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As optical imaging in scattering medium is emerging as a promising imaging modality, several

challenges arise against deeper imaging due to the multiple-scattering caused by the inhomogeneous

distribution of refractive index. To obtain high quality images through active structured light il-

lumination and polarization imaging, an polarized, tunable and intense broadband light source is

highly desirable to perform coherence gating for enhancing ballistic photons in a highly scattering

medium. This thesis describes the challenges of optical imaging, polarization imaging in scattering

medium, the experimental investigations of a dynamic structured illumination microscope (DSIM),

and the development of a versatile broadband supercontinuum light source generated using ultra-

fast nonlinear optics for enabling new optical imaging modalities in scattering medium. The DSIM

was demonstrated as a Fourier synthesis and polarization-sensitive imaging method using a moving

illumination pattern requiring only a single pixel camera or a photodiode detector. To increase

penetration depth in a scattering medium, it is suggested that a broadband supercontinuum laser

can be used as a powerful and tunable fiber-based light source for coherence gating to enhance

ballistic photons. Therefore, an octave-spanning broadband supercontinuum light laser is experi-

mentally demonstrated using an ultrafast femtosecond Ti:Sapphire seed laser and a highly nonlinear

micro-structured photonics crystal fiber. During the experiment, the broadband supercontinuum

output is demonstrated to be polarization-dependent, thus a detailed numerical simulation is devel-

oped using vectorized generalized nonlinear Schrödinger equations (GNLSE) for both isotropic and

anisotropic fiber mediums. The polarization trajectories of Raman solitons in the supercontinuum

generation visualized on the Poincaré sphere reveals rich polarization dynamics, including a polar-

ization separatrix for light propagation in the birefringent fiber. While most of the previous works

were focused on polarization dynamics for light propagation in linearly birefringent fiber, I inves-
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tigated the case of circularly birefringent fiber and found a simplified polarization evolution that

leads to a motivation for developing twisted fibers for single polarization broadband light sources.

The versatile and stable circularly polarized broadband supercontinuum can be potentially one of

the most attractive light source to improve optical imaging in scattering medium.
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birefringence beat length and the Poincaré sphere representation for linear polariza-

tion rotation with CW input light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Polarization evolution in polarization-maintaining fiber showing the eigen-axis and
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Chapter 1

Introduction and motivation of thesis

Optical imaging in scattering environments has attracted significant attention in recent years

[1, 2, 3, 4, 5, 6, 7, 8, 9]. The understanding of this phenomena requires the modeling of light-matter

interactions, whether a cell or an entire organ in biological tissue, a vehicle in smoke, a fish in the

sea or a building in the fog. Optical imaging in scattering media is challenging because the inho-

mogeneous refractive index distribution can cause multiple-scatterings of light which can severely

degrade the image quality or prevent imaging altogether. Because it is often preferable that the

object to be imaged remain in its original environment and to avoid disturbing or perturbing the

object, it is desirable to only manipulate the optical properties of the incident light [10, 11]. There-

fore, an advanced light source with unique optical properties including its polarization, wavelength,

bandwidth, spatial and temporal profile, and coherence is highly desirable. Since the invention of

the laser in 1960, optical imaging has experienced tremendous growth benefiting from the intense,

monochromatic and spatial coherence of laser source [12]. The invention of ultrafast lasers has

led to a series of new optical imaging techniques include optical coherence tomography [13], high

harmonic optical imaging [14] and multi-photon microscopy [15].

Supercontinuum generation is a technique for producing spatially coherent and ultra-broadband

light that was first discovered in bulk crystals in the 1970s [16]. With the rapidly developing diverse

host of optical imaging applications, broadband supercontinuum light sources are in high demand for

their unique characteristics. For instance, biophotonics for optical imaging in scattering tissue using

temporally incoherent light has had a great impact from the development of supercontinuum based
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laser sources [10]. This broadband light source provides a wide range of wavelengths from UV to

Infrared and spatially coherent beam profile for fiber-based supercontinuum generation. It has the

bandwidth of sun light but is 104 times brighter and the spatial coherence allows diffraction limited

focusing. Nonlinear spectroscopy can benefit from the time-resolved multi-wavelength pump-probe

functionalities using supercontinuum generation for tracking electron motions in femto-second scale

[17]. Frequency combs using supercontinuum generation can enable high resolution spectroscopy

from the study of the composition of extrasolar planets to forensic science investigations [18, 19].

Because of the cost effective and compact size considerations, fiber-based supercontinuum light

source has the potential to enable even more exciting applications in optical imaging. The broad-

band supercontinuum generation in photonic crystal fiber (PCF) from extreme spectral broadening

based on intense nonlinear light-matter interactions was discovered in early 2000s [20, 21, 22, 23].

The unique capability for dispersion engineering in PCF and highly effective nonlinearity have made

the PCF an excellent medium for broadband supercontinuum generation.

In my PhD research, I have investigated optical imaging in scattering media using a po-

larimetry technique with orthogonal polarization analyzers to improve image contrast. In addition,

I studied a structured light illumination technique to achieve Fourier domain optical imaging by

acousto-optically modulating the optical light illuminated on an object and detecting the scattered

light with a single pixel detector. This technique has the potential to improve optical penetration

depth for optical imaging into the scattering medium through a mechanism analogous to coher-

ence gating, and for this technique a broadband supercontinuum light source is highly desirable. I

conducted experiment to demonstrate an octave-spanning supercontinuum from a highly nonlinear

PCF using dispersion-compensated femtosecond pulses from an ultrafast mode-locked Ti:Sapphire

laser. In the experiment, I discovered both the spectral and polarization characteristics of the

supercontinuum can be directly controlled by varying a polarization launched into the fiber. To

gain physical insights, the polarization dynamics of this laser source was investigated theoretically

using a vectorized generalized nonlinear Schrödinger equations (GNLSE) for both isotropic and

anisotropic PCF fibers. The Raman scattering induced spectral shift caused by the different inci-
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dent state of polarizations is revealed through the simulations. The polarization trajectories of the

shifting Raman soliton-like spectrum was extracted from the simulation and it is found to be a rich

and dynamic process which are visualized on a Poincaré sphere. A polarization separatrix is found

for supercontinumm generation when light is propagating in a birefringent PCF. However, most

of the previous works for the supercontinuum light source are focused on polarization dynamics

of light propagation in a linearly birefringent fiber. In my PhD work, I also investigated light

propagation in a circularly birefringent fiber medium using the GNLSE and the Poincaré sphere

representation. The numerical simulation reveals a surprisingly simplified polarization evolution for

this circularly birefringent PCF. If twisted fiber waveguide can be made to create such a circularly

birefringent medium, a circularly polarized broadband supercontinuum source can be employed to

potentially improve optical imaging in scattering medium.

The thesis chapters are organized as follows:

Chapter 2 presents the background and theories for light propagation in scattering medium.

The challenges of optical imaging in scattering medium and optical properties of scattering medium

will be discussed. Mie and Rayleigh scattering will be analyzed using scattering matrix approach.

Polarimetry imaging techniques in scattering medium using Stokes and Mueller matrix will be

reviewed. In addition, polarization memory effect for circularly polarized light will also be discussed.

Chapter 3 describes biologically inspired polarization gated imaging in scattering medium.

Resolution image improvement using polarization difference polarimetry for both Mie and Rayleigh

scatterings will be presented using the derived analytical models based on point spread functions.

Furthermore, the scattering coefficients of scattering phantom are measured and polarization-gated

imaging in the scatter phantom is demonstrated for image contrast enhancement.

Chapter 4 discusses structured light illumination microscopy which is developed for op-

tical imaging in scattering medium. Topics will be described includes Fourier synthesis of ob-

jects and Moiré pattern formation, acousto-optic devices for active illumination, the experiment of

polarization-interferometric structured light illumination microscopy, and signal reconstruction us-

ing the matched-filter algorithm. Using a broadband light source, optical penetration depth can be
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improved through coherence gating, hence through the theoretical simulation performed recently,

a broadband supercontinuum light source is highly desirable for our optical imaging application.

Chapter 5 describes the experiments of polarization-controlled octave-spanning supercon-

tinuum generation in a photonic crystal fiber with dispersion-compensated femtosecond pulses from

an ultrafast Ti:Sapphire laser. Background of supercontinuum generation will be reviewed. In ad-

dition, a polarization rotation system for supercontinuum laser source using dielectric mirrors to

increase the repetition rate will be presented. The observation of polarization dynamics of the su-

percontinuum generation motivates further numerical investigations of the polarization dynamics

of supercontinuum generation.

Chapter 6 presents numerical investigations for the polarization dynamics of the super-

continuum laser source. The detailed theoretical background and derivations of supercontinuum,

including the nonlinear effects and polarization instability in birefringent fiber will be discussed in

detail. The coupled nonlinear Schrödinger equations are numerically solved using the symmetric

split-step Fourier method. The numerical algorithm using eigen-polarization basis switching will be

presented as well as discussions and comparisons of the critical Raman response function including

the anisotropic response part for modeling the supercontinuum.

Chapter 7 focuses on the analysis of the numerical simulation results for both linear and

elliptical input polarizations for soliton fission and the polarization evolution of the Raman soliton.

Polarization dynamics represented on the Poincaré sphere reveal the presence of a polarization

separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman

solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is also

investigated and found to simplify the nonlinear polarization dynamics. The circularly polarized

Raman soliton in scupercontinuum generation could become a new stable, tunable, and broadband

light source for polarization-sensitive optical imaging in a scattering medium.

Chapter 8 summarizes the thesis and provides an outlook for future research.



Chapter 2

Polarized light propagation in scattering medium

2.1 Motivation and challenges of optical imaging in scattering medium

Light is one of the most useful probe for investigating complex scattering media at the

mesoscopic level. However, due to the inhomogeneous distribution of refractive index in complex

medium such as biological tissues, multiple optical scattering can severely degrades optical image

quality. The most common type of scattering medium is biological tissue. However, the issue

of optical scattering exist not only in biomedical imaging, but also in transportation, navigation,

forensic science, remote sensing and planetary atmospheric science, and some example environments

are shown in Figure 2.1 (a) to (e). In this chapter, I review light propagation and interaction in

optical scattering medium for biological tissues and compare optical absorption and scattering in

a biological tissue model.

I first review to Mie and Rayleigh scattering and use the Mie scattering coefficients to derive

and simulate the scattering probability function for various particle sizes. Polarization imaging in

scattering medium is of special interest to my research. Stokes parameters and Mueller scattering

matrix will be presented and previous research for polarimetry imaging in scattering medium in-

cluding planet surface imaging will be analyzed. The Stokes parameters presented in the chapter

forms the basic tools that will be used for the numerical simulation of polarization dynamics of

light source using vectorized generalized nonlinear Schrödinger equations (GNLSE).
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Figure 2.1: Scattering medium in nature. From (a) to (e): undersea water, fog in a forest,
turbid biological tissue, smog in a city and remoate ssensing in atmospheric science. Small scale
particle picture for two main types of scattering: (f) Rayleigh scattering for small particle and Mie
scattering for large particle, (g) Cartoon illustrating possible photon propagation experience in a
typical scattering and absorptive medium.

2.2 Overview of optical properties of scattering medium

Biological tissue is a highly heterogeneous and complex medium which can interact strongly

with optical radiation. A biological tissue can be treated as a collection of scatterers, absorbers and

sometimes even fluorophores. The average refractive index of biological tissues is typically higher

than that of air which causes partial Fresnel reflection at the interface of tissue and air [24]. Due

to the randomly varying size, shape and density of cell, fibers and organelles, the relative refractive

index varies in space and time and this can significantly affect the propagation of light in such

complex medium.

When propagating in a biological tissue, the optical wave can experience structures with

dimensions ranging from the width of a protein macromolecule (typically 50 to 100 nm), to the

diameter of the body of a biological cell (typically 2 to 50 µm), to the length of a blood vessel
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(typically > 100µm). Biological tissue can be viewed crudely as a material consisting of cells

that reside in and attached to an extracellular matrix [25]. In terms of mass, most biological

tissue generally consists of water (about 55 to 99%) and collagen (about 0 to 35%).Therefore,

because most biological tissues consists of structures with varying sizes, it can be modeled as

a random distribution of refractive index which varies spatially. Indeed, the choice of modeling

biological tissue highly depends on the shape and structure of the tissue understudy, as well as

the characteristic of lighting scattering in the tissue medium. Interestingly, it was demonstrated

that the structure of the refractive index inhomogeneities in a variety of biological tissues resembles

that of frozen turbulence in the atmosphere by using phase contrast microscopy [26]. The results

obtained are fundamental for understanding light propagation in tissue and may provide clues

about how tissues develop and organize.

For biological media that consists of discrete particles, such as blood, another approach for a

tissue model is to represent the medium as a collection of discrete scattering particles. In particular,

for blood cells the shapes are very similar to spheres or ellipsoids, hence the Mie theory can be

used to describe the diffraction of light from these spherical particles[27, 28].

2.2.1 Optical scattering and absorption

When interacting with particles in a scattering medium, the incident photon can experience

various possibilities. As shown in Figure 2.1 (g), it can be reflected, back-scattered, multi-scattered,

absorbed, red-shifted (fluorescent) or transmitted without having been scattered. When a light

beam propagates in a thin layer of tissue medium with thickness d, the transmitted intensity obeys

the exponential Bouguer-Beer-Lambert law which is given by [29]:

Itrans(d) = (1−RF )Iine
−µtd (2.1)

where Itrans(d) is the intensity of transmitted light (W/cm2), RF is the Fresnel reflection coefficient

(Note when the light beam is at normal incidence, RF = (n−1
n+1)2, where n is the relative average

refractive index of the tissue medium), Iin is the incident light intensity (W/cm2), and the extinction
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coefficient µt (cm−1) is given by µt = µa + µs. µt is also referred to as the total attenuation

coefficient. Optical absorption in biological tissue originates mainly from hemoglobin, melanin

and water, and it can be represented by the absorption coefficient µa, which is defined as the

probability of photon absorption in a medium per path length. (In an absorption dominated

medium, the optical radiation is attenuated obeying dIin
z = −µaIin, and z is the distance of light

propagation. Hence, optical absorption exponentially attenuate the optical radiation given by

Beer’s law: Itr(z) = Iine
−µaz and la = 1

µa
, where Itr is the transmitted intensity after going

through the absorptive medium, and la is the mean absorption length which represents the average

distance traveled by a photon before being absorbed.) However, most biological tissues are instead

dominated by strong optical scattering because the optical absorption is relatively weak in the

absorption window of 600 - 1350 nm [4].

Figure 2.2: Absorption and reduced scattering coefficients for various tissue types. Results are
simulated using software developed at Beckman laser institute.

Optical scattering is represented by the scattering coefficient µs, which is defined as the

probability of photon scattering in a medium per path length. Similar to optical absorption, optical

scattering exponentially reduces the transmitted optical intensity given by Beer’s law: Itr = Iine
−µsl

and ls = 1
µs

, where ls is the scattering mean free length. In the presence of both absorption and
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scattering, the mean free path between interactions in the tissue medium is given by lph = 1
µt

. The

average scattering cross section per scattering particle is given by [30]: σsc = λ2

2π
1
Iin

∫ π
0 I(θ)sinθdθ

, where Iin is the intensity of the incident light, I(θ) is the intensity of the angular distribution of

the scattered light, and θ is the scattering angle. Note for isotropic scattering, σsc is independent

of the polarization and direction of the incident light. Another important parameter of scattering

is the anisotropy factor g, which is the mean cosine of the scattering angle θ given by,

g = 〈cos(θ)〉 =

∫ π

0
p(θ) cos(θ) 2π sin(θ) dθ (2.2)

where 〈 〉 is the expectation value operator, p(θ) is the so called phase function and represents the

probability of being scttered by an angle θ (which can be approximated with Henyey-Greenstein

function) and it depends on the scattering angle. g varies between −1 and 1. g = 0 represents

isotropic (Rayleigh) scattering, g = 1 represents total forward (Mie) scattering, and g = −1

represents total backward scattering. Most biological tissue is forward scattering which means

g is around 0.7 - 0.9. Given g, the reduced scattering coefficient including the effect of g can be

written as,

µ,s = µs(1− g) (2.3)

ls
‘ =

1

µ‘
s

(2.4)

where ls
‘ is the transport scattering length, which represents the propagation distance of collimated

light beam travels in a scattering medium before becoming isotropically distributed with uniform

probability of propagating in any direction [31].

As shown in Figure 2.2, the scattering coefficient decreases as wavelength increases. With

increasing Rayleigh scattering, the reduced scattering coefficient is enhanced more in the short

wavelength. Comparing the absorption and scattering, scattering has a much larger influence for

light-tissue interaction than absorption in the optical window of 600 to 1200 nm. As an example,

light will be mostly scattered after going through two to three transport scattering lengths. Notice

both scattering and absorption are wavelength dependent in a biological tissue. However, absorption
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is low in red and NIR wavelengths (650 nm to 1100 nm) where scattering has the dominating

magnitude, i.e. µ,s � µa. For the wavelength windows of 450 nm to 650 nm in the plot, we see

µ,s ∼ µa. (As can be seen later in Figure 2.3, the typical reduced scattering length in biological

tissue is 101 - 102 cm around the visible and near infrared wavelength region, while the typical

absorption length is 10−3 - 101 cm in the same wavelength region.) Hence, optical scattering is

often the most dominating and challenging problem for light propagation in biological tissue.

Despite the extreme diversity and structural complexity of biological tissue, from an optics

point of view, biological tissue can be broadly classified to highly scattering (such as brain, skin,

blood, breast, vessel wall and lymph) and weakly scattering tissues (crystalline lens, cornea and

vitrorous humor). In a highly scattering medium, photons that experience multiple-scattering are

referred to as diffused photons while in a weakly scattering medium, photons that experience no

scattering are referred to as ballistic photons. There has been significant progress made to combat

the scattering problem for imaging in turbid medium.

2.3 Polarized light in scattering medium

In the previous section, we considered the fundamentals of light propagation in scattering

and absorptive medium. However, we assumed isotropic scattering medias. The vectorial nature

of light can also play a role in optical imaging and light transportation in a scattering medium.

Many researchers have assumed that photons become quickly depolarized in a random scattering

medium. However, even in a relatively thick tissue structure, the degree of polarization (DoP) can

still be measured for a wide variety of tissue types, such as eye cornea, cartilage, superficial skin

tissue, tendon, collagen fibers, bone, nerves, teeth, myelin, and mucous membrane [5].

Many biological tissues are optically anisotropic because of the form birefringence of certain

fibrous structures that form the extracellular medium. Form birefringence can be caused by the

parallel cylinders in some tissue which effectively form a uniaxial optically birefringent structure,

which can modify the state of polarization (SoP) of light as it propagates through these tissues. In

addition the depolarization of light as it propagate through certain tissues can reveal interesting
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structural informations, by manipulating the degree of polarization (DoP) of the incident light, some

particular SoPs can be maintained better than depolarized or other SoPs for light propagation in

scattering medium.

2.3.1 Mie scattering and Rayleigh scattering

The Rayleigh and the Mie theory can be used to model the scattering of a plane monochro-

matic wave by a single particle. However, Rayleigh theory models the scattering of incident light

by particles much smaller than the wavelength. Mie theory is applicable to isotropic particles of

any size [4].

By taking into account the Mie and Rayleigh scattering and absorption in the tissue, a realistic

and generic tissue model can be represented as shown in Figure 2.3. As shown in the figure, the

average blood volume fraction is 0.2%. The total fat and water volume fraction is 70% and the

volume fraction of fibrous material is about 30%. Note as the fat content changes from 70% to 0%

by 10%, the water content changes from 0% to 70% by 10%. In Figure 2.3b), the generic effective

scattering coefficient is plotted. The scattering due to Mie scattering is represented as blue lines.

Then the scattering due to Rayleigh scattering is added to the model and are shown as red lines. The

wavelength dependence of the scattering coefficient can be described in terms of contributions from

both Mie and Rayleigh scattering [32]. It can be represented by the following equation which was

obtained by fitting to the experimental data for several type of tissues including dermis, epidermis,

bone, breast, liver, brain, cortex, heart wall, kidneys, lung and whole blood [33, 34, 35, 36]:

µs′(λ) = a′

(
fRayleigh

(
λ

500(nm)

)−4

+ (1− fRayleigh)

(
λ

500(nm)

)−bMie
)

(2.5)

where µs′ is the reduced scattering coefficient, λ is the wavelength, a′ is a scaling factor, bMie is

the scattering power of Mie scattering. In particular, bMie describes the wavelength dependence

of the reduced scattering coefficient µs′, and the typical value of bMie for skin it is between 0.7

and 2.5, for brain it is between 0.3 and 3.2, for bone is between 0.1 and 1.4 [32, 34, 33, 36]. This

equation provides a good fit to wavelength dependence of the scattering coefficient of biological
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tissue scattering for studying the behavior of light diffusion in the optical window of 400 to 1300

nm, particularly for skin, brain, breast, bone, fibrous tissues and fatty tissues [32].

Figure 2.3: Absorption and reduced scattering coefficients for a generic tissue model. a) Absorption
coefficient. Red lines: oxygenated blood, pink lines: high fat, blue line: high water. b) Reduced
scattering coefficient. Blue lines: Mie scattering, red lines: Mie and Rayleigh scattering. Adapted
from [32].

Following [37], Rayleigh theory can be summarized as the follows. If we assume a linearly

polarized incident field plane wave propagating in z with the transverse electric field in the x-y

plane,

~E0(x, y, z, t) = (Exx̂+ Eyŷ)ei(ωt−kz) (2.6)

where ~E0 is the incident electrical field phasor, ω is angular frequency, k = ω
c is the wave vector

and t is time, then the induced oscillating dipole moment can be written as,

~p = ¯̄α ~E0(x, y, z, t) =

 αxx αxy

αyx αyy


 Exx̂

Eyŷ

 ei(ωt−kz) + c.c. (2.7)

where ¯̄α represents polarizability tensor of the particle which is the proportionality between the

dipole moment ~p and incident the electric field ~E0, k = 2πn
λ is the propagation constant in the

medium, n is the refractive index of the medium and λ is the wavelength in vacuum. The com-

ponents of the polarizibility tensor ¯̄α may depend on frequency and maybe complex. The electric
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field of the scattered light in the far field is [4, 37],

~Esc(~r, t) =
e−ikr

4πr

k2|~p|sinγ
r

p̂eiωt + c.c. (2.8)

where γ is the angle between the direction of the scattered light and the direction of the dipole

oscillation. Therefore, the intensity of the scattered light can be derived as,

Isc =
| ~Esc|2

η0/n
=
k4|~p|2sin2γ

16π2r2
=
k4|α|2sin2γ

16π2r2
I0 (2.9)

where I0 is the intensity of the incident light, η0 is the impedence of free space and n is the refractive

index. On the other hand, Mie theory is a rigorous solution of Maxwell’s equation for a plane wave

scattered by a sphere. Mie scattering can model the scattering of light from particle of any size

with plane wave illumination. The particle should be isotropic and homogeneous. The plane wave

assumption is valid when the particle and the wavelength are both much smaller than the wavefront.

The derivation of Mie theory should include solving the Maxwell’s equations for fields both inside

and outside the sphere and then apply boundary conditions to solve for the undetermined Mie

coefficients for the solutions from the Maxwell’s equations. To gain physical insights to how the

scattering behaves as the size and optical properties of the particle and its surrounding environment

varies, the expressions for the Mie scattering coefficients should be explained. The Mie scattering

coefficients are represented as an and bn respectively and are defined as [30],

an =
mψn(ms)ψ

′
n(s)− ψn(s)ψ

′
n(ms)

mψn(ms)ξ′n(s)− ξn(s)ψ′
n(ms)

(2.10)

bn =
ψn(ms)ψ

′
n(s)−mψn(s)ψ

′
n(ms)

ψn(ms)ξ′n(s)−mξn(s)ψ′
n(ms)

(2.11)

The an and bn coefficients will be used to solve the scattering functions Ssc1 and Ssc2 in Eqn

2.24. Note m is the refractive index of the sphere relative to the background medium, s is the size

parameter defined as s = ka, a is the radius of the sphere and k is the wave number and,

ψn(ms) = msjn(ms) (2.12)

ξn(s) = sh(1)
n (s) (2.13)

h(1)
n (kr) = jn(kr) + yn(kr) (2.14)
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where r is the radius in spherical coordinates. Furthermore,

h(1)
n (kr) = jn(kr) + iyn(kr) (2.15)

is the spherical Hankel function and

jn(kr) =

√
π

2kr
Jn+0.5(kr) (2.16)

yn(kr) =

√
π

2kr
Yn+0.5(kr) (2.17)

are the spherical Bessel functions, and J and Y are the Bessel functions of the first and second

kind evaluated at half integral order.

In general, there are two more Mie coefficients cn and dn, however they’re needed only when

the electric field inside the particle is of interest, hence only an and bn is needed for the Mie

simulation model that will be investigated in the next section. For optical imaging in scattering

medium shown in Fig 2.1, it becomes crucial to obtain a theoretical model to investigate the

scattering behaviors from various particle sizes and refractive indexes. From Mie theory, the detailed

shape of the angular scattering pattern can be visualized. This is a useful tool to gain insights to

the scattered far field diagram as a function of particle size and the relative refractive index to

the background medium. The scattering probability function can be used to infer the size of the

scattering particles in biological tissue, under-sea, smog and atmosphere of planets. In the next

section, the derivation of the angular scattering functions will be discussed using the Mie coefficients

and the scattering probability functions will be plotted for single particles with various sizes and

index of refractions.

2.3.2 Theory of polarized light propagation in scattering medium

To completely understand the scattering effects, Maxwell’s equations and the resulting vector

wave equations are a good starting point for the rigorous electromagnetic wave modeling of the

scattering from an atomic dipole or spherical particle although scattering from arbitrary shaped

nano-particles is challenging to model rigorously. When extending this analysis to scattering from
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dense distributions of randomly shaped particles as encountered in tissue, ocean or atmosphere,

then various statistical averaging techniques will need to be employed. Hence we begin here with

the single particle case. Electromagnetic radiation obey the vector wave equations and can be

written as,

∇2E + k2E = 0 (2.18)

∇2H + k2H = 0 (2.19)

where k is the wave number k2 = ω2εµ, ε is the electric permittivity, and µ is the magnetic

permeability. E and H represents the spatial-temporally varying electric and magnetic vector

fields, respectively.

When a monochromatic plane wave of light is incident on a single particle, a scattering field

will be produced and the direction of scattering can be defined as θ and φ. The scattering geometry

and coordinate system is plotted in Figure 2.4. A particle scatters a polarized incident plane wave

where z is defined by the propagation direction of the incident light. The x̂, ŷ and ẑ are the

orthogonal basis vectors in the positive x, y and z Cartisian coordinates. The scattering plane is

defines by the scattering direction k̂r and the forward light propagation direction ẑ. The electrical

field of the incident wave can be written as,

Ei = E‖i + E⊥i = E‖i k̂‖i + E⊥i k̂⊥i (2.20)

where E‖i is the parallel and E⊥i is the perpendicular component of the incident electric field to

the scattering plane, respectively. k̂‖i and k̂⊥i are the orthogonal basis vectors defined as parallel

and perpendicular to the scattering plane respectively (shown in Figure 2.4). Hence, k̂‖i = ẑ×k̂⊥i
|ẑ×k̂⊥i|

,

and k̂⊥i = ẑ×k̂r
|ẑ×k̂r|

. Then the relationship between the scattered and the incident electric field can

be derived as the following [30, 38, 39, 40, 41, 5, 42]: E‖sc

E⊥sc

 =
eikr

−ikr
¯̄Ssc Ei =

eikr

−ikr

 Ssc2 Ssc3

Ssc4 Ssc1


 E‖i

E⊥i

 (2.21)

where r is the distance from the single scatterer to the detector, n is the index of refraction of
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Figure 2.4: Scattering coordinate system. (x̂, ŷ, ẑ) is the orthogonal basis vector along Cartisian
coordinate system of (x, y, z). The incident propagates in the k̂zi direction, k̂⊥i and k̂‖i are the
orthogonal basis vectors for the incident light, and . The scattering particle is located at the origin
of (x, y, z). k̂r is the scattering direction, k̂⊥s and k̂‖s are the orthogonal basis vectors for the
scattered light. θ is the scattering angle and φ is the azimuthal angle.

the scattering medium. The complex scattering matrix is given by ¯̄Ssc =

 Ssc2 Ssc3

Ssc4 Ssc1

. The

two angular scattering functions Ssc1 and Ssc2 describe the scattered field Esc. Hence the vector

scattered far field in spherical coordinates is given by,

Esθ(r, θ, φ) =
eikr

−ikr
cosφ Ssc2(cosθ) (2.22)

Esφ(r, θ, φ) =
eikr

ikr
sinφ Ssc1(cosθ) (2.23)



17

while the scattering functions can be written as the following,

Ssc1(cosθ) =
∞∑
n=1

2n+ 1

n(n+ 1)
(anπn + bnτn) (2.24)

Ssc2(cosθ) =

∞∑
n=1

2n+ 1

n(n+ 1)
(anτn + bnπn) (2.25)

πn and τn are defined as [30],

πn =
2n− 1

n− 1
cos(θ)πn−1 −

n

n− 1
πn−1 (2.26)

τn = n cos(θ) πn − (n+ 1) πn−1 (2.27)

Because we know the Mie coefficients an and bn coefficients from Eqn. 2.10, the scattering

amplitudes Ssc1(θ) and Ssc2(θ) can be solved. Once Ssc1(θ) and Ssc2(θ) are known, the probability

of scattering at an angle can be calculated after converting the amplitude scattering functions to

flux scattering functions by magnitude squaring the complex amplitude. The scattering probability

functions can be simulated using MATLAB [43]. I extended the original MATLAB program by

including both the parallel and perpendicular polarization scattering probability functions instead

of only the unpolarized one. The simulated angular scattering probability functions are plotted in

Figure. 2.5 a) to f), for spherical particle sizes of 10 nm, 50 nm, 100 nm, 200 nm, 300 nm and

1000 nm, it results in size parameter of s = 0.148938 to 14.8938 (s = 2πma
λ , where m is the relative

refractive index and a is radius of the particle.) The incident wavelength is 632.8 nm and the

relative refractive index is assumed to be 1.5 for the spheres and the surrounding environment. As

can be seen, the scattering probability functions depend on both the size of the particle relative to

the wavelength and the relative refractive index. The scattering functions for parallel (red lines),

perpendicular (blue lines), and average or unpolarized (black lines) polarized light are plotted for

various real relative refractive indexes and particle sizes. We see in a) for a very small particle, the

normalized angular scattering for unpolarized illumination is more isotropic while the scattering

probability functions for the perpendicular and the parallel polarizations are distinct. The back-

scattering for the unpolarized, perpendicular and parallel cases is more pronounced. While for a

larger particle as shown in c), d), e) and especially f), the two orthogonal polarization scatterings
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Figure 2.5: Scattering probability function simulation for parallel (red line), perpendicular (green
line) and unpolarized light (black dashed line) for various particle sizes. As the particle size increases
from 10 nm, 50 nm, 100 nm, 200 nm, 300 nm to 1000 nm relative to the wavelength of 632 nm, the
scattering probability becomes more concentrated in the forward direction for both parallel and
perpendicular polarizations.

are nearly indistinguishable and forward-scattering dominants over back-scattering. The amount

of back-scattering for this case is very small compared to the more isotropic scattering environment

shown in a) for unpolarized illumination.
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2.4 Polarization imaging in scattering medium using Stokes parameters and

Mueller scattering matrix

Besides wavelength, coherence and intensity, polarization is one of the primary physical quan-

tities associated with light. Polarization information using polarimetric imaging can reveal details

about surface features, shape, shading and roughness with high contrast, which is largely uncorre-

lated with spectral or intensity images [44]. Polarization imaging has been demonstrated to be a

powerful method to improve image contrast, aid with navigation, improve under-sea imaging, in-

vestigate biological tissue properties, and identify targets in scattering environments. Polarimetric

Figure 2.6: Polarimetric imaging for investigations of planets using Stokes parameter measure-
ments. (a) Image of southern hemisphere of Mercury taken in 1974 by NASA spacecraft Mariner
10, adapted from [45]. (b) Fraction of circular polarization generated from unpolarized illumination,
adapted from [46]. Table: degree of polarization, adapted from [47]

observations of the atmosphere and surface feature of the planets including Venus, Mars, Jupiter

and Earth has been investigated since late 1960s. A first and most extensive set of polarized im-

ages of the Earth was obtained from space in 1986 using remote sensing polarization experiment

[48]. By measuring and computing the Stokes parameters, a more distinct surface properties of

the Earth was imaged in degree of polarization rather than in conventional intensity image alone.

As shown in Figure 2.6, using earth based polarimetric telescopes, the research demonstrated a
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high resolution optical polarimeter to determine and map the circular polarization scattered from

the surface of Mercury by imaging the planet’s surface using unpolarized illumination from the

sun. The polarimeter is capable of detecting the enantiomorphism of surface crystal and mineral if

combined with an in situ sensor.

Scattering poses a challenge for optical imaging in scattering environments such as fog, un-

derwater, atmosphere and biological tissues. It is thus critical for an imaging system to discriminate

a target from the background scene or to increase depth of sensing in the scattering medium. The

many real world applications includes optical imaging, coherence tomography, discrimination of

short-path photons in a highly scattering environment, enhancing detection range in scattering

medium and imaging objects in turbid media. In this section, I will focus on polarization imaging

in scattering media by reviewing and discussing various types of polarization imagers.

2.4.1 Contrast improvement with variable polarizer

The simplest type of imaging polarimetry is a one-dimensional polarimeter that has been

investigated for under-water imaging to suppress scattering using linear and circular polarizers for

both unpolarized and polarized illumination. The one-dimensional means only one polarizer is

used in front a camera. Then we can adjust the polarization state of the polarizer to maximize

the contrast between the object and the background, which is often used in photography. Note

depending on the scattering environment, either circular or linear polarizer can be used, and the

state of polarization should be orthogonal to the polarization of the background in order for it to

optimize the contrast of the object to the background.

2.4.2 Full Mueller matrix imaging polarimetry

While Jones vector represents polarization assuming pure polarized light (DoP = 1), Stokes

parameter provide an even more useful tool for a systematic analysis of both the state of polar-

ization and degree of polarization. The Stokes parameters may be determined from experiments.

Polarimeters based on intensity measurements of polarized light more often uses Stoke parameters
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which is given by the following,

S =



S0

S1

S2

S3


=



IH + IV

IH − IV

I+45 − I−45

IRHC − ILHC


=



〈EHE∗H + EVE
∗
V 〉

〈EHE∗H − EVE∗V 〉

〈EHE∗V + EVE
∗
H〉

〈i(EHE∗V − EVE∗H)〉


(2.28)

where S0, S1, S2 and S3 are the Stokes parameters satisfying S2
0 ≤ S2

1 +S2
2 +S2

3 , and S0 represents

the intensity of the light. EH and EV are the stochastically time varying horizontal and vertical elec-

tric field components with respect to the laboratory x, y, z frame, and <> is an expectation value

computed with a time average. The ∗ sign indicates the complex conjugate and the angle brackets

represents time averages. The measurement of the Stoke parameter can be obtained with 6 inde-

pendent intensity measurements using 4 linear polarization analyzers to obtain IH , IV , I+45, I−45,

and 2 circular polarizers to obtain IRHC and ILHC , respectively. Jones vector J and Stokes param-

eter S are related by S = J∗ ¯̄AiJ, where ¯̄Ai =

 1 0

0 1

 ,

 1 0

0 − 1

 ,

 0 1

1 0

 ,

 0 − i

−i 0

,

and ∗ represent complex conjugate. (For monochromatic plane wave traveling in the z direction,

its complex envelopes can be written as Ex = axe
iφx and Ey = aye

iφy for the x and y components.

The complex fields can be written in the form of Jones vector as J =

 Ex

Ey

.) In addition, the

DoP can be represented in terms a Stokes parameter as,

DoP =

√
S2

1 + S2
2 + S2

3

S0
(2.29)

DoP = 1 for polarized light, DoP < 1 for partially polarized light, DoP = 0 for completely

unpolarized light. Furthermore, the degree of linear polarization (DoPL) and the degree of circular

polarization (DoPC) can be defined as:

DoPL =

√
S2

1 + S2
2

S0
(2.30)

DoPC =
S3

S0
(2.31)
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On the other extreme, a complicated polarimetry imaging method can be applied to measure all

the 16 elements in the Mueller matrix (or a subset of the matrix for the back-scattered light).

The controlled light source generates a combination of state of polarizations and the detector is

configured to measure the full Stokes parameter (or a subset of it). For the most sophisticated

type of Mueller imaging polarimeter, the Mueller matrix is measured for each pixel for the light

reflected or back-scattered. The polarization of the scattered light in the far field can be described

by the Mueller matrix Msc that transforms the incident to the scattered Stokes parameters,

Sout = MscSin =



M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44





S0

S1

S2

S3


=



S0out

S1out

S2out

S3out


(2.32)

where Sin is the input Strokes parameter and Msc is the Mueller scattering matrix [30] and its

components are related to the scattering matrix components (Ssc1, Ssc2, Ssc3 and Ssc4) in Eqn 2.21

by the following,

M11 =
1

2
(|Ssc1|2+|Ssc2|2+|S3sc3|2+|Ssc4|2), M12 =

1

2
(|Ssc2|2−|Ssc1|2+|Ssc4|2−|Ssc3|2)

M13 = Re {Ssc2S∗sc3 + Ssc1S
∗
sc4} , M14 = Im {Ssc2Ssc33∗ − Ssc1S∗sc4}

M21 =
1

2
(|Ssc2|2−|Ssc1|2−|Ssc4|2−|Ssc3|2), M22 =

1

2
(|Ssc2|2+|Ssc1|2−|Ssc4|2−|Ssc3|2)

M23 = Re {Ssc2S∗sc3 − Ssc1S∗sc4} , M24 = Im {Ssc2S∗sc3 + Ssc1S
∗
sc4}

M31 = Re {Ssc2S∗sc4 + Ssc1S
∗
sc3} , M32 = Re {Ssc2S∗sc4 − Ssc1S∗sc3}

M33 = Re {Ssc1S∗sc2 + Ssc3S
∗
sc4} , M34 = Im {Ssc2S∗sc1 + Ssc4S

∗
sc3}

M41 = Im {S∗sc2Ssc4 + S∗sc3Ssc1} , M42 = Re {Ssc2S∗sc4 − Ssc1S∗sc3}

M43 = Im {Ssc1S∗sc2 − Ssc3S∗sc4} , M44 = Re {Ssc1S∗sc2 − Ssc3S∗sc4}

(2.33)

Usually all the 16 elements of scattering matrix should be measured in order to completely char-

acterize the effect that scattering sample has on various input states of polarization in order to

characterize its physical properties. Generally this would require exciting the scattering sample
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Figure 2.7: Experimental and Monte Carlo Mueller scattering matrix. Each image size is about
1.6cm×1.6cm. Each individual image is represented by a combination of two letters which denotes
the orientation of input and output polarization analyzers. H: horizontal, V: vertical, R: right hand
circular, L: left hand circular, P: +45o, M:-45o and O: open polarization optics or none. Adapted
from [49]. Note typographical errors were corrected for the following elements: S14 = RO − LO,
S22 = (HH+V V )−(HV +V H), S23 = (PH+MV )−(PV +MH), S24 = (RH+LV )−(RV +LH),
S32 = (HP+VM)−(HM+V P ), S33 = (PP+MM)−(PM+MP ), S34 = (RP+LM)−(RM+LP ),
S41 = OR − OL, S42 = (HR + V L) − (HL + V R), S43 = (PR + ML) − (PL + MR) and
S44 = (RR+ LL)− (RL+ LR) [50].

with light having different state of polarizations such as H,V,+45o,−45o, RHC,LHC. For each

incident polarization, the scattered light is analyzed with different analyzer configurations, such as

PH , PV , P+45o , P−45o , PRHC , PLHC , and assembling the Mueller matrix coefficients for thesis mea-

surements. However, these 16 elements are determined through four complex parameters and the

resulting Mueller Jone matrix is not general and can not represent depolarization, hence it does

not require all 16 elements, only 7 is required.

In Imaging polarimetry, these measurements are made for every pixel in a two-dimensional

image. Here we discuss the Mueller matrix imaging polarimetry through a scattering sample for the
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case of a single focused spot through a scattering media. As shown in Figure 2.7, the experimental

and Monte Carlo Mueller spatially varying scattering matrix are compared for polarized light

illumination on tissue-like scattering phantom [49]. The phantom is composed of a suspension of

2µm polystyrene spheres suspended in water (µ
′
s ≈ 12cm−1, g ≈ 0.912 and µa ≈ 0). To measure

the 16 Mueller scattering matrix elements, 49 images were taken at different combinations of input

and output state of polarization for the analyzers. The details of the combinations are indicated

in the figure. In the study presented in [49], each image were taken with a 12-bit cooled CCD

camera with exposure time of 1.7 s to average out the speckles induced by the laser as the spheres

moved around in the water which generally has an estimated correlation time on the order of about

10 ms. The results show excellent agreement between the experiment and the computation of the

Mueller scattering matrix based on Monte Carlo method. (The Monte Carlo method relies on

discretize the scattered light and express the scattering as a sum of a large number of random

photon trajectories. Each photon trajectory starts from where the corresponding scattering took

place. There is a threshold for when the trajectory should be ignored if their contribution is

small. The Mueller scattering matrix can be then computed after the contributions of the photon

trajectories are known.) From the results shown in Figure 2.7, only 4 elements are independent (the

rest can be obtained by simple rotations), indicating fewer measurements is actually needed which

can simplify the acquisition process and speed up the experiment. To summarize the scattering

Mueller matrix components using the state of polarization notations in Figure 2.7, we can write
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the following using M as the notation of Mueller matrix elements,

M11 = OO

M12 = HO − V O

M13 = PO −MO

M14 = RO − LO

M21 = OH −OV

M22 = (HH + V V )− (HV + V H)

M23 = (PH +MV )− (PV +MH)

M24 = (RH + LV )− (RV + LH)

M31 = OP −OM

M32 = (HP + VM)− (HM + V P )

M33 = (PP +MM)− (PM +MP )

M34 = (RP + LM)− (RM + LP )

M41 = OR−OL

M42 = (HR+ V L)− (HL+ V R)

M43 = (PR+ML)− (PL+MR)

M44 = (RR+ LL)− (RL+ LR)

(2.34)

(Hence from the above relations, we can see the 4 independent elements are M11, M22, M33, M44

for this specific experiment. However, in general there should be at most 7 independent Mueller

matrix elements for a single scatterer.)

2.4.3 Polarization difference imager

To obtain high speed and polarization imaging in scattering medium, a polarization difference

imaging (PDI) technique can be used, which is an extension of the single polarizer imaging polarime-

try technique discussed in Section 2.4. Compared to the full Mueller matrix polarimetry, PDI is
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a faster and more practical technique to enhance ballistic light while suppressing multi-scattered

photons in scattering medium. It only requires two captures of intensity images for horizontal and

vertical polarization, or left hand circular and right hand circular polarization, respectively, which

is essentially the second term in the Stokes parameter shown in Equation 2.28: S1 = IH − IV ,

while the first term S0 = IH + IV corresponds to polarization sum imaging which is essentially

the conventional imaging technique used commonly. The circular polarization case corresponds to

decomposing the Stokes parameters with: S0 = ILHC + IRHC and S3 = ILHC − IRHC .

Significant contrast can be obtained using this method in scattering medium assuming there

is a difference between the polarization properties of the light scattered from the background and

the light scattered by the object. When applied for range sensing, this high speed method was

shown to improve the range detection by a factor of 2 to 3 [51, 6]. In the next chapter, I will

present experimental investigation of the PDI technique for optical imaging in scattering medium

using orthogonal linear polarization measurements.

2.4.4 Polarization memory effect of circularly polarized light in scattering medium

The polarization memory effect has been investigated since 1978 [52, 53, 54] and can be

used to enhance the visibility of an object buried within a highly scattering medium such as dense

fog or smog. This effect is based on the fact that when traveling in a scattering medium, the

weak ballistic light maintains the same or similar polarization state, hence “remembering” the

illumination polarization state, while the diffuse light loses the original polarization state and its

polarization quickly becomes randomized, hence “losing” the illumination polarization state. If we

could block the unpolarized light selectively, letting the polarized light through a polarizer, we could

see through a scattering medium. Unfortunately we can not do that and half of the unpolarized

light passes through the polarizer. But we might expect a contrast improvement by a factor of two.

The memory effect of circularly polarized light is an interesting phenomenon with potential

for improving optical imaging in scattering media. A circular polarization survival parameter can

be derived from the Stokes parameters introduced in the previous section. The Mie theory provides
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an exact solution for scattering of a plane wave by single spherical particle of any size. Recall the

scattering matrix 2.32 relating the incoming and the scattered Stokes parameters that describe the

polarization, for spherical particles, Ssc3 = Ssc4 = 0 in Equation 2.21, the matrix can be simplified

to the following form [55, 37]: Msc =



M11 M12 0 0

M12 M11 0 0

0 0 M33 M34

0 0 −M34 M33





1

0

0

1


where each scattering

matrix elements depend on the scattering angle θ and φ. Since for right hand circularly polarized

light, S0out = S3out = 1 and S1out = S2out = 0, the scattered Stokes parameter is thus the following,

Sout =



S0out

S1out

S2out

S3out


=



M11

M12

M34

M33


. Hence from Eqn. 2.31, the degree of circular polarization

for this case can be expressed as, DoPc = M33
M11

. As discussed previously, the 16 Mueller matrix

components all together provide a qualitative description of the scattering medium. Hence by

comparing two entire Mueller matrix measurements we can distinguish qualitatively two scattering

medium. By looking at each component of the Mueller scattering matrix, a more detailed analysis

of the scattering medium can be obtained. For example, the M44 term which is calculated from 4

measurements involves only circularly polarized light, as shown in the last term in Figure 2.7 where

M44 = (LL−RR)− (RL+LR). M44 is essentially a measurement of the efficiency of the medium

in maintain (for positive M44) or flipping (for negative M44) the helicity of the back-scattered light.

The measurement of M44 was performed in an investigation previously to measure optical

properties of a highly scattering medium and the results are shown in Figure 2.8. In this study, four

different sizes of polystyrene sphere suspensions were investigated (d = 204, 497, 890 and 2040nm,

where d represents the nominal mean diameters of the spheres). The illumination wavelength is

λ = 543nm from a green HeNe laser. The back-scattered light from the scattering medium was

imaged through polarization-analysis optics onto a CCD camera. A variety of intensity patterns

were observed by changing the input state of polarization and changing the analyzer to detect
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Figure 2.8: M44 obtained from 4 different polystyrene sphere suspensions. d is diameter of
the spheres in the suspension. The position is represented in terms of mean transport free path
(l

′
s=mfp′= 1

µ′s
, where µ

′
s is the reduced scattering coefficient). Courtesy of [56].

different polarization components of the back-scattered light. From Figure. 2.8, it can be seen that

M44 increases with decreasing sphere size. This indicates the larger scattering spheres flips the

helicity of the light more effectively. The larger the particle the closer resembles a mirror because

the scattering cross section is increased in which case the helicity is flipped and M44 ≈ −1. On the

other extreme, if the sphere is too small, M44 ≈ 0, and because M44 = (RR + LL) − (RL + LR)

the state of polarization of the back-scattered light should be equally RHC and LHC representing

a circular depolarization.

A rigorous simulation using Monte Carlo polarization tracking was demonstrated recently for

evolution of circularly polarized light in scattering medium [57]. The results found that linearly

polarized input light remain highly polarized for small number of scattering events but depolarize

more quickly than circularly polarized input light. Interestingly, the research also found in general,

circularly polarized light persists through a larger number of scattering events longer than linearly

polarized light in a scattering medium. Because the circularly polarized light maintains a reasonably

high degree of circular polarization and remains in a range of states close to the initial state of

polarization through a large number of scattering events especially in forward scattering geometries,

this polarization memory effect can have an interesting potential for applications in optical remote
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sensing, deepening the penetration depth for polarization resolved imaging in various scattering

media such as biological tissue, fog, smog and navigation by using a circular polarization filtering.

In addition, the Stokes parameter described in this chapter are a useful tool that will also be used

in the investigation of polarization dynamics of the supercontinuum light source development for

optical imaging in Chapters 5, 6 and 7. This polarization memory effect provides part of the

motivation for the development of such a circularly polarized broadband light source with the

potential for improving optical imaging in scattering medium.



Chapter 3

Polarization-gated optical imaging in scattering medium

3.1 Polarization-gating imaging in scattering medium

In the last chapter, we see optical scattering severely degrade image quality for a variety of

scattering situations including under-sea photography, atmospheric remote sensing and biomedical

imaging. However, several approaches have been developed to mitigate the effects of scattering

including time-resolved imaging[58, 59], optical coherence techniques[60, 59], confocal microscopy

[60] and diffuse photon imaging [33]. Although these methods can provide substantial improvements

on the depth into a scattering medium that can be imaged, they can require expensive and complex

implementations and may not be practical to use in all situations. Another category of technique for

imaging a short distance into a scattering medium relies on simple polarization sensitive detection

of the scattered light to image the embedded objects. This class of imaging utilizes differential

polarimetry discussed in Chapter 2, which is relatively easy to implement with either passive

or active illumination. It also can be combined with the aforementioned time-resolved imaging

and optical coherence techniques to further improve object detection in scattering environments.

Note in this chapter, I will refer to the conventional intensity-only imaging as polarization sum

imaging, because the intensity of light can be decomposed to vertical and horizontal eigen-states

as Itot = IH + IV as discussed in Chapter 2 for the Stokes parameter formalism.

In fact, in nature, the retina of some insects and certain birds, reptiles and fish are sensi-

tive to polarization in the environment [61]. Behavioral studies provided evidence for polarization

sensitivities in vertebrates by the change in orientation of animals as a function of incident polar-
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ization [62]. Some species of fish are also able to discriminate the direction of polarization of the

visible light in addition to intensity and wavelength [63]. This study for fish shows that different

cone mechanisms exhibit different polarization responses, and it has been found that certain double

cones are sensitive to the direction of polarization. These types of fish (for e.g., teleost fishes or

rainbow trout) are capable of detecting the polarization of light and it is generally believed their

paired retinas are arranged orderly and possess some subtle optical anisotropy and it has been pro-

posed that they may function as polarization detecters [63]. For fish with double cones, polarization

can be detected by comparison of signals from cells in double cones or between double cones with

orthogonally arranged partitions. It has been proposed that double cones are ideally situated to

functions as the input for the computation of a retinal polarization difference image. The double

cone inner segment functions as a polarization analyzer by using the geometric birefringence and

a neural network computes a local polarization difference at each point in the retina to enhance

polarization contrast [64].

3.1.1 Resolution and contrast enhancement using polarization

The point spread function (PSF) of polarization difference imaging can be compared with

intensity imaging to ascertain the theoretical resolution improvement. As illustrated in Figure 3.1,

the imaging system for computing the PSF is a 4f imaging setup that captures the radiation of

a dipole point source located in a thin slab of scattering medium. The scattering slab is assumed

infinite in x and y directions and consists of identical scatterers uniformly distributed. The dipole

source (Object O in Figure 3.1) is most relevant to a fluorescent point source emitter embedded

inside a scattering medium. The scattered electric field at a far distance is assumed to be a spherical

wave so the effect of the nth scatterer can be treated as a point source. The scatterers are assumed

to be stationary in the medium even though in many cases tissue can move. Note this is assumed

to be a single scattering medium. In addition, the effect of blurring and depolarization is the focus

of the study, hence the details of the point source and receiver interaction is omitted. The effect of

the scattering on the optical image can be determined as the following.
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Figure 3.1: 4f imaging system for computing point spread function. O: object, a thin slab of
scattering medium, P : polarization analyzer, L1 and L2: lenses, G: Fourier filter, f : focal length
of lenses.

The scattered electric field in Eqn 2.21 can be applied in this case and it is re-written as the

following,

Es =

E‖s

E⊥s

 =
eik(r−z)

−ikr

Ssc2 Ssc3

Ssc4 Ssc1


E‖i
E⊥i


By applying Fourier optics and following the theoretical derivations in [65], the field at the image

plane due to a point source can be represented as,

En
i (xi, yi) =

αeiκ(4f−zn)κ2

(λf)2

∫ ∫
O

¯̄PEn
sc(ẑ)× δ(xo − xn)δ(yo − yn)∫ ∫

G
G(xg, yg)× ei

π
λf

(x2g+y2g) × e−i
2π
λf

(xgxo+ygyo) × e−i
2π
λf

(xgxi+ygyi)dxgdygdxodyo

=
αeiκ(4f−zn)κ2

(λf)2
¯̄PEn

sc(ẑ)×F{G(xg, yg)× ei
π
λf

(x2g+y2g)}|
fx=

xn+xi
λf

,fy=
yn+yi
λf

(3.1)

where the field at the image plane due to the nth scatterer is En
i (xi, yi), δ is the Dirac delta

function, κ is a constant representing optical throughput, ¯̄P is the tranmission matrix of the

polarization analyzer placed in front of lens L1, α is an attenuation constant assumed the same

for all scatterers, En
sc(ẑ) is the scattered field of the nth scatterer in ẑ direction that is obtained

from Eqn 2.21 assuming single scattering. G(xg, yg) is the transfer function for the spatial filter

located at the intermediate Fourier plane. Note the subscripts o, g and i denotes object, filter
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and image plane respectively. This equation is simplified using two dimensional Fourier transform

using fx = xn+xi
λf and fy = yn+yi

λf as the spatial frequencies in x and y directions respectively. F

is the two-dimensional Fourier transform of the spatial functions evaluated at spatial frequencies

fx and fy. For the electric field scattered by a single scattering arrangement, we need to sum the

En
i (xf , yf ) over the scattering volume for N number of scatterers, Ei(xi, yi) =

∑N
n=1 En

i (xi, yi).

Therefore, because we are assuming uniformly distributed scatterer that are non-interacting, the

ensemble average is given by the intensity distributions which can be written as [66],

|Ei(xi, yi)|2 =

∫
V
|En

i (xi, yi;xo, yo, zo)|2ρdxodyodzo (3.2)

where ρ is the concentration of the scatterers in the medium, V is the volume of the scattering

medium, and En
i (xi, yi;xo, yo, zo) is the electric field at (xi, yi) in the image plane due to the scatterer

located at (xo, yo, zo) in the object plane. Therefore, the general PSF for the polarization sum and

polarization difference imaging technique can be represented by the following,

IPSi (xi, yi) = |EPS
i (xi, yi)|2= |Ex

i (xi, yi)|2+|Ey
i (xi, yi)|2 (3.3)

IPDi (xi, yi) = |EPD
i (xi, yi)|2= |Ex

i (xi, yi)|2−|Ey
i (xi, yi)|2 (3.4)

where Ex
i (xi, yi) = px ~Ei =

1 0

0 0

 ~Ei, Ex
i (xi, yi) = py ~Ei =

0 0

0 1

 ~Ei In general, Rayleigh scat-

tering function does not adequately model the optical scattering in many environments such as

biological tissue or milk mixture scattering phantom. For example, in a milk scattering phantom,

the fatty molecules typically range from 0.1µm to 20µm, with an average diameter between 1−3µm

[67]. This milk size distribution measurements can be seen in the plots shown in Figure 3.5. Hence,

Mie scattering function is typically used in optical scattering simulations [68].

As discussed in Chapter 2, Mie scattering approximates a more realistic scattering amplitude

for many scattering mediums in practice. To investigate the PSF distributions for a medium with

Mie scatterers, in the following I will continue to derive the PSFs for both polarization sum and

polarization difference techniques starting from [65]. The scattering amplitude functions are given
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in Eqn 2.22. Hence starting from [65] the intensities can be represented as the following,

Ixi (xi, yi) = |Ex
i (xi, yi)|2≈

1

r2
× sin2θ × cos2θ × cos2φ (3.5)

Iyi (xi, yi) = |Ey
i (xi, yi)|

2≈ 1

r2
× sin4θ (3.6)

Therefore, I can write the polarization sum and polarization difference PSFs for Mie scatterers

respectively as,

IPSi (xi, yi) = |Ex
i (xi, yi)|2+|Ey

i (xi, yi)|2 (3.7)

≈ 1

r2
× sin2θ × cos2θ × cos2φ+

1

r2
× sin4θ

IPDi (xi, yi) = |Ex
i (xi, yi)|2−|Ey

i (xi, yi)|2 (3.8)

≈ 1

r2
× sin2θ × cos2θ × cos2φ− 1

r2
× sin4θ

where (r, θ, φ) described the spherical coordinates of the position of the point with unit magni-

fication (xo = −xi, yo = yi, zo = 0) with respect to the dipole source at the origin. Then Eqn

3.7 can be transformed to Cartesian coordinates using (r =
√
x2
i + y2

i + z2
i , θ = cos−1 (zi/r) and

φ = tan−1 (yi/xi) as the following,

|Ex
i (xi, yi)|2 =

1

x2
i + y2

i

(3.9)

|Ey
i (xi, yi)|2 =

1

x2
i + y2

i

× cos2

(
tan−1

(
yi
xi

))
(3.10)

Therefore, the PSF for polarization sum and polarization difference for Mie scatterer can be repre-

sented as,

IPSi (xi, yi) =
1

x2
i + y2

i

+
1

x2
i + y2

i

× cos2

(
tan−1

(
yi
xi

))
(3.11)

IPDi (xi, yi) =
1

x2
i + y2

i

− 1

x2
i + y2

i

× cos2

(
tan−1

(
yi
xi

))
(3.12)

To compare the PSFs for the polarization difference and sum techniques, I plot the PSF distribution

functions derived in Eqn 3.11 in Figure 3.2.

As demonstrated in Figure 3.2, (a) is the PSF for polarization sum imaging and (b) is

the PSF for polarization difference imaging of a simple point source emitter. The polarization



35

Figure 3.2: Point spread function distributions for a medium of Mie scatterers. (a) Polarization
sum case (b) Polarization difference case.

difference PSF shows a narrower width compared with the polarization sum PSF distribution. The

PSF distribution for Rayleigh scatterers has been demonstrated in [65]. The results from this

Rayleigh scattering case is shown in Figure 3.3. In this study, it was found that the 3dB width for

polarization difference PSF is about half the size relative to the polarization sum PSF. Because the

Mie polarization sum and difference PSFs derived in Eqn 3.11 has a similar form relative to the

Rayleigh polarization sum and difference PSFs derived in [65], the PSFs shown in Figure 3.3 and

3.2 are very similar.

For multiple scattering environments, the single scattering analysis becomes insufficient.

However, the analysis obtained above may provide some insights into some previous investiga-

tions of using polarization sensitive methods to improve image resolution and contrast at relatively

short optical thickness [6, 51, 69]. The narrower portion of the polarization difference PSF can

be related to the enhanced detectability of objects demonstrated in [6]. This implies that the

objects with fine details, especially edges of objects, can be detected with greater resolution by

using polarization difference imaging in weak to medium scattering regime. Beyond this regime, a

probabilistic photon-tracking Monte Carlo simulation would be required to extend the analysis to

multiple-scattering regime. The probabilistic density function (PDF) for the direction of scatterer
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Figure 3.3: Point spread function distributions for a medium of Rayleigh scatterers. (a) Polariza-
tion sum case (b) Polarization difference case. Adapted from [65]

can be derived from the respective scattering functions for both Rayleigh and Mie scattering. How-

ever, for greater optical thickness (more than 10 transport mean free paths), the analysis can also

be applied for time-resolved imaging which distinguishes ballistic and multiple scattered photons

and greatly reduces the multiple-scattered light that can degrade the image.

3.1.2 Depolarization of multiple scattered light in a scattering medium

Images captured in conventional imaging systems record and measure the overall signal in-

tensity of an object. However, theoretically the recorded image can be decomposed to linearly

orthogonal eigen-polarization components. In a study presented in [70, 7], for a very strongly

scattering medium, a time-gated imaging combined with polarization difference imaging is applied

to eliminate most of the multiple-scattered photons from the PSF. Essentially the polarization

difference image functions as an additional gating mechanism to enhance the forward-scattering

light.

In the literature, the forward scattering photons is also referred to as ballistic photons, which

are the unscattered or singly scattered light that contains high resolution information of the object

for a limited imaging depth. The intensity of the ballistic light decays exponentially with the path
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length in the scattering medium that obeys the Bouguer-Beer-Lambert law discussed in Eqn 2.1,

mathematically we can write the following,

Itot(x, y) ∼ Inb(x, y) (3.13)

Ib(x, y) ∼ e−µsLItot(x, y) (3.14)

ntot(x, y) = n||(x, y) + n⊥(x, y) = σshot + σdet =
√
Itot(x, y) + σdet (3.15)

where Itot(x, y) is the intensity of the total incident light, Inb is the intensity of the non-ballistic

light and Ib is the intensity of ballistic light which decays exponentially as a function of distance

L and scattering coefficient µs. ntot(x, y) is the total noise that includes shot noise
√
Itot(x, y) and

detector noise σdet, where σ2
ntot ∼ Itot(x, y) + σ2

det. The intensities of the orthogonal polarization

components can be described by I⊥(x, y) and I‖(x, y) respectively. Hence this allows us to extract

the high resolution information encoded in the ballistic light by subtracting I⊥(x, y) from I‖(x, y)

using polarization gating as the following,

I‖(x, y) = Ib(x, y) +
1

2
Inb(x, y) + n||(x, y) (3.16)

I⊥(x, y) =
1

2
Inb(x, y) + n⊥(x, y) (3.17)

Hence the polarization difference intensity can be represented as,

IPD(x, y) = I‖(x, y)− I⊥(x, y) = Ib(x, y) + n||(x, y) + n⊥(x, y) (3.18)

Hence the signal to noise ratio can be written as,

SNR =
Ib(x, y)2

1
2Itot(x, y) + σ2

det + 1
2Itot(x, y) + σ2

det

=
(e−µsLItot(x, y))2

Itot(x, y) + 2σ2
det

=
e−2µsLItot(x, y)

1 +
2σ2
det

Itot(x,y)

(3.19)

The above equations are representations of the gating of forward scattering/ballistic photons in

scattering medium including noise terms and exponential decays of the ballistic light intensity.

However, it is assuming the multiple scattered photons is completely depolarized. In a medium

containing small particles relative to the wavelength, i.e. the Rayleigh scattering regime, the char-

acteristic depolarization length for linearly polarized incident light is greater than that of circularly
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polarized light (typically a factor of two). For larger scattering particles, i.e. Mie scattering regime,

the opposite is true [71].

To analyze the depolarization of light in scattering medium, the theory of partial coherence

based on Stochastic process should be used. The coherency matrix from this approach allows

us to investigate the energy transport and the entropy of the multiple scattered light, because

the intensity of light can be described by the trace of the coherency matrix while the degree

of polarization is analytically related to the radiation entropy [72]. The coherency matrix J is

Hermitian and can be represented as the following,

J =

 〈ExE∗x〉 〈ExE∗y〉
〈EyE∗x〉 〈EyE∗y〉

 (3.20)

where the trace of the matrix is defined as the sum of the diagonal elements,

tr(J) = Jxx + Jyy = 〈ExE∗x〉+ 〈EyE∗y〉 (3.21)

The diagonal elements are real and represents the intensities in the x and y directions, respectively.

In addition, the determinant of the matrix is defined as the following,

det(J) = 〈ExE∗x〉〈EyE∗y〉 − 〈ExE∗y〉〈EyE∗x〉 (3.22)

The degree of polarization of the light is given by,

DOP =

√
1− 4

det(J)

tr(J)2
=

√
1− 4|J|

(Jxx + Jyy)2
(3.23)

Hence the Stokes parameters discussed in Chapter 2 and coherency matrix are related by the

following,

〈S0〉 = Jxx + Jyy = 〈ExE∗x〉+ 〈EyE∗y〉 (3.24)

〈S1〉 = Jxx − Jyy = 〈ExE∗x〉 − 〈EyE∗y〉 (3.25)

〈S2〉 = Jxy + Jyx = 〈ExE∗y + EyE
∗
x〉 (3.26)

〈S3〉 = i(Jyx − Jxy) = i〈EyE∗x − ExE∗y〉 (3.27)
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It has been shown that correlation function for the scattered electric field is given by [72],

g(r, t) =
〈E(0)E∗(t)〉
〈|E(0)|2〉

=

∫
G(r, n)e−2nt/τ0dn∫

G(r, n)dn
(3.28)

where G(r, n) denotes Green’s function representing the number of scattering paths of lenghs nl,

τ0 is the time it takes for a scatterer to move one optical wavelength, n is the number of scattering

events. It has been shown that degree of polarization can be expressed as [71],

DoPi =

∫
G(r, n)fi(n)dn∫
G(r, n)dn

(3.29)

where function fi(n) = fC(n) and fi(n) = fL(n) (L for linear and C for circular state of polarization)

represent the dependences of the output DOPs for a number of scatterings equal to n + 1 as

fL(n) = 3
2e
−n l

=L , fC(n) = 3
2e
−n l

=C , where =i denotes characteristic length of depolarization for

n + 1 of scattering paths, and they are given by =L = l
ln(10/7) and =C = l

ln(2) , respectively [72].

l is the transport mean free path of the photon, l = 1/(Nσ), and it is related to the scattering

coefficient by l = 1
µs(1−g) , where g is the mean cosine of the scattering angle (g = 1 for forward

scattering, g = 0 for isotropic scattering, hence g decreases as the particle size decreases). N is the

concentration of the scatterers and σ is the scattering cross section. In the weakly scattering limit,

kl � 1, which means the mean free path is much greater than the wavelength of the radiation,

where k is the wave number in the scattering medium. Following [71] to integrate Eqn 3.28, we

obtain the degree of polarization as,

DoPC =
d

l

sinh(l/ξC)

sinh(d/ξC)
=
d

l

sinh(
√

3ln(2))

sinh(dl
√

3ln(2))
(3.30)

DoPL =
d

l

sinh(l/ξL)

sinh(d/ξL)
=
d

l

sinh(
√

3ln(10/7))

sinh(dl
√

3ln(10/7))
(3.31)

Hence for a scattering slab with thickness d� ξL,C , the degree of polarization in the far field can

be approximated by,

DoPC ≈
2d

l
sinh

( l

ξC

)
e
− d
ξC =

2d

l
sinh(

√
3ln(2))e−

d
l

√
3ln(2) (3.32)

DoPL ≈
2d

l
sinh

( l

ξL

)
e
− d
ξL =

2d

l
sinh(

√
3ln(10/7))e−

d
l

√
3ln(10/7) (3.33)
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where ξL,C = (=L,C l/3)1/2 denotes the characteristic lengths of depolarization for the slab geometry.

From Eqn 3.32, it can be seen that the depolarization characteristic length for linearly polarized

light is greater than that of circularly polarized incident light by a factor of
√

2. Here, I plot the

results to obtain more insights into the depolarization of the different incident polarizations in

the scattering medium. In Figure 3.4, DoPL and DoPC are compared as a function of number of

transport mean free path l for a scattering slab with thickness between 0 and 26 scattering lengths.

The scattering coefficient is within [1mm−1, 100mm−1]. The anisotropic factor g = 0.3 corresponds

to particle size of about 0.205µ for non-fat milk particles (which will be presented in 3.5). We

see both the initially linearly and circularly polarized light become depolarized as the number of

scattering lengths increase. However, we see the DoPL is greater than DoPC after going through a

single scattering length. As the photons experience higher number of scattering events, both DoPL

and DoPC approach zero and the light eventually becomes completely depolarized.

Figure 3.4: Degree of polarization for linearly and circularly polarized light in the Non-fat scattering
medium (small scattering particle size of 0.205µm). The MATLAB simulation is based on Rayleigh
scattering using Eqn 3.32. x-axis is number of scattering lengths, y-axis is in log10 scale for degree
of polarization. DoPL is plotted as circles, and DoPC is plotted as crosses.

However, as pointed out in [73, 2], In the forward scattering Mie regime (i.e. large particles),
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the depolarization characteristic length is greater for circularly polarized light than linearly polar-

ized light. To depolarize circularly polarized light, it requires both randomization of the helicity

and the direction, this is related to the polarization memory effect of circularly polarized light

investigated recently, which may explain the DoP of circularly polarized light is maintained over

more scattering lengths. As described in Figure 2.8 in Chapter 2, the polarization memory effect

related to circularly polarized light, M44 can be calculated from 4 measurements involving only

circularly polarized light, it is essentially a description of the efficiency of flipping the helicity of

the scattered light. We can see in the Mie scattering regime, the flipping of helicity becomes more

efficient hence the probability of preserving the degree of polarization becomes greater for larger

particles with circularly polarized light. Therefore it is possible to better maintain the DoPC in a

Mie scattering medium than in a Rayleigh scattering medium, and this may improve light propaga-

tion in scattering medium with larger particles (compared to the wavelength) that involves relying

on using polarization as the sensing or imaging method.

3.2 Experiment: Characterization of scattering tissue phantom

Experimentally, the polarization gating can be achieved by using polarimetry by recording

orthogonally polarized images through a linear polarization analyzer setup, and then subtracting

orthogonally polarized images. In my experiment, the scattering coefficient µs will be measured

for a tissue phantom consists of non-fat milk solution. In specific, the decay of the intensity of

the ballistic signal after exiting the scattering medium is measured. Note since the milk solution

scatters the incident light, depolarization happens while light travels inside the scattering medium.

Additionally, polarized scattering can also rotate the polarization, however the polarization rotation

of the signal is assumed to be negligible because the milk solution is generally isotropic and non-

birefringent.

To perform the polarization gating experiment, I need to characterize the scattering medium.

I will use cow’s milk as the scattering medium which is commonly used in biomedical imaging

experiments. However, cow’s milk usually has a known average particles sizes depending on the
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Figure 3.5: Reference measured particle size for various type of milk scattering mediums. (a) 1%
milk sample with mean particle size of 0.710 µm. (b) whole milk sample with mean particle size of
0.899 µm. (c) 2% milk with mean particle size of 0.794 µm. (d) Non-fat milk with mean particle
size of 0.205 µm. Courtesy of [74]

sizes of fat globules, such as a milk size study in [74] (and their results are shown in Figure 3.5).

This result provides me a reference for the average milk particle sizes for my experiment. As seen in

Figure 3.5, various types of milk scattering samples are compared in terms of the measured particle

sizes. Their data were obtained from samples of whole milk, 1% milk, 2% milk and non-fat milk

[75]. We can see non-fat milk have the smallest particle size (mean = 0.205µm) with a very narrow

frequency distribution. (The frequency in the plots represents percentage of a particle particles size

in the total population). To compare the samples and gain insights of the scattering characteristics,

I used the scattering function tool discussed in Chapter 2.

The scattering probability functions of different types of milk scattering samples are plotted

in Figure 3.6 for the various milk types analyzed in Figure 3.5. The refractive index of milk
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Figure 3.6: Scattering probability functions for various type of milk scattering particles. (a) 1%
milk sample with mean particle size of 0.710 µm. (b) whole milk sample with mean particle size of
0.899 µm. (c) 2% milk with mean particle size of 0.794 µm. (d) Non-fat milk with mean particle
size of 0.205 µm. Wavelength of illumination is assumed to be 633nm.

particles at room temperature is assumed to be 1.338 [76] for the simulation. As demonstrated

previously in Figure 3.4, for isotopic scattering medium (Rayleigh scattering regime) with small

particles, DoPL is greater than DoPC after multiple scattering events, linear polarization persists

better for an isotropic scattering medium. Because I will investigate polarization gating using linear
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eigen-polarization states, non-fat milk is selected as the scattering phantom which has an average

measured particle diameter of 0.205 µm, shown in Figure 3.5. (Note this is similar to atmospheric

LiDAR, where the wavelength of the radar signal is much longer than the size of the atmospheric

particles resulting in Rayleigh scattering dominance.) In MATLAB I simulated the DoPL and

DoPC for Rayleigh scattering using Eqn 3.32 presented previously for the non-fat milk particle of

0.205µm in size (g = 0.3), the results were shown in Figure 3.4. The plot shows a greater DoPL

than the DoPC radiation for the non-fat milk particle size considered in Figure 3.6 (d).

Also note, by choosing to work in the Rayleigh scattering regime, the transmission of ballistic

photons can be maximized among the multi-scattered photons compared to the Mie regime, since

the wavelength of 632.8 nm for the HeNe laser is large compared to the 200 nm particles in the

non-fat milk solution. The number of scattering depth can be on the order of 1 to 10 before the

direction of propagation is randomized. However, if larger particles are used as the scattering

medium, an anisotropic scattering situation will dominate hence the ballistic light which travels in

straight lines is minimized. For this experiment, as shown in Figure 3.7 (b), the non-fat milk is

diluted to 20% by volume by adding an appropriate amount of distilled water. Gelatin power is

added to support and suspend the milk particles for a solid form of the scattering medium. We

used solid scattering medium because if a liquid form of scattering medium is used (for example,

diluted milk or intralipid solution), the particles will move around randomly in time and space and

is sensitive to external motion turbulences and perturbations. In addition, the gain of the camera

is fixed at 4 dB and the pixel frame rate is set at 30 frames/second, while the exposure times are

increased for low light signals during the experiment.

The setup of the experiment is shown in Figure 3.7 (a). A 6 mW HeNe laser is used as the

light source with a polarizer (P1) and a half-wave plate (HWP) to rotate the polarization linearly.

P1 is fixed and HWP can be rotated for two angles in order to give orthogonally linearly polarizated

illumination to the scattering tissue phantom that follows. The reason the combination of P1 and

HWP are used for the input light linear polarization rotation, instead of using only P1 and P2

(P2 as analyzer), is to avoid the issue of imaging shifting seen during the experiments due to a
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slightly wedged polarizer. So instead of rotating P2 for I‖ and I⊥ states, the HWP is rotated

before the light is illuminated on the scattering medium. Note the input polarization of the light

without the milk solution is measured to be 0.2% orthogonally polarized (which could also be due

to polarization leakage from the polarizer).

The pencil laser beam propagates in the milk solution and becomes more scattered as the

propagation distance increases. As shown in Figure 3.7 (b), the container for the scattering solution

is made by microscope slides glued together. The top view has a V shape filled with the milk solution

that allows the propagation length to continuously be varied inside the scattering medium along

with an increasing µsL product by simply translating the sample transversely. The other side has

a compensating V shape and is filled with solidified gelatin and water in order to compensate for

the beam deflection caused by the wedge from the V shape milk solution side. The scattered and

ballistic light coming out from the scattering medium box are passed through a second polarizer

P2 which is fixed in its angle. Then the light is focused by a 250 mm focal length lens F1 into

the CMOS camera. The lens should focus the ballistic light but the multi-scattered light should

remain randomly distributed as seen in Figure 3.7 (c). The images are captured by a 12-bit Point

Grey grey scale CMOS camera with a 70 dB dynamic range. The camera captures two images (I⊥

and I‖ by rotating the HWP only) for each propagation length in the scattering medium. For low

light experiment, the camera is shielded with a black-out cloth as shown in the setup.

The laser response intensities captured by the camera are shown in Figure 3.7 (d). As the

propagation distance increases in the scattering medium, we increase the camera exposure time

because the signal becomes weaker due to Beer’s law. Note the exposure time is kept the same for

recording the images of I‖ and I⊥. As we can see, the initial I‖ and I⊥ images become filled with

more noise-like intensity fields which is due to the laser speckles from the narrow bandwidth HeNe

laser. (This coherent laser speckle field is due to the spatial coherency of the narrow band HeNe.)

For a long propagation length of 26 mm seen in Figure 3.7 (d) m)-o), which corresponds to a 21

scattering path lengths, the intensities of the laser speckle fields becomes more comparable between

the I‖ and I⊥ images. Meanwhile, the ballistic intensity peaks seen before are almost washed out
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Figure 3.7: Measurement of scattering coefficient and de-polarization of ballistic light. a) Exper-
iment setup. b) non-fat milk solution, 20% by volume, illuminated by linearly polarized HeNe
laser light. c) Ballistic and multi-scattered light recorded before the Fourier transform lens F1
(focal length 250 mm). d) Images for the orthogonally input polarization light fields for different
propagation distances inside the scatter medium. Rows: a) - c) 15 mm, d) - f) 18 mm, g) - i) 22
mm, j) - l) 24 mm, m) - o) 26 mm.First column are images captured for I‖ field, second column
are images for I⊥ field, and third column are the differences I‖ − I⊥, respectively. e) Computed
scattering coefficient from experimental data in d): the log ratio between ballistic signal and input
signal and the linear fit as a function of propagation length.

by the intense laser speckles.



47

However, as seen in the third column in Figure 3.7 (d), by subtracting the two response fields,

the image quality of the laser does not seem to be improved much. This is because the randomly

distributed laser speckles are polarized or partially polarized and they have a relatively higher

intensity than the multiple-scattered light field. Hence, polarization-gated imaging technique is not

efficient in this experiment setup due to the laser speckle noise caused by the spatially coherent light

source. However, since my goal in this experiment was to quantitatively characterize the scattering

coefficient of the tissue phantom, I continued with the experiment. The issue will be addressed

in the experiment in the next section for polarization gating in the same scattering milk solution

medium. (In that experiment, instead of the HeNe laser I used a Halogen lamp as light source to

illuminate the scattering sample. As will be seen, the laser speckle noise is dramatically reduced

for polarization gating imaging.)

In Figure 3.7 (e), I compute the scattering coefficient from the experimental data using an

algorithm by fitting the ln(Ib/Iin) function with a linear line, where Ib is the peak value of the

ballistic signal and Iin is the peak value of the input signal, both obtained from the data shown

in Figure 3.7 (d). The slope of the linear fit corresponds to the value of scattering coefficient

µs = 0.8mm−1, therefore the scattering length of the milk solution is ls = 1/µs = 1.25mm. From

the calculation of scattering length based on the experiment data, this 20% milk solution is highly

scattering, because for propagation lengths of 15 mm, 18 mm, 22 mm, 24 mm and 26 mm, the light

experienced approximately 12, 14, 18, 19 and 21 scattering path lengths in the medium.

Referring to Figure 3.7 (d), as the exposure time is increased, the overall intensities of the

laser speckle field increases with propagation length in the scattering medium. In the mean time,

we see the ballistic peak intensities especially in the I‖ images decreases as the propagation length

increases, while the laser speckles in the I‖ images becomes the dominating noise-like signal. Notice

the ballistic peak disappears faster than the de-polarization of the ballistic light even in the highly

scattering milk solution. The majority of the ballistic light remains polarized while the polarization

of multi-scattered light is randomized. However, the random speckle fields persist because they are

polarized. Hence, from the third column of Figure 3.7 (d), the subtraction does not efficiently result
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in the cancellation of the noise-like speckle fields. However, in the mean time, I can simultaneously

estimate the scattering coefficient and the de-polarization character of the ballistic light with the

described experimental setup. Because I obtained the µs measurements for the highly scattering

milk sample in the Rayleigh scattering regime, the description of the polarization gating imaging in

a highly scattering medium can be continued next using linear eigen-states polarimetry. (Although

polarization difference imaging was previously investigated in the literature, the scattering prob-

ability function was not been considered as I analyzed in Figure 3.6 and the DoP (both circular

and linear state of polarizations) was also not been considered as I computed in Figure 3.4. Hence,

after thesis analysis and the scattering sample characterizations, I can perform a new polarization

difference imaging experiment to analyze the image improvement specifically for small particles in

the Rayleigh scattering regime.)

3.3 Experiment: Polarization-gated imaging in scattering tissue phantom

A detailed investigation of polarization-gating imaging is conducted for a highly scattering

medium consists of gelatin and non-fat milk solution in the Rayleigh scattering regime, whose

scattering properties were characterized in the previous experiment. The experiment setup is

shown in Figure 3.8. A 250 Watt Halogen lamp (Light Ports Quartz Halogen, fiber optic bundle)

is used as the illumination source. This Halogen light source is both spatially and temporally

incoherent. We use non-fat milk as scattering medium as shown in the setup. The milk solution

fills half of the rectangular container, hence the thickness of the scattering region decreases along

the y-direction. Note polarization rotation is neglected because the milk solution is isotropic and

non-birefringent. The lamp light is filtered by a 633 nm optical bandpass filter (40 nm at 3dB

bandwidth) to operate in a similar and consistent wavelength regime in which the milk sample was

previously characterized.

As seen in Figure 3.8, the filtered red light passes through a polarizer (P1) and a HWP before

illuminating the milk scattering sample. The measured polarization extinction ratio of the system

for linearly polarized light exceeds 0.26%. The object is a knife edge that is mounted in front of
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Figure 3.8: Experiment setup for polarization gating in a scattering medium.

the milk scattering sample with the front view shown in the inset. Note that the knife is along

the y-direction of the increasing sample thickness (hence increasing µsL product). The light from

the milk solution passes through polarizer P2. The imaging system consists of two lenses F1 (focal

length = 250 mm) and F2 (focal length = 50 mm), yielding an magnification of M ≈ −1
5 . The

CMOS camera is controlled by the computer for exposure time, gain and frame rate. Additionally,

both the CMOS and the Halogen lamp are shielded with dark clothes to block stray light in the

room that can interfere with the measurements.

Figure 3.9 shows the images obtained from the polarization gating experiment with the milk

solution medium. The images a) and b) are captured with the CMOS camera (2 dB gain, 113.04

ms exposure time, 30 frames/second frame rate and 100-frames averaging). In these cases, the

center of the y-direction of the image corresponds to about 15 mm of propagation distance inside

the scattering medium, resulting in 12 scattering lengths ls (ls = 1.25 mm for this milk solution

from the characterization). In the I‖ component of the total response light field shown in Figure
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Figure 3.9: Image results for polarization gating experiment in a milk scattering medium captured
by CMOS camera. a) I‖ response light field, b) I⊥ response light field, c) c) I‖ + I⊥ polarization
sum light field and d) I‖ − I⊥ polarization difference light field, respectively.

3.9 a), as propagation in the scattering medium increases, the contrast of the imaged knife edge

decreases as a result of the increasing µsL product. This represents the best case scenario for

conventional imaging. However, since the I‖ component includes both ballistic light and half of the

randomly polarized multi-scattered light, the image is blurred by a strong background caused by

the scattered light. On the other hand, the I⊥ component of the total response light field shown in

Figure 3.9 b) represents half of the randomly polarized multi-scattered light, hence no image of the

knife edge can be observed because the image information in the multi-scattered light is similar in
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all states of polarizations.

Figure 3.10: a) cross-section line plots at 12ls for I‖ (black line), I⊥ (blue line) and I‖ − I⊥ (red
line), respectively. b) Image contrast comparison for I‖ − I⊥ (red dots), I‖ (black dots), I⊥ (blue
dots) and (I‖+I⊥)/2 (green dots), respectively, as a function of propagation length in the scattering
sample.

As seen in Figure 3.9 d), we obtain an approximate estimate of the ballistic light in the image

with an improved visibility of the knife edge object through a highly scattering medium. With

this simple polarization gating technique, the randomly polarized multi-scattered background is

eliminated in the image by the subtraction operation. Compared with the I‖ and I⊥ images, the

polarization-gated image shows a significantly improved contrast hence better visibility of the knife

edge object after the light field propagates through a highly scattering medium with approximately

12 scattering path lengths. In addition, to gain a better view of the contrast improvement using

this polarization difference imaging technique, the cross-sectional lines are plotted in Figure 3.10

a) for 12ls through the scattering milk solution. The polarization difference image I‖−I⊥ improves

the image contrast compare to either I‖ or I⊥ images. The contrast for the I‖, I⊥ and polarization-

gated (I‖−I⊥) images are calculated and plotted in Figure 3.10 b) for comparison. The polarization
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difference image containing high contrast information is extracted by subtracting the I⊥ from the I‖

response field, while the randomly polarized multi-scattered light is suppressed. The edge contrast

are calculated for the scattering region between 4ls and 28ls.

The polarization gated image (indicated by red dots) yields the best contrast among these

three detection schemes. Note that although the contrast decreases for all three cases as the

propagation length increases in the scattering medium, the contrast ratios jump at 24ls for both

the I‖ and I⊥ components. This is due to the influence of the intensity profile of the multi-scattered

light around the region of 24ls, which is subtracted away in the I‖−I⊥ case. In this experiment, the

image contrast improvement is demonstrated for a knife edge object using polarization gating for

optical imaging in a highly scattering milk sample. The results were compared with conventional

imaging. Hence, we can use polarization-gating to improve the image contrast because the ballistic

light is enhanced while some of the multi-scattered light is suppressed in the gating process.

3.4 Discussion

There also has been theoretical predictions showing that circularly polarized light can main-

tain its state of polarization longer than other state of polarizations in a highly scattering medium

for larger particles in the Mie scattering regime [57, 52, 53, 54]. To perform polarization gating in

scattering medium such as the brain, an polarized, bright and tunable light source is desired. This

provides part of our motivation for investigating the Raman soliton in supercontinuum generation

that provides a polarized, broadband and tunable light source for polarization gating in scattering

medium. Hence, a circularly polarized Raman soliton output could be used as a tunable and stable

light source for investigating polarization gating in a scattering medium. In Chapters 6 and 7, the

detailed investigations of the broadband supercontinuum light source will be described.

In summary, the visibility improvement of polarization-gated imaging using polarimetry of

linear eigen-states in a highly scattering medium was experimentally demonstrated. The concept

was originally inspired biologically during animal behavior studies of certain fish and insects that

relies on polarization difference signals generated in the double cones to navigate in scattering
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environments.

A theoretical framework for polarization difference technique was developed by computing

the point spread function of the Rayleigh and Mie scatterers. The theoretical resolution improve-

ment is very similar for the two types of scatterers by comparing my simulation results with the

published results for single scattering case. A photon-tracking Monte Carlo simulation can be used

to simulation the PSFs for multiple scattering situations. I also analyzed the depolarization char-

acteristics of multiple scattered light using coherency matrix method developed previously. The

degree of polarization can be computed and the simulation results indicate that the DoP of linearly

polarized radiation out-performs the DoP of circularly polarized radiation for Rayleigh scattering

particles. In addition, a method measuring the scattering coefficients of the non-fat milk sample

operating in Rayleigh scattering regime for polarization gating experiment was developed. In the

experiment, polarization-gating technique was demonstrated to have up to 11 times improvement

of image contrast for a knife edge object comparing to conventional imaging techniques. The

ballistic light which contains high contrast information is extracted by subtracting the I⊥ from

the I‖ response field, while the randomly polarized multiple-scattered light is eliminated from the

background.



Chapter 4

Dynamic structured illumination microscopy

4.1 Background of structured illumination microscopy in scattering medium

Imaging in multi-scattering medium is highly challenging because the lateral and axial local-

ization of objects suffers from scrambled light propagation effects caused by the scattering particles.

In recent years, there is major progress for optical imaging in scattering medium using structured

illumination technique. Sample illumination is one of the most important aspect in optical imaging

to achieve high quality images. In history, the field of illumination has evolved significantly in the

past century. Nelsonian illumination (or critical illumination), developed by microscopist Edward

Nelson, was predominantly used to create a bright illumination by using a condenser to focus the

image of the light source onto the object. However, as a trade-off, Nelsonian illumination usually

suffers from unevenness of the illumination due to the inclusion of the image of the light source

that becomes visible in the final image plane. Köhler illumination was proposed in 1893 by August

Köhler [77] for creating an extremely uniform sample illumination to reduce image artifacts such

as glare in the case of Nelsonian illumination. Since then, Köhler illumination has been widely

used in modern scientific microscopy. Image qualities can be further improved by aberration cor-

rections through superior lens design and manufacture. Over the years, we have seen significant

developments in sample illumination to reduce background light and to improve image resolution.

Examples include oblique illumination microscopy using an optimum illumination angle to see more

details in a sample, light sheet microscopy using side line-scanning illumination to block out-of-focus

background light and confocal microscopy (an established standard microscope) using a pinhole or
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a focused laser beam to achieve high resolution imaging.

Figure 4.1: Experiment setup of DEEP developed in our laboratory. Adapted from Dr. Daniel
Feldkhun’s thesis [78]

Recently, research has focused on modifying uniform illumination to create a variety of struc-

tured illuminations. Structured illumination evolved from synthetic aperture imaging, which was

first demonstrated fifty years ago [79, 80]. In 1997, sinusoidal structured illumination was incor-

porated into a conventional microscope to obtain optical sectioning [81]. In 2000, a revolutionary

sinusoidal structured illumination microscopy (SIM) was proposed, breaking Abbe’s diffraction limit

by a factor of two [82]. The field of SIM has since experienced major advances in optical sectioning

for thick specimens [81, 83, 84, 85], super-resolution microscopy [82, 86, 87, 88, 3, 89, 90, 91, 92],

whole-field non-contact surface topography [93, 94, 95, 96, 97, 98, 99, 100, 101, 102] and phase

imaging [103, 104, 105, 106, 107, 108]. The rapid development of SIM also attracted significant

efforts to enhance image contrast and spatial resolution in scattering media such as deep biological

tissue [109, 110, 111, 112, 113, 114, 115].
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Recently, a novel Fourier synthesis imaging method called doppler encoded excitation pattern

microscopy (DEEP) was demonstrated [116]. This wide-field imaging technique employs moving

structured illumination patterns generated by an acousto-optic deflector (AOD) and tomographic

image reconstruction algorithm and is capable of detecting both fluorescent and scattered light [78].

A thousand-fold improvement of the depth of field is achieved for two-dimensional high resolution

proof-of-concept experiments compared with conventional microscopy. In the following section,

the concept of a dynamic structured illumination microscope for Fourier domain imaging will be

presented, followed by analysis of the principles of AOD for moving illumination pattern generation.

4.1.1 Fourier synthesis of objects and Moiré pattern formation

The Fourier decomposition of spatial frequencies combined with the theory of Moiré pattern

forms the basis of the dynamic structured illumination microscopy (DSIM). Abbe’s image formation

theory implies that an object’s spatial information can be decomposed into a number of interference

patterns with different spatial frequencies. A Moiré pattern is a beating effect due to the interference

between two spatial patterns. It is often seen in fabrics, computer graphics, and digital images.

Spatially structured excitation light was used in a wide-field and non-confocal microscope [117,

86, 82] to extract normally inaccessible high frequency information encoded in the form of Moiré

patterns. Hence, for an object with a high spatial frequency variation across its shape, if we

superimpose (multiply) it with another high spatial frequency pattern, the product will contain

an interference beating in the form of the Moiré pattern. The Moiré pattern is a signal with low

spatial frequency detectable to reconstruct a high spatial frequency object. Note that the temporal

analogy of the Moiré pattern is a heterodyne mixing method in signal detection.

DEEP microscopy developed in our research group is a Fourier domain imaging method that

probes the Fourier component of an object to form a synthetic wide-field image [116]. It is similar

to SIM but also fundamentally different in terms of illumination generation and signal detection.

Figure 4.2 illustrates the general concepts of a standard SIM versus a DEEP microscope.

The stationary illumination patterns of SIM can be generated by a spatial light modulator (SLM)
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Figure 4.2: Comparison of conventional (top) and dynamic structured illumination microscopy for
illumination pattern generation and signal detection techniques (bottom).

or a digital light projector. Usually three different projection patterns with different phases of

0o, 120o, and 240o are needed to reconstruct the SIM signal. A CCD camera can be used to

detect and collect the three images. Instead of a stationary illumination pattern, DSIM uses AOD

that generate moving patterns running across the object at the acoustic velocity scaled by the

magnification factor of the optical imaging system. The correlation signal between the object and

the illumination pattern is then collected by a lens and can be detected by a single-pixel camera

or a high speed photodiode detector. As illustrated in Figure 4.2, the spatially integrated detected

signal sinusoidally oscillates in time, and its spatial Fourier transform corresponds to a pair of dots

on the Fourier slice oriented at an angle determined by the angle of illumination pattern.

If the object is illuminated by patterns with different spatial frequencies generated by the



58

Grating object Illumination Product Detector Fourier plane

Figure 4.3: Graphical illustration of the dynamic structured illumination microscopy from the
illumination to signal detection process. First column: amplitude object patterns; second column:
illumination patterns generated by an AOD; third column: product between the object pattern
and the illumination pattern; fourth column: time domain detector signal; fifth column: Fourier
transform of the detector signal represented in the Fourier domain.

AOD, the detector signal varies in both amplitude and phase. To illustrate the process of illumi-

nation pattern generation to signal detection in DSIM, a graphical simulation is performed using

MATLAB. As shown in Figure 4.3, the object is half-transmissive and half-filled with amplitude

grating lines. The four moving illumination patterns shown in column 2 generated by the AOD have

different spatial frequencies and orientations. When the patterns are illuminated on the grating

object, the products between the moving pattern and the object are shown in the third column.
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If the grating frequency exactly matches the illumination frequency, we observe a beating between

the two, which is a Moiré pattern that blinks on and off as the illumination moves across the object.

The detector, being either a single-pixel camera or a photodiode, integrates the intensity response

spatially and can be measured with an oscilloscope. A sinusoidal signal can be observed on the

scope, and its Fourier transform corresponds to a pair of dots on the Fourier slice with its angle

defined by the orientation of the illumination. Note that the amplitude of the temporal detector

signal corresponds to the strength of matching between the illumination signal and the Fourier com-

ponent of the object, while the relative phase shift between the illumination and the object Fourier

component is represented by the phase of the complex Fourier points in the Fourier domain slice.

To differentiate the measured temporal signals in row 2 versus row 4, the phase information and

the illumination orientation angle are required. The reference point of phase for the measurements

can be chosen at a point where the first set of acoustic signal has just completed its propagation

inside the Bragg crystal cell, which would be on the order of several µs. The principles of the AOD

will be described in the next section.

4.2 Acousto-optic devices for active illumination pattern generation

The acousto-optic effect is one of the most interesting phenomenons associated with light

and sound interactions. The acousto-optic interactions allow the manipulation of laser beams and

high speed signal processing without mechanical moving parts [118]. It can be modeled by the

coupled-mode equations, and it is used for applications such as acousto-optic modulators (AOM),

acousto-optic deflectors (AOD), and acousto-optic tunable filters (AOTF). The AOD can be used to

generate a moving illumination pattern for DSIM. Hence, it is essential to understand the principles

of AOD as a novel illumination pattern generator. In this section, the principles of AOD will be

investigated mathematically and will be represented in K-space.

The AOD consists of a piezoelectric transducer and a photoeleastic material. When an RF

signal within the acoustic bandwidth of the crystal is launched into the AOD through the trans-

ducer, the acoustic waves generated by the transducer travel through the photoeleastic material.
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A traveling volume grating due to the periodic refractive index modulation will diffract the colli-

mated input optical wave that satisfies the Bragg alignment condition. For applications involving

the diffraction of laser beams using AOD driven by an RF signal, the time-bandwidth product

(TBP) becomes important because it determines the maximum number of resolvable Fourier spots

in the far field of the AOD along the linear slice through the Fourier domain. The TBP is equal

to the product between the acoustic propagation time across the laser beam and the frequency

bandwidth of the AOD.
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Figure 4.4: Momentum space (scaled K-space) representation of the principles of AOD for moving
illumination pattern generation. Color-codings for k-vectors: black arrow: input light beam; pink
and yellow arrows: first-order deflected beams from the AOD; red and blue arrows: grating waves
generation from Bragg matching in the AOD. L: aperture width of crystal inside the AOD. s(t):
RF driving signal with two tones f1 and f2.
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As shown in Figure 4.4, when an RF driving signal is applied to an AOD, the piezoelectric

transducer that is bonded to a crystal inside the AOD launches an acoustic wave. Due to the

photoelastic effect, the acoustic wave induces periodic perturbation of the refractive index in the

form of a wave. A traveling-wave volume grating perturbation is created inside the crystal. Light

can be efficiently diffracted if the input light is launched into the AOD at the appropriate Bragg

diffraction angle, which is determined by the Bragg matching condition,

sin θB = λ/2Λa (4.1)

where λ is the wavelength of the input light in the crystal, Λa is the wavelength of the acoustic

wave, Λa = va/fa, and θB is the Bragg matching angle as illustrated in Figure 4.4. va is the velocity

of the acoustic wave in the crystal, and fa is the frequency of the acoustic wave and fa = Ωa
2π . Note

that Ωa is the acoustic angular frequency. The Bragg condition is derived from the momentum and

energy conservation principles, which can be better understood in k-space (wave vector space) and

K-space (momentum/grating space) for an isotropic crystal for simplicity (the anisotropic case will

be illustrated in the following section). Because the Bragg matching angle is given by,

θB = sin−1 λ/2(va/fa) ≈ λfa/2va (4.2)

The Bragg angle θB is proportional to the frequency of the acoustic wave. This result is

important for the generation of the diffraction signal. As shown in Figure 4.4, if the AOD is driven

by an RF signal s(t) consisting of two temporal frequencies f1 and f2,

s(t) = cos(2πf1t) + cos(2πf2t) =
1

2
(ei2πf1t + ei2πf2t) + c.c. (4.3)

where c.c. represents the complex conjugate. The width of the crystal inside the AOD is L. When

a collimated laser beam ki illuminates the AOD at the Bragg angle, the beam is diffracted into a

pair of two first order beams, represented in k-space by kd1 and kd2, respectively. In k-space, two

traveling wave gratings kg1 and kg2 that satisfy the Bragg condition are generated. Each diffracted

beams’s vector tip distributes in a sinc uncertainty box due to the finite crystal size L and Fourier

uncertainty principle. The uncertainty of the movement of the k-vector tip is 2π/L. In the K-space
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(grating space), which is represented in the blue curves in Figure 4.4 on the right, the shape of the

sinc box is printed on the K-space curves. The grating vectors kg1 and kg2 distribute in where the

printed sinc and the k-space circle intersect. The pair of grating vectors interfere and generate a

traveling wave beat signal: B(x, t) = cos(2πfb(
x
va
− t)), where the beat frequency fb = |f1 − f2|.

In DSIM, the spatial fringes are generated by an AOD and then optically projected to the

object through an optical imaging system. When probed by a moving fringe, a matching Fourier

component of the object can be probed through the spatial convolution with the illumination fringe.

An object can be probed by a number of moving interference patterns with a range of orientations

and periods. These patterns can be considered as fringes with different periods moving in different

directions. Since the object is a coherent sum of gratings/fringes, by probing the object with a

succession of moving gratings, we are essentially performing spatial Fourier domain convolutions

between the probing Fourier components and the object Fourier components. Additional Fourier

slices can be measured by rotating the illumination pattern or the object as illustrated in Figure

4.3.

The beat signal is encoded on the laser carrier and optically projected on the object through an

imaging system. The signal is a moving fringe pattern with a velocity of va. As shown previously,

the temporal frequency of the fringes depends on the RF driving frequencies. In summary, the

AOD diffracts the input light into a pair of coherent first-order beams when the Bragg condition is

satisfied. The interference of the two beams is a running fringe pattern with a beat frequency fb.

The fringe pattern is illuminated on the object to spatially probe its Fourier components spatially.

By driving the AOD with a range of RF frequencies, we generate fringe patterns with a succession

of spatial frequencies, hence a wide range of Fourier components of the object can be probed. The

voltage power is given by P (t) = |s(t)|2= Acos2(2π(f1− f2)t) = Acos2(2πfbt). The detector signal

received by a single element detector (a single-pixel camera or fast photodiode detector) can be
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written as the following,

Id(t) =

∫∫
A

Iobj(x, y)cos2(2π(f1 − f2)(t− x

va
)) dx dy

=

∫∫
A

Iobj(x, y)ei2π(f1−f2)(t−
x
va

) dx dy + c.c.+DC

= ei2πfbtIobj(fx, fy) ? δ(fx ±
fb
va
, fy)

∣∣∣
fx=0,fy=0

+DC

= ei2πfbtIobj(
fb
va
, fy) + e−i2πfbtIobj(−

fb
va
, fy) +DC

(4.4)

From Eqn. 4.4, we see that the detector signal is the spatial integration of the product between the

object and the moving sinusoidal illumination pattern. In the Fourier domain, this corresponds to

the convolution between the complex spatial Fourier transform of the object Iobj(fx, fy) and the

complex spatial Fourier transform of the moving illumination pattern δ(fx ± fb
va
, fy). Hence if we

illuminate the object with a series of spatial frequencies, the Fourier coefficients can be probed and

measured using Fourier synthesis, and the images of the object can be reconstructed.

4.3 Experiment: Dynamic structured illumination microscopy by interfering

two first order beams

The previous polarization interferometric DSIM experiment utilizes the interference between

the 0th and the 1st order diffracted beams from the AOD. However, we can modify the setup for the

interference between the two 1st order beam for double sideband chirped-mode operation, to enable

a frequency sweep down to DC level for improved object detection. In this experiment, we change

the light source from the low power HeNe laser to a 665 nm laser diode (Mitsubishi Electric Corp,

101J8-01), which has a maximum average output power of 40 mW. The laser diode is configured,

the temperature is stabilized and it operates in the constant current mode. The RF input signal

to the AOD is generated by a DDS (Analog Devices, AD9910). The DDS is configured to generate

a phase coherent chirp signal of 10 MHz/2 ms, resulting in a beat frequency of 20 MHz.

As shown in Figure 4.5, the output of the DDS is split into two channels using an RF splitter

with one channel sent to the digital oscilloscope and the other sent to an RF attenuator and then to
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Figure 4.5: DSIM experiment setup by interfering two first-order diffracted beams from the AOD.
The DDS is configured to output a phase-coherent chirp signal. DDS: direct digital synthesizer,
Attn: RF attenuator, LO: RF local oscillator, pre-amp: RF pre-amplifier, amp: RF amplifier, obj:
Ronchi ruling grating object, PD: high speed photodiode detector, osc-scope: digital oscilloscope.

the IF port of the RF mixer. A 7 dB RF attenuation is configured to avoid nonlinearities in the RF

mixer because it is a nonlinear device, and we observed saturation behavior of the mixer previously.

For the RF mixer to operate in the linear regime, the LO and IF input powers are adjusted to obtain

minimum harmonics monitored by an RF spectrum analyzer for a 10 MHz single-tone signal from

the DDS.

Then we switched to the chirp mode setup on the DDS and used the digital oscilloscope to

check the shape of the chirp signal after the RF pre-amplifier. The local oscillator sends a 50 MHz

single-tone signal to the LO port of the mixer, and the RF output port of the mixer is a 50 MHz

carrier modulated by the 10 MHz / 2 ms frequency chirp. The output of the RF amplifier is then

coupled to the AOD. The two 1st order diffracted beams are overlapped in the optical system and

imaged onto the Ronchi ruling grating object by a 4F imaging system formed by L2 and L3 with a

magnification factor of -1. The product of the moving illumination signal and the grating object is

then collected by a pair of lenses L4 and L5 to a fast photodiode detector with a 60 MHz bandwidth.
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The temporal output signal of the photodiode detector is then sent to the digital oscilloscope and

is synchronized by the trigger output signal from the DDS. Additionally, the detector signal, the

DDS trigger signal and the chirp signal are recorded by the oscilloscope and imported to MATLAB

for post-data processing and signal reconstruction, which will be discussed in the next section.

4.3.1 Signal reconstruction using the Matched-filtering algorithm

As shown in Eqn. 4.4, the temporal detector signal can be considered a convolution between

the spatial Fourier transform of the object and the Fourier transform of the chirp signal. Hence,

to reconstruct the shape of the amplitude grating object, the detector signal needs to be convolved

with the conjugated chirp signal. The double sideband chirp signal from the DDS can be expressed

as the following,

c(t) = cos(2πbt2) +D.C. (4.5)

The double sideband detector signal can be written as,

s(t) = cos(2π2b(t− t0)2) +D.C. (4.6)

where b is the chirp rate (MHz/ms), t is the time delay, and t0 is the time delay constant due to

the acoustic propagation delay in the AOD crystal. The algorithm I developed for reconstructing

the signal using the matched filter can be summarized as follows:

(1) Frequency double the chirp signal c(t):

c(t)|2f = c(t)2 = (ei2πbt
2

+ e−i2πbt
2
)2 = ei2π2bt2 + e−i2π2bt2 +D.C. = cos(2π2bt2)

(2) Fourier transform the double sideband chirp signal:

C(f)|2f = F{c(t)|2f} = F{cos(2π2bt2) +D.C.}

(3) Fourier transform the detector signal:

S(f) = F{s(t)} = F{cos(2π2b(t− t0)2) +D.C.}
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(4) Correlation between the spectrum signals C(f) and S(f) to obtain the Fourier transform

of the grating object:

G(f) = F{g(t)} = C∗(f)|2fS(f)

(5) Inverse Fourier transform the correlation signal to obtain the reconstructed object:

g(t) = F−1{F{g(t)}}

After performing the matched filter algorithm on the measured detector signal in MATLAB,

the reconstruction results are summarized in Figure 4.6. Figure 4.6 a) is the truncated version

of the 10 MHz/2ms chirp signal measured by the oscilloscope for the DDS output signal. The

corresponding Fourier transform of the chirp signal is shown in Figure 4.6 b). The detector signal

measured by the oscilloscope is plotted in Figure 4.6 c), where we see multiple harmonic frequency

peaks representing the Fourier harmonic orders for the rectangular-shaped grating object. As

shown in Figure 4.6 d), the Fourier transform of the detector signal consists of multiple peaks with

amplitudes depending on the inverse of the order of the harmonics. The inverse Fourier transform

of the correlation between the conjugated chirp spectrum and the DSIM signal spectrum is shown in

Figure 4.6 e), which represents the matched-filter reconstruction of the grating object. To confirm

the signal reconstruction, an image of the grating object illumination by the laser diode is recorded

by a CCD camera. The comparison of the CCD image and the reconstruction of the grating object

is shown in Figure 4.7. The CCD camera has 1280×960 pixels, and the image shown in Figure 4.7

a) is a truncated version of the original raw image. The grating lines can be clearly seen in the

CCD image and the intensities are summed vertically to generate the intensity projection shown

in Figure 4.7 b).

We can observe the number of grating lines in the CCD image (Figure 4.7 a)) and the vertical

intensity summation (Figure 4.7 b)) equals the number of grating lines in the signal reconstruction

in Figure 4.7 c). In addition, we can see that the general amplitude profile in the CCD image

qualitatively agrees with the amplitude of the reconstructed signal. From the comparison between
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Figure 4.6: Signal reconstruction using the matched-filter algorithm.

the CCD image of the object and the reconstruction, we can safely conclude that the grating

signal reconstruction matched the grating object well, and the matched filter signal reconstruction

algorithm is successful.

4.4 Experiment: Polarization-interferometric structured illumination mi-

croscopy

In this section, I will describe the first experiment on polarization-interferometric SIM using

a birefringent and optically active AOD. In Figure 4.4, an example of isotropic AOD crystal was

described in momentum space. For isotropic diffraction, incident and diffractive optical waves make
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a)

b)

c)

Figure 4.7: Comparison between the reconstructed signal using the matched filter algorithm and
the CCD image of the grating object.

the same angle with respective to the acoustic wave (sin θB = λ/2Λa). Hence, the phase-matching

condition is critical for the angle of the incident optical wave. Optically active positive uniaxial

crystals only account for about 5% of natural crystals. If an external electric field is applied to

an optically active crystal, it not only produces polarization but also induces a magnetic field as a

result of the helical motion of the electrons. Optical activity splits the ne and no surfaces, however

the introduced birefringence is usually very small. Therefore the birefringence effect due to the

optical activity can be considered when the optical wave is propagating close to the optical axis

of the crystal. For positive uniaxial crystals with optical activity, the index surfaces are given by
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[119],

n2
1(θ)cos2(θ)

n2
o(1 + σ)2

+
n2

1(θ)sin2(θ)

n2
o

(4.7)

n2
2(θ)cos2(θ)

n2
o(1 + σ)2

+
n2

2(θ)sin2(θ)

n2
e

(4.8)

The Bragg matching condition for the birefringent crystal [119] also depends on the extraordinary

and ordinary refractive indices given by

sin θi =
λ0

2ni (θ1) va (θa)

(
fa +

v2
a (θa)

λ2
afa

(
n2
i (θ1)− n2

d(θ2)
))

(4.9)

sin θd =
λ0

2nd (θ2) va (θa)

(
fa −

v2
a (θa)

λ2
afa

(
n2
i (θ1)− n2

d(θ2)
))

(4.10)

where θi and θd are the angle of incident and diffraction, respectively. θ1 and θ2 are angles between

the incident and diffracted light with respect to the optical axis for the unrotated crystal (in the

[001] direction). λ0 is the wavelength of incident light, fa is the acoustic frequency, and va is the

acoustic velocity in the crystal. Additionally, the direction of acoustic propagation is represented by

θa. The angle are illustrated in k-space as seen in Figure 4.8 a). However, note that the elliptical

eigen polarizations only remain for about a few degrees away from the optical axis [120]. Note

that optical activity is indicated by the split between the two index surfaces of ne and no. (As an

exmaple, if ni = 2.27, nd = 2.26, va = 600m/s, then θi = 1.4 and θd = 1.3).

Because TeO2 is an optically active positive uniaxial crystal, tangential birefringent diffraction

becomes possible, hence there exists a wide range of acoustic frequencies that satisfy the phase-

matching condition. The tangential matching case is shown in Figure 4.8 b). This increased

acousto-optic interaction region improves the bandwidth for acousto-optic devices, which should

be taken into design consideration. If the incoming light makes an angle with the optical axis

of the crystal, the state of polarization will be split to orthogonal polarizations defined by the

eigen-polarization states on the ne and no index surfaces. Hence, polarization switching happens

between incident and diffracted optical waves satisfying the Bragg matching condition in Eqn. 4.9.

Because the polarization of the diffracted wave is different from the incident wave, if the 0th and

1st order beams are made to interfere, the modulation depth of the interference pattern will not
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be optimized. However, by interfering 0th and 1st order beams from the crystal, we can obtain

higher spatial frequency fringes that lead to better spatial resolution for optical imaging. Another

important aspect is that the diffraction efficiency can be improved by operating the birefringent

crystal at an angle that gives the optimum state of polarization. Hence to generate polarization

interferometric DSIM using the 0th and 1st order beams, it is necessary to consider the input and

output state of polarizations in this polarization-switching geometry.

Figure 4.8: Momentum space representation of a uniaxial optically active TeO2 crystal with state of
polarizations maps for ne and no index surfaces. a) non-tangential matching condition b) tangential
matching condition.

The polarization inteferometric experiment setup is shown in Figure 4.9. The emerging laser beam

from the HeNe laser (10 mW avaerage power) is focused by a 50.8 mm focal lens to the center

of the crystal of an AOM. The AOM is driven by two amplified RF signals from LO2 and LO3,

respectively, and the diffraction efficiency of the AOM measured with an optical power meter is

46%. The RF signals are a 164 MHz and a 225 MHz sinusoidal signal, which gives a beat frequency

of 61 MHz when the two diffracted 1st order beams are overlapped. The 0th order beam from
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the AOM is blocked while the two 1st order beams are sent to the AOD by two folding mirrors

and a collimation lens because the AOD requires plane wave illumination to deflect input beams.

The total power in the 1st order beams from the AOM is about 3 mW. The AOD which has a

positive uniaxial and optically active TeO2 crystal inside is driven by an amplified 61 MHz RF

signal generated from LO1. When the Bragg matching condition is satisfied, the 0th and 1st order

diffracted beams from the AOD are imaged onto the surface of a Ronchi ruling target (Edmund

Optics, 500 lines/inch) using an M = 10 magnification 4F imaging system. Note that the Ronchi

ruling needs to be positioned at the image plane of the illumination patterns, which is generated

at the center of the AOD. This image plane is found by using the trick of the diffusing scotch tape

alignment method taught in the Advanced optics lab. In this strobing mode experiment, the Moiré

patterns become visible in a dark room due to the multiplication between the illumination pattern

and the Ronchi ruling.

The high speed photodiode detector sends the integrated intensity SIM signal to a digital

oscilloscope. From the setup shown in Figure 4.9 a), we then switch from the strobe mode to

SIM mode because the Moiré patterns are confirmed as a successful step. Hence, the three LOs

are replaced with a direct digital synthesizer (DDS). The AOM now simply passes the laser beam

through without diffraction. The system is realigned to the laser beam to be Bragg-matched in the

AOD, which is driven by a phase-coherent chirp similar to the RF setup section shown in Figure

4.5. The 0th and 1st order diffracted beams from the AOD are imaged onto the target using the

same 4F imaging system described before. Then a polarizer is inserted between the object and the

4F imaging system, and its orientation is selected for maximum SIM signal amplitude, which is

monitored by the osc-scope. As shown in Figure 4.9 b), the maximum peak-to-peak amplitude of

the SIM signal is 40 mV with a low frequency background, which is the Fourier transform of the

Ronchi ruling aperture illuminated by the laser beams. Then the polarizer is removed from the

system, and the peak-to-peak amplitude of the SIM signal is increased to 150 mV.

The result suggests that the polarization interferometric SIM signal has a lower amplitude as

a sacrifice for polarized illumination. However, several insights can be learned from the results
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Figure 4.9: Polarization interferometric SIM experiment setup by interfering 0th and 1st order
diffracted beams from the AOD. a) is experiment setup and b) are SIM signals obtained from osc-
scope with and without polarizer in the setup. LO1-3: RF function generators/local oscillators,
AOM: acousto-optic modulator, AOD: acousto-optic deflector, amp: RF amplifier, obj: Ronchi
ruling grating object, PD: high speed photodiode detector, osc-scope: digital oscilloscope, pol:
polarizer.

obtain in the first polarization interferometric SIM experiment. Because our HeNe laser is assumed

to be linearly polarized, it will be projected and decomposed to the eigen-polarizations of the

ne and no index surfaces determined by the Bragg angle. Because the 1st order beam diffracted

from the AOD diffracts up following the phase-matching condition, the polarization will switch

to approximately another elliptical state, which can be significantly different from the 0th order

beam. Hence upon interference, the modulation contrast of the illumination pattern may be reduced

due to the difference between the state of polarizations. Therefore for future improvements, the
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polarizations of the 0th and the 1st order diffracted beams from the TeO2 crystal can be optimized

systematically to enhance photon budget of the system. Another method is to use a wollaston

prism with a differential detection scheme that detects the extraordinary and ordinary polarization

components separately to maximize the photon budget.

The significance of polarization interferometric SIM is its potential for creating dynamic, fast,

and switchable polarized illumination based on AOD diffractions to perform polarization-sensitive

imaging in a scattering medium. The process can be electronically controlled instead of using

mechanically moving system components such as a MEMs device. Compared to a spatial light

modulator which is also capable of generating dynamic illumination fringes, AOD is faster (MHz

rather than KHz) and more cost effective. For unknown objects embedded in a scattering medium,

it is possible to simultaneously combine polarization interferometric imaging with the concept of

Fourier domain imaging to obtain high resolution images of the object using the 0th and the 1st

order diffracted beams from the AOD. Using a high power laser instead of the HeNe laser opens

new paths to unexplored territories in optical imaging using polarization inteferometric SIM. On

the other hand, instead of using a narrow-band HeNe laser, a polarization-sensitive and spatially

coherent broadband light source can be applied in the polarization interferometric SIM system

to enable coherence gating and possible adaptive tunable polarization interferometric imaging.

Therefore, the feasibility results in this experiment motivates the investigation of high power,

polarization-controlled and ultra-broadband light source.

In summary, a dynamics structured illumination microscope (DSIM) is designed and con-

structed for Fourier domain imaging using moving illumination patterns generated from an acousto-

optic defelctor (AOD). The microscope using AOD for moving illumination pattern generation using

a frequency sweep from the direct digital synthesizer (DDS) with photodiode detection is demon-

strated. The DDS is configured to generate a phase-coherent chirp signal for the experiment. To

reconstruct the object from the DDS chirp and the photodiode detector signal, a matched-filter al-

gorithm is developed, and the reconstructed signal agrees well with the image of the object recorded

by a CCD camera. Polarization interferometric DSIM was explored using the polarization switching
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feature due to the optically active birefringent TeO2 crystal. Insights were gained from the experi-

ment that the polarizations of the diffracted beams can be optimized to enhance diffraction efficient

hence the photon budget of the optical system. The advantage of the polarization interferometric

DSIM is its potential in creating rapid, dynamic, and switchable polarized active illumination to

perform polarization-sensitive imaging in a scattering medium. The process can be electronically

controlled without mechanical moving parts. Compared with conventional SIM techniques, DSIM

based on DEEP uses moving illumination patterns generated through a uniaxial crystal in the AOD

and only requires a single-pixel camera or photodiode detector for Fourier domain imaging. The

advantage of using AOD to generate dynamic illumination patterns is the fast speed (MHz/ms)

compared to spatial light modulator (on the order of 10 kHz). Although the power efficiency of

AOD can be improved with better design, AOD is more cost-effective than SLM for Fourier domain

imaging requiring only a single-pixel detector.

4.5 Broadband light source for optical imaging in scattering medium

The previous experiments describe a dynamic structured illumination microscope for optical

imaging using Fourier synthesis and interferometric illumination patterns generated by an acousto-

optic deflector. As discussed in Chapter 2 and 3, multiple scattering degrades the optical image

quality and limits the penetration depth of light propagation. Using broadband illumination with

DEEP was proposed recently as a type of coherence gating to enhance the ballistic photons and

increases penetration depth for optical imaging in scattering medium [116].

The coherence gating proposed uses the fact that the optical path length induced by scattered

light which is longer than the temporal coherence length of the illumination is suppressed while the

ballistic light is enhanced. Note for DEEP, the coherence-gated interference happens at the object

rather than at the detector. The conventional approach for simulating the light propagation in

scattering medium is Monte Carlo method mentioned in Chapter 2 for solving the radiative transfer

equation, however, the coherence and interference effects cannot be included in this intensity based

diffusion model. Although finite-difference time-domain (FDTD) method is employed by many
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researchers to numerically solve Maxwell’s equations, it is not appropriate for large scale imaging

problems because of its computational inefficiency. Split-step Fourier beam propagation method

was selected to model DEEP in scattering medium because is it much faster and efficient in solving

forward propagating fields [78, 116].

The algorithm was developed and described in details in [78]. However, in the following

section I will review the main steps used in the algorithm in order to provide a clearer theoretical

explanation for the simulation results that follows. Basically, the method involves using the scalar

Helmholtz wave equation for a coherent wave propagating in the scattering medium. In a 2-D cross

section the Helmfoltz equation in an inhomogeneous region is [78],

∂2E(y, z)

∂z2
+
∂2E(y, z)

∂y2
+ k2n2(y, z)E(y, z) = 0 (4.11)

where k = 2π
λ is the wave number in free space, E(y, z) is the electric field in phasor format which

can be defined as,

E(y, z, t) = A(y, z)eiknmzeiωt (4.12)

where A is the slowly varying field to be solved for, n(y, z) is an inhomogeneous refractive index

distribution which can be express as,

n(y, z) = nm + δn(y, z) (4.13)

where nm is the mean refractive index and δn(y, z) is the small refractive index perturbation due

to the scattering inhomogeneity. The scattering medium is represented as a mean refractive index

distribution with a perturbation characterized by a small standard deviation. The slowly varying

envelope approximation yields,

i2knm
∂A(y, z)

∂z
+
∂2A(y, z)

∂y2
+ k2(n2(y, z)− n2

m)A(y, z) = 0 (4.14)

For small perturbation in the refractive index, n2(y, z) − n2
m ≈ 2nmδn(y, z), then substitute the
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approximation into Eqn 4.14 we obtain the inhomogeneous evolution equation,

∂A(y, z)

∂z
= −j(2knm)−1∂

2A(y, z)

∂y2
− ikδn(y, z)A(y, z) (4.15)

= L {A(y, z)}+ N {A(y, z)} (4.16)

where L denotes a linear operator for electric field propagation in a homogeneous medium, and

N denotes an operator describing the index perturbation. This first order evolution equation can

be integrated over a small step ∆z,

A(y, z + ∆z) = e(L +N )∆zA(y, z) ≈ eN ∆zeL ∆zA(y, z) (4.17)

Since the linear diffraction step is easier computed in the Fourier space we can rewrite A(y, z+∆z)

as the following,

A(y, z + ∆z) = e−ikδn(y,z)∆zF−1 {H (ky; ∆z)F {A(y, z)}} (4.18)

where δn is given in Eqn 4.13, and H (ky; z) is the transfer function of the homogeneous medium

for propagation over a distance ∆z, which can be expressed as [121],

H (ky; z) = e−i∆z
√
k2n2

m−k2y (4.19)

This simulation included a time variation due to the slowly propagating signal in the AOD,

which was simulated as a stepped RF frequency producing a pair of Doppler shifted plane waves

interfering at the top of the sample, and then stepping through average of frequencies. These

then propagated through the scattering to various depths where the light was modulated by an

amplitude grating. This modulated light was detected at each depth and each RF frequency to

produce the DEEP signals whose Fourier transforms are indicated at each depth. The single peak

in the center encoding the grating spatial modulations are seen to be eliminated by scattering as

the depth increases. Then the simulation were repeated with polychromatic sources simulated by

incoherently summing the separately beam propagated results at each wavelength across the band.

As the fractional bandwidth increased, the desired peak measuring the spatial grating is seen to

persist to deeper depth, thereby improving the ability to image into scattering medium.
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Figure 4.10: Fourier split-step simulation of interference patterns in a highly scattering medium
for coherence gating effects. (a) monochromatic light source, (b) broadband light source with 0.2λ
fractional bandwidth, and (c) broadband light source with λ bandwidth. Adapted from Dr. Daniel
Feldkhun’s thesis [78]

The model assumes an average scattering cosine angle of g = 0.87, hence the medium is

mostly forward scattering. The mean refractive index is assumed to be nm = 1.33 with a small

perturbation represented by a standard deviation of 0.017 and a mean transport length of 200λ0.

The numerical simulation results using Fourier split-step method are displayed in Figure 4.10.

The broadband interference patterns are generated by summing the monochromatic interference

patterns at a number of wavelengths within the designed bandwidth incoherently. There is a

grating structure with a period of 6λ0 placed at 10 different depths indicated by the dashed red

lines in the figures. The detector signal is generated by spatially integrating the product between

the interference pattern at the grating and the grating structure. Note the process is repeated for

50 spatial periods of the interference pattern from 4λ0 to 12λ0 to simulate chirp signals generated

from the Bragg grating. The detector signal is then Fourier transformed to obtain a Fourier slice

at each different depth shown in the figures. For this highly scattering medium, we see substantial

improvement in penetration depth using the coherence gating technique because the detectable

grating structure signal is 3 or 4 times better using the broadband illumination in Figure 4.10 (c).
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From the published results in Figure 4.10, I’m motivated to investigate a broadband light source

for coherence gating that can be a light source for the dynamic structured illumination technique

discussed in this chapter to increase penetration depth in a scattering medium. The investigation

of a supercontinuum broadband light source using a photonic crystal fiber and a high repetition

rate ultrafast Ti:Sapphire laser will be discussed in details in Chapter 5



Chapter 5

Polarization-controlled supercontinuum generation in birefringent photonic

crystal fiber

5.1 Supercontinuum generation in optical fiber

Traditionally, nonlinear fiber optics and biophotonics have been two unrelated areas. How-

ever, in recent years, the fiber-based supercontinuum light source has emerged as a versatile and

potentially portable optical source that can provide spatial coherence, broad bandwidth, and wave-

length for biophotonic imaging applications [122], including optical sensing [123], diffuse optical

tomography [124], confocal microscopy [125], optical tweezers [126], fluorescence spectroscopy [127],

optical coherence tomography [128] and flow cytometry [129]. Compared to thermally based broad-

band light sources, supercontinuum laser sources using PCF are spatially coherent and partially

temporally coherent. Supercontinuum laser sources can cover a wide spectrum range from UV,

to visible, to infared, which is the ideal light source for many scientific applications. It has the

bandwidth of sunlight but is at least 104 brighter [122]. Furthermore, soliton self-frequency shift

(SSFS) generated in the supercontinuum process has recently been demonstrated to enhance the

signals in fluorescent imaging and enable deeper penetration in brain imaging as a novel tunable

light source.

Supercontinuum generation in microstructured PCF has been investigated extensively since

the late 1990s [21, 23, 130]. The unique dispersion engineering capability and high effective non-

linearity have made the PCF an excellent medium for broad supercontinuum generation[131, 132].

Dispersion engineering can be achieved by changing the periodic structure of the PCF cladding to



80

vary the group velocity dispersion (GVD). Because the microstructured PCFs typically have ex-

tremely small core diameters, the effective nonlinear coefficient of PCF is usually many times higher

than standard fibers. In this chapter, I will review nonlinear effects in supercontinuum generation

and polarization evolution in birefringent fibers. Then supercontinuum light source generated in

a birefringent PCF will be discussed and experimental results will be presented for different input

state of polarizations. Furthermore, an optical delay line experiment is designed and demonstrated

using off-the-shelf broadband dielectric mirrors to rotate the polarization without special achro-

matic wave plates to double the repetition rate for applications requiring high bandwidth, high

repetitation and polarized light as illumination source.

5.1.1 Nonlinear effects in supercontinuum generation

Nonlinear effects arise in supercontinuum generation due to intense light-matter interactions,

which then leads to spectral broadening of the original input light. Typically, the nonlinear effects

include self-phase modultion (SPM), four wave mixing (FWM), cross-phase modulation (XPM),

stimulated Raman scattering (SRS), and optical shock [130, 132, 133]. The excited nonlinear

effects interplay with dispersion and diffraction during light propagation inside the supercontin-

uum medium, and the output spectrum can be extremely complicated. Numerical simulation was

performed using the symmetric split-step Fourier method to solve the coupled-nonlinear wave prop-

agation for supercontinuum generation in a PCF. The results are presented in Figure 5.1.

While the details of the simulation model will be described in the next chapter, from this

simulation, we see when an optical pulse is launched into a piece of PCF, the spectrum of the pulse

is symmetrically broadened due to SPM as the pulse is compressed during the initial propagation in

the PCF shown in the temporal evolution plot. However, as the pulse is compressed, the intensity

becomes even higher to the extent that additional nonlinear effects in the PCF become evident, such

as optical shock, XPM, and Raman self-frequency shift. In the short wavelength regime, dispersive

wave generation is responsible for spectrum broadening while Raman-induced self-frequency shift

is responsible for the spectrum shifting into the longer wavelength regime. The wave ejected during
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Figure 5.1: Numerical simulation of supercontinuum generation for spectral and temporal evolution
as a function of propagation distance in a photonic crystal fiber.

the complex fusion process sheds excessive energies and eventually evolved into a fundamental

soliton. Then the soliton begins to frequency down-shift due to the Raman effect, so it is termed

a Raman soliton. Higher order Raman solitons can be seen in the temporal domain evolution as

the optical wave is further propagated in the PCF. The Raman soliton part of the supercontinuum

generation is particularly interesting because it not only can carry more than 70% of the total

energy, but also its polarization is uniform across the soliton pulse, which can be useful for imaging

and sensing applications requiring a tunable light source with uniform polarization. Note that the

numerical simulation was performed using vectorized generalized nonlinear Schrödinger equations.

The result plotted in the temporal field evolution is the linear sum of the x and y polarization

components.
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5.2 Polarization evolution in birefringent fibers

Polarization effects in supercontinuum generation were largely ignored until 2005 when the

polarization dependence of supercontinuum in a tapered birefringent PCF was investigated [134].

Supercontinuum light source generated in a nonlinear birefringent fiber medium is one of the most

fascinating applications for both light interaction with nonlinear birefringent material and nonlinear

optics. In the previous section, we saw the numerical simulation of supercontinuum generated in a

PCF. Although the numerical results of the the temporal and spectral evolution along the PCF are

plotted in the total intensity domain, the numerical model was constructed using coupled nonlinear

Schrödinger equations, which considers the coupling of the two polarization eigenmodes for the

PCF. Hence, in this section, polarization evolution in birefringent fibers and birefringence will be

discussed in the context of light propagation in anisotropic crystals.

During light propagation in the anisotropic crystals, interesting phenomena arise, including

optical rotation, polarization, acousto-optics, electro-optics, and birefringence phenomenon. (Bire-

fringence refers to the double refraction of light when interacting with anisotropic crystals, which

has orientation-dependent differences in the refractive index due to its non-symmetric crystalline

lattice structure.) Examples of anisotropic crystals include calcite, quartz, KDP and liquid crys-

tals. Light interactions with birefringent material been applied in a wide range of exciting areas

in optics. Stokes parameters can be used to describe polarization of light fields in a birefringent

medium. The stokes vector [S0, S1, S2, S3] gives the complete information of the intensity and the

state of polarization (DoP) of the plane wave [135]. For a monochromatic wave, the Stokes vector

should satisfy the relationship of S2
0 = S2

1 + S2
2 + S2

3 . The theory of Stokes vectors has been well

presented in the literature. Stokes vectors can be measured experimentally and represented on the

Poincaré sphere.

The Poincaré sphere is a useful geometrical representation of state of polarizations in the polar

coordinate, where the axes are represented by σ1 = S1/S0, σ2 = S2/S0, and σ3 = S3/S0. Each

point on the sphere represents a unique state of polarization [S1, S2, S3]. For polarization evolution
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Figure 5.2: Polarization evolution in polarization maintaining fiber showing the eigen-axis and
birefringence beat length and the Poincaré sphere representation for linear polarization rotation
with CW input light.

in birefringent fiber, the Stokes parameter can be visualized on the Poincaré sphere, which is shown

on the right of Figure 5.2. For linearly birefringent fiber, the polarization trajectories rotate on

the Poincaré sphere around the S1 eigen-axis while for circularly birefringent fiber, the trajectories

rotate around the S3 axis. (The numerical study of polarization dynamics of supercontinuum

generation using Poincaré sphere representation will be discussed in detail in the next chapter. In

the following section, I will describe the supercontinuum generation experiment that provides the

motivations to the investigation of the numerical simulations.)

Birefringent crystals can be either uniaxial or biaxial depending on the crystal structure.

Examples of commonly used uniaxial crystals include calcite, lithium niobate, and quartz. For

these types of crystals, the birefringence is intrinsic. Some long-chain polymers and biological tissue

fibers also have intrinsic birefringence. For naturally non-birefringent (i.e., isotropic) materials,
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birefringence can be externally induced by applying stress, strain, bending or force to lose isotropy

in one particular dimension. One good example is plastics under mechanical stress, such as scotch

tape that acts as a half-wave plate at 632 nm. Note that stress-induced birefringence can be as

high as 10−4. Another type is form birefringence where a structure is artificially created in a carrier

medium with a different refractive index, one example is PCF, and another interesting example is

metamaterial when the lattice spacing is much smaller than a wavelength. Through this structural

design modification of an isotropic material, a large amount of form birefringence can be achieved

so the undesired small and random fluctuations of birefringence is suppressed.

Figure 5.3: Polarization evolution in polarization-maintaining fiber showing the eigen-axis and
birefringence beat length and the Poincaré sphere representation for linear polarization rotation
with broadband input light.

In fact, even a single mode fiber can support two orthogonally polarization modes [133].

Because all fiber has some intrinsic birefringence due to stress, strain, or environmental perturba-
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tions, polarization-maintaining fibers were designed to suppress small unwanted variations of bire-

fringence. Polarization-maintaining fiber follows the same principle for light to transmit through

without change of polarization given the input polarization is aligned to either the slow or fast

axis of the fiber. However, as shown in Figure 5.2, if the input polarization makes angle with

the eigen-axis of the fiber, the state of polarization changes continuously during propagation with

a period equal to the beat length Lbeat = 2π
|βx−βy | = λ

B , where B represents fiber birefringence,

B = |nx − ny|, and nx and ny are the refractive indices for the two orthogonal polarization eigen

axes respectively. Slow axis has a larger refractive index (group velocity is smaller) while fast axis

has a smaller one (group velocity is larger). After integer numbers of beat length, the original input

polarization is recovered. The Poincaré sphere shown in Figure 5.2 corresponds to integer number

of cycle of polarization rotations around the horizontal and vertical eigen-axis. For broadband in-

put light to the polarization-maintaining fiber, because the polarization beat length Lbeat depends

on the wavelength, as shown in Figure. 5.3, for the same 45o input polarized light, the polarization

trajectory rotates slower for the long wavelength wave than the short wavelength wave. Hence,

for supercontinuum generation with an input light of a certain bandwidth, the polarization evolves

differently across the spectrum which should be taken into account when analyzing the polarization

dynamics of the supercontinuum process.

Nonlinear birefringence can also be generated by nonlinear Kerr effects during intense light

propagation in the fiber. The coupling between the two polarization eigen modes are induced by

XPM which was introduced in the previous section. Nonlinear polarization rotation on the Poincaré

sphere will be very different from the linear one, the former rotates around the circular eigen-axis

(±s3) while as shown in Figure 5.2, the latter rotates around the linear eigen-axis (±s1) for a low-

power CW input light. The principles of linear and nonlinear birefringence of polarization rotation

and their Poincaré sphere representations will be further discussed using numerical simulations of

the nonlinear coupled wave equations in the next chapter.
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5.3 Experiment: Polarization-controlled supercontinuum generation using

high repetition rate ultrafast laser

In this experiment, I demonstrate an octave-spanning supercontinuum generated in a PCF

pumped with a 2 GHz Ti:Sapphire laser and investigate the behaviors of the output spectrum as

the input polarization is rotated. The schematic of the experiment is shown in Figure 5.4. The

PCF used is a highly nonlinear polarization-maintaining fiber with a high linear birefringence of B

= 3×10−4 which can suppress the effect of the random and undesired polarization variations along

the fiber if a polarization eigen-mode is input to the fiber. The GiGaJet 30s Ti:Sapphire laser is

pumped with a 5.5 W all-solid-state Verdi V8 operating at 532 nm. The laser is tuned to mode lock

in clock-wise direction with a repetition rate of 2 GHz. Any residual beam in the counter-clock-wise

direction is blocked from leaving the laser enclosure. The laser output pulses are compressed by a

pair of ultra-fast dispersion compensation mirrors (DCM). The measured laser pulse and spectra

outputs are shown in Figure 5.5. The full width half maximum (FWHM) pulse width measured by

an interferometric autocorrelator is 28 fs assuming a hyperbolic secant pulse profile. The spectrum

of laser output is centered around 810 nm with a FWHM of 70 nm. The typical average output

power is 636 mW measured after the DCM.

The dechirped pulses are then propagated through a half-wave plate (HWP) and coupled

into the PCF by an objective lens (Newport Precision Objective lens, 20X, NA: 0.35). The laser

beam spatially fills the aperture of the objective lens, the spot size at the focal of the objective

lens is 1.78 µm for a 5.2 mm clear aperture. The coupling to the PCF is optimized by a six-axis

NanoMax alignment stage. The PCF (NL-PM-750, Crystal Fibre) has a small core diameter of 1.8

µm and a short zero dispersion wavelength at 750 nm. A coupling lens collimates the PCF output

beam to monitoring devices including a power meter and an optical spectrum analyzer. The input

pulse is coupled to the eigen-axis of the PCF at a particular orientation of the HWP.

Figure 5.6 shows the picture of the experiment of the supercontinuum generation through

a PCF. At the output of the PCF, a symmetric intensity pattern is observed that reflects the
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Figure 5.4: Experiment setup for supercontinuum generation in a photonic crystal fiber. DCM,
dispersion compensation mirror; HWP, half-wave plate; PCF, photonic crystal fiber.

Figure 5.5: Interferometric autocorrelation trace of the dechirped pulses and spectrum of output
pulses from the GiGa laser.

hexagonal shape of the PCF cross-sectional mode. We study the behavior of supercontinuum when

the input polarization is rotated with respective to the eigen axis of the PCF. The eigen-axis of
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the PCF is identified by using a wollaston prism and a power meter at the output of the fiber. By

rotating the HWP in 5o steps and recording the power for each of the two polarization components

at the output of the PCF, we found the peaks and dips of roughly sinusoidally oscillating power

outputs, which corresponds to locations of the eigen axis. This became the lookup table for the

readings of the HWP for aligning the input light to the eign-axis of the PCF. The HWP can be

rotated from its eigen axis position by steps of 22.5o then the output supercontinuum spectra are

recorded using an optical spectrum analyzer.

Figure 5.6: Picture of the supercontinuum generation experiment from a PCF.

The resulting supercontinuum spectra are shown in Figure 5.7 (a) to (e). By changing the

input pulse polarization, different reshaped spectra with different output beam colors are observed

and are shown in Figure 5.7 (f) to (j). A symmetric beam color pattern is observed for input

polarizations varying from the fast to slow axis. At a 45o HWP angle, the supercontinuum output

is visibly the greenest, shown in Figure 5.7 (h). All spectra in Figure 5.7 show UV light generation

from around 350 nm perhaps due to frequency tripling. However, in the long wavelength regime,
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we observe that the Raman soliton shift is asymmetric, showing a narrowest supercontinuum width

in Figure 5.7 d) at 67.5o HWP angle. This spectrum asymmetry of the Raman spectrum with

respective to the HWP angle (input polarization) will be further explained using the polarization

instability phenomenon numerical simulation in the next chapter. The experimental observations

motivated us to conduct these numerical simulations. In addition, the results shown in the experi-

ment qualitatively agree with the numerical simulations.

Figure 5.7: Experimental results of supercontinuum generation in a PCF. Supercontinuum spectra
with HWP angle at: (a) 0o, (b) 22.5o, (c) 45o, (d) 77.5o and (e) 90o to eigen axis of PCF; (f) to (j)
show the corresponding photographs of supercontinuum output beams.

In this experiment, we demonstrated a polarization-controlled supercontinuum generation

in a linearly birefringent PCF using the pulses from a dispersion-compensated 2 GHz repetition

rate Ti:Sapphire laser. The octave-spanning spectra is reshaped with difference input polarizations

controlled by an HWP. We observed the polarization dependence of the output supercontinuum

spectrum. Note this polarization-controlled supercontinuum laser can be used as a versatile broad-
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band light source for optical imaging in scattering medium. The Raman solitons near 1100 nm

shown in the spectra plots in Figure 5.7 can be wavelength-tuned by simply changing the input

power to the photonics crystal fiber. As will be shown in the numerical simulations, the Raman

soliton evolve as a whole unit and its state of polarization stays constant across the pulse. This

unique constant polarization and wavelength-tunable feature can benefit optical imaging as a pow-

erful broadband light source as discussed in the introduction chapter. The detailed numerical

simulations investigating the polarization dynamics of the Raman solitons will be discussed in the

next chapter.

5.4 Experiment: Repetition rate doubling of the supercontinuum laser for

optical delay line using the polarization rotation technique

For many applications such as polarization-sensitive 2D scanning experiments [116], we need

to have a polarized cost-effective supercontinuum laser source with a high repetition rate. Although

supercontinuum lasers with 80 MHz repetition rate are available, this can only Nyquist sample a 40

MHz bandwidth, while we need more bandwidth for our 2D scanning system. For this reason, we

desire to double the repetition rate of an 80 MHz supercontinuum laser to 160 MHz. Without active

optical devices, it is inevitable to lose half the power of the laser. But if the laser is unpolarized, we

already lose half the power when polarizing the laser is required, so we can use the other polarization

for pulse rate doubling without any additional loss.

An optical delay line is designed and built to double the repetition rate of the NKT supercon-

tinuum laser in the lab using commercially available optical components. To double the repetition

rate of a laser, the output pulse train is split into two orthogonally polarized sets, with one set of

the pulse train delayed by exactly half of the time period and polarization rotated. Then the two

pulse trains can be interleaved to double the pulse repetition rate. As illustrated in Figure 5.8, the

original pulse train has a time period of t0, corresponding to a repetition rate of f0. It is interleaved

with a delayed version of the pulse train with the same amplitude, resulting in an effective time

period of t0/2, and a repetition rate of 2f0.
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Figure 5.8: Pulse train interleaving for repetition rate doubling.

5.4.1 Broadband polarization rotation using a dielectric mirror system

Since a polarized laser beam is desired for our applications, we need to incorporate a polariza-

tion rotation system into the design of the optical delay line. A wave plate can be used to rotate the

polarization of an input beam. However, even for a perfectly manufactured wave plate, there will

be loss in polarization purity due to the undesired birefringence caused by heating from the high

input power laser beam [136, 137]. In addition, for a supercontinuum laser source, an expensive

broadband wave plate is required to rotated the polarization across the several hundred nanome-

ters broad spectrum. An achromatic polarization cell design for polarization rotation was proposed

[138] for the visible wavelength range, and can be used with multiple wavelengths or tunable lasers.

However, this device requires accurate cutting angles of three prisms at mutually perpendicular

edges and the thick glasses could introduce dispersion to time domain pulses. Alternatively, we

propose using commercially available broadband dielectric mirrors to rotate the polarization of high

power supercontinuum laser beams.

Figure 5.9 illustrates the concept of polarization rotation of an incoming beam by tactically
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Figure 5.9: Broadband polarization rotation system using four dielectric mirrors. The picture of
the system is shown in the insect of Figure 5.10

arranging four broadband dielectric mirrors. The coordinate of the system is shown in the upper

left corner. The laser beam propagates in the direction of the k-vector. The normals (dashed line)

of the first three mirrors M5,6,7 lie in the same y-z plane. The p-polarization changes direction

upon reflection from a mirror, whereas the direction of s-polarization remains the same. Therefore,

there is a π phase shift between the p and s polarization vectors upon mirror reflection. Since the

normal of the fourth mirror M8 lies in the x-y plane, it is easier to analyze the polarization in that

plane, shown in the inset in Figure 5.9. Let’s change the notation of the polarization due to the

switch of the plane. Let p1 represent p-polarization and p2 represent s-polarization. As we can see,

the output polarization switches from p to p1 and s to p2, respectively. Therefore, if we compare

the input and output polarizations in the same x-z plane, we see that eventually at the output of

M8, s-polarization is switched to p-polarization, and vice-versa. Hence, the polarization rotation of

the supercontinuum laser beam can be theoretically achieved in the geometry as designed in Figure

5.9 without using broadband wave plates.
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Figure 5.10: Optical delay line setup. The insect shows the picture of the broadband polarization
rotation system using four dielectric mirrors (M5, M6, M7 and M8). BS: beam splitter. PBS:
polarization beam splitter.

Figure 5.10 shows the optical delay line experiment setup. An NKT supercontinuum laser is

used as the pulse source. This laser emits picosecond pulses at a repetition rate of 78.35 MHz. The

output beam of the laser has a diameter of about 1 mm. An IR filter (Optosigma, cold mirror, 034-

3110) is used in reflection mode to block the strong infared power, directing the visible spectrum

to the optical delay line experiment. Since the laser output beam is about 1 mm in diameter, a 3X

beam expander (Melles Griot, 2001-10089) is used to increase the beam diameter to about 3 mm.

The focal tuning of the beam expander helps to optimize the beam sizes of the two interleaved

pulse trains so that they match and overlap at the output. The polarization beam splitter (Melles

Griot, 003PBB007) splits the unpolarized incoming beam to s- and p-polarizations. The s-polarized

beam is then sent directly to the non-polarization beam splitter (Thorlabs, BS013), while the p-

polarized beam travels a longer path by bouncing twice on each of the high reflectivity 2
′′

mirrors
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(Newport, 20D20BD.1). The total path difference between s and p-polarized beams should equal

to c× t0/2 = 3e8m/s× 6.38ns = 1.905m = 6.25 feet. The high reflectivity Newport mirrors folds

the p-polarized beam in order to create an optical path length difference to about 6.25 feet from

the s-polarized beam.

Figure 5.11: Photograph of the optical delay line setup using the broadband polarization rotation
system.

Coarse tuning of the path length difference is achieved by translating one of the cavity mirrors

mounted on the translation stage that is tunable in the x direction, while fine tuning is achieved by

translating mirror 6 and 7 mounted on a trumpet-like stage in the y direction simultaneously. As

illustrated in the previous section in Figure 5.9, upon reflections on mirrors M5−8, the polarization

of beam 1 is rotated from p to s, co-linear with the polarization of beam 2. Although the input laser

beam is unpolarized, we have an s-polarized output beam from the optical delay line as a result

of the polarization rotation mirrors. Finally, the two co-linearly polarized beams recombine at the

non-polarizing beam splitter (BS), and a detector can be placed at either port of the BS to observe
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the output pulse train. Figure 5.10 shows a photograph of the optical delay line setup. The output

repetition rate from an optical delay line can be measured by either an RF spectrum analyzer

(Hewlett Packard, 8560E), or a modified digital oscilloscope (Rigol, DS2072, 200MHz, 1 Gb/s). A

GaAs fast photodiode (Electro-optics, ET-4000, bandwidth 8 GHz) is used to detect the output

beam. Although the oscilloscope used to observe the time domain data only has a bandwidth of 200

MHz, it is sufficient to see the 160 MHz pulse train. The seed pulse output from the NKT laser is

used as an external trigger for the oscilloscope. We detect beam 2 and use beam 1 in the far field as

an alignment aid. Figure 5.12a shows time signals measured by the oscilloscope: the trigger signal,

the long path signal (beam 1), the short path signal (beam 2) and the interleaved signal. Each

set of data is averaged 512 times on the scope to eliminate the unexpectedly large pulse-to-pulse

fluctuations of the laser amplitude and polarization. The interleaved beam has a repetition rate of

156.7 MHz. The time delay between the two sets of pulse trains is 6.38 ns. As can be seen, there

is a slight imbalance of the interleaved pulse amplitudes and pulse-to-pulse fluctuations.

The single-sided RF output spectrum is calculated by Fast Fourier transform (FFT), and

the pulse train is measured by the Rigol oscilloscope. The RF spectrum in Figure 5.12b shows

the fundamental interleaved frequency of 156.7 MHz, and the harmonic frequencies 313.4 MHz

and 470.1 MHz are also evident. The amplitudes of the harmonic frequencies correspond to the

weighting factors of the Fourier series of the periodic waveform. The repetition rate of a picosecond

supercontinuum laser is doubled with an optical delay line from 78.35 MHz to 156.7 MHz. At the

same time, the unpolarized output beam from the laser is transformed to an s-polarized beam.

This experimental result is a promising step for doubling the repetition rate of a future unpolarized

laser that would be used for microscopy experiments requiring high bandwidth and polarized input

light without the need of a specially designed broadband wave plate. In the previous section, the

polarization-controlled supercontinuum light source was experimentally demonstrated, the concept

of the optical delay line could be used to double the repetition rate of the supercontinuum light for

polarization microscopy requiring high bandwidth and variable states of polarization.

The experimental investigations of supercontinuum generation in a birefringent photonic
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Figure 5.12: Results for the optical delay line experiment. (a) Output signals measured by oscillo-
scope. From top to bottom: trigger signal, short optical path beam (s-polarization), long optical
path beam (p-polarization) and interleaved beam measured by an oscilloscope, (b) RF spectrum of
the output signal.

crystal fiber (PCF) is presented in this chapter. The ultrashort pulse from an ultrafast Ti:Sapphire

laser was compressed to 28 fs and was coupled into the highly nonlinear PCF to generate an octave-

spanning supercontinuum. The output supercontinuum was observed to be dependent on the input

state of polarizations. In particular, the wavelength shift of the Raman soliton depends on the

angle of the HWP at the input of the PCF. The observation of the polarization dependence of the

supercontinuum provided the motivation to conduct detailed numerical simulations to investigate

the underlying physics of the polarization dynamics of the Raman soliton which will be discussed

in the next chapter. In addition, an optical delay line experiment was demonstrated to double the

repetition rate of a supercontinuum laser. This is potentially useful for optical imaging applications

such as broadband 2D polarization-sensitive laser scanning microscopes. Instead of using specially

designed broadband wave plate cells, a polarization rotation system is developed using commercially
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available dielectric mirrors to rotate the polarization of the laser beam and recombine the two beams

to double the repetition rate of the supercontinuum laser.



Chapter 6

Polarization dynamics of broadband supercontinuum light source generated in

a photonic crystal fiber

In the previous chapter, polarization dependence of supercontinuum generation in a photonic

crystal fiber (PCF) was observed experimentally which provided the motivation to study the un-

derlying physics of the polarization dynamics for the octave-spanning broadband light source. In

this chapter, I numerically investigate polarization instability of soliton fission and the polariza-

tion dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal

fiber using the coupled vector generalized nonlinear Schrödinger equations (GNLSE) for both linear

and circular birefringent fibers. The background of supercontinuum generation and the numeri-

cal simulation method will be described in details, as well as the investigations of an appropriate

Raman response function to be included in the coupled GNLSE simulation for supercontinuum

generation. In addition, the numerical algorithm for solving the coupled GNLSE by switching the

eigen-polarization basis will be presented.

6.1 Introduction to polarization instability in birefringent fiber

Polarization instability (PI) of solitons in birefringent fiber has been the subject of numerous

investigations because of its fascinating underlying physics and potential for practical applications

in nonlinear optics. In a birefringent nonlinear fiber, the intensity-dependent refractive index leads

to PI for intense continuous-wave (CW) laser fields polarized along the fast-axis [139, 140]. The

state of polarization (SOP) of the light during propagation along the birefringent fiber can be
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represented on a phase plane graph which reveals a polarization separatrix, at which the nonlinear

index is commensurate with the birefringence. Similarly, interesting optical bifurcation phenomena

associated with this fast-axis instability have been reported [141], and the SOP trajectories were

represented on the Poincaré sphere [142].

Unlike the case of CW light, optical solitons require lower average pulsed laser power to ob-

serve PI [143, 144]. Unlike quasi-CW light, optical solitons evolve as a unit [145, 146] that can be

characterized by a single SOP qualitatively following the CW theory except the soliton stabilizes

due to the interplay of dispersion and nonlinearity [147]. The propagation of solitons in birefrin-

gent fibers was investigated [148, 147] considering the interactions of its two orthogonal polarization

components. Subsequently, vector solitons in birefringent nonlinear fiber were theoretically demon-

strated using coupled GNLSE [149]. Almost a decade later, the experimental observation of PI of

vector solitons in a weakly birefringent fiber was reported [144].

Since the discovery of supercontinuum generation, soliton fission based supercontinuum in

birefringent PCF was found to have polarization-dependent properties [150, 151, 22, 152, 153, 154,

155, 133, 156], indicating a nonlinear coupling between the two orthogonally polarized components

[133]. PI and the vectorial nature of soliton fission and Raman solitons produced during SC have

been demonstrated in a nearly isotropic tapered PCF for a slightly elliptical input polarization

[157]. Localized mode solutions continuously down-shift due to the Raman terms in the general-

ized nonlinear Schrödinger equation, so they should be referred to as “Raman solitary waves” since

they are not true soliton due to the continuous Raman frequency down-shift. However, following

the convention in the optics literature, in this thesis, we refer to them as “Raman solitons” [133].

Complex PI of Raman solitons can significantly impact not only the general spectrum but also the

output SOP across the SC spectrum.

While the previous investigation laid the groundwork for the study of PI of Raman solitons gen-

erated by SC in a birefringent fiber, we extend these results to different linear and elliptical input

SOPs for both linear and circular fiber birefringence. In this work, we investigate numerically the

polarization dynamics of SC soliton fission and the ejected Raman soliton by systematically varying
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the input SOP and fiber birefringence. We numerically solve the coupled GNLSE using a vector

beam propagation algorithm, in which the dispersion evolution in Fourier space is performed in the

fiber eigenmode basis, and the nonlinear evolution is performed in a circular basis. The detailed

discussion of this algorithm will be presented in Section 3.6.1. We analyze the SOP evolution of the

first emitted Raman soliton after the soliton fission as it propagates down the fiber as a function

of input SOP and fiber birefringence. To comprehensively understand the complex nature of PI in

SC, the polarization evolution of the soliton fission process and Raman soliton are represented on

the Poincaré sphere. Much of the previous work was focused on nonlinear polarization dynamics in

linearly birefringent fibers, in this work, we also demonstrate Raman soliton polarization evolution

in circularly birefringent PCF using the Poincaré sphere representation.

6.2 Theoretical background of supercontinuum generation

When a short optical pulse propagates along a fiber, dispersion and nonlinear effects influence

the temporal shape and frequency spectra. To model the propagation of such short pulses inside a

fiber, we start with the wave equation obtained from the Maxwell equations,

∇×∇×E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
(6.1)

where E is the electric field vector, and P is the induced polarization field vector. The induced

polarization and the applied electric field satisfies the general relation,

P = ε0(χ(1)E + χ(2)EE + χ(3)EEE + ...) (6.2)

where c is the speed of light in vacuum, and ε0 is the permittivity in vacuum. χ(i) is the ith order

susceptibility, and it is a tensor of rank i+1. The linear susceptibility χ(1) represents the dominant

contribution to the polarization P. Its effects are manifested through the refractive index and loss

coefficient given by the following,

n(ω) = 1 +
1

2
Re[χ̃(1)(ω)] (6.3)

α(ω) =
ω

nc
Im[χ̃(1)(ω)] (6.4)
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χ(2) governs the second-harmonic generation and sum-frequency generation [158]. Because

SiO2 is a symmetric molecule, χ(2) = 0 for silica. χ(3) represents the lowest-order nonlinear effect

in a silica fiber such as four-wave mixing, nonlinear refraction and third-harmonic generation [158].

Note that for supercontinuum generation, the effective refractive cladding index strongly depends

on the wavelength and the periodic structure of the waveguide. Short optical wavelengths are more

confined in the core region, hence the effective refractive cladding index decreases as a function

of the wavelength. If only the third-order nonlinear effects governed by χ(3) are considered, the

induced polarization can be written as [133]

P = PNL + PL (6.5)

where PNL and PL represent the nonlinear and linear polarization, respectively. They are given

by the following,

PL(r, t) = ε0

t∫
−∞

χ(1)(t− t′) ·E(r, t) dt
′

(6.6)

PNL(r, t) = ε0

t∫∫∫
−∞

χ(3)(t− t1, t− t2, t− t3) ·E(r1, t)E(r2, t)E(r3, t) dt1dt2dt3 (6.7)

The equation of PNL(r, t) describes a variety of third-order intensity-dependent nonlinear effects.

The above equations can be simplified with several approximations.

For silica glass, the third-order susceptibility can be written in terms of three independent

elements [133]

χ(3)
ijkl = χ(3)

xxyyδijδkl + χ(3)
xyxyδikδjl + χ(3)

xyyxδilδjk (6.8)

where δij can be defined as δij = 1 for i = j and δij = 0 otherwise. We get χ(3)
xxxx = χ(3)

xxyy +

χ(3)
xyxy + χ(3)

xyyx because of the rotational symmetry of isotropic silica glass. For silica glass, the

three components of χ(3)
xxxx have almost the same magnitude, hence they can be assumed to be

the same. In general, the third-order susceptibility in the equation of PNL(r, t) can be written as

[159]

χ(3)(t− t1, t− t2, t− t3) = χ(3)R(t− t1)δ(t− t2)δ(t− t3) (6.9)
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where R(t)is the nonlinear response function normalized such that
∞∫
−∞

R(t)dt = 1. Note χ(3) affects

the polarization of the optical field through nonlinear birefringence, which will be discussed in this

chapter. The derivations of electronic and resonant nuclear susceptibility parts χE
ijkl and χR

ijkl

will be discussed in Section 6.4. In the slowly varying envelope approximation, we can separate the

rapidly varying part of the electric field. The electric field E(r, t) can be written as

E(r, t) =
1

2
x̂[F (x, y)A(z, t)eiβoz−iω0t + c.c.] (6.10)

where x̂ is the polarization unit vector, A(z, t) is the slowly varying pulse envelope, F (x, y) is

the modal distribution and the fundamental mode which can be approximated by a Gaussian in a

single mode fiber, hence we can have F (x, y) ≈ e−(x2+y2)/w2
, where w is the width of Gaussian [133].

The details of the fiber mode are covered in several resources for interested readers [160, 161, 162].

Assuming the slowly varying optical field Eqn. 6.10, we can then substitute Eqn. 6.9 into PNL(r, t),

assuming a linearly polarized optical field so that one component of χ(3)
xxxx of the fourth-rank

tensor contributes to the refractive index, the scalar form of the nonlinear polarization can be

written as

PNL(r, t) =
3ε0

4
χ(3)

xxxx

t∫
−∞

R(t− t1)E∗(r, t1)E(r, t1)dt1 (6.11)

where R(t) is the normalized nonlinear response function which should include both the electronic

(instantaneous) and nuclear components,

R(t) = (1− fR)δ(t− te) + fRhR(t) (6.12)

The details of the nonlinear response function will be investigated in Section 6.4. Now we can

apply the slowly varying envelope approximation and take into account the frequency dependence

of wave number β by Taylor series expansion around the center frequency ω0,

β(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)2β2 + ... (6.13)

Similarly, Taylor expand the nonlinear coefficient γ and the loss coefficient α around the center
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frequency ω0, respectively,

γ(ω) = γ(ω0) + γ1(ω − ω0) +
1

2
γ2(ω − ω0)... (6.14)

α(ω) = α(ω0) + α1(ω − α0) +
1

2
α2(ω − ω0)... (6.15)

where the nonlinear parameter is defined as,

γ(ω0) =
n2(ω0)ω0

cAeff
(6.16)

where n2 is is nonlinear-index coefficient and Aeff is the effective mode area defined as,

Aeff =

(∫∫ −∞
∞ |F (x, y)|2 dx dy

)2

∫∫ −∞
∞ |F (x, y)|4 dx dy

(6.17)

The model distribution F (x, y) shown in Eqn. 6.10 can be used to evaluate Aeff . For a fundamental

Gausian mode in a single mode fiber, since F (x, y) ≈ e−(x2+y2)/w2
, Aeff can be approximated as

Aeff = πw2. For highly nonlinear fiber, which will be discussed later, the value of Aeff is extremely

small and can be on the order of the optical wavelength to increase nonlinearity.

6.2.1 Generalized Nonlinear Schrödinger Equations

Using the slowly varying envelope approximation and retaining the first two erms in the γ(ω)

and α(ω) Taylor expansions, the scalar form of the pulse propagation equation inside a single mode

fiber is given by the following [163],

∂A

∂z
+

1

2
(α(ω0) + iα1

∂

∂t
)A+ β1

∂

∂t
+
iβ2

2

∂2A

∂2t
− β3

6

∂3A

∂t3
+ ...

= iγ(ω0)(1 +
i

ω0

∂

∂t
)(A(z, t)

∞∫
0

R(t
′
)|A(z, t− t′)|2dt′)

(6.18)

This equation accounts for the loss, dispersion and intrapulse Raman scattering-related non-

linear effects. Higher order dispersion terms should be included for the numerical simulation of

supercontinuum generation. However, there is some debate about the physical validity of using the

slowly varying envelope assumption for short optical pulses (in the order of a few optical cycles)



104

[164]. Theoretical works such as [165] have shown that the slowly varying envelope approxima-

tion can be applied to even the single optical cycle regime. For practical numerical modeling, the

equation needs to be transformed to the co-moving frame at the group velocity, that is, the group

velocity frame, by making the transformation of the following,

T = t− z

vg
= t− β1z (6.19)

Hence, by substituting

d

dt
=

d

dT
(6.20)

d

dz
=

d

dz
− 1

vg

d

dT
(6.21)

into the above derived pulse propagation equation and by adding higher order dispersion terms we

get the GNLSE for modeling supercontinuum generation,

∂A

∂z
+

1

2
(α(ω0) + iα1

∂

∂T
)A+

N∑
n>2

in−1βn
n!

∂nA

∂Tn

= iγ(ω0)(1 +
i

ω0

∂

∂T
)(A(z, T )

∞∫
0

R(T
′
)|A(z, T − T ′

)|2dT ′
)

(6.22)

where n represents the order up to which dispersion effects are included. Notice that β1 term is

eliminated as a result of the transformation to the group velocity frame. The left hand side of the

equation models the linear propagation effect. For short fiber propagation length, the loss terms

can be ignored.

The right hand side of the equation models nonlinear effects in the fiber, while the time

derivative models the dispersion of the nonlinearities. The terms with 1
ω0

∂
∂T ) are responsible for

self-steepening and optical shock, which is a key factor in allowing the envelope-based GNLSE to be

extended into the single-cycle regime. Note self-steepening is results from the intensity dependence

of group velocity and leads to an asymmetric self-phase modulation broadened spectra for short

pulses. Optical shock is created by self-steepening of a short pulse. The integral terms represent

the delayed Raman response, which plays an important role in supercontinuum modeling and will

be discussed in detail.
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6.3 Numerical method for solving the coupled generalized Nonlinear Schrödinger

Equations

Numerical methods are usually effective in helping us understand the nonlinear effects repre-

sented in the GNLSE discussed in the previous section. In the case of supercontinuum generation,

the split-step Fourier method [166] and Runge-Kutta method [167] can be used to solve the GNLSE

(although the analytical solution of GNLSE can be obtained using the inverse scattering method,

the method is only valid for some specific cases [168], we discuss the more often used numerical

approaches in this section.) The split-step Fourier method (SSFM) is frequently used in modeling

the GNLSE for supercontinuum generation. This method separates the GNLSE into two parts,

∂A

∂z
= [D̃ + Ñ ] (6.23)

where D̃ is a dispersion operator and Ñ is a nonlinear operator. From the scalar GNLSE, they are

given by the following,

D̃ = −
N∑
n=2

in−1βn
n!

∂n

∂tn
(6.24)

Ñ = iγ(ω0)(1 +
i

ω0

∂

∂T
)(

∞∫
0

R(T
′
)|A(z, T − T ′

)|2dT ′
) (6.25)

If a pulse is propagated in a small distance h, then from z to z + h it is carried out in two steps.

The advance of the field over a step h can be approximated as the following,

A(z, z + h) ≈ exp(hD̃) exp(hÑ)A(z, T ) (6.26)

In SSFM, the dispersion and nonlinear effects are calculated in two independent steps. The dis-

persion term is calculated in Fourier domain using the Fast-Fourier transform (FFT). Since the

dispersion and the nonlinear terms don’t commute, the solution is an approximation to the exact

solution. The second-order accuracy of the SSFM can be improved by adopting a more symmet-

ric approach to distribute the step h. This method is the symmetric split-step Fourier method

(SSSFM) which is thrid-order accurate in step size h. The solution of SSSFM over a step h is given
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by

A(z, z + h) ≈ exp
(h

2
D̃
)
exp
( z+h∫

z

Ñdz
)
exp
(h

2
D̃
)
A(z, T ) (6.27)

In SSSFM, the nonlinear terms represented by an integral can be evaluated by approximating it

as exp(hÑ). However, this accuracy can be further improved by approximating the integral term

more precisely than approximating it by hN̂(z) [133]. The downside is the process is iterative and

will be very time-consuming in computation.

6.4 Raman response function for supercontinuum generation

The Raman effect was discovered by C.V. Raman in 1928 and is well-known for its applications

in Raman amplifiers, Raman microscopy, Raman lasers, supercontinuum generation and other high

order nonlinear effects. It impacts the ultrashort pulse propagation in an optical fiber and can lead

to a number of nonlinear phenomenas, including soliton fission, Raman-induced frequency shift

and supercontinuum generation. It is essential to understand the Raman effect for supercontinuum

generation modeling.

The Raman effect typically rises from the motion of a molecule inside silica fiber in response to

an applied electromagnetic field. It can be derived from harmonic oscillators representing molecule

vibrations [169]. On the quantum mechanics level, the Raman effect can be interpreted as the

scattering of a photon by a molecule to a lower frequency state. On the optical wave level, Raman

effect can be seen as a frequency down-shift of the optical radiation generated by a pump optical

wave while interacting with an optical medium such as silica fiber. Due to the Raman effect’s impact

in ultrashort optics and supercontinuum generation, many efforts has been made to characterize

the nonlinear response properties of silica fiber to model the Raman response function. In this

section, I will discuss and compare the models of the Raman response function for numerically

simulating supercontinuum generation.
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6.4.1 Single Lorentzian and 13-peaks Raman response models

In general, the nonlinear response function R(t) has the form [133, 164]

R(t) = (1− fR)δ(t) + fRhR(t) (6.28)

where the first term accounts for the instantaneous electronic response, and the second term ac-

counts for the nuclear response. fR represents the fractional contribution of the delayed Raman

response to the nonlinear polarization PNL. Numerous efforts have been made to estimate an

analytical form of the Raman response function hR(t). One widely adopted form of hR(t) used in

the literature is given by the following,

hR(t) = t1

(
1

t21
+

1

t22

)
e
− t
t2 sin

(
t

t1

)
(6.29)

When fit to fused silica, the best fit is given by t1 = 12.2 fs, t2 = 32 fs and fR = 0.18. This form

of Raman response function has been frequently used to investigate ultrafast nonlinear effects in

optical fibers because of its simplicity. To obtain this analytical Raman response function, a single

Lorentzian function is fitted to the Raman gain experimental data measured by Stolen for fused

silica [170], shown as the black solid line in Figure 6.1.

The dotted black line represents the single Lorentzian fit. There are five peaks in the fre-

quency range of 0 to 25 THz. Comparing the two curves, we see the single Lorentzian model

under-estimates the Raman gain in the frequency range less than 10 THz, while over-estamating

it for frequencies greater than 15 THz. One should be careful when using the simplified single os-

cillator model, because it approximates the Stolen experimental data by fitting a single Lorentzian

function, failing to reproduce the hump at frequencies below 5 THz and above 15 THz [133].

In 2002, Hollenbeck and Cantrell developed a model that fits an ensemble of 13 Gaussian

and Lorentzian functions to the experimental data [171]. This model extends the one proposed by

Walrafen and Krishman in 1982 [172] when the experimental spectroscopic data was not measured

yet. Although it is common to use the experimentally determined Raman cross section [170],

essentially identical results can be obtained using the sophisticated 13-peaks Hollenback-Cantrell
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Figure 6.1: Raman gain spectra. Experimental data from Stolen (black solid line) by digitizing
Stolen’s experimental data; single Lorentzian model (black dotted line).

or the Blow-Wood model [164]. However, owing to its complexity, the 13-peaks Hollenback-Cantrell

model is often impractical to model.

6.4.2 Lin and Agrawal Raman response model

While the simple single Lorentzian model and the complicated 13-peaks Hollenback-Cantrell

model are two extremes of estimating the Raman response function, an intermediate form of the

Raman response function that correctly models the anisotropic response function was proposed by

Agrawal and Lin in 2006 [173]. The Agrawal and Lin model considers the anisotropic nature of

the Raman scattering effect by including an appropriate but simple anisotropic part of the Raman

response function. This section derives the isotropic and the anisotropic parts of the nonlinear

response function from the polarization equations.

From the polarization equations PNL(r, t) and PL(r, t) 6.6 derived earlier, we can substitute
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the equation of χ(3) into PNL,

PNL(z, t) = ε0[

t∫∫∫
−∞

χ(3)R(t− t1)δ(t− t2)δ(t− t3) ·E(z, t1)E(z, t2)E(z, t3)dt1dt2dt3]

= ε0[χEijklEjEkEl + Ej

t∫
−∞

χRijkl(t− t
′
)EkEldt

′
] (6.30)

where

χ(3)(t− t1, t− t2, t− t3) = χ(3)R(t− t1)δ(t1 − t2)δ(t− t3) (6.31)

In isotropic media, the instantaneous electrons obey full Kleinman symmetry [174], so we have the

electronic susceptibility, [175]

χEijkl =
1

3
χ(3)(δijδkl + δikδjl + δilδjk) (6.32)

and the resonant nuclear susceptibility is given by the following,

χRijkl = ha(t)δijδkl +
1

2
hb(t)(δijδkl + δikδjl) (6.33)

Therefore, substituting χEijkl and χRijkl into χ(3), we can write the nonlinear response function of

silica in tensor form,

R
(3)
ijkl(t) =

1− fR
3

δ(t)(δijδkl + δikδjl + δilδjk)+

fRRa(t)δijδkl +
fR
2
Rb(t)(δikδjl + δilδjk)

(6.34)

The linear polarized form of the nonlinear response function is given by [173],

R(3)
xxxx(t) = (1− fR)δ(t) + fRhR(t) (6.35)

where

hR(t) = Ra(t) +Rb(t) (6.36)

Ra(t) = faha(t) (6.37)

Rb(t) = fbhb(t) + fcha(t) (6.38)
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Ra(t) and Rb(t) are the isotropic and anisotropic parts of the Raman response, respectively. The

coefficients should satisfy fa + fb + fc = 1. ha(t) is given by

ha(t) = t1(t−2
1 + t−2

2 )e
− t
t2 sin(

t

t1
) (6.39)

where t1 = 12.2 fs and t2 = 32 fs. ha(t) has been used by the single Lorentzian model. The isotropic

Raman response stems from the symmetric stretching motion of the bridging oxygen atom in the

Si-O-Si bond [133]. It turns out that this particular motion can be modeled by a single-Lorentzian

function. However, the anisotropic response function needs to be included in the model to provide

an accurate description of the total nonlinear Raman response. Agrawal and Lin fitted multiple

Lorenztian functions to the experimental Raman gain data, and so hb(t) was found to be well

modeled by

hb(t) = exp(−t/tb)
2tb − t
t2b

(6.40)

where tb = 96 fs. ha(t) and hb(t) are plotted in Figure 6.2. The causality of the Raman response

function is seen in the plot because ha,b(t) = 0 for t < 0. Substituting Ra(t), Rb(t) into R
(3)
xxxx(t),

we get,

R(3)
xxxx(t) = (1− fR)δ(t) + fR(fa + fc)ha(t) + fRfbhb(t) (6.41)

Therefore,

fR = fR(fa + fc) + fRfb = fR(fa + fb + fc)

Hence the coefficients should satisfy fa + fb + fc = 1. In the Agrawal and Lin model, the values

of fa, fb and fc are calculated as fa = 0.75, fb = 0.21, fc = 0.04. Since the equation of the Raman

response includes both isotropic and anisotropic response contributions, the Raman gain in silica

fibers is given by the following,

ga(ω) = 2γfRIm[R̃a(ω)] (6.42)

gb(ω) = 2γfRIm[R̃a(ω)] (6.43)
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Figure 6.2: Raman response function ha(t) (black dashed line) and hb(t) (black solid line)

In this equation, γ = n2ω0/c is the nonlinear parameter and R̃a,b(ω) is the Fourier transform of

R̃a,b(t). The Raman gain for co-polarized and orthogonally polarized pumps are respectively found

to be,

g‖(ω) = ga(ω) + gb(ω) (6.44)

g⊥(ω) = gb(ω)/2 (6.45)

Figure 6.3 shows the g‖(ω) and g⊥(ω) from Agrawal and Lin and are plotted to fit the experimental

data from Stolen. fR is chosen to be 0.245 to yield a Boson peak in the Raman gain equal to the
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experimental value of gR = 1.2e−11 cm/W at 795.5 nm. This choice allows the model to accurately

simulate the Raman gain over 0−15 THz. In addition, it describes well the Raman-induced changes

in the nonlinear refractive index over the same frequency range.

The value of fR = 0.245 is slightly higher than the 0.18 used in the single Lorentzian model,

because the single Lorentzian model over-estimates the Raman gain in the spectral region below 15

THz. This results in an under-estimated electronic contribution to the nonlinear refractive index

by about 5%. This under-estimation does not affect the nonlinear effects until the pulse width

approaches the few-optical-cycle regime (< 30 fs). Because the conventional single-Lorentzian
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Figure 6.3: Raman gain spectra. Experimental data from Stolen: g⊥ (black solid line) and g‖ (black
dotted line); fitting model: g⊥ (red solid line) and g‖ (red dotted line).

model neglects the anisotropic response of the Raman function Rb(t), it does not provide an accurate

description of the Raman response. To account for the anisotropic part, the new model suggested
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by Agrawal and Lin fits well both the Raman gain and Raman induced-changes in the nonlinear

refractive index over 0− 15 THz. This model provides a more accurate description of the Raman

response function for numerical simulation of the supercontinuum generation in optical fibers.

6.5 Coupled Generalized Nonlinear Schrödinger Equations

The GNLSE derived before describes a general model for the dispersion and nonlinear pro-

cesses in a typical supercontinuum generation. Since we know the GNLSE is derived as shown in

Eqn. 6.22. This equation can be applied to model non-birefringent supercontinuum generation in

optical fiber, or for the special case that input polarization is exactly aligned to the eigen-axis of

the fiber. In essence, the GNLSE is a simplified equation that assumes the polarization of the input

light is preserved propagating inside a fiber.

However, this is not necessarily the case in reality. Even a single mode fiber (SMF) is not

truly single mode. In fact, a SMF supports two orthogonal polarization modes with the same spatial

distribution [133]. For an ideal fiber, the two modes are degenerate, which means the refractive

indexes along the slow and the fast axis are equal (nx = ny). In practice, most optical fibers exhibit

birefringence as a result of irregularities of core size and shape along the fiber. PCF usually has

some intrinsic birefringence due to built in asymmetry of the structure. Therefore, to describe the

inherent birefringent effect in optical fiber, we can separate index of refraction along the principle

axis x and y as nx and ny and introduce a birefringence and a beat length parameter,

Bm = nx − ny (6.46)

LB = λ/Bm (6.47)

For highly birefringent fiber, Bm is in the order of 10−4, and the beat length is around 1 cm. For

a weakly birefringence fiber, Bm is in the order of 10−6, and the beat length can be up to 1 m. In

some cases, the optical fibers are made to be highly birefringent in order to provide a stable eigen-

mode to maintain polarization of light propagation for supercontinuum generation. Therefore, to

gain more insights into the polarization effect we have observed experimentally, it is necessary to
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develop a model that incorporates birefringence into the GNLSE.

To extend the GNLSE to include polarization effects for birefringent fibers, we need to split

the GNLSE into coupled mode equations for two orthogonal polarizations. In the following section,

the numerical investigation of pulse propagation in nonlinear birefringent fibers and the polarization

dynamics will be presented. The numerical simulation algorithm using an eigen-polarization basis

switching technique for the split-step Fourier method will also be discussed in details.

We begin with a study of linearly birefringent PCF, but we use a representation in the circular

basis where the phase-dependent four-wave mixing term (FWM) is absent, which simplifies both

the analytic representation and the numerical scheme. To reveal the underlying polarization effects

of soliton fission and Raman soliton in SC, a model which takes into account the fiber birefringence

effect requires the coupled GNLSE [154, 133, 10],

∂A±
∂z

+
1

2
αA± +

N∑
n>2

in−1βn
n!

∂nA±
∂Tn

− i(∆β0

2
− ∆β1

2

∂

∂T
)A∓

= iγ(ω0)(1 +
i

ω0

∂

∂T
)
(
A±(z, T )

[
fR

∞∫
0

R(T
′
)[|A±(z, T − T ′

)|2+|A∓(z, T − T ′
)|2]dT

′

+ (1− fR)[
2

3
|A±(z, T )|2+

4

3
|A∓(z, T )|2]

])
(6.48)

where A+ and A− are the electric field amplitudes of the two circularly polarized components.

The circular polarization electric fields are related to the linear polarization electric fields as the

following,

A+ =
Ax + iAy√

2
, A− =

Ax − iAy√
2

(6.49)

This model also incorporates all orders of dispersion, optical shock, Raman and Kerr nonlinearities

as shown in Figure 6.4. T is the time reference in the group velocity frame, βn is the n-th order

dispersion parameter centered at frequency ω0, and α is the loss coefficient which we neglect for a

short length of fiber. We define linear birefringence B = nx − ny, where nx and ny are refractive

indexes for the x and y polarization eigen-modes, respectively. ∆β0 = βx − βy = Bω0/c represents

the phase mismatch due to fiber birefringence. ∆β1 = 1
vgx
− 1

vgy
= εB/c = β1x − β1y represents
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the group velocity mismatch between the slow and fast axes, where ε is a constant which typically

varies between 0.38 and 1.3 [10].

Polarization Instability in Supercontinuum Generation 30

To analyze the polarization evolutions, we use the symmetric split-step Fourier method to solve the coupled GNLSE:
Fiber birefringenceDispersion Optical shockLoss

Where T is time reference in group velocity frame:Phase birefringence and group velocity delay between eigen-axis:

Electric field amplitudes of circularly polarized components given by

1gT t z v t z   
0 0 0 0x y B c       1 1 11 1gx gy x yv v B c        

Raman XPMSPM

x yB n n 
Figure 6.4: Nonlinear terms in the coupled generalized Nonlinear Schrödinger Equations.

In our simulation we assume ε = 1 for the case of equal dispersion slopes between βx(ω) and

βy(ω) because separate dispersion curves for x and y polarization components are not available.

R(T ) is the Raman response function taking into account both the instantaneous electronic and

delayed molecular response of fused silica. They are well approximated by [176],

R(t) = (1− fR)σ (t) + fR (faha (t) + fbhb (t) + fcha (t)) (6.50)

where

ha(t) = t1
(
t−2
1 + t−2

2

)
e
− t
t2 sin

(
t

t1

)
, hb(t) = e

− t
tb

2tb − t
t2b

(6.51)

The characteristic time constants and weighting factors we used are tb = 96 fs, t1 = 12.2 fs, t2 = 32

fs, fa = 0.75, fb = 0.21, fc = 0.04 and fR = 0.245 [159, 176].

Following [150], dispersion parameters of the PCF are given in Figure 6.5. These parameters

correspond to a fiber with a zero dispersion wavelength at 743 nm and a laser pulse central wave-

length of λ0 = 800 nm in the anomalous dispersion regime. The nonlinear coefficient is γ = 80

kW−1 m−1, and the peak input power Ppeak = 10 kW is sufficient to produce 13th order solitons of

the GNLSE for a Sech input pulse width TFWHM = 100 fs. The loss term α = 0 for the simulated
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Figure 6.5: Dispersion parameters for the photonic crystal fiber

fiber length of Lfiber = 8 cm.
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6.5.1 Numerical algorithm for solving the coupled GNLSE using the eigen-

polarization basis switching technique

So far the coupled GNLSE has been represented in a circular polarization basis as in Eqn.

6.48. However, it can also be represented with a linear polarization basis as the following,

i
∂Ax,y
∂z

+ iβ1x
∂Ax,y
∂z

+ i

N∑
n>2

in−1βn
n!

∂nAx,y
∂Tn

= γ(1− fR)Ax,y|Ax,y(T − T
′
)|2+

2

3
(1− fR)γ|Ay,x(T − T ′

)|2Ax,y

+ γfRAx,y

∞∫
0

a(T
′
)|Ay,x(T − T ′

)|2+[a(T
′
) + b(T

′
)]|Ax,y(T − T

′
)|2dT ′

+ fRγAx,y

∞∫
0

|Ay,x(T − T ′
)|2a(T

′
)dT

′

+
1

2
fRAy,x

∞∫
0

Ax,y(T − T
′
)A∗y,x(T − T ′

)b(T
′
)dT

′

+
1

3
(1− fR)γ exp(iσiz)A

∗
x,yA

2
y,x

+
1

2
fRγAy,x exp(iσiz)

∞∫
0

A∗x,y(T − T
′
)Ay,x(T − T ′

)b(T
′
)dT

′
(6.52)

In this equations, a(T
′
) and b(T

′
) are components of the Raman response functions whose Fourier

transforms describes the spectral dependencies of the components of the nonlinear nuclear Raman

susceptibility tensor in the fused silica (interested readers can refer to reference [177] for more

details). The circularly polarization electric field is related to the linear polarization electric field

by Eqn. 6.49. The first two terms on the right hand side of Eqn. 6.52 represents SPM and XPM,

respectively. The third, fourth, fifth and seventh terms on the right hand side represents Raman

terms while the sixth term is the vector FWM. Observing Eqn. 6.52, it is not hard to realize the

complexity of using it to numerically model the nonlinear terms for supercontinuum generation.

The natural coordinate to describe linear propagation in elliptical core or uniaxially asym-

metric PCF is a linear basis for the field components Ex and Ey along the x and y axis. But other

basis can be used to describe the linear propagation, for instance, ±45o or right-left circular basis.
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Although this will introduce a coupling term since these are not linear eigen-basis. The right-left

circular basis is especially useful for nonlinear propagation since it eliminates the phase-dependent

FWM term. Hence the coupled GNLSE in Eqn. 6.22 is expressed in a circular basis where the

nonlinear terms decouple, although this then gives coupling due to the linear birefringence.

We model the coupled GNLSE using a vectorized symmetric split-step Fourier method which

was introduced in the previous section. As shown in Figure 6.6, we solve the dispersion (linear)

propagation step in the linear polarization basis Ax,y(f) to diagonalize the Fourier evolution op-

erator, and it is propagated in the Fourier space. Then we perform Fourier transform to obtain

temporal field Ax,y(t) and then transform it into a circular polarization basis A±(t) for the nonlinear

propagation step. The nonlinear step is propagated in real space, while the causal Raman response

convolution integral is performed with an additional temporal Fourier transform of the intensities

of the circular basis field components. The temporal derivative of the nonlinear source (optical

shock) is evaluated using a centered finite difference in time. After the nonlinear propagation step,

the field is transformed back to linear basis Ax,y(t). Another Fourier transform is performed on

Ax,y(t) to obtain Ax,y(f) for the dispersion propagation step, and then the loop continues for each

z propagation step using the split-step Fourier method until the end of the propagation in z.

Figure 6.6: Numerical algorithm for solving the coupled-GNLSE by switching the polarization
basis.
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To avoid numerical instabilities, we check the convergence of the simulation by decreasing

the step size of the propagation distance and the temporal and frequency sampling interval until

no further changes occurred. At 215 temporal and samples over a T = 32 ps simulation window

separated by ∆t = 1 fs and ∆z = 40 µm spatial step size, we found the simulation reliably reaches

a stable solution. The numerical simulation results using the polarization eigen-basis switching and

split-step Fourier method will be discussed in the following chapter for both linear and circular

birefringent PCF for both linear and elliptical input states of polarization.

In summary, the conventional approach of using scalar GNLSE becomes invalid for investigat-

ing polarization dynamics of supercontinuum generation. In this chapter, the detailed theoretical

derivations of supercontinuum generation and the numerical simulation algorithm using vectorized

GNLSE for understanding the polarization dynamics of supercontinuum generation were described.

In particular, to more accurately model the Raman response function in supercontinuum genera-

tion, the recent Lin and Agrawal model considering the anisotropic nature of the Raman scattering

effect were compared with the traditional single Lorentzian and the 13-peaks model and were

chosen to be included in the numerical model. To effectively simulate the coupled GNLSE, an

eigen-polarization basis switching technique was developed. The numerical simulation results rep-

resented with Poincaré sphere and new insights will be analyzed and discussed in detail for both

linear and elliptical states of input polarization in the following chapter.



Chapter 7

Analysis and Poincaré sphere representations of the polarization dynamics for

supercontinuum light source

7.1 Numerical modeling results for polarization instability of supercontin-

uum generation

The evolution of the state of polarizations of the ejected Raman soliton as representated on

the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré

sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emer-

gence of stable slow and unstable fast eigen polarizations for the Raman solitons ejected in the

supercontinuum generation process. As far as we know, this is the first time polarization separatrix

was numerically demonstrated for supercontinuum generation in a linearly birefringent photonic

crystal fiber. Circularly birefringent fiber is investigated and found to simplify the nonlinear po-

larization dynamics, which will be discussed in detail in this chapter.

7.1.1 Soliton fission input and output states of polarization representation on the

Poincaré sphere

A linearly polarized 100 fs chirp-free Sech pulse with 10 kW peak power is launched into the

anomalous-dispersion region of the PCF. This high power input pulse corresponds to a 13th order

soliton. The log-scale temporal and spectral evolutions of the SC process for fiber birefringence

B = 1× 10−5 and input polarization angle θ = 45◦ (to the slow axis) are plotted in Figure 7.2(a)

and 7.2(f), showing the x and y eigen-polarization components separately as well as the total power.
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Initially, the input field experiences pulse compression and spectral broadening due to self-phase

modulation (SPM). The compressed pulse reaches a maximum peak power at around 1.7 cm, which

agrees with the fission length calculation Lfiss = LD/N = 1.7 cm [178], where the dispersion length

LD = TFWHM
2/3.11|β2| for Sech input pulse. Beyond this distance, due to nonlinear effects such as

Raman induced-frequency shift (RISF), self-steepening (SS), and linear effects such as third-order

dispersion (TOD), the higher order soliton experiences soliton fission and breaks up into dispersive

waves and multiple fundamental soliton-like pulses with varying peak powers and temporal widths

(see Figure 7.2(g), which shows a zoomed-in of Figure 7.2(c)). From Figure 7.2(a) and 7.2(b) and

Figure 7.2(d) and 7.2(e), we notice the x and y polarization components periodically couple and

form a bound pair, i.e. exhibit soliton trapping, as they propagate in the PCF. Soliton trapping

owes its existence to cross-phase modulation (XPM), represented by the last term on the right side

of Eqn.6.48. The XPM-induced coupling between the x and y polarized solitons propagate at a

common group velocity [133].

Soliton fission plays a critical role in higher order soliton SC [157, 20]. When soliton fission

occurs (Figure 7.2(g)), multiple pulses are ejected and they form a bundle of interacting and in-

terfering soliton components, except the shortest ejected pulse(s) which collides with the bundle of

pulses, escapes with nearly half the total energy, and travels away from the main pulse as it slowly

shifts toward a longer wavelength. This complex fission mechanism related to TOD was recently

analogized to Newton’s Cradle [179]. After the fission finishes (indicated by the dotted line in

Figure 7.2(g)), the ejected soliton pulses shed excess energies to evolve into fundamental Raman

solitons as they travel more slowly than the input pulse in the group velocity frame and simulta-

neously shift to longer wavelengths as a result of RISF. The direction of pulse energy transport is

determined by the sign of TOD. Since the TOD is positive in this simulation, it results in a long

wavelength shift of energy.

The soliton ejected earliest has the shortest temporal width, highest peak power and and the

largest group velocity difference relative to the pump pulse and the computational group velocity

frame. This first Raman soliton is responsible for the most spectral shift (indicated by black arrows
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Time Delay [ps]

Raman soliton
Soliton fission

Figure 7.1: Soliton fission and Raman soliton ejected during the fission process. The dotted black
line indicates the beginning of our analysis of the polarization dynamics of the ejected Raman
soliton. The insect is the detailed zoomed-in temporal evolution of soliton fission process.

in Figure 7.3) and energy transfer to the long wavelength regime. Its SOP evolves as a unit upon

propagation in the fiber [144]. Successive solitons can escape the bundle of interacting pulses

depending on conditions such as fiber length and input power. As shown in Fig. 7.3, as the input

polarization angle changes, the center of the soliton spectrum (indicated by arrows) at the end of

the 8 cm fiber shifts too.

We investigate the SOP after soliton fission at a distance of z = 2.4 cm shown as dotted

black line in Fig. 7.2(g)) and plot them on the Poincaré sphere as a function for various input

polarizations and fiber birefringence. The results are shown in Fig. 7.4 for B = 1× 10−8, 1× 10−5,

2.5× 10−5 and 5× 10−4, respectively. B = 1× 10−8 is the isotropic case, B = 1× 10−5 is a typical

value for a weakly birefringent PCF used in the literature, and B = 5× 10−4 is a typical value for

a highly birefringent commercial PCF. B = 2.5× 10−5 corresponds to the intermediate case where
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Figure 7.2: (a) to (f) Temporal and spectral evolutions of supercontinuum generation in PCF for
B = 1×10−5 for linear input polarization with θ = 45◦: (a) to (c) are log-scale and color coded x, y
and total temporal intensities, respectively; (d) to (f) are log-scale x, y and total power spectrums,
respectively, color bars are in dB scale.

the ejected Raman soliton is near the polarization instability critical power and the polarization

dynamics are most clearly revealed on the Poincaré sphere.

In the linear regime, the SOP of a monochromatic beam evolves as a rotation about the x-y

axis on the Poincaré sphere periodically with a period equal to the beat length for λ = 800 nm, LB

= λ/B = 80 m, 8 cm, 3.17 mm and 1.6 mm, respectively. The input polarizations used in these

simulations are linear (Fig. 7.4(a)) and elliptical (Figure 7.4(f)), spanning from 0◦ to ± 90◦ in ±5◦

steps.
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(h)

Figure 7.3: Simulated spectra of supercontinuum generation at the output of 8 cm long PCF with
birefringence B = 1×10−5, for varying linear input polarization with θ = 5◦, 25◦, 45◦, 65◦ and 85◦.
The blue horizontal bracket represent short wavelength region of dispersive waves, and the arrows
point toward the first Raman solitons (black arrows) and second Raman solitons (green arrows).

A PI critical power Pcr = 3πB/λγ was predicted for CW light in nonlinear birefringent fiber

using the Stokes parameters and the nonlinear dynamics on the Poincaré sphere [142]. Averaging

the nonlinearity across the hyperbolic secant profile gives an additional numerical factor of 4.5 for

nonlinear Schrödinger equations [143] which can be used to estimate the critical power for Raman

solitons in PCF. We simulated Raman soliton polarization dynamics for several fiber birefringence

between B = 1×10−8 and B = 5×10−4 and presented them on the Poincaré sphere. In particular,

we used B = 1 × 10−5 and B = 2.5 × 10−5, where the ejected Raman soliton exceeds the critical
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power.

The SOPs of the ejected Raman soliton vary as the birefringence B increases as shown in

Figure 7.4 (b) to 7.4(e) for linear input SOP (Figure 7.4(a)). Note that the different colors simply

encode the different input SOP.

At low B (Figure 7.4(b)), the Raman soliton SOP remains the same as the input SOP, since

for these linear inputs, nonlinear polarization rotation, also known as self-induced ellipse rotation

[142, 133], leaves the SOP fixed on the equator.

As the fiber birefringence B is increased (Figure 7.4(c) and 7.4(d)), the soliton fission SOP

is governed by both linear and nonlinear polarization rotations. A cluster of soliton fission SOPs

appear around the slow-axis (+s1-axis) close to the equator, so this represents an attraction of

the polarization dynamics. In contrast, the soliton fission SOP are repelled away from the fast-

axis (−s1-axis). For low birefringence, some soliton fission SOPs appear at the +s3 and −s3-axis,

depending on the sign of input SOP angle θ.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 7.4: Poincaré sphere representations of the ejected Raman soliton SOP after soliton fission
at a distance of z = 2.4 cm as a function of fiber birefringence and input polarizations. Input SOPs:
(a) Linear and (f) Elliptical. Ejected Raman soliton pulse polarizations: (b) to (e) and (g) to (j)
are for the linear and elliptical input SOP, respectively. B = 1 × 10−8 for (b) and (g), 1 × 10−5

for (c) and (h), 2.5 × 10−5 for (d) and (i), and 5 × 10−4 for (e) and (j). The 3D Poincaré sphere
is supplemented with front and back views along the s1-axis (slow = x and fast = y), and top and
bottom views along the s3-axis (RHC and LHC).



127

For B = 2.5×10−5 (Figure 7.4(d)), the fast-axis instability at the back of the sphere is clearer,

and we see an attraction of the ejected soliton SOP around the slow-axis at the front of the sphere.

For high B = 5 × 10−4 (Figure 7.4(e)), the critical power is well in excess of the ejected Raman

solitons and linear polarization rotation dominates, although polarizations are clearly clustered into

a spiral around +s1-axis they also cluster at −s1-axis.

For elliptical input SOPs (Figure 7.4(f)), the output SOPs (Figs. 7.4(g) to 7.4(j)) are different

from the linear case especially for low B (Figure 7.4(g)), because for B = 1×10−8, the majority

of the soliton fission output SOPs are attracted to the poles (i.e. RHC and LHC states) instead

of being fixed on the equator (Figure 7.4(b)). In Figure 7.4(i), B = 2.5×10−5, the SOPs disperse

around the back of the sphere. Comparing with the linear case (Figure 7.4(d)), the clustering

around the slow-axis is less pronounced. However, at high B (Figure 7.4(j)), the clustering around

the slow and fast axis appear again, indicating linear polarization rotation dominance similar to

the linear case of Figure 7.4(d).

7.1.2 Raman soliton input and output states of polarization representation on

Poincaré sphere

In the previous section, we discussed the SOP of the ejected Raman soliton at z = 2.4 cm

after soliton fission in SC from low to high linear birefringence, for linear and elliptical input SOPs.

When soliton fission occurs, as shown in Figure 7.2(g), the first Raman soliton collides with the

remaining bundle of solitons, escapes and transforms itself into a fundamental soliton by shedding

excess energy as it propagates away from the main pulse and shifts toward longer wavelength. We

now investigate how the SOP of this Raman soliton develops as it propagates down the fiber and

how the different fiber birefringence and input SOP influence the evolution of the SOP of Raman

soliton.

To investigate this, we locate the Raman soliton trajectory and fit it to an analytic polynomial

function. Then we calculate the Stokes parameter [S0, S1, S2, S3] at each time sample across the

width of the Raman soliton and average these values across the temporal width of the soliton. If
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(a) (b)        (c) (d)

(e) (f ) (g) (h)

B = 10-8 B = 10-5 B = 2.5×10-5 B = 5×10-4

Figure 7.5: Poincaré sphere representations of the polarization evolution of the first ejected Raman
soliton. (a) to (d) and (e) to (h) are polarization evolutions for linear and elliptical polarizations
inputs to the PCF for SC generation, respectively. Birefringence B = 1 × 10−8 for (a) and (e),
1 × 10−5 for (b) and (f), 2.5 × 10−5 for (c) and (g) and 5 × 10−4 for (d) and (h). For these plots
in addition to the 3D Poincaré sphere view, additional front and back views along +s1-axis (slow
= x) and -s1-axis (fast = y) are shown, as well as top and side views along along +s3-axis and
+s2-axis.

the polarization would vary across the temporal profile of the Raman soliton, then this would result

in a depolarization since
√
S1

2 + S2
2 + S3

2 would be less than S0. However, we found that this was

not the case and the entire Raman soliton would have a consistent polarization that would evolve as

it propagate and would remain on the surface of the Poincaré sphere, with a degree of polarization

DOP ≈ 1. The polarization dynamics are then represented as trajectories on the surface of the

Poincaré sphere parameterized by the propagation distance. In Figure 7.5, we plot the SOP of the

Raman soliton for both linear and elliptical SOP for θ spanning from ±5◦ to ± 85◦ in ±10◦ steps

coded with the same colors used in Figs. 7.4 (a) and 7.4(f).
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First, for the case of very low B and linear input SOP (Figure 7.5(a)), the evolution of Raman

soliton SOP remains the same as input SOP due to vanishing nonlinear angular rotation on the

equator. Therefore, for an almost isotropic fiber with high input intensity, the SOP of the Raman

soliton is predictable for the entire length of propagation. Although, such a simple polarization

evolution would be perturbed by random birefringence variations along the fiber length or the

inclusion of quantum noise in the evolution equations.

However, with elliptical input SOP ((Figure 7.5(e)), since both x and y polarization compo-

nents are excited, the trajectories of the SOP are seen to rotate around s3-axis nonlinearly with

speeds determined by the ellipticities that result from soliton fission ((Figure 7.4(g)). The rotation

on the Poincaré sphere due to ellipse rotation is proportional to S3 = sin(2χ) and the speed is

maximized when χ = 22.5◦, half-way between the s3-axis and the s1-s2 plane, and then decreases as

the ellipticity of SOP moves toward more circular or more linear. The directions of rotation on the

northern and southern hemispheres are the opposite, agreeing with an earlier study on polarization

dynamics in low birefringence tapered fiber with slightly elliptical input polarization [157]. Two

fixed points of nonlinear rotation in this case are RHC and LHC, i.e. the north and south poles of

the s3-axis.

For B = 1×10−5 (Figs. 7.5(b) and 7.5(f)), polarizations in the vicinity of the slow-axis rotate

around the slow-axis (+s1) in elliptical trajectories, which is a signature of a mixed state of linear

and nonlinear polarization rotations [142]. As light intensity increases, nonlinear birefringence is

induced because of the intensity-dependent refractive index. Asymmetry between the slow-and fast-

axis arises when the induced nonlinear birefringence becomes comparable with the fiber intrinsic

birefringence B. Furthermore, because for the slow-axis, the induced nonlinear birefringence adds

to the intrinsic birefringence B, the slow-axis remains stable for input SOP close to it. On the other

hand, along the fast-axis, because the induced birefringence reduces the intrinsic birefringence, as a

result, the fast-axis becomes less stable. Interestingly, from the top views, the center of rotation for

nonlinear ellipse rotation around the poles of the sphere are shifted toward the fast-axis, indicating

formation of new nonlinear elliptical eigen-polarizations.
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For B = 2.5×10−5, the induced nonlinear birefringence is comparable to the linear intrinsic

birefringence, the effective beat length can become infinite for some states of polarization [133], and

the polarization instability is most clearly revealed. The shift of the center of the nonlinear eigen-

axis of rotation is evident and a new elliptical axis of nonlinear rotation is formed. The trajectories

for the Raman soliton on the sphere is separated into three regions, one rotates around the stable

slow-axis, two around the stable elliptical axis near the top and bottom of the sphere and a figure

8 separatrix crosses through the unstable fast axis. The number of fixed centers of rotation points

is 3 in this case. For elliptical input SOPs (Figure 7.5(g)), the separatrix is revealed by the nearby

trajectories.

For high B (Figs. 7.5(d) and 7.5(h)), the ejected Raman soliton is below the critical power

for polarization instability, the polarization trajectories rotate around the stable slow and fast axis

because linear polarization rotation around +s1-axis dominates over the nonlinear ellipse rotation

around +s3-axis. The SOP trajectories rotate around the fast and slow axis in upright circles

due to the dominance of linear birefringence over nonlinear rotation with only a slight nonlinear

curvature seen from the side view. The number of fixed points (e.g. centers of rotation) change

from three to two.

High linear birefringence can be used to suppress the unintentional birefringence or nonlinear

polarization effects, and perhaps residual depolarization [10], when the incident polarization is

aligned to the slow or fast-axis of the fiber. On the other hand, however, as shown in Figure 7.5(a),

in the low birefringence case, the output SOPs are fixed on the equator remaining exactly the same

as input SOPs. This tells us that with an isotropic fiber, with high input power, linear SOP of

soliton fission and Raman soliton is predictable and controllable over the entire length of nonlinear

propagation. But residual birefringence variations along the fiber would destroy this simple picture.

Random birefringence could be included in the model to simulate the polarization dynamics for

propagation in a long fiber.
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Figure 7.6: Temporal evolution of supercontinuum generation in circularly birefringent PCF for
Bc = 10−5 in log-scale showing the fast and slow components, for the case of a linear input
polarization with θ = 45◦. Note that the slow component gains power as it propagates.

7.1.3 Raman soliton polarization evolution in circularly birefringent PCF

The complex polarization evolution of the Raman solitons ejected during the SC process in

birefringent fiber and the resulting polarization instability can be interpreted on the Poincaré sphere

as the interplay between linear rotations around the +s1-axis and nonlinear rotations proportional

to S3 around the +s3-axis. The interplay of these orthogonal rotations on the Poincaré sphere

depend on the power and polarization of the Raman soliton ejected from the SC process. This

dynamic process could simplified if instead the linear rotations also occur around the s3-axis. This

would be the case for circularly birefringent fiber, which can be produced by twisting the fiber

as it is drawn [180]. We are thus motivated to simulate the SC process and the evolution of the

polarization of the ejected Raman soliton for circularly birefringent fiber.

We simulated the SC process and the polarization dynamics of Raman solitons in a circularly

birefringent PCF using coupled GNLSE for both the linear and elliptical input SOP used in the
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Figure 7.7: Spectral evolution of supercontinuum generation in circularly birefringent PCF for
Bc = 10−5 in log-scale for fast and slow components, for the case of linear input polarization with
θ = 45◦.

linear birefringent fiber simulation. We define circular birefringence Bc = ns − nf , where ns and

nf are the refractive indices for the slow and fast eigen-polarization components, respectively. For

the circularly birefringent PCF case, instead of using ∆β1 = β1x − β1y in Eq.6.48, we use ∆β1 =

β1s−β1f to represent the group velocity mismatch between slow and fast circular eigen-polarization

components, where β1s = εns/c, β1f = εnf/c and ε = 1 assuming equal slope between βs(ω) and

βf (ω) as discussed in Section 2. The decoupling of the linear propagation of the circular eigen-

polarization components and the phase-independent nonlinear terms implies that ∆β0 does not

affect the propagation, so it is set to zero. Hence, the fourth term in Eq.6.48 becomes i(∆β1
2

∂
∂T )A±,

while all the other terms remain the same.

We then numerically solved the circularly birefringent version of Eq.6.48 using a vector sym-

metric split-step Fourier method. In this case, both the dispersion and the nonlinear steps are

performed in the circular basis. In Figure 7.6, the temporal evolution of both the slow and fast

eigen-polarization component intensities are shown. The Raman soliton travels away from the main
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(a) (b) (c)
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B = 10-8 10-6 10-5

Figure 7.8: Poincaré sphere representations of Raman soliton polarization evolution for a circularly
birefringent PCF. (a) to (c) and (d) to (f) are the polarization evolutions for the Raman soliton
ejected during SC for linear and elliptical input polarizations, respectively. The fast circular com-
ponent is at the north pole and the slow circular component is at the south pole. From (a) to (c)
and (d) to (f), birefringence Bc = 10−8, 10−6 and 10−5, respectively.

pulse and is delayed even more than in the case of linear birefringence shown in Figure 7.2(a) and

7.2(b). The spectral evolution plots in Figure 7.7 show that the Raman soliton shifts toward an

even longer wavelength compared to the linear birefringence PCF case in Figure 7.2(d) and 7.2(e).

The appearance of a weak artifact at 7.5 cm due to slow circular wrapping around and becoming

fast circular may be due to aliasing of the complex field.

The polarization dynamics of the ejected Raman solitons for various circular birefringence

of Bc = 10−8, 10−6 and 10−5 are represented on the Poincaré sphere in Fig. 7.8. The essentially
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isotropic case, Bc = 10−8, is nearly identical to the isotropic linearly birefringent case, B = 10−8,

in Figure 7.5(e). Circularly birefringent PCF is not commercially available yet and twisting (either

during fiber drawing or after) is likely to yield a small birefringence in the range of Bc = 10−6 [180].

However, the interesting case of Bc = 10−5 is also explored in our simulation since this leads to a

beat length of Lbeat = 8 cm, which is equal to our simulated fiber length. For linear input SOPs

(Figs. 7.8 (a) to 7.8(c)), in the essentially isotropic case ( Bc = 10−8 ), the output SOPs of the

Raman soliton are fixed on the equator similar to the linear birefringent PCF case (Figure 7.5(a)).

However, as the circular birefringence is increased to 10−6, we see the SOP of the Raman soliton

rotates about the s3-axis on the Poincaré sphere, in this case at a constant rate due to the circular

birefringence. For B = 10−5, the SOP of the Raman soliton rotates about s3-axis and spirals

toward the south pole, indicating a stable slow eigen-mode on the Poincaré sphere. Note that all

the trajectories for the evolution of these linear polarizations are identical downward spirals on the

Poincaré sphere converging towards the slow eigen-mode. Unlike the linear birefringent PCF case,

the soliton fission process for the circularly birefringent fiber has not scrambled the SOP of the

ejected Raman soliton.

Figures 7.8 (d) to 7.8(f) show the polarization evolution of the ejected Raman solitons for

the various elliptically polarized Sech pulses injected into the fiber. We see purely nonlinear polar-

ization rotation around the s3-axis which is proportional to the S3 stokes component of the ejected

Raman soliton, which vanishes on the equator for the linear input SOP. However as the circular

birefringence is increased (Bc = 10−6, 10−5), the output SOPs rotate around the s3-axis and spiral

downwards toward the slow eigen-mode. Notice that the rate that the spiral drifts downwards

increase with increasing birefringence. The rotation rate around the +s3-axis is different on the

northern hemisphere where linear and nonlinear effects counteract, while on the southern hemi-

sphere these two effects cooperate. The fast eigen-mode at the north pole of the Poincaré sphere

is an unstable state since the trajectories spiral away from it.

In this chapter, we have explored the complex polarization dynamics of the Raman solitons

ejected during supercontinuum generation in photonic crystal fibers (PCF) through representations
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of polarization trajectories on the Poincaré sphere. The theoretical background and numerical

method for solving the generalized nonlinear Schrödinger equations (GNLSE) were introduced. An

accurate model of Raman response function was studied and compared with the 13-peaks and

the single Lorentzian model. We then use numerical vector beam propagation simulations of the

coupled GNLSE which include all orders of dispersion, Kerr and delayed Raman nonlinearities

and optical shock. The simulation utilized a dispersive linear step in the frequency domain in the

fiber eigen-basis combined with a nonlinear step in the time domain using the circular basis, where

the nonlinear terms simplify since the phase-dependent four-wave mixing term disappears. This

allowed the calculation of the SC process for both linearly and circularly birefringent (e.g., twisted)

PCF with varying birefringence.

Different states of linearly and elliptically polarized 100 fs Sech pulses were applied to the

simulated PCF input to investigate the polarization of the ejected Raman soliton. We also studied

the dynamics of its polarization evolution on the Poincaré sphere for various fiber birefringence.

The Raman solitons were seen to have a nearly constant state of polarization across their temporal

profile, with an averaged Stokes vector that remained on the surface of the Poincaré sphere and

exhibited no depolarization during propagation.

For essentially isotropic PCF, the nonlinear ellipse rotation vanishes for linearly polarized

inputs. In this case, the ejected Raman soliton remains linearly polarized, although this would be

susceptible to perturbations caused by random birefringence variations along the fiber length. While

for elliptical input polarizations, the ejected Raman soliton revealed nonlinear ellipse rotation about

the s3 axis of the Poincaré sphere in proportion to the ellipticity S3. Highly linear birefringent fiber

led to Raman solitons with various polarization evolutions dominated by linear polarization rotation

about the s1 axis on the Poincaré sphere. Intermediate linear birefringence leads to complicated

interplay of these orthogonal rotations at which the nonlinear refractive index due to the ejected

soliton is close to the fiber birefringence. On the Poincaré sphere, this polarization instability was

manifested with the emergence of three stable polarization states (along +s1 corresponding to the

slow-axis and tilted slightly away from ±s3), a fast axis instability (along −s1), and a polarization
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separatrix.

Circularly birefringent fiber, made by twisting during fiber drawing, will exhibit both linear

rotations of the Poincaré sphere about s3 and nonlinear rotation about s3 proportional to S3. In

this case, it leads to a much simpler polarization evolution as pure rotations around s3, however

with a downward spiral on the Poincaré sphere away from the unstable fast circular eigenstate

towards the stable slow circular eigenstate. This suggests that if twisted PCF can be fabricated

with sufficient circular birefringence to dominate over unwanted linear birefringence induced by

bendings or stress, it may lead to the most stable and repeatable single polarization output su-

percontinuum by launching the stable slow circular polarization into the twisted PCF. For optical

imaging applications requiring a broadband single polarization, this could effectively double the

available output power of the supercontinuum process as compared with unpolarized outputs often

produced by the supercontinuum generated in a PCF.



Chapter 8

Thesis summary and Outlook

In my thesis, I described the experimental investigations and numerical simulations of a po-

larization dynamic broadband light source and polarization effects for polarimetry optical imaging

in scattering medium. In the first part of the thesis, I presented my research from analysis of optical

scattering using Mie and Rayleigh scattering matrix approach and the review of optical properties

of scattering medium, to polarized light propagation in scattering medium. During the investiga-

tion of polarization imaging in scattering medium, I reviewed several polarimetry techniques using

Stokes and Mueller matrix techniques. The polarization memory effect is particularly interesting

and has not been thoroughly investigated yet for optical imaging in scattering medium. From the

polarization-gated imaging study, I expanded the scattering matrix analytical models to compute

the point spread functions for both polarization sum and difference imaging techniques based on

prior investigations in the literature for both Mie and Rayleigh scatterers. I also investigated the

depolarization of multiple-scattered light for linearly and circularly polarized incident light based

on the Green’s function approach derived previously for scattered light fields. To demonstrate the

image quality improvement from the analytical results from the PSF scattering matrix and depo-

larizations, I conducted experiments to measure the optical scattering of a scattering phantom and

then performed polarization difference imaging using the phantom. The results shows 11 times

improved image contrast using polarization difference imaging in a highly scattering medium com-

pared with polarization sum imaging for small particles in the Rayleigh regime using orthogonal

linearly polarized light. The Stokes parameter theory is the tool that was used in the simulations for
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studying the polarization dynamics of the broadband light source for optical imaging in scattering

medium.

In the second part of the thesis, I studied a dynamic structured illumination microscope aimed

for Fourier synthesis optical imaging in scattering media using acousto-optically modulated traveling

wave illumination to sample spatial Fourier components in the time domain using a single pixel

for detection. This technique is an extension of the Doppler encoded excitation pattern (DEEP)

microscope developed in our lab [78, 116]. This imaging technique was experimentally constructed

based on moving illumination pattern generation from an acousto-optic deflector (AOD) controlled

by a direct digital synthesizer and only requires a photodiode detector for Fourier domain imaging.

A strobe-mode was developed in order to visualize the moving illumination pattern generation. The

microscope was constructed based on interfering the two first-order diffracted laser beams from the

AOD driven by a frequency chirp signal from the direct digital synthesizer (DDS). I developed

a matched-filtering algorithm to extract the DEEP signal from the detector for an amplitude

grating object and a grating reconstruction was shown to agree well with a conventional CCD

image of the grating object. A polarization interferometric structured illumination microscope was

also investigated using the 0th and 1st order diffracted beams from the birefringent and optically

active TeO2 Bragg cell. A few insights were gained from this experiment: the polarization of

the input beam to the TeO2 crystal can be optimized for the polarization switching process to

enhance diffraction efficiency. In addition, the polarized illumination from the sinusoidal spatial

fringes generated by the TeO2 crystal has the capability to detect objects (especially birefringent

objects) inside a scattering medium for high resolution Fourier domain imaging. Biologically tissue

and tendon are known to be birefringent and can be imaged by the polarized dynamic structured

illumination microscope. However, in order to image into scattering media using this Fourier basis

structured illumination technique, a broadband laser source is required.

Therefore, in the third part of the thesis I investigated a broadband supercontinuum light

source for optical imaging in scattering medium both experimentally and theoretically. I demon-

strated a high power and ultra-broadband supercontinuum laser source using dispersion-compensated
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Ti:Sapphire laser pulses and a highly nonlinear photonic crystal fiber (PCF). In this experiment, I

demonstrated a polarization-controlled octave-spanning supercontinuum light source and the results

were theoretically investigated in details. During the experiment, the supercontinuum spectrum

was observed to depend on the input polarization to the photonic crystal fiber and this provided

a motivation for further numerical simulation work to study the behavior using detailed numerical

simulation and to investigate the polarization dynamics of Raman solitary-waves generated by the

supercontinuum process. The complex polarization dynamics of supercontinuum generation was

explored by simulating the generalized vector nonlinear Schrödinger equations (GNLSE) for both

isotropic and polarization maintaining with inputs of both linear and elliptical polarizations. To

obtain the numerical data of the Raman solitary-wave as it red-shifts to longer wavelengths while

propagating in the nonlinear fiber, I developed a numerical method to accurately track and ex-

tract the Raman solitary-wave spectrum from the supercontinuum simulation. This new extraction

method enabled the numerical analysis of the polarization dynamics of the Raman solitary-wave

in a complex supercontinuum generation for the first time. Then the Stokes parameters were

calculated, and the polarization trajectories visualized on the Poincaré sphere revealed rich po-

larization dynamics including a polarization separatrix and fast axis instability. Furthermore, an

eigen-polarization basis switching technique was developed to model the coupled GNLSE using the

circular basis for the nonlinear propagation step and the linear basis for the dispersion step because

the circular basis eliminates the phase-dependent four-wave mixing term.

Previous research works were focused on polarization evolutions in linearly birefringent fibers

while the circularly birefringent PCF were neglected. In this work, polarization dynamics of super-

continuum generation in circularly birefringent fibers was also numerically investigated. For the

circular birefringence case, a simplified polarization evolution of the ejected Raman solitary-wave

was demonstrated that was unlike the complicated polarization dynamics in the linear birefringence

case. This finding has potentials for optical imaging applications where a high output power and

single circularly polarized broadband light source are required.
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8.1 Summary of thesis contributions

My contributions for the investigations of polarization dynamic light source and polarization

effects for optical imaging in a scattering medium can be summarized as the following,

• Theoretical investigations of optical properties of optical scattering medium in both Mie

and Rayleigh scattering regimes using scattering probably functions derived from scattering

matrix

• Theoretical investigations of image quality enhancement for polarization difference imaging

for Mie and Rayleigh scattering based on scattering matrix approach from prior works

• Experimental demonstration of image contrast improvement of optical imaging in a highly

scattering medium using polarization difference technique from orthogonally linearly po-

larizations in the Rayleigh scattering regime

• Experimental demonstration of polarization interferometric dynamics structured illumina-

tion microscope for optical Fourier domain imaging using single pixel detector and acousto-

optically modulated illumination

• Experimentally demonstrated and theoretically developed a matched filtering algorithm for

signal reconstruction in structured illumination Fourier domain imaging

• Experimentally demonstrated an optical delay line for repetition rate doubling using broad-

band dielectric mirrors for broadband polarization rotation of a supercontinuum light source

• Theoretical investigation of Raman response function by comparing the single Lorentzian,

13-peaks Hollenback and Lin and Agrawal models to accurately and efficiently simulate the

supercontinum generation simulation based on coupled nonlinear Schrödinger equations

• Experimental demonstration of a polarization-controlled supercontinuum light source for

optical imaging using ultrafast pulses generated from a Ti:Sapphire laser and a highly

nonlinear photonics crystal fiber
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• Theoretical demonstration of polarization dynamics of supercontinuum generation for vari-

ous input state of polarizations for both isotropic and anisotropic fiber media using coupled

nonlinear Schrödinger equations

• Theoretical demonstration of dynamic polarization trajectories and polarization separatrix

of Raman soliton-like waves in supercontinuum generation using Poincaré sphere represen-

tations

• Theoretically demonstration of eigen-polarization basis-switch algorithm in the symmetric

split-step Fourier method for solving the dispersion step and nonlinear step separately

• Theoretical demonstration of a slow mode circularly polarized tunable broadband light

source that can be achieved through fiber twisting for a potentially stable cirsularly polar-

ized light source for optical imaging applications

8.2 Future directions

My thesis work focused on theoretical and experimental investigations of optical imaging in

scattering medium using polarization effects and a broadband supercontinuum light source. One

finding of the research is the polarization difference imaging can improve image contrast in scattering

media and it may have potentials for structured illumination optical imaging in scattering medium.

In particular, if the polarization difference imaging is incorporated into the acousto-optically gen-

erated structured illumination imaging, it can not only enhance optical imaging contrast, but also

enable detection of birefringent objects in a highly scattering environment. If the research in this

direction can be continued, we could expect to see enhancement of optical imaging and sensing in

biological tissues.

The coherence gating for optical imaging proposed previously motivated the experimental

and numerical studies of the broadband supercontinuum light source. I investigated the supercon-

tinuum laser based on bench top experiment using a photonic crystal fiber and a high repetition

rate Ti:Sapphire laser. However, in recent years, other types of tapered and silicon waveguides
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are showing signed of promising octave-spanning supercontinuum for chip-scale integrated opti-

cal devices. My research in the polarization dynamic supercontinuum laser provides a useful tool

for designing and modeling the polarization effects for such integrated supercontinuum laser de-

vice. The numerical model based on vectorized generalized nonlinear Schrödinger equations can

be applied to model the dispersion parameters and nonlinearities not only for linear but also for

circularly birefringent waveguides for various optical input powers. Furthermore, this polarimetric

simulation calculating Stokes parameters can model all input and output states of polarizations of

the waveguide and visualize the polarization evolution of any part of the light spectra along the

waveguide through Poincaré sphere representations.

I also hope the theoretical investigations can shed insights and hence motivate a new type

of stable circularly polarized broadband light source, because the research results presented in the

later part of the thesis suggests if circularly birefringent photonic crystal fibers can be fabricated

by twisting the fiber during the drawing process with sufficient circular birefringence to dominate

random unwanted linear birefringence, it can lead to the most stable and repeatable single polar-

ization supercontinuum output if the stable slow mode circular polarization is launched into the

fiber. This potentially enables a new type of polarized, versatile and broadband light source for

optical imaging in a scattering medium. To continue the investigation, the proposed light source

can be realized in the experiment following a similar setup but with a circularly birefringent fiber

medium. For practical applications, this circularly polarized fiber medium is not restricted to stan-

dard nonlinear photonic crystal fibers. As mentioned, it could potentially be made from crystals

that can provide enough nonlinearity and dispersion engineering or by tapering the PCF to be

made compact enough for integrated photonic chip optical imaging. The waveguide medium can

be integrated with a compact laser source to generate circularly polarized broadband illumination

with tunability and stability, which I envision would be an attractive light source for biomedical

imaging, spectroscopy, polarization sensitive and multi-wavelength imaging in scattering medium.
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[63] Iñigo Novales Flamarique, Craig W. Hawryshyn, and Ferenc I. Hárosi. Double-cone internal
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