaks, where Welch‟s method does not, but given the warning in 

Numerical Recipes, the 25 and 33-day peaks could be splittings from the 36 and 28-day peaks. 

 In summary, the consensus of all three methods includes peaks at 94, 45, 36, 28, and 23 

days.  Quite dissimilar methods for determining peaks in the CME number power spectrum were 

successful in reaching a common consensus.           

 

Maximum Entropy Lomb-Scargle  Welch          Consensus  

94 94 94 94 

 60   

 54   

45 45 45 45 

 39   

36 36 36 36 

33 33   

 30   

28 28 28 28 

25    

23 23 23 23 

 

 

   

 Table 2:  Comparison of CME Number Periodicity with PSD Estimation Method 
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3.6   The assessment of electron flux quasi-periodicities during ascending solar cycle phases. 

  

 The consensus from the three power spectral estimation methods provided 5 peaks with 

periods 94, 45, 36, 28, and 23-days.  Lomb-Scargle and maximum entropy methods suggest this 

list should contain a 33-day peak, since the power of that peak from these methods is quite 

strong.  Armed with this list, it is appropriate to revisit the electron flux periodograms in figure 

2.8, i.e. panels b-d for ascending and maximum phases of the solar cycle at L = 6.5.  

 We may first note these panels show the electron flux periodogram scaled so that the 

maximum power along the y-axis is low relative to the power along the y-axis in the remaining 

panels for descending and minimum phases.  Therefore, distinct peaks evident in panels b-d will 

be weak quasi-periodicities.  If these quasi-periodicities in the electron flux persist in the 

declining phases of the solar cycle (panels a, e and f), they are hidden by the stronger distinct 

periodicities from electron flux responses to high-speed streams.  Therefore, it is reasonable to 

confine our attention to panels b-d alone. 

    Panel b (near solar minimum to early ascent SC-23) shows an electron flux 

periodogram with three peaks at 15, 27, and 36-days.  Panel c (ascending to solar maximum 

phase SC-23) shows a electron flux periodogram with three peaks at 16, 23, and 39-days.  

Finally, panel d (solar maximum phase SC-23) shows an electron flux periodogram at 23 and 33-

days.   

 None of the three methods estimating the power spectrum address periods shorter than 

20-days.  The 28-day quasi-periodicity is close to the 27-day synodic rotation period from the 

Sun, so it could easily be confused with a much stronger periodicity, so this peak will not be 

considered in the assessment.  This leaves the 36-day peak in panel b, the 23 and 39-day peaks in 
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panel c, and the 23 and 33-day peaks in panel d as candidates to be identified with periods from 

the consensus.  We have already seen the consensus includes quasi-periodicities with 36-day, 23-

day and (possibly) 33-day peaks.  Apparently there is significant potential for CME quasi-

periodicities to explain the weak periodicities at L = 6.5 during ascending and maximum phases 

of SC-23.     

 However, in closing, it is important to temper the success of this connection, by not only 

what periodicities are present in the electron flux, but also by what periodicities are not present 

in the electron flux.  The list of quasi-periodicities from the consensus calls for a 45-day peak, 

but none of the panels in figure 2.8 b-d show evidence for this peak.  The 45-day peak is 

somewhat weak using the maximum entropy method but it is strong for the Lomb-Scargle and 

Welch‟s method.  Nevertheless, on balance these results suggest the quasi-periodicities in the 

electron flux are probably associated with CME number or a variable closely related to CME 

number.          

 This exposition of periodicities and quasi-periodicities in the solar wind and electron flux 

has been extensive.  Determining existing recurrence of solar wind variables and electron flux 

has obvious importance in a predictive space weather model.  Aside from this importance, the 

last section of this thesis “changes gears” from establishing the periodicities, to assessing to what 

extent these periodicities are helpful in identifying coefficients in a space weather model given a 

record of input and output (measurements).  During the review of earlier effort given in the 

introduction, I mentioned the impulse response function obtained by singular value 

decomposition by Vassiliadis et al.  The next section will treat system identification via the 

Kalman filter including (input) periodicities in the solar wind, and (output) electron flux 

measurements.   
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4.  Periodicities and Successful System Identification  

 

 

 This chapter first presents a linear time-series model relating solar wind speed (input) to 

logarithm electron flux (output), through a series of system coefficients.  The goal will be the 

successful identification (i.e. determination) of the system coefficients given the known input 

and output.  Because noise is present in observations of the input and output, and because noise 

is present in the modeled process, the determined system coefficients will not be exact.  A least 

squares solution for the system coefficients may be the best solution available. 

 The least squares solution for the coefficients given a complete record of solar wind 

speed and log electron flux is straightforward; however, the Kalman filter algorithm for system 

identification presented will be more ambitious.  The system coefficients will evolve on time 

(one measurement at a time) from an initial, i.e. chosen set of coefficients.   

 The Kalman filter provides a recursive least squares solution after the final measurement 

is processed that is equivalent to the batch solution.  The advantage in the recursive approach is 

the filter can be used in real-time.  The system coefficients identified use measurements available 

at the time they are calculated, and do not use information, which may be available in the future.  

In addition, the identified system coefficients are optimal, i.e. best in the least squares sense, up 

to the time of the provided measurement.   

 One application demonstrating the advantage of a real-time predictive model might 

envision a satellite equipped to measure relativistic electron fluxes, and solar wind speed.  Based 

on this information, the satellite might predict hazardous levels of electron flux, which might 

warrant a temporary suspension of activity or shut-off.  It may be of little value to wait until the 

hazard is predicted from a lengthy record of fluxes and solar wind speed processed off-line.  By 

that time, it may be too late.  Recursive estimation and prediction provides an “up to the 
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moment” assessment of the hazard.   Moreover, when the entire record of input and output is 

available, the solutions computed recursively are identical with the solutions computed off-line.   

 This section introduces a linear model for predicting electron flux from solar wind speed.  

The system coefficients in this model need to be determined.  The system coefficients comprise 

the state estimated by the Kalman filter.  The errors in estimating the coefficients from input and 

output measurements are minimized as described later in greater detail.  That is to say the 

coefficients are optimal.   

 The least-squares approach to data analysis is sufficiently important so that if the Kalman 

filter were only a recursive version equivalent to the off-line (batch) version of this approach, it 

would not be lightly dismissed.  I shall present evidence in this section demonstrating 

periodicities in the solar wind speed have a dramatic effect on the effectiveness of system 

identification with the Kalman filter.  This conclusion is also true processing the measurements 

off-line, but it is not so apparent. 

 The first step is to introduce the ARX(4,4) time series model for the electron flux.  I will 

note that this model has four autoregressive coefficients pertaining to previous sampled values of 

logarithmic relativistic electron flux and four exogenous coefficients pertaining to sampled 

values of solar wind speed forcing.  If needed, elaborate models with a larger set of coefficients 

may be constructed at the cost of greater computing power.  However, even this model is 

elaborate when compared to earlier ones such as an ARX(2,1) model, proposed by Klimas et. al 

for predicting storm-time disturbance index, Dst from the product of solar wind speed and the 

Southern component of the interplanetary magnetic field [66].   

 Klimas et al. shows this three-coefficient model is related to a stochastically driven linear 

damped harmonic oscillator.  Similarly, this ARX(4,4) model can be related to a stochastically 
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driven coupled harmonic oscillator.  The electrical analog to this system would be an inductively 

coupled transformer.  Suffice it to say the physical underpinnings of these models are complex 

despite their simple forms.  However, all that is important for our purpose is the ARX(4,4) model 

is sufficiently complex to demonstrate the periodicities in the input affect the effectiveness of 

coefficient identification in the model via the Kalman filter.              

 

4.1  The Fourth-Order Autoregressive Exogenous Model  

 

 Equation 4.1 provides the defining system equation for the ARX(4,4) model: 

 

 
1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

k k k k k

k k k k k

z a z a z a z a z

d u d u d u d u w

   

   

   

    
 4.1 

 

The solar wind speed measurements enter through the control variables u.  The autoregressive 

coefficients are a1, a2, a3, a4, the exogenous coefficients are d1, d2, d3, d4, the (integer) k index 

subscript defines the time k under consideration, and the z variables are logarithm electron flux 

measurements.  The w variable is white noise added to the model to reflect the (imperfect) 

measurement process.  Noise may also enter the process itself through fluctuations in the system 

coefficients (autoregressive and/or exogenous) but this will not be considered for now.  That is, 

let us tentatively assume the system coefficients are constant, although filter estimates of these 

coefficients will vary widely at early time (low k) when few measurements have been processed. 

 The goal is to best estimate the eight system coefficients, given measurements of the 

solar wind speed and log electron flux at time k > 3.  Clearly linear regression techniques can be 
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used, but the Kalman filter can estimate the system coefficients recursively highlighting the 

advantages already discussed.     

 

4.2  The Kalman Filter 

 

   Much of the mystery behind the Kalman filter can be illustrated using a simple example.  

Suppose we are given a series of 1000 numbers and we assume the numbers are best represented 

by their mean.  That is to say, the knowing the mean is important to us.  We find the mean of the 

1000 numbers is (for example7.5).  Then, we are given an additional number; say 7, and we want 

to compute the (new) mean of 1001 numbers.   

 The less statistically sophisticated among us would recompute the mean by (re)adding the 

1000 numbers, adding the last number and dividing by 1001.  A more reasonable approach 

would be to multiply the known mean by 1000, add the last number and divide by 1001.  We 

note that the new mean is related to the old mean and the last number linearly by: 

 

 1 , .
1 1

1001N N N
N

x x x with N
N N




    4.2 

 

 

The second approach is less computationally burdensome, and requires less storage of previous 

values.  Analogously, but with greater complication, the Kalman filter estimates a state and state 

error covariance linearly from the earlier estimates of the state and state error covariance along 

with the newest measurement, recursively and provides the optimal estimate and optimal 
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covariance on that estimate.  In order to discuss the role of the Kalman filter to optimal state 

estimation, background on noise and the signal model is presented first. 

 

4.3 The Signal Model [67]: 

  

 The signal model generates a stochastic process in order to approximate the naturally 

occurring process being considered, in our case the ARX(4,4) time series for the solar wind 

speed and electron flux.  The signal model consists of a measurement equation, which relates the 

state of the system to the measurement, and a state evolution equation, which describes the 

system dynamics. 

 The discrete time measurement equation is given below: 

 

 k k k kz H x    4.3 

 

 The integer k subscript indicates the time considered, specifically the day.  The current 

measurement is zk.  The symbol, νk is white noise at time k added from uncertainties in the 

measurement process.  The state of the system at time k is xk, usually an N x 1 vector, where N is 

the number of state components, (here N = 8).  The observation z may have multiple output with 

M variables or single output M = 1, as in our case.  The measurement matrix H will be an NxM 

matrix with M linear equations in N variables.  The purpose of the Kalman filter is to optimally 

estimate the state at each time k, given observations z made up to and including time k.          

 Kalman filtering assumes white Normal distributed measurement noise with zero mean.  

Specifying the measurement noise variance as Rk, completely determines the additive noise 
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process “corrupting” the ideal measurement.  The autocorrelation function for measurement 

noise process is given below: 

 

 [ ( ) ( ')] ( , ').kE k k R k k    4.4 

 

The E in equation (4.4) denotes expectation value. The Kronecker delta accords with the loose 

interpretation that noise values observed are uncorrelated with prior or later noise values.  The 

expectation value for continuous functions is defined by the integral of the argument in brackets 

weighted by the distribution function as follows: 

 

 [ ] ( )E x x f x dx



   4.5 

 

 Although the time is discrete, the values taken from the distribution are real so that the 

expectation defined in equation above is appropriate.  Having presented noise characteristics in 

the measurement equation, we now regard the state evolution equation in the signal model. 

 The state evolution may also be a noisy process.  In the literature, plant noise refers to 

this term.  The term originates from early uses in control theory to automate factories or “plants”.  

The term, process noise (distinct from the measurement process) is now in common use.  The 

state evolution equation in discrete time is provided below: 

 

 1 .k k k k kx F x G     4.6 
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The state at the successive time steps is related to the state at the prior step through the NxN 

matrix Fk.  The symbol ω represents a vector of white noise components with matrix covariance 

Qk.  The covariance for the process noise is given below: 

 

 [ ( ) ( ')] ( , ').kE k k Q k k    4.7 

 

   The matrix Gk relates the process noise to the system state at time k + 1.  Successively 

applying the state evolution equation propagates the state from the initial state k = 0, to any 

desired time k.   

 The state propagation equation and the measurement equation constitute a pair of 

equations, necessary to describe the system along with the measurement process.  This pair 

comprises the signal model.  Hereafter, the state vector x will have N components and the 

measurement z will have M components.  The matrices F, G, and H, in the signal model will be 

NxN, Nx1, and NxM, respectively to conform to rules of matrix multiplication.    

 

4.4  Objective of the Discrete Time Kalman Filter 

 

There are several ways to address the discrete time Kalman filter.  One approach is to 

treat the subject from a statistical point of view equivalent to recursive least squares estimation.  

Another approach is a systems analytic point of view as an optimal linear observer.  All 

reasonable approaches use the Kalman filter to provide an optimal estimate of the state of the 

system in the presence of noise given information from a time series of measurements related to 

the state.  The approach presented here is closer to systems analysis.  
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 The term optimal estimate used in the criterion for the Kalman filter has the following 

meaning.  The (column) state vector, x, at any time k can be estimated with  

(vector) values e from a probability distribution, determined as some linear function of the 

measurements z1, z2, … zk, up to time k.  At each k, one such estimate e, will minimize the 

quadratic form below: 

 †( [ ] [ ] ).k kE x e S x e   

 The dagger indicates matrix transpose so that the first factor in the quadratic form is a 

(single) row vector with N entries. The matrix S in the expression is a weighting function. This 

weighting is an arbitrary positive definite symmetric matrix, which may selectively weigh some 

components of the state vector in preference to others.  As long as S is positive definite ( i. e. has 

positive eigenvalues) and symmetric this expression is minimized for any S, by the same 

estimate e.  The next paragraph, while not a mathematical proof, suggests why this should be the 

case. 

 Because S is symmetric, it has real eigenvalues.  S is positive definite so it has positive 

eigenvalues.  An orthogonal transformation can transform S into diagonal form.  Orthogonal 

transformations are a subset of linear transformations, a fortiori, the expectation which is 

invariant to linear transformations is also invariant to orthogonal transformations.  This allows us 

to replace the positive definite matrix S with the diagonal matrix D in the quadratic form.  State 

vector x and estimate e will likewise have to be transformed (say, to y and f ) by the orthogonal 

transformation in order to remain consistent.  Next, a scale transformation can be applied to 

transform diagonal matrix D into the unit matrix.  This scale transformation must also transform 

the earlier transformed state y and estimate f (say, to z and g  resp.).  The combination of an 

orthogonal transformation and a scale transformation rids us of matrix S in the quadratic form.  
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Handwaving further, the eigenvalues in S, (i.e. the diagonal elements in D, which must be 

positive) ensure that any linear transformation will not turn a global or local minimum to a global 

or local maximum).  This paragraph suggests why the same estimate can minimize the quadratic 

form for arbitrary positive definite symmetric S.  A Rigorous proofs are supplied in textbooks 

(e.g. Brown and Hwang, or Grewal), but are omitted here for brevity.  This paragraph should be 

helpful to understand a proof uncovered during follow-up by the ambitious or interested reader.               

       

 Recapitulating, the signal model has been introduced.  The purpose of this model is to 

approximate a naturally occurring stochastic process under study.  This model consists of a 

measurement equation and a state propagation equation.  The objective of the Kalman filter has 

been stated.  Specifically, the (discrete) Kalman filter provides the optimal estimate of the state 

of the system at time k, given specific measurements up to and including time k, which relate to 

the state through the measurement equation.  The estimate is optimal in the sense that the 

weighted square of the difference in the state from its estimate is minimized for each time k.  

This weighting must be symmetric and positive definite but is otherwise unspecified. (This 

freedom is remarkable)   

 

4.5  The Nature of the Solution to the Signal Model. 

 

 It is reasonable to reexamine the signal model and consider the nature of the solutions.  

First, we need two important characteristics of Normal distributions, which will allow a 

generalization to Normal stochastic processes. 

1. If v is Normal distributed and T is a fixed matrix, T * v is again Normal distributed. 
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2. If v1 and v2 are two Normal distributed random variables, then their sum is a Normal 

distributed.      

Together these conditions reveal the Normal distribution is linear.  

 

 These points allow us to consider the qualitative solutions, which follow.  First, consider 

the measurement equation without noise. This is a matrix equation for output z.  Point 1 

establishes this product is Normal distributed.  Next, measurement noise with variance R is 

added to this scalar.  Using point 2, this sum, the solution to the measurement equation, is a 

Normal distribution. 

 

 Similar consideration is given to the state propagation equation.  Before the process noise 

is added, the first term in the equation, F * x0 will be an N dimensional vector.  The process 

noise term is a Normal (vector) stochastic process added to this term.  The state x1 will have a 

Normal probability distribution surrounding vector F * x0.  

 Applying the measurement equation to this new state x k+1 involves matrix multiplying 

this Normal distribution x1 by H.  Because matrix multiplication is linear, this will again lead to a 

Normal distribution.  It is also evident that applying the state evolution equation, involving a 

matrix multiplication and adding two Normal distributions to the following time step will again 

result in a Normal distribution for the state.  The upshot of this heuristic argument is that 

qualitative solutions to the state propagation and measurement equations are Normal distributed 

random variables at all times.  Considering the process along the entire time „axis‟, rather than 

individual times, show us the solutions to the state propagation and measurement equations are 

Normal stochastic processes.   
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 Although, the process is always Normal; however, it is not prudent to assume that 

because the process and measurement noise are white that the state and measurement vectors are 

white, for all time.  Matrices F, G, and H may introduce time-correlations in the states (alone), 

the measurements (alone), and between states and measurements. 

 

 It is now evident that solutions to the signal model presented will be Normal stochastic 

processes.  With the parallel development of signal model and Kalman filter presented in this 

section the natural question arises, will optimal state estimates from the Kalman filter also be 

Normal distributed?  Baye‟s rule allows us to show the answer is yes.   

 Optimal estimates given the specific history of realized (measured) observations are 

conditional probabilities.  We may consider the probability distribution for the state x at any time 

k+1 given the condition that measurements z0 z1 z2 … zk+1 were observed from the measurement 

equation as a conditional probability.  Baye‟s rule for conditional probability is given in most 

textbooks on probability theory (e.g. Papoulis [63]): 

 
1 1 1

1 1

1

( | ) ( )
( | )

( )

k k k
k k

k

P z x P x
P x z

P z

  
 



  4.8 

 The left hand side of equation (4.8) is a probability for the estimate of the state at time 

k+1 given the latest measurement at time k+1.  This represents the optimal state estimate from 

the filter.  Applying Baye‟s is sufficient to derive the Kalman filter equations.  Evaluating the 

right hand side of equation (4.8) will demonstrate the conditional density for the state given 

measurements up to current time is Normal distributed.  The aggregation of time series 

(realizations) from the filter is a Normal stochastic process. 
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 Summarizing, the “optimality” criterion for state estimates from the filter has been 

presented.  Solutions to the signal model and Kalman filter are Normal stochastic processes.  The 

filter assumes the signal model presented along with white measurement and process noise.  We 

expect the optimal state estimate to belong to a Normal distribution and it will minimize the 

weighted state variance for a general class of symmetric positive definite weight functions.  

Because the mean and variance characterize the Normal distribution, these two parameters are 

sufficient to determine the distribution for the optimal estimate via the Kalman filter. 

 

4.6  The Discrete Time Kalman Filter Equations  

 

 Just as process noise and measurement noise were assumed to be white noise processes 

with variances Q and R, we may assume a white state with variance can be set to P so that:      

 [ ( ) ( ')] ( , ').kE x k x k P k k  4.9 

We may recall from the definition (4.5) that the expectation operator E is linear. The estimator of 

state xk may replace the mean of state xk, leading to the first equation for the mean of the state in 

equation (4.10).  The second equation for the measurement mean follows because the 

expectation operator is linear, and the measurement noise has zero mean.  Therefore we have 

equation 4.10 below: 

 

 
ˆ[ ] ,

ˆ ˆ[ ] [ ] [ ] .

k k

k k k k k k k k k

E x x and

E z E H x H x E H x 



    
 4.10 

 

The covariances and cross-covariances of these the state and measurement may be computed 

similarly from definitions and the linear property of the expectation.  
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 The conditional probability for the measurement zk, given the state was at time k was xk 

is equivalent to the probability that the measurement noise was νk.  The mean of the 

measurement under this condition is equal to Hk xk.  The distribution function for this event is 

given (with dummy index k+1 replacing k for later use in equation (4.8)): 

 

 1 1 1̀ 1 1( | ) ( , ).k k z k k kf z x N H x R      4.12 

 

The Nz(a,b) denotes a Normal distribution in variable z with mean a and variance b. 

  

 The remaining distribution functions on the right hand side of Baye‟s Rule obtained by 

using equations (4.11) are: 
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

 
 4.13 

 

 Superscript minus signs on the state estimates x and covariance P denote a time before 

information from the measurement is used to improve the estimate.  Baye‟s Rule allows us to 

solve the equations for the optimal estimate of the state as the conditional probability on the left 

hand side of equation (4.8).  After some algebra including completing the square, the conditional 

probability is given by the Normal distribution below: 
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 1 1 1 1ˆ( | ) ( , ),k k x k kf x z N x P with     4.14 
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  

  
 4.15 

 

 Equations (4.14) and (4.15) provide the distribution for the optimal state estimate at each 

time-step k.  This distribution function uses information from measurements from an initial time 

k = 0 to the time k+1.  It is now apparent that as expected, the distribution for the optimal state 

estimate remains Normal for all k.   The mean of the distribution is centered on the state estimate 

and is given in terms of the estimate before the measurement is used, (the estimate with the - 

superscript), by the first equation in (4.15).  The second equation provides the variance for the 

optimal state measurement as a result of the information obtained from the observed 

measurement zk+1.    

    

 Kalman filter equations describe how the mean and variance for the Normal distribution 

for the state estimate changes with every time-step in terms of the mean and variance at the 

preceding time-step.  It is clear that this process can be used recursively. 

  

 It is interesting to note that the second of the Kalman filter equations describing 

the state covariance evolution does not involve the measurements z.  Specific measurements are 

only necessary to calculate state estimates in time.  This freedom suggests the remarkable 

possibility to determine the error in the state estimates without regard to the measurements 

themselves.   This is the case for many Kalman filter applications.  One may run the filter 
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“offline”, if data is unavailable, in order to see what covariance history (i.e. performance) can be 

expected.  Later, when measurements are available, re-running the filter with the measurements 

can determine the history of optimal state estimates. 

 However, for our specific application to system identification this will not be possible.  In 

our application, the measurements will build up the measurement matrix H and system 

coefficients will comprise the state we are interested in estimating.  The covariance will no 

longer evolve independent of the observed measurements for our implementation. 

 

4.7  Natural Forms of the Kalman Filter Equations. 

 

 To some degree, there is a degree of arbitrariness in using the term natural.  The Kalman 

filter equations describing how state and covariance evolve in time presented in equations (4.14-

5) in terms of measurements and system coefficients are not easy to interpret conceptually.  One 

equivalent interpretation regards the Kalman filter as a cyclic process (see Fig 4.1).   

 First, the filter requires an assumed initial state and state error covariance.  The enter 

prior estimate and error covariance x0
-
 and P0

-
 indicate this input at the top of the figure.  The 

minus superscript denotes the value before the measurement z is processed.  For simplicity, we 

will omit references to the subscripts and superscripts and the figure will remind us of their 

presence.  The Kalman gain is computed from the state error covariance P, the measurement 

noise variance R, and measurement matrix H, using the equation below for k = 0. 

    † † 1( ) ,k k k k k k kK P H H P H R       4.16 

The dagger superscript denotes matrix transpose.   
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Figure 4.1: The Discrete-Time Kalman Filter Loop 

   

 Calculating the Kalman gain requires a matrix inverse.  The dimension of the matrix 

inverse is equal to the dimension of sensor noise covariance R, which in turn is equal to the 

dimension of the measurement z.  We are concerned with single output systems so that R is 1x1 

matrix (i.e. a number), rather than a larger matrix.  In this case, the reciprocal of the expression 

in parentheses instead of the matrix inverse can be used to calculate the Kalman gain K.  This is 

a major advantage to the case where many measurements are needed at once such as (batch) off-

line processing.  Finding the inverse of large dimensioned matrices introduces the possibility the 
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matrices will become ill-conditioned and greatly increases memory storage and computational 

demands.  Recursion illustrates major advantages for on-line “adaptive” processing over batch 

processing.  

 Proceeding counterclockwise in the figure, the measurement z is introduced to update the 

estimate of the state.  Reordering terms in the equation for the state estimate, we see that:   

 ˆ ˆ( ) .k k k k k kx I K H x K z    4.17 

 

 This reordering clarifies that the updated state estimate is the result of combining the 

measurement with the previous state estimate.  The Kalman gain determines to what extent 

information from the measurement changes the state from the earlier estimate before the 

measurement to the estimate after the measurement is available.  If the Kalman gain is large, this 

is often the case early in the processing (i.e. small k) , there is more confidence in information 

provided by the measurement than there is in estimates from the existing model based on the few 

earlier measurements.  When the Kalman gain is small, there is more confidence in the estimate 

from the model containing information from many earlier measurements, rather than information 

from the one measurement that still needs to be incorporated into the updated state estimate.  

Intuitively, this idea is sensible.  

 After computing the Kalman gain, the updated state error covariance is computed 

(bottom of figure 4.1).  The updated state estimate is not needed in order to update the error 

covariance, see the paragraph before the beginning of this section for a discussion.  The updated 

error covariance brings us around the box at the bottom of this figure.  Continuing 

counterclockwise, we need to project the updated state estimate and the updated state error 

covariance from k = 0 to k =1, by using the transition matrix Φ.  In our implementation, the state 
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transition matrix, Φ is taken to be the identity matrix.  As indicated in the box on the right hand 

side, process noise Q increases the variance on the updated state error covariance P. 

 The optimally estimated state and error covariance are available after the box on the 

right.  Specifically, the updated state estimate x(k=1), and state error covariance estimate P(k=1), 

will be output.  These states will also reinitialize the cycle to commence with k = 1, at the top of 

the figure.  The full cycle continues until all measurements are incorporated, and the filter 

computes the entire history of optimal state and (state) error estimates up to the present time.      

 These outputs will be optimal is the weighted least square discussed earlier.  The state 

and the state error covariance were “optimized” in the selection of the Kalman gain.  The 

Kalman filter equations after considering Baye‟s rule provided the method for calculating this 

gain.  

 The cyclic process presented is in the Kalman filter loop in figure 4.1 is conceptually 

superior to the Kalman filter equations (4.14-5).  However, the loss of precision from computer 

round off errors and matrix stability issues militate towards reformulating this series of matrix 

inverses, multiplications and additions from the state error propagation equation at the bottom 

and right of figure 4.1 to the equivalent Joseph form.  This symmetric form of the Kalman filter 

equation for the optimal state error covariance is given by: 

 

 † †
1 1 1 1 1 1 1 1 1( ) ( )k k k k k k k k kP I K H P I K H K R K

             4.18 

 

 Summarizing, this section has established the optimality criterion the Kalman filter uses 

to estimate the state based on noisy measurements related to the state by the measurement 

equation.  This section has derived the discrete Kalman filter equations using Baye‟s rule and 

characteristics of noise and expectation.  The Kalman filter cycle including the Joseph form 
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details the way the optimal state estimate and state covariance is computed as a series of matrix 

additions, multiplications, and inverse (when necessary).   

 In addition, this section has introduced the ARX(4,4) time-series model as the signal 

model we will use to calculate the optimal state estimates from the Kalman filter.  The remaining 

step in our implementation is the ARX(4,4) time-series model must be recast in terms of the 

measurement equation and state evolution equation in the signal model, equations (4.3), and 

(4.6).  This is the subject of the next subsection.  

 

4.8  The state space form of the ARX(4,4) equation.   

 

 Matrix multiplication can verify the state space representation shown in equations 4.3 and 

4.6 are equivalent with the general ARX (N,N) equation (not shown), when the following 

identifications are made for matrices F, G, and H in equations 4.3 and 4.6: 
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4.19 

   

With N = 4, (four autoregressive and 4 exogenous coefficients) the specific signal model 

becomes: 
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 4.20 

Matrix multiplication can verify this form with these identifications of F, G, and H is equivalent 

with equation 4.1. 

 

 This signal model (state evolution and measurement equation) will allow us to generate a 

ARX(4,4) time-series from an (arbitrary) initial state x0, with preset autoregressive and 

exogenous coefficients (a1, a2, a3, a4, d1, d2, d3, d4), and a prescribed set of control variables uk 

(such as solar wind speed) with preset periodicity (e.g. 27-days).  This generated time-series with 

known characteristics will later be input as measurements into the Kalman filter for state 

estimation in order to assess the performance of the filter (i,e. validation).      

 

4.9  The Kalman Filter Implementation to System Identification 

 

 

 

 The preceding subsection has identified F, G and H matrices in the signal model 

necessary to generate the time series with desired statistical characteristics.  It is time to focus 

our attention on optimal state estimation rather than signal generation. 

 

 First, the Kalman filter is an optimal state estimator of state vector, x. The state vector, 

we wish to estimate consist of the collection of 8 system coefficients; 4 autoregressive (AR) and 

4 exogenous (X) coefficients.  The state vector is defined as the column in equation 4.21. 
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 The measurement equation determines how the measurement relates to the state vector.  

The ARX(4,4) process measurement equation for the filter is given below with νk = ωk: 
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 
  

 4.21 

 

 The measurement matrix, H, at time k consists of the four previous measurements and the 

four previous values for the (periodic) controls generating the process.  When identifying the 

coefficients in this implementation, we expect that the first four measurements and controls fill 

up the measurement matrix.  Subsequent measurements and controls refill the measurement 

matrix left to right from most recent to most past.  At every time step after completion, the 

measurement and value at the most distant past is lost; they fall out of the measurement vector, 

which contains only the 4 most recent measurements and controls. 

 

 Turning from the measurement equation to the state evolution equation for the Kalman 

filter, consider how the state is assumed to evolve.  If the system coefficients are considered to 

be constant, the state transition matrix, Φ, in this implementation is the identity matrix I.  The 

state at time k+1 is equal to the state at time k.  In addition, if the state are truly constant, we 

should not add white noise in the state evolution equation below:  

 

 1 , 0 0.k k k k k k k kx F x G w I x x with w or equivalently with Q        4.22 
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Setting the process noise variance Q to zero is equivalent to zeroing the noise term in the state 

evolution equation. 

 In practice, even constant system coefficients are often modeled as a white noise process 

and are given a small but finite value for the process noise variance Q.  This artifice enhances 

filter stability. (Note: The Kalman filter equations involve the reciprocal or matrix inverse. If 

both noise variances Q and R are too small, this can cause matrices in the filter to be ill-

conditioned).  The values for the states and observables are roughly ~ 1.  The small but finite 

noise variances we choose in the validation are 10^-12, which is small in comparison to the 

states or observables.  This is defined as the zero noise case.     

 

4.9.1  The zero input case (no forcing) 

 

 Considering the case with zero input is instructive.  The initial state prescribed in the 

Kalman filter is usually chosen arbitrarily, because as more measurement information becomes 

available, the optimal state estimates become insensitive to (independent of) the initial state, i.e. 

steady state is reached.  Without any a priori information, the state is usually taken to be the zero 

vector, i.e. all system coefficients are taken to be zero initially  

 The Kalman filter also requires an initial state error covariance.  In practice, this matrix is 

taken to have a large value.  After several iterations, the optimal estimates are largely insensitive 

to this value.  Results for the state error covariance P0 = 99.99999 are discussed below.  The 

results for 999999.99999 are similar.  Because the state components (system coefficients) are of 

the order unity, the state error covariance should be sufficiently large when set to 100. 
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 The controls taken to be zero (no forcing) and there zero noise results in the following 

matrix equation:   

  
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 4.23 

 

 The Kalman filter estimates the state based on comparisons between true measurements 

(observed) and measurements expected based on the calculation in equation 4.23.  In this special 

zero noise and zero input case, (equation 4.23), the measurement expected has zero contribution 

from the exogenous coefficients, d1-4, independent of their value.  Once these coefficients are set 

to their initial values, they never get a correction from the filter, so that they stay at their 

presumed initial values, in this case zeros.  Without any forcing uk or noise, the Kalman filter 

loses its ability to identify the exogenous system coefficients. 

 Considering only AR coefficients, we have at k = 5, one equation with 4 unknowns 

coefficients a1-4.  The filter can update the initial values (0), based on this limited information.  

At step k = 6, a second equation is available to the filter.  This is only one additional equation, 

but the information from the first equation at k = 5 was already used to determine the first 

estimate.  All told, after step k = 6, the filter has used two equations for the 4 unknown 

autoregressive coefficients. 

 By step 8, the filter has the information content of 4 equations for the 4 unknown 

autoregressive coefficients.  In the zero-input, zero noise case, we anticipate a perfect 
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identification for the four AR coefficients.  On the other hand, because there are no noise sources 

and no input on the right hand side of the ARX(4,4) equation, there is no identification for the 

exogenous coefficients, which remain at their presumed values, zero. 

     

    

Figure 4.2:  Perfect Identification of AR Coefficients; No Identification for Exogenous 

Coefficients (labeled MA Coefficient). 

 

  

Figure 4.2, shows the result of a zero-noise validation check on the Kalman filter code 

and implementation.  The signal model with zero noise and zero input generates the 

measurements input into the Kalman filter.  The four AR coefficients, a 1-4, and exogenous 

coefficients 1-4, are (blue, red, green, and black) traces respectively.  The dotted lines indicate 

the values of the system coefficients used in the signal model.  As expected, the traces begin at 

initial values (zero).  Until k = 4, the measurement vector is filling and the filter does no 

correction.  The iteration number k = 5 in the process, shows the first correction to the state 
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estimate.  The iteration k = 8, results in a perfect fit for the AR coefficients.  Because there is 

zero noise and zero forcing, the exogenous coefficients are never adjusted from their initial zero 

values.  Only the (last) black trace at zero is visible in the plot of the exogenous coefficients, 

because it overplots the other traces.  This behavior of the optimal estimates is expected for the 

zero noise, zero control case, and the Kalman filter implementation to system identification in 

the ARX(4,4) process passes the first test.   

 The state error covariance history should also be examined.  The error covariance for 

iterations 4-8 are respectively (The Joseph form enforces the symmetry so that only the upper 

triangular elements are shown):  (The matrix at K = 8 is zero to at 8 decimal places) 

 

 

99.999999 0 0 0 

0 99.999999 0 0 

0 0 99.999999 0 

0 0 0 99.999999 

 

99.985286 0.588148 -0.882223 0.588148 

- 76.474040 35.288924 -23.525949 

- - 47.066603 35.288924 

- - - 76.474040 

 

78.058167 27.581703 -3.360347 -30.670770 

- 43.243409     38.339639     14.955592 

- - 46.786534         31.756153 

- - - 31.911868 

 

15.891491 26.205305 23.612173    9.610242 

- 43.212935     38.936823     15.847432 

- - 35.083851 14.279258 

- - - 5.811711 
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0 0 0 0 

- 0     0     0 

- - 0 0 

- - - 0 

 

 

 It is easy to see from the covariance that the state estimate improves every time step.  

There is zero error after iteration 8, because there is a perfect fit between the estimates and the 

state itself.  Without noise and forcing, determining the AR coefficients is simply a matter of 

fitting four points with four linear equations.  Adding consistent equations after this point does 

not correct the estimate further.   

 Several other sets of system coefficients validated the Kalman identification of AR 

coefficients in the ARX time series models with similar results for the zero-noise zero input case. 

 

4.9.2  The ARX Model driven by White Noise:  (The ARMA(4,4) model) 

 

 It is somewhat more interesting to add noise to the signal model and / or filter and 

consider the effect of noise on the filter‟s ability to provide optimal estimates.  In this case, the 

signal model generates measurements with a noise variance of R = 10^-3.  The signal model also 

perturbs the coefficients by adding white noise with Q = 10^-6 and generating the measurements 

with these system coefficients.  The measurement noise variance put into the filter was R = 10^-

3, the same measurement noise variance as the model.  The process noise variance for the filter 

Q = 10^-6 for the AR and MA coefficients. 

 

 The test indicates the AR coefficients converge to their set values more quickly than the 

MA coefficients.  Both sets of coefficients require more iterations to converge to their set values 
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in the presence of noise.  We note by adding a non-zero process noise in the signal model, we are 

perturbing the system coefficients.  A normal random number generator simulates the 

perturbations to the ARMA(4,4) coefficients as white noise with zero mean and unit variance.  

The random variables are scaled to have variance  

10^-6.  Because the coefficients “jitter”, the traces may approach the dotted lines indicating the 

means of the system coefficients but they do not converge except in a probabilistic sense.      

 

 The zero-noise case argued earlier determined AR coefficients recursively with 4 or more 

linear equations and 4 unknowns. After adding noise, a good estimate of the AR equations 

requires just a few more equations (iterations).  Fitting AR coefficients with a least squares            

 

  
Figure 4.3:  ARMA System Identification (white noise forcing) 
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criterion is a useful concept.  We may recall any identification of the MA coefficients was 

impossible without some noise forcing the system.  When noise is added, a good estimate of the 

MA coefficients may require many more iterations than the AR coefficients.   

With these selected noise variances, the Kalman filter does eventually identify the MA 

coefficients after perhaps 10000 iterations, while only about 10 iterations are needed for the AR 

coefficients.  In view of this result, we can also expect exogenous (X) coefficients with periodic 

forcing will require more iterations to converge than the AR coefficients.  After discussing the 

ARX model results, we revisit this point. 

 The following table shows the optimal state estimate for the noisy ARMA coefficients 

after 200 iterations and after 10000 iterations.  It is easy to see continual, but slow convergence 

to the actual values for the system coefficients. 

 

 

Actual Coefficient 200 Iterations   10000 iterations 

a1  =  2.5 2.367 2.48223889 

a2  =  3.0 2.78697616 2.97138285 

a3  =  2.0 1.80835931 1.96978281 

a4  =  0.6 0.52174036 0.58854789 

d1  =  -1.5 -1.47203633 -1.50954257 

d2  =  -1.0 -0.78256965 -0.96604815 

d3  =  1.0 0.84264216 0.98697945 

d4  =  0.7 0.55112632 0.67543723 

Table 3:  System Identification of autoregressive and exogenous coefficients in an ARMA 

process  

 

4.9.3  Kalman filter Identification in the ARX(4,4) Model 

 

 

 The ARX(4,4) model is formally similar to the ARMA(4,4) model except with prescribed 

controls forcing the system instead of white noise forcing.  Here the white noise forces in the 
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state evolution equation are replaced with sinusoidal functions.  Modeling the white noise 

measurement error in the output equation still requires a white random number generator.         

  

 

Figure 4.4:  System Identification for an ARX(4,4) process with Periodic Forcing:  a) frequency 

remote from system pole frequencies;  b)  frequency near the lower pole frequency; c) frequency 

near the higher pole frequency; d) frequencies near both lower and higher system pole 

frequencies 

 

 

In this test, the Kalman filter estimated four AR states and four X states from the 

ARX(4,4) model driven by unit amplitude sine wave(s) for four different sets of frequencies.  
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The frequencies chosen were a.) 0.04 / iteration; b.) 0.804 / iteration; c.) 0.254 / iteration; and the 

combination of frequencies d.) (  0.6 * cos (0.804 * k)  + 0.8 * sin (0.254 * k) ).   

 

The polynomial with autoregressive coefficients a1, a2, a3, and a4:  

 4 3 2
1 2 3 4* * * 0,x a x a x a x a      4.24 

has roots are four complex numbers with complex conjugate imaginary parts, listed as follows, 

+/- 0.80735 and +/- 0.25333.  The first case (a) is a frequency away from the complex root in the 

polynomial in the ARX(4,4) model.  We refer to this as the pole frequency.  The second case (b) 

is near one of pole frequencies, and the third case (c) is near the other pole frequency.  Sinusoidal 

waves drive both pole frequencies in the fourth case (d).   

 The system coefficient estimates below show the AR coefficients are readily identified in 

all of these cases.  However, good estimates of the exogenous coefficients result only in the 

fourth case where both pole frequencies are excited. 

 

 In general, this result suggests the Kalman filter can effectively identify the coefficients 

in a general ARX (N,N) model if there is input power at frequencies corresponding to all modes 

of the system.  The roots of the polynomial formed by the N autoregressive coefficients 

determine these modes.  

 The moving average coefficients in the ARMA model are associated with white noise 

sources rather than sinusoidal forces.  White noise sources have power across all frequencies.  

This power is not concentrated at the pole frequencies as in case d, so the estimation will not be 

as efficient.  Nevertheless, enough power is present near the two pole frequencies to provide a 

good estimate of the MA coefficients eventually as shown in Figure 4.3, and Table 3. 
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 We may emphasize the time-series from the signal model was prepared to have 

prescribed autoregressive and exogenous coefficients in the ARX case with sinusoidal forcing, or 

autoregressive and moving average coefficients in the ARMA case (ARX case with white noise 

forcing).  These prepared cases are ideal in the respect that we know a priori the results the filter 

should estimate, if it is performing effectively.  We saw results to suggest the filter cannot 

estimate the exogenous coefficients unless all modes of the system (determine by roots of the 

polynomial formed by the autoregressive coefficients) are excited.  These results would not be 

weakened if we used (unfortunate) solar wind speed forcing and logarithmic electron flux output 

instead of the prepared input and output, which did not excite all modes.  All that would change 

is it would be difficult to know the filter would be performing poorly, since we would not know 

a priori what to expect.  The input / output must be taken as given, not carefully prepared to have 

known coefficients, to readily assess the filter performance. 

 In addition, these results suggest periodicities in the input at frequencies that do not 

excite all system frequencies may hinder successful identification.  It is better to have white 

noise (or colored noise with a sufficient frequency spread) input, than a periodic signal input that 

does not excite all system frequencies.   

 

4.9.4  Implications to Space Weather Modeling 

 

 The periodograms in Figure 2.8 show variation in the frequencies associated with solar 

wind speed forcing (input) with solar cycle phase.  In view of these filter results; this variation 

would suggest the performance of Kalman filter system identification is also likely to have solar 

cycle phase dependence.  In addition, because the Kalman filter implementation is equivalent 
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with recursive least squares, any linear analysis for system state identification will behave 

similarly.       

 As a final conclusion to this study, it is appropriate to provide the four autoregressive and 

four exogenous system coefficients estimated by the Kalman filter with actual electron flux 

(output) and with actual solar wind speed (input) measurements in the ARX (4,4) model.  Figure 

4.5 provides the system coefficients as they vary in time from 1996 to August 2003.  The first 

autoregressive coefficient, a1 = 0.5 to 0.6.  The second autoregressive coefficient, a2 is 

approximately 0.1.  The remaining two autoregressive coefficients are nearly zero after the year 

2000.  Because the first two autoregressive coefficients are dominant over a3, and a4, the 

ARX(4,4) model should probably be simplified to a simpler model and reformulated.  The 

ARX(2,2) or ARX(2,1) model, which Klimas et al. interprets as a stochastically driven damped 

linear oscillator may be a more appropriate model here.  The first two exogenous coefficients are 

also the most significant, but to a lesser degree.  It is surprising that the coefficients do not vary 

to a greater degree.         

  
Figure 4.5 System Identification for Electron Flux with Solar Wind Speed Forcing Coefficients. 
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 Summary: 

  

The central theme in this thesis and effort has been the relationship between frequencies 

in the solar wind speed forcing to frequencies in the electron radiation belt response.  During the 

declining phase of the solar cycle leading to solar minimum SC-23, the power spectrum in solar 

wind speed exhibits strong distinct peaks at periods of 27, and 13.5-days.  In addition to the main 

(27-day) and secondary (13.5-day) peaks, a narrow (tertiary) peak with a 9-day periodicity was 

evident during 2003-5 during the declining phase of the solar cycle leading to solar minimum 

SC-24.   

High-speed streams from trans-equatorial coronal holes are the cause of these peaks in 

the power spectrum with these periodicities.  In each case, the relativistic electron flux response 

to the high-speed streams occurred at similar frequencies (i.e. similar periodicity).  By examining 

different relativistic electron flux responses at various L-shells to the same solar wind forcing 

during the declining phase, it was often possible to determine qualitatively what at L-shell the 

solar wind speed transferred the power most effectively.  For example at the 13.5-day peak in 

electron flux during the declining phase leading to SC-23 (1994-1996), the at L = 6.5 closely 

matched the corresponding peak in the solar wind power spectrum, implying efficient power 

transfer from solar wind speed to electron flux.  Off that peak L at L = 5.5 or at L = 7.5, there is a 

small reduction in the peak in the electron flux periodogram indicating a slightly reduced power 

transfer.  This reduction becomes dramatic at L = 4.5 or at L = 8.5.  Similar results hold for the 

9-day peak during 2005-6 at a peak L = 5.5.  Thus qualitatively, L-shells with peak power 

transfer between solar wind speed and electron flux are likely to be in the range between 5 and 7. 
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More quantitatively, the peak power in the relativistic electron flux distributed across L-

shells is shown in figure 2.9.  During solar minimum and solar maximum (for SC-23), the peak 

power is at L = 5.0.  During the two-year interval leading to solar minimum SC-23 and during 

the two-year interval after solar maximum, the L-shell with peak power has increased to L = 5.7.  

During the remaining two-year intervals, L-shell with peak power has moved inward.  In each 

case, the associated pairs show a power distribution across L-shells with quite similar shape.  In 

general the L-shell with peak power (during the intervals where a peak in figure 2.9 is evident) is 

distributed in the range from 5.0 - 5.7.  This indicates a likely association between the L-shell 

with peak power with a P1 peak in the impulse response function from Vassiliadis et al.  I note 

Vassiliadis also used SAMPEX electron flux measurements and solar wind measurements to 

obtain his impulse response function so perhaps this is to be expected.  The agreement in the 

association is still comforting.  The association Vassiliadis et al. makes for the P1 peak with high-

speed streams is also reinforced with the power distribution across L-shells presented in figure 

2.9.                   

During ascending phases in SC-23, the periodicities in the CME number obtained by Lara 

et al. are strongly supported by periodicities found using the Lomb-Scargle periodogram, and 

Welch periodogram with synthetic data (filled in measurements) having the same statistical 

characteristics.  The weak 36-day periodicities in the relativistic electron flux shown in the 

panels b and d of figure 2.8 may be the result of the 36-day CME number periodicity reached by 

the consensus of spectral estimation algorithms.         

A summary of results from linear estimation theory via the Kalman filter indicate 

successful identification of the exogenous (forcing) coefficients should require measurements 

generated, naturally or artificially, e.g. synthetic measurements, with frequencies present to 
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excite all (in our contrived case both) system modes.  High-speed streams and CME‟s 

occurrences which are responsible for periodicity in the solar wind speed vary strongly with solar 

cycle phase.  Thus the performance of a Kalman filter with solar wind speed forcing terms is 

most likely dependent on solar cycle phase, because frequencies exhibited by the solar wind 

speed depend strongly on these features.   

System coefficients were identified using actual solar wind speed measurements and 

actual electron flux measurements.  The system coefficients seem to be remarkable constant 

throughout the solar cycle during the years from 1996-2004.  Given the dominance from the first 

two autoregressive coefficients, and the economy of a simpler model, the ARX(2,1) model or 

ARX(2,2) model is better justified.     
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