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ABSTRACT 
Martin, Tyler Biron (Ph.D. Chemical and Biological Engineering) 

Entropic and Enthalpic Driving Forces on Morphology  

in Polymer Grafted Particle Filled Nanocomposites 

Thesis directed by Professor Arthi Jayaraman 

 

Controlling polymer nanocomposite (PNC) morphology is an essential step towards designing 

PNCs with target macroscopic properties for specific applications. One strategy to control PNC 

morphology is to modify the surface of the nanoscale filler (nanoparticles) with polymer chains. 

By tailoring the properties of the grafted and matrix polymers, the effective filler-filler interactions 

and the PNC morphology can be tuned. The goal of this thesis is to elucidate how physical and 

chemical design parameters of polymer-grafted particle based PNC impact morphology, in order 

to engineer new polymer nanocomposite materials.  

 First, we use Monte Carlo simulations to show how the assembly of copolymer grafted 

particles in implicit solvent is affected by various grafted layer properties: grafted polymer 

chemistry, particle-diameter, particle concentration, grafting density, and graft sequence. Despite 

our focus on isotropically grafted particles, anisotropic particle assembly appears in the 

simulations over much of the parameter space. We highlight how the blockiness of the graft 

polymer sequence (number of contiguous like monomers) tunes cluster anisotropy when the outer-

block monomers are highly solvo-phobic.   

 Second, we study homopolymer grafted particles in chemically-identical matrix 

homopolymer. We examine how polydispersity and flexibility of graft and matrix polymers affect 

the mixing of the graft and matrix chains, and in turn the dispersion and aggregation of the grafted 

particles in the matrix. Increasing graft polydispersity or decreasing graft and matrix flexibility 
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increases the mixing of the graft and matrix chains (i.e. grafted layer wetting) and stabilizes the 

dispersed morphology of the composites.  

 Finally, we show that for composites where the graft and matrix chains are chemically-

dissimilar, the wetting-dewetting and dispersion-aggregation transitions are distinct transitions, 

unlike what is generally assumed for the chemically identical case. Using temperature, graft-matrix 

𝜒, or polymer composition, the degree of wetting of the grafted layer by matrix chains is tuned in 

the dispersed state. The ability to tune wetting in the dispersed state is not present for chemically-

identical composites and reveals the possibility of greater macroscopic property control in 

composites where the graft and matrix chains are chemically-dissimilar than chemically-identical. 
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1 INTRODUCTION 
 

Polymer nanocomposites are a broad class of soft materials which, in general, consist of two types 

of components: a) synthetic or biological polymer which can be either free (matrix polymer) or 

grafted on filler surface (graft polymer) and b) a nanometer-sized filler material that modifies and 

improves the mechanical, thermal, optical, and/or electrical properties of the matrix polymer. 

While the chemical nature of the filler material and graft/matrix polymer are important in 

determining the macroscopic properties of a composite, the arrangement (i.e. morphology) of the 

filler and polymer are equally as important. In order to create materials with targeted macroscopic 

properties for specific applications, it is vital that control over the nanocomposite morphology is 

achieved. To this end, there has been much work in the soft materials community to come up with 

strategies for controlling nanocomposite morphology, either via the application of external fields 

(i.e. top-down control) or via the modification of the fundamental thermodynamic driving forces 

of the composite (i.e. bottom-up control). The latter is primarily achieved by grafting polymer 

chains to the surface of the filler material, such as spherical nanoparticles, thereby mediating the 

effective filler-filler interactions via the grafted polymer chains. The research described in this 

doctoral thesis is aimed at understanding how polymer-grafted nanoparticles should be designed 

to engineer nanocomposites with targeted morphologies and in turn targeted macroscopic 

properties.  

 In order to understand how the large number of physical parameters and chemical 

properties of polymer-grafted particle based nanocomposites affect their morphology, a robust and 

efficient set of techniques must be adopted. Molecular simulations and liquid state theory are tools 

that are set to handle the exploration of large materials parameters spaces more quickly than 
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experiments, and, simultaneously, also provide molecular level insight into the thermodynamic 

driving forces that are harder to characterize in experiments. In this thesis, we will use Monte Carlo 

simulations, molecular dynamics simulations, and polymer reference interaction site model 

(PRISM) theory to understand and create new design rules for controlling nanocomposite 

morphology. Furthermore, wherever possible, we will highlight experimental studies conducted 

by other research groups that corroborate our computational and theoretical findings.  

 In Chapter 2, we use Monte Carlo simulations to study AB copolymer-grafted 

nanoparticles to elucidate the effect of blockiness (length of contiguous blocks of like-monomers) 

in the grafted monomer sequence on the shape, size, and structure of assembled nanoparticle 

clusters for a range of monomer-monomer and monomer-particle interactions. The graft sequence 

dictates the ease or difficulty of the grafted chains to form attractive like-monomer (A-A or B-B) 

contacts while minimizing repulsive unlike-monomer (A-B) contacts within an assembled cluster 

or dispersed state. When A-B repulsion is negligible, with increasing blockiness at constant graft 

length, the cluster size and average coordination number decrease in the presence of A-A or B-B 

attractions, and are approximately constant in the presence of A-A and B-B attractions. When A-

B repulsion is strong, the cluster size and average coordination number increase with increasing 

blockiness for small and large particles. For small particles, with strong B-B attraction and A-B 

repulsion, increasing blockiness leads to increasing anisotropy in cluster shape, while strong A-A 

attraction produces isotropic clusters regardless of graft sequence. The effect of graft sequence on 

cluster shape is reduced for large particles as compared to small particles, at constant graft length. 

Lastly, the extent to which monomer-particle attractive interactions change the above trends is 

highly dependent on the relative strength of monomer-particle to monomer-monomer interactions, 

in addition to the ratio of particle size to graft length, and the grafting density. This chapter 
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illustrates how copolymer functionalization and tuning grafted copolymer sequence is an exciting 

new route for experimentalists to tailor the self-assembly of nanoparticles into selected 

nanostructures. 

 In Chapters 3-7, we shift our focus to systems of homopolymer grafted nanoparticles in a 

chemically identical free homopolymer matrix. In these systems, due to the chemical similarity of 

the graft and matrix chains, the driving forces that control the nanocomposite morphology are 

purely entropic in nature. In Chapters 3, 4, and 5, we explore the effect of graft-length 

polydispersity on nanocomposite morphology. Chapter 6 extends these results to include the effect 

of matrix-length bidispersity, and Chapter 7 focuses on how graft and matrix flexibility tunes 

morphology. In all of these cases, the phenomenon of interest is the mixing of the grafted and 

matrix chains i.e. wetting of the grafted layer by the matrix chains. In chemically-identical graft-

matrix composites it is generally assumed that the wetting-dewetting and dispersion-aggregation 

transitions are simultaneous and identical transitions. Based on this concept, much of the focus of 

Chapters 3-7 will be on improving the wetting of the grafted layer which in turn stabilizes the 

dispersed morphology of the nanocomposite. Dispersed morphologies are desirable for 

applications where mechanical properties are important as they the maximize filler-matrix contact 

area and minimize the individual filler domain sizes. 

 In Chapter 3, we present an integrated theory and simulation study of polydisperse polymer 

grafted nanoparticles in a polymer matrix to demonstrate the effect of polydispersity in graft length 

on the potential of mean force (PMF) between the grafted nanoparticles. In dense polymer 

solutions, increasing polydispersity reduces the strength of repulsion at contact and weakens the 

attractive well at intermediate inter-particle distances, completely eliminating the latter at high 

polydispersity index (PDI). The reduction in contact repulsion is due to polydispersity relieving 
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monomer crowding near the particle surface, especially at high grafting densities. The elimination 

of mid-range attractive well is due to the longer grafts in the polydisperse graft length distribution 

that introduce longer range steric repulsion, and alter the wetting of the grafted layer by matrix 

chains. Dispersion of the grafted particles is stabilized by increased penetration or wetting of the 

polydisperse grafted layer by the matrix chains. This study demonstrates that at high grafting 

densities, polydispersity in graft length stabilizes dispersions of grafted nanoparticles in a polymer 

matrix at conditions where monodisperse grafts would cause aggregation. 

  In Chapter 4, we extend these results presented in Chapter 3 to describe how the PMF 

between two grafted particles changes as a function of grafting density, ratio of matrix to graft 

length, and packing fraction of polymer matrix for polydisperse and bidisperse grafts. Comparison 

of a log-normal polydisperse distribution to a bidisperse distribution of graft chain lengths (with 

equal number of short and long chains) with same PDI and average length, shows that the 

polydisperse distribution  better stabilize particle dispersions than the bidisperse distributions 

because of the longer chains in the polydisperse distribution. Additionally, in a bidisperse 

distribution, with all chains shorter than the matrix chain length, there is a reduction in the mid-

range attraction, thus confirming the role of reduced monomer crowding in the bidisperse grafted 

layer in increasing the grafted layer wetting by the matrix chains, and as a result, improving 

miscibility of grafted particles and matrix. 

In Chapter 5, we investigate the roles of the short and long grafted chains in polydisperse 

polymer grafted nanoparticles in stabilizing particle dispersion in a chemically similar polymer 

matrix in the presence of particle-particle attractions. The effect of the short and long chains in a 

polydisperse or bidisperse graft length distribution on the PMF between the polymer grafted 

nanoparticles is coupled and distinct from their role in the corresponding deconstructed short and 



5 

 

long monodisperse distributions. At high grafting density, the increased monomer crowding near 

the particle surface, from both short and long chains, maximizes shielding of particle-particle 

attraction, while the length and crowding of long chains away from the particle surface determines 

the location, range and strength of the steric repulsion and mid-range attraction. We find that to 

maximize grafted nanoparticle dispersion, it is best to synthesize grafted particles at high grafting 

density with polymer graft length distributions that maximize monomer crowding near the particle 

surface to shield particle-particle attraction, and minimize crowding at farther distances from the 

particle to increase wetting of the grafted layer by matrix chains. Polydisperse (log-normal) graft 

length distributions and bidisperse graft length distributions with few long chains among many 

short chains satisfy this criterion, and better disperse grafted particles in a chemically identical 

matrix than monodisperse grafts or bidisperse graft length distributions with equal number of short 

and long chains, with equivalent average graft length. 

In Chapter 6, we present a simulation study showing the effect of bidispersity in matrix 

homopolymer length, for monodisperse graft lengths, on the wetting/dewetting of homopolymer 

grafted nanoparticles and the morphology of polymer nanocomposites where the graft and matrix 

polymer chemistries are identical. In a bidisperse matrix with equal number of short and long 

chains and average matrix length greater than the monodisperse graft length, the densely grafted 

polymer layer is preferentially wet by the short chains and relatively dewet by the long chains. 

This is driven by a larger gain in entropy of mixing between graft and matrix for short matrix 

chains than long matrix chains. Despite the preferential wetting of the short and dewetting of long 

chains, matrix length bidispersity does not significantly change the overall wetting of the grafted 

layer. Unlike graft length bidispersity which significantly improves particle dispersion, matrix 

length bidispersity slightly increases particle aggregation in the polymer matrix. 
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In Chapter 7, we present a molecular dynamics simulation study of nanocomposites 

containing homopolymer grafted particles in a homopolymer matrix, where the graft and matrix 

chemistries are identical, to elucidate the effect of polymer flexibility on the wetting of the grafted 

layer by the matrix and the nanocomposite morphology. Decreasing flexibility of the graft and 

matrix causes increased wetting of the grafted layer by the matrix. This increased wetting of the 

grafted layer with decreasing flexibility is more significantly driven by decreasing the graft 

flexibility than by decreasing the matrix flexibility. This is due to a large increase in mixing 

entropy of the graft and matrix upon wetting rather than the reduction in conformational entropy 

loss of matrix upon wetting. Due to this improved wetting with decreasing flexibility of the graft 

and matrix, we observed increased particle dispersion in the polymer matrix. 

In Chapters 8 and 9, we switch the focus away from composites with chemically-identical 

graft and matrix polymers to those with chemically-dissimilar graft and matrix. Composites where 

the graft and matrix chains are chemically dissimilar have competing enthalpic driving forces in 

addition to the entropic driving forces of the chemically identical composites discussed above. In 

these chapters, we will directly focus on the connection between the wetting-dewetting and 

dispersion-aggregations and furthermore how we can tune and control these transitions. We show 

that, unlike chemically-identical composites, chemically-distinct composites have a broad wetting-

dewetting transition that allows for the tuning of graft-matrix wetting/mixing. The ability to 

directly tune the graft-matrix mixing via temperature, solvent selection, or polymer sequence is an 

attractive route to creating composites with highly tunable mechanical and rheological properties.  

In Chapter 8, we present simulations and experiments on mixtures containing polymer 

grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers 

exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive 
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as temperature is increased. Both coarse-grained molecular dynamics simulations, and x-ray 

scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and 

poly(vinyl-methyl-ether) PVME matrix show that the sharp phase transition from (mixed) 

dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective 

interactions between the blend components is distinct from the continuous wetting-dewetting 

transition. Strikingly, this is unlike the extensively-studied chemically identical graft-matrix 

composites, where the two transitions have been considered to be synonymous, and is also unlike 

the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-

dewetting is a sharp transition coinciding with the macrophase separation. 

In Chapter 9, using coarse-grained molecular simulations we demonstrate that the extent 

of wetting of the grafted polymer layer and the particle dispersion-aggregation transition are tuned 

using the composition of graft and matrix polymers. Specifically, we study composites where the 

graft and matrix chains are random copolymers composed of attractive and athermal monomers. 

We vary the fraction of attractive monomers in the graft (𝑓𝐺) and matrix (𝑓𝑀) chains, graft-matrix 

chain composition ratio (𝑓𝐺/𝑓𝑀) , and the graft-matrix interaction strength, as characterized by the 

Flory Huggins interaction parameter between graft and matrix attractive monomers: 𝜒𝐺𝑀. When 

𝜒𝐺𝑀 is negative, decreasing 𝑓𝐺  and/or 𝑓𝑀 decreases the extent of grafted layer wetting by matrix 

chains because the enthalpic driving force for wetting is reduced. As the 𝜒𝐺𝑀  increases and 

becomes positive, the extent of wetting decreases gradually till it reaches the wetting of athermal 

graft-matrix composites. That value of 𝜒𝐺𝑀 where the extent of wetting is the same as that of an 

analogous athermal graft-matrix polymer nanocomposite marks the onset of dispersion-

aggregation transition. For symmetric graft and matrix chain compositions ( 𝑓𝐺 = 𝑓𝑀)  the 

magnitude of 𝑓𝐺  and 𝑓𝑀 tunes the overall extent of wetting of the grafted particles in the dispersed 
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state but not the dispersion-aggregation transition. Varying the asymmetry of the graft-matrix 

composition (i.e. 𝑓𝐺/𝑓𝑀) tunes both the extent of wetting of the grafted layer and the dispersion-

aggregation transition. 

The thesis ends with a chapter that presents a summary of these results and some future 

directions. Overall, this thesis presents several new and novel design criteria for controlling the 

morphology of different nanocomposite systems and should motivate the continued study of these 

systems by computational, theoretical, and experimental methods.  
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2 EFFECT OF BLOCKINESS IN GRAFTED MONOMER SEQUENCES ON ASSEMBLY 

OF COPOLYMER GRAFTED NANOPARTICLES: A MONTE CARLO SIMULATION 

STUDY 
Adapted from: Soft Matter 2011, 7 (13), 5952-5964. 

2.1 INTRODUCTION 

Controlled nanoparticle assembly is required to create nanostructured materials for applications 

such as metamaterials, photovoltaics, and microelectronics. One way to tailor nanoparticle 

assembly is via functionalization of the nanoparticle surface with ligands such as polymers,[1-31] 

DNA,[32-36] and proteins[37, 38]. Polymer functionalized nanoparticles, in particular, have been 

studied extensively in the recent years using theory,[1, 13, 15-17] simulation,[18-21] and 

experiments[15, 22, 23]. Experimental and computational studies of homopolymer grafted 

nanoparticles in polymer matrix, solvent, and pure bulk (no solvent or matrix) have demonstrated 

the ability to tune the assembly characteristics of these grafted nanoparticles via the grafting 

density,[2, 19, 26] nanoparticle size,[3, 17, 27] graft placement,[8, 28, 29] graft and matrix 

molecular weight,[30] and nanoparticle shape.[20, 27, 31] Specifically, for homopolymer grafted 

nanoparticles, at high grafting density in a polymer matrix, it has been shown that when the grafted 

chains have a higher molecular weight than the matrix chains the nanoparticles disperse. It has 

also been shown that, at low grafting densities, the grafted chain layer is not dense and the 

interactions between the particles’ cores becomes important, causing the lightly grafted polymer 

functionalized nanoparticles to assemble anisotropically.  

 Copolymer functionalization, as opposed to homopolymer functionalization, creates 

additional tuning parameters of graft sequence and monomer chemistry (or interactions) which 

provide further control over the assembly of polymer grafted nanoparticles. In the last few years, 
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theory [13, 16, 17] and simulations[12, 24, 25] have been used to study copolymers grafted onto 

nanoparticles. Vorselaars et al.[16]  have used (self-consistent field theory) SCFT to study dense 

layers of diblock copolymers grafted onto spherical nanoparticles. They found various domain 

shapes on particle surface depending on the composition of the copolymer, and discussed the 

stability of the various morphologies on these highly curved nanoparticle surface, in contrast to 

the case of zero curvature. Zhu et al.[17] have employed both SCFT and DFT (density fluctuation 

theory)  to study a dense system of nanoparticles with a single diblock copolymer graft. When the 

particle surface was chemically neutral to the grafted chain, they observed typical block copolymer 

morphologies (i.e. cylinders and lamellae) determined by both the composition of the copolymer 

and the particle size. When the particle was repulsive to both blocks of the copolymer, they 

observed hierarchical morphologies, such as “lamellae with cylinders at interfaces” not typically 

observed with block copolymer melts. While the above studies focused on either a single 

copolymer grafted nanoparticle at high grafting density[16] or grafted nanoparticles with a single 

grafted chain[17], Jayaraman and coworkers[12, 13, 25] have conducted systematic studies of 

spherical copolymer grafted nanoparticles at low to intermediate grafting densities using a 

combination of theory and simulation techniques to better understand the effective interactions 

between the copolymer grafted particles and their assembly characteristics in both solvent and 

matrix. Using Monte Carlo simulations of a single copolymer grafted nanoparticle at low to 

intermediate grafting densities in an implicit solvent[25], they show that the grafted chain 

conformations change non-monotonically with monomer sequence, and depend on the monomer 

sequence and monomer interactions. In a following study[13], Nair and Jayaraman used an 

integrated theory and simulation approach (self-consistent PRISM-MC method) to study the 

effective interactions between two copolymer grafted nanoparticles in a homopolymer matrix as a 
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function of grafted monomer sequence. They found that at the same composition, particle size and 

grafting density, using alternating AB copolymer grafts leads to a repulsive potential of mean force 

(PMF) between the grafted particles at contact in both A and B homopolymer matrix, while using 

diblock sequence AB copolymer grafts leads to an attractive PMF at contact and a repulsive PMF 

at larger inter-particle distance in B homopolymer matrix, and repulsive at contact and attractive 

at larger inter-particle distance in A homopolymer matrix. This was an interesting result because 

it demonstrated the isolated effect of varying the “arrangement” of monomers (monomer 

sequence) on the behavior of the grafted nanoparticles in a polymer matrix.  

 In recent work, we used lattice Monte Carlo simulations to study assembly of spherical 

nanoparticles grafted with AB alternating and diblock sequences[12] in an implicit solvent at 

varying monomer interactions, particle size, and graft length. We found that depending on the 

monomer interactions, the alternating sequence either favors dispersions, or formation of smaller, 

isotropic clusters, while the diblock sequence favors assembly producing larger, anisotropic 

clusters. In this paper, we use the same approach going beyond just alternating and diblock 

sequences, by focusing in detail on five different graft sequences with varying “blockiness” in 

sequence, where blockiness is defined as the length of contiguous blocks of like-monomers. Our 

goal here is to study how varying AB copolymer graft sequence blockiness affects the assembly 

of copolymer grafted nanoparticles at varying monomer-particle and monomer-monomer 

interactions. We find that the total number of attractive monomer contacts in the assembled 

nanoparticle cluster increases with increasing blockiness in graft sequence, with the alternating 

sequence being an outlier. As the graft sequence blockiness increases, attractive like monomers 

(A-A and/or B-B) aggregate more easily within an assembled nanoparticle cluster without having 

to constrain the grafted chains, thereby decreasing conformational entropic losses. The unique 
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trend seen with the alternating sequence is explained by the alternating grafted chains forming 

“networks” of attractive monomer contacts within the cluster in contrast to the distinct domains of 

attractive monomers formed by other blockier sequences. In the case of like monomer  (A-A and/or 

B-B) attraction in the absence of unlike (A-B) monomer repulsion, the assembled cluster size and 

average particle coordination number decreases with increasing blockiness. In the case of like 

monomer attraction in the presence of unlike monomer repulsion the clusters size and average 

particle coordination number within the cluster increases with increasing blockiness. For both 

small and large particle sizes, we observe that presence of B-B attraction with A-B repulsion 

produces the greatest range of anisotropy in clusters with varying blockiness in the grafted chains. 

All of the above trends are driven purely by how the monomer sequences enable/deter the grafted 

copolymer chains to bring together attractive monomer contacts for making inter-particle contacts. 

For the two particle sizes studied here, at constant graft length, how much the monomer-particle 

interactions affect the above trends are highly dependent on the particle size to graft length ratio, 

graft sequence, and the relative strengths of monomer-particle and monomer-monomer 

interactions. 

 Since copolymer-grafted nanoparticles are a relatively less-studied system as compared to 

homopolymer grafted nanoparticles in the polymer functionalized particles field, there is a need to 

predict how these copolymer functionalized nanoparticles assemble at a variety of parameters. 

Since the synthetic efforts to conduct a systematic parameter study are both time consuming and 

involve significant effort, we expect the results from this computational exploration to provide 

guidelines for synthetic chemists and other scientists attempting to create target morphologies 

through assembly of copolymer grafted nanoparticles. 
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 The paper is organized as follows. In Section 2.2 we provide details of our model, the 

simulation method, and analysis techniques. In Section 2.3, we present the results showing the 

effect of varying monomer sequence, monomer-monomer, and monomer-particle interactions, and 

particle size on the shape, size and structure of assembled cluster of copolymer grafted 

nanoparticles. We conclude with a discussion on the observed general trends, limitations of this 

work, some future directions, and the impact of this computational work on experiments. 

2.2 APPROACH 

2.2.1 Model 

 

Figure 2.1: Schematic of the monomer sequences used in this study, in decreasing order of 

blockiness from top to bottom. 

We model the system of AB copolymer grafted nanoparticles as hard sphere particles of diameter 

D each with six grafted symmetric AB copolymers. Each grafted copolymer chain is modeled as 

a freely jointed chain on a cubic lattice with monomers of size d of the order 1 nm, and the first 

monomer is placed symmetrically 1d away from the six poles of the spherical nanoparticle. The 

symmetric AB copolymers of length 24 monomers, have A and B monomers arranged in one of 

five sequences—(A1B1)12, (A2B2)6, (A3B3)4, (A6B6)2, (A12B12)1—displayed in Figure 2.1. For all 

sequences the AB copolymer chains are grafted such that the first monomer attached to the particle 

surface is an A monomer. The identities of the second, third and higher monomers in each grafted 

chain depend on the chosen monomer sequence. 
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 The monomer–monomer interaction potential, Uij(r) between the ith and jth non-bonded 

grafted monomers is described by a square well potential shown in Equation (1) 

 𝑈𝑖𝑗(𝑟𝑖𝑗) = {

∞
휀𝑖𝑗
0
     

𝑟𝑖𝑗 < 𝑑

𝑑 ≤ 𝑟𝑖𝑗 ≤ √2𝑑

√2𝑑 < 𝑟𝑖𝑗

 (1) 

where rij is the center–center distance between i and j monomers, 𝑑 is the diameter of the monomer 

(maintained the same for A and B monomer), √2d is the width of interaction (i.e interaction 

includes nearest neighbors and nearest diagonal neighbors), and εij is the strength of interaction 

between the i and j monomers. Attractive interactions are characterized by a negative εij and 

repulsive interactions are denoted by a positive εij. We have chosen εAA, εBB, and εAB to mimic 

varying chemistries as tabulated in Table 2.1.  

 We model attractive interactions between monomer i and the grafted particle j using 

another square well potential: 

 𝑈𝑖𝑗(𝑟) = {

∞
휀𝑖𝑗
0
     

𝑟𝑖𝑗 < (𝑑 + 𝐷) 2⁄

(𝑑 + 𝐷) 2⁄ ≤ 𝑟𝑖𝑗 ≤ 𝐷 2⁄ + 𝑑

𝐷 2⁄ + 𝑑 < 𝑟𝑖𝑗

 (2) 

where D is the diameter of the particle. Particle–particle interactions are maintained as hard-sphere 

interactions. 

Table 2.1: List of monomer-monomer and (in kT). Negative values of ε values represent attractive 

interactions while positive values represent repulsive interactions, in the square well potential 

form. Each of these interactions is studied without monomer-particle interactions, with particle to 

A-particle attraction of 1kT, or with  B-particle attraction1kT. 

Interaction  

Set 

εAB/kT εAA/kT εBB/kT 

1 0.0 -0.5 0.0 

2 0.0 -1.0 0.0 

3 0.0 0.0 -0.5 

4 0.0 0.0 -1.0 
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5 0.0 -0.5 -0.5 

6 0.0 -1.0 -1.0 

7 1.0 -0.5 0.0 

8 1.0 -1.0 0.0 

9 1.0 0.0 -0.5 

10 1.0 0.0 -1.0 

11 1.0 -0.5 -0.5 

12 1.0 -1.0 -1.0 

 

2.2.2 Method 

We use Monte Carlo simulation on a cubic lattice to study the assembly of copolymer grafted 

nanoparticles. In this paper we are focused only on dilute concentration of c ~ 1x10-5 particles per 

nm3, obtained by using 10 particles in a 100x100x100 (nm3) simulation box with periodic 

boundary conditions. In the first step of the simulation we grow the initial configuration by placing 

the spherical nanoparticles in random positions inside the simulation box. Then for each particle, 

we fix the first monomers of the six grafted chains at the predetermined symmetric sites on the 

sphere followed by placing the second monomer of each grafted chain in one of the five 

unoccupied lattice sites adjacent to the first monomer of that grafted chain. During this growth 

process if an ith monomer cannot be grown because all neighbouring sites of the (i-1)th monomer 

are occupied by other monomers, then all the monomers are subjected to local moves until a 

vacancy is created. This is repeated until all the grafted chains are grown to the desired chain 

length, Ngraft. Ngraft is maintained as 24 in this study. This process is followed for all copolymer 

grafted particles within the simulation box while ensuring no overlaps. After the initial 

configuration is grown, the simulation proceeds to the initialization stage. The initialization stage 

helps us avoid any bias that might arise due to the nature of the initial configuration. In the 

initialization stage the chains are subjected to 100000 Monte Carlo (MC) steps with purely hard-

sphere interactions between all monomers in the simulation. An MC time step is defined either as 
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Ngraft x Ng random monomer moves, where Ngraft is the grafted copolymer chain length and Ng is the 

number of grafts (Ng=6 in this study), or one copolymer grafted nanoparticle translate or rotate 

move. In one monomer move, we randomly pick a monomer (with the exception of the first 

monomer that is fixed) on a randomly picked grafted chain of a randomly selected nanoparticle, 

and then move that monomer using a randomly chosen move—“crankshaft”, “kink” and “end” 

(end move for the last monomer only)[39]. In one single copolymer grafted nanoparticle move, 

one copolymer grafted nanoparticle is randomly chosen and the particle along with its constituent 

chains is translated or rotated. The moves are accepted or rejected based on the Metropolis 

algorithm[40] since interaction potentials are not turned on until the equilibration stage, all 

initialization-stage moves are made under athermal conditions and accepted as long as no overlaps 

occur during the move. 

 The initialization stage is followed by the equilibration stage. In the equilibration stage the 

chains goes through 20 million MC steps with a temperature annealing schedule going from 

dimensionless temperature Tinital = 3 to Tfinal = 1 with a temperature decrement of 0.9 at every ith 

stage (Ti=Ti-1 x 0.9), and 3 million MC steps per temperature stage. This annealing schedule was 

chosen after rigorous testing to ensure equilibrium is reached at each temperature stage, and the 

resulting configurations at each temperature are independent of small variations in the annealing 

schedule (e.g. 3 million or 4 million MC steps per stage). The moves during the equilibration stage 

include the monomer moves (47.5%) and grafted particle moves (47.5%) described above and 

cluster moves (5%). A cluster move is defined as a move of a collection of copolymer grafted 

nanoparticles, where every grafted particle is making at least one monomer contact with a 

monomer of another grafted particle in the cluster. During a cluster move we translate randomly 

picked clusters and accept the move only when the cluster move does not lead to an overlap or 
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formation of a new cluster.[39] If there are no clusters in the configuration the chosen cluster move 

is rejected. Once the simulation has reached Tfinal=1 and our equilibrium condition has been 

satisfied—40 consecutive block averages of energy are within 10% of each other—we collect the 

ensemble average of the block averages of the equilibrated simulation. We collect data on the 

thermodynamic property of interest over 10000 MC steps and calculate the block averages for 

every 100000 MC steps.  For each parameter set, described below, we repeat 5 trials of simulation 

where each of the trials is initialized with different random number seeds. We obtain error bars for 

every data point presented in the Results section from the ensemble averages collected from 5 such 

trials. 

2.2.3 Analysis 

We employ a variety of metrics to assess the size and shape of the assembled cluster of the 

copolymer grafted particles, the monomer contacts within the cluster and the grafted chain 

configurations.  

 We calculate the average radius of gyration of the grafted chains using equation  

 〈𝑅𝑔,𝑐ℎ𝑎𝑖𝑛
2 〉0.5 =  (

1

𝑀∗𝑁𝑔𝑟𝑎𝑓𝑡
∑ ∑ (𝑟𝑖𝑗 − 𝑟𝑐𝑚,𝑗) ⋅ (𝑟𝑖𝑗 − 𝑟𝑐𝑚,𝑗)

𝑁𝑔𝑟𝑎𝑓𝑡
𝑖=1

𝑀
𝑗=1 )

0.5

 (3) 

where rij is the position of the ith monomer of the jth chain, rcm,j is the position of the center of mass 

of chain j, Ngraft is the number of monomers in grafted chain j and M is the total number of grafted 

chains in the simulation (= Ng * number of particles). 

 We also calculate the mean height of each monomer type from the center of the particle it 

is grafted to. We first calculate the average concentration profile for each monomer type using 

 𝐶𝛼(𝑟) =
1

𝑃
∑

𝑁𝑖,𝛼(𝑟)
4

3
𝜋(𝑟+1)3−

4

3
𝜋𝑟3

𝑃
𝑖=1  (4) 
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where P is the total number of copolymer grafted nanoparticles particles in the system, α represents 

either A monomers or B monomers, r is an integer radial distance from a particle center, and Ni,α(r) 

is the average number of monomers of  type α, grafted to particle i, that reside in the shell between 

r and r+1. The second moment of the normalized Cα(r) is the mean squared height of monomer 

type 𝛼 from the particle center as shown in Equation (5). 

 𝐻𝛼 = [
∫ 𝐶𝛼(𝑟)𝑟

2𝑑𝑟
𝑅
0

∫ 𝐶𝛼(𝑟)𝑑𝑟
𝑅
0

]

0.5

 (5) 

 To quantify the shape of the assembled clusters of polymer grafted nanoparticles, we 

calculate relative shape anisotropy (RSA).[41]  The RSA of a cluster varies between 0 and 1, with 

0 corresponding to perfectly isotropic (i.e. spherical symmetry) and 1 to perfectly anisotropic (i.e. 

rod-like) shape. Since the RSA calculation performs best when it’s applied to many beads, we 

apply this analysis to the coordinates of the monomers of a cluster, as opposed to the coordinates 

of the particles of a cluster. We begin the calculation of RSA by first translating the center of mass 

of the monomer coordinates of a cluster to the origin and calculating the radius of gyration tensor 

for a cluster containing N monomers: 

 

 𝑆 =  ∑ 𝑟𝑖𝑟𝑖
𝑻𝑁

𝑖=1   (6) 

where ri is the translated coordinate vector of monomer  i, and ri
T is the transpose of this coordinate 

vector. We then diagonalize 𝑆 in the following manner: 

 𝑺 = 𝑉𝑻𝑆 𝑉 (7) 

where V is a 3x3 matrix with columns that correspond to the three eigenvectors of S. We then find 

the traceless part of S: 

 �̂� = 𝑺 −
1

3
𝑡𝑟(𝑺)𝐼 (8) 
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where I is the 3x3 identity matrix, and tr(S) is the trace of S. Using the above quantities, we can 

calculate the relative shape anisotropy of the cluster of monomers: 

 𝑅𝑆𝐴 =
3

2

𝑡𝑟(𝑺𝑺)

𝑡𝑟(𝑺)2
 (9) 

 In the process of calculating 𝑅𝑆𝐴, we also can easily obtain the radius of gyration of a 

cluster which allows us to assess the size of clusters. This calculation is shown in Equation 10. 

 [𝑅𝑔,𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2 ]

0.5
= √𝑡𝑟(𝑺) (10) 

 We also calculate the average number of particles per cluster, 〈N〉, which serves as a 

separate metric of the size of clusters. To quantify the structure or particle-particle connectivity 

within a cluster we calculate the ensemble averaged coordination number, 〈Z〉, which is defined as 

the average number of “neighbors” a polymer grafted particle has. We define two polymer grafted 

nanoparticle as “neighbors” if they have at least one monomer-monomer contact.  

 In an assembly/dispersion each copolymer grafted nanoparticle exhibits an effective 

patchiness due to aggregation of monomers. In order to quantify this “patchiness” we perform 

analysis on the domains of like-monomers within the assembled cluster. We define a “domain” as 

a set of monomers of the same type that share at least one monomer contact with another monomer 

in the domain. Using this criterion, we can calculate various metrics such as the average number 

of domains in a cluster or the average radius of gyration of these domains. We also calculate the 

average total number of contacts between various pairs of monomers (e.g. A-A, A-B and B-B 

contacts) and between particle and monomers (e.g. A-P, B-P contacts) to show how the monomers 

aggregate in each cluster.  

 In order to verify that the data and trends that we present are significant, all of the shown 

trends have been subject to a statistical analysis. To verify that the data points within a specific 

trend are statistically significant from one another, each trend line is tested using a one-way 
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analysis of variance with an acceptance criterion of 0.05. A p-value below 0.05 indicates that the 

data in the trend are significantly different while a p-value above 0.05 indicates that the data are 

statistically the same (i.e. zero slope). To test data from different trends, for example weak 

monomer attraction vs. strong monomer attraction, we employ an unequal variance, two-tailed t-

test with an acceptance criterion of 0.05. All of the data in our presented figures have errors bars 

calculated using standard error; many of the error bars are smaller than the symbol representing 

the data. 

2.2.4 Driving Forces for Assembly of Grafted Nanoparticles 

In this section we discuss the forces that drive copolymer grafted nanoparticles to arrive at their 

equilibrium assembled/dispersed configuration.  First, as stated earlier, the term “blockiness” is 

defined as the number of contiguously placed like monomers in a particular copolymer sequence. 

In other words, the longer the block of like monomers in a sequence is, the blockier the sequence. 

Therefore, in this study (A1B1)12 is the least blocky sequence (also called the alternating sequence), 

since it only has one like- monomer in each repeating block, while (A12B12)1 is the most blocky 

sequence as it has 12 like monomers contiguously placed in each block.  

 The equilibrium configuration of the copolymer grafted nanoparticles is achieved by 

maximizing the enthalpic gain through maximizing the number of attractive like monomer 

contacts, and minimizing the number of repulsive unlike-monomer contacts, while minimizing the 

entropic losses associated with making or avoiding these contacts. The conformational entropy of 

the grafted chains and translational entropy of nanoparticles is reduced upon assembly of the 

polymer grafted nanoparticles. While the translational entropy loss of the nanoparticles upon 

assembly should not vary much with the grafted monomer sequence, the conformational entropy 

loss of the grafted chains upon nanoparticle assembly is strongly dependent on the monomer 
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sequence. This is because the assembly of the nanoparticles is driven by ability of the grafted chain 

to a) coil upon itself and make enthalpically favorable intra-chain contacts, and/or b) stretch out 

to make enthalpically favorable inter-chain intra-particle contacts, and/or c) stretch out towards 

another grafted nanoparticle and make enthalpically favorable inter-particle contacts. 

Supplementary Figure S1 shows schematically these different types of monomer contacts.  The 

choice of one or more of these types of contacts is dictated by the strength of monomer attractions 

and repulsions, and by how the grafted chain sequence facilitates these contacts, while losing the 

least number of conformations or minimizing the entropic loss. For example, a highly blocky 

sequence, like (A12B12)1, can easily maximize the intra-chain B-B and/or A-A contacts while 

maintaining a high conformational entropy. The least blocky sequence, (A1B1)12, on the other hand, 

must seek highly compact conformations to form intra-chain contacts that lower the 

conformational entropy of the grafted chain. Thus, less blocky sequences could prefer to make 

“inter-chain intra-particle” or “inter-particle” contacts if the chain does not have to stretch too 

much to achieve those attractive contacts. Clearly, in addition to the sequence, the grafted chain 

length and the particle size also affect the above choice of types of contacts. For e.g., at constant 

chain length and constant number of grafts, a small nanoparticle can easily allow the formation of 

inter-chain intra-particle contacts as the chains are grafted closer together, but a larger nanoparticle 

will drive mostly inter-particle or intra-chain contacts due to the increased distance between the 

grafts.  

 In summary, the equilibrium configuration of copolymer grafted nanoparticles, assembled 

or dispersed, tightly clustered or loosely clustered, are all based on how the above factors – grafted 

chain length and sequence, monomer attractive and repulsive interaction strengths, graft chain 
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length, and particle size -- balance the enthalpic gain and entropic losses. This balance is complex 

and non-intuitive, and therefore motivates this computational study. 

 

2.3 RESULTS 

2.3.1 Effects of Monomer Sequence on Grafted Chain Conformations and Monomer Aggregation 
in the Cluster 

2.3.1.1 Radius of Gyration and Monomer Contacts 

 

Figure 2.2: Average radius of gyration of a grafted chain  〈R2
g,chain〉0.5, average number of total 

AA contacts, total BB contacts and total AB contacts as a function of graft monomer sequence for 

copolymer grafted nanoparticles of size D=4d with six grafts of length Ngraft=24. The x- axis 

indices correspond to the graft sequence (A1B1)12 , (A2B2)6, (A3B3)4, (A6B6)2, and (A12B12)1. The 

interaction sets correspond to the plot letters as follows: lines on plot a, g, m, and s correspond to 

interaction sets 1 (blue triangles) and 2 (black circles), lines on plot b, h, n, and t correspond to 
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interaction sets 3 (blue triangles) and 4 (black circles), lines on plot c, i, o, and u correspond to 

interaction sets 5 (blue triangles) and 6 (black circles), lines on plot d, j, p, and v correspond to 

interaction sets 7 (blue triangles) and 8 (black circles), lines on plot e, k, q, and w correspond to 

interaction sets 9 (blue triangles) and 10  (black circles), and lines on plot f, l, r, and x correspond 

to interaction sets 11 (blue triangles) and 12  (black circles). The black lines with circle markers 

represent monomer-monomer attraction=1kT, while the blue triangles with triangle markers 

represent monomer-monomer attraction=0.5kT. All monomer-particle interactions are 

maintained as hard sphere interactions. 

First, we consider the effect of monomer sequence on grafted chain conformations in the 

assembled cluster/dispersed state for varying monomer-monomer interactions while maintaining 

monomer-particle interactions to be negligible (athermal). The effects of non-negligible monomer-

particle interactions are discussed in Section 2.3.3.  Figure 2.2a-f presents 〈R2g,chain〉0.5 as a 

function of monomer sequence–(A1B1)12, (A2B2)6, (A3B3)4, (A6B6)2, and (A12B12)1–for interaction 

sets 1-12 in Table 2.1 with monomer-particle interaction maintained as hard-sphere for a system 

of 10 copolymer grafted nanoparticles of size D=4d each with six grafts of length Ngraft=24.  

 In the absence of A-B repulsions, and in the presence of weak or strong A-A and/or B-B 

attractions (Figure 2.2a-c), with increasing blockiness from (A1B1)12 to (A12B12)1, 〈R2g,chain〉0.5 first 

decreases, reaches a minimum for sequences with intermediate blockiness, and then increases 

exhibiting the highest 〈R2g,chain〉0.5 for the diblock sequence. The non-monotonic behavior with 

graft sequence can be explained by understanding how a grafted sequence can facilitate/deter 

attractive like-monomer contacts both within the same particle (intra-chain and intra-particle 

inter-chain) as well as with chains on another particle (inter-particle contacts). At higher 

blockiness, the grafted chains do not have to be too compact or too stretched to make these 

attractive contacts due to topologically favorable contiguous placement of like-monomers. In 

contrast, at low to intermediate blockiness, the grafted chains have to be either compact (low 
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〈R2g,chain〉0.5) for intra-chain attractive contacts or stretched (high 〈R2g,chain〉0.5) for intra-particle 

inter-chain or inter-particle attractive contacts because the like-monomers are dispersed along the 

grafted chain. Compared to strong like-monomer attractions, the weak like-monomer attractions 

are inferior at driving the compaction of the grafted chains, especially at lower blockiness, because 

the enthalpic gain from weak attractive contacts cannot overcome the entropic loss of forming 

smaller chain conformations, leading to slightly higher 〈R2g,chain〉0.5 at weak attractions than strong 

attractions. 

 In the presence of A-B repulsions, when the A-A and/or B-B attractions are strong enough 

to dominate over the A-B repulsions (black circles in Figure 2.2d-f), the results have the same 

trend as seen in the absence of A-B repulsion and our previous explanations for these trends hold. 

However, when A-A and/or B-B attractions are weak and A-B repulsions are strong (blue triangles 

in Figure 2.2d-e), the 〈R2g,chain〉0.5 shows a different, non-monotonic trend. The three graft 

sequences with the lowest blockiness—((A1B1)12, (A2B2)6, (A3B3)4)—lead to nanoparticles being 

dispersed (as discussed later in Figure 2.5j,k,l) and therefore all grafted chain conformations arise 

from maximizing intra-particle contacts. On the other hand, for the more blocky ((A6B6)2 and 

(A12B12)1) sequences, the grafted nanoparticles assemble into clusters, where they are able to form 

inter-particle like-monomer contacts with lower stretching (i.e. lower 〈R2g,chain〉0.5). Whether a 

sequence drives the copolymer grafted nanoparticles to form mostly inter-particle contacts or 

intra-particle contacts and how much the grafted chain has to stretch or coil up to make those 

contacts are dependent on the grafted sequence blockiness which governs how easy or hard it is to 

make attractive A-A or B-B contacts while avoiding repulsive A-B contacts. 

We present the average number of total A-A, B-B, and A-B contacts in the second, third, 

and fourth row, respectively, in Figure 2.2 and the number of inter-particle, and inter-chain intra-
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particle contacts in Supplementary Section 2.7.2, as a function of monomer sequences at varying 

monomer-monomer interactions listed in Table 2.1.  

 For all interaction sets, leaving aside (A1B1)12 for now, as the grafted sequence blockiness 

increases from (A2B2)6 to (A12B12)1, the number of like monomer (A-A and B-B) contacts increases 

and the number of unlike monomer (A-B) contacts decreases. This is expected because, with 

increasing blockiness, the like-monomers are placed closer together thereby facilitating A-A and 

B-B aggregation and consequently minimizing A-B contacts. We will revisit the (A1B1)12 sequence 

shortly to discuss why it does not fit the trend shown by the other sequences. Interestingly, we note 

similar trends for the number of A-A contacts for grafted nanoparticles with A-A attraction (Figure 

2.2g) and the number of B-B contacts for grafted nanoparticles with B-B attraction (Figure 2.2n) 

which allude to graft sequence and monomer-monomer interactions having a symmetric effect on 

chain conformations due to symmetric composition of the grafted copolymers. In other words, the 

A-A and B-B contact data are similar in pairs: Figure 2.2g and Figure 2.2n, Figure 2.2h and Figure 

2.2m, Figure 2.2i and Figure 2.2o, Figure 2.2j and Figure 2.2q, Figure 2.2k and Figure 2.2p, Figure 

2.2l and Figure 2.2r. Additionally, in Supplementary Section 2.7.2, the number of inter-particle, 

inter-chain, and intra-particle inter-chain contacts data further confirm these trends. They also 

show that, in the absence of A-B repulsion, with weak or strong A-A or B-B attraction, the total 

inter-particle and intra-particle inter-chain contacts decreases with increasing blockiness from 

(A2B2)6 to (A12B12)1. In the presence of A-B repulsion, with weak or strong A-A or B-B attraction 

the total inter-particle and intra-particle inter-chain contacts increases with increasing blockiness 

from (A2B2)6 to (A12B12)1. 



26 

 

2.3.1.2 Unique Behavior of (A1B1)12 

 

Figure 2.3: (a-e) Snapshots of clusters  for systems with Interaction Set 4 and no monomer-particle 

attraction (best viewed in color). The plots show the average number of A domains (f-k)  and B 

domains (l-q) for copolymer grafted nanoparticles of size D=4d each with six grafts of length 

Ngraft=24. The interaction sets correspond to the plot letters as follows: The interaction sets to the 

plot letters as follows: lines on plot f and l correspond to interaction sets 1 (blue triangles) and 2 

(black  circles), lines on plot g and m correspond to interaction sets 3 (blue triangles) and 4 (black 

circles), lines on plot h and n correspond to interaction sets 5 (blue triangles) and 6 (black circles), 

lines on plot i and o correspond to interaction sets 7 (blue triangles) and 8 (black circles), lines 

on plot j and p correspond to interaction sets 9 (blue triangles) and 10  (black circle), and lines 

on plot k and q correspond to interaction sets 11 (blue triangles) and 12  (black circles). The black 

circles represent monomer-monomer attraction=1kT, while the blue triangles represent monomer-

monomer attraction=0.5kT. All monomer-particle interactions are maintained as hard sphere 

interactions. 
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 The unique behavior of the alternating sequence, (A1B1)12, is observed across all of our 

analyses that describe chain conformations and monomer contacts. This behavior of (A1B1)12 is 

connected to the patterns found within the aggregated monomer domains (Figure 2.3a) of the 

assembled clusters that are different from the patterns found within domains of assembled clusters 

formed by blockier sequences (Figure 2.3b-e). Figure 2.3a-e show simulation snapshots of 

particles grafted with copolymers in the presence of dominant B-B attraction (Table 2.1 interaction 

set 4). In the case of blockier sequences—(A2B2)6, (A3B3)4, (A6B6)2, and (A12B12)1—we find 

distinct domains of attractive like-monomers, where a domain is defined as a collection of like 

monomers that share mutual contacts. We can clearly see distinct domains of B monomers when 

the A monomers are hidden (bottom image of the snapshots). By making pure A and pure B 

domains, the grafted particles maximize attractive like-monomer contacts while reducing A-B 

contacts (if A-B repulsion is significant), while maintaining as high a conformational entropy as 

possible. In contrast to the distinct domains formed in blockier copolymers, in the case of (A1B1)12 

we see interpenetrated networks of like monomers (Figure 2.1) due to the frustrated—ABAB—

sequence; in the presence A-B repulsion these domains are less ordered and tend to be fragmented 

into many “subdomains” (see supplementary movie online with Soft Matter 2011, 7 (13), 5952-

5964.). The above domain patterns are also quantitatively represented via the average number of 

A (Figure 2.3f-k) and B (Figure 2.3l-q) domains. Supplementary Section 2.7.3 confirms that while 

the bi-directional stripes are an artifact of the lattice model, the network structure is not biased due 

to the choice of a cubic lattice model, and is also seen in off-lattice models. For the (A1B1)12 

sequences, the number of A and B domains are always low when compared to the intermediate 

blocky sequences, i.e. (A2B2)6, (A3B3)4, and (A6B6)2. For completeness, we have tabulated these 

data in Supplementary Section 2.7.4. For the blockier sequences, the number of distinct, 
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homogeneous A or B domains decrease with increasing blockiness due to the increased likelihood 

of a neighboring monomer being a like-monomer. We believe these differences in the pattern of 

monomer aggregation between (A1B1)12 and the other sequences helps explain why (A1B1)12 does 

not follow the observed trends in chain conformation. 

2.3.1.3 Spatial Organization of Monomers 

 

Figure 2.4: Average height of A-monomers (top row) and B-monomers (bottom row) from the 

particle centers as functions of monomer sequences for copolymer grafted nanoparticles of size 

D=4d with six grafts of length Ngraft=24. The interaction sets correspond to the plot letters as 

follows: lines on plot a and g correspond to interaction sets 1 (blue triangles) and 2 (black circles), 

lines on plot b and h correspond to interaction sets 3 (blue triangles) and 4 (black circles), lines 

on plot c and i correspond to interaction sets 5 (blue triangles) and 6 (black circles), lines on plot 

d and j correspond to interaction sets 7 (blue triangles) and 8 (black circles), lines on plot e and 

k correspond to interaction sets 9 (blue triangles) and 10  (black circles), and lines on plot f and l 

correspond to interaction sets 11 (blue triangles) and 12  (black circles). The black circles 

represent monomer-monomer attraction=1kT, while the blue triangles represent monomer-

monomer attraction=0.5kT. All monomer-particle interactions are maintained as hard sphere 

interactions. 

 While the discussion so far has been on the number of like (A-A or B-B) and unlike (A-B) 

monomer contacts and the nature of the aggregated A- or B- domains, it does not explain the spatial 
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arrangement of these monomers around the particle surface. In Figure 2.4, we capture the spatial 

arrangement of the A and B monomers by plotting the average distance (or height) of A and B 

monomers from the center of the particle they are grafted to as a function of monomer sequence 

and monomer–monomer interactions.  

 When A-B repulsion is negligible and the A- and/or B- monomers are attractive, we 

observe that HA (Figure 2.4a-c) decreases slightly or is constant with increasing blockiness while 

HB (Figure 2.4g-i) increases with increasing blockiness. At low blockiness, both A and B 

monomers tend to be relatively close to the particle surface because the chains must be compact 

(Figure 2.2a-c) in order to make sufficient attractive like-monomer intrachain contacts. As 

blockiness increases, the monomers become more topologically separated, allowing attractive 

monomers to more easily aggregate either further from the surface (B-monomers) or closer to the 

particle surface (A-monomers). At higher blockiness, the B-monomers also tend to aggregate 

further from the particle surface in order to increase the likelihood of inter-particle contacts and 

therefore the number of possible B-B contacts, while A-monomers cannot access as many of these 

inter-particle contacts due to the steric hindrance from the B-block.  

  In the presence of A-B repulsion and strong A-A and/or B-B attraction, we observe similar 

trends in HA and HB as discussed above for the absence of AB repulsion. This is in line with our 

discussion of 〈R2
g,chain〉0.5 which showed that, when εAB= (εAA, εBB), the effect of A-B repulsion is 

minimal on chain conformation. Cases with irregular trends in HA and HB (Figure 2.4jkl) are due 

to lower blockiness sequences favouring dispersions and higher blockiness sequences favouring 

assembly. 
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2.3.2 Effect of Monomer Sequence on Nanoparticle Arrangement in the Cluster 

2.3.2.1 Size and Connectivity of Clusters 

 

Figure 2.5: Average coordination number 〈Z〉, average number of particles per cluster  〈N〉, and 

average radius of gyration of a cluster 〈R2
g,cluster 〉0.5 as a function of monomer sequences for 

copolymer grafted nanoparticles of size D=4d with six grafts of length Ngraft=24. The interaction 

sets correspond to the plot letters as follows: lines on plot a, g, and m correspond to interaction 

sets 1 (blue triangles) and 2 (black circle), lines on plot b, h, and n correspond to interaction sets 

3 (blue triangles) and 4 (black circle), lines on plot c, i, and o correspond to interaction sets 5 

(blue triangles) and 6 (black circle), lines on plot d, j, and p correspond to interaction sets 7 (blue 

triangles) and 8 (black circle), lines on plot e, k, and q correspond to interaction sets 9 (blue 

triangles) and 10  (black circle), and lines on plot f, l, and r correspond to interaction sets 11 (blue 

triangles) and 12  (black circle). The black circles represent monomer-monomer attraction=1kT, 

while the blue triangles represent monomer-monomer attraction=0.5kT. All monomer-particle 

interactions are maintained as hard sphere interactions. 
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Next, we discuss the impact of the chain conformations and monomer aggregates presented above 

on the characteristics of the assembled cluster i.e. the relative sizes and overall structure within the 

cluster as a function of monomer sequence at various interactions.  

 In the absence of A-B repulsion when only A-A (Figure 2.5a,g) or B-B (Figure 2.5b,h)  

interactions are attractive, as blockiness increases, both the average number of neighbors each 

nanoparticle has in a cluster or the coordination number, 〈Z〉, and the average number of particles 

in a cluster, 〈N〉, decrease. This is because, with increasing blockiness, the grafted chains are able 

to form a higher number of favorable intra-chain conformations without losing as much entropy, 

which in turn decreases the probability of forming inter-particle contacts, and hence the propensity 

for assembly is diminished. Using Supplementary Figure 2.13, which shows the average number 

inter-chain contacts, and the data in Figure 2.2, the approximate number of intra-chain contacts 

can be estimated. We also note the slightly higher 〈Z〉 and 〈N〉 for systems with B-B attraction 

when compared to systems with A-A attraction. This is due to the lower effective reach of the A 

monomers (Figure 2.4g) which inhibits grafted nanoparticles with A-A attractions from 

aggregating as compared to grafted nanoparticles with B-B attractions. Interestingly, while 〈Z〉 and 

〈N〉 decrease with increasing blockiness, the 〈R2
g,cluster〉0.5 (Figure 2.5m and Figure 2.5n) is either 

constant or increases slightly with increasing blockiness. This effect is a consequence of the grafts 

becoming less compact with increasing blockiness, as shown by 〈R2
g,chain〉0.5 in Figure 2.2a and 

Figure 2.2b.  

 In the presence of both A-A and B-B attractions and absence of A-B repulsions (Figure 

2.5c, Figure 2.5i, and Figure 2.5o), the copolymer chains seek to maximize both A-A and B-B 

contacts. For both strong (black circles) and weak (blue triangles) A-A and B-B attractions 〈Z〉, 

〈N〉 and 〈R2
g,cluster〉0.5 are statistically constant with monomersequence. In effect, the presence of 
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both like-monomer attractions causes the grafted nanoparticles to achieve similar cluster sizes and 

internal connectivity regardless of monomer sequence. We also observe that the chain 

conformations with both A-A and B-B attraction and no A-B repulsion also show more constant 

trends with increasing blockiness than chains with only A-A or only B-B attraction, as evidenced 

by the data in Figure 2.2. Due to the fact that both A-A and B-B monomers are attractive, the 

probability of a chain making favorable monomer-monomer contact is greatly increased, also 

shown by the contact profiles in Figure 2.2. Due to the chains’ reduced barriers to find favorable 

conformations, the effect of monomer sequence is diminished because monomer sequence mainly 

affects chain conformations by introducing barriers to favorable enthalpic contacts. Therefore, 

copolymer grafted nanoparticles with both A-A and B-B monomer attraction assemble into 

relatively consistent configurations regardless of graft sequence.  

 In the presence of A-B repulsion, when either A-A (Figure 2.5d,j,p), B-B (Figure 2.5e,k,q), 

or both are attractive (Figure 2.5f,j,r),  〈Z〉, 〈N〉, and 〈R2g,cluster〉0.5 all increase with blockiness with 

the exception of (A1B1)12 which tends to deviate for strong A-A or B-B attraction strength (black 

circles). These trends are in contrast to the behavior seen in the absence of A-B repulsion, where 

increasing blockiness led to decreasing or constant 〈N〉 and 〈Z〉. This is because, at low blockiness, 

where A and B monomers are topologically not separated, the presence of A-B repulsion lowers 

the propensity to assemble and in turn reduces the 〈N〉 and 〈Z〉. As blockiness increases, the A-B 

repulsion plays a smaller role because the A and B monomers are segregated topologically, and 

therefore the values of 〈Z〉 and 〈N〉 remain similar to that seen in the absence of A-B repulsion 
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2.3.2.2 Shape of Clusters 

 

Figure 2.6: Relative shape anisotropy (RSA) as a function of monomer sequence on copolymer 

grafted nanoparticles for copolymer grafted nanoparticles of size D=4d with six grafts of length 

Ngraft=24. The interaction sets correspond to the plot letters as follows: lines on plot a correspond 

to interaction sets 1 (blue triangles) and 2 (black circle), lines on plot b correspond to interaction 

sets 3 (blue triangles) and 4 (black circle), lines on plot c correspond to interaction sets 5 (blue 

triangles) and 6 (black circle), lines on plot d correspond to interaction sets 7 (blue triangles) and 

8 (black circle), lines on plot e correspond to interaction sets 9 (blue triangles) and 10  (black 

circle), and lines on plot f  correspond to interaction sets 11 (blue triangles) and 12  (black circle). 

The black lines with circle markers represent monomer-monomer attraction=1kT, while the blue 

triangles with triangle markers represent monomer-monomer attraction=0.5kT. All monomer-

particle interactions are maintained as hard sphere interactions. 

In order to quantify the shape of assembled clusters, we present relative shape anisotropy data 

(RSA) in Figure 2.6. The RSA data presented here characterizes the global anisotropy of a cluster 

rather than the local anisotropy about each polymer grafted particle in a cluster. For example, a 

large network formed by clustered copolymer grafted nanoparticles could have a low RSA because 

of global symmetry about the cluster’s center of mass, even though there is significant anisotropy 

locally within the network of aggregated monomers.  

 In the absence of A-B repulsion and only A-A (Figure 2.6a) or B-B attractions (Figure 

2.6b), we observe statistically constant RSA regardless of graft sequence while strong A-A and B-

B attraction (Figure 2.6c) show non-monotonic trends. In comparing simulations with only A-A 
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attraction to simulations with only B-B attraction, we observe that statistically significant 

differences in RSA values only appear for (A6B6)2 and (A12B12)1. Since the differences between 

A-A and B-B attraction can be attributed to the differing locations of the A and B monomers along 

the chain, which becomes more pronounced with increasing blockiness as shown by HA and HB in 

Figure 2.4, it follows that the greatest difference in RSA between A-A and B-B attraction would 

be observed for the most blocky sequences. At high blockiness, when there are only A-A 

attractions, the attractive A-monomers aggregate close to the particle surface (Figure 2.4a) which 

forces other grafted nanoparticles to be close in order to make inter-particle A-A contacts. This 

means that particles need to pack neighbors  into a smaller volume (closer to the surface) leading 

to a more isotropic distribution (low RSA). In contrast, when there is only B-B attractions at high 

blockiness, the attractive B monomers tend to aggregate farther from the particle surface into few 

patches (low 〈Z〉 and number of domains) leading to anisotropic cluster shapes.  

 In the presence of A-B repulsion and only A-A attractions (Figure 2.6d) we do not see a 

significant effect of sequence on RSA, since much of the cluster shape is driven by attractive A- 

domains being close to the surface forming isotropic clusters. Since presence of A-B repulsion 

affects the height of A- monomers (Figure 2.4a and Figure 2.4d) only for sequences with the lowest 

blockiness, where the sequence itself drives isotropic assembly, there is no effect of A-B repulsion 

on RSA. In contrast, for B-B attractions (either by themselves or with A-A attractions), the 

presence of A-B repulsions (Figure 2.6e and Figure 2.6f) seems to amplify the effect of increasing 

blockiness on RSA, making the clusters span a larger range of RSA. It is interesting that, unlike 

the contact data in Figure 2.2, there is no symmetry in the effect of A-A versus B-B attraction on 

cluster shape. Instead, we observe marked differences between the two types of monomer 

attractions.  This lack of symmetry is again due to A-monomers being located much closer to the 



35 

 

surface at high blockiness when compared to B-monomers. In contrast, for B-B attraction in the 

presence of A-B repulsion, HB in Figure 2.4k and Figure 2.4l, and the number of B domains in 

Figure 2.3p and Figure 2.3q show that the B-monomers move further from particles’ surfaces and 

become clustered into fewer domains which would cause clusters to become more “stretched” and 

therefore more anisotropic.  

 To summarize, systems with B-B monomer attraction in the presence of A-B repulsion 

show the greatest effect of graft sequence on cluster shape, while systems with A-A attraction 

produce relatively isotropic clusters regardless of graft sequence. 

2.3.2.3 Effect of Particle Size 

 

Figure 2.7: Average coordination number 〈Z〉 , average number of particles per cluster  〈N〉, and 

relative shape anisotropy (RSA) as a function of monomer sequence for copolymer grafted 

nanoparticles of size D=4d and D=12d with six grafts of length Ngraft=24. The lines on plot a, d, 

and g correspond to interaction sets 1 (triangles) and 2 (circles), lines on plot b, e, and h 

correspond to interaction sets 5 (triangles) and 6 (circles), lines on plot c, f, and i correspond to 
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interaction sets 9 (triangles) and 10 (circles The circles represent monomer-monomer 

attraction=1kT, while the triangles represent monomer-monomer attraction=0.5kT. The filled 

symbols represent nanoparticles of size D=4d while the open symbols represent nanoparticles of 

size D=12d. All monomer-particle interactions are maintained as hard sphere interactions 

To assess how the graft length to particle size ratio affects the trends presented so far, we present 

〈Z〉, 〈N〉, and RSA for three selected interaction sets in Figure 2.7 for particles of size D=4d and 

12d. The remaining interaction sets are presented in Supplementary Figure 2.26, and show similar 

trends as the ones discussed in Figure 7. 

  In general, we expect grafted nanoparticles with higher particle-size to graft length 

(D/Ngraft) ratios, at a constant number of grafts, to show lowered propensity for cluster formation 

because the grafted chains must adopt more extended and entropically costly conformations than 

lower D/Ngraft to form either intra-particle inter-chain or inter-particle contacts. In particular, the 

barrier to intra-particle inter-chain contacts, due to large D or small Ngraft, forces the chains to 

assume compact conformations to maximize intra-chain contacts, which in turn minimizes 

probability of forming inter-particle contacts due to reduced reach of the chain. The inter-particle 

and intra-particle inter-chain data in Supplementary Information Section 2.7.2 supports these 

conjectures. To summarize, increasing D/Ngraft introduces more entropic barriers to monomer 

aggregation by increasing the distance between intra-particle chains, and similarly reducing the 

number of accessible inter-particle contacts.  

 The differences in cluster connectivity, size and shape, between D=4d and D=12d, are 

significant only for specific combinations of interaction set and interaction strength that 

complement the entropic barriers introduced by the increased (D/Ngraft).  

 With only A-A attraction (Figure 2.7a,d), we see statistically indistinguishable trends in 

〈Z〉 and 〈N〉 between D=4d and D=12d except for (A2B2)6 with weak A-A attraction. Like D=4d, 
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the trend in 〈Z〉 and 〈N〉 for D=12d is non-monotonic with graft sequence because the grafts of 

sequence (A1B1)12 form spatially distributed networks of like monomers as opposed to the distinct 

disconnected domains seen with the other sequences (Figure 2.3 and Supplementary Figure 2.27). 

Also, the dip in 〈Z〉 at (A2B2)6 for D=12d (open symbols) is exaggerated compared to the rest of 

the data because the nanoparticles are in a dispersed state. 

 In case of A-A and B-B attraction, in the absence of A-B repulsion, the data (second 

column Figure 2.7) are mostly indistinguishable when comparing D=4d and D=12d for both weak 

and strong monomer attraction. As discussed above for D=4d, for D=12d having both types of 

monomer attraction diminishes the effects of monomer sequence due to the increased number of 

possible favorable contacts, also reducing the effect of increasing D/Ngraft. 

2.3.3 Effects of Monomer-Particle Interactions on Assembly 

 

Figure 2.8: Average height of A-monomers (top row) and B-monomers (bottom row) from the 

particle surface as a function of monomer sequences for copolymer grafted nanoparticles D=12d 

with six grafts of length Ngraft=24 for interaction sets with no particle monomer interactions (black 

diamonds), A-particle attraction=1kT (blue circles), and B-particle attraction=1kT (red squares). 

The interaction sets correspond to the plot letters as follows (with particle-monomer interactions 
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indicated by line color and marker shape): lines on plot a and d  correspond to interaction set 4, 

lines on plot b and e, correspond to interaction set 1, lines on plot c and f  correspond to interaction 

set 11. 

 

Figure 2.9: Average coordination number 〈Z〉, average number of particles per cluster 〈N〉, 

average radius of gyration of a cluster 〈R2
g,cluster 〉0.5 and relative square anisotropy (RSA) as a 

function of monomer sequence for copolymer grafted nanoparticles D=12d with six grafts of 

length Ngraft=24 for systems with no particle monomer interactions (black diamonds), A-particle 

attraction=1kT (blue circles), and B-particle attraction=1kT (red squares). The interaction sets 

correspond to the plot letters as follows (with particle-monomer interactions indicated by line 

color and marker shape): lines on plot a, d, g, and j correspond to interaction set 4, lines on plot 

b, e, h, and k correspond to interaction set 1, lines on plot c, f, i, and l correspond to interaction 

set 11. 
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The discussion of the effect of a grafted chain’s monomer sequence on the assembled nanoparticle 

cluster size, structure, and shape presented so far has been in the absence of any monomer-particle 

interactions. For particle diameter D=4d, we find that while monomer-particle interactions (either 

A-particle or B-particle) affect the local ordering of monomers, these effects do not manifest into 

differences in coordination number, size, or shape of the assembled cluster. This is because, for a 

D=4d particle with six grafts of length Ngraft=24 each, the small attractive surface area compared 

to the long grafts result in the number of monomer-monomer interactions outnumbering the 

possible monomer-particle interactions. See Supplementary Information Section 2.7.6 for a 

presentation of our full dataset on copolymer grafted nanoparticles in the presence of monomer-

particle interactions. In Supplementary 2.7.7, we also provide a discussion of the differences 

between monomer-monomer interactions and monomer-particle interactions in our simulation.  

 For nanoparticles with D=12d with the same number of grafts and graft length as D=4d, 

due to an increased surface area over D=4d, we observe a slightly increased effect of monomer-

particle interactions on the chain conformations and particle assembly. In order to understand how 

these monomer-particle interactions affect the location of A and B monomers, we present the 

average height of an A monomer (HA) and B monomer (HB) from the particle surface in the 

presence of A-particle or B-particle attraction in Figure 2.8. We then connect this to the effect of 

monomer-particle interactions on assembly, via 〈Z〉, 〈N〉, 〈R2
g,cluster〉0.5, and RSA data for three 

interaction sets of grafted particles of D=12d in Figure 2.9. Our complete data set for HA, HB, 〈Z〉, 

〈N〉, 〈R2
g,cluster〉0.5, and RSA in the presence of A-particle or B-particle interactions for both D=4d 

and D=12d is presented in the Supplementary Information Sections 2.7.2 and 2.7.6. 

 In Figure 2.8 for all interactions presented, we observe that A-particle attraction reduces 

HA, and B-particle attraction reduces HB by approximately one unit for all sequences. We also see 
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that HA decreases or is constant with increasing blockiness in the presence of A-particle attraction, 

while HA is relatively constant for all sequences in the presence of B-particle attraction. In contrast, 

HB with B-particle attraction is increasing or constant with increasing blockiness while HB with 

A-particle attraction is always increasing. This is because, at low blockiness, the monomers 

attracted to the particle drags the unlike-monomers, while at higher blockiness, due to topological 

separation along the graft, the monomers not-attracted to the particle surface are not dragged.  

 Despite the significant effect of monomer-particle interactions on HA and HB, in case of 

strong B-B attraction and no A-B repulsion, the monomer-particle interactions only slightly affect 

〈Z〉 (Figure 2.9a) and 〈N〉 (Figure 2.9d) for two sequences- (A1B1)12 and (A12B12)1 and there are 

no statistically significant effects of monomer-particle interactions on the 〈R2
g,cluster〉0.5 for any of 

the sequences (Figure 2.9g). As for RSA, (Figure 2.9j) in the presence of B-particle attraction (red 

line), there seems to be a significant increase in RSA at (A6B6)2 as compared to no particle- 

monomer attraction (black diamonds) or with A-particle attraction (blue circles). However, this 

sharp rise in RSA does not seem to correspond with any change in the trend for monomer position 

in Figure 2.8a or Figure 2.8d or monomer contacts in Supplementary Figure 2.11-Figure 2.20. 

 In Figure 2.9b, Figure 2.9e, Figure 2.9h, and Figure 2.9k, with weak A-A attraction in the 

absence of A-B repulsion we see an increased effect of monomer-particle interactions on the 

assembled cluster as compared to the grafted nanoparticles with strong B-B attraction (Figure 2.9a, 

d, g, j). In particular, we observe the greatest effect on the size (〈N〉 and 〈R2
g,cluster〉0.5) and 

connectivity (〈Z〉) of the clusters in the case of B-particle attraction, i.e. when the monomer-particle 

(B-particle) interactions do not compete with the monomer-monomer (A-A) interactions. When 

monomer-particle and monomer-monomer interactions do not compete, the monomers can easily 

aggregate to maximize favorable contacts both with the particle and other like monomers.  
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Furthermore, leaving aside (A1B1)12 for its uniqueness, the effect of monomer-particle attraction 

is greatest at low blockiness ((A2B2)6 and (A3B3)4). Since the low blockiness sequences form tight, 

compact conformations (Figure 2.2a-f) that make inter-particle contacts difficult, it follows that 

for these sequences the monomer-particle interactions would encourage particle-monomer 

contacts more often than in blockier sequences.  (A1B1)12 does not follow this trend due to its 

unique domain as discussed is Section 2.3.1.2. We observe that monomer-particle interactions do 

not have a significant effect on RSA (Figure 2.9k) for this interaction set. 

 In the case of weak A-A and B-B attraction in the presence of A-B repulsion (Figure 2.9c) 

either A-particle or B-particle attraction only slightly affects 〈Z〉 at low blockiness. We observe no 

significant effects of A-particle or B-particle attractions on 〈N〉 (Figure 2.9f) or RSA (Figure 2.9l), 

or 〈R2
g,cluster〉0.5 (Figure 2.9i). The lack of an effect of particle-monomer interactions, suggests that 

the loss in conformational entropy by creating particle-monomer contacts cannot be overcome if 

the grafted chains also face enthalpic penalty due to repulsive A-B contacts made in the process of 

making favourable monomer-particle contacts. 

 Unlike the symmetry in monomer-monomer contacts seen in the absence of monomer-

particle interactions (Figure 2.2), there is no symmetry in the effect of switching between A-

particle and B-particle interactions. With A-particle attractions, since the A-monomers are grouped 

closer to the surface of the nanoparticle with increasing blockiness (Figure 2.8), the A-monomers 

collapse onto the surface of the nanoparticle they are grafted on. This only slightly affects the reach 

of the attractive A-block resulting in clusters with negligible changes 〈N〉 and 〈R2
g,cluster〉0.5 (blue 

lines: Figure 2.9d, Figure 2.9e, Figure 2.9g, and Figure 2.9h). In contrast, B-particle contacts 

(either intra-particle or inter-particle) are harder to make than A-particle contacts, because B 

monomers are farther away from the surface and the A-monomers that are close to the particle 
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surface sterically hinder B-particle contacts. Further compounding the complexity of monomer-

particle interactions is the effect of competing or non-competing monomer-monomer interactions 

as was discussed above.  

 Overall, for particles of D=12d, the increased surface area of the larger particle enhances 

the effect of monomer-particle interaction, but the effect is still limited by the lower number of 

possible monomer-particle contacts as compared to the number of possible non-bonded monomer-

monomer contacts (see Supplementary Information Section 2.7.7 for a detailed discussion). One 

would expect that a significantly stronger monomer-particle attraction (>>1kT) would overwhelm 

the relatively weaker monomer-monomer attraction, and lead to significant effects on the 

assembly. We tested this hypothesis for alternating and diblock copolymer grafted particles, and 

observed a drastic effect of monomer-particle interaction for grafted nanoparticles with weak 

monomer-monomer (~0.5-1kT) and strong monomer-particle interactions of ~16kT, as compared 

commensurate monomer-monomer and monomer-particle attractions (see Supplementary Figure 

2.37).  In general, when the monomer-particle interactions are greatly increased, we see that many 

of the trends going from (A1B1)12 to (A12B12)1 are flipped in comparison to the case where 

monomer-monomer and monomer-particle attractions are equal. Thus, the relative strength of 

monomer-particle interactions and monomer-monomer interactions heavily dictates the extent to 

which monomer-particle interactions can affect characteristics of the assembled cluster. 

2.4 CONCLUSIONS 

We have conducted Monte Carlo simulations to study copolymer grafted spherical nanoparticles 

placed in an implicit solvent to elucidate the effect of blockiness in the grafted copolymer sequence 

at varying monomer-monomer and monomer-particle interactions on size, shape and structure of 

assembled copolymer grafted nanoparticles. The grafted chain conformations are closely linked to 
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how monomer sequence facilitates the chain’s ability to form energetically favorable attractive 

monomer contacts while minimizing unfavorable repulsive monomer contacts.  As the sequence 

blockiness increases, attractive monomer contacts are brought together more easily due to the 

favorable topological placement of like monomers along the chain. Within the assembled 

nanocluster, the alternating sequence, (A1B1)12, forms “networks” of attractive monomer contacts 

in contrast to the distinct domains of attractive monomers formed by blockier monomer sequences. 

In the case of A-A or B-B monomer attraction without A-B repulsion, we observed decreasing 

cluster size and decreasing connectivity within the cluster with increasing blockiness for particle 

sizes D=4d and D=12d, with (A1B1)12 always being an outlier in these trends. With the addition of 

A-B repulsion to A-A or B-B monomer attraction, clusters of both particle size D=4d and 12d 

show increasing size and increasing connectivity with increasing blockiness. For D=4d particles, 

with strong B-B attraction and A-B repulsion, increasing blockiness leads to increasing anisotropy 

in cluster shape, while strong A-A attraction produce isotropic clusters regardless of graft 

sequence. The effect of graft sequence on cluster shape is reduced for D=12d as compared to D=4d 

at constant graft length. Lastly, monomer-particle interactions only weakly affect the assembly of 

copolymer grafted nanoparticles when the particle size is small relative to the graft length, and the 

strength of particle-monomer interactions are commensurate with the monomer-monomer 

interactions. The effects of monomer-particle interactions on the cluster size, shape, and structure 

are enhanced with significantly strong particle-monomer interactions, and/or with substantially 

large particle sizes relative to graft lengths. 

 The studies presented in this paper are focused only on dilute concentration of c ~ 1x10-5 

particles per nm3, obtained by using 10 particles in a 100x100x100 (nm3) simulation box with 

periodic boundary conditions. Keeping in mind that an experimentalist working at these 
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concentrations could observe clusters with greater than 10 nanoparticles we have been careful to 

emphasize qualitative trends in the data with varying parameters, and not discuss specific 

quantitative data (especially 〈N〉). We have also carefully considered our choice of a lattice model 

and have tried to minimize lattice effects on our analysis, and focused on general qualitative trends 

that should hold true in off-lattice models as well. In some cases, we have conducted some off-

lattice tests to ensure unique behavior of alternating copolymer (e.g. network of A and B 

monomers) is not an artifact of the lattice model.  

 The trends presented here should guide experimentalists seeking to create target 

morphologies of copolymer grafted nanoparticles for various applications such as metamaterials, 

photonics, photovoltaics and electronics. For example, in materials design for photovoltaic 

application, the spatial organization of the constituent chemistries dictates how well charges 

separate and travel to corresponding electrodes, and in turn device efficiency[42]. This work shows 

how copolymer grafted nanoparticle assembly could be used and the sequence of grafted polymers 

chosen to control the number and structure of the monomers domains around the nanoparticles. 

 Some of the future directions of this work include investigating the dynamics during 

assembly of copolymer grafted particles. Also, understanding both equilibrium and dynamic 

behavior of these copolymer grafted nanoparticles in a polymer matrix would be useful to tailoring 

morphologies in polymer nanocomposites. Previous work using a self-consistent PRISM-MC 

scheme, has shown that the potential of mean force (PMF) between AB copolymer grafted 

nanoparticles in a A or B homopolymer matrix differs from that seen in homopolymer grafted 

nanoparticles in a homopolymer matrix (with graft and matrix chemistries being identical), and 

that the PMF is a function of copolymer sequence.[13] It would be interesting to study how at 

varying volume fractions of grafted particles, the presence of explicit polymer matrix, and matrix 
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chain conformations affect the grafted chain conformations, and in turn the assembly/dispersion 

of the particles in the matrix.  
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2.7 SUPPLEMENTARY 

2.7.1 Types of Monomer Contacts in Clusters/Dispersions of Copolymer Grafted Nanoparticles 

 

Figure 2.10: Schematic showing the three types of monomer contacts that could be made in these 

systems of copolymer grafted nanoparticles. 
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2.7.2 Effects of Monomer Sequence on Grafted Chain Conformations and Monomer Aggregation 
in the Cluster for D=4d and D=12d with and without Monomer-Particle Interactions 

The figures in this section consist of parts a-i that connect to the interaction sets in a way different 

from the main manuscript. The table below should help with connecting the figure parts to 

interaction sets. We present the data in this order to show some symmetry in A-A and B-B 

interaction effects, in presence and absence of A-B repulsion, and monomer-particle attractions. 

Table 2.2: Interaction sets and figure parts 

Interaction 

Set 

Figure 

part 

εAB/kT εAA/kT εBB/kT χAB/kT 

1 d 0.0 -0.5 0.0 1 

2 b 0.0 -1.0 0.0 2 

3 c 0.0 0.0 -0.5 1 

4 a 0.0 0.0 -1.0 2 

5 j 0.0 -0.5 -0.5 2 

6 i 0.0 -1.0 -1.0 4 

7 h 1.0 -0.5 0.0 5 

8 f 1.0 -1.0 0.0 6 

9 g 1.0 0.0 -0.5 5 

10 e 1.0 0.0 -1.0 6 

11 l 1.0 -0.5 -0.5 6 

12 k 1.0 -1.0 -1.0 8 
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Figure 2.11: Average number of interparticle contacts as a function of monomer sequence for 

copolymer grafted nanoparticles of D=4d each with six grafts of length Ngraft=24 with no particle 

monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), 

and B-monomer to particle attraction at -1kT (red squares). The system interactions correspond 

to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line color) 

 

Figure 2.12: Average number of interparticle contacts as a function of monomer sequence for 

copolymer grafted nanoparticles of D=12d each with six grafts of length Ngraft=24 with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). The system interactions 

correspond to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line 

color) 
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Figure 2.13: Average number of inter-chain contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=4d each with six grafts 

of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 

squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer 

 

Figure 2.14: Average number of inter-chain contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=12d each with six grafts 

of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 
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squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer interactions indicated by line color) 

 

Figure 2.15: Average number of inter-chain intra-particle contacts, including inter and intra 

particle, as a function of monomer sequence for copolymer grafted nanoparticles of D=4d each 

with six grafts of length Ngraft=24 with no particle monomer interactions (black diamonds), A-

monomer to particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -

1kT (red squares). The system interactions correspond to the plot letters as in Table 2.2 (with 

particle-monomer interactions indicated by line color) 

 

Figure 2.16: Average number of inter-chain intra-particle contacts, including inter and intra 

particle, as a function of monomer sequence for copolymer grafted nanoparticles of D=12d each 

with six grafts of length Ngraft=24 with no particle monomer interactions (black diamonds), A-
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monomer to particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -

1kT (red squares). The system interactions correspond to the plot letters as in Table 2.2 (with 

particle-monomer interactions indicated by line color) 

 
Figure 2.17: Average number of A-particle contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=4d each with six grafts 

of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 

squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer interactions indicated by line color ). 

 

Figure 2.18: Average number of A-particle contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=12d each with six grafts 
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of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 

squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer interactions indicated by line color). 

 

Figure 2.19: Average number of B-particle contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=4d each with six grafts 

of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 

squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer interactions indicated by line color) 
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Figure 2.20: Average number of B-particle contacts, including inter and intra particle, as a 

function of monomer sequence for copolymer grafted nanoparticles of D=12d each with six grafts 

of length Ngraft=24 with no particle monomer interactions (black diamonds), A-monomer to 

particle attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red 

squares). The system interactions correspond to the plot letters as in Table 2.2 (with particle-

monomer interactions indicated by line color) 

 
Figure 2.21: Average height of an A-monomer as a function of monomer sequences for copolymer 

grafted nanoparticles of D=4d each with six grafts of length N=24 for systems with no particle 

monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), 

and B-monomer to particle attraction at -1kT (red squares). The system interactions correspond 

to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line color) 



56 

 

 
Figure 2.22: Average height of an A-monomers as a function of monomer sequences for copolymer 

grafted nanoparticles of D=12d each with six grafts of length N=24 for systems with no particle 

monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), 

and B-monomer to particle attraction at -1kT (red squares). The system interactions correspond 

to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line color) 

 
Figure 2.23: Average height B-monomer as a function of monomer sequences for copolymer 

grafted nanoparticles of D=4d each with six grafts of length N=24 for systems with no particle 

monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), 

and B-monomer to particle attraction at -1kT (red squares). The system interactions correspond 

to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line color) 
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Figure 2.24: Average height B-monomer as a function of monomer sequences for copolymer 

grafted nanoparticles of D=12d each with six grafts of length N=24 for systems with no particle 

monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), 

and B-monomer to particle attraction at -1kT (red squares). The system interactions correspond 

to the plot letters as in Table 2.2 (with particle-monomer interactions indicated by line color) 
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2.7.3 Discussion of Lattice Effects and the Alternating Sequence  

 

Figure 2.25: Simulation snapshots from Brownian dynamics of ungrafted copolymers of sequence 

(A1B1)10 (left) and (A2B2)6 (right) represented as iso-surfaces of density equal to 0.3 monomers/d3. 

The top row shows both A and B iso-surfaces together while the middle and bottom show iso-

surfaces calculated from only A and only B monomers respectively. In both of these simulations, 

only the BB interactions are attractive and all others interactions are purely repulsive. The figures 

show that the (A2B2)5 sequence produces distinct, homogeneous domains of attractive B monomers 

(right column bottom figure), the (A1B1)10 sequence produces networked domains that span the 

simulation box (left column bottom figure). 

In order to alleviate concerns that the cubic lattice in our Monte Carlo (MC) simulations was 

biasing our results of  monomer aggregation and domain shapes, specifically the unique behavior 

(A1B1)10  (A2B2)5  
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of (A1B1)12, we have conducted short off-lattice Brownian Dynamics (BD) simulations of 

ungrafted copolymers. We have only done ungrafted copolymers here to focus the discussion on 

monomer-aggregation as a function of sequence, and not to mimic any nanoparticle assembly. We 

chose to run off-lattice BD simulations, as opposed to MC simulations, due to the availability of 

the open source HOOMD-blue platform1,2, which allowed us to quickly build our simulations and 

then rapidly simulate using GPU accelerated computing.  

 The simulations consisted of 350 ungrafted copolymer chains of length 𝑁 = 20 of either 

(A1B1)10 or (A2B2)5 sequence. The simulations progressed as follows. Initially, we modeled all 

interactions as purely repulsive Weeks-Chandler-Andersen (WCA) potentials. First, the system 

was integrated for 1e6 steps at T=5 and a volume fraction of 𝜙 = 0.029 to remove any bias in the 

growth algorithm and “randomize” the system. The system was then compressed at T=5 to a 

volume fraction of 𝜙 = 0.23 over a period of 2e6 time steps. At this point, the B-B interactions 

were switched to Lennard-Jones potentials with an attractive well depth of 3 while A-A and A-B 

interactions were maintained as WCA. After annealing the system using a linear gradient from 

T=5 to T=1 over 5e6 steps, we sampled our system and generated snapshots for 1e5 steps at T=1. 

We note that the energy profiles of the simulations were relatively constant during the sampling 

period.  

 Figure 2.25 shows snapshots from simulations of (A1B1)10 (left) and (A2B2)5 (right) 

copolymers with the B and A monomers hidden for the second and third rows respectively. The 

isosurfaces represent a density value of 0.3 monomers/d3. Similar to our results from MC 

simulations, we observe that while the (A2B2)5 sequence produces distinct, homogeneous 

domains of attractive monomers, the (A1B1)10 sequence produces networked domains that 

span the simulation box. These simulations support our conjecture that the alternating 
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sequence is forced to assume networked morphologies due to the frustrating—ABAB—

sequence both on and off lattice.  

 
1 HOOMD-blue web page: http://codeblue.umich.edu/hoomd-blue  
2  J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully implemented 

on graphics processing units Journal of Computational Physics 227(10): 5342-5359, May 2008. 
10.1016/j.jcp.2008.01.047  

 



 

 

2.7.4 Tabulated Data for the number of A and B Domains for D=4d and D=12d 

Table 2.3: Number of A Domains for copolymer grafted nanoparticle of varying sequences and monomer interactions as specified in 

Table 1 and D=4d, Ngraft=24, and Ng=6. Note that all of these interaction sets are in the absence of particle monomer interactions. 

  Interaction Set 1 Interaction Set 2 
Interaction Set 
3 Interaction Set 4 Interaction Set 5 Interaction Set 6 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 4.60 0.93 6.40 0.75 6.40 1.29 8.40 0.24 8.80 1.66 6.20 0.66 

(A2B2)6 22.80 1.53 49.80 3.72 40.80 4.47 64.20 4.07 31.40 1.08 28.80 3.85 

(A3B3)4 19.00 1.05 28.80 2.25 27.60 1.91 39.20 1.91 28.80 3.12 20.00 0.77 

(A6B6)2 14.40 1.36 18.20 1.20 38.20 3.99 36.40 4.68 18.00 2.05 16.40 3.09 

(A12B12)1 12.40 1.29 13.40 0.81 28.80 2.46 29.20 1.24 12.60 0.68 6.00 0.95 

  Interaction Set 7 Interaction Set 8 
Interaction Set 
9 Interaction Set 10 Interaction Set 11 

Interaction Set 
12 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 18.40 1.96 94.40 2.62 28.00 2.30 118.60 4.06 7.80 0.97 20.00 2.00 

(A2B2)6 94.60 3.14 279.40 3.84 234.40 3.27 326.80 2.18 73.40 4.08 263.80 3.62 

(A3B3)4 66.20 2.08 194.60 2.09 144.20 3.15 218.80 1.24 52.20 2.35 157.60 4.51 

(A6B6)2 23.00 0.95 57.80 2.46 75.80 2.13 98.40 1.69 32.20 1.80 43.00 2.47 

(A12B12)1 13.00 0.45 13.00 0.32 35.00 1.92 38.00 1.14 16.60 0.40 11.40 0.75 
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Table 2.4: Number of B Domains for copolymer grafted nanoparticle of varying sequences and monomer interactions as specified in 

Table 1 and D=4d, Ngraft=24, and Ng=6. Note that all of these interaction sets are in the absence of particle monomer interactions. 

  Interaction Set 1 
Interaction Set 
2 Interaction Set 3 Interaction Set 4 Interaction Set 5 Interaction Set 6 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 5.40 1.03 7.20 0.20 5.80 0.86 5.80 0.66 7.80 0.80 5.20 0.73 

(A2B2)6 29.80 2.40 78.00 8.42 16.20 1.50 36.60 3.66 18.20 2.37 20.00 2.68 

(A3B3)4 19.40 2.36 44.80 3.87 13.80 1.39 22.00 1.82 14.20 1.16 8.80 0.73 

(A6B6)2 31.40 2.80 35.80 4.93 11.60 1.40 12.40 1.33 15.40 1.94 12.00 3.54 

(A12B12)1 34.40 2.32 37.20 1.93 11.00 0.55 10.60 0.51 10.60 0.81 4.40 0.68 

  Interaction Set 7 
Interaction Set 
8 Interaction Set 9 Interaction Set 10 Interaction Set 11 Interaction Set 12 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 27.00 1.48 119.20 3.57 17.00 1.30 98.20 1.83 6.60 1.17 23.20 2.89 

(A2B2)6 235.20 4.16 315.60 2.01 81.20 4.04 289.80 3.34 55.00 3.99 258.60 4.38 

(A3B3)4 154.00 1.82 215.40 1.25 44.20 0.58 189.80 2.65 34.80 0.97 159.20 2.91 

(A6B6)2 73.40 2.27 102.60 1.86 19.20 1.32 33.40 1.29 21.20 1.59 25.20 1.32 

(A12B12)1 42.80 0.80 47.00 1.05 14.80 1.16 13.60 0.87 13.40 1.03 9.20 0.37 
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Table 2.5: Number of A Domains for copolymer grafted nanoparticle of varying sequences and monomer interactions as specified in 

Table 1 and D=12d, Ngraft=24, and Ng=6. Note that all of these interaction sets are in the absence of particle monomer interactions. 

  Interaction Set 1 Interaction Set 2 Interaction Set 3 Interaction Set 4 Interaction Set 5 Interaction Set 6 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 42.60 1.03 56.00 3.70 42.40 3.20 57.60 4.18 47.60 2.87 40.60 2.84 

(A2B2)6 54.00 2.63 117.20 5.17 141.60 7.17 185.40 3.60 69.00 5.05 76.60 4.86 

(A3B3)4 46.60 1.03 78.80 3.97 101.20 2.78 127.00 9.45 58.40 1.63 65.40 4.30 

(A6B6)2 47.20 0.86 53.00 2.57 88.60 1.50 84.60 1.03 50.00 1.18 53.00 2.49 

(A12B12)1 46.00 1.92 46.80 1.77 54.80 1.16 54.80 1.20 50.40 1.89 46.20 1.71 

  Interaction Set 7 Interaction Set 8 Interaction Set 9 Interaction Set 10 Interaction Set 11 Interaction Set 12 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 69.60 1.57 112.40 3.22 95.40 2.06 139.00 2.28 40.00 1.41 94.00 2.55 

(A2B2)6 103.20 4.43 292.80 2.82 274.20 3.71 316.00 2.59 119.20 3.29 279.00 3.96 

(A3B3)4 80.00 1.14 203.80 2.06 194.20 3.32 225.80 1.28 106.80 4.57 196.00 1.92 

(A6B6)2 51.20 0.80 88.40 3.63 107.00 1.18 111.60 1.21 61.00 1.10 78.40 1.86 

(A12B12)1 47.60 1.29 48.60 0.75 57.00 0.84 57.40 0.81 49.20 1.69 49.80 2.22 
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Table 2.6: Number of B Domains for copolymer grafted nanoparticle of varying sequences and monomer interactions as specified in 

Table 1 and D=12d, Ngraft=24, and Ng=6. Note that all of these interaction sets are in the absence of particle monomer interactions. 

 Interaction Set 1 
Interaction Set 
2 

Interaction Set 3 Interaction Set 4 Interaction Set 5 Interaction Set 6 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 44.00 1.38 60.60 3.25 40.60 2.48 51.20 2.63 47.40 2.54 40.40 3.30 

(A2B2)6 152.00 4.52 178.80 5.11 47.80 2.48 117.40 4.30 60.80 1.77 77.00 4.83 

(A3B3)4 111.20 5.21 129.20 7.61 44.60 1.96 70.40 4.80 49.40 2.04 55.20 2.56 

(A6B6)2 91.20 1.80 91.40 2.20 36.80 1.59 41.00 1.34 42.40 1.72 42.00 2.88 

(A12B12)1 55.60 1.25 54.80 0.97 26.20 1.77 24.20 1.83 35.80 2.76 33.20 1.83 

 Interaction Set 7 
Interaction Set 
8 

Interaction Set 9 Interaction Set 10 Interaction Set 11 Interaction Set 12 

Sequence Avg Err Avg Err Avg Err Avg Err Avg Err Avg Err 

(A1B1)12 91.80 3.26 138.00 2.28 66.60 2.36 110.60 3.47 39.40 1.63 91.80 4.07 

(A2B2)6 271.40 5.19 320.40 1.50 96.20 4.93 284.20 2.58 108.60 2.32 273.40 1.12 

(A3B3)4 204.20 1.53 224.40 1.60 64.60 0.60 201.40 1.54 78.40 2.54 188.40 2.62 

(A6B6)2 110.20 1.77 115.00 1.26 40.80 1.28 64.80 1.24 45.80 1.59 59.40 1.96 

(A12B12)1 57.40 0.81 57.60 0.68 26.00 2.21 27.00 0.89 32.00 1.87 29.80 2.58 

6
4
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2.7.5 Additional Results Showing Effect of Graft Length to Particle Size Ratio on Nanoparticle 
Assembly and Chain Conformations 

 
Figure 2.26: Average coordination number 〈Z〉 , average number of particles per cluster 〈N〉, and 

relative shape anisotropy (RSA) as a function of monomer sequences for copolymer grafted 

nanoparticles of D=4d and D=12d each with six grafts of length N=24. The lines on plot a, d, and 

g correspond to interaction sets 3 (blue and red triangles) and 4 (black and magenta circles), lines 

on plot b, e, and h correspond to interaction sets 7 (blue and red triangles) and 8 (black and 

magenta circles), lines on plot c, f, and i correspond to interaction sets 11 (blue and red triangles) 

and 12 (black and magenta circles). The circles represent attractive monomer-monomer 

interactions at a strength of 1kT while the triangles represent 0.5kT. The filled symbols represent 

nanoparticles of size D=4d while open symbols represent interaction sets with nanoparticles of 

size d=12d. 

 

Figure 2.7 in the main manuscript presented the data 〈Z〉, 〈N〉, and RSA for three selected sets of 

system interactions and both D=4d and 12d. In Figure 2.26  we show the remaining interaction 

sets. For systems with B-B interactions in the absence of A-B repulsion (Figure 2.26a,d,g), we 

observe very similar trends to the data for the systems with only A-A attractions (Figure 2.7a,d,g). 
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The largest difference between the two interaction sets is that the dip at (A2B2)6 for weak monomer-

monomer attraction (solid red line) seems to be much more pronounced in the case of B-B 

attraction. The data for A-A attraction in the presence of A-B repulsion (Figure 2.26b,e,h) shows 

that there is little effect from particle size on any of the assembly data. This is because the system 

is completely dispersed at low blockiness, where particle size has the greatest effect on assembly 

characteristics, and clusters only form at (A6B6)2 and (A12B12)1 where we have already shown that 

particle size has the least effect.  The final column in Figure 2.26 represents the data for systems 

with both A-A and B-B attraction along with A-B repulsion. Here we observe that particle size 

seems to only strongly affect 〈Z〉 and 〈N〉 at (A1B1)12 where the trend in the data for weak 

monomer-monomer attraction and D=4d (solid blue line) deviates from the trend for weak 

monomer-monomer attraction and D=12d.  This is mostly likely an artifact of the way that (A1B1)12 

aggregates attractive monomers (distributed networks) and it only affects D=4d because D=12d 

cannot form enough intra-particle contacts to form these networks of like monomers.   
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Figure 2.27: (f-k) Plots showing the average number of A domains in a system for D=12d. (l-q) 

Plots showing the average number of B domains in a system. The system interactions correspond 

to the plot letters as follows: The system interactions correspond to the plot letters as follows: lines 

on plot f and l correspond to interaction sets 1 (blue triangles) and 2 (black  circles), lines on plot 

g and m correspond to interaction sets 3 (blue triangles) and 4 (black circles), lines on plot h and 

n correspond to interaction sets 5 (blue triangles) and 6 (black circles), lines on plot i and o 

correspond to interaction sets 7 (blue triangles) and 8 (black circles), lines on plot j and p 

correspond to interaction sets 9 (blue triangles) and 10  (black circle), and lines on plot k and q 

correspond to interaction sets 11 (blue triangles) and 12  (black circles). The black circles 

represent attractive monomer-monomer interactions at a strength of 1kT while the blue triangles 

represent ttractive monomer-monomer interactions at a strength of 0.5kT 

 
Figure 2.28: Plots showing the average height of an A-monomer (top row) and B-monomer 

(bottom row) as functions of monomer sequences for copolymer grafted nanoparticles of D=12d 
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each with six grafts of length N=24. The system interactions correspond to the plot letters as 

follows: lines on plot a and g correspond to interaction sets 1 (blue triangles) and 2 (black circles), 

lines on plot b and h correspond to interaction sets 3 (blue triangles) and 4 (black circles), lines 

on plot c and i correspond to interaction sets 5 (blue triangles) and 6 (black circles), lines on plot 

d and j correspond to interaction sets 7 (blue triangles) and 8 (black circles), lines on plot e and 

k correspond to interaction sets 9 (blue triangles) and 10  (black circles), and lines on plot f and l 

correspond to interaction sets 11 (blue triangles) and 12  (black circles). The black circles 

represent attractive monomer-monomer interactions at a strength of 1kT while the blue triangles 

represent attractive monomer-monomer interactions at a strength of 0.5kT 

  



69 

 

2.7.6 Effect of Monomer Sequence on Nanoparticle Arrangement in the Cluster for D=4d and 
D=12d with and without Monomer-Particle Interactions 

In the main manuscript in Section 2.3.3, we presented a detailed analysis of the effect of particle-

monomer interactions on the assembly of copolymer grafted nanoparticles. We found that particle 

monomer interactions had limited effect on the assembly characteristics of the system due to 

limitations on available nanoparticle surface area, conformational restrictions of making particle-

monomer contacts, and an overall inferiority of monomer-particle contacts to monomer-monomer 

contacts (Supplementary Section 2.7.7). In order to keep the analysis concise and avoid redundant 

analysis, we focused on three particular systems for D=12d and discussed how these systems were 

affected by particle-monomer interactions. For posterity, on the following pages we present here 

in our complete data set of data on 〈Z〉, 〈N〉, 〈R2
g,cluster〉0.5, RSA for D=4d and D=12d. These data 

support the conclusions discussed in the main article, therefore we will not provide any further 

analysis on them.  

 

In the following figures the system interactions correspond to the plot letters as listed in Table 

2.2 (with particle-monomer interactions indicated by line color). 
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Figure 2.29: Average coordination number 〈Z〉 as a function of monomer sequences for copolymer 

grafted nanoparticles of D=4d with six grafts of length N=24 for systems with no particle monomer 

interactions (black diamonds), A-monomer to particle attraction at -1kT (blue circles), and B-

monomer to particle attraction at -1kT (red squares). 

 
Figure 2.30: Average coordination number 〈Z〉  as a function of monomer sequences for 

copolymer grafted nanoparticles of D=12d with six grafts of length N=24 for systems with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). 
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Figure 2.31: Average number of particles per cluster 〈N〉 as a function of monomer sequences for 

copolymer grafted nanoparticles of D=4d with six grafts of length N=24 for systems with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). 

 
Figure 2.32: Average number of particles per cluster 〈N〉 as a function of monomer sequences 

for copolymer grafted nanoparticles of D=12d with six grafts of length N=24 for systems with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). 
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Figure 2.33: Average radius of gyration of a cluster 〈R2g,cluster 〉 0.5 as a function of monomer 

sequences for copolymer grafted nanoparticles of D=4d with six grafts of length N=24 for 

systems with no particle monomer interactions (black diamonds), A-monomer to particle 

attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red squares). 

 
Figure 2.34: Average radius of gyration of a cluster 〈R2g,cluster 〉 0.5 as a function of monomer 

sequences for copolymer grafted nanoparticles of D=12d with six grafts of length N=24 for 

systems with no particle monomer interactions (black diamonds), A-monomer to particle 

attraction at -1kT (blue circles), and B-monomer to particle attraction at -1kT (red squares). to 

interaction set 12, and lines on plot L correspond to interaction set 11 
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Figure 2.35: Average relative square anisotropy (RSA) as a function of monomer sequences for 

copolymer grafted nanoparticles of D=4d with six grafts of length N=24 for systems with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). 

 
Figure 2.36: Average relative square anisotropy (RSA) as a function of monomer sequences for 

copolymer grafted nanoparticles of D=12d with six grafts of length N=24 for systems with no 

particle monomer interactions (black diamonds), A-monomer to particle attraction at -1kT (blue 

circles), and B-monomer to particle attraction at -1kT (red squares). 
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2.7.7 Relative Strength of Monomer-Particle and Monomer-Monomer Interactions for D-4d and 
D=12d 

 

 
Figure 2.37: Average coordination number (〈Z〉), average number of particles per cluster (〈N〉), 

average cluster radius of gyration 〈R2g,cluster 〉 0.5), and relative square anisotropy (RSA) as a 

function of monomer sequences for copolymer grafted nanoparticles of D=4d  (left column) and 

D=12d  (right column) each with six grafts of length N=24. The solid blue lines represent a system 

where A-A attraction is 1kT and A- particle attraction is 1kT.  The dashed blue lines represent a 

system where A-A attraction is 1kT and A- particle attraction is 16kT. The solid red lines represent 

a system where B-B attraction is 1kT and B- particle attraction is 1kT.  The dashed red lines 

represent a system where B-B attraction is 1kT and B- particle attraction is -16kT. 

In the main manuscript in Section 2.3.3 we described the effect of particle-monomer interactions 

on the assembly of copolymer grafted nanoparticles. We concluded that the effect of these 

interactions on nanoparticle assembly is minimal due to the limited surface area on particles of 

size D=4d and 12d, but there is also an effect from the 2-dimensional nature of particle-monomer 
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contacts versus 3-dimensional nature of monomer-monomer contacts. In a polymer grafted 

particle, while a grafted monomer can have many monomer-monomer interacting neighbors within 

the square well width of √2d each monomer can only have one particle-monomer interaction within 

the square well depth of (D+d)/2. When we compare systems with monomer-monomer interactions 

that are equal in magnitude to particle-monomer interactions (Figure 2.8a,b) with systems with 

monomer-monomer interactions that are half the magnitude of particle-monomer interactions 

(Figure 2.8 c,d) we are effectively “doubling” the particle-monomer interaction strength. Because 

the number of possible monomer-monomer contacts is still significantly higher than particle-

monomer contacts, we still do not observe an appreciable increase in the effect of particle-

monomer interactions on characteristics of the assembled cluster.  

In our lattice model, to make the particle-monomer contacts to significantly affect the 

assembly, the monomer-monomer epsilons (휀𝐴𝐵, 휀𝐴𝐴, 휀𝐵𝐵) would have to be approximately 1/16 

of the particle-monomer epsilons (휀𝐵𝑃, 휀𝐴𝑃). This large increase in interaction strength effectively 

makes one particle-monomer contact equal to 16 monomer-monomer contacts, therefore 

approximately equating their enthalpic potential. In Figure 2.37 we present data for 〈Z〉, 〈N〉, 

〈R2
g,cluster〉0.5, and RSA at both D=4d (left column) and D=12d (right column) for both (A1B1)12 and 

(A12B12)1 that compares the effect of particle monomer interactions at a strength of 1kT (solid 

lines) and 16kT (dashed lines). We observe a drastic increase in the effect of particle monomer 

interactions for all of the data, especially for D=12d. In particular, nearly all of the trends in the 

data from (A1B1)12 to (A12B12)1 are reversed when the particle monomer-interactions are raised 

from -1kT to -16kT. These data demonstrate that particle-monomer interactions have the potential 

to dramatically affect the assembly of copolymer grafted nanoparticles, but they must have 

extremely large interaction strengths in order to do so.  
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3 POLYDISPERSITY FOR TUNING THE POTENTIAL OF MEAN FORCE BETWEEN 

POLYMER GRAFTED NANOPARTICLES IN A POLYMER MATRIX 
Adapted from: Phys. Rev. Lett. 2013, 110 (1), 018301 

3.1 INTRODUCTION 

Controlling the morphology of nanoscale additives in a polymer matrix is critical for tuning the 

macroscopic properties of the resulting polymer nanocomposite. One way to manipulate the 

morphology is by grafting the nanoparticle surface with polymers that are compatible with the 

matrix polymer, and, as a result, tuning the interactions between the grafted nanoparticles and the 

polymer matrix. A recent comprehensive review by Green [1] presents the extensive theoretical 

and experimental work that has shown that the molecular weights of the grafted and matrix 

polymer play a critical role in dictating the inter-particle interactions, both at high and low grafting 

density [References cited in Ref. 1]. At high grafting density, where the grafted chains are in the 

“strong brush” regime, nanoparticles disperse (aggregate) if the graft molecular weight is higher 

(lower) than matrix molecular weight with dispersion and aggregation being driven by wetting and 

dewetting of the grafted layer by matrix chains, respectively [1]. At low grafting density, larger 

graft molecular weight chains can better shield nanoparticles from direct particle-particle contacts 

and lead to dispersion of grafted particles in the polymer matrix[2]. Additionally, by tailoring the 

graft and matrix molecular weights along with the grafting density, one can further tune the shape 

of particle aggregation in the nanocomposite [3]. Despite the importance of graft molecular weight 

for controlling the morphology, experimental and theoretical studies on polymer grafted 

nanoparticles have not investigated how polydispersity in the grafted chains affects the 

morphology of the particles in a polymer matrix.  
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Past studies have shown that polydispersity in chain lengths grafted on flat surfaces[4, 5] can alter 

chain conformations and the overall height of the grafted layer on these surfaces (with no 

curvature). Star polymers with polydisperse arms can be thought of as polydisperse polymers 

grafted on a nanoparticle with infinitely large curvature. The effective force, F, between 

polydisperse star polymers  in a good solvent has been shown to have drastically different 

expression as compared to monodisperse star polymers [6] [7]. While these past studies justify 

further exploration of polydispersity effects, they do not predict the behavior of polydisperse 

polymers grafted on spherical hard nanoparticle surfaces with finite curvature in the presence of 

an explicit polymer matrix. Recently, using Monte Carlo (MC) simulations [8], Dodd and 

Jayaraman studied a single spherical polymer grafted nanoparticle with polydisperse grafted 

chains, in an implicit solvent, at a purely athermal limit, for varying polydispersity indices (PDI>1-

2.5), particle diameter, and grafting density. Dodd and Jayaraman showed that the conformations 

of the grafted chains in a polydisperse system deviates significantly from the monodisperse 

counterpart, and approaches that of a single grafted chain on the same particle size because of 

polydispersity-induced relief in monomer crowding. Specifically, the radius of gyration of the 

short chains was lower at PDI>1 than at PDI=1 (monodisperse), and the long chains were less 

stretched at distances away from particle surface at PDI>1 than at PDI=1. These observations 

demonstrate that the chain conformations on hard nanoparticles with finite curvature are 

significantly affected by polydispersity in the grafted chain lengths. This leads to the question: Is 

the effect of polydispersity on grafted chain conformations large enough to alter how matrix chains 

wet/dewet/deplete the grafted layer? If yes, is this change in matrix wettability of the grafted layer 

predictable so that one could deliberately introduce polydispersity as a design knob to tailor inter-

particle interactions? In this letter, we answer these questions by exploring how polydispersity in 
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polymer chains grafted on nanoparticles affects the potential of mean force (PMF) between the 

polymer grafted nanoparticles at varying grafting densities (e.g. low, intermediate, and high), in a 

dense solution of matrix polymers and melt-like polymer matrix at varying matrix lengths (e.g. 

less than and greater than average graft length) using a combined PRISM theory – Monte Carlo 

simulation approach. One of the key results is that, at high grafting density, polydispersity in the 

grafted polymers can stabilize dispersions in a monodisperse polymer matrix at conditions where 

corresponding monodisperse polymer grafted particles would exhibit aggregation.  

3.2 APPROACH 

We use a self-consistent Polymer Reference Interaction Site Model (PRISM) theory –Monte Carlo 

(MC) simulation approach to calculate the PMF for a system of a polymer matrix (dense solution 

and melt) with polymer grafted particles (filler) at infinitely dilute filler concentration. The details 

of the PRISM-MC method, including the choice of closures for the PRISM part and the limitations 

of the method are presented in Ref.[9], where this approach is reviewed in detail, and applied to 

study polymer grafted nanoparticles in polymer matrix. An overview of this method is presented 

below.  

3.2.1 Model 

We model the polymer grafted nanoparticles as a hard spherical nanoparticle of diameter D. Each 

particle has   number of freely jointed polymer chains grafted per particle surface area, with 

varying polydispersity in the grafted chain length. The grafted chains are permanently attached at 

random, non-overlapping points on the particle surface. We model the matrix chains as freely 

jointed polymer chains. The molecular weight of the polymer chains (grafted and matrix) is linked 

to the chain length of these coarse-grained polymers (grafted and matrix) by the number of coarse-

grained beads Ngraft (where a bead mimics a Kuhn segment of the polymer). To achieve 
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polydispersity, the grafted molecular weight (or chain lengths) are chosen from a log-normal 

distribution with the number average chain length Ngraft,avg equal to a target value. The matrix chain 

length is maintained to be monodisperse, equal to Nmatrix. The chemical interactions between the 

grafted polymers and matrix polymers are maintained to be purely athermal, as the chemistries of 

the two polymers are identical. For high grafting densities (>0.3chains/nm2), we are justified in 

using athermal interactions between the monomers and the particle as well, as the high monomer 

crowding on the surface reduces an effect of monomer-surface attraction.  

3.2.2 Method 

The full details of the PRISM-MC methodology are provided in Refs. [10, 11], and we present 

only a brief overview here. The PRISM portion of the self-consistent PRISM-MC approach 

consists of a matrix of Ornstein-Zernike-like integral equations, which in Fourier space is as 

follows:  

  )()()().()( kkkCkk   (1) 

where each of the terms in the above equation is an NxN matrix of terms, where N is the number 

of species in the system. The above equation relates the total site-site inter-molecular pair 

correlation function, hij(r) where hij(r) = gij(r)-1, to the inter-molecular direct correlation function, 

cij(r), and intra-molecular pair correlation function, ωij(r).  In our system of homopolymer grafted 

particles in a homopolymer matrix there are three types of sites- graft monomers (A), particle (C), 

and matrix monomers (M). We note that, even though the matrix and graft monomer are of the 

same chemistry, we have to identify them as two different sites to distinguish them physically in 

the theory. The intra-molecular pair correlation function ωij(k) between sites i and j within a certain 

molecule in Fourier space provides the shape of each molecules (polymer grafted particle or matrix 

chain) and is served as one of the inputs to the theory. The ωij(k) of the polymer grafted 
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nanoparticle is calculated as an ensemble average of the intramolecular pair correlation function 

calculated in a Monte Carlo (MC) simulation of a single polymer grafted nanoparticle with 

polydisperse grafted chain distribution placed in an effective solvation potential calculated by 

PRISM. Similarly the ωij(k) of the matrix chain is obtained from an MC simulation of a single 

matrix chain in an effective solvation potential calculated in PRISM. The PRISM-MC loop is 

executed in a self-consistent manner as ωij(k) and the solvation potential are inter-dependent. To 

solve the PRISM equations, we use closure relations connecting the direct pair correlation function 

cij(r), hij(r) (= gij(r)-1) and interaction potentials Uij(r) (another input to the theory). Previous work 

on a polymer nanocomposites [12-20] has shown that the Percus-Yevick (PY) closure for polymer-

polymer and polymer-particle and the hypernetted chain (HNC) closure for particle-particle work 

well, especially in case of athermal interactions. The non-linear coupled integral PRISM equations  

along with the closures are solved using the KINSOL algorithm [21] with the line search 

optimization strategy. With KINSOL, it has proven much easier to attain convergence for these 

complex nonlinear integral equations for a larger parameter set than is possible with Picard 

technique (the method used in much of the prior PRISM theory work).  

Upon solving these equations, the output of the theory is the spatial organization of the 

system both in real space gij(r) and Fourier space, Sij(k). The potential of mean force between two 

grafted particles in an explicit matrix (in case of infinitely dilute amount of grafted particles in an 

explicit matrix) is calculated from the inter-particle pair correlation function,  

 )(ln)( rgkTrPMF   (2) 

The advantage of the self-consistent PRISM-MC approach, over PRISM-only, is that PRISM-MC 

can tackle non-ideal conformations of the grafted and matrix polymers that have been neglected 

in PRISM-only studies of homopolymer-grafted nanoparticles, which assumes an ideal 
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conformation in ωij(k) [18-20, 22]. PRISM-MC is better than simulations of polymer grafted 

particles in implicit matrix, [23] because, in the latter, any spatial arrangements that could be 

occurring purely due to entropic reasons and excluded volume interactions (which is critical to 

wetting-dewetting phenomena) is completely ignored. In the self-consistent PRISM-MC approach 

even though the MC simulation does not account for the excluded volume interactions of the 

matrix chains, the PRISM part of the approach takes these excluded volume interactions into 

account when solving for the pair correlation functions.  This PRISM-MC approach is also faster 

than either a CPU-based MC or molecular dynamics simulation with explicit matrix, thus allowing 

us to span the parameter space of varying polydispersity of the chains, Nmatrix, particle size (D), 

and grafting density () in far less time than had we approached this problem with CPU-based 

simulations of the finite number of grafted particles in implicit or explicit matrix chains. The 

limitations with PRISM-MC approach: For some sets of parameters, e.g. large size disparity 

between sites (e.g. D>25d) or strong attractive interactions (or low T) or high grafting densities 

(>0.6chains/nm2) self consistent PRISM-MC might not yield solutions due to numerical 

convergence issues.  Additionally, the choice of closures is critical. In this study we used Percus 

Yevick and Hyper-netted Chain closures based on past success in predicting phase behavior in 

polymer nanocomposites. For other soft materials systems the most appropriate closures might be 

different, and have to be found based on direct comparisons with simulation results. 

3.2.3 Analysis 

Besides the various partial radial distribution functions and structure factors which are direct 

outputs of PRISM, we also calculate the matrix penetration depth. We begin by first truncating 

and shifting the partial pair distribution function between the nanoparticle and the matrix beads, 

𝑔𝑃𝑀, so that the domain of the function varies between the particle surface and the height of the 
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grafted layer, ℎ𝑔. We then calculate the square root of the normalized second moment of 𝑔𝑃𝑀 in 

this domain to obtain the matrix penetration depth, 𝜆. 

 𝜆 = √
∫ 𝑟2𝑔𝑃𝑀
ℎ𝑔
0

(𝑟)𝑑𝑟

∫ 𝑔𝑃𝑀
ℎ𝑔
0

(𝑟)𝑑𝑟
 (3) 

3.2.4 Parameters 

In this work, polydispersity in the grafted chains is modeled using a log-normal distribution of 

chain lengths to achieve a target polydispersity index (PDI) while maintaining the average graft 

length, Ng,avg, constant at 20 Kuhn segments and minimum graft length of 8 Kuhn segments (or 

“monomers”). The particle diameter (D) is maintained as either 5 or 8 times the monomer diameter 

(d). We vary the grafting density, , in the range 0.1-0.65 chains/d2, the matrix chain length Nmatrix 

from 10 to 80 monomers, and total packing fraction, , of the nanocomposite from 0.1 to mimic 

the matrix as a dense solution to 0.3 to mimic melt-like polymer matrix. We model all pair-wise 

interactions in the system to be hard sphere (athermal) interactions to capture the purely entropic 

effects of introducing polydispersity. These athermal interactions are also appropriate to mimic 

experimental systems where the graft and matrix monomers have similar chemistry, and particle-

monomer interactions are negligible. 
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3.3 RESULTS 

 
Figure 3.1: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between grafted 

nanoparticles (D=5d) at σ=0.1 (a), 0.25 (b), and 0.65 (c) chains/d2 and PDI= 1.0 (circles),  1.5 

(squares), 2.0 (upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20, in 

a dense solution (η=0.1) of monodisperse homopolymer matrix chains with Nmatrix=10 (solid 

symbols) and Nmatrix=40 (open symbols). The insets have the same axes labels as the main plots. 

First, we present the PMF between polymer grafted nanoparticles, calculated as PMF= –

kBTln[gparticle-particle(r)], for particle size D=5d at = 0.1 chains/d2 placed in a dense solution (=0.1) 

of monodisperse polymer matrix (Figure 3.1a). When Nmatrix=10 (solid symbols) and graft PDI=1.0 

(monodisperse), the PMF exhibits repulsion at contact and no attractive well at intermediate inter-



84 

 

particle distances, which is in agreement with past experiments and theoretical studies for these 

lightly grafted systems (see review articles [1, 24]). As the graft PDI increases, the PMF becomes 

slightly less repulsive at contact and slightly more repulsive at larger distances (Figure 3.1a inset). 

When Nmatrix=40 (open symbols) and graft PDI=1.0, the PMF is repulsive at contact and exhibits 

a weak attractive well at intermediate lengths. As graft PDI increases, the PMF loses the weak 

attractive well completely, and exhibits purely repulsive PMF (Figure 3.1a inset). Additionally, 

for both matrix lengths as PDI increases, the repulsive tail in the PMF increases in strength and 

extends to larger inter-particle distances. The decrease in repulsion at contact is driven by the 

polydisperse grafted polymers relieving some monomer crowding near particle surface by causing 

a change in grafted chain conformations to maximize overall conformational entropy upon 

introduction of polydispersity, as seen in recent study[8]. That study also showed that the effect of 

polydispersity on chain conformations is relatively minor at low grafting densities and more drastic 

at higher grafting densities where chain crowding is strong at the monodisperse limit. Therefore, 

one can expect that the attractive well at intermediate inter-particle distances, which was negligible 

at 0.1 chains/d2 (Figure 3.1a), could be more significant at higher grafting densities and that the 

elimination of the attractive well could be more pronounced at higher grafting densities when 

polydispersity is introduced than seen at 0.1 chains/d2.  

At higher grafting densities of = 0.25 (Figure 3.1b) and 0.65 chains/d2 (Figure 3.1c), as 

expected from prior theoretical and experimental work on monodisperse grafts [1],  we see that 

the repulsion at contact and attraction at intermediate distances increase in strength significantly 

compared to low grafting density, especially when Nmatrix is larger than Ng,avg. While we only show 

Nmatrix=10 and 40 here, we have confirmed as Nmatrix increases the attractive well at intermediate 

distances deepens (Supplementary Figure 3.4). We note that, for a few systems at the highest 
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grafting density (0.65 chains/d2) only, where matrix chains are expected to deplete/dewet large 

regions in the grafted layer near the particle surface, the choice of Percus-Yevick closure leads to 

negative values in gmatrix-particle(r) at low r (where gmatrix-particle(r) should be 0), due to numerical 

issues. We also add that, for these specific systems, all other pair correlation functions are devoid 

of this issue and do not exhibit any negative values. Despite this issue, we note that PRISM-MC 

correctly predicts all known (qualitative and some quantitative) trends in monodisperse systems - 

a) with increasing grafting density the mid-range attractive well deepens and shifts to higher inter-

particle distances (Figure 3.1); b) with increasing matrix chain length the attractive well depth 

deepens (Supplementary Figure 3.4); c) the value of the well depth seen at 0.65 chains/d2 is of the 

same order of magnitude (~0.3-0.5kT in Supplementary Figure 3.4) as that seen for similar systems 

in recent simulation studies [25, 26] on systems with graft length of 10 monomers and matrix 

lengths of 10-70 monomers, and particle sizes approximately 10 times monomer size at high 

grafting density (~0.76 chains/nm2). The ability of PRISM-MC to predict the same qualitative 

trends as other theoretical methods[27], and, in certain cases quantitative agreement with prior 

simulations [25, 26] for monodisperse grafts suggests that this approach is capable of predicting 

correct qualitative trends for the polydisperse polymer grafted nanoparticles as well. 

Continuing our discussion of higher grafting densities, as PDI increases the repulsion at 

contact is reduced more significantly at 0.65 chains/d2 for Nmatrix=40 (Figure 3.1c) than at smaller 

grafting densities. This is because, at higher grafting densities, increasing polydispersity relieves 

the higher monomer crowding in the grafted layer at monodisperse limit. This is confirmed by the 

end-monomer concentration profiles which show larger values near the particle surface with 

increasing polydispersity, implying higher accessibility of the particle surface (Supplementary 

Table 3.1). The higher accessibility of the particle surface by end monomers is because of the 
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shorter chains in the distribution as well as the changes in chain conformations due to reduced 

monomer crowding resulting from a wider grafted chain length distribution [8].  

 
Figure 3.2: Penetration depth, λ (in units of d), of matrix chains into grafted layer on nanoparticles 

(D=5d) grafted with polydisperse chains with Ng,avg=20 at σ=0.10 chains/d2 (solid lines) and 

σ=0.25 chains/d2 (dashed lines) in a dense solution (η=0.1) of monodisperse homopolymer matrix 

chains with Nmatrix=10 (filled symbols) and Nmatrix=40 (open symbols).  

Most interestingly, at 0.65 chains/d2 and Nmatrix>Ng,avg (open symbols in Figure 3.1c) the attractive 

well of ~0.1kT at intermediate distances seen in monodisperse systems is completely eliminated 

at PDI of 1.5 and above. Additional calculations at smaller PDI (1.05-1.4) (Supplementary Figure 

3.5) found that there is a minimum PDI needed to eliminate the attractive well, and we expect this 

minimum PDI to be a function of grafting density, particle size and average graft length.  The 

attractive well is eliminated at higher PDI because the longer chains in the polydisperse chain 

length distribution a) sterically repel the longer chains on the other grafted particle, and b) shift 

the entropic contributions more heavily towards the grafted chains than matrix chains, thus driving 

matrix chains to wet the grafted layer. The latter is confirmed from increasing penetration depth 

of the matrix chains into grafted layer, λ, (Figure 3.2), with increasing PDI. Since λ is a measure 

of the average distance the matrix chains penetrate the grafted layer on the surface (Supplementary 

Table 3.1), Figure 3.2 implies increased matrix wetting of the grafted layer with increasing PDI. 

Since the mid-range attractive well has been shown to drive the nanoscale additives in polymer 
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nanocomposites towards aggregation, eliminating the attractive well due to increased wetting of 

grafted layer suggests the exciting possibility of using polydispersity as a means to stabilize 

dispersions in systems where monodisperse grafts would drive aggregation.  

To ensure that our choice of a specific discretized chain length distribution, that mimics a 

continuous log-normal distribution, does not bias the above results, we calculated the PMF for five 

different chain length distributions (all log-normal) for a select number of systems and found no 

significant change in PMF either in the repulsion at contact or attractive well (Supplementary 

Figure 3.6) in dense solutions. In contrast, when we compare PMFs from particles grafted with a 

log-normal chain length distribution, to those grafted with a bidisperse chain length distribution at 

the same PDI we observe some differences in both low-r repulsion and mid-range attraction 

(Supplementary Figure 3.7), and is the subject of our ongoing investigation. 

 
Figure 3.3: PMF (in units of kT) versus r-D (in units of d) between nanoparticles (D=5d) at PDI= 

1.0 (circles),  PDI=1.5 (squares), PDI=2.0 (upward facing triangles), and PDI=2.5 (downward 

facing triangles) and Ng,avg=20 at (a)  σ=0.1 and (b) 0.65 chains/d2 in a monodisperse melt-like 
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matrix (η=0.3) with Nmatrix=10 (solid symbol) and Nmatrix=40 (open symbol). The insets have the 

same axes labels as the main plots. 

All the results presented so far are at a total packing fraction of =0.1, which is characterized as a 

dense solution rather than a melt through calculations of the compressibility from the structure 

factor S(k) as k0[28]. At a melt-like packing fraction of =0.3, the matrix polymers have been 

shown to induce depletion like attractions between both bare and polymer grafted nanoparticles at 

infinitely dilute concentrations. This matrix-induced depletion-like attraction at low grafting 

densities shows up in the PMF as an attraction at contact (Figure 3.3a), and, at high grafting 

densities, significantly reduces the steric repulsion at contact (Figure 3.3b) and deepens the mid-

range attractive well (inset of Figure 3.3b versus Figure 3.1c). At low grafting density (a), the 

effects of polydispersity are reduced for =0.3, as compared to =0.1, as the values of attraction 

at contact (~3kT) dominate at all PDI. Therefore in these conditions, polydispersity in grafted 

chains cannot overcome the matrix induced aggregation of the particles. At high grafting density 

(Figure 3.3b), comparing =0.3 and =0.1, the repulsion at contact is less sensitive to PDI for 

=0.3, and a larger PDI is needed to eliminate the stronger attractive well at intermediate distances 

at =0.3 (inset of Figure 3.3b). These results lead us to conclude that, for melt-like polymer 

matrices, one can stabilize dispersions using polydispersity only at high grafting densities, and the 

extent of polydispersity needed to stabilize dispersions is higher as compared to dense polymer 

solutions. 

Past studies have shown that the relative graft length to particle diameter is an important 

parameter driving dispersion/aggregation in a polymer matrix [2, 29]. Higher D or lower curvature 

leads to increased monomer crowding, especially at high grafting densities. At PDI=1.0 and at 

σ=0.1 chains/d2 the repulsion at contact and mid-range attraction is higher in the PMF for D=8d 
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than in the corresponding PMF for D=5d. This is in accordance with previous studies of 

monodisperse grafts [2, 29] that showed that decreasing curvature increases the monomer 

crowding near the particle surface, and decreases the propensity of matrix wetting the grafted layer. 

We see that at low grafting densities varying polydispersity of grafts on D=8d brings about the 

approximately the same effect as that seen for D=5d (Supplementary Figure 3.8). A detailed study 

of how curvature affects these polydispersity induced stabilization at a range of parameters is the 

subject of ongoing work.   

3.4 CONCLUSION 

In summary, this is one of the first studies demonstrating how increasing polydispersity in 

polymers grafted on spherical nanoparticles affects the PMF between homopolymer grafted 

nanoparticles in a homopolymer matrix. The effect of polydispersity is greatest at high grafting 

densities where polydispersity in grafted chain lengths has the largest effect on chain 

conformations [8] and the mid-range attraction is eliminated with increasing polydispersity. The 

implications that polydispersity can stabilize dispersions, even when the average graft molecular 

weight is lower than the matrix molecular weight, conditions that cause particle aggregation for 

monodisperse grafts, are exciting since much of the polymer synthesis community has been 

striving to achieve low polydispersity. This study motivates synthetic efforts to be directed towards 

obtaining controlled polydispersity in chain lengths as a design tool to program inter-particle 

interactions in a polymer matrix. 
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3.7 SUPPLEMENTARY 

3.7.1 Effect of matrix length on the potential of mean force between monodisperse grafted 
nanoparticles  

 

Figure 3.4: Potentials of mean force (in kT) versus inter-particle distances (in units of d) between 

nanoparticles of size D=5d with monodisperse chains with Ng=20, at a grafting density of σ=0.10 

chains/d2, in dense solution (η=0.1, subplot a) and melt (η=0.3, subplot b) of monodisperse 

homopolymers of Nmatrix=10 (triangles), Nmatrix=40 (circles), Nmatrix=80 (squares).  
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3.7.2 Dataset for concentration of end monomers at the particle surface and penetration depth 
of matrix into the grafted layer 

Table 3.1: Tabulated data for the end monomer concentration at contact (φc) and the penetration 

depth of the matrix into the grafted layer (λ) in units of d, for varying PDI, matrix volume fraction 

(η), grafting density (σ), and matrix length (Nmatrix). 

PDI φc x 103 λ φc x 103 λ

1.0 0.0452 11.3 0.0377 13.6

1.5 0.0904 13.4 0.1356 16.5

2.0 0.1884 13.9 0.1733 17.4

2.5 0.1658 14.3 0.1206 18.5

1.0 0.0678 9.7 0.0527 11.3

1.5 0.0904 10.6 0.1959 14.1

2.0 0.098 11.4 0.2035 15.1

2.5 0.1959 11.5 0.1206 16.8

PDI φc x 103 λ φc x 103 λ

1.0 0.1281 10.2 0.1236 10.7

1.5 0.1507 10.9 0.2336 12.6

2.0 0.2863 11.7 0.3517 14.1

2.5 0.1959 11.6 0.2321 14.8

1.0 0.1432 8.2 0.1507 8.6

1.5 0.1959 9.1 0.2035 10.2

2.0 0.2336 9.2 0.2863 12.2

2.5 0.2478 9.9 0.3918 12.3
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3.7.3 Effect of incremental increases in PDI on the intermediate-range attractive PMF well  

 

Figure 3.5: Potentials of mean force, PMF (in units of kT),  versus inter-particle distance, r-D (in 

units of d), between nanoparticles of size D=5d, grafted with polydisperse chains at grafting 

densities σ=0.65  chains/d2  with PDI= 1.00 (circles), PDI=1.05 (upward facing triangles), 

PDI=1.10 (squares), PDI=1.15 (rightward facing triangles), PDI=1.20 (diamonds), and 

PDI=1.40 (downward facing triangles) with Ng,avg=20 in a dense solution (η=0.1) of 

monodisperse homopolymer matrix chains with Nmatrix=40 

  

↑ 𝑃𝐷𝐼 
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3.7.4 Effect of log-normal chain length distribution on the potential of mean force between 
polymer grafted nanoparticles 

 

 
Figure 3.6: Potentials of mean force (in units of kT) versus inter-particle distances (in units of d)  

between nanoparticles of size D=5d with polydisperse chains of PDI=1.0 (circles) and PDI=2.0 

(other symbols) with Ng,av=20 and Ng,min=8 at a grafting density of σ=0.65 chains/d2, for five 

different log-normal chain length distributions (subplot c), in a dense solution (η=0.1, subplot a) 

and melt (η=0.3, subplot b) of monodisperse homopolymers with Nmatrix=40. Each symbol, (besides 

circle) corresponds to a different log-normal chain distribution. 

  

c 
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3.7.5 Comparison of log-normal and bidisperse chain length distributions 

 
Figure 3.7: Potentials of mean force, PMF (in units of kT) versus inter-particle distance, r-D (in 

units of d), between nanoparticles of size D=5d, grafted with polydisperse (filled symbols) or 

bidisperse (open symbols) chains at grafting densities σ=0.65  chains/d2 (squares and upward 

triangle) and σ=0.25 chains/d2 (circles and downward triangles) at PDI= 1.5 with Ng,av=20 in a 

dense solution (η=0.1, downward triangles and squares) and melt-like (η=0.3, upward triangles 

and circles) matrix of monodisperse homopolymer matrix chains with Nmatrix=40.  
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3.7.6 Effect of lowered curvature on potential of mean force between polymer grafted 
nanoparticles  

 
Figure 3.8: Potentials of mean force, PMF (in units of kT) versus inter-particle distance, r-D (in 

units of d) between nanoparticles of size D=8d grafted with polydisperse chains at PDI= 1.0 

(circles),  PDI=1.5 (squares), PDI=2.0 (upward facing triangles), and PDI=2.5 (downward facing 

triangles) with Ng,av=20 at a grafting density of σ=0.1 chains/d2, in a dense solution (η=0.1, subplot 

a) and melt (η=0.3, subplot b) of monodisperse homopolymers with Nmatrix=40. The insets have 

the same axes labels as the main plots. 
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4 POLYDISPERSE HOMOPOLYMER GRAFTS STABILIZE DISPERSIONS OF 

NANOPARTICLES IN A CHEMICALLY IDENTICAL HOMOPOLYMER MATRIX: AN 

INTEGRATED THEORY AND SIMULATION STUDY 
Adapted from: Soft Matter 9 (29), 6876-6889 

4.1 INTRODUCTION 

Controlling the morphology of nanoscale additives in a polymer matrix is critical for tuning the 

macroscopic properties of the resulting polymer nanocomposite. For example, superior mechanical 

properties of polymer nanocomposites can be achieved via good dispersion of nanoscale fillers in 

the polymer matrix. One approach to control the morphology of the nanocomposite is via 

functionalization of the nanoparticle surface with ligands, such as polymers and surfactants, that 

tune the effective interactions between the particles in the matrix leading to the target morphology. 

In particular, to achieve good dispersion of nanoparticles in a polymer matrix, the nanoparticle 

surface is grafted with polymers that are chemically identical to the matrix polymer. The chemical 

similarity between the graft and matrix improves the effective miscibility of the grafted particles 

in the matrix over that seen with bare (organic or inorganic) nanoparticles in the matrix. Extensive 

theoretical and experimental studies, both at high and low grafting density, for these chemically 

identical graft and matrix systems, have shown that the molecular weights of the grafted and matrix 

polymer play a critical role in dictating whether the grafted nanoparticles aggregate or disperse[1-

10]. At high grafting density, where the grafted chains are stretched in the “brush” regime, 

nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than matrix 

molecular weight.  This is explained by the wetting and dewetting of the grafted layer by the matrix 

chains.  In the case where the grafted polymer is the same chemistry as the matrix polymer the 

wetting/dewetting of the grafted chains by the matrix chains is driven purely by the entropy of the 



99 

 

system. When the graft molecular weight is larger than the matrix molecular weight the 

conformational entropy of the grafted chain dominates, and the matrix chains penetrate (or wet) 

the grafted layer. When the graft molecular weight is smaller than the matrix molecular weight the 

conformational entropy of the matrix chain dominates, and the matrix chains deplete the grafted 

layer. The exact value of the matrix to graft chain molecular weight where this transition from 

wetting to dewetting occurs is a function of the grafting density and the curvature of the particle[1] 

In contrast to the high grafting density case, at low grafting density, dispersion/aggregation is 

dependent on the amount of exposed nanoparticle surface. Larger graft molecular weight chains 

can better shield nanoparticle surfaces from direct particle-particle contacts and lead to dispersion 

of grafted particles in the polymer matrix[11].  Despite the importance of graft molecular weight 

for controlling the morphology, there are very few experimental and theoretical studies on polymer 

grafted nanoparticles that have investigated the role of polydispersity in the grafted chains and its 

effect on miscibility of grafted chains with matrix chains. 

While there have been less than a handful of studies on polydisperse polymers grafted on 

nanoparticle surfaces (with finite curvature), there have been many studies focused at the two extremes in 

the range of curvature – polymers grafted on flat surfaces (zero curvature) and star polymers (cores with 

infinite curvature). Polydispersity in chain lengths grafted on flat surfaces[12, 13] have been shown to alter 

chain conformations and the overall height of the grafted layer on these surfaces (with no curvature). In 

case of star polymers with polydisperse arms the effective force, F, between polydisperse star polymers  in 

a good solvent has been shown to have a drastically different expression as compared to monodisperse star 

polymers [14] [15]. To understand behavior of polydisperse grafted polymers on a surfaces of finite 

curvature  Dodd and Jayaraman[16] studied using Monte Carlo simulations a single spherical polymer 

grafted nanoparticle with polydisperse grafted chains, in an implicit solvent, at a purely athermal limit, for 

varying polydispersity indices (PDI=1-2.5), particle diameter, and grafting density. Dodd and Jayaraman 
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showed that the conformations of the polydisperse chains grafted chains on spherical nanoparticles (5-8 nm 

in diameter) deviates from the monodisperse counterpart, and approach that of a single grafted chain on the 

same particle size because of polydispersity-induced relief in monomer crowding. Specifically, the radius 

of gyration of the short chains was lower at PDI>1 than at PDI=1 (monodisperse), and the long chains were 

less stretched at distances away from particle surface at PDI>1 than at PDI=1.  

These past studies demonstrate that the grafted chain conformations are significantly affected by 

polydispersity in the grafted chain lengths. This leads to the question: In the presence of a polymer matrix, 

is the effect of polydispersity on grafted chain conformations large enough to alter how matrix chains 

wet/dewet/deplete the grafted layer? If yes, is this change in matrix wettability of the grafted layer 

predictable so that one could deliberately introduce polydispersity as a design knob to tailor inter-particle 

interactions? Past studies on flat surfaces have shown improved mixing of the grafted layer with the free 

chains in the presence of polydispersity[17-19]. It was observed that when graft-matrix interaction is 

repulsive, polydispersity does not affect the width of the interface between grafted brush and matrix 

[18].However, for attractive or athermal brush-matrix interaction there is increased stretching of the graft 

chains into the matrix as the polydispersity (measured by PDI = DPw/DPn) increases from 1.0 to 3.0, 

indicating enhanced mixing between the matrix and highly polydisperse grafted chains with increasing 

polydispersity[18] when brush monomer-matrix monomer interactions are attractive or athermal.  These 

results for flat brush cannot be extrapolated directly to the case of chains grafted on a high (convex) 

curvature nanoparticle surface. This is because the available volume per grafted chain on a flat surface is 

much lower than that on a convex surface, which changes the amount of crowding among the grafted chains, 

and results in significantly different conformations for the grafted chains. 

To understand how polydispersity in grafted polymer affects miscibility of polymer grafted 

nanoparticles with finite convex curvature in a polymer matrix of same chemistry, in a recent letter 

Jayaraman and coworkers[20] explored how polydispersity in polymer chains grafted on nanoparticles 

affects the potential of mean force (PMF) between the polymer grafted nanoparticles at varying grafting 

densities (e.g. low, intermediate, and high), in a dense solution of matrix polymers and melt-like polymer 
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matrix at varying matrix lengths (e.g. less than and greater than average graft length) using Polymer 

Reference Interaction Site Model (PRISM) – Monte Carlo (MC) approach. One of the key results was that 

at high grafting density, polydispersity in the grafted polymers removed the attractive well in the potential 

of mean force, suggesting that polydispersity could stabilize dispersions in a monodisperse polymer matrix 

at conditions where corresponding monodisperse polymer grafted particles would exhibit aggregation. In 

this paper we present detailed results from the above PRISM-MC study of infinitely dilute concentration of 

polydisperse polymer grafted nanoparticles in a monodisperse homopolymer matrix at varying grafting 

density, matrix packing fraction and particle diameter, along with some results from Brownian dynamics 

simulations of a single polydisperse polymer grafted nanoparticle in an explicit monodisperse 

homopolymer matrix. We find that, in the case of a polydisperse (log-normal) distribution of graft lengths 

and matrix lengths longer than graft lengths, the presence of the long chains and the improved wetting of 

the grafted layer by the matrix chains brought about by the reduced monomer crowding in the grafted layer, 

together remove the mid-range attraction seen at the corresponding monodisperse limit. Direct comparison 

of the effects of a statistically polydisperse distribution of graft lengths to a bidisperse distribution of graft 

lengths on the potential of mean force helps us understand how the chains lengths that are longer and shorter 

than the average chain length, and the reduced monomer crowding in the grafted layer contribute to the 

overall shape and features of the potential of mean force.  

This paper is organized as follows.  In the Section 4.2 we provide details of the model, theory 

and simulation, and analysis methods used in this work. In the Section 4.3 we present results from 

PRISM-MC approach that show the effect of polydispersity of graft lengths on potential of mean 

force (PMF) between two polymer grafted nanoparticles in a homopolymer matrix at varying 

grafting density, matrix chain length, matrix packing fraction, and particle diameter. We also 

present in certain cases the corresponding BD simulation results for concentration profiles and 

chain conformations for a single polymer grafted nanoparticles in a homopolymer matrix. We 

conclude the result section with a direct comparison of polydisperse grafted system with a 
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bidisperse grafted system (Section 4.3.5). In the Section 4.4 we summarize this work and present 

the implications of the key results. 

4.2 APPROACH 

4.2.1 Model 

We model homopolymer grafted spherical nanoparticle as a hard spherical nanoparticle of 

diameter D with freely jointed chains permanently attached randomly on the particle surface. 

Through visual analysis we ensure that the chains are approximately equally spaced apart, and not 

clustered regionally on the particle. We model the matrix homopolymer chain as a freely jointed 

chain. Both the grafted and matrix homopolymer chains consist of monomer beads of diameter d 

chosen to mimic a Kuhn segment of a linear synthetic polymer. While chains in the Monte Carlo 

(MC) simulations have a constant bond length of 1.4d, monomers in the Brownian Dynamics (BD) 

simulations are connected together with harmonic bonds with force constant k=30 and bond rest 

length r0=1.4d. The grafted homopolymer chains are monodisperse with chains of equal number 

of monomers (Ngraft=20), or polydisperse with log-normal distribution of chain lengths or 

bidisperse with a bimodal distribution consisting of (equal number of) short and long chains. We 

quantify the polydispersity via the polydispersity index (PDI).  For systems with a polydisperse 

graft length distribution with PDI greater than 1 we fit the distribution of chain lengths to a log-

normal distribution with minimum and number average graft lengths Ngraft,min=8 and Ngraft,avg=20. 

The details of the PDI calculation and the allocation of chain length distribution are given in the 

Supplemental Section Error! Reference source not found.. The matrix is maintained 

onodisperse throughout this study and its chain length is denoted by Nmatrix. The total packing 

fraction η is the volume fraction of the system occupied by the matrix chains and the polymer-

grafted nanoparticles (fillers). The volume fraction of η occupied by the polymer-grafted 
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nanoparticles is denoted by the filler fraction .  In this paper we choose =0.001 to calculate 

potential of mean force between the grafted particles at the infinitely dilute (or 2-particle) filler 

limit. We maintain athermal interactions Uij(r) between all pairs of monomers (on grafted and 

matrix chains), particle and particle, and particle and monomers (on grafted and matrix chains). In 

the PRISM-MC calculations we model these athermal interactions using hard sphere potentials, 

while in the BD simulations, we use shifted-truncated LJ potentials (i.e. Weeks-Chandler-

Andersen or WCA potential), defined as: 

 𝑉𝐿𝐽(𝑟) = {4휀 [ (
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
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𝑟𝑐𝑢𝑡
)
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− (
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)
6

]

 0
                 

𝑟 < 𝑟𝑐𝑢𝑡
𝑟 ≥ 𝑟𝑐𝑢𝑡

  

where ε is the interaction well depth, σ is the bead diameter, and rcut(=2
1

6𝜎) is the cutoff distance 

for the potential. The choice of athermal interactions is appropriate to mimic experimental systems 

where the graft and matrix monomers have similar chemistry, and particle-monomer interactions 

are negligible. Additionally, the choice of athermal interactions ensures that we can capture the 

effective interactions resulting from entropic effects purely. 

4.2.2 PRISM-MC Method 

We use a self-consistent Polymer Reference Interaction Site Model theory and Monte Carlo 

simulation  (PRISM-MC) approach recently developed by Nair and Jayaraman_ENREF_21 for 

studying polymer grafted particles[21], to calculate the potential of mean force between 

monodisperse and bidisperse polymer grafted particles in a homopolymer matrix. We use this 

integrated theory-simulation approach because it is computationally much faster than either pure 

Monte Carlo simulations or molecular dynamics simulations of polymer grafted particles in an 

explicit polymer matrix, thus allowing us to scan a large parameter space in a reasonable time.  
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PRISM theory consists of a matrix of Ornstein-Zernike-like integral equations that relate 

the total site-site inter-molecular pair correlation function, hij(r), to the inter-molecular direct 

correlation function, cij(r), and intra-molecular pair correlation function, ωij(r). The PRISM 

equations in Fourier space are 

           qHqqCqqH   (1a) 

    qhqH
ijjiij

ˆ  (1b) 

     
 



i j

ji

N N

ij
qq

1 1 


  (1c) 

where H(q), C(q) and Ω(q) in this study are matrices of size 3x3 for the following 3 types of sites: 

graft monomers (A), particle (B), and matrix (M),  with the matrix elements defined in equations 

1b-c. We note that despite the chemistry of the graft and matrix being the same these sites are 

physically identified separately as graft or matrix. In the above equations, Ni and ρi are respectively 

the number and number density of site i, ρ is the molecular number density, and Ωij(q) the intra-

molecular pair correlation function between sites i and j within a certain molecule in Fourier space. 

To solve equation 1, we use closure relations connecting the real space cij(r), hij(r) (= gij(r)-1) and 

interaction potentials Uij(r). The choice of closures depends on the system being studied. Previous 

work on a mixture of nanoparticles and polymers[22-31] shows that the Percus-Yevick (PY) 

closure for polymer-polymer and polymer-particle, and the hypernetted chain (HNC) closure for 

particle-particle work well. We have used the same combination of atomic closures, since this 

work also consists of polymers and nanoparticles. Given that σij is the distance of closest approach 

between sites i and j, i.e. σij=d for monomer-monomer pairs and σij=
2

dD 
 (as stated earlier, d 
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and D are the monomer and particle diameters, respectively) and particle-monomer pairs, the 

impenetrability condition applies inside the hard core: 

 
 

ijij
rrg  0

 (2a) 

Outside the hard core, the PY approximation describes the direct correlation function between all 

pairs of sites (except particle-particle): 

 
 

    
ijij
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 1
 (2b) 

and the HNC closure handles the particle-particle direct correlation function: 

         DrrUrgrhrc
BBBBBBBB

 ln  (2c) 

To efficiently solve this system of coupled nonlinear integral equations we employ the 

KINSOL algorithm[32] with the line search optimization strategy. Attaining convergence for 

complex nonlinear integral equations is much easier with KINSOL as compared to the Picard 

technique, the method used in prior PRISM theory work. The solution of the PRISM equations 

yields pair correlation functions, gij(r), and the partial collective structure factors, Sij(q). We note 

that some sets of parameters, especially those involving larger particle sizes or longer polymer 

chains (graft or matrix) do not yield any solutions due to numerical issues. 

We use a self-consistent approach linking PRISM theory and Monte Carlo simulations[21], 

where the intra-molecular pair correlation function Ωij that is input to PRISM are provided by MC 

simulations of a single polymer-grafted nanoparticle or a single matrix chain in an external 

medium-induced potential obtained from PRISM theory. The interdependence of the chain 

conformations (Ωij) and the medium-induced potential gives rise to the self-consistency in the 

approach. The advantage of this approach is that it can tackle non-ideal conformations along the 

grafted and matrix polymers that have been neglected in previous studies of homopolymer-grafted 
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nanoparticles[28-31]. Furthermore, in contrast to previous self-consistent PRISM-MC studies on 

homopolymer melts alone[33-38] or on bare particles in a homopolymer melt[39, 40] where the 

self-consistent loop involved MC simulations of only a single matrix polymer chain, we use 

alternate self-consistent loops for a single polymer-grafted particle and a single matrix chain. This 

ensures that we account for non-idealities in both the grafted and matrix chain conformations.  

Since the steps involved in this self-consistent approach are detailed in our previous papers 

[21, 41] where we describe this approach in detail and its application to study polymer grafted 

particles in polymer matrix we present here only a brief overview of this method.  First, the 

pairwise-decomposed medium-induced solvation potential, Δψij(r), is obtained from the PRISM 

equations; this describes the interaction between any two sites i and j as mediated by all the 

remaining sites in the system, i.e., including the matrix, grafts and particles themselves. The form 

of the solvation potential depends on the approximation used in its derivation[33-35, 42-44]and 

we use the PY-form 

 
        rcrsrckTr

jkkkik

PY

ij 
 1ln

 (3a) 

      qHqqS   (3b) 

where ‘*’ in equations 3a denotes a convolution integral in spatial coordinates, k is the Boltzmann 

constant, and T is the temperature. S(q) in equation 3b is the structure factor in terms of intra- and 

inter-molecular pair correlation functions in Fourier space. The solvation potential Δψij(r) is then 

fed to the MC simulation of a single polymer-grafted particle or a single matrix chain. In the MC 

simulation, the model of the polymer-grafted particle or the matrix chain is the same as that used 

in PRISM theory. The grafted chain length distribution (e.g. monodisperse, bidisperse or 

polydisperse) is assigned in the initial configuration of the polymer grafted nanoparticle in the MC 

simulation, and the effect of the polydisperse or bidisperse distribution of graft lengths is present 
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in the PRISM section in the terms in the intra-molecular pair correlation function associated with 

the polymer grafted particle calculated in the MC simulation.  In the simulation the total interaction 

between sites i and j separated by a distance r,  rU
tot

ij  (i, j = graft monomer, particle, or matrix), 

is the sum of Uij(r) and the solvation potential, Δψij(r), obtained from the preceding PRISM step. 

We alternately simulate (a) a single polymer-grafted nanoparticle or (b) an isolated matrix chain 

with the set of solvation potentials from the most recent iteration of PRISM calculations. During 

the production stage of the MC simulation, the intra-molecular structure factors between site pairs 

are sampled every 5x105 steps  and the ensemble average of the intra-molecular structure factors 

is calculated, which serves as the new input for the following iteration of PRISM calculations. The 

self-consistent PRISM-MC iterations are continued until convergence of Δψij(r) between 

iterations. 

4.2.3 Brownian Dynamics Method 

Even though the system we study with PRISM-MC is polymer grafted nanoparticles in an explicit 

polymer matrix, in the MC simulation portion of PRISM-MC we alternately simulate a single 

polymer grafted nanoparticle and a single matrix chain in an effective solvation. This does not 

allow for simultaneous visualization of the polymer grafted nanoparticle in an explicit polymer 

matrix. To visualize and characterize certain physical aspects (e.g. matrix monomer concentration 

from the surface of the grafted particle) we simulate for a select few systems a single polymer 

grafted nanoparticle placed in an explicit monodisperse polymer matrix using NVT Brownian 

Dynamics simulations on the HOOMD-blue platform[45]. Using the HOOMD-blue code we are 

able to access faster simulation time on Graphical Processing Units (GPUs) than possible with 

traditional CPU-based codes. To initialize our simulations, we first build a grafted nanoparticle, 

with chains extending radially from the particle surface, in the absence of any matrix chains. A 
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short simulation with strong Lennard-Jones monomer-monomer attraction is then run to compress 

the grafted chains. This compressed grafted nanoparticle, along with 1500 chains of length Nmatrix, 

are then placed in a large cubic box, which is then compressed to reach the target system packing 

fraction. There are 4 stages of initialization, compression and cooling before the final equilibration 

and production stage. The first stage is run for four million steps at a reduced temperature of T*=5, 

and box length of L=300 in order to help eliminate any bias introduced in the system during the 

initialization. The system is then compressed over 1 million steps to a volume fraction of η=0.1 at 

T*=5. The third stage is another randomization stage at T*=5 for 5 million steps to allow the 

system to equilibrate at η=0.1. During stage 4, the system is cooled linearly, from T*=5 to T*=1, 

over a period of five million steps. During the final stage, the system is sampled for 5 million steps 

at η=0.1 and T*=1. The data collected in the final stage is verified to be equilibrated by ensuring 

the total energy of the system is constant. To be sure that we only use statistically independent 

samples in our averages, we calculate the correlation time of various data during the sampling 

period (final stage). We find that correlation times for our systems for all data range from 5,000 to 

8,000 timesteps, so we sample every 10,000 timesteps.  

4.2.4 Analysis 

In the self-consistent PRISM-MC approach, at the end of the self-consistent loop we obtain the 

equilibrium inter-molecular pair correlation function, gij(r)=hij(r)+1, that characterizes the local 

structure of the grafted nanoparticles and the matrix polymer. The potential of mean force (PMF) 

between two nanoparticles, WPP(r), is calculated from the particle-particle pair correlation 

function, gPP(r) as follows: 

    rgkTrW
PPPP

ln . (4) 
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Using the g(r), we can also calculate the second virial coefficient, B2, a measure of tendency for 

particle aggregation or dispersion. 

 𝐵2 = 2𝜋 ∫ 𝑟2(1 − 𝑔(𝑟))𝑑𝑟 (5)  

where r is a radial coordinate and g(r) is the value of the radial distribution function at radial 

coordinate r.  

To calculate the matrix penetration depth we begin by first truncating and shifting the 

partial pair distribution function between the nanoparticle and the matrix beads, 𝑔𝑃𝑀,  obtained 

from PRISM-MC so that the domain of the function varies between the particle surface and the 

height of the grafted layer, ℎ𝑔. We then calculate the square root of the normalized second moment 

of 𝑔𝑃𝑀 in this domain to obtain the matrix penetration depth, 𝜆. 

 𝜆 = √
∫ 𝑟2𝑔𝑃𝑀
ℎ𝑔
0

(𝑟)𝑑𝑟

∫ 𝑔𝑃𝑀
ℎ𝑔
0

(𝑟)𝑑𝑟
 (6) 

We also calculate concentration profiles of the graft (in the MC simulations within the PRISM-

MC approach, and in the BD simulations) and matrix monomers (only in BD simulations) from 

the nanoparticle center or surface. The number of monomer beads of type Y – grafted or matrix – 

in concentric shells of width r radiating outwards from the particle center is recorded. The 

monomer concentration CY(r) at a distance r from the nanoparticle surface is calculated by dividing 

the average population nY(r) in a spherical shell by its volume: 

 
 

 

rr

rn
rC

Y

Y




2
4  (7) 

4.2.5 Parameters 

The system presented in this paper consists of homopolymer grafted spherical nanoparticles in an 

explicit homopolymer matrix where the grafted polymers are either monodisperse, polydisperse, 
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or bidisperse, and the matrix polymers are monodisperse. The polydispersity of the grafted 

polymers is quantified by polydispersity index (PDI)  is varied from 1 (monodisperse) to 2.5. In 

the case of  the polydisperse grafted polymers, the grafted polymer lengths are chosen from a log 

normal distribution of chain lengths representing a specific PDI, while maintaining the average 

grafted polymer length, Ng,avg, to be 20 Kuhn segments and minimum length to be 8 Kuhn 

segments. To study matrix polymer lengths lower and higher than the average graft polymer 

lengths, the matrix length is varied from 10 Kuhn segments to as high as 300 Kuhn segments, 

however much of the discussion in this paper focuses on 10 and 40 Kuhn segments. The spherical 

nanoparticle diameter is either 5d (where d is the diameter of a Kuhn segment or “monomer”) or 

8d. The polymer grafting density, , on these particles is varied from high (0.65 chains/d2) brush-

like, to intermediate (0.25 chains/d2) and low (0.1 chain/d2) values. The total system packing 

fraction,, is either 0.1 to mimic dense solution of matrix polymers or 0.3 to mimic melt-like 

polymer matrix. The volume fraction of the grafted particles, ,  is maintained low ( = 0.001) to 

model an infinitely dilute concentration of the grafted particles.  
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4.3 RESULTS 

4.3.1 Effect of Graft Length Polydispersity on Effective Interactions and Wetting 

 

Figure 4.1: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between grafted 

nanoparticles (D=5d) at σ=0.65 (a), 0.25 (b), and 0.10  chains/d2 and PDI= 1.0 (circles),  1.5 

(squares), 2.0 (upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20, in 

a dense solution (η=0.1)  of monodisperse homopolymer matrix chains with Nmatrix=10 (solid 

symbols) and Nmatrix=40 (open symbols). The insets have the same axes labels as the main plots. 
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In Figure 4.1, we present the PMF between polymer grafted nanoparticles with monodisperse 

(PDI=1) and polydisperse (PDI>1) homopolymer chains grafted on a spherical particle of size 

D=5d at grafting densities of 0.65, 0.25 and 0.1 chains/d2 and placed in a dense solution (=0.1) 

of monodisperse homopolymer matrix at athermal interactions between all species. At the higher 

grafting density of 0.65 chains/d2 (Figure 4.1a), with monodisperse (PDI=1.0) grafts of Ng,avg=20 

and monodisperse matrix chains of Nmatrix=10 (red solid symbols), the PMF exhibits a repulsion at 

contact and weak attraction at intermediate distances. The corresponding PMF in matrix of 

Nmatrix=40 (red open symbols) also exhibits a repulsion at contact and an attractive well at 

intermediate distances (or mid-range attractive well) that is stronger than that seen at Nmatrix=10. 

The repulsion at contact is attributed to the grafted monomers on the particle sterically repelling 

the other polymer grafted particle as the particle surfaces approach each other, and is observed at 

both matrix lengths. The attractive well at intermediate distances is attributed to the overlap in 

grafted layers brought about by the dewetting of the monodisperse grafted layer by the 

monodisperse matrix chains, which is considerable when the matrix chain lengths are greater than 

the graft chain length. This behavior of increasing mid-range attraction strength with increasing 

ratio of matrix lengths to graft lengths seen in Figure 4.1a has been seen in prior theoretical and 

experimental work for polymer grafted nanoparticles at brush-like grafting densities at the 

monodisperse limits[1]. Here we see that, as polydispersity in grafts (PDI) increases from 1 to 2.5, 

the steric repulsion at contact weakens by 1-2 kT and the attractive well at contact is eliminated, 

for both matrix chain lengths. Additionally, as graft PDI increases, the repulsive tail in the PMF 

increases in strength and extends to larger inter-particle distances, for both matrix lengths.  At the 

intermediate grafting density of 0.25  chains/d2 (Figure 4.1b), the repulsion at contact and the 

attractive well at the monodisperse limit are weaker in strength than the corresponding 



113 

 

monodisperse values at higher grafting density (Figure 4.1a). This reduction in contact repulsion 

and mid-range attraction with decreasing grafting density is also in agreement with prior 

theoretical and experimental work for polymer grafted nanoparticles with monodisperse grafts[1, 

3, 6, 7]. We see that the effect of increasing polydispersity at 0.25 chains/d2 is qualitatively similar, 

but quantitatively weaker than that seen at 0.65 chains/d2
. At the low grafting density of 0.1 

chains/d2  (Figure 4.1c), the PMF exhibits repulsion at contact and no attractive well at intermediate 

inter-particle distances, which is also in agreement with past theoretical studies for these lightly 

grafted systems (see review articles [1, 46]) where wetting/dewetting of the grafted layer by matrix 

chains does not occur due to absence of a grafted brush. At the lowest grafting density, as the graft 

PDI increases, the PMF becomes slightly less repulsive at contact and slightly more repulsive at 

larger distances (Figure 4.1c inset).  

The decrease in repulsion at contact with increasing PDI is driven by the polydisperse 

grafted polymers relieving some monomer crowding in the grafted layer. The relief in crowding is 

caused by a change in grafted chain conformations to maximize the overall conformational entropy 

upon introduction of polydispersity, as seen in recent Monte Carlo simulation (MC) study in 

implicit matrix[16]. This MC study also showed that the effect of polydispersity on chain 

conformations is relatively minor at low grafting densities and more drastic at higher grafting 

densities where chain crowding in the grafted layer is strong at the monodisperse limit. In an 

explicit homopolymer matrix and high grafting density, (0.65 chains/d2) Brownian dynamics 

simulations results (Supplemental Section 4.7.2) show that the grafted chain end-monomer 

concentration profiles show larger values near the particle surface with increasing polydispersity, 

implying higher accessibility of the particle surface. The higher accessibility of the particle surface 

by end monomers is due to the presence of shorter chains in the distribution, as well as the small 
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changes in chain conformations due to reduced monomer crowding resulting from a wider grafted 

chain length distribution. The increasing relief in monomer crowding with increasing PDI, 

especially at higher grafting densities, manifests in the PMF as more significant reduction in 

repulsion at contact at 0.65 chains/d2 for Nmatrix=40 (Figure 4.1c) than at smaller grafting densities.  

Most interestingly, at 0.65 chains/d2 and Nmatrix>Ng,avg (open symbols in Figure 4.1a) the attractive 

well of ~0.1kT in the PMF at intermediate distances seen in monodisperse systems is completely 

eliminated at PDI of 1.5 and above. Additional calculations at smaller PDI (1.05-1.4) 

(Supplementary Figure 4.14) found that attractive well is not eliminated at all PDI>1, and that 

there is a minimum, or a critical, PDI needed to eliminate the attractive well.  Since the strength 

of mid-range attraction is dependent on the grafting density, particle size and average graft and 

matrix length, one can expect the exact value of the minimum or critical PDI needed to eliminate 

this attractive well to also be a function of these parameters.  The attractive well is eliminated at 

higher PDI because the longer chains in the polydisperse chain length distribution a) sterically 

repel the longer chains on the other grafted particle, and b) shift the entropic contributions more 

heavily towards the grafted chains than matrix chains, thus driving matrix chains to wet the grafted 

layer. This increased wetting is also captured via concentration profiles of the matrix monomers 

from the particle surface in the Brownian dynamics simulations (Supplementary Figure 4.11). The 

figure in Supplementary shows that as PDI increases the matrix monomer concentration profile 

goes further into the grafted layer (characterized by the grafted monomer concentration) as 

compared to monodisperse grafts.  

Notably, many of the trends in how the effective interactions change with grafting density 

and ratio of matrix chain length to graft chain length for monodisperse grafts[1] remain the same 

even in the presence of polydispersity in grafts.  
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Figure 4.2: Second virial coefficient for polymer grafted nanoparticles in a polymer matrix as a 

function of graft polydispersity (PDI) at grafting densities of σ= 0.10 chains/d2(solid line), σ= 0.25 

chains/d2(dashed line), and σ= 0.65 chains/d2(dotted line), and total system volume fraction of 

η=0.1. All data is for particle diameter D=5d, average graft length Ng,avg=20, and monodisperse 

matrix length Nmatrix=40.  

The most exciting aspect of the above results is that, since the mid-range attractive well 

has been attributed to drive the nanoscale additives in polymer nanocomposites towards 

aggregation, eliminating the attractive well should stabilize dispersions of particles in systems 

where monodisperse grafts would drive aggregation. The second virial coefficient B2 (Figure 4.2), 

which characterizes the propensity of particles to assemble (negative B2 ) or disperse (positive B2) 

also shows that for all grafting densities as PDI increases the B2 value increases, with the net 

increase being largest at the highest grafting density. Our emphasis here is on the qualitative trend 

of increasing B2 value with increasing PDI, and not the value of B2 itself, as that would depend on 

the specific matrix and graft lengths, particle size, and the direct particle-particle attractive 

interactions as well (which are maintained as athermal here). Here the B2 value is positive even at 

the monodisperse limit, because the matrix chains are only 40 segments long, which is only twice 

that of the average graft length and the nanoparticle-nanoparticle interactions are athermal. Past 

studies have shown that for curved surfaces, when the ratio of matrix length to graft length is five 

to six, the particles aggregate at the monodisperse graft limit[1, 47]. While we only show results 
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for Nmatrix=10 and 40 in this article, we have confirmed at the monodisperse graft limit that as 

Nmatrix increases the attractive well at intermediate distances deepens (Supplementary Figure 4.15), 

thereby increasing tendency for particle aggregation, in agreement with past studies.  Since the 

attractive well is stronger at intermediate distances one might also need larger PDI to eliminate 

that attraction. To test this hypothesis for a few cases, we conducted PRISM-MC calculations of 

polymer grafted particles with grafted chain polydispersity of PDI=2 at the highest grafting density 

at large matrix molecular weights (Supplementary Figure 4.15). We observe that, at PDI=2, as the 

matrix chain length increases, the mid-range attractive well depth is not eliminated completely. 

This observation, along with stronger mid-range attraction at the monodisperse limit at high matrix 

chain lengths  (Supplementary Figure 4.15), confirm our expectation that, at larger matrix chain 

lengths, larger PDI is needed to eliminate the attractive well.  We could not conduct an extensive 

systematic calculation of PMF with increasing PDI at larger Nmatrix because of lack of numerical 

convergence in PRISM-MC runs at long matrix lengths arising from numerical issues at these 

parameters. In this regard, we also note that, for a few systems, at the highest grafting density (0.65 

chains/d2) only, where matrix chains are expected to deplete/dewet large regions in the grafted 

layer near the particle surface, the choice of Percus-Yevick closure leads to negative values in 

gmatrix-particle(r) at low r (where gmatrix-particle(r) should be 0), due to numerical issues. We also add 

that, for these specific systems, all other pair correlation functions are devoid of this issue and do 

not exhibit any negative values. Despite this issue, the PRISM-MC results we show here correctly 

predicts all known (qualitative and some quantitative) trends in monodisperse systems - a) with 

increasing grafting density the mid-range attractive well deepens and shifts to higher inter-particle 

distances (Figure 4.1); b) with increasing matrix chain length the attractive well depth deepens 

(Supplementary Figure 4.15); c) the value of the well depth seen at 0.65 chains/d2 is of the same 
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order of magnitude (~0.3-0.5kT in Supplementary Information) as that seen for similar systems in 

recent simulation studies [3, 48] on systems with graft length of 10 monomers and matrix lengths 

of 10-70 monomers, and particle sizes approximately 10 times monomer size at high grafting 

density (~0.76 chains/nm2). The ability of PRISM-MC to predict the same qualitative trends as 

prior monodisperse studies, and, in certain cases, show quantitative agreement with prior 

simulations for monodisperse grafts, suggests that this approach is capable of predicting correct 

qualitative trends for the polydisperse polymer grafted nanoparticles as well.  

 

Figure 4.3: Penetration depth  (in units of d) of the matrix chains into the grafted layer of 

nanoparticles (D=5d) with polydisperse chains (Ng,avg=20) at σ= 0.10 chains/d2 (circles) and σ= 

0.25 chains/d2 (triangles) in a dense solution (η=0.1) with Nmatrix=10 (a) and Nmatrix=40 (b) 
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Continuing with our discussion of reduction in attractive well depth with increasing 

polydispersity in grafts, while the graft and matrix concentration profiles in the Supplementary 

Section 4.7.2 show the increased region of overlap between the graft monomer concentration and 

matrix monomer concentration profile, to demonstrate the increased wetting of the polydisperse 

grafted layer by the matrix chains we present the penetration depth of the matrix chains into grafted 

layer, λ, (Figure 4.3). Figure 4.3 shows increasing λ with increasing PDI, confirming increased 

wetting of the grafted layer by the matrix chains with increasing PDI for both matrix lengths. Also, 

there is a larger effect of polydispersity on improving wetting at higher grafting densities than 

lower grafting densities. The reason behind this is the same as mentioned earlier. Since the change 

in chain conformations due to increasing polydispersity is more drastic at the higher grafting 

densities than lower grafting densities, the resulting improved wetting of the grafted layer by the 

matrix is also more drastic at higher grafting density. 
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4.3.2 Effect of Increasing Matrix Packing Fraction 

 

Figure 4.4: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between grafted 

nanoparticles (D=5d) at σ=0.65 (a), 0.25 (b), and 0.10  chains/d2 and PDI= 1.0 (circles),  1.5 

(squares), 2.0 (upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20, in 

a melt-like (η=0.3)  matrix of monodisperse homopolymer chains with Nmatrix=10 (solid symbols) 

and Nmatrix=40 (open symbols). The insets have the same axes labels as the main plots. 
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All the results presented so far were at a total packing fraction of =0.1, which we characterize as 

a dense polymer solution rather than a melt through calculations of the compressibility from the 

structure factor S(k) as k0[28]. At a melt-like packing fraction of =0.3, the matrix polymers 

have been shown to induce depletion like attractions between both bare and monodisperse polymer 

grafted nanoparticles at infinitely dilute concentrations[30, 49, 50]. At high grafting densities, this 

matrix-induced depletion-like attraction significantly reduces the steric repulsion at contact and 

deepens the mid-range attractive well (inset of Figure 4.4a versus Figure 4.1a). At low grafting 

densities, the matrix-induced depletion-like attraction manifests itself in the PMF as attraction at 

contact (Figure 4.4c versus Figure 4.1c). Comparing =0.3 and =0.1 at high grafting density (of 

Figure 4.4a versus Figure 4.1a), the repulsion at contact is less sensitive to PDI at =0.3, and a 

larger PDI is needed to eliminate the stronger attractive well at intermediate distances at =0.3 

(inset of Figure 4.4a).  At low grafting density (Figure 4.4c), the effects of polydispersity are 

reduced at =0.3 as compared to =0.1, as the values of attraction at contact (~3kT) dominate at 

all PDI. This implies that in melt-like polymer matrices one can stabilize dispersions using 

polydispersity only at high grafting densities, and the extent of polydispersity needed to stabilize 

dispersions is higher as compared to the graft polydispersity needed to stabilize dispersions in 

dense polymer solutions. In a melt-like polymer matrix at low grafting densities, any effect of 

polydispersity in grafts will be overcome by the dominant matrix-induced depletion attraction that 

will enhance the tendency for aggregation of particles.  
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Figure 4.5: Second virial coefficient for polymer grafted nanoparticles in a polymer matrix as a 

function of graft polydispersity (PDI) at grafting densities of σ= 0.10 chains/d2(solid line), σ= 0.25 

chains/d2(dashed line), and σ= 0.65 chains/d2(dotted line), and total system volume fraction of 

η=0.3. All data is for particle diameter D=5d, average graft length Ng,avg=20, and monodisperse 

matrix length Nmatrix=40.  

This is further confirmed by comparing the second virial coefficient at =0.3 (Figure 4.5) 

as compared to =0.1 (Figure 4.2). At high grafting densities (dotted lines in Figure 4.5 and Figure 

4.2) at each PDI, the B2 is much smaller for =0.3 as compared to =0.1. Similar behavior is seen 

at intermediate grafting density (dashed line in in Figure 4.5 and Figure 4.2). At low grafting 

densities the value of B2 is weakly positive, and does not change with increasing PDI as seen at 

=0.1. Comparison of penetration depth at =0.3 (Supplementary Figure 4.16) and =0.1 (Figure 

4.3) shows that the matrix penetrates a lot less at high matrix packing fraction than in dense 

solutions. This lower penetration depth can be explained partly by the reduction in the thickness 

of the grafted layer at higher matrix packing fraction due to compression of the grafted monomers 

by the melt-like matrix chains[51]. Overall, the net effect of polydispersity is lowered at high melt-

like matrix packing fraction due to matrix-induced depletion interactions dominating the physics 

in these systems. 
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4.3.3 Effect of Particle Diameter or Curvature 

 

Figure 4.6: Potentials of mean force, PMF (in units of kT) versus inter-particle distance, r-D (in 

units of d) between nanoparticles of size D=8d grafted with polydisperse chains at PDI= 1.0 

(circles),  PDI=1.5 (squares), PDI=2.0 (upward facing triangles), and PDI=2.5 (downward 

facing triangles) with Ng,av=20 at a grafting density of σ=0.1 chains/d2 (parts a and b) and 0.25 

chains/d2  (part c) in a dense solution (η=0.1, part a and c) and melt (η=0.3, part b) of 
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monodisperse homopolymers with Nmatrix=40. The insets have the same axes labels as the main  

plots. 

So far we have observed that the effect of polydispersity is enhanced at conditions where there is 

large monomer crowding at the monodisperse limit (e.g. higher grafting density) and therefore the 

relief to that crowding brought about by polydispersity is more significant. Based on that 

observation, one could expect that at constant grafting density, since the monomer crowding is 

larger on surfaces with lower curvature, the effect of polydispersity induced relief in crowding 

would also be larger on surfaces with lower curvature. To test this, we calculated the PMFs for 

grafted particles with diameter D=8d with polydisperse grafts at 0.1 and 0.25 chains/d2 in a dense 

homopolymer matrix (Figure 4.6a, (Figure 4.6c) and at 0.1 chains/d2 in a melt-like homopolymer 

matrix ((Figure 4.6b) with Nmatrix=40. In a dense solution, upon comparing the PMF for D=8d 

(Figure 4.6a and (Figure 4.6c) to the corresponding PMF for D=5d (open symbols in Figure 4.1c 

and Figure 4.1b) we observe the following. At the monodisperse graft limit the repulsion at contact 

and mid-range attractive well are stronger for D=8d as compared to D=5d when Nmatrix=40 for both 

grafting densities.  
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Figure 4.7: Potentials of mean force, PMF (in units of kT) versus inter-particle distance, r-5 (in 

units of d) between nanoparticles of size D=8d (open symbol) and D=5d (solid symbols) grafted 

with polydisperse chains at PDI= 1.0 (a),  PDI=1.5 (b), and PDI=2.0 (c)with Ng,avg=20 at a 

grafting density of σ=0.25 chains/d2, in a dense solution (η=0.1) of monodisperse homopolymers 

with Nmatrix=40. The insets have the same axes labels as the main  plots. 
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Figure 4.7a presents a direct comparison of the monodisperse grafts on D=5d to D=8d at 

0.25 chains/d2 grafting density in a dense solution of matrix of length Nmatrix=40 and confirms the 

above trend of higher repulsion at contact and stronger mid-range attraction in D=8d as compared 

D=5d. Figure 4.7a also shows the slight shift of the mid-range attraction to larger inter-particle 

distances. These trends are in accord with previous studies of monodisperse grafts [6, 11] that 

showed that decreasing curvature increases the monomer crowding near the particle surface,  

increases the grafted layer thicknesses, and decreases the propensity of matrix to wet the grafted 

layer. As graft polydispersity increases, the repulsion at contact is reduced and the attractive well 

at intermediate distances is replaced by a long repulsive tail for D=8d, similar to D=5d. 

Table 4.1: Minimum values for the potentials of mean force, PMF (in units of kT), versus PDI 

between nanoparticles of size D=8d  and D=5d ( grafted with polydisperse chains  with Ng,avg=20 

at a grafting density of σ=0.25 chains/d2, in a dense solution (η=0.1) of monodisperse 

homopolymers with Nmatrix=40. 

PDI D=5d D=8d 

1 -0.0436 -0.1363 

1.5 -0.0002 -0.0032 

2 -0.0001420 -0.0000230 

 

Table 1 presents a direct comparison of the attractive well depth for D=8d and D=5d at  

PDI=1.5 and 2, grafting density of 0.25 chains/d2 and Nmatrix=40 which demonstrates that, at 

PDI=1.5 in case of D=8d, we can reduce a much larger attractive well seen at PDI=1 as compared 

to the relatively smaller attractive well of D=5d.  At 0.1 chains/d2 and =0.3 (Figure 4.6b for D=8d, 

Figure 4.4c for D=5d) we do not see any significant qualitative differences in polydispersity effects 

for D=8d and D=5d, as expected since the crowding is minimal at that low grafting density and 
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the matrix induced depletion-like attraction starts to dominate.  The trends seen so far suggest that 

with increasing diameter or decreasing curvature, we can expect polydispersity in grafts to play a 

larger role in reducing the tendency of grafted particle aggregation.. For low curvatures, as the 

well-depth deepens significantly in the monodisperse limit with increasing matrix length beyond 

those presented here, we might also need larger polydispersity to eliminate the relatively stronger 

mid-range attraction. 

4.3.4 Effect of Distribution of Chain Lengths 

 

Figure 4.8: Potentials of mean force between nanoparticles of size D=5d with polydisperse chains 

of PDI=1.0 (circles) and PDI=2.0 (other symbols) with Ng,av=20 and Ng,min=8 at a grafting density 

of σ=0.65 ch/nm2, for five different log-normal distributions, in  a) a dense solution (η=0.1) and 



127 

 

b) melt (η=0.3) of monodisperse homopolymers with Nmatrix=40. Each symbol (besides circle) 

corresponds to a different log-normal chain distribution. 

The key result in this paper is that when polydisperse homopolymer chains with a broad chain 

length distribution are grafted on nanoparticle surfaces they eliminate or reduce the mid-range 

attractive well in the PMF that has been shown to cause aggregation in monodisperse limits. To 

ensure that our choice of a specific discretized chain length distribution, that mimics a continuous 

log-normal distribution, does not bias the above results, we calculated the PMF for five different 

chain length distributions (all log-normal) for a select few systems. In Figure 4.8 we present PMF 

between nanoparticles of size D=5d with polydisperse chains of PDI=1.0 (circles) and five 

different log-normal distributions with PDI=2.0 (other symbols) with Ng,avg=20 at a grafting 

density of σ=0.65 chains/d2 and in a dense solution or =0.1 (Figure 8a) and melt-like matrix 

=0.3 (Figure 4.8b) of monodisperse homopolymers with Nmatrix=40. Clearly, for both =0.1 and 

0.3, the PMF between the particles with polydisperse chain length distribution are quantitatively 

similar for the five distributions, and quantitatively distinct from the corresponding PMF between 

particles with monodisperse grafts. We also expect that the choice of another form of distribution 

(different from log normal) would not change the effect of polydispersity removing the mid-range 

attraction, because the distribution we have chosen is a discretized version of a continuous log-

normal distribution and another discretized broad distribution of chain lengths should bring about 

the same effect. This then begs the question- how will the PMF obtained for particles with a 

bimodal distribution of graft lengths or bidisperse graft length distribution compare with that of 

the PMFs seen so far with a statistically polydisperse distribution. 
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4.3.5 Polydisperse versus Bidisperse. 

 

Figure 4.9: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between grafted 

nanoparticles (D=5d)  with monodisperse homopolymer grafts with PDI= 1.0 (solid line),  

polydisperse homopolymer grafts PDI=1.5 (solid circle), and bidisperse homopolymer grafts 

PDI=1.5 (open circle), all with Ng,avg=20 and grafting density σ=0.65 (left), and 0.25 (right) 

chains/d2  in a in a dense solution (η=0.1) (top row) or melt-like (η=0.3) (bottom row) 

monodisperse homopolymer matrix with Nmatrix=40. The insets have the same axes labels as the 

main plots. 

In Figure 4.9, we compare PMFs from particles grafted with a log-normal chain length distribution 

(solid circles) to those grafted with a bidisperse chain length distribution (open circles) at the same 

PDI=1.5, and the corresponding monodisperse grafts with same average graft length (no markers). 
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These bidisperse chain length distributions have equal number of monodisperse short (=6 

segments) and monodisperse long (=36 segments) chains with Ngraft,avg =20 and PDI=1.5. At both 

0.65 and 0.25 chains/d2 and both =0.1 and 0.3, we observe distinct behavior between the 

monodisperse, polydisperse (log-normal) and bidisperse PMFs both at contact and at intermediate 

distances, when Nmatrix is greater than Ngraft,avg. At high grafting density (0.65 chains/d2) and dense 

solution matrix (Figure 4.9a), the repulsion at contact is most reduced by a bidisperse distribution 

while the attractive well at intermediate distances is most reduced by the polydisperse distribution. 

The former is because half the chains in the bidisperse distribution are short (6 monomers), while 

there are only six chains in the polydisperse distribution (PDI=1.5) that are less than 10 monomers 

long. The latter is because in the polydisperse distributions the long chains are significantly longer 

than the long chains in the bidisperse distribution (Ngraft,long=36 monomers). We have attributed 

the elimination of mid-range attraction in the PMF to i) the presence of these significantly long 

chains sterically hindering other long chains and ii) increased graft chains mixing with the matrix 

chains due to reduced grafted layer crowding in the polydisperse system. The fact that the long 

chains in the bidisperse distribution are shorter than the Nmatrix (systems where aggregation is 

observed) and yet the bidisperse distribution is able to reduce the mid-range attraction emphasizes 

the role of lowered monomer crowding (brought about having short and long chains) in reducing 

the mid-range attraction.  

In the melt-like matrix (Figure 4.9b) we also see a shift in the mid-range attraction to the 

lower distances in the case of polydisperse distribution as compared to bidisperse distribution. In 

the melt-like matrices the matrix induced depletion attraction pushes the grafted particles together. 

The inter-particle distance where the two grafted layers start to overlap due to this depletion-like 

attraction corresponds to the position of the mid-range attraction in the PMF. This overlap between 
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the grafted layers occurs at the outer-most region of the grafted layer in the monodisperse case, 

and therefore corresponds to the distance where the graft concentration profile drops close to zero. 

The graft concentration profile is slightly different in the the polydisperse case when compared to 

the bidisperse case (Supplementary Figure 4.17). Close to the particle surface, the polydisperse 

and bidisperse graft monomer concentrations profiles have similar values. At intermediate 

distances from the particle surface, the bidisperse has the lowest concentration; the region where 

the long chains of the bidisperse distribution have a “stem-like” conformation[51] and 

polydisperse chains have a distribution of chain conformations. At larger distances from the 

particle surface (outer region of the grafted layer) the bidisperse concentration is higher than 

polydisperse and monodisperse because of the “crown” region of the long chains in the bidisperse 

region[51]. Due to these features in the grafted layer monomer distribution, the overlap of two 

grafted layers and the corresponding mid-range attractive well occurs at slightly different inter-

particle distances for polydisperse, bidisperse, and monodisperse graft distributions. The above 

trends between bidisperse and polydisperse distributions on the mid-range attraction are also 

observed at 0.25 chains/d2 (Figure 4.9b and Figure 4.9d).  

These results in Figure 4.9 suggest that for this specific type of bidisperse distribution 

(equal number of short and long chains), with the same average graft length and PDI as 

polydisperse distribution, the differences of monomer arrangement within the grafted layer 

between polydisperse and bidisperse grafts leads to polydisperse grafts being able to stabilize 

particle dispersion better than bidisperse grafts, in dense polymer matrix. However, we note that 

if we relaxed some of the conditions chosen in Figure 4.9 (e.g. equal number of short and long 

chains) or change the average graft length in the bidisperse distribution, there could be cases where 

the bidisperse or bimodal distributions provide better dispersion of particles as compared to a 
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polydisperse distribution, In melt-like polymer matrix, the effect of bidispersity or polydispersity 

is lower than the corresponding dense polymer matrix; the attractive well in the PMF is not 

removed in melt-like matrix at the PDI where the corresponding dense solution matrix has been 

eliminated by polydispersity/bidispersity. The different positions for the mid-range attraction in 

the PMF between grafted particles with bidisperse and polydisperse grafted chains suggests that 

the choice of graft length distribution can be used as a way to tune the structure (e.g. inter-particle 

spacing) within the aggregates of these grafted particles. 

4.4 CONCLUSION 

In summary, this article presents a theory and simulation study that demonstrates how 

polydispersity in polymers grafted on spherical nanoparticles affects the effective inter-particle 

interactions between homopolymer grafted nanoparticles in a chemically identical homopolymer 

matrix. Graft polydispersity reduces the strength of repulsion at contact and weakens the attractive 

well at intermediate inter-particle distances in the potential of mean force (PMF) between grafted 

particles. This effect is attributed to polydispersity in grafted chain lengths reducing the grafted 

layer monomer crowding seen at monodisperse limits, which in turn increases wettability of the 

grafted layer by the matrix chains. The reduction/elimination of the attractive well suggests that 

graft polydispersity can reduce the tendency for particle aggregation, even stabilizing dispersion 

in some cases where the monodisperse grafts would cause aggregation. As the grafting density 

decreases from a brush-like grafting density, the effect of polydisperse grafts on the potential of 

mean force reduces because the relief in monomer crowding brought about by polydisperse grafts 

is insignificant at low grafting density. As the matrix packing fraction increases, the matrix-

induced depletion-like attraction between the grafted particles becomes dominant, reducing the 

above graft polydispersity effects. At high grafting density, this matrix induced depletion-like 
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attractions results in a need for higher polydispersity to eliminate the mid-range attraction 

completely, while at low grafting density the effect of polydispersity is completely removed. At 

the monodisperse graft limit the larger particles (lower curvature) have increased monomer 

crowding, especially at high grafting densities, compared to smaller (highly curved) particles, and 

as a result the effect of polydispersity is enhanced at lower curvature surfaces.  

Comparison of bidisperse and polydisperse distributions of graft lengths elucidate the role 

of long chains in removing the attractive well by essentially adding a repulsive tail to the PMF 

through long grafts sterically repelling the grafts on the other particle. At the same PDI and average 

graft length, the presence of longer “long” chains in the polydisperse distribution eliminates the 

attractive well in the PMF better than the shorter “long” chains in the bidisperse distribution. In a 

bidisperse distribution with both short and long chains that are shorter than the matrix chains, we 

see reduction in mid-range attraction attributed to the lowered monomer crowding in the bidisperse 

grafted layer, that in turn increases the grafted layer wetting by the matrix chains. In a melt-like 

matrix, where the matrix-induced depletion attraction starts to dominate over the polydispersity 

effects, the different conformations of the grafted chains in the bidisperse and polydisperse 

distribution, captured through the graft monomer concentration profiles, change the location of the 

attractive well in the potential of mean force.  

In conclusion, one of the key findings in this paper is that polydispersity can stabilize 

dispersions even when the average graft polymer molecular weight is lower than matrix polymer 

molecular weight, conditions that would cause particle aggregations for monodisperse grafts. This 

study motivates synthetic efforts to be directed towards obtaining controlled polydispersity in 

chain lengths as a design tool to program inter-particle interactions in a polymer matrix, and in 

turn the morphology of the polymer nanocomposite.  
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4.7 SUPPLEMENTARY 

4.7.1 Additional Model Details 

We model polymer grafted spherical nanoparticle as a hard spherical nanoparticle of diameter D 

with Ngraft freely jointed homopolymer chains permanently attached symmetrically on the particle 

surface, and model the matrix chain as a freely jointed homopolymer chain. The polymer chains 

(grafted and matrix) consist of monomer beads of diameter d chosen to mimic a Kuhn segment of 

a linear synthetic polymer. While chains in the Monte Carlo (MC) simulations have a constant 

bond length, monomers in the Brownian Dynamics (BD) simulations are connected together with 

harmonic bonds with force constant k=30 and bond rest length r0=1.4d: 

 𝑉𝐻(𝑟) =
1

2
𝑘(𝑟 − 𝑟0)  (8) 

where k is the force constant, r is the center to center distance between the bonded beads, and r0 is 

the bond rest length. The grafted chains are either monodisperse, with chains of equal length (or 

number of monomers), or polydisperse with a log normal distribution or bidisperse with equal 

number of short and long chains. In the case of polydisperse grafted chains, we quantify the 

polydispersity via the polydispersity index (PDI):   

 𝑃𝐷𝐼 =
𝐸[(𝑁𝑔𝑟𝑎𝑓𝑡)

2
 ]

𝐸[𝑁𝑔𝑟𝑎𝑓𝑡]
2 =

�̅�𝑔𝑟𝑎𝑓𝑡,𝑤

�̅�𝑔𝑟𝑎𝑓𝑡,𝑎𝑣𝑔
 (9) 

 where E[(Ngraft)
n] is the nth moment of the distribution of Ngraft, N̅graft,w is the weight average 

molecular weight of the graft length distribution, and N̅graft,avg is the number average molecular 

weight. For systems with graft PDI>1, we fit the chain lengths to a log-normal distribution with 

minimum and number average graft lengths Ngraft,min=8 and Ngraft,avg=20. The probability density 

function for the log-normal distribution is: 

 𝑃(𝑁𝑔𝑟𝑎𝑓𝑡) =
1

𝑁𝑔𝑟𝑎𝑓𝑡𝜎√2𝜋
exp (−

(ln𝑁𝑔𝑟𝑎𝑓𝑡−𝜇)
2

2𝜎2
) (10) 
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where μ and σ  are the mean and standard deviation of ln(Ngraft). We generate our desired chain 

distribution by first solving the following linear system for the log-normal distribution parameters 

using PDI, Ngraft,avg, and Ngraft,min as inputs. 

 𝜇 +
1

2
𝜎 = ln(�̅�𝑔𝑟𝑎𝑓𝑡,𝑎𝑣𝑔 − 𝑁𝑔𝑟𝑎𝑓𝑡,𝑚𝑖𝑛) (11a) 

𝜇 + 𝜎 =
1

2
ln [𝑃𝐷𝐼(�̅�𝑔𝑟𝑎𝑓𝑡,𝑎𝑣𝑔)

2
− 2(𝑁𝑔𝑟𝑎𝑓𝑡,𝑚𝑖𝑛)(�̅�𝑔𝑟𝑎𝑓𝑡,𝑎𝑣𝑔) + (𝑁𝑔𝑟𝑎𝑓𝑡,𝑚𝑖𝑛)

2
]  (11b) 

The μ and σ are then used with the above equation to generate a distribution of chain lengths with 

the desired properties.  

Supplementary Figure 4.10 shows the distribution of chain lengths for the system whose results 

are presented in Figure 4.1 in main manuscript. 

 

Figure 4.10: Chain length distributions of polydisperse chains grafted on nanoparticles (D=5d) 

at σ=0.1 chains/d2 (a), σ=0.25 chains/d2 (b),  σ=0.65 chains/d2 (c), and PDI= 1.5 (squares), 2.0 

(upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20 and Ng,min=8 
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4.7.2 Brownian Dynamics Simulation Results 

In Supplementary Figure 4.11 - Figure 4.13 we present the total monomer concentration profiles 

for grafted chains and matrix chains, distribution of average radius of gyration of matrix chains, 

end-monomer concentration profiles, respectively. 

 

 

Figure 4.11: Total monomer concentration profiles (in units of d-3)  versus distance from particle 

surface, r-(D+d)/2 (in units of d), between grafted (filled symbols) or matrix chains (open symbols) 

and grafted nanoparticles (D=5d) at σ=0.65, 0.25, 0.10 chains/d2 and PDI= 1.0 (circles),  1.5 

(squares), 2.0 (upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20, in 

a dense solution (η=0.1) of monodisperse homopolymer matrix chains with Nmatrix=40 (top) and 

Nmatrix =10 (bottom). 
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This figure shows that with increasing polydispersity in the grafted chains we see increasing 

penetration of the grafted layer by the matrix chains. The grafted chain concentration profile also 

shows changes with increasing polydispersity. We do not see differences near the particle surface. 

We see lower graft monomer concentration at intermediate distances from the particle surface for 

higher PDI attributed to the reduced monomer crowding brought about by polydispersity. At 

farther distances from particle surface we see higher graft monomer concentration at high PDI due 

to the presence of longer chains in the highly polydisperse distribution. 

 

 

Figure 4.12: Average radius of gyration of the monodisperse matrix chains as a function of 

distance of center of mass of matrix chain from particle surface, r-(D+d)/2 (in units of d) for 

grafted monomers  at varying polydispersity of grafted chains on nanoparticles have diameter 

D=5d at grafting density σ=0.65 chains/d2  in a dense solution (η=0.1) of monodisperse 
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homopolymer matrix chains with Nmatrix=40 (a) or Nmatrix=10 (b) . For both plots, the symbols 

correspond to the polydispersity of the grafted chains as: PDI = 1.0 (circles), 1.5 (squares), 2.0 

(upward triangles), and 2.5 (downward triangles). The solid symbols represent the mean value 

while the open symbols represent the upper and lower limits of the error bar. 

This figure characterizes the matrix conformations as a function of distance of matrix chain from 

the particle surface. In both cases of matrix chain lengths equal to 10 and 40 segments the error 

bars are large enough that we do not expect there to be a significant differences in matrix 

conformations as a function of distance. However we do note the slight increase in the mean matrix 

chain radius of gyration as the matrix chains approach the particle surface. This could be expected 

as the matrix chains might have to stretch while penetrating a densely grafted polymer layer.   

 

Figure 4.13: End monomer concentration profiles (in units of d-3)  versus distance from particle 

surface, r-(D+d)/2 (in units of d), between grafted (filled symbols) or matrix chains (open symbols) 
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and grafted nanoparticles (D=5d) at σ=0.65, 0.25, 0.10 chains/d2 and PDI= 1.0 (circles),  1.5 

(squares), 2.0 (upward facing triangles), and 2.5 (downward facing triangles) with Ng,avg=20, in 

a dense solution (η=0.1) of monodisperse homopolymer matrix chains with Nmatrix=40 (top) and 

Nmatrix =10 (bottom). 

This figure characterizes the distribution of the end monomers of the grafted chains within the 

grafted layer as a function of polydispersity index. As seen in prior work by Dodd and Jayaraman 

where the polymer grafted nanoparticles were in an implicit matrix, we see a shift of the end 

monomer distribution closer to the surface and becomes narrower with increasing PDI. 
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4.7.3  Additional PRISM-MC Results 

4.7.3.1 PMF for small changes in PDI 

 

 

Figure 4.14: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between 

grafted nanoparticles (D=5d) at σ=0.65 chains/d2 and PDI= 1 – 1.5 with Ng,avg=20, in a dense 

solution (η=0.1)  of monodisperse homopolymer matrix chains with and Nmatrix=40.  

In the main paper at 0.65 chains/d2 and Nmatrix>Ng,avg (open symbols in Figure 4.1a) the 

attractive well of ~0.1kT at intermediate distances seen in monodisperse systems is completely 

eliminated at PDI of 1.5 and above. The above figures shows additional calculations at smaller 

PDI (1.05-1.4) demonstrating that there is a minimum PDI needed to eliminate the attractive well. 

Since this minimum PDI needed to remove this attraction is dependent on the strength of the mid-

range attraction (which is a function of grafting density, particle size and average graft and matrix 

lengths) we expect this minimum PDI to be a function of grafting density, particle size and average 

graft  and matrix length. 
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4.7.3.2 PMF for long matrix lengths 

While we only show results for Nmatrix=10 and 40 in the main manuscript we have confirmed at 

the monodisperse graft limit that as Nmatrix increases the attractive well at intermediate distances 

deepens thereby increasing particle aggregation (parts a and b), in agreement with past studies.   

 

Figure 4.15: PMF (in units of kT)  versus inter-particle distance, r-D (in units of d), between 

grafted nanoparticles (D=5d) at σ=0.65 chains/d2 in a polymer solution (η=0.1) (top row) or melt-

like (η=0.3) (bottom row) matrix of monodisperse homopolymer chains. Parts a and b are for 

monodisperse grafts of length 20 and monodisperse homopolymer matrix of Nmatrix=10 (triangles), 

Nmatrix=40 (circles), Nmatrix=80 (squares). Parts c and d are for polydisperse grafts with PDI=2.0 

and monodisperse homopolymer matrix with Nmatrix=10 (solid circles), 40 (squares), 100 (upward 

triangles), 200 (downward triangles), 300 (open circles). The insets have the same axes labels as 

the main plots.   
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Parts c and d show that with grafts of polydispersity PDI=2 the mid-range attraction is weakened 

for all matrix lengths, and completely removed for lower matrix lengths where the mid-range 

attraction at the monodisperse limit (a and b) are weaker than the longer matrix lengths. This figure 

supports the comment in the main manuscript that as the matrix length increases we would need 

larger PDI to remove the tendency of the grafted particles to aggregate. In other words, larger PDI 

is needed to induced wetting of the grafted layer by longer matrix chains. 

  



146 

 

4.7.3.3 Effect of increasing matrix packing fraction on penetration depth  

 

 

Figure 4.16: Penetration depth  (in units of d) of the matrix chains into the grafted layer of 

nanoparticles (D=5d) with polydisperse chains (Ng,avg=20) at σ= 0.10 chains/d2 (circles) and σ= 

0.25 chains/d2 (triangles) in a dense solution (η=0.3) with (a) Nmatrix=10  and (b) Nmatrix=40. 
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4.7.3.4 PMF for Polydisperse distribution versus Bidisperse distribution  

 
Figure 4.17: (left) PMF (in units of kT)  versus inter-particle distance, r-D (in units of d) and graft 

monomer concentration profile (right) for grafted nanoparticles (D=5d)  with monodisperse 

homopolymer grafts with PDI= 1.0 (blue line),  polydisperse homopolymer grafts PDI=1.5 

(maroon line), and bidisperse homopolymer grafts PDI=1.5 (green line), all with Ng,avg=20 and 

grafting density σ=0.65  chains/d2  in a in a dense solution (η=0.1) of monodisperse homopolymer 

matrix with Nmatrix=40. The insets have the same axes labels as the main plots. 
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5 IDENTIFYING THE IDEAL CHARACTERISTICS OF THE GRAFTED POLYMER CHAIN 

LENGTH DISTRIBUTION FOR MAXIMIZING DISPERSION OF POLYMER GRAFTED 

NANOPARTICLES IN A POLYMER MATRIX 
Adapted from: Macromolecules 46 (22), 9144-9150 

5.1 INTRODUCTION 

Linking the morphology of nanoparticles in a dense polymer matrix to the underlying molecular 

features of the nanoparticles and polymer matrix is important for the rational design of polymer 

nanocomposite materials for various applications in the automobile, electronics, optics, and 

photonics industries. [1, 2] Furthermore, since the macroscopic properties of these polymer 

nanocomposites are strongly correlated with their microscopic morphology, the goal of such a 

rational design is to controllably create target morphologies. The morphologies in polymer 

nanocomposites fall broadly into two categories: dispersed morphologies, where the nanoparticles 

seek to maximize interparticle distance within the matrix, and aggregated morphologies, where 

the nanoparticles can assemble into a variety of isotropic or anisotropic structures within the 

matrix. Dispersed morphologies are generally needed for applications where the mechanical 

properties of the nanocomposite are important, while ordered aggregates of nanoparticles are 

desired in optics and electronics applications.[2, 3]  One way to control the morphology of the 

nanoparticles in a polymer matrix is by functionalizing the surface of the nanoparticles with 

polymers that are chemically similar or dissimilar to the polymer matrix in order to tune the 

effective particle-particle and particle-matrix interactions.[4-16] When the grafted polymers are 

the same chemistry as the matrix polymers, and are functionalized at high grafting density, the 

ratio of graft to matrix molecular weight (Ngraft/Nmatrix) dictates whether the grafted nanoparticles 

will aggregate or disperse in the polymer matrix, with the grafted particles aggregating when 
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Ngraft/Nmatrix <1, and dispersing when Ngraft/Nmatrix>1.[5, 8] In these densely grafted systems, since 

the graft and matrix polymers are the same chemistry, the morphology at these Ngraft/Nmatrix 

conditions is driven primarily by the entropy of the graft and matrix polymers.[17, 18] When 

Ngraft/Nmatrix is small, the matrix chains penetrate, or wet, the grafted polymer layer. When 

Ngraft/Nmatrix is large, the matrix chains deplete, or dewet, the grafted layer. Promoting wetting 

(dewetting) of the grafted polymer layer by the matrix leads to dispersed (aggregated) 

morphologies. The exact value of Ngraft/Nmatrix where the systems crosses over from dispersed to 

aggregated morphologies depends on the value of particle/substrate curvature and the grafting 

density. For example, at high particle curvature and high grafting densities past studies have shown 

that Ngraft/Nmatrix >4-5 causes dispersion of the polymer grafted particles in a chemically identical 

polymer matrix. [5, 8, 19] And, as the curvature of the grafted surface decreases towards zero 

(approaching a flat surface) the value of Ngraft/Nmatrix where the wetting to dewetting transition 

happens decreases, due to reduced volume available within the grafted layer at low curvatures. 

 In recent theoretical work, we have shown that polydispersity in grafted homopolymer 

chain lengths stabilizes dispersions of grafted nanoparticles (high curvature) in a monodisperse 

polymer matrix with the same chemistry as the grafted polymer, even when the average 

Naverage_graft/Nmatrix<1, conditions where the corresponding monodisperse case would cause 

aggregation.[20, 21]  Polydisperse grafts stabilize nanoparticle dispersion a) by introducing steric 

repulsion due to the long chains in the polydisperse graft length distribution, which are not present 

in the monodisperse system with same average graft length, and b) by reducing the monomer 

crowding in the grafted layer, allowing the matrix chains to more easily wet the grafted layer. 

Similar dispersion stabilizing effects are also seen with bidisperse grafted polymer chain length 

distributions. [20, 22, 23] In agreement with our theoretical prediction, recent experimental work 
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by Schadler, Benicewicz and coworkers shows that a bimodal grafted chain length distribution 

greatly improves the dispersion of grafted nanoparticles in a polymer matrix over that observed 

with a monomodal graft length distribution.[24-26] These experiments suggest that the improved 

dispersion comes from a combination of the short grafted chains shielding the particle-particle 

attractions, and the sparsely grafted long chains improving the wetting of the grafted layer by the 

matrix chains. It is important to note that while our previous theoretical predictions [20, 21] were 

obtained using athermal interactions to capture purely the entropic effect of wetting/dewetting in 

the presence of polydisperse grafts, these experiments [24-26] were conducted in the presence of 

strong particle-particle attractions. Therefore, in this paper using theory and simulations, first, we 

elucidate how the dispersion stabilizing effect of polydisperse grafts seen previously at athermal 

conditions is altered in the presence of significant particle-particle attraction for bidisperse and 

polydisperse graft distributions. Second, we extract the role of the short and long grafted chains in 

shielding nanoparticle-nanoparticle attractions and improving wetting of the grafted layer, so as to 

identify the ideal features of a densely grafted polymer length distribution that can maximize the 

dispersion of the polymer grafted nanoparticles in a chemically identical matrix polymer.  

 In this paper we find that for densely grafted systems, particle-particle attraction has little 

effect on the ability of graft length polydispersity to stabilize dispersions of polymer grafted 

nanoparticles in a polymer matrix. At high grafting density increasing particle-particle attraction 

leads only to minor changes in the potential of mean force (PMF) between two polymer grafted 

particles in a chemically identical matrix as compared to that at purely athermal interactions, and 

does not significantly alter the graft and matrix monomer concentration profiles. In the presence 

of particle-particle attraction strength of 5kT, the PMF between two polymer grafted particles with  

bidisperse graft length distributions with equal number of short and long chains has a stronger 
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attraction at contact and reduced close range repulsion as compared to particles with log-normal 

polydisperse graft length distributions, at same polydispersity index and average graft length. This 

is because, in the presence of particle-particle attraction, the bidisperse distribution with equal 

number of short and long chains is worse at shielding particle-particle attraction than the log-

normal distribution at the same polydispersity index and average graft length,  due to reduced 

monomer concentration  (for bidisperse case) near the particle surface which allows the 

nanoparticles to more easily approach one another to within the range of the attractive particle-

particle potential. In contrast, we find similar monomer concentration profiles and consequently 

similar steric repulsion and mid-range attraction in the PMF for particles with bidisperse graft 

length distribution with many short chains and few long chains and particles with  polydisperse 

log-normal graft length distribution with the same average graft length and polydispersity index, 

These results suggest that to find an optimal graft distribution that best disperses the polymer 

grafted particles it is important to understand the individual role of the short and long chains on 

the resulting PMF between the particles in the polymer matrix. We find that the screening of the 

particle-particle attraction and the resulting value of PMF close to contact is driven not by the short 

chains alone,  but primarily by the number and arrangement of the monomers near the surface 

irrespective of the chain (short or long) the monomers belong to. The length and crowding of the 

long chains determine the location and strength of the steric repulsion and mid-range attraction in 

the PMF. We also find that the PMF between particles with a bidisperse distribution cannot be 

predicted by the simple addition of the PMF between particles with only the short chains and PMF 

between particles with only the long chains, highlighting the coupled roles of the short and long 

chains on the potential of mean force. Based on these comparisons, we find that the ideal graft 

length distribution that maximizes dispersion of a polymer grafted particle in a chemically identical 
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matrix polymer, is one that provides a) maximum monomer crowding near the surface of the 

nanoparticle, in order to shield short-range particle-particle attraction and sterically repelling other 

approaching grafted nanoparticles, and b) minimal crowding near the edge of the grafted layer in 

order to maximize wetting of the grafted layer by the matrix chains. Polydisperse (log-normal) 

graft length distributions and bidisperse graft length distributions with few long chains among 

many short chains satisfy this criterion, and better disperse grafted particles in a chemically 

identical matrix than monodisperse grafts or bidisperse graft length distributions with equal 

number of short and long chains, with equivalent average graft length. 

5.2 APPROACH 

5.2.1 Model 

We model a homopolymer grafted spherical nanoparticle as a hard spherical nanoparticle of 

diameter D =5d, where d is the size of 1 Kuhn segment of a generic homopolymer, with polymer 

chains permanently grafted randomly on the particle surface at total grafting density = 0.65 

chains/d2 (brush-like grafting density). Through visual analysis we confirm that the grafting points 

of the chains are approximately equally spaced, ensuring uniform grafting density on the particle 

surface. We model the matrix and graft homopolymer chains as freely jointed chains, with 

monomer beads of diameter d and constant bond length equal to 1.4d. The matrix chain lengths 

are monodisperse throughout this study and denoted by Nmatrix. Three types of grafted 

homopolymer chain length distributions are considered: i) monodisperse with all chains of length 

Ngraft=20, ii) polydisperse log-normal distribution with minimum graft length Ngraft,min=8 and 

average graft lengths Ngraft,avg=14 and 20; the polydispersity of the grafted chains is characterized 

by a polydispersity index (PDI) [20, 21], and iii) bidisperse distribution with short and long chains 

at equal grafting densities (σs≈σl≈0.32 chains/d2 ) and Ngraft,avg=20, or bidisperse distribution with 
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unequal grafting densities (σs>σl chains/d2) and varying Ngraft,avg; the bidispersity is characterized 

both using PDI as well as graft length ratio, =Nlong/Nshort. Since the focus here is to find 

distributions that stabilize dispersion we choose monodisperse matrix chains of length Nmatrix = 40 

Kuhn segments to maintain Ngraft,avg/Nmatrix<1, condition where aggregation is expected at the 

monodisperse graft limit.  

5.2.2 Method 

We use self-consistent Polymer Reference Interaction Site Model (PRISM)-Monte Carlo (MC) 

simulation method described in detail in Refs [27, 28] where we solve non-linear integral equations 

that relate the total site-site inter-molecular pair correlation function, hij(r), to the inter-molecular 

direct correlation function, cij(r), and intra-molecular pair correlation function, ωij(r), between all 

i and j sites in the system (Equation 1), along with atomic closures.[29, 30]  

           qHqqCqqH   (1a) 
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We use Percus Yevick (PY) closure for all pairwise interactions except particle-particle which is 

represented with hypernetted chain (HNC) closure, as shown in Equation 2. 
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We choose to keep this section brief as all the details of this PRISM-MC approach, the self-

consistent loop, and the choice of closures are presented in a recent review by Jayaraman about 

this method and its application to study polymer grafted particles. [27] As the numerical solution 
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of the self-consistent PRISM-MC equations we obtain the equilibrium inter-molecular pair 

correlation function, gij(r)=hij(r)+1, that characterizes the local structure of the grafted 

nanoparticles and the matrix polymer. The effective interactions or potential of mean force (PMF) 

between two nanoparticles is calculated from the particle-particle pair correlation function, gPP(r) 

as    rgTkrPMF
PPB

ln . See Supporting Information Figure 5.6 for a schematic of the PMF 

and the information gleaned from the various features of the PMF. Using gPP(r) we also calculate 

the second virial coefficient, B2, a measure of the tendency for particle aggregation or dispersion 

as 𝐵2 = 2𝜋 ∫ 𝑟2(1 − 𝑔𝑃𝑃(𝑟))𝑑𝑟. We also calculate the total or partial monomer concentration 

profiles C(r)  versus distance r from the nanoparticle surface from the MC portion of calculation. 

C(r) at a distance r from the nanoparticle surface is calculated by dividing the average population 

n(r) in a spherical shell by its volume:  
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   .  We plot r2C(r) versus distance from the 

particle surface to clearly distinguish two or more concentration profiles, especially near the 

particle surface. 

5.2.3 Parameters 

The total packing fraction (η=0.1) is the volume fraction of the system occupied by the 

matrix chains and the polymer-grafted nanoparticles (fillers). The fraction of η that is occupied by 

the fillers is denoted by , and chosen to be =0.001 here to calculate potential of mean force 

(PMF) between the grafted particles at the infinitely dilute filler limit. We vary the particle-particle 

interaction from an athermal (hard sphere) potential (denoted by εPP = 0) to attractive potentials 

modeled with colloid Lennard Jones (cLJ) potential shown in Supporting Information Figure 5.5, 

with varying well depths, εPP = 0.1 to 5 kBT. We maintain athermal (hard sphere) interactions 

between all monomer pairs (both graft and matrix) and all particle-monomer pairs (graft and 

matrix). The choice of athermal interactions between monomers and particle and monomers is 
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appropriate to mimic experimental systems where the graft and matrix monomers have similar 

chemistry, and particle-monomer interactions are negligible.  

5.3 RESULTS 

5.3.1 Effect of particle-particle attraction on polydispersity- and bidispersity- stabilized dispersion: 

 

Figure 5.1: (a) Potentials of mean force (PMF), in units of kBT, versus interparticle distance, in units of d, and b) second virial 

coefficient, B2, versus graft length PDI between nanoparticles of diameter D=5d grafted with homopolymers with monodisperse 

or polydisperse log-normal length distribution (Ngraft,avg =20) at σ = 0.65 chains/d2 in a homopolymer matrix (Nmatrix=40).  In 

subplot a, the symbols indicate the graft PDI=1.0 (solid) or 2.0 (open) and the particle-particle interactions εPP = 0 (black circles) 

or  εPP=5.0kBT, (red triangles). The main figure shows the PMF at short interparticle distances, and inset shows the PMF at larger 

interparticle distances, and presence/absence of the mid-range attractive well. In subplot b, symbols indicate εPP = 0 (black 

leftward triangles) and εPP=5.0 kBT (red squares). 
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Figure 5.1 shows how increasing the strength of particle-particle attraction impacts the dispersion 

stabilizing effect of a polydisperse log-normal graft length distribution. When the nanoparticles 

grafts have a polydisperse graft length distribution, we find that increasing particle-particle 

attraction leads to only minor changes in the PMF (Figure 5.1a) and chain conformations 

(Supporting Information Figure 5.7) as compared to the purely athermal interactions, and does not 

alter the overall observations that polydispersity in grafts stabilizes particle dispersion (Figure 

5.1b). Specifically, increasing the particle-particle attraction strength introduces a close range 

contact attraction in the PMF between grafted nanoparticles, but this contact attraction is too short 

ranged to have a large effect on the overall tendency for grafted nanoparticle dispersion, as seen 

in B2 values (Figure 5.1b). Even at attraction strengths as high as 5kBT, the short range vdW 

particle-particle attraction is fully shielded by the densely grafted polymer chains. Overall, our 

findings indicate that, for densely grafted systems, particle-particle attraction has little effect on 

the ability of graft length polydispersity to stabilize dispersions of polymer grafted nanoparticles 

in a polymer matrix. .  

Next, we compare how particle-particle attraction impacts the PMF between bidisperse 

polymer grafted nanoparticles. We have previously shown, for athermal particle-particle 

interaction when σs≈σl (equal number of, and thus equal grafting densities, of short and long 

chains), the bidisperse grafted chain length distribution is not as good as the polydisperse log-

normal distribution at removing the mid-range attractive well at the same polydispersity index 

(PDI) and average graft length (Ngraft,avg).[20] At a particle-particle attraction strength of εPP = 

5kBT, the PMF of the bidisperse distribution with σs≈σl  in Figure 5.2a (solid triangles) has a 

stronger attraction at contact and reduced close range repulsion as compared to log-normal 
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distributions at same PDI~1.25 and Ngraft,avg=20 (solid circles). The bidisperse distribution with 

σs≈σl is worse than the log-normal distribution at shielding particle-particle attraction because, at 

the same PDI and Ngraft,avg, the monomer concentration near the particle surface is reduced for the 

bidisperse σs≈σl case (Figure 5.2b) which means nanoparticles can more easily approach one 

another to within the range of the attractive particle-particle potential. Additionally, when 

compared to the log-normal distribution at the same Ngraft,avg and PDI, there are more long chains 

in the bidisperse distributions with σs≈σl (see Table 5.1 to Table 5.3 of chain length distributions 

in the Supporting Information) that are not as easily wet by the matrix as evidenced from a deeper 

mid-range attraction for the bidisperse case with σs≈σl (solid triangles in Figure 5.2a inset). 
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Figure 5.2: (a) PMF, in units of kBT, versus interparticle distance, in units of d, (b) total monomer 

concentration profile, r2C(r) versus bead-particle distance and (c) second virial coefficient, B2, 

versus PDI between nanoparticles of diameter D=5d with particle-particle interactions at εPP = 
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5kBT in a homopolymer matrix of length Nmatrix=40. The symbols in subplots a and b represent 

σ=0.65 chains/d2 (1) log-normal length distributions with PDI=1.25, Ngraft,avg=20 (black solid 

circles) and (2) log-normal length distributions with PDI=1.33, Ngraft,avg=14 (black open circles), 

(3) bidisperse length distribution with σs=0.33, σl=0.31,  β=3, PDI=1.25, and Ngraft,avg=20 (blue 

solid triangles) and (4)  bidisperse length distribution with σs=0.52, σl=0.12, β=3, PDI=1.33 and 

Ngraft,avg=14 (blue open triangles).The corresponding results at εPP=0kBT are shown in the 

Supporting Information. In subplot c the open and closed squares represent the bidisperse 

distribution with σs>σl and σl≈σs respectively while the open and closed circles represent log 

normal distributions, and both the open squares and circles have Ngraft,avg=18, 14, 11 from left to 

right.  

Next, we compare the bidisperse graft length distribution with σs≈σl (solid triangles in 

Figure 5.2a) to one with σs>σl i.e. few long chains among many short chains (open triangles in 

Figure 5.2a). Our new consideration of the bidisperse system with σs>σl is partly driven by the fact 

that it is a closer analogue to the polydisperse log-normal distribution than bidispserse with σs≈σ.l 

We see that the effectiveness of the bidisperse distribution at removing the mid-range attractive 

well in the PMF improves in case of σs>σl (open triangle in Figure 5.2a) despite it having the lower 

average graft length (Ngraft,avg=14 versus Ngraft,avg=20) and a lower Ngraft,avg/Nmatrix. However, the 

lowered Ngraft,avg leads to lowered steric repulsion from the grafted layer for the bidisperse σs>σl 

system, due to the reduced number of total monomers in the grafted layer. Comparing the 

bidisperse graft length distribution with σs>σl (open triangles in Figure 5.2a) to a polydisperse log-

normal graft length distribution with the same average graft length and PDI (Ngraft,avg=14, 

PDI≈1.33), we see similar steric repulsion and mid-range attraction for both systems. This can be 

explained by the similar total monomer concentration profiles for the bidisperse graft length 

distribution with σs>σl  and polydisperse log-normal graft length distribution with the same 

average graft length and PDI in Figure 5.2b. The effect of these trends in PMF on the overall B2  

is discussed next. 
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By comparing the values of B2 (Figure 5.2c) at the same PDI, the overall tendency for 

dispersion of the graft distributions is higher for the polydisperse log-normal length distribution 

with Ngraft,avg=20 (black solid circles) than a bidisperse length distribution with σs=0.33, σl=0.31 

and Ngraft,avg=20 (blue solid triangles). Interestingly, the tendency to disperse grafted particles is 

similar for bidisperse length distribution with σs=0.52> σl=0.12 (blue open triangles) and 

polydisperse log-normal with same PDI and Ngraft,avg. These results  show that while the bidisperse 

graft length distribution (with σs≈σl) is worse than the polydisperse log-normal distribution at 

stabilizing dispersions, increasing σs/σl causes the bidisperse distribution to have similar dispersive 

tendencies to its polydisperse log-normal analogues. As expected, at similar PDI, the systems with 

higher Ngraft,avg (solid symbols, Ngraft,avg=20) exhibits higher values of B2 than a polydisperse log 

normal distribution with lower average graft length (open symbols, Ngraft,avg=18,14, and 11). 

Overall, the choice of the number and length of short and long chains in the distribution impacts 

the ability to stabilize dispersion of the polymer grafted particles. This suggests that to find an 

optimal graft distribution that best disperses the polymer grafted particles we have to understand 

the individual role of the short and long chains on the effective interactions between the particles 

in the polymer matrix. 

5.3.2 Role of Short and Long Chains on the Potential of Mean Force 

To extract the role of the short and long chains in these distributions on the effective interactions 

between the grafted particles in a polymer matrix, we deconstruct the bidisperse system with σs≈σl 

(system 1 in Figure 5.3) into four monodisperse cases (systems 2-5 in Figure 5.3) so as to elucidate 

the individual effects of the short and long grafted chains on the different features of the PMF, at 

constant matrix chain length.  
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Figure 5.3: PMF, in units of kBT, versus interparticle distance, in units of d, between nanoparticles 

of diameter D=5d with particle-particle interactions εPP=0  (a) and εPP=5.0 kBT (b) for five 

different grafting systems: (1) bidisperse, Ngraft,avg=20, β=3, σl=0.31, σs=0.33 chains/d2 (2) 

monodisperse, Ngraft=10, σ=0.65 chains/d2 (3) monodisperse, Ngraft=30, σ=0.65 chains/d2 (4) 

monodisperse, Ngraft=10, σ=0.33 chains/d2 (5) monodisperse, Ngraft=30, σ=0.31 chains/d2 , in a 
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homopolymer matrix of length Nmatrix=40. The main figure shows the PMF for short interparticle 

distances, while the inset shows the PMF at larger interparticle distances. 

At εPP=0kBT (Figure 5.3a) systems 1-3 have similar contact PMF due to equal total grafting 

densities, and similar (not equal) total monomer crowding near the particle surface as shown in 

Figure 4a. But since the average graft length increases from system 2 to 1 to 3, a) the range of the 

steric repulsion increases to larger inter-particle distances, and b) the mid-range attractive well 

shifts to larger distances, as expected from past work[31]. The mid-range attractive well is the 

weakest for the bidisperse grafts (system 1) when compared to the monodisperse short (system 2) 

and long (system 3) grafts, all of which have Ngraft,avg<Nmatrix, showing what has already been 

shown, that bidispersity improves wetting of the grafted layer better than the monodisperse 

systems. Systems 4 and 5 show the behavior of the short and the long grafts in the absence of the 

other, and thus have approximately half the grafting density of systems 1-3. Due to reduced 

monomer crowding, the contact repulsion in the PMF is smaller and mid-range attraction is weaker 

for systems 4 and 5 as compared 2 and 3 (approximately equal for systems 4 and 3). At εPP=5kBT 

(Figure 5.3b) we observe similar trends between these five systems; the only notable change with 

increasing particle-particle attraction is the decreasing value at contact PMF for all five systems.  
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Figure 5.4: Monomer concentration profiles with the r2 prefactor, in units of d-1, versus bead-

particle distance, in units of d, for nanoparticles of diameter D=5d  with εPP=0 (a,c,e) and εPP=5.0 

kBT (b,d,f) particle-particle interactions grafted with homopolymers of Ngraft,avg =20, in a 

homopolymer matrix of length Nmatrix=40. The total system volume fraction is η = 0.1 and the 

grafted nanoparticle filler fraction is kept at the dilute limit of φ=0.001. Subplots a and b show 

the total concentration profiles for all five systems. Subplots c and d show the concentration 

profiles of only the short chains (Nshort=10) of system 1 (black circles), ½ the concentration of all 

of the short chains of system 2 (red upward triangles), all of the (short) chains of system 4 (blue 

downward triangles). Subplots e and f show the concentration profiles for the long chains 

(Nlong=30) of system 1 (black circles), ½ the concentration of all of the long chains of system 3 

(green leftward triangles), all of the (long) chains of system 5 (pink right triangles). 
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Comparing systems 1 (bidisperse) and 2 (all short) which are at equal total grafting density, the 

bidisperse system leads to a lower contact PMF than monodisperse short, both at εPP=0kBT and 

5kBT. Additionally, as expected, the range of the steric repulsion from the grafted layer is shorter 

and mid-range attraction is stronger for system 2 than system 1, purely arising from average graft 

chain length being smaller for system 2 than 1. The small differences in the short chain 

conformations of system 1 (bidisperse) and 2 (all short) in Figure 5.4c (0kBT) and Figure 5.4d 

(5kBT), at equal grafting density, are significant enough to impact the screening of particle-particle 

attraction by the short chains. It is important to note that one might expect the near surface 

monomer arrangement to be the same for system 1 and 2 as the grafting density is the same, and 

yet the short chain conformations are different, purely because of the presence of long chains in 

system 1 (that are absent in system 2). System 4, which has the same number of short chains as 

the bidisperse case (system 1), has a weaker contact repulsion than system 1, due to system 4 

having half the total grafting density of system 1. System 3, consisting of all long chains at same 

total grafting density as 1 and 2, has a contact value of the PMF that is in-between that of systems 

1 and 2, suggesting system 3 (with no short chains) can screen particle-particle attractions as well 

as systems 1 and 2. Thus, the screening of the particle-particle attraction and the resulting value of 

PMF close to contact is driven not by the short chains alone, as hypothesized by some experiments, 

but primarily by the number and arrangement of the monomers near the surface irrespective of the 

chain the monomers belong to. The number and arrangement of monomers is dictated by grafting 

density and choice of chain length distribution e.g. monodisperse, bidisperse or polydisperse. 

The equal strength of the mid-range attractive well in the PMFs of systems 1 and 5 confirm 

that the longer chains in the bidisperse distribution dictate whether or not the grafted layer is 

wet/dewet by the matrix. The deeper mid-range attraction of system 3, with the same graft length 
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as system 5 and same grafting density as system 1 shows that reducing the crowding among long 

chains (either by replacing some long chains with short chains or reducing overall grafting density) 

improves wetting of the long chains. The magnitude and range of the steric repulsion in the PMF 

arising from the grafted layer are dictated by the crowding among and the length of the long chains 

in the distribution.  

By comparing the bidisperse distribution to its deconstructed monodisperse counterparts 

we have shown that one cannot completely decouple the effect of the short and long chains on the 

PMF of polymer grafted nanoparticles with polydisperse/bidisperse graft length distributions. 

Contrary to the hypothesis that it is primarily the short chains in the bidisperse environment that 

screen the particle-particle attraction, we find that it is the monomers near the surface, irrespective 

of whether they belong to the short or long chains, that provide this shielding effect. It is the length 

and crowding of the long chains that determine the location and strength of the steric repulsion 

and mid-range attraction. The inseparable nature of the contributions of the short and long chains 

to the bidisperse PMF is further highlighted by the fact that the bidisperse PMF cannot be predicted 

by the simple addition of the PMFs of systems 4 and 5. [Supporting Information Figure 5.10]. This 

non-additive nature of the PMF stems from the fact that the chain conformations of the short and 

long chains in presence of each other (system 1) are not the same as when they are apart (systems 

4 and 5), as seen in the concentration profiles in Figure 5.4. 

5.3.3 Features of an Ideal Graft Length Distribution for Maximizing Particle Dispersion: 

This understanding of the effect of short and long chains in a polydisperse/bidisperse graft 

distribution is useful in identifying the ‘ideal’ graft length distribution for dispersing polymer 

grafted nanoparticles in a chemically similar polymer matrix. Our results suggest that the ideal 

graft length distribution is one that provides a) maximum monomer crowding near the surface of 
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the nanoparticle, in order to shield short-range particle-particle attraction and sterically repelling 

other approaching grafted nanoparticles, and b) minimal crowding near the edge of the grafted 

layer in order to maximize wetting of the grafted layer by the matrix chains. Using this criteria, it 

is not surprising that the polydisperse log-normal graft length distribution and bidisperse graft 

length distribution with few long chains among many short chains showed a higher tendency for 

dispersion (Figure 5.2c) over ones with the bidisperse graft length distribution with equal number 

of short and long chains (σs≈σl).The polydisperse log-normal distribution at high grafting density 

has a range of chain lengths which contribute monomers near the particle surface to increase close-

range repulsion, and has few chains with length greater than Ngraft,avg (see Supporting Information 

Table 5.1 to Table 5.3) that cause reduced long-chain crowding and increased wetting of the 

grafted layer by the matrix. As its definition suggests, the bidisperse graft length distribution with 

few long chains and many short chains also displays these optimal features of the polymer graft 

distribution that will provide good particle dispersion.  

5.4 CONCLUSION 

We have conducted self-consistent PRISM-MC studies of polymer grafted nanoparticles with three 

types of graft length distribution at high grafting density- i) polydisperse (log-normal) graft length 

distribution, and bidisperse graft length distributions with ii) equal number of short and long chains 

(σs≈σl), and iii) mostly short chains with a few long chains (σs>σl) - placed in a monodisperse 

polymer matrix that is chemically identical to the grafted polymer, at varying particle-particle 

attractions. By comparing the potential of mean force, monomer concentration profiles, and second 

virial coefficients between systems of equal average graft length and polydispersity index, at 

varying particle-particle attraction strengths, we find that particles with polydisperse log-normal 

graft length distribution showed a higher tendency for dispersion over particles with a bidisperse 
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graft length distribution with σs≈σl, and a similar improved dispersion as ones with the bidisperse 

distribution with σs>σl (Figure 5.2c). By deconstructing the bidisperse distribution into its 

component short and long chains we elucidate the role of the short and long chains on the various 

features of the potential of mean force.  We find that the increased crowding of monomers from 

both short and long chains near the particle surface shields the particle-particle attraction, and 

maximizes steric repulsion in the potential of mean force between two polymer grafted particles 

in a chemically identical polymer matrix. The length and crowding of long chains in the grafted 

chain length distribution determines the location and strength of both the mid-range steric 

repulsion and attraction.  

We conclude that to maximize grafted nanoparticle dispersion, it is best to synthesize 

polymer grafted particles with polymer graft length distributions that maximize monomer 

crowding near the particle surface to shield particle-particle attraction (e.g. high grafting density), 

and minimize crowding at farther distances from the particle to increase wetting of the grafted 

layer by matrix chains (e.g. few long chains amidst many short chains). Polydisperse (log-normal) 

graft length distributions and bidisperse graft length distributions with few long chains among 

many short chains satisfy this criterion, and better disperse grafted particles in a chemically 

identical matrix than monodisperse or bidisperse graft length distributions with equal number of 

short and long chains, with same average graft length. 

In summary, this paper provides a valuable fundamental understanding on the effect of 

different features of graft length distributions on both shielding particle-particle (enthalpic) 

interactions and reducing (entropic) depletion-like attraction between polymer grafted 

nanoparticles in a polymer matrix.  This knowledge can be leveraged by material scientists and 
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synthetic chemists to tailor grafted nanoparticles to have a stable dispersed phase in chemically 

identical polymer matrices.  
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5.7 SUPPLEMENTARY 

5.7.1 Colloid Lennard Jones Potential 

 

Figure 5.5: Colloid Lennard Jones potential, in units of kBT, versus interparticle distance, in units 

of d, between particles of diameter D=5d with well depths 휀PP=0.1 (black circles), 1.0 (red upward 

triangles), 5.0 (green leftward triangles), 10.0 (blue downward triangles). The potential goes to 

infinity for r-D < 0. See reference below for details on the Colloid Lennard Jones potential: 

Henderson, D.; Duh, D. M.; Chu, X. L.; Wasan, D., An expression for the dispersion force between 

colloidal particles. J. Colloid Interface Sci. 1997, 185 (1), 265-268. 
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5.7.2 Schematic of terminology used to describe the potential of mean force  

 

Figure 5.6: Schematic of terminology used to describe various features of the potential of mean 

force (PMF) between homopolymer grafted nanoparticles with arbitrary particle-particle 

attraction in a chemically similar homopolymer matrix (not shown in diagrams). 

  



173 

 

5.7.3 Effect of Particle-Particle attraction on the Potential of Mean Force and Grafted Chain 
Conformations  

 
Figure 5.7: (a) Potentials of mean force (PMF), in units of kBT, versus interparticle distance, in 

units of d, and (b) root mean normalized square radius of gyration of grafted chains, <6Rg2/N>0.5, 

in units of d, versus graft length PDI for nanoparticles of diameter D=5d grafted with 

homopolymers with log-normally distributed lengths at average length Ngraft,avg =20 at a grafting 

density of σ = 0.65 chains/d2 in a homopolymer matrix of length Nmatrix=40. The total system 

volume fraction is η = 0.1 and the grafted nanoparticle filler fraction is kept at the dilute limit of 

φ=0.001. The error bars in subplot b represent standards error. The colors and symbols indicate 

the strength of particle-particle attraction as athermal εPP =0kBT (black line, no symbols), εPP 

=1kBT (red circles), εPP =2kBT (green upward triangles), εPP =3kBT (blue leftward triangles), εPP 

=4kBT (pink downward triangles) and εPP =5kBT (orange rightward triangles). 
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5.7.4 PMF and B2 corresponding to Fig. 1 with εPP =0 kBT  

 

Figure 5.8: (a) PMF, in units of kBT, versus interparticle distance, in units of d, and (b) second 

virial coefficient, B2, versus PDI between nanoparticles of diameter D=5d with particle-particle 

interactions at εPP = 0kBT in a homopolymer matrix of length Nmatrix=40. The symbols in subplot 

a represent at σ=0.65 chains/d2 (1) log-normal length distributions with PDI=1.25, Ngraft,avg=20 

(black solid circles) and (2) log-normal length distributions with PDI=1.33, Ngraft,avg=14 (black 

open circles), (3)  bidisperse length distribution with σs=0.33, σl=0.31,  β=3, PDI=1.25, and 

Ngraft,avg=20 (blue solid triangles) and (4)  bidisperse length distribution with σs=0.52, σl=0.12, 

β=3, PDI=1.33 and Ngraft,avg=14 (blue closed triangles).The corresponding results at εPP=0kBT 

are shown in the Supplementary Information. In subplot b the open and closed squares represent 

the bidisperse distribution with σs>σl and σl≈σs respectively while the open and closed circles 

represents log normal distributions, and both the open squares and circles have Ngraft,avg=18, 14, 

11 from left to right.   
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5.7.5 Log-Normal versus Bidisperse Monomer Concentration Profiles 

 
Figure 5.9:Monomer concentration profiles both without (a, c units of d-3) and with (b,d units of 

d-1) the r2 prefactor, versus bead-particle distance, in units of d, for nanoparticles of diameter 

D=5d  with εPP=0 (a,b) and εPP=5.0 kBT, (c,d) particle-particle interactions grafted with 

homopolymers Ngraft,avg =20 at a total grafting density of σ = 0.65 chains/d2, in a homopolymer 

matrix of length Nmatrix=40 for four graft length distributions:  

(black open circles) polydisperse, Ngraft,avg=20, PDI=1.25;  

(black closed circles) polydisperse, Ngraft,avg=14, PDI=1.33;  

(red upward triangles) bidisperse, Ngraft,avg=20, β =3 or PDI=1.25, σs =0.33, σl=0.31 chains/d2; 

(blue leftward triangles) bidisperse, Ngraft,avg=14, β =3 or PDI=1.33,  σs =0.52, σl=0.12 chains/d2.  

The total system volume fraction is η = 0.1 and the grafted nanoparticle filler fraction is kept at 

the dilute limit of φ=0.001. 
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5.7.6 Comparison of Bidisperse PMF to Direct Addition of PMFs for Systems 4 and 5 

 

Figure 5.10: Potentials of mean force (PMF), in units of kBT, versus interparticle distance, in units 

of d, between nanoparticles of diameter D=5d with εPP=0 (black circles) and εPP=5.0 kBT, (red 

triangles) particle-particle interactions grafted with homopolymers with a log-normal length 

distribution at average length Ngraft,avg =20 at a total grafting density of σ = 0.65 chains/d2 in a 

homopolymer matrix of length Nmatrix=40. The total system volume fraction is η = 0.1 and the 

grafted nanoparticle filler fraction is kept at the dilute limit of φ=0.001. The closed symbols-solid 

lines represent a bidisperse system with β=3 and Ngraft,avg=20 (system 1). The open symbols-dashed 

lines are the sum of the corresponding PMFs from systems 4 and 5. 
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5.7.7 Tables of Number of Long Chains for Bidisperse and Log-Normal Distributions 

Table 5.1: Number of Chains w/ N>Ngraft,avg for Bidisperse Distributions at σ =0.65 chains/d2 

 Number of Chains w/ N>Ngraft,avg 

Beta Bidisperse w/ σs≈ σl Bidisperse w/ σs≠ σl 

1.5 25 10 

3 25 10 

7 25 10 

 

Table 5.2: Number of Chains w/ N>Ngraft,avg for Log Normal Distributions  

at σ =0.65 chains/d2 and Ngraft,avg=20 

PDI Number of Chains w/ N>Ngraft,avg 

1.2 18 

1.3 16 

1.4 14 

1.5 15 

1.6 17 

1.7 17 

1.8 14 

1.9 12 

2.0 11 

 

Table 5.3: Number of Chains w/ N>Ngraft,avg for Log Normal Distributions  

at σ =0.65 chains/d2 and Ngraft,avg=14 

PDI Number of Chains w/ N>Ngraft,avg 

1.03 32 

1.33 14 

2.2 11 
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6 EFFECT OF MATRIX BIDISPERSITY ON THE MORPHOLOGY OF POLYMER 

GRAFTED NANOPARTICLE FILLED POLYMER NANOCOMPOSITES 
Adapted from: Journal of Polymer Science Part B: Polymer Physics 52 (24), 1661-1668 

6.1 INTRODUCTION 

In order to engineer polymer nanocomposites  with desirable macroscopic properties, the ability 

to control the microscopic arrangement, or morphology, of the matrix and fillers (additives) is 

important.[1, 2] Polymer nanocomposite morphologies fall into two broad classes: aggregated 

morphologies where the fillers assemble into a variety of isotropic and anisotropic structures[3, 4], 

and dispersed morphologies where the average filler-filler distance is maximized.[2, 5-8] By 

grafting ligands to the surface of the fillers (e.g. nanoparticles), the filler-filler and filler-matrix 

interactions, and thereby the morphology of the polymer nanocomposites can be tuned. For a 

homopolymer matrix filled with homopolymer grafted nanoparticles, where the matrix and graft 

chemistry are identical and the grafting density is high, it has been shown that the ratio of the graft 

to matrix molecular weight (Ngraft/Nmatrix) dictates whether grafted particles stay dispersed or 

aggregated.[6] Specifically, for spherical nanoparticles where the radius of the particle is similar 

to the radius of gyration of the grafted chains, one observes particle dispersion when Ngraft/Nmatrix 

is greater than ~4-5 and aggregation for smaller Ngraft/Nmatrix. The underlying molecular mechanism 

for particle dispersion and aggregation has been suggested to be a transition from a wet brush to 

dry brush.[6] 

Exploiting this idea of wetting/dewetting driven dispersion/aggregation, we recently investigated 

how polydispersity in grafted chain lengths affects the wetting of grafted nanoparticles by a 

monodisperse polymer matrix. We predicted using theory that in the regimes where particle 

aggregation is expected, graft length polydispersity stabilized the dispersed phase of the grafted 
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particles by promoting wetting of the densely grafted polymer layer by the matrix. Due to increased 

wetting of the grafted layer, the mid-range attraction in the particle-particle potential of mean force 

is eliminated, thereby removing the tendency for aggregation of the particles.[9, 10] [11] We also 

found that the ideal graft length distribution for promoting particle dispersion is one that provides 

a) maximum monomer crowding near the surface of the nanoparticle, in order to shield short-range 

particle-particle attraction and sterically repel other approaching grafted nanoparticles, and b) 

minimal crowding near the edge of the grafted layer in order to maximize wetting of the grafted 

layer by the matrix chains.[12] In agreement with our theoretical predictions of graft polydispersity 

stabilized particle dispersion, experimental work by Schadler and coworkers shows that a bimodal 

grafted chain length distribution greatly improves the dispersion of grafted nanoparticles in a 

polymer matrix over that observed with a monodisperse graft length distribution.[13, 14]  

While the above theoretical and experimental studies have focused on the effect of graft 

length polydispersity on the morphology of polymer nanocomposites, to the best of our knowledge, 

the effect of matrix length polydispersity on the morphology of homopolymer grafted particle 

filled polymer nanocomposites has not been investigated. One past study worth noting is that by 

Broseta et al. who studied the effect of polydispersity on morphology of strongly segregating 

homopolymer blends. They found that the polydispersity reduced the interfacial tension of the 

homopolymers, with the shorter polymer chains segregating to the interface.[15]  Despite the 

significance of their results, since their study focused on entropically driven segregation of short 

chains to flat interfaces formed by two strongly (enthalpically) segregating polymers, one cannot 

extend their prediction to a blend of polymer grafted particles and polymer matrix where the graft-

matrix polymer chemistries are the same (no enthalpically driven segregation), and the graft-matrix 

interfaces are curved.  In this article we present a computational study of the effect of matrix length 
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polydispersity on the wetting/dewetting phenomena and the morphology of homopolymer grafted 

nanoparticle filled polymer nanocomposites, which to the best of our knowledge has not been 

studied before. 

6.2 APPROACH 

We simulate the polymer nanocomposites (PNCs) in this study using Brownian dynamics (BD)[16] 

with coarse grained models of grafted and matrix chains. The details of the computational approach 

– model, simulation and parameters varied- are as follows. 

6.2.1 Model 

We model the grafted and matrix chains as freely jointed chains of beads of diameter 1d, where d 

is the size of a Kuhn segment in the polymers (graft or matrix). The polymer beads which represent 

Kuhn segments, are connected by harmonic bonds: 

 𝑈𝑏𝑜𝑛𝑑(𝑟) = 𝑘 (𝑟 − 𝑟0)
2  (1) 

where k is the bond strength, and r0 is the resting distance of the bond. We model the nanoparticles 

as rigid bodies[10] of overlapping spheres of diameter 1d. These spheres of the nanoparticle serve 

as both the surface of the particle and as grafting sites. We ensure that both the surface beads and 

the grafting sites are evenly distributed across the particle for desired arbitrary diameters (D) and 

grafting densities (chains/d2).  

We maintain athermal interactions between all entities to mimic PNCs with identical graft 

and matrix chemistry, and with effective shielding of particle-particle attraction at high grafting 

density. Our past work has shown that the steric repulsion due to the polymers at high grafting 

density effectively shields the particle-particle attraction[12].  To model these athermal 

interactions all pairs of non-bonded beads in the system interact via purely-repulsive Week-

Chandler-Andersen potentials[17]: 
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4휀 [(
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0.0, 𝑟 > 2
1

6𝜎

  (2) 

where r is the bead-bead distance, ε is the steepness of the repulsive potential, and σ is the contact 

distance for the two beads. 

6.2.2 Method 

We conduct Brownian Dynamics (BD) simulations using the HOOMD-blue platform[16]. We 

initialize our systems as follows: we first build a grafted nanoparticle, with grafted chains 

extending radially from the particle surface, in the absence of any matrix chains. A short simulation 

with strong Lennard-Jones monomer-monomer and monomer-particle attraction is then run purely 

to make the grafted chains take up a compact conformation. Note that this is the only time we use 

attractive non-bonded interactions in our simulation. Copies of this compact grafted nanoparticle, 

along with the desired number of short and long matrix chains, are then randomly placed in a large 

cubic box. The randomly placed molecules are integrated using a Brownian dynamics integrator 

for 0.5e6 time steps to both mix and relax the grafted and matrix chains. The box is then 

compressed to the desired volume fraction over 0.5e6 steps, and then mixed again for 0.5e6 steps 

at the compressed state. Finally, the production simulation runs for 100-200 million time steps 

where snapshots of the system are saved every 0.5e6 time steps. The analysis is conducted using 

these snapshots and ensemble average results obtained from five independent simulations are 

reported. 

One of the simulation challenges in such densely packed systems is ensuring that the 

ensemble average results are indeed representing equilibrium states. In the Supplementary 

Material, we show the evolution of the average mean square internal distances of our matrix chains 

to demonstrate that the polymer chains relax on a timescale that is faster than our sampling period 
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(Supplementary Figure 6.5).[18] Additionally, in Supplementary Figure 6.6 we show pair-

correlation functions for five independent simulation trials with randomly initialized structures of 

the same composite, and demonstrate that we are are reaching statistically similar equilibrium 

results. We also use liquid state theory based calculations[7, 19, 20] (described next), which are 

devoid of these equilibration issues, and find qualitative agreement between the theoretical and 

simulation results, further confirming that we are indeed reporting equilibrium behavior in the 

simulations.   

We use a variant of the self-consistent Polymer Reference Interaction Site Model theory 

and Monte Carlo simulation  (PRISM-MC)[20, 21], in which we use Brownian Dynamics (BD) 

rather than Monte Carlo to calculate the intramolecular structure factor. PRISM theory consists of 

a matrix of Ornstein-Zernike-like integral equations that relate the total site-site inter-molecular 

pair correlation function, hij(r), to the inter-molecular direct correlation function, cij(r), and intra-

molecular pair correlation function, ωij(r). The PRISM equations in Fourier space are 

 𝐻(𝑞) = Ω(𝑞) 𝐶(𝑞)[ Ω(𝑞) + 𝐻(𝑞)] (3) 

 𝐻𝑖𝑗(𝑞) = 𝜌𝑖𝜌𝑗  ℎ̂𝑖𝑗(𝑞)  (4) 

 Ω𝑖𝑗(𝑞) = 𝜌∑ ∑ Ω𝛼𝑖𝛽𝑗
𝑁𝑗
𝛽=1

𝑁𝑖
𝛼=1  (5) 

where H(q), C(q) and Ω(q) in this study are matrices of size 4x4 for the following 4 types of sites: 

graft monomers (A), particle (B),  short matrix monomers (C), and long matrix monomers (D),  

with the matrix elements defined in equations 4 and 5. We note that despite the chemistry of the 

graft and matrix being the same, these sites are physically identified separately as graft or matrix. 

In the above equations, Ni and ρi are respectively the number and number density of site i, ρ is the 

molecular number density, and Ωij(q) the intra-molecular pair correlation function between sites i 

and j within a certain molecule in Fourier space. To solve equation 3, we use closure relations 
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connecting the real space cij(r), hij(r) (= gij(r)-1) and interaction potentials Uij(r). Previous work on 

a mixture of nanoparticles and polymers[22-31] shows that the Percus-Yevick (PY) closure for 

polymer-polymer and polymer-particle, and the hypernetted chain (HNC) closure for particle-

particle provides good agreement between theory and simulations. Thus, we have used the same 

combination of atomic closures, since this work also consists of polymers and nanoparticles. Given 

that σij is the distance of closest approach between sites i and j, i.e. σij=d for monomer-monomer 

pairs and σij= (D+d)/2 (as stated earlier, d and D are the monomer and particle diameters, 

respectively) and particle-monomer pairs, the impenetrability condition applies inside the hard 

core: 

 𝑔𝑖𝑗(𝑟) = 0, 𝑟 < 𝜎𝑖𝑗  (6) 

Outside the hard core, the PY approximation describes the direct correlation function between all 

pairs of sites (except particle-particle): 

 𝑐𝑖𝑗(𝑟) = (1 − 𝑒
𝛽𝑈𝑖𝑗(𝑟))𝑔𝑖𝑗(𝑟), 𝑟 > 𝜎𝑖𝑗  (7) 

and the HNC closure handles the particle-particle direct correlation function: 

  𝑐𝐵𝐵 = ℎ𝐵𝐵(𝑟) − ln(𝑔𝐵𝐵(𝑟)) − 𝛽𝑈𝐵𝐵(𝑟) , 𝑟 > 𝐷 (8) 

To efficiently solve this system of coupled nonlinear integral equations we employ the KINSOL 

algorithm[32] with the line search optimization strategy. Attaining convergence for complex 

nonlinear integral equations is much easier with KINSOL as compared to the Picard technique, 

the method used in prior PRISM theory work. The solution of the PRISM equations yields pair 

correlation functions, gij(r), and the partial collective structure factors, Sij(q). We note that some 

sets of parameters, especially those involving larger particle sizes or longer polymer chains (graft 

or matrix) do not yield any solutions due to numerical issues. 
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We use a self-consistent approach linking PRISM theory and Brownian Dynamics 

simulations (BD), where the chain conformations (via the intra-molecular pair correlation function 

Ωij) input to PRISM are provided by BD simulations of a single polymer-grafted nanoparticle or a 

single matrix chain in an external medium-induced potential obtained from PRISM theory. The 

interdependence of the chain conformations and the medium-induced potential gives rise to the 

self-consistency. The self-consistent loop starts with three different BD simulations of i) a single 

grafted particle (in the absence of any matrix chains), ii) a single long matrix chain (in the absence 

of grafted particle), and iii) a single short matrix chain (in the absence of grafted particle). The 

model and interactions used in these BD simulations is identical to the one described before. The 

grafted  and matrix chains are integrated for 1e6 time steps with snapshots being collected every 

0.25e5 time steps. Using these snapshots, the intramolecular structure factors: ωAA (graft-graft), 

ωAB (graft-particle), ωCC (short matrix-short matrix), ωDD (long matrix-long matrix)- are 

calculated. Next, the PRISM equations are solved with the ωij and intermolecular potentials Uij as 

input. Using the results from the PRISM calculation, the pairwise-decomposed medium-induced 

solvation potential, Δψij(r) is calculated; this describes the interaction between any two sites i and 

j as mediated by all the remaining sites in the system, i.e., including the matrix, grafts and particles 

themselves. The form of the solvation potential depends on the approximation used in its 

derivation[33-38]and we use the PY-form: 

 Δ𝜓𝑖𝑗
𝑃𝑌(𝑟) =  −𝑘𝑇 ln (1 + 𝑐𝑖𝑘(𝑟) ∗ 𝑠𝑘𝑘′(𝑟) ∗ 𝑐𝑘′𝑗(𝑟))  (9) 

where ‘*’ in equation 9 denotes a convolution integral in spatial coordinates, k is the Boltzmann 

constant, and T is the temperature. The solvation potential Δψij(r) is then used in all following BD 

simulations of a single polymer-grafted particle, a single short matrix chain, or a single long matrix 

chain, completing the self-consistent loop. In all BD simulations after the first self-consistent loop, 
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the non-bonded interactions between sites are a sum of the WCA potential and the solvation 

potential from the previous PRISM calculation: 

 𝑈𝑖𝑗
𝑡𝑜𝑡(𝑟) = 𝑈𝑊𝐶𝐴,𝑖𝑗(𝑟) + Δ𝜓𝑖𝑗(𝑟) (10) 

Note that, while the WCA forces are calculated internally in HOOMD-blue, a table of forces must 

be created for the solvation potential force using finite-difference approximations. The self-

consistent PRISM-BD iterations are continued until convergence of Δψij(r) is achieved. To define 

the convergence criteria, we first specify ‘error’ of loop n as: 

 𝐸𝑛 = ∑ ∑ [Δ𝜓𝑖𝑗
𝑛+1(𝑟) − Δ𝜓𝑖𝑗

𝑛 (𝑟)]
2

𝑟𝑖,𝑗   (11) 

where the summation of i and j is over the site-pairs that are relevant to the BD simulations: AA 

AB, CC, DD. The self-consistent loop converges on when En/E0<0.01 for three consecutive loops. 

6.2.3 Parameters 

The system presented in this paper consists of homopolymer grafted spherical nanoparticles in an 

explicit homopolymer matrix where the grafted and matrix polymers are either monodisperse or 

bidisperse. The bidispersity ratio βX=NX,long/NX,short (where X=graft or matrix) and average matrix 

(Nmatrix,avg) and graft (Ngraft,avg) lengths  are varied to test the effect of varying extents of 

bidispersity. The spherical nanoparticle has diameter D=5d (where d is the diameter of a Kuhn 

segment or “monomer”) and the polymer grafting density is kept in the brush-like regime at 0.65 

chains/d2. The total system packing fraction  is 0.1 to mimic a dense solution of matrix polymers. 

The filler fraction of the grafted particles, , defined as the fraction of the total occupied volume 

that is occupied by particles or grafted monomers,  is varied from low  ( =  0.02)  to high  ( = 

0.3) during the study, even though we only present results at filler fraction of 0.3 as the qualitative 

trends described in the results section is seen both at dilute filler fraction and high filler fraction. 
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In Figure 6.1 we show simulation snapshots of the system at  = 0.3.  Simulation snapshots for  

= 0.1 are provided in Supplementary Figure 6.7. 

 

Figure 6.1: A representative simulation snapshot of a polymer nanocomposite with polymer 

grafted particles of diameter D=5d grafted with homopolymers (blue chains) with a monodisperse 

length distribution (Ngraft=20) at grafting density  0.65 chains/d2 and filler fraction =0.3 in a 

bidisperse homopolymer matrix of lengths 20 (red chains) and 60 (green chains). The matrix 

chains are removed in the bottom image to show the grafted particles only. While the red, blue 

and green colors are used to distinguish the grafts, the short and long  matrix chains in the 

snapshots, the grafts and all matrix polymers are of the same chemistry and modeled using 

athermal interactions. 
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6.3 RESULTS 

 

Figure 6.2: Particle-monomer pair correlation functions gij(r) versus particle-monomer distance, 

r-(D+d)/2, in units of d, for particles of diameter D=5d grafted with homopolymers with a 

monodisperse length distribution (Ngraft=20) at 0.65 chains/d2 and filler fraction  =0.3 in a 

bidisperse or monodisperse homopolymer matrix. In subplots a and b the symbols indicate the pair 

correlation between the particles and the monomers of a monodisperse matrix of Nmatrix=30, 

βmatrix=1.0 (solid black rightward triangles) or Nmatrix=60, βmatrix=1.0 (solid black leftward 

triangles), or the monomers belonging to the short (open red upward triangles, Nshort=30) or long 

(open green downward triangles, Nlong=60) chains of a bidisperse matrix with βmatrix=3 and 

Nmatrix,avg=45. In subplots c and d, the symbols indicate the pair correlation between the particles 

and the monomers belonging to short (subplot c) or long (subplot d) chains of a bidisperse matrix 

with Nmatrix,avg=40 and βmatrix=1.5 (black squares), 3.0(blue leftward triangles), or 7.0 (pink 

rightward triangles). 

In Figure 6.2a, we show the pair correlation functions between the particle centers and 

monodisperse matrix monomers (gPM, solid black rightward triangles, Nmatrix=30),  short matrix 
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chain monomers  (gPS, red upward triangles, Nmatrix,short=30), and long matrix chain monomers (gPL, 

green downward triangles, Nmatrix,short=60) of a bidisperse matrix. 

In the bidisperse matrix, the short chains show a higher correlation with the particle centers 

at short distances than the long chains in the same system. This means that the short matrix chains 

preferentially wet the grafted layer over the long chains. In the monodisperse matrix, it is well 

understood that, at constant Ngraft, wetting of the grafted layer should decrease with increasing 

matrix chain length.[6, 9, 39] Since both Nmatrix,short and Nmatrix,long  are greater than Ngraft, the matrix 

chains should dewet the grafted layer. Furthermore, since Nmatrix,long > Nmatrix,short it might seem 

unsurprising that the short chains preferentially wet the grafted layer more than the long chains. 

However, in Figure 6.2a if we now compare the short chains of the bidisperse pair (open red 

upward triangles) to a monodisperse matrix of the same length as the short chains (solid rightward 

triangles), the short chains in the bidisperse environment show a higher correlation with the 

particles at short distances than in a monodisperse environment. This demonstrates that it is the 

matrix length bidispersity (simultaneous presence of short and long chains) that is driving the 

preferential wetting of the grafted layer by the short chains. In Figure 6.2b we compare the same 

bidisperse system to a monodisperse matrix (solid black leftward triangles, Nmatrix=60) of the same 

length as the long bidisperse chains. The long chains in the bidisperse environment dewet the 

grafted layers more than the monodisperse matrix of the same length as the long chains, showing 

that matrix bidispersity drives both increased wetting of the grafted layer by short matrix chains, 

and decreased wetting by long matrix chains. See Supplementary Figure 6.8 for additional 

simulation snapshots that (to some extent) visually depict the extent of wetting of the grafted layer 

by the matrix chains. 
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To see how the behavior in Figure 6.2a and Figure 6.2b changes with increasing matrix 

bidispersity, in Figure 6.2c and Figure 6.2d we plot the particle – short matrix pair correlation 

functions (gPS in Figure 6.2c) and the particle – long matrix correlation functions (gPL in Figure 

6.2d) for three bidispersity ratios βmatrix = Nmatrix,long/Nmatrix,short = 1.5, 3.0, 7.0 at constant 

Nmatrix,avg=40. With increasing βmatrix, the preferential wetting of the grafted layer by the short 

matrix chains becomes more pronounced, while the dewetting of the grafted layer by the long 

chains is relatively less affected. To address any questions that may arise regarding efficient 

sampling and equilibration, in Supplementary Figure 6.9 we present a comparison of the graft – 

short matrix pair correlation functions (gGS) and the graft – long matrix correlation functions (gGL) 

from both simulations and liquid-state theory. From both methods, we observe the grafted layer 

being preferential wet by the short chains. As liquid-state theory is an equilibrium theory, these 

results confirm that our simulation results are indicative of the equilibrium behavior of the system. 

Also to confirm that our results are not strongly dependent on chosen filler fraction (defined as the 

fraction of the total occupied volume that is occupied by particles or grafted monomers), we also 

studied  ranging from 0.02 to 0.3 and found the preferential wetting of the grafted layer by the 

short-matrix is present at all  within this range (Supplementary Figure 6.10.) 

Since we maintain athermal interactions using Weeks-Chandler-Andersen (WCA) pair-

wise potentials between all monomers, the driving forces that cause the short-matrix chains to 

preferentially wet the grafted layer are purely entropic in nature. We show the average entropy 

change of wetting (ΔSwetting) for a monomer belonging to either a short or long chain in a bidisperse 

matrix or any chain in a monodisperse matrix. We estimate these values via Flory-Huggins mixing 

theory[40]: 

 (
1

𝑘𝐵
) 𝛥𝑆𝑤𝑒𝑡𝑡𝑖𝑛𝑔 = −

1

𝑁𝑋
ln

𝜌𝑋,𝑤𝑒𝑡

𝜌𝑋,𝑢𝑛𝑤𝑒𝑡
 (12) 
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where X is either short, long, or monodisperse; NX is the length of the X matrix component, ρX,wet 

is the ratio of volume X monomers that have wet the grafted layer to the volume of all (graft, short 

and long matrix) monomers in the grafted layer, ρX,unwet is the  ratio of volume of X monomers that 

are outside the grafted layer to the volume of all monomers outside the grafted layer, and kB is the 

Boltzmann constant. All the volume fractions used in Equation 12 are calculated from our BD 

simulations. We define a monomer as having ‘wet’ the grafted layer when it is within the average 

root-mean-square brush height (Supplementary Figure 6.11) for the system. ΔSwetting represents the 

gain in mixing entropy upon a matrix monomer leaving the bulk matrix and entering (wetting) the 

grafted layer. 

 

Figure 6.3: Average per-monomer entropy of wetting versus βmatrix for particles of diameter D=5d 

grafted with homopolymers with monodisperse length distribution (Ngraft=20) at 0.65 chains/d2 

and filler fraction = 0.3 in a monodisperse or bidisperse matrix with Nmatrix,avg=40. The symbols 

correspond to the entropy contribution from the short (red upward triangles) or long (green 

downward triangles) matrix chains. The horizontal dashed lines correspond to the entropy of 

wetting calculated for monodisperse matrices. The numbers next to the symbols/lines indicate the 

matrix length for that datum. 
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In Figure 6.3, we present the ΔSwetting for short-matrix (red upward triangles), long-matrix 

(green downward triangles) and monodisperse matrix (dashed lines), with the length of the matrix 

component shown next to the corresponding symbol/line. With increasing βmatrix, the ΔSwetting for 

the short matrix chains increases, while the ΔSwetting for the long matrix chains decreases. The 

ΔΔSwetting between the short and long chains is the effective driving force for preferential wetting 

of the grafted layer by the short chains and, this driving force increases with increasing βmatrix. This 

is consistent with our observation that with increasing βmatrix, there is increasing wetting of the 

grafted layer by short matrix chains and (slightly) decreasing wetting by long matrix chains. 

Interestingly, the monodisperse matrix with Nmatrix=20 has a higher ΔSwetting than the bidisperse 

short chains of the same length (Nmatrix,short=20, βmatrix=3.0). This is because the ρunwet for the 

monodisperse system is much greater than ρunwet for the bidisperse system, due to the presence of 

long matrix chains in the bulk matrix for the bidisperse case (Supplementary Table 6.2). The higher 

ρunwet means that the short chains in the monodisperse environment gain more entropy by wetting 

the grafted layer than their bidisperse counterparts, and therefore they have a higher ΔSwetting. Note 

that it does not contradict our findings of preferential wetting of the grafted layer by short matrix 

chains, as it is the ΔΔSwetting between the short and long chains that drives the preferential wetting 

and not the individual ΔSwetting of the short or the long matrix chains.  

When compared to a monodisperse matrix of either short or long chains, the bidisperse 

matrix has increased the wetting of the grafted layer by short matrix chains, but also slightly 

decreased the wetting by the long matrix chains. With increased and decreased wetting of the 

grafted layer, by different components of the bidisperse matrix, how does the bidispersity affect 

the tendency for aggregation of the grafted nanoparticles? 
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Figure 6.4: Particle-particle (a) and particle-total matrix (b) pair correlation functions versus 

particle-particle and particle-monomer distance, in units of d for nanoparticles of diameter D=5d 

grafted with homopolymers with a monodisperse or bidisperse graft length distribution at filler 

fraction ϕ =0.3 in a bidisperse or monodisperse homopolymer matrix. The symbols correspond to: 

βgraft=1.0, βmatrix=1.0, Ngraft=20, Nmatrix=40 (black circles), βgraft=1.0, βmatrix=3.0, Ngraft=20, 

Nmatrix,avg=40 (red upward triangles),  βgraft=1.0, βmatrix=1.0, Ngraft=20, Nmatrix=60 (green 

downward triangles), βgraft=3.0, βmatrix=1.0, Ngraft,avg=20, Nmatrix=40 (blue leftward triangles). 

In Figure 6.4a, we show the pair-correlation functions between the particles, gPP, for 

monodisperse or bidisperse matrix systems. The peak in gPP for βmatrix=3.0, Nmatrix,avg=40 (red 

upward triangles) is slightly higher than the peak for βmatrix=1.0 (monodisperse) Nmatrix=40 (black 

circles) indicating that the bidisperse matrix increases the tendency for aggregation, when 
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compared to a monodisperse system with the same Nmatrix,avg. Furthermore, at constant 

Nmatrix,avg=40 as βmatrix increases we observe increasing tendency for aggregation (Supplementary 

Figure 6.12), likely due to the length of the longer matrix chain increasing.  In Figure 4a if we 

compare the βmatrix=3.0 and Nmatrix,long=60 (red upward triangles), to a monodisperse matrix with 

Nmatrix=60 (green downward triangles), the peak in gPP is smaller for the bidisperse matrix case, 

indicating that the bidisperse matrix increases tendency for dispersion (slightly) more than a 

monodisperse matrix with Nmatrix=Nmatrix,long. To understand the effect of matrix bidispersity on 

particle aggregation/dispersion we look at the total wetting of the grafted layer via the total 

particle-matrix pair-correlation function (gPM, Figure 6.4b), where the correlation of the short and 

long chains in the bidisperse matrix are combined. The overall wetting of the grafted layer shows 

only small variations between the monodisperse (circles, downward triangles) and bidisperse 

(upward triangles) matrix systems. While matrix bidispersity does increase the wetting of the 

grafted layer by short matrix chains, it does not increase the overall wetting of the grafted layer. 

In contrast to the bidisperse matrix, a system consisting of bidisperse grafts with βgraft=3.0, 

Ngraft,avg=20 in a monodisperse matrix (leftward triangles) exhibits a significantly reduced peak in 

gPP when compared to monodisperse grafted particles in monodisperse/bidisperse matrix. This 

trend is also consistent with what we observe from liquid-state theory calculations (Supplementary 

Figure 6.13) where the mid-range attraction in the potential of mean force is eliminated completely 

for bidisperse grafts, but remains for bidisperse matrix. In Figure 4b, we can see that the wetting 

of the grafted layer is increased for the system with bidisperse grafts as compared to any of the 

other systems with monodisperse grafts. Unlike bidispersity in the matrix chain lengths, 

bidispersity in the grafted chain lengths is able to increase the wetting of the grafted layer by the 

matrix chains, which in turn improves dispersion of the polymer grafted particles. 
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6.4 CONCLUSION 

This article presents a coarse-grained computational study of polymer nanocomposites consisting 

of polymer grafted nanoparticles in a bidisperse polymer matrix, with athermal polymer - polymer, 

polymer - particle and particle – particle interactions. This study focuses on the effects of varying 

matrix bidispersity, average matrix length and filler volume fraction, while maintaining high 

grafting density and keeping the particle diameter and graft length constant. Furthermore, in most 

cases, the matrix chain lengths are chosen to be larger than the graft chain lengths to explore the 

effect of matrix bidispersity on systems where de-wetting of the grafted layer by the matrix chains 

has been observed in previous studies with monodisperse systems. 

We find that the short-matrix chains show a higher correlation with the particle than either 

the long matrix chains or monodisperse matrix chains of the same length as the short chains. In 

other words the short matrix chains preferentially wet the grafted layer on the particles in the 

presence of matrix bidispersity. Due to athermal interactions, this preferential wetting of the 

grafted layer by the short chains is largely driven by the disparity in mixing entropies between the 

grafted layer and the short or long matrix chains. Although the matrix bidispersity increases 

wetting of the grafted layer by short matrix chains, the overall wetting of the grafted layer is largely 

unaffected, as long chains dewet the grafted layer more than their monodisperse counterpart. As a 

result, at constant Nmatrix,avg, increasing the matrix bidispersity slightly increases the tendency for 

aggregation of the grafted particles,  in contrast to the bidispersity in the grafted layer which 

stabilizes dispersion of the grafted particles.  
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6.7 SUPPLEMENTARY 

6.7.1 Internal Distances Calculation Showing Relaxation of Chains 

 

Figure 6.5: Mean-square internal distances versus number of connecting bonds, for a simulation 

for the long matrix chains a system of grafted nanoparticles of diameter D=5d grafted with 

homopolymers with a monodisperse length distribution (Ngraft=20) at σ = 0.65 chains/d2 and filler 

fraction ϕ =0.3 in a bidisperse matrix of Nmatrix,short=20,Nmatrix,long=60. Details of this calculation 

can be found elsewhere[18] 

After the first 1e6 steps of the simulation, the matrix chains relax and show oscillatory 

behavior at large n, indicative of the chains properly sampling end-to-end distances.   
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6.7.2 Pair correlation function data showing variation in individual trials 

 
Figure 6.6: Particle-short chain monomer (a) and Particle-long chain monomer (b) and particle-

particle (c) pair correlation functions versus particle-monomer distance, in units of d, for 

nanoparticles of diameter D=5d grafted with homopolymers with a monodisperse length 

distribution (Ngraft=20) at σ = 0.65 chains/d2  and filler fraction of ϕ =0.3 in a bidisperse 

homopolymer matrix with βmatrix=3.0, Nmatrix,avg=40. The colors in the plot correspond to the five 

independent, randomly initialized trials in the simulation. 

These data indicate that our independent trials are reaching statistically similar equilibrium states. 
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6.7.3 Simulation Snaphots 

 

Figure 6.7: Simulation snapshots of PNCs with polymer grafted particles of diameter D=5d 

grafted with homopolymers (blue chains) with a monodisperse length distribution (Ngraft=20) at σ 

= 0.65 chains/d2 and filler fraction =0.1 in a bidisperse matrix of lengths 20 (red chains) and 60 

(green chains). While colors are used to distinguish the various chains in the snapshots, all 

interactions used in this study are athermal. Individually, the snapshots show all components of 

the simulation (a), only the short matrix chains (b), only the long matrix chains (c), only the grafted 

particles (d), only the particle cores (e). 
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Figure 6.8: Simulation snapshots of polymer grafted particles of diameter D=5d grafted with 

homopolymers (blue chains) with a monodisperse and bidisperse graft length distribution 

(Ngraft,avg=20) at σ = 0.65 chains/d2 and filler fraction =0.02 in monodisperse (orange) or 

bidisperse (green,red) matrix. The snapshots correspond to Ngraft=20, Nmatrix=40, βgraft=1.0, 

βmatrix=1.0 (a), Ngraft=20, Nmatrix,avg=40, βgraft=1.0,βmatrix=3.0 (b), Ngraft,avg=20, Nmatrix=40, 

βgraft=3.0, βmatrix=1.0 (c), The snapshots show the top down view of cylindrical slice of matrix of 

depth 10σ and diameter 30σ, centered  around each grafted particle  
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6.7.4 Comparison of Brownian Dynamics Simulations and Liquid-State Theory Calculations 

 

Figure 6.9: Pair correlation functions (a-b,d-e) and ratios of pair correlation functions (c,f) versus 

monomer-monomer distance, in units of d (size of a Kuhn segment), for nanoparticles of diameter 

D=5d grafted with homopolymers with a monodisperse length distribution (Ngraft=20) at σ=0.65 

chains/d2  and filler fraction φ =0.1 in a bidisperse homopolymer matrix calculated from both 

liquid state theory (a-c) and molecular dynamics (d-f). For subplots a-b & d-e, the upward 

triangles represent the graft bead - short matrix bead pair correlation functions, while the 

downward triangles are the graft bead – long matrix bead pair correlation functions for βmatrix = 

1.5 (a,d) and 3.0 (b,e). In subplot c,f, the ratio of the graft bead - short matrix bead to the graft 

bead – long matrix bead pair correlation functions are shown for βmatrix = 1.5 (circles), 3.0, 

(upward triangles). 

These data show that the results from our equilibrium liquid-state theory (a-c) calculations 

match up qualitatively with our results from Brownian dynamics simulations (d-f), in that both 

methods show that the short-matrix chains preferentially wet the grafted layer over the long matrix 

chains. Because liquid-state theory results are devoid of equilibration issues, the above qualitative 

agreement indicates that we are sampling the equilibrium ensemble with our Brownian dynamics 

simulations.    
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6.7.5 Variation in Short-Matrix Preferential Wetting with Varying Filler-Fraction 

 

 
Figure 6.10: Particle-monomer pair correlation functions versus particle-monomer distance, in 

units of d, for nanoparticles of diameter D=5d grafted with homopolymers with a monodisperse 

length distribution (Ngraft=20) at σ = 0.65 chains/d2  and filler fraction of ϕ =0.02 (a) , 0.1 (b), or 

0.3(c) in a bidisperse or monodisperse homopolymer matrix. The symbols indicate the pair 

correlation between the particles and the monomers of a monodisperse matrix of Nmatrix=40, 

βmatrix=1.0 (black rightward triangles),  or the monomers belonging to the short (red upward 

triangles, Nshort=20) or long (green downward triangles, Nlong=60) chains of a bidisperse matrix 

with βmatrix=3 and Nmatrix,avg=40. 

These data indicate that preferential wetting of the grafted layer by short matrix chains is 

apparent at a range of filler fractions.  
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6.7.6 Effect of matrix bidispersity on the average brush height of the grafted particles 

 

Figure 6.11: Root-mean-square brush height, in units of d (size of Kuhn  segment), versus βmatrix 

for nanoparticles of diameter D=5d grafted with homopolymers with monodisperse length 

distribution (Ngraft=20) at σ = 0.65 chains/d2  and filler fractions φ = 0.02 (square), 0.1 (leftward 

triangle), and 0.3 (rightward triangle) in a bidisperse  matrix  with Nmatrix,avg=40. The standard 

error is approximately 0.5 for all data in this plot. 

These are calculated as the root-mean-square distance of a grafted monomer from the center 

of grafted particle. We observe that there is no signifiant change in the brush height with varying 

βmatrix, despite the variation in the wetting of the grafted layer. Although there appears to be a trend 

in these data with φ, we point out that the variation in these datasets is 1/100th the diameter of a 

single grafted monomer, and thus not to be treated as significantly different.  
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6.7.7 Data tables for ΔSwetting Calculation 

Table 6.1: Wetted and Dewetted Monomer Counts used for ΔSwetting Calculation 

 # short monomers # long monomers # grafted monomers 

βmatrix Nmatrix,avg wet dewet Total wet dewet total wet dewet total 

1.0 20 34 12465 12500 34 12465 12500 574 445 1020 

1.0 40 31 24968 25000 31 24968 25000 574 445 1020 

1.0 60 27 24932 24959 27 24932 24959 573 446 1020 

1.5 40 28 19971 20000 33 29966 29999 574 445 1020 

3.0 40 23 12476 12500 39 37460 37500 574 445 1020 

7.0 40 17 6232 6249 43 43706 43750 575 444 1020 

 

Table 6.2: Example ΔSwetting Calculation for Chains of  in Monodisperse and Bidisperse Matrices 

 ρwet ρunwet ρwet/ ρunwet -1/N ln(ρwet/ ρunwet) 

βmatrix=1.0, 

Nmatrix=20 

0.106 0.982 0.108 0.111 

βmatrix=3.0, 

Nmatrix,short=20 

0.037 0.248 0.148 0.095 

βmatrix=1.0, 

Nmatrix=60 

0.088 0.992 0.089 0.040 

βmatrix=3.0, 

Nmatrix,long=60 

0.061 0.744 0.083 0.042 

 

We present the numbers in the table as the raw data used in the ΔSwetting calculations. We define a 

monomer as ‘wetting’ the grafted layer when it is within the average root-mean-square brush 

height (Fig S2) for the system. We note that, as these data are averages over multiple frames and 

multiple trials, there seem to be some discrepancies in the data (e.g. fo Table S1 βmatrix=1.0, 

Nmatrix,avg=60 the total monomer count seems to be missing a single bead), but these are just due to 

error in the averages.   
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6.7.8 Liquid-State Theory Results for the Particle-Particle Correlation Function and Potential of 
Mean Force between Grafted Particles  

 
Figure 6.12: Particle-particle pair correlation functions (a) and potentials of mean force, in units 

of kBT (b) versus particle-particle distance, in units of d, for nanoparticles of diameter D=5d 

grafted with homopolymers with a monodisperse or bidisperse graft length distribution at filler 

fraction ϕ =0.05 (a) andϕ =0.001 (b) in a bidisperse or monodisperse homopolymer matrix. The 

symbols correspond to: 

βgraft=1.0, βmatrix=1.0 Ngraft=20, Nmatrix=40, (circles), βgraft=1.0, βmatrix=3.0, Ngraft=20, Nmatrix,avg=40 

(upward triangles), βgraft=3.0, βmatrix=1.0, Ngraft,avg=20, Nmatrix=40 (downward triangles). All of 

these data come from liquid-state-theory derived calculations. 

These data are in qualitative aggrement with the simulation results in the main article. While 

bidispersity in matrix slightly increases the tendency for particle aggreagtion, bidisperse in the 

grafted chain length significantly decreases the tendency for particle aggregation.   
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6.7.9 Particle-Particle Pair Correlation Function for Varying βmatrix   

 
Figure 6.13: Particle-particle pair correlation functions versus particle-particle distance, in units 

of d for nanoparticles of diameter D=5d grafted with homopolymers with a monodisperse or 

bidisperse graft length distribution at filler fraction ϕ =0.3 in a bidisperse or monodisperse 

homopolymer matrix. The symbols correspond to: βgraft=1.0, βmatrix=1.0, Ngraft=20, Nmatrix=40 

(black circles), βgraft=1.0, βmatrix=1.5, Ngraft=20, Nmatrix,avg=40 (red upward triangles),  βgraft=1.0, 

βmatrix=3.0, Ngraft=20, Nmatrix,avg=40 (green downward triangles), and βgraft=1.0, βmatrix=7.0, 

Ngraft=20, Nmatrix,avg=40 (blue leftward triangles). 

These data show that, the tendency for aggregation of the particles increases slightly with 

increasing βmatrix.  
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7 DECREASING POLYMER FLEXIBILITY IMPROVES WETTING AND DISPERSION 

OF POLYMER GRAFTED PARTICLES IN A CHEMICALLY IDENTICAL POLYMER 

MATRIX 
Adapted from: ACS Macro Letters 3 (7), 628-632 

7.1 INTRODUCTION 

Past studies have elucidated the various parameters that govern dispersion/assembly in polymer 

nanocomposites (PNCs) containing polymer grafted nanoparticles (PGNs).[1-8] They have mostly 

focused on PGNs with flexible homopolymers that are chemically identical to the matrix 

homopolymers, and shown that polymer grafting density[3, 9], particle curvature [10], molecular 

weights and polydispersity of the graft and matrix[11-15] affect PGN aggregation or dispersion.  

At high grafting density, on curved surfaces, aggregation/dispersion is driven largely by 

dewetting/wetting of the PGN grafted layer by the matrix. When the molecular weight of the matrix 

is less than that of the graft, the grafted layer is wet by the matrix, which leads to increased PGN 

dispersion. At low grafting density, large molecular weight of grafts shield the highly curved 

nanoparticle surface from interparticle attractive interactions, and promote particle dispersion.[16]  

Decreasing surface curvature decreases the wetting of the grafted layer by the matrix due to 

increased graft crowding near the surface of the particle. Polydispersity in the graft molecular 

weight has been shown to eliminate the mid-range attractive well in the potential of mean force 

between PGNs and to stabilize particle dispersion.[11-15] In all of these studies, the impact of 

polymer flexibility on wetting/dewetting and dispersion/aggregation of PGNs in PNCs has largely 

been unexplored. 

 Several studies have focused on semi-flexible polymers (in the absence of nanoparticles) 

[17-32], near surfaces and interfaces [32-37], as well as on composites of semi-flexible polymers 
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and bare particles.[38-41]  For example, the effect of semi-flexibility  on coil to globule transition 

of the polymer [20, 42], the formation of spherical or toroidal globules [20, 28], and the isotropic-

nematic liquid crystalline transitions have been explained. [18, 21, 22, 31] In a composite of semi-

flexible polymers and bare nanoparticles near substrates, decreasing polymer flexibility causes an 

increase in polymer density near the surface, resulting in lower nanoparticle density near the 

substrate compared to flexible polymers.[39] Polymer semi-flexibility also impacts the depletion 

attraction in systems of particles and polymers, with the relative ratio of correlation length and 

persistence length dictating the depletion thickness and the effects of particle curvature on 

depletion attraction[38]. These studies point to the importance of changing polymer flexibility on 

the polymer conformations and effective interactions between the bare particle/surfaces and 

polymers, and motivate our work here on the role of flexibility in PNCs containing PGNs. 

 We present a molecular simulation study of PGNs in a chemically identical homopolymer 

matrix to elucidate the effect of decreasing flexibility in grafts and matrix polymers on wetting of 

the grafted layer and PNC morphology. Decreasing graft and matrix flexibility leads to increased 

wetting of the PGNs by the matrix, and improved dispersion of particles with semi-flexible grafts. 

Changing the flexibility of the grafts has a more significant effect on improving wetting of the 

grafted layer than changing the flexibility of the matrix does. We also quantify the effect of 

decreasing flexibility on the known trends of varying graft and matrix length and grafting density 

on wetting of the grafted layer by the matrix.  

7.2 APPROACH 

7.2.1 Model 

We model polymer grafted spherical nanoparticles in a polymer matrix using a generic coarse-

grained model, where the nanoparticles are modeled as a rigid-body of several d=1σ beads (σ ≈ 
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1nm), and the polymers as bead-spring chains. The nanoparticle consists of surface beads to 

preserve the excluded volume of the particle and grafting sites to anchor the grafted chains. The 

surface and grafting site beads overlap in the rigid body of the particle, with the grafting site beads 

isotropically located in the spherical particle surface. Each grafted or matrix polymer is modeled 

as a bead-spring chain[43], with each bead of size d=1 representing a group of monomers on the 

polymer chain, and harmonic springs linking the beads having a force constant of kbond=50 kBT/2 

and a bond rest length of r0=1, mathematically represented as 

 
𝑈𝑏𝑜𝑛𝑑(𝑟) =

1

2
𝑘𝑏𝑜𝑛𝑑(𝑟 − 𝑟0)

2 (1)  

where r is the center to center distance between the bonded beads. 

We model decreasing flexibility in the graft and matrix polymers through a harmonic angle 

potential with varying force constant of K=0-10 kBT/radians2, and a rest angle of θ0= radians, 

mathematically represented as[44]  

 
𝑈𝑎𝑛𝑔𝑙𝑒(𝑟) =

1

2
𝐾𝑋(𝜃 − 𝜃0)

2 (2)  

where X is graft or matrix, and θ is the angle between the two bond vectors that define the potential.  

Polymer chains with the values of K studied here would have persistence lengths[45] as shown in 

the Table 7.1 using three different calculation methods[45]:  

 

{
 
 
 

 
 
 𝐿𝑝1 =

〈�⃗� 𝑒𝑒 ⋅ �⃗� 1〉

〈𝑏〉 

〈�⃗� 𝑖 ⋅ �⃗� 1〉

〈𝑏〉2
= exp( −

𝑖

𝐿𝑝2
) 

 

〈𝑅𝑒𝑒
2 〉 = 2𝐿𝑝3𝑁𝑋 − 2𝐿𝑝3

2  (1 − exp(−
𝑁𝑋
𝐿𝑝3

))

 

(3𝑎)
 
 

(3𝑏)
 
 

(3𝑐)

 

where Lpn is the persistence length calculated using method n, R⃗⃗ ee is a chain end-to-end vector, b⃗ 1 

is the bond vector for the first bond (from bead 0 to 1) of a chain, 〈b〉 is the average bond length 
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where 〈 〉  denotes ensemble averages over 200 independent snapshots and all grafted or matrix 

chains, �⃗� 𝑖 is the ith bond vector (from bead i-1 to i) of a chain , 〈Ree
2〉 is the mean-square end-to-

end distance (calculation described below), and NX (X=graft or matrix)  is the chain length. While 

Equation 3a can be solved directly for Lp1, in Equation 3b Lp2 is solved for by linearly interpolating 

to find when the LHS is equal to e-1 (i.e. when Lp2  is equal to i), and Equation 3c must be iteratively 

solved for Lp3. Using three estimates for Lp  allows us to assess the effects of the specific 

assumptions in Equation 3a (N→∞), Equation 3b (fixed bond angle), and Equation 3c (worm-like 

chain model).  

Table 7.1: Expected persistence lengths  Lp, (in units of ), of graft and matrix chains at given 

grafting density and chain lengths calculated using three methods  

                Grafts (units of σ)     Matrix (units of σ)  

Kgraft  Kmatrix  

Grafting 

Density 

(chains/2)  

Ngraft  Nmatrix   Lp1  Lp2  Lp3     Lp1  Lp2  Lp3  

5  5  0.65  20  60   7.1  6.1  5.7     5.8  4.1  5.3  

10  10  0.65  20  60   9.9  10.1  10.3     10.9  9.1  9.4  

 

We model a purely athermal system where all pairs of coarse-grained beads, including 

grafted, matrix, and surface beads, interact via the Weeks-Chandler-Andersen[46] (WCA) 

potential. 

 

{
𝑈𝑊𝐶𝐴(𝑟) = 4휀 [(

𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

]+ 휀        𝑟 < 𝑟𝑐𝑢𝑡

𝑈𝑊𝐶𝐴(𝑟) = 0                                              𝑟 > 𝑟𝑐𝑢𝑡

 (4)  
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where ε=1 (in units of kBT), σ=1 and rcut=σ*21/6  

7.2.2 Simulation Method  

Using the model described above, we conduct Brownian dynamics (BD) simulations in the 

canonical ensemble using the graphical processing unit based HOOMD-blue package.[47, 48] We 

first create an initial configuration in the following manner: We generate a particle of a desired 

diameter with isotropically distributed graft points, with the chains extending radially from these 

graft points embedded on the particle surface. In order to make it easier to insert the grafted particle 

into the simulation box, a short simulation with strong Lennard-Jones monomer-monomer and 

monomer-particle attraction is then run to compress the grafted chains from these extended 

conformations. We note that this is the only time we use attractive non-bonded interactions in our 

simulation, as the study is focused on a system with athermal interactions. Copies of this one 

compressed grafted nanoparticle are then randomly placed in a large cubic box to achieve the 

desired number of particles along with the desired number of matrix chains. This initial 

configuration is then integrated using a Brownian dynamics integrator for 0.5e6 time steps to both 

mix and relax the grafted and matrix chains. The box is then compressed to the desired volume 

fraction over 0.5e6 steps, and then mixed again for 0.5e6 steps at the compressed state. Using this 

relaxed initial configuration at the appropriate packing fraction at reduced temperature T*=1, we 

finally conduct the production simulation runs for at least 40 million time steps where snapshots 

of the system are saved every 0.1e6 time steps.  

7.2.3 Analysis  

We calculate a number of structural features (e.g. monomer concentration profiles, radii of 

gyration, graft and matrix end-end distances) and thermodynamic information (e.g. mixing 
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entropy. Data is calculated from 200 independent uncorrelated snapshots, with the error bars 

calculated as the standard error between these 200 data points. 

We quantify monomer concentration profiles of the grafted and matrix chains from the 

particle surface as follows: 

 
𝐶𝑋(𝑟) =

〈𝑛𝑋(𝑟)〉

4𝜋𝑟2Δ𝑟
 (5)  

where Cx(r) (X=graft or matrix) is the monomer concentration profile, in units of σ(-3), as a function 

of r, the distance between the particle surface and the monomer bead, and 〈nX(r)〉  is the average 

number of  beads of type X that are within a shell of thickness r at distance r. 

The brush height defines the effective thickness of the grafted layer of the grafted particle 

and is calculated as the root mean square of the distance of the grafted beads from the surface of 

the particle. 

 

〈𝐻𝐵
2〉0.5 = √

1

(𝑛𝑃 ∗ 𝑛𝐺)
∑𝑟𝑖

2

𝑛𝐺

𝑖=1

  
(6)  

where 〈HB
2〉0.5 is the brush height in units of , ri is the distance of the ith graft bead from the 

surface of the particle the graft belongs to, nP is the total number of grafted particles, and nG is the 

total number of graft beads in the system (across all grafted particles).  

The average end-to-end distance of the polymer chain is calculated by averaging the 

distance between the first and last bead of each matrix chain over the number of matrix chains in 

the system: 

 

〈𝑅𝑒𝑒
2 〉  =

1

𝑛𝑀𝐶
∑(𝑟𝑖,𝑛 − 𝑟𝑖,1)

2

𝑛𝑀𝐶

𝑖=1

 (7)  
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where 〈Ree
2〉 is the average squared end to end distance of the matrix chains, in units of σ2, nMC is 

the number of matrix chains, and ri,n-ri,1 is the distance between the first and last beads of the ith 

chain. 

The average radius of gyration of the grafted chains quantifies the size of the grafted chain 

conformations averaged over all of the grafted chains in the system. 

 

〈𝑅𝑔
2〉 = (

1

𝑛𝐺𝐶 ∗ 𝑁𝐺
)∑∑(𝑟𝑖,𝑗 − 𝑟𝑖,𝑐𝑜𝑚)

2

𝑁𝐺

𝑗=1

𝑛𝐺𝐶

𝑖=1

 (8)  

where 〈Rg
2〉 is the average squared radius of gyration, in units of σ2, nGC is the number of grafted 

chains in the system(across all particles), NG is the length of the grafted chains, ri,j is the position 

of bead j on chain i, and ri,com is the center of mass of chain i.  

The wet matrix bead percentage quantifies the degree of wetting of the grafted layer by 

matrix beads, and is calculated as: 

 wet matrix % =
𝑛𝑀,𝑤𝑒𝑡
𝑛𝑀

 (100%) (9)  

where nM is the total number of matrix beads in the system and nM,wet is the number of matrix beads 

that are within the brush height (〈HB
2〉0.5)  i.e. the number of matrix beads that have wet the grafted 

layer of any particle. 

We also calculate the particle-particle pair correlation function, gPP(r), which describes the 

extent of aggregation/dispersion of the grafted particles in the polymer matrix, by quantifying the 

correlation between the particle centers[49]. This is calculated only for the systems with multiple 

grafted particles. 

We also estimate the total gain in mixing entropy upon the matrix chains wetting the grafted 

layer, ΔSwet, as shown below in Equation 10. We calculate this quantity using 
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∆𝑆𝑤𝑒𝑡 = −
𝑘𝐵
𝑁𝑀

∑ ln
𝜙𝑀,𝑤𝑒𝑡
𝜙𝑀,𝑢𝑛𝑤𝑒𝑡

〈𝑛𝑀,𝑤𝑒𝑡〉

𝑛𝑀,𝑤𝑒𝑡=1

 

𝜙𝑀,𝑤𝑒𝑡 =
𝑛𝑀,𝑤𝑒𝑡

𝑛𝑀,𝑤𝑒𝑡 + 𝑛𝐺,𝑤𝑒𝑡
, 𝜙𝑀,𝑢𝑛𝑤𝑒𝑡 =

𝑛𝑀 − 𝑛𝑀,𝑤𝑒𝑡

𝑛𝑀 + 𝑛𝐺 − (𝑛𝑀,𝑤𝑒𝑡 + 𝑛𝐺,𝑤𝑒𝑡)
 

(10)  

where ΔSwet is the total gain in mixing entropy, kB is Boltzmann’s constant, NM is the length of the 

matrix chains, ϕM,wet is the volume fraction of matrix beads that have wet the grafted layer, and 

ϕM,unwet is the volume fraction of matrix beads that are outside the grafted layer. Since the volumes 

of the individual matrix and grafted beads are equal, the volume fractions can be calculated as 

number fractions, where nM is the total number of matrix beads in the system, nM,wet is the number 

of wet matrix beads, nG is the total number of graft beads in the system, and nG,wet is the number of 

wet graft beads. We calculate the number fractions in two separate ways: (a) explicitly counting 

graft and matrix beads in the simulation that are within the brush height and averaging that over 

snapshots and independent trials or (b) assuming that 〈𝑛𝐺,𝑤𝑒𝑡〉 is approximately 0.6nG, based on 

our observations for number of grafted beads within grafted layer, and calculating 〈𝑛𝑀,𝑤𝑒𝑡〉 by 

assuming the density of the matrix beads in the grafted layer is equal to the bulk density:  

  
〈𝑛𝑀,𝑤𝑒𝑡〉 =  

4

3
𝜋 [(〈𝐻𝐵

2 〉0.5 +
𝐷

2
)

3

− (
𝐷

2
)

3

]  𝜌𝑀,𝑏𝑢𝑙𝑘 (11)  

where ρM,bulk is the bulk density of matrix beads in the simulation, 〈HB
2〉0.5 is the brush height or 

grafted layer thickness, and D is the diameter of the particle. Method (b) is intended to be a crude 

check for trends found with method (a) as it involves less information from the simulation, and 

allows us to decouple the entropy estimations from the simulation data more than method (a) 

7.2.4 Parameters 

In this study the nanoparticle size is maintained at 5, grafting density is varied from 0.25 

to 0.65 chains/2, the matrix polymer length is varied from 20-100 coarse-grained beads, the graft 
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polymer length is varied from 10-40 beads, and the angle potential force constant is varied from 0 

to 10  kBT/radians2, with the majority of the results shown for 0 and 5 kBT/radians2. For single 

particle simulations, we use 60,000 matrix beads and for multi particle simulations we use 120,000 

matrix beads. The simulation box volume for single particle simulations is about 68x68x68 3, 

and for multi particle simulations is about 91x91x91 3. The total occupied volume fraction in the 

simulation box is maintained to be 0.1 for all systems and the number of grafted particles is varied 

from 1 to 20 particles.  

7.3 RESULTS 

7.3.1 Effect of polymer flexibility on wetting of the grafted layer by matrix 

Figure 7.1 shows that as the graft and matrix flexibility decreases the grafts adopt extended 

conformations, thereby increasing the brush height from the particle surface. Most importantly, 

with decreasing polymer flexibility, the matrix concentration profile extends further into the 

grafted layer, implying increasing wetting of the grafted layer by the matrix chains. 

 

Figure 7.1: Graft (solid) and matrix (dashed) monomer concentration profiles for a single PGN 

with grafting density=0.65 chains/2, Ngraft=20, and Nmatrix=60, with K=Kgraft=Kmatrix=0 (black), 

5(red) and 10 (blue) kBT/radians2. The brush heights are shown as vertical dash-dotted lines. 
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Since we maintain athermal interactions, the wetting/dewetting of the grafted layer by matrix is 

driven by the balance of gain in mixing entropy and losses in conformational entropy of the graft 

and matrix upon wetting. Decreasing flexibility of the matrix is expected to decrease its 

conformational entropy in the bulk, and as a result, decrease the conformational entropy loss the 

matrix would face upon entering/wetting the crowded grafted layer. As expected, as matrix 

flexibility decreases, the average end-end distance of the matrix increases (Supplementary Table 

7.3); the average and the distribution of end-end distances is a signature of the conformational 

entropy of the matrix chains. While decreasing graft flexibility also reduces the conformational 

entropy loss of the grafts upon being wet, it is relatively negligible when compared to the matrix 

due to the grafts being constrained to the particle surface and crowded by other grafts. More 

importantly, decreasing graft flexibility increases the brush height, which increases the grafted 

layer volume and likely the mixing entropy gain upon wetting. By decreasing the flexibility of the 

graft and matrix, the conformational entropy losses upon wetting of the grafted layer are reduced, 

while the gains in mixing entropy are increased, driving the increased wetting of the grafted layer. 

Next, to understand which of the above factors more significantly drives the increased wetting of 

the grafted layer by matrix chains with decreasing flexibility, we tune the graft and matrix 

flexibility individually.  
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Figure 7.2: Graft (solid) and matrix (dashed) monomer concentration profile for single PGN with 

grafting density=0.65chains/2, Ngraft=20, Nmatrix=60, and Kgraft =0 and Kmatrix =0 (red), Kgraft =0 

and Kmatrix =5 (green), Kgraft =5 and Kmatrix =0 (blue), and Kgraft =5 and Kmatrix =5 (black). 

 In Figure 7.2 the matrix concentration at short distances from the particle surface is higher 

and thus the grafted layer wetting is larger for decreased graft flexibility (Kgraft>0, Kmatrix=0) than 

for decreased matrix flexibility (Kgraft=0, Kmatrix>0). Similarly, the % matrix beads that have wet 

the grafted layer (denoted as “% Wet Matrix” in Table 7.2), calculated as the percent of matrix 

beads that are within the brush height of any grafted particle is significantly more for the case of 

Kgraft>0, Kmatrix=0 than that for the Kgraft=0, Kmatrix>0 case, indicating that decreasing graft 

flexibility improves wetting more than decreasing matrix flexibility.  At constant graft flexibility, 

decreasing the matrix flexibility has little effect on the brush height, and therefore little effect on 

the grafted layer volume. This means that when the graft is flexible and matrix is semi-flexible, 

any changes in wetting come solely from the matrix chains losing less conformational entropy 

upon wetting the grafted layer. Since the distribution of end-end distances of matrix upon wetting 

(Supplementary Table 7.3) is not significantly different for flexible and semi-flexible matrix, the 

reduced loss in conformational entropy of matrix with decreasing matrix flexibility is likely small. 

Conversely, at constant matrix flexibility, decreasing the graft flexibility increases the brush height 
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dramatically and results in significantly higher grafted layer volume, which increases the entropy 

of mixing of the graft and matrix chains without altering the conformational entropy loss of the 

matrix. This increased gain in entropy of mixing of the graft and matrix chains is driving the 

improved wetting behavior, as quantified next.  

Table 7.2: Average percentage of matrix beads that wet the grafted layer (% Wet Matrix) as a 

function of graft and matrix lengths, grafting density and flexibility. 

# of 

nanoparticles 
Kgraft Kmatrix 

Grafting 

Density 

(chains/σ2) 

Ngraft Nmatrix 
% Wet 

Matrix 
Error 

1 0 0 0.65 20 60 0.03% 0.002 

1 0 5 0.65 20 60 0.05% 0.002 

1 5 0 0.65 20 60 0.49% 0.006 

1 5 5 0.65 20 60 0.58% 0.006 

1 10 10 0.65 20 60 1.18% 0.007 

1 0 0 0.25 20 60 0.10% 0.003 

1 5 5 0.25 20 60 0.87% 0.005 

1 0 0 0.65 20 20 0.05% 0.002 

1 5 5 0.65 20 20 0.63% 0.006 

1 0 0 0.65 10 60 0.003% 0.0004 

1 5 5 0.65 10 60 0.08% 0.002 

1 0 0 0.65 40 60 0.23% 0.005 

1 5 5 0.65 40 60 2.81% 0.012 

1 0 0 0.65 20 40 0.03% 0.002 

1 5 5 0.65 20 40 0.59% 0.006 

1 0 0 0.65 20 100 0.03% 0.002 

1 5 5 0.65 20 100 0.57% 0.006 

20 0 0 0.65 20 100 0.01% 0.0002 

20 5 5 0.65 20 100 0.26% 0.0007 
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Figure 7.3: Gain in mixing entropy, TSmix (in kBT) as a function of graft and matrix flexibility 

calculated a) using simulation trajectory information and b) estimated approximately with 

minimal information from simulation. 

In Figure 7.3 we show the gain in mixing entropy of wetting the grafted layer by matrix chains 

TSmix versus decreasing flexibility for graft and matrix. In Figure 7.3a, where TSmix is calculated 

from the simulation trajectories by explicitly counting the number of matrix beads that wet the 

grafted layer, the TSmix is much larger when the graft flexibility is decreased than when the matrix 

flexibility is decreased. Furthermore, when the flexibility of both graft and matrix is decreased, the 

increase in TSmix is largest.  To minimize the bias introduced by using simulation data in the 

calculation of TΔSmix, we recalculated the TSmix using only the average brush height from each 

simulation (see Section 7.2.3). In Figure 7.3b, we find identical qualitative trends as seen in Figure 

7.3a, with the magnitude of the TΔSmix being greater with the approximate method (Figure 7.3b). 

Despite the over-estimation of TΔSmix in Figure 7.3b (due to the approximation that the density of 

the matrix beads in the grafted layer is equal to the bulk matrix density) both methods agree that 

decreasing flexibility increases the TSmix. We can conclusively say that the mixing entropy of the 
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grafted and matrix chains is a primary driving force for wetting/dewetting in this system and that 

flexibility of the graft and matrix directly tunes this driving force.  

7.3.2 Effect of polymer flexibility on trends of varying grafting density, graft and matrix length on 
wetting/dewetting 

 

Figure 7.4: a) Normalized change in the % wet matrix with increasing grafting density for 

Ngraft=20, b) normalized change in the % wet matrix with increasing graft length from 10 to 20 

and 10 to 40 beads for flexible polymers (K=0) at high grafting density (0.65 chains/σ2), and c) 

normalized change in the % wet matrix with increasing graft length from 10 to 20 and 10 to 40 

beads for semi-flexible polymers (K=5) at high grafting density (0.65 chains/σ2), for a single PGN 

with  Nmatrix=60. The normalized change in the % wet matrix is calculated as (Y-X)/X where Y is 

the % wet matrix at the higher grafting density or higher graft length and X is the % wet matrix at 

the lower grafting density or lower graft length. 

For flexible graft and matrix, where the Nmatrix > Ngraft, as grafting density increases, based on the 

% wet matrix data in Table 7.2, wetting of the grafted layer decreases, due to increased crowding 

in the grafted layer[50]. With increasing grafting density, the percentage change in the number of 

matrix beads that have wet the grafted layer, normalized by the lower grafting density, shows a 

drop of 0.70 for K=0 and only a drop of 0.33 for K=5 (Figure 7.4a). This suggests that the effect 
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of increasing grafting density on wetting of the grafted layer is reduced for semi-flexible graft and 

matrix. This is because, as the grafting density increases, the change in brush height for semi-

flexible grafts is lower than that for flexible grafts (Supplementary Figure 7.6),  also confirmed by 

the change in average radius of gyration of grafts with increasing grafting density being smaller 

for semi-flexible polymers than flexible polymers (Supplementary Table 7.4). In short, decreasing 

the flexibility reduces the effect of grafting density on the graft conformations, and in turn wetting 

behavior.  

As the Nmatrix increases at constant Ngraft, in the case of flexible polymers, the wetting of 

the grafted layer by the matrix decreases. Decreasing flexibility does not alter how the wetting of 

the grafted layer by the matrix changes with increasing Nmatrix. With increasing Nmatrix monomer 

concentration profiles in Supplementary Figure 7.6 show decreasing penetration of the matrix 

chains for both K=0 and K=5,  and % wet matrix data in Table 7.2 decreases for both K=0 and 

K=5. As the Ngraft increases at constant Nmatrix, in the case of flexible polymers, it is known that the 

wetting of the grafted layer by matrix increases.  With decreasing flexibility of graft and matrix, 

the effect of increasing Ngraft on increasing wetting of the grafted layer is reduced. For flexible 

polymers and Nmatrix=60, going from graft length of 10 to 20, the normalized change (increase) in 

%wet matrix is ~10 and going from 10 to 40  is ~76 (Figure 7.4b). In contrast, for semi-flexible 

polymers and Nmatrix=60, going from graft length of 10 to 20, the normalized change (increase) in 

% wet matrix is ~7 and going from graft length of 10 to 40 is  ~35 (Figure 7.4c) 
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7.3.3 Effect of polymer flexibility on particle assembly/dispersion at finite filler fraction: 

 
Figure 7.5: a) Graft (solid) and matrix (dashed) monomer concentration profile and b) Particle-

particle pair correlation function plotted versus the interparticle distance minus the brush height 

for 20 PGNs with grafting density=0.65 chains/2, and Ngraft=20 and Nmatrix =100 and increasing 

values of K =0 (black) and 5(red) 

Figure 7.5a shows that at finite filler fractions, we continue to see the improved wetting with 

decreasing polymer flexibility that is seen at the dilute filler fraction or single PGN limit. Table 

7.2, Supplementary Table 7.3, and Supplementary Table 7.4 also show that increasing filler 

fraction does not alter the graft radius of gyration and matrix end-end distance seen for single PGN 

for both flexible and semi-flexible systems. Since increasing wetting of the grafted layer has been 

connected to increased dispersion for flexible PGNs in past studies [12-14], we compare the 

particle-particle pair correlation for the flexible and semi-flexible graft and matrix cases.  For semi-

flexible graft and matrix case, we see a reduced correlation at the contact peak, with the contact 

peak shifting to larger distances (Figure 7.5b) compared to the flexible case. This confirms that 

reducing flexibility in graft and matrix improves dispersion of PGNs in a chemically identical 

polymer matrix, due to increased wetting of the grafted layer by matrix chains. 
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7.4 CONCLUSION 

In summary, the wetting of PGNs by chemically identical matrix is strongly dependent on the 

flexibility of the polymer chains.  Decreasing flexibility of the grafts more significantly improves 

the wetting of the grafted layer than decreasing flexibility of the matrix. Finite filler fraction 

simulations show that decreasing flexibility improves dispersion due to increasing wetting of the 

grafted layer. These results suggest that in PGN filled PNCs with larger persistence length 

polymers (graft and matrix), one would see a larger window in the phase space where the particles 

would be dispersed.  
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7.7 SUPPLEMENTARY 

7.7.1 Effect of polymer flexibility on wetting of the grafted polymer layer by matrix polymers:  

Table 7.3: Average end-end distance of the matrix polymers for varying matrix and graft lengths, grafting densities, and flexibilities. 

The graft and matrix end-to-end distances are defined as the average over all of the graft and matrix chains respectively.  The “wet 

matrix” end-to-end distance is defined as the average over any chain that has any bead within the grafted layer “brush” height, 〈HB
2〉0.5, 

and the “unwet matrix” end-to-end distance is the average over the remainder of the chains. The standard deviation of the independent 

snapshots is shown.  

np Kgraft Kmatrix 

Grafting 

Density 

(chains/σ2) 

Ngraft Nmatrix 

Graft 

<Rend-end
2>0.5 

(units of ) 

Stdev Graft 

<Rend-end
2>0.5 

(units of ) 

Matrix 

<Rend-end
2>0.5 

(units of ) 

Stdev Matrix 

<Rend-end
2>0.5 

(units of ) 

Wet Matrix 

<Rend-end
2>0.5 

(units of ) 

Stdev Wet 

Matrix 

<Rend-end
2>0.5 

(units of ) 

Unwet 

Matrix 

<Rend-end
2>0.5 

(units of ) 

Stdev Unwet 

Matrix 

<Rend-end
2>0.5 

(units of ) 

1 0 0 0.65 20 60 8.3 1.9 12.6 4.5 12.9 4.3 12.6 4.5 

1 0 5 0.65 20 60 8.2 1.9 24.3 7.9 24.5 8 24.3 8.3 

1 5 0 0.65 20 60 12.8 2.7 12.6 4.5 13 4.7 12.6 4.5 

1 5 5 0.65 20 60 12.9 2.6 24.3 7.9 24.9 8.1 24.2 8.3 

1 10 10 0.65 20 60 15.2 2.2 32.5 7.6 32.8 9.1 32.4 9.2 

1 0 0 0.25 20 60 7.3 2 12.6 4.5 12.9 4.7 12.6 4.5 

1 5 5 0.25 20 60 12.6 2.8 24.2 7.9 24.9 8.2 24.2 8.3 

1 0 0 0.65 20 20 8.3 1.9 6.7 2.1 6.9 2.1 6.7 2.1 

2
2
8
 



 

 

1 5 5 0.65 20 20 12.9 2.7 12.4 2.9 12.5 2.8 12.4 2.9 

1 0 0 0.65 10 60 5.1 1.1 12.6 4.5 13 4.5 12.6 4.5 

1 5 5 0.65 10 60 7.4 1 24.2 7.9 24.8 8.4 24.2 8.3 

1 0 0 0.65 40 60 12.6 3.2 12.6 4.5 13 4.6 12.6 4.5 

1 5 5 0.65 40 60 20.3 5.6 24.2 7.9 24.9 8.2 24.1 8.3 

1 0 0 0.65 20 40 8.3 1.9 10 3.5 10.2 3.4 10 3.5 

1 5 5 0.65 20 40 12.9 2.7 19.2 6 19.7 5.9 19.2 6 

1 0 0 0.65 20 100 8.2 1.9 16.7 6.1 17.2 6 16.7 6.1 

1 5 5 0.65 20 100 12.8 2.7 32 8.2 32.4 11.8 32 11.8 

20 0 0 0.65 20 100 8.3 1.9 16.6 6.1 17.1 6.2 16.6 6.1 

20 5 5 0.65 20 100 12.9 2.7 31.9 11.8 32.6 11.8 31.3 11.7 

2
2
9
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Table 7.4: Average radii of gyration of the graft  chains. The standard deviation for all values is 

<0.1 

np  Kgraft  Kmatrix  

Grafting 

Density 

(chains/σ2)  

Ngraft  Nmatrix  
〈Rg2〉1/2

 

()  

1  0  0  0.65  20  60 3.0  

1  0  5  0.65  20  60 2.9  

1  5  0  0.65  20  60 4.5  

1  5  5  0.65  20  60 4.5  

1  10  10  0.65  20  60 5.0  

1  0  0  0.25  20  60 2.8  

1  5  5  0.25  20  60 4.4  

1  0  0  0.65  20  20 3.0  

1  5  5  0.65  20  20 4.5  

1  0  0  0.65  10  60 1.9  

1  5  5  0.65  10  60 2.6  

1  0  0  0.65 40  60  4.4  

1  5  5  0.65 40  60  7.4  

1  0  0  0.65 20  40  3.0  

1  5  5  0.65 20  40  4.5  

1  0  0  0.65  20  100  2.9  

1  5  5  0.65  20  100  4.5  

20  0  0  0.65  20  100  3.0  

20  5  5  0.65  20  100  4.5  
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7.7.2 Effect of polymer flexibility on trends of varying grafting density and varying matrix and graft 
polymer length  on wetting/dewetting: 

 

Figure 7.6: Graft (solid) and matrix (dashed) monomer concentration profile for single polymer 

grafted particle with particle diameter 5nm for Kgraft = Kmatrix =0 (left column) and Kgraft = Kmatrix 

=5(right column) for varying polymer grafting density=0.25 (black) and 0.65(red) chains/2  with 

Ngraft=20 and Nmatrix=60 (in subplots a and b), varying matrix length =20(black), 40 (blue) and 

60(red) with Ngraft=20 and grafting density 0.65chains/2 (in subplots c and d) and varying graft 

length=10 (black) and 20 (red) with Nmatrix=60 and grafting density 0.65chains/2 (in subplots e 
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and f). The brush heights, 〈HB
2〉0.5, are shown with dotted lines. The insets in subplots c) and d) 

have the same axes as the main figure. 

For flexible graft and matrix polymers, where the matrix length is greater than graft length, 

as grafting density increases, wetting of the grafted layer decreases due to increased crowding in 

the grafted layer[50].  As the flexibility of graft and matrix polymer chains is reduced, we see that 

the effect of changing the grafting density on grafted layer wetting seems qualitatively unaltered, 

as seen in Figure 7.6a and Figure 7.6b. However, the percent change in the number of matrix beads 

that have wet the grafted layer with increasing grafting density, normalized by the lower grafting 

density, shows a 70% drop for K=0 and a 33% drop for K=5. This suggests that the effect of 

increasing grafting density on wetting of the grafted layer is reduced with decreasing flexibility. 

We justify this trend as follows: For flexible grafted polymers at low grafting densities, the brush 

height is small because the grafted chains adopt mushroom conformations on the particle.  As the 

grafting density increases, the grafted chains adopt extended conformations and the brush height 

increases.  In contrast, for grafted polymers with reduced flexibility, at low grafting densities, the 

grafted chain conformations are extended to some degree, resulting in a larger brush height than 

the corresponding flexible grafted polymer, and therefore significantly improved wetting. As the 

grafting density increases, the change in brush height for  grafted chains with reduced flexibility 

(Figure 7.6b) is lower than that for flexible grafted chains (Figure 7.6a). This is also confirmed by 

the change in average radius of gyration of grafted polymer chains with increasing grafting density 

being smaller for semiflexible polymers than flexible polymers (Supplementary Table 7.4). In 

short, decreasing the flexibility reduces the effect of grafting density on the graft conformations, 

brush height, and wetting behavior.  

In the case of flexible polymers, it is known that as the matrix polymer chain length 

increases at constant graft length, the wetting of the grafted layer by the matrix chains decreases.  
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In Figure 7.6c and Figure 7.6d, despite the different shapes of the graft and matrix monomer 

concentration profiles with decreasing flexibility, we see that decreasing flexibility does not alter 

how the wetting of the grafted layer by the matrix chains changes with increasing matrix chain 

length, both visually as well as quantitatively (using data in Table 7.2 of main manuscript). Our 

reasoning for this is as follow. In the flexible polymers case, the loss in conformational entropy of 

the matrix chain upon wetting the grafted layer is expected to increase slightly as the matrix 

polymer chain length increases (at constant graft length). Even though we know that as the 

flexibility decreases the matrix polymer conformational entropy decreases, both in the unwet and 

wet states, the trend of increasing loss in conformational entropy of the matrix chain upon wetting 

with increasing matrix length is likely the same as that in the completely flexible case. 

In the case of flexible polymers, it is known that as the graft polymer length increases, at 

constant matrix length, the wetting of the grafted layer by matrix chains increases.  While this 

trend is true for semi-flexible polymers as well (Figure 7.6e and Figure 7.6f) we find quantitative 

differences between flexible and semi-flexible cases. Using the data in Table 7.2 of main 

manuscript, for semi-flexible polymers and Nmatrix=60, going from graft length of 10 to 20, the 

wetting increases approximately 7 times and going from graft length of 10 to 40 the wetting 

increases about 35 times. In contrast for flexible polymers, going from graft length of 10 to 20, the 

wetting increases 10 times and going from 10 to 40 the wetting increases 77 times. This suggests 

that with decreasing flexibility of graft and matrix polymers, the effect of increased graft length 

on wetting of the grafted layer is reduced. This is likely because the wetting of the grafted layer 

by the matrix chain is large even at short graft length, for semi-flexible polymers (esp. as we 

approach chains length close to persistence lengths), that increasing the graft length does not 

change the wetting as much as it does for flexible polymers.
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8 WETTING-DEWETTING AND DISPERSION-AGGREGATION TRANSITIONS ARE 

DISTINCT FOR POLYMER GRAFTED NANOPARTICLES IN CHEMICALLY 

DISSIMILAR POLYMER MATRIX 
Adapted from: Journal of the American Chemical Society 137 (33), 10624-10631 

8.1 INTRODUCTION 

Driven by the need to develop functionally superior materials, significant effort has been directed 

towards the understanding of structure and thermodynamics of polymer blends [1-5] and polymer-

nanoparticle mixtures/blends [6-11]. Fundamentally, the delicate balance of enthalpic and entropic 

driving forces, arising from the interplay of polymer and particle chemistry, polymer molecular 

weight, architecture, particle size, and the blend composition dictates the phase transition from 

mixed (dispersed) to demixed (aggregated) states. A large body of scientific work [10, 12-22] has 

focused on the development of polymer nanocomposites wherein the particles are grafted with 

polymers in order to maximize the particle dispersability in a chemically similar matrix polymer. 

Through these numerous studies that are described in the review articles [12, 23-26], it is now well 

understood that the extent of matrix polymer penetration (exclusion) into the grafted polymer 

layer, also termed as “wetting” (“dewetting”) dictates extent of dispersion (aggregation) of 

polymer grafted particles in the free matrix polymer.   Experiments, theory, and simulations have 

shown ways to tune this extent of wetting by varying grafting density (mushroom to brush 

regimes), ratio of matrix to graft molecular weights, and particle size or curvature. Especially in 

the dense grafting regime, where the direct particle-particle interactions are screened [27], the 

chemical similarity of the graft and matrix reduces the thermodynamic driving forces for wetting-

dewetting to being purely entropic. While the gain in entropy of mixing drives wetting of the 

grafted polymer by the matrix chains, the conformational entropy loss due to matrix penetrating a 
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dense grafted layer drives dewetting. Decreasing ratio of matrix to graft molecular weights [28], 

increasing graft molecular weight dispersity [27, 29-32], and decreasing polymer flexibility[33]  

have been shown to increase the wetting and, in turn, stabilize particle dispersion. 

While the wetting-dewetting and dispersion-aggregation phase behavior of chemically 

identical dense brush graft-matrix blends is largely governed by these entropic driving forces, there 

is a non-trivial competition between the enthalpic and entropic driving forces for chemically 

dissimilar graft-matrix composites. Theoretical studies of flat surfaces or colloids grafted with a 

dense polymer brush placed in a chemically dissimilar polymer matrix have predicted how the 

choice of chemically dissimilar graft and matrix polymers with negative or positive Flory-Huggins 

 parameter (quantifying the enthalpic interactions between the blend components) impacts the 

graft conformations and the wetting-dewetting. [34-38] Using highly-controlled synthesis and 

characterization techniques, a few experiments have also shown that particle dispersion and 

aggregation is tuned by enthalpic interactions between grafted and matrix chains. [38-41] 

Especially in the case where there are attractive enthalpic interactions between the graft and matrix 

chains, the mixture is driven to a dispersed phase even with grafts that are shorter than matrix 

chains, a case where chemically identical systems would exhibit dewetting and particle 

aggregation.[39]  This ability to disperse particles due to graft-matrix miscibility allows for higher 

filler loadings than athermal chemically identical graft-matrix composites.[39] Choosing graft-

matrix polymers with specific H-bonding also enables thermoreversibility to particle dispersion-

aggregation. [41] 

In the above studies, the wetting-dewetting transition and dispersion-aggregation transition 

have been assumed to occur simultaneously, and are treated synonymously. [9, 10, 12, 20, 22, 24-

26, 42-44]. In contrast, in this paper, using simulations and experiments, we show that in 
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chemically dissimilar graft-matrix polymer nanocomposites, the wetting-dewetting transition 

occurs gradually with increasing temperature and is distinct from the sharp dispersion-aggregation 

(phase separation) transition. The coarse-grained molecular dynamics (CGMD) simulations focus 

on generic chemically dissimilar graft-matrix polymer pairs that exhibit a lower critical solution 

temperature (LCST) phase behavior with increasing temperature. The experiments focus on 

deuterated polystyrene (dPS) grafted silica particles in a poly(vinyl-methyl-ether) (PVME) matrix 

as dPS-PVME blends have been shown to exhibit miscibility at room temperature, and a LCST 

phase behavior with increasing temperatures. [45] Through a comprehensive characterization of 

the composite using x-ray scattering and neutron scattering experiments, along with morphology 

and chain conformations from CGMD simulations, we provide the molecular mechanism 

underlying the gradual wetting to dewetting transition being separate from the sharp dispersion-

to-aggregation transition.  

8.2 COMPUTATIONAL APPROACH 

8.2.1 Model 

We model polymer grafted spherical nanoparticles in a polymer matrix using a generic coarse-

grained model, where the nanoparticles (denoted as P) are modeled as a rigid-body of several D = 

1d beads (d ≈ 1nm), and the polymers as bead-spring chains. The nanoparticle consists of surface 

beads to preserve the excluded volume of the particle and grafting sites to anchor the grafted 

chains. The surface and grafting site beads overlap in the rigid body of the particle, with the 

grafting site beads isotropically located in the spherical particle surface. Each grafted (G) or matrix 

(M) polymer is modeled as a fully-flexible bead-spring chain[46], with each bead of size d 

representing a group of monomers on the polymer chain, and harmonic springs linking the beads 
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having a force constant of k = 50 kBT/d2 and a bond rest length of r0 = 1d, mathematically 

represented as 

 
𝑈𝑏𝑜𝑛𝑑(𝑟) =

1

2
𝑘(𝑟 − 𝑟0)

2 (3)  

where r is the center to center distance between the bonded beads.  

 The monomer-monomer interactions are modeled using a Lennard-Jones potential: 

 
𝑈𝐿𝐽(𝑟) = 4휀 [(

𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] (4)  

where 휀 is the well depth, 𝜎 is the contact distance, and r is the center-center distance of the 

interacting beads. All particle-particle and particle-monomer interactions are athermal via a 

purely-repulsive Weeks-Chandler-Andersen potential with 휀 = 1.0 𝑘𝐵𝑇: 

 

𝑈𝑊𝐶𝐴(𝑟) = {
4휀 [(

𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] + 휀, 𝑟 < 2
1
6𝜎

0, 𝑟 ≥ 2
1
6𝜎

 (5)  

In this study the nanoparticle size is maintained at D = 5d, grafting density at Σ = 0.76 chains/d2, 

and the graft and matrix lengths are kept at Ngraft = 10 and Nmatrix = 50 respectively. The filler 

fraction is varied over 𝜙𝐺 = 0.05 − 0.20 (main paper focuses on 0.13 and 0.20), where 𝜙1  is 

defined as  

 
𝜙𝐺 =

𝑉𝑔𝑟𝑎𝑓𝑡

 𝑉𝑔𝑟𝑎𝑓𝑡 + 𝑉𝑚𝑎𝑡𝑟𝑖𝑥
 (6)  

where 𝑉𝑋  is the total volume occupied by component X in the system. The form of the filler 

fraction is chosen to be able to easily compare simulations of grafted particle in a matrix to 

simulations of blends of free “graft” and matrix polymers. For all simulations, the total occupied 

volume fraction in the simulation box is maintained to be 𝜂 =0.35, and we maintain 60,000 matrix 

beads to enforce a minimum box size of ≈ 44dx44dx44d regardless of our chosen filler fraction. 
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The graft-graft and matrix-matrix interactions are maintained constant with 휀𝐺𝐺 = 휀𝑀𝑀 =

0.5 𝑘𝐵𝑇, while the graft-matrix interactions are varied to simulate varying reduced temperature 

𝑇∗ = 1/휀𝐺𝑀 
∗  = 1.25-3.33.  

8.2.2 Method  

Using the model described above, we conduct Brownian dynamics (BD) simulations in the 

canonical ensemble using the graphical processing unit based HOOMD-blue package [47, 48]. We 

first create an initial configuration in the following manner: We generate a particle of a desired 

diameter with isotropically distributed graft points, with the chains extending radially from these 

graft points embedded on the particle surface. In order to make it easier to insert the grafted particle 

into the simulation box, a short simulation with strong Lennard-Jones monomer-monomer and 

monomer-particle attraction is then run to compress the grafted chains from these extended 

conformations. Copies of this one compressed grafted nanoparticle are then randomly placed in a 

large cubic box to achieve the desired filler fraction along with the desired number of matrix 

chains. At an integrator temperature of Tinital = 5.0, this initial configuration is then integrated using 

a Brownian dynamics integrator for 5e6 time steps to both mix and relax the grafted and matrix 

chains. The box is then compressed to the desired volume fraction over 10e6 steps, and then mixed 

again for 15e6 steps at the compressed state. We then vary the integrator temperature T from Tinital 

= 5.0 to Tfinal = 1.0 using ten, geometrically sized quenches over a period of 50e6 time steps. After 

the annealing is completed, we run the simulations for an additional 50e6 time steps where we 

sample the equilibrium configurations of the system every 0.5e6 time steps to calculate the 

ensemble averages of various thermodynamic and structural properties. The starting temperature, 

ending temperature, number of quenches, quench temperatures, and number of time steps of each 

stage of the protocol are chosen after rigorously testing many protocols, and finding that this 



239 

 

protocol is the most computationally efficient that produced statistically similar equilibrium states 

from different initial conditions. Our simulation protocol is visually depicted in Figure 8.1.  

 

Figure 8.1: Schematic representation of the equilibration protocol used in the Brownian Dynamics 

simulations 

8.2.3 Analysis  

We quantify monomer concentration profiles of the graft and matrix chains from the particle 

surface as follows: 

 
𝐶𝑃𝑋(𝑟) =

〈𝑛𝑋(𝑟)〉

4𝜋𝑟2Δ𝑟
 (7)  

where CPX(r) (X=G or M) is the particle-graft or particle-matrix monomer concentration profile, 

in units of d(-3), as a function of r, the distance between the particle surface and the monomer, and 

〈nX(r)〉  is the average number of monomers of type X that are within a shell of thickness r at 

distance r. 
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The average radius of gyration of the graft or matrix chains quantifies the size of the chain 

conformations averaged over all of the graft or matrix chains in the system. 

 

〈𝑅𝑔
2〉 = (

1

𝑛𝑋𝐶 ∗ 𝑁𝑋
)∑∑(𝑟𝑖,𝑗 − 𝑟𝑖,𝑐𝑜𝑚)

2

𝑁𝑋

𝑗=1

𝑛𝑋𝐶

𝑖=1

 (8)  

where 〈Rg
2〉 is the average squared radius of gyration, in units of d2, nXC  is the number of graft or 

matrix chains in the system(across all particles), NX is the length of the graft or matrix chains, ri,j 

is the position of monomer j on chain i, and ri,com is the center of mass of chain i.  

The wet matrix fraction quantifies the degree of wetting of the grafted layer by matrix 

monomers: 

 wet matrix fraction =
𝑛𝑀,𝑤𝑒𝑡
𝑛𝑀

  (9)  

where nM is the total number of matrix monomers in the system and nM,wet is the number of matrix 

monomers that are wetting a grafted layer. We find nM,wet by first calculating the grafted-monomer 

count field throughout the simulation box, then finding the spatial locations of the isosurfaces 

corresponding to a monomer count of 0.01, and then counting the number of matrix monomers 

that are within this closed isosurface. For this study, we found that an isosurface corresponding to 

an average monomer count of 0.01 best captures the outer edge of the grafted layer of isolated 

particles or clusters of particles.  

We calculate the particle-particle, graft-graft, and matrix-matrix pair correlation functions, 

(gPP(r) gGG(r), and gMM(r)), to quantify the spatial correlation between these various species[49]. 

In order to better assess the degree of phase separation between the components of our simulation, 

we also invert the pair correlation functions to structure factors via: 

 
𝑆𝑋𝑋(𝑘) = 1 +

4𝜋𝜌𝑋
𝑘

 ∫ 𝑟 ⋅ (𝑔𝑋𝑋(𝑟) − 1) ⋅ sin(𝑘𝑟) 𝑑𝑟 (10)  
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where SXX(k) is the value of the structure factor for pair XX (PP, MM, or GG) at wavenumber k, 

𝜌𝑋 is the number density of beads of type X, and gXX (r) is the pair correlation function for pair 

XX at a real-space distance r.  

8.3 EXPERIMENTAL APPROACH 

8.3.1 Experimental preparation of polymer–grafted nanoparticles 

Initiator–functionalized silica nanoparticles (SiO2–initiator) were prepared according to the 

procedure in Ref. [50]  (see details in Supplementary Section 8.8.2). Deuterated polystyrene–

grafted SiO2 nanoparticles (SiO2–dPS) were then synthesized using a modified AGET ATRP 

reaction [51] where briefly, the Cu(II)Br catalyst and dNbpy ligand were combined with d-styrene 

in a flask and bubbled with nitrogen for 30 minutes. In another flask, the Sn(EH)2 reducing agent 

and SiO2–initiator were dissolved in toluene, purged with nitrogen and transferred to the first flask. 

The reaction mixture was then placed in an oil bath at 90°C and allowed to proceed for ~40 hours.  

After polymerization, the reaction mixture was further diluted with THF, filtered through a column 

of neutral aluminum oxide to remove the catalyst, concentrated in vacuo and precipitated in excess 

amount of cold methanol. The recovered polymer–grafted nanoparticles were further purified 

through a mixed solvent precipitation method using toluene and methanol. This step ensured the 

removal of unfunctionalized silica nanoparticles as well as free ungrafted chains from the grafted 

hybrid sample (see Supplementary Section 8.8.2). Prior to gel permeation chromatography (GPC) 

experiments to determine the polymer brush molecular weight, the grafted polymers were cleaved 

from the SiO2 surface by first dissolving the hybrid nanoparticles in 2 ml THF and then adding 2 

ml of a 2% (v/v) solution of aqueous HF. After stirring the solution overnight, the polymer was 

precipitated in excess amount of methanol and dried under vacuum for at least 24 hours. GPC 

measurements gave a brush molecular weight (Mw) of 33,000 g/mol and polydispersity index 
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(Mw/Mn) of 1.27. The grafted nanoparticles (SiO2–dPS33k) were also subjected to thermo–

gravimetric analysis to calculate the polymer grafting density, determined to be ≈ 0.7 chain/nm2.  

8.3.2 Experimental preparation of nanocomposites 

The nanocomposite was prepared following a simple solution mixing procedure. Initially, 

poly(vinyl methyl ether) (PVME) (Mw = 226,000 g/mol, PVME226k) was dried at 70°C under 

vacuum overnight and cooled down to room temperature prior to use. After which, a 20:80 (by 

weight) blend composition of SiO2–dPS33k/PVME226k was prepared by co–dissolving pre-

determined amounts of SiO2–dPS33k and PVME226k in toluene and mixing at room temperature 

for at least 24 hours. The polymer blend was obtained by precipitating the solution in a large excess 

of hexane and collecting the solid sample by vacuum filtration. The resulting composite was 

allowed to dry in air for 2 days and annealed at 60°C under vacuum for at least 24 hours before 

the scattering measurements were performed.  The samples were heated from room temperature 

to elevated temperature for the scattering measurements.  In some cases the samples were also 

studied in cooling and we found reproducible data between heating and cooling as long as the 

temperature did not exceed 145 oC. Additional details of the experimental methods can be found 

in the Supplementary Section 8.8.2. 

8.4 RESULTS AND DISCUSSION 

Coarse-grained (CG) molecular dynamics (MD) simulations of homopolymer grafted particles in 

a chemically distinct homopolymer matrix were conducted for a blend with Nmatrix = 50 Kuhn 

segments (or effective “monomers”), Ngraft = 10 Kuhn segments, particle size D = 5d, where d is 

the size of the Kuhn segment, at grafting density of 0.76 chains/d2 for two different blend/mixture 

compositions.  
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Figure 8.2: (a) Dispersion-aggregation phase-diagram, (b) simulation snapshots, with bottom 

panel hiding the matrix polymer, and (c) low-q value of the matrix-matrix structure factor for 

particles of diameter D = 5𝑑 grafted with “G” homopolymer chains of length Ngraft = 10 and 

grafting density 𝛴 = 0.76 chains/d2  in a “M” homopolymer matrix of length Nmatrix=50 at a total 

volume fraction 𝜂 =0.35 and with blend composition 𝜙𝐺 = 0.13, and 0.20. The total volume 

fraction, is defined as ratio of volume of all CG beads to the volume of the simulation box. The 

blend composition, G, is defined as ratio of volume of graft CG beads to the volume of graft and 

matrix CG beads in the system. In part a, upward and downward triangles denote aggregated and 

dispersed states, respectively, in the simulations, and the circles denote the dispersion-aggregation 

transition. The snapshots in part b are for 𝜙𝐺 = 0.13 blends. The error bars in part c are standard 

deviations calculated from 50 uncorrelated configurations for each system; the error bars when 

not visible are smaller than the size of the symbol. 

Figure 8.2a shows that there is a transition from particle dispersion to particle aggregation 

with increasing (reduced) temperature, T*. The evidence of dispersion at this high matrix to graft 

molecular weight ratio is in contrast to the chemically similar graft-matrix blends, where 

aggregation is observed at high matrix to graft molecular weight purely due to entropic driving 

forces. The reason we see dispersion at low T* for this high matrix to graft molecular weight ratio 

in this chemically dissimilar graft (G)-matrix (M) polymer pair system is because the attractive 

graft-matrix enthalpic interactions (negative ) drive graft-matrix contacts at low T*. This 
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favorable enthalpic driving force for wetting or mixing overcomes the net entropic driving forces 

that favor graft-matrix dewetting or demixing, and result in well-dispersed blends. As the 

temperature is increased, the enthalpic forces become repulsive (positive ) and along with the 

entropic driving forces favor demixing of grafted and matrix chains, and result in aggregated 

blends. The dispersion to aggregation transition is seen both in simulation snapshots rendered with 

visual molecular dynamics (VMD) [52]  (e.g. Figure 8.2b), as well as partial structure factors (MM, 

PP and GG) (Supplementary Figure 8.6-Figure 8.8) which show an upturn with increasing 

temperature as 𝑞 → 0 , indicative of the onset of particle aggregation. These partial structure 

factors are calculated via Fourier transform of MM, PP and GG radial distribution functions, as 

described in the supplementary information, and an upturn at low q indicates increasing 

aggregation of like-pairs, MM, PP or GG. Since the simulations are run at discrete temperatures, 

the dispersion-aggregation phase transition (circles in Figure 8.2a) is marked as the temperature 

where we see the onset of the low-q upturn in these partial structures. The SMM(q0) versus T* 

data for the  ϕG = 0.13 and 0.20 compositions (Figure 8.2c) show a sharp transition over a small 

T* range, indicating a first-order dispersion-aggregation transition. We are unable to resolve 

differences in the dispersion-aggregation T* of  ϕG = 0.13 and 0.20 due to the discrete steps in T* 

at which simulations are run.  
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Figure 8.3: a) Graft monomer (dashed lines) and matrix monomer (solid lines) concentration 

(𝑖𝑛 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑑−3) versus distance from the particle surface at 𝜙𝐺 = 0.13. The graft concentration 

profile is calculated for each grafted particle independently and the average of these profiles is 

presented. In the calculation of each grafted particle's profile, we only include the contribution of 

grafts that are attached to the same particle, and do not include any inter-grafted-particle 

contributions. b) Wet monomer fraction versus reduced temperature, T*. Also shown are the 

dispersion-aggregation transition temperature (vertical dot-dashed line) and the wet monomer 

fraction for the athermal  𝜙𝐺 = 0.13 and 0.20 blends (horizontal dashed and dotted lines). The 

error bars in parts a and b are standard deviations calculated from 50 uncorrelated configurations 

for each system; the error bars when not visible are smaller than the size of the symbol.  

Molecular simulations are also a powerful means to characterize the wetting to dewetting 

transition associated with the penetration of the grafted polymer chains by the chemically 

dissimilar polymers. Using CGMD simulations we calculated the extent of wetting in the dispersed 

and aggregated states using two different methods. In the first method, the graft and matrix Kuhn 

segment (or effective “monomer”) concentration profiles (Figure 8.3a for G = 0.13, and 

Supplementary Figure 8.9 for all G) confirm that, with increasing temperature, there is a gradual 

decrease in overlap between graft and matrix monomer concentration profiles. In the second 
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method, which results in a single number that characterizes the extent of wetting, we identify the 

spatial location of the anisotropic, closed isosurface corresponding to the edges of the aggregates 

(at high T*) or isolated grafted particles (at low T*), and then calculate the fraction of matrix 

monomers that are inside (wet) or outside (dewet) of this boundary as a function of temperature 

(Figure 8.3b). At any temperature, the absolute value of the wet monomer fraction increases with 

increasing amount of grafted polymer chains in the blends, as would be anticipated based on a 

simple volumetric scaling of the number of particles.  On the other hand, when a normalized wet 

monomer fraction (normalized by the surface area of the aggregates) is calculated from these 

simulations, the data collapses onto a single curve irrespective of blend composition (not shown). 

Remarkably, we observe no discontinuous or abrupt change in the wetting fraction shown in Figure 

8.3 and instead observe a continuous transition.  

Another important feature of the gradual wetting to dewetting transition (Figure 8.3) and 

the sharp dispersion to aggregation transition (Figure 8.2) is that the onset of dewetting occurs at 

a temperature well below the dispersion-aggregation transition temperature, and that the dewetting 

continues at temperatures higher than the dispersion-aggregation transition. These observations 

imply that the wetting-dewetting and dispersion-aggregation are two distinct transitions. This is in 

contrast to past literature, especially for chemically similar graft-matrix systems, where the two 

transitions are treated synonymously. [9, 10, 12, 20, 22, 24-26, 42-44]  

Interestingly, for a G = 0.13 blend with all WCA excluded volume only (athermal) 

interactions, that would mimic a chemically similar =0 graft (G)-matrix (M) polymer pair with 

the same grafting density, particle size, matrix and graft chain lengths, the wet monomer fraction 

(horizontal dashed line in Figure 8.3b) coincides with the intersection of the wet-monomer fraction 

profile and dispersion-aggregation transition of the G = 0.13 chemically dissimilar composite. 
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This means that when the extent of wetting for the chemically dissimilar graft (G)-matrix (M) 

polymer system reaches the (threshold or critical) wetting seen in chemically similar athermal 

system, the chemically dissimilar graft-matrix system goes through the dispersion-aggregation 

transition.  
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Figure 8.4: a) Temperature dependence of Small Angle X-ray Scattering (SAXS) intensity data for 

blends of a 33k dPS-grafted silica (grafting density of 0.7 chains/nm2) with a 226k PVME at a 

blend composition of 80% PVME by volume; data for the scattering intensity from a pure 33k dPS-

grafted silica particles with no PVME matrix are shown for comparison. b) Temperature 

dependence of the Small Angle Neutron Scattering (SANS) intensity for the blend described in (a). 
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c) Ornstein-Zernike representation of selected SANS data to estimate the intensity in the forward 

angle (I(0)) and correlation length (𝜉) as a function of temperature for the single phase blends. d) 

Temperature dependence of I-1(0) from SANS and primary scattering peak position (q*) from SAXS 

for the blend described in (a) and (b). TEM images of thin sections of unstained blends at (e) 25 

°C showing individually-dispersed nanoparticles and after annealing at (f) 160 °C showing large-

scale phase separation 

We conducted Small Angle X-ray and Neutron scattering (SAXS and SANS) studies as a 

function of temperature on blends of 226k PVME (80 vol %) with 33k dPS-grafted silica particles 

(grafting density = 0.7 chains/nm2). These scattering techniques provide structural information that 

covers a broad range of length scales, and can be compared to the simulation trends presented. 

Since the x-ray contrast between the polymers is small and their contrast with the silica particles 

dominate the SAXS data, we use this method and the observed peaks in the SAXS data to track 

the correlations between silica particles and therefore monitor the changes in wetting of the d-PS 

brushes on the silica particles.  Separately, since the largest contrast for neutrons are between dPS 

and PVME (see Supplementary Section 8.8.2) and because of the small amount of silica particles 

in the scattering volume, we monitor the bulk phase behavior (and aggregation) of the dPS-grafted 

silica in PVME using the low q behavior in SANS.  

It is well understood that sufficiently concentrated nanoparticles will exhibit a liquid like 

ordering characterized by a peak in the pair correlation function. This translates into a peak in the 

scattered intensity which is essentially the Fourier transform of the real space distribution of 

material.  Thus the first order peak in the scattered x-ray intensity, denoted q* in Figure 8.4a, is a 

direct measure of the distance between silica particles and, in the case of no matrix or solvent, is a 

measure of the height of the brush as established by Goel et al. [53] The peak in the x-ray scattering 

from the blend of dPS grafted SiO2 and PVME at room temperature in Figure 8.4a indicates the 
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silica particles are fairly homogenously dispersed. This is further confirmed through a direct space 

transmission electron micrograph shown in Figure 8.4e.  

With increasing temperature, the primary scattering peak shifts to higher q indicating the 

silica particles are moving closer together.  Since the concentration of particles does not change 

this is a clear indication of a depletion of the matrix polymers between particles, and thus strongly 

suggests that the PVME matrix chains are dewetting the dPS grafted layer. Parenthetically, we 

note that the dPS starts to dewet the portions of the grafted brush structure closest to the silica 

particle (and densest) first and progressively dewets portions farther away from the silica core with 

increasing temperature. Finally at the highest temperature the peak location almost coincides with 

that of the pure dPS-grafted SiO2 nanoparticles in its melt state, indicating no matrix polymer is 

left between the nanoparticles, suggesting a complete dewetting and the formation of dense 

nanoparticle aggregates.  The formation of nanoparticle aggregates is further confirmed by TEM 

of a sample held at 160 °C and is shown in Figure 8.4f. The peak position for the pure SiO2–

dPS33k nanoparticles (i.e., with no PVME added) gives the particle to particle distance in its space 

filling state, and thus the grafted brush height of ~ 9 nm (Supplementary Figure 8.10). The gradual 

shift of the peak position with temperature from evenly dispersed to “dry” grafted nanoparticle 

clusters suggests a gradual dewetting in agreement with the gradual decrease in wet monomer 

fraction seen in the simulations (Figure 8.3b). 

The increase in low q intensity as a function of temperature in both the SAXS and SANS 

data indicates an increasing contribution of large scale inhomogeneities.  SAXS is only sensitive 

to silica density inhomogeneities within the polymer matrix whereas the SANS data is sensitive to 

all three components, and in particular, the large neutron contrast between dPS and PVME make 

SANS especially sensitive to large scale concentration fluctuations between dPS and PVME which 
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would be characteristic of graft polymer-matrix polymer phase separation. We note that while the 

silica (especially as it aggregates) does contribute to the scattering in this q-regime, the magnitude 

of such scattering is small because of the small volume fraction of silica used in these samples and 

therefore we adopt a pseudo-binary approach to analyze the SANS data. Indeed, the increase in 

the low q SANS intensity data (Figure 8.4b) is consistent with a lower critical solution temperature 

(LCST) system where the concentration fluctuations increase with increasing temperature. For a 

binary blend, the scattering at low q in such a system can be described by the Ornstein- Zernike 

equation: 

 
𝐼𝑆𝐴𝑁𝑆,𝐶𝑜ℎ(𝑞) =

𝐼(0)

1 + 2𝑞2
 (9) 

where  is the correlation length. The scattered intensity in the forward direction, I(0), is obtained 

by extrapolating the 1/I(q) vs. q2
 data to q = 0 (Figure 8.4c).  Both the zero-angle scattering 

intensity, I(0), and correlation length 𝜉  diverge as the spinodal temperature is approached 

(Supplementary Figure 8.11). Plotting 1/I(0) and 1/ 𝜉2 against 1/T (Figure 8.4c and Supplementary 

Figure 8.11) allows a linear extrapolation to q = 0, and leads to the identification of the spinodal 

temperature, Ts ~143 ± 2 °C. The behavior of the intensity and correlation length with temperature 

bears remarkable similarity to that observed for polymer blends and star-PS / PVME mixtures. 

[54, 55] 

These dPS (graft) - PVME (matrix) blend experiments are thus in remarkable agreement 

with the simulations using a generic LCST graft-matrix pair, suggesting that a) the wetting to 

dewetting transition is a gradual process with increasing temperature while the dispersion-

aggregation or macrophase separation transition is first order, b) the onset of wetting to dewetting 

occurs at temperatures lower than the dispersion to aggregation transition, and c) dewetting 

continues at temperatures above the spinodal temperature in the aggregated state. 
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Figure 8.5: a) Mixed-demixed phase-diagram comparing the grafted or free blend, the wet 

monomer fraction vs temperature (b,c), graft radius of gyration (d,e), and matrix radius of 

gyration (f,g) for particles of diameter D = 5𝑑 grafted with chains of length Ngraft = 10 and grafting 

density 𝛴 = 0.76 chains/d2  in a matrix of length Nmatrix = 50 (a,b,d,f) or blends of Ngraft=10 and 

Nmatrix = 50 chains (a,c,e,g) at a total volume fraction 𝜂 = 0.35 and filler fractions 𝜙𝐺 =  0.13 

(triangles), and 0.20 (diamonds). The error bars in parts b-g are standard errors calculated from 

50 uncorrelated configurations for each system; the error bars when not visible are smaller than 

the size of the symbol. h) Change in experimentally measured radius of gyration of the outer shell 

(called Rg
corona) with temperature from an excluded volume model for blends of a 33k dPS-grafted 
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silica (grafting density of 0.7 chains/nm2) with a 226k PVME at a blend composition of 80% PVME 

by volume. We note that Rg
corona does not represent the overall dimension of the polymer chains 

but only the outer shell of the grafted chains. 

To better understand the chain conformations that are linked to the above wetting-

dewetting behavior, we unravel the effect of grafting one of the polymers in the LCST graft (G)-

matrix (M) polymer pair, on the enthalpic and entropic driving forces of the phase behavior. To do 

this we also simulate using CGMD a blend of ungrafted (G) polymer and ungrafted (M) polymer, 

termed the free blend, with the same number of G and M chains and chain lengths as the grafted 

blend, for the blend compositions discussed so far. Figure 8.5a shows that, for the free blend, the 

transition from mixed to demixed states occurs at higher temperatures and has a stronger 

dependence on the blend composition than the grafted blend. We explain this difference between 

the free and grafted blends through the enthalpic and entropic contributions to the change in free 

energy to go from mixed (dispersed) to demixed (aggregated) states, A, defined as 

 Δ𝐴𝑚𝑖𝑥𝑒𝑑→𝑑𝑒𝑚𝑖𝑥𝑒𝑑 = Δ𝑈 − 𝑇Δ𝑆 (3) 

where U is the change in internal energy and S the change in entropy going from mixed 

(dispersed) to demixed (aggregated) states.  

If we assume that the G-M attractive interactions are the dominant energetic driving force 

for G-M mixing, we can define U ~ n GM, where n is the change in number of contacts between 

G and M monomers going from mixed (dispersed) to demixed (aggregated) states, and GM the 

attractive interaction strength between G and M monomers. Since both free and grafted blends 

have the same number of G and M monomers, the total number of possible pair G-M monomer 

contacts should be the same for the grafted and free blends. However, in the grafted blend, the 

dense grafting shields some of the G monomers  from making contacts with the M monomers in 

the mixed (dispersed) state, as seen in the monomer concentration profiles in Figure 8.3a. It is fair 
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to assume that in the demixed (aggregated) state, the number of G-M contacts is minimal and 

negligibly different between the grafted and free blend. Thus, the (negative) n and (positive) U 

going from mixed (dispersed) to demixed (aggregated) states is smaller for the grafted blend than 

the free blend.  

The major contributions to the change in entropy going from mixed (dispersed) to demixed 

(aggregated) states is the conformational entropy gain of matrix chains, Sconf, and mixing entropy 

loss, Smix. Even though these two contributions to entropy cannot be fully decoupled, it is useful 

to see individually how these impact the total entropy change.   

Sconf, the conformational entropy gain of the matrix chains going from mixed (dispersed) 

to demixed (aggregated) state is larger for grafted blend than free blend. This is because the M 

matrix chains that penetrate the grafted layer in the dispersed state have fewer conformations in 

the crowded grafted G layer than they do outside the grafted layer in the aggregated state. In 

contrast, we expect that the free blend has relatively negligible differences in matrix conformations 

in the mixed and demixed state. Smix, the mixing entropy loss going from mixed (dispersed) to 

demixed (aggregated) state is smaller for the grafted blend than free blend.[56] This is because in 

the mixed state, due to the G chains being end-grafted to the particle surface in the grafted case, 

the volume available for G and M monomer mixing is significantly lower in the grafted blends 

compared to the free blends. In the demixed state the grafted and free blends should have similar 

low mixing entropy.  

Thus, with a larger energetic and entropic driving force to stay mixed, the free blends have 

a higher mixed-to-demixed transition temperature than the grafted blends. The grafted vs. free 

blend phase behavior is, thus, not surprising due to the above intuitive thermodynamic driving 

forces.  
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Surprisingly, in contrast to the gradual continuous transition of wet monomer fraction with 

increasing temperature for the grafted blends, for free blends the wet monomer fractions, which 

characterizes the extent of G-M monomer mixing, shows a sharp transition with increasing 

temperature. Furthermore, for the ϕG = 0.13 and 0.20 free blends this mixing-demixing transition 

coincides with the macrophase separation transition (dotted lines), in contrast to the grafted blends 

at those compositions. We conjecture that the gradual wetting to dewetting transition for the 

grafted blend/composite in contrast to the sharp transition for the free blend is due to the permanent 

tethering of the grafted chains.  Tethering of graft chains to the particle creates regions in the 

grafted layer with variable entropic driving forces for graft-matrix mixing. With increasing 

distance from the particle surface, each successive layer of grafted monomers has increased free 

volume available for mixing with matrix monomers. This creates a gradient in graft-matrix mixing 

entropy gain and conformational entropy loss upon wetting. For example, the grafted region closest 

to the particle center has a higher conformational entropy loss and lower mixing entropy gain from 

graft-matrix wetting than the outer region in the grafted layer. Thus, as the temperature increases 

likely various regions of the grafted layers are dewet in a step by step fashion rather than sharply 

as in the case of free blends. While curvature of the grafted surface affects the available volume 

for mixing within the grafted layer, the gradual wetting to dewetting transition is also seen in zero-

curvature flat surface limit (Supplementary Figure 8.13). This further strengthens the argument 

that the grafting/tethering of one of the polymers in the blend leads to the gradual continuous 

wetting to dewetting transition. 

To elucidate the single chain conformations within the blends during this sharp vs. 

continuous wetting-dewetting phenomena for free blends vs. grafted blends, respectively, we 

calculate the ensemble average radius of gyration for the G and M chains in the grafted and free 
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blends. There are clear differences between the behavior of the G homopolymer chains when 

grafted (Figure 8.5d) and free (Figure 8.5e). First, due to dense grafting-induced chain extension, 

the size of the G chains in the grafted systems is larger than those in the free blends. Second, as 

temperature increases, coinciding with the wetting-dewetting transition, the grafted G chains’ size 

decreases gradually till they plateau to a value when the system has completed the wetting to 

dewetting transition. In contrast, the free G polymer chains go through a coil-globule-coil 

transition, coinciding with the mixing-demixing transition in the free blend. In this case it has been 

argued that as the temperature increases, the (minority component) G chains have an increasing 

drive to shrink or collapse to a globule because they are amidst increasingly unfavorable M matrix 

chains. Once macrophase separation occurs, the G chains are in a domain of other G chains and 

are able to relax their entropically-unfavorable globule configurations and expand modestly. In the 

grafted blend, the segregation of the G chains in the grafted layer decreases the need for the G 

chains to collapse to the same extent as free G chains, as the grafted architecture prevents single 

G chains from ever being totally surrounded by M chains. Additionally, the dense grafting also 

prevents the G chains from going through the drastic changes in chain conformations that they do 

in the free blends. Interestingly, applying an excluded volume model [57] to quantitatively model 

the SANS data for the dPS-grafted SiO2 and PVME blends, allows for the extraction of a radius 

of gyration for outer layer of the grafted chains (Figure 8.5h).  The decreasing radius of gyration 

of the outer layer of the grafted chains in experiments (Figure 8.5h) and decreasing graft radius of 

gyration in molecular simulations (Figure 8.5d) are remarkably similar.  The matrix M chains in 

the grafted and free blends adopt similar chain conformations at all 𝜙𝐺 , with the effect of 

temperature on the matrix chain conformations decreasing with decreasing 𝜙𝐺  for both free and 

grafted blends.  



257 

 

8.5 CONCLUSION 

In summary, through a combination of coarse-grained simulations and x-ray and neutron 

scattering, we demonstrate that, unlike chemically identical graft-matrix systems, a sharp 

dispersion to aggregation transition is distinct from the gradual continuous wetting to dewetting 

transition in a polymer nanocomposite with a chemically dissimilar graft-matrix polymer pair that 

exhibits LCST behavior. We also show that the dispersion to aggregation transition occurs when 

the extent of wetting in the attractive graft-matrix polymer pair approaches that of the analogous 

chemically similar graft-matrix polymer composite.  
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8.8 SUPPLEMENTARY 

8.8.1 Additional Results 

 

Figure 8.6: Particle-particle structure factors versus reduced wavenumber for particles of 

diameter D = 5𝑑 grafted with chains of length Ngraft = 10 and grafting density 𝛴 = 0.76 chains/d2 

in a matrix of length Nmatrix = 50 at a total volume fraction 𝜂 = 0.35 and filler fractions 𝜙𝐺 = 0.05 

(a), 0.13(b), and 0.20(c) at reduced temperatures as indicated by the colors and symbols defined 

in the legend. 



263 

 

 

Figure 8.7: Matrix-Matrix structure factors versus reduced wavenumber for the systems 

described in Figure S1, at reduced temperatures as indicated by the colors and symbols defined 

in the legend 
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Figure 8.8: Graft-Graft structure factors for the systems described in Figure 8.6 reduced 

temperatures as indicated by the colors and symbols defined in the legend. 



265 

 

 

Figure 8.9: Particle-graft (dashed lines) and particle-matrix (solid lines) monomer concentration 

(𝑑−3) versus particle-monomer distance (d) at reduced temperatures as indicated by the colors 

and symbols defined in the legend. The data in these plots are for particles of diameter D = 5𝑑 

grafted with chains of length Ngraft = 10 and grafting density 𝛴 = 0.76 chains/d2 in a matrix of 

length Nmatrix = 50 at a total volume fraction 𝜂 = 0.35 and filler fractions 𝜙𝐺 = 0.05 (a), 0.13(b), 

and 0.20(c) at reduced temperatures as indicated by the colors and symbols defined in the legend. 
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Figure 8.10: SAXS intensity profiles of pure SiO2–dPS33k nanoparticles (no matrix) at various 

temperatures, showing no change in inter–particle distance or brush height. Sample was annealed 

at 140 °C overnight and cooled down to room temperature prior to measurement. 
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Figure 8.11: Zero-angle scattering and correlation length vs temperature. Calculation of spinodal 

temperature (Ts) from the zero-angle scattering and correlation length data were obtained by 

linearly extrapolating ISANS(0)-1 vs T-1 to the intercept value as well as by linearly extrapolating -

2 vs T-1 to the intercept value. 
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Figure 8.12: Matrix-Matrix structure factors as q→ 0 versus reduced temperature for particles of 

diameter D = 5𝑑 grafted with chains of length Ngraft = 10 and grafting density 𝛴 = 0.76 chains/d2 

in a matrix of length Nmatrix = 50 (a) or blends of Ngraft = 10 and Nmatrix = 50 chains (b) at a total 

volume fraction 𝜂 =  0.35 and filler fractions 𝜙𝐺 =  0.05 (circles), 0.13 (triangles), and 0.20 

(diamonds). 
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Figure 8.13: (Left) Simulation snapshot of flat grafted surface being wetted by a free matrix. (right) 

Wet monomer fraction versus reduced temperature, T* for equivalent flat and spherical grafted 

surfaces. For all data in the plot, there are 900 grafted chains of length Ngraft=10 and 1200 matrix 

chains of length Nmatrix=50 at composition of 𝜙𝐺 = 0.13 and total volume fraction 𝜂 = 0.35. The 

simulation protocols for the flat cases are nearly identical to the spherical case (Figure 8.1), 

except for a slightly modified compression scheme that accounts for only compressing in the 

direction normal to the interface. 

In an attempt to explain the molecular mechanism underlying the gradual wetting to dewetting 

transition, we hypothesized that the permanent tethering of the grafted chains to the highly curved 

particle surface lead to the gradual wetting to dewetting transition, unlike the free graft and free 

matrix blend which exhibited a sharp transition. Our rationale behind the hypothesis was that with 

increasing distance from the (spherical) particle surface, each successive layer of grafted 

monomers has increased free volume available for mixing with matrix monomers. This creates a 

gradient in graft-matrix mixing entropy gain and conformational entropy loss upon wetting as the 

distance from the particle surface is increased. For example, the grafted region closest to the 

particle center has a higher conformational entropy loss and lower mixing entropy gain from graft-
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matrix wetting than the outer region in the grafted layer. Thus, as the temperature increases likely 

various regions of the grafted layers are dewet in a step by step fashion rather than sharply as in 

the case of untethered graft and matrix free blends. To test in particular the curvature effects  we 

conducted simulations of flat, grafted-surfaces at the same total volume fraction, length of grafted 

and matrix chains, and number of grafted and matrix chains as the spherical grafted particle case 

at 𝜙𝐺 = 0.13. We chose to explore two grafting densities for the flat case as we found that using 

the same grafting density as the spherical grafted particles (𝜎 = 0.76 𝑐ℎ𝑎𝑖𝑛𝑠/𝑑2)  ) led to an 

extremely dense flat grafted layer that showed little wetting at all 𝑇∗ (shown as red triangles in 

Supplementary Figure 8.13). The data in the figure clearly show smooth wetting-dewetting profiles 

for all spherical and flat grafted cases. Considering that the sharp wetting to dewetting transition 

was only seen in the free graft and free matrix blends we conclude that inhomogeneity in the 

wetting from near the grafted surface to the top layer of the grafts leads to a gradual wetting to 

dewetting transition. 
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8.8.2 Experimental Methods 

8.8.2.1 Materials. 

Colloidal silica (MIBK-ST, effective diameter ~12 nm, ~30-31% silica in methyl isobutyl ketone) 

was kindly provided by Nissan Chemical Industries, Ltd. and used as received. Allyl 2-bromo-2-

methylpropionate (98%, Sigma-Aldrich), chlorodimethylsilane (98%, Sigma-Aldrich), 5% 

platinum on activated charcoal (Sigma-Aldrich), hexamethyldisilazane (HMDZ, 99.9%, Sigma-

Aldrich), tetrahydrofuran (THF, 99.9+%, Sigma-Aldrich), copper(II) bromide (Cu(II)Br, 99%, 

Sigma-Aldrich), Tin (II) 2-ethylhexanoate (Sn(EH)2, ~95%, Aldrich), N,N,N′,N′′,N′′-

Pentamethyldiethylenetriamine (PMDETA, 99%, Macron Chemicals), 4,4’-dinonyl-2,2’-

dipyridyl (dNbpy, 97%, Sigma-Aldrich), toluene (ACS grade, 99.5%, Sigma-Aldrich), methanol 

(99.8%, Mallinckrodt) and hydrofluoric acid (48~51%, VWR) were used as received. Deuterated 

styrene (d-styrene, ≥98%, Polymer Source) was passed through a column of alternating inhibitor 

remover (for hydroquinone and monomethyl ether hydroquinone, Sigma-Aldrich) and aluminum 

oxide (activated, neutral, Brockmann I, Sigma-Aldrich) to remove the inhibitor. 

8.8.2.2 Preparation of initiator–functionalized nanoparticles 

Surface modification of the silica nanoparticles (Figure 8.14a) was performed following a 

procedure by Pyun et al.[50] Briefly, this involved reacting the 1-(chlorodimethylsilyl)propyl 2-

bromoisobutyrate initiator with the silica dispersion in reflux overnight. HMDZ was then added as 

a capping agent for the remaining unfunctionalized hydroxyl groups on the silica surface. The 

initiator-functionalized nanoparticles were washed several times and separated from the 

unmodified ones by allowing them to settle in hexane for a few hours and decanting the solvent 

layer. This step was repeated at least ten times. Finally, the purified particles were recovered by 

centrifugation and dried. 
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Figure 8.14: Synthesis procedure for the preparation of initiator–functionalized (a) and polymer–

grafted (b) silica nanoparticles. 

8.8.2.3 Preparation of polymer-grafted nanoparticles by AGET ATRP 

This work also demonstrated the preparation of deuterated polystyrene (dPS) using a  modified 

AGET ATRP reaction procedure adopted from a previous work by Jakubowski et al.[51] A 

Cu(II)Br catalyst and dNbpy ligand were combined with d-styrene in one flask and bubbled with 

nitrogen for 30 minutes. In another flask, the Sn(EH)2 reducing agent and initiator-functionalized 

silica were dissolved in toluene, purged and transferred to the first flask. The reaction mixture was 

then placed in an oil bath at 90°C and allowed to proceed for 40.5 hours (Figure 8.14b).  After 

polymerization, the reaction mixture was further diluted with THF, filtered through a column of 

neutral aluminum oxide to remove the catalyst, concentrated in vacuo and precipitated in excess 

amount of cold methanol. The recovered polymer-functionalized nanoparticles were further 

purified through a mixed solvent precipitation method using toluene and methanol. This step 
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ensured the removal of unfunctionalized silica nanoparticles as well as free chains from the bulk 

sample. Prior to gel permeation chromatography experiments to determine the dPS brush 

molecular weight, the grafted polymers were cleaved from the silica surface by first dissolving the 

hybrid nanoparticles in 2 ml THF and then adding 2 ml of a 2% (v/v) solution of aqueous HF. 

After stirring the solution overnight, the polymer was reprecipitated in excess amount of methanol 

and dried under vacuum for at least 24 hours. The grafted nanoparticles were also subjected to 

thermo-gravimetric analysis to calculate the polymer grafting density. This technique afforded 

particles with a brush molecular weight of 33,000 g/mol (dPS33k), PDI of 1.27 and polymer 

grafting density of 0.7 chain/nm2. 

8.8.2.4 Purification of SiO-dPS nanoparticles. 

 The purification of polymer-grafted nanoparticles followed a mixed solvent precipitation 

procedure to remove any remaining untethered or free chains. The dried sample was first 

redissolved in minimum amount of toluene and centrifuged for 10 minutes. Unfunctionalized silica 

nanoparticles remained in the bottom of the tube and were readily separated from the bulk of the 

sample. The supernatant was then transferred to another flask and placed in an oil bath at 50 °C 

for 30 minutes. This step ensured the homogenous dispersion of the SiO2-dPS nanoparticles as 

well as any unattached chains in the solvent. The flask was then cooled down to room temperature. 

Methanol was added dropwise to the solution until the cloudiness of the system persisted.  After 

which, the flask was again heated to 50 °C which brought the solution back to a homogenous 

phase. The mixture was transferred to a separatory funnel and was left undisturbed for 2 days. The 

formation of two layers was observed. The bottom layer which contained the pure SiO2-dPS 

nanoparticles dispersed in toluene was collected and precipitated in excess amount of methanol. 
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The solid sample was collected by centrifugation and dried at 60 °C for at least 24 hr. The process 

was repeated to ensure complete removal of all unwanted materials 

8.8.2.5 Preparation of nanocomposites 

The preparation of the polymer nanocomposite followed a simple solution mixing procedure. 

Initially, poly(vinyl methyl ether) (PVME) (Mw= 226,000 g/mol, PVME226k) was dried at 70°C 

under vacuum overnight and cooled down to room temperature prior to use. A 20:80 (by weight) 

blend composition of SiO2-PS/PVME was prepared by co-dissolving the dPS33k and PVME226k 

in toluene and mixing at room temperature for at least 24 hours. The polymer blend was obtained 

by precipitating the solution in a large excess of hexane and collecting the solid by vacuum 

filtration. The resulting composite was allowed to dry in air for 2 days and annealed at 60°C under 

vacuum for at least 24 hours before the scattering measurements were performed.  The samples 

were heated from room temperature to elevated temperature.  In some cases the samples were also 

studied in cooling and we found reproducible data between heating and cooling as long as we did 

not exceed 145oC 

The resulting volume fractions, 𝜑, were computed as follows: 

Weight % of dPS33k tethered on SiO2 (from TGA, see Figure 8.16) = 89% 

Weight % of SiO2 = 11% 

Composite preparation: 

Mass of SiO2–dPS33k hybrid nanoparticles: 0.0377 g (20% by mass relative to PVME) 

Mass of SiO2 (11% of hybrid nanoparticle mass): 0.004147 g 

Density of SiO2 = 2.2 g/cm3  

 Calculated SiO2 volume = 1.885 x10-3 cm3 

Mass of dPS33k (89% of hybrid nanoparticle mass): 0.03353 g 
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 Density of dPS = 1.1307 g/cm3 

 Calculated dPS volume = 0.0297 cm3 

Mass of PVME: 0.1506 g (80% by mass relative to SiO2–dPS33k) 

 Density of PVME = 1.03 g/cm3 

 Calculated PVME volume = 0.1462 cm3 

  

Total volume = 0.1778 cm3 

 

𝝋SiO2 =
𝟎.𝟎𝟎𝟏𝟖𝟖𝟓

𝟎.𝟏𝟕𝟕𝟖
= 0.0106   

 

𝝋dPS =
𝟎.𝟎𝟐𝟗𝟕

𝟎.𝟏𝟕𝟕𝟖
= 0.1670 

𝝋SiO2-dPS = 𝟎.𝟏𝟕𝟖 

𝝋PVME = 
𝟎. 𝟏𝟒𝟔𝟐

𝟎. 𝟏𝟕𝟕𝟖
= 𝟎. 𝟖𝟐𝟐𝟑 

 

8.8.2.6 Fourier transform infrared spectroscopy (FTIR) 

The presence of attached PS brushes was confirmed through FTIR measurements (Nicolet 4700 

FTIR, Thermo Electron Corporation) which showed absorption bands corresponding to the 

different functional groups present in the sample. 
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Figure 8.15: IR spectra of the hybrid nanoparticle showing signature absorption bands of the 

different functional groups of the tethered brush. 

8.8.2.7 Thermo-gravimetric analysis (TGA) 

 Weight losses due to the tethered initiator and dPS brushes were determined by TGA (TGA Q500, 

TA Instruments). The experiments were conducted under argon atmosphere and the samples were 

heated from 25 °C to 800 °C at a heating rate of 10 °C/min. The resulting effective weight losses  
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Figure 8.16: Thermogravimetric analysis plot of the dPS33k hybrid (solid line) and initiator–

grafted (dashed line) nanoparticle showing the weight loss due to the tethered brush and initiator, 

respectively. 

8.8.2.8 Gel permeation chromatography (GPC) 

Polystyrene chains cleaved from the surface of silica were dissolved in THF (1 mg/ml 

concentration) and analyzed for molecular weight and molecular weight distribution (Viscotek 

270, using PS standards). The obtained values were used to compute for the polymer grafting 

density. 
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Figure 8.17: Gel permeation chromatogram of cleaved deuterated polystyrene brush. 

8.8.2.9 Calculation of polymer grafting density. 

 

Grafting density =

𝑊%𝑝𝑜𝑙𝑦𝑚𝑒𝑟+𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟+𝑠𝑖𝑙𝑖𝑐𝑎

100 −𝑊%𝑝𝑜𝑙𝑦𝑚𝑒𝑟+𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟+𝑠𝑖𝑙𝑖𝑐𝑎
−

𝑊%𝑠𝑖𝑙𝑖𝑐𝑎+𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟

100 −𝑊%𝑠𝑖𝑙𝑖𝑐𝑎+𝑖𝑛𝑖𝑡𝑖𝑡𝑜𝑟

(Mw)(Ssp)
× NA 

(11)  

W% = TGA weight loss (from 300 °C–800 °C) 

Mw = molecular weight of grafted polymer from GPC 

Ssp = specific surface area (1.93 x1020 nm2/g)  

NA = Avogadro’s number (6.022 x1023 molecules/mol) 

 

 Grafting density =

88.77

100−88.77
−

7.168

100−7.168

(32,717)(1.93×1020 nm2/g)
× (6.022 × 1023molecules/mol) 

     =  𝟎. 𝟕𝟒 chain/nm2 
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8.8.2.10 Small angle X-ray scattering (SAXS) 

We use a Rigaku SMax 3000 with a MicroMax-007HF rotating anode X-ray generator. The range 

of the magnitude of the scattering vector, q (=  Sin(/2)), where is the wavelength of the 

radiation andis the scattering angle) probed was 0.007–0.3 Å-1. .The hybrid nanoparticle size in 

the bulk is inferred from the inter-particle distance in the matrix obtained from the first diffraction 

peak, q1
*.   

8.8.2.11 Analysis of hybrid nanoparticle size by SAXS 

 The structural profile of the dPS-grafted silica nanoparticle was analyzed using SAXS. 

Supplementary Figure 8.10 shows the scattering intensity plot of the pure dPS33k hybrid which 

showed both first- and second-order intensity peaks denoted by q1
* (= 0.019 A-1) and q2

* (=0.033 

A-1), respectively. The ordered structure of the hybrid nanoparticles as confirmed by q1
*: q2

*::1:√3  

and gave an inter-particle distance, d, of 33.0 nm: 

 
𝑑 =

2𝜋

𝑞∗
× 1.22 (12)  

from this value and the known diameter of bare silica (15.5 nm), the brush height in the bulk system 

was estimated to be about ~ 9  nm. 
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Figure 8.18: SAXS intensity profile of the pure dPS33k hybrid nanoparticle. 

8.8.2.12 Small-Angle Neutron Scattering (SANS) 

 SANS measurements were taken on the NGB 30m SANS beamline at the National Institute of 

Standards and Technology Center for Neutron Research (NCNR) in Gaithersburg, MD. The 

measurements were performed with a neutron wavelength of 6 Å and three sample-to-detector 

distances of 13m, 4m and 1m, thus accessing a q-range of 0.003 Å-1 to 0.5 Å-1. The nanocomposite 

samples were pressed into 1mm-thick pellets at 70 °C under high vacuum for 10 mins to ensure 

the expulsion of trapped air bubbles. The pellets were sandwiched between two glass windows and 

secured in demountable titanium sample cells available at NCNR. The sample cells were then 

placed in a multiple-slot cell holder with a temperature-controlled fluid circulation system. The 

obtained raw data were corrected for detector sensitivity, background and empty cell contributions, 

as well as incoherent and coherent scattering from the pure PVME matrix component. The 

collected data were also normalized to an absolute scattering intensity. 
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Table 8.1: Values of the Scattering Length Densities 

Compound Neutron Coherent SLD (Å-2) Cu K SLD (Å-2) 

SiO2 3.48 x10-6 1.89 x10-5 

Deuterated polystyrene (dPS) 6.46 x10-6 9.60 x10-6 

Polystyrene (PS) 1.41 x10-6 9.61 x10-6 

Poly(vinyl methyl ether) 

(PVME) 
3.53 x10-7 9.66 x10-6 

 

8.8.2.13 Transmission Electron Microscopy (TEM) 

 TEM measurements were performed at the National Institute of Standards and Technology in 

Gaithersburg, MD. The composite sample was thinned into a lamellar, electron transparent (~ 150 

nm) section and mounted onto a copper half-grid by focused ion beam (FIB) milling, optimized 

for soft materials, as described elsewhere.[58] The spatial distribution of the nanoparticles in the 

composite material was imaged using an FEI Titan TEM in bright-field mode at 300 kV with a 40 

micrometer objective aperture inserted. 

8.8.2.14 Excluded Volume Model 

We employed the excluded volume model to quantitatively model the SANS data obtained for the 

mixtures of dPS and PVME. This model describes polymer chain conformations and accounts for 

excluded volume effects and uses the formalism developed by Hammouda.[57] For highly-grafted 

nanoparticles, it can be assumed that the inner region closest to the core consists of stretched chains 

(to avoid steric crowding), while the outer region has more flexible chains. These flexible chains 

are directly involved in the wetting-dewetting transition and dominate the intermediate and high q 

behavior of the coherent SANS intensity I(q). Using the excluded volume model, the changes in 

the conformation of these brushes during wetting/dewetting can thus be monitored as reflected in 

the extracted Rg values of the corona.
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9 TUNING THE WETTING-DEWETTING AND DISPERSION-AGGREGATION 

TRANSITIONS IN POLYMER NANOCOMPOSITES USING COMPOSITION OF 

GRAFT AND MATRIX POLYMERS 
Adapted from: Submitted to Materials Research Express 

9.1 INTRODUCTION 

Polymer nanocomposites are a broad class of soft materials where nanoscale filler materials are 

added to a bulk polymer matrix in order to modify and improve the mechanical, optical, electrical, 

and/or thermal properties of the polymer matrix.[1-6] Controlling the spatial arrangement of the 

components within the nanocomposite (i.e. its morphology) has been the focus of many studies, 

as the macroscopic properties of the nanocomposites are a function of their microscopic 

morphology. [1-6] One strategy to promote nanoscale fillers’ dispersion or aggregation in the 

matrix is to densely graft the surface of the nanofillers or nanoparticles with polymer chains that 

are chemically identical to the matrix polymer. In this way, the direct particle-particle and particle-

matrix interactions are screened by the grafted polymer layer, and as a result the effective filler-

filler interactions and the morphology of the nanocomposite, is tuned by varying the physical 

properties of the composite, such as the graft to matrix molecular weights ratio, particle curvature, 

grafting density, flexibility of graft and matrix polymers, dispersity in graft and matrix molecular 

weights. [5, 7-24]  

Furthermore, these past studies have also established the connection between the particles’ 

dispersion-aggregation and the extent of mixing of the graft and matrix polymer chains. When the 

graft and matrix chains are mixed (i.e. the grafted layer is wet by the matrix chains) the 

nanocomposite is driven towards dispersed morphologies. When the graft-matrix are demixed (i.e. 

the grafted layer is dewet by the matrix chains) the nanocomposite is driven towards aggregated 
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morphologies. Based on this relationship, one can expect that tuning the wetting or dewetting of 

the grafted layer provides a way to control dispersion or aggregation of the filler material within 

the matrix. For composites with chemically identical graft and matrix chains at high grafting 

densities, since the direct particle-particle and particle-polymer interactions are screened by the 

dense grafted polymer layer and the graft and matrix chains are chemically identical, the wetting- 

dewetting is driven purely by entropy. The free energy change going from wet to dewet state is 

dictated by the loss in graft-matrix mixing entropy and gain in graft and matrix chain 

conformational entropy. The nanocomposite design parameters (e.g. graft and matrix molecular 

weights, particle curvature, grafting density, flexibility) that increase the mixing entropy gain and 

decrease the conformational entropy loss will shift the nanocomposite morphology towards a wet 

grafted layer state and thus promote particle dispersion. For example, at high 
𝑁𝑔𝑟𝑎𝑓𝑡

𝑁𝑚𝑎𝑡𝑟𝑖𝑥
 ratio, the loss 

in conformational entropy of the matrix chains is smaller than the mixing entropy gain leading to 

a wet grafted layer and thus a dispersed morphology. Many applications where particle dispersion 

is desired, however, require matrix chains of fairly large molecular weights which then require 

long graft chains to achieve a high 
𝑁𝑔𝑟𝑎𝑓𝑡

𝑁𝑚𝑎𝑡𝑟𝑖𝑥
 ratio for wetting. [1-3, 25] Grafting large molecular 

weight polymer chains on the particle surface is a challenge synthetically and the focus of many 

recent studies [26-31], and furthermore, the large graft chain molecular weights also limit the 

amount of filler (i.e. polymer grafted particles) fraction in the matrix. Thus there is a need for 

approaches that achieve wetting of the grafted layer and in turn, particle dispersion at values of  

𝑁𝑔𝑟𝑎𝑓𝑡

𝑁𝑚𝑎𝑡𝑟𝑖𝑥
 <1. 

One such approach is to consider nanocomposites where the graft and matrix chains are 

chemically dissimilar and, at the desired temperatures, have attractive enthalpic interactions 
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between the graft and matrix chains. In addition to the entropic driving forces for wetting-

dewetting (and therefore dispersion-aggregation), these chemically dissimilar attractive graft-

matrix composites also have enthalpic driving forces that favor grafted layer wetting. There are 

only a few studies that consider such systems with attractive, chemically-dissimilar graft and 

matrix chains. For a system of grafted colloids in a polymer matrix, theoretical studies have shown 

that as the interactions between the grafted and matrix chains became more attractive, the wetting 

of the grafted layer increased and therefore the effective interactions between two grafted layers 

became more repulsive.[32, 33] Two separate experimental studies have also demonstrated that 

the dispersed morphology is stabilized for small 
𝑁𝑔𝑟𝑎𝑓𝑡

𝑁𝑚𝑎𝑡𝑟𝑖𝑥
 either by using a graft-matrix pair with 

LCST phase behavior or by introducing hydrogen bond acceptors and donors into the graft and 

matrix chains respectively. [3, 34] In the latter case with hydrogen bonds, the nanocomposites 

were additionally shown to display thermo-reversible dispersion-aggregation phase behavior.  

Recently, we used simulations and experiments to show that, for polymer grafted nanoparticles in 

a chemically different polymer matrix where the graft-matrix polymer pair exhibit LCST phase 

behavior, the wetting-dewetting and dispersion-aggregation transitions are distinct. [35] For these 

composites, while the dispersion-aggregation transition is a sharp transition that occurs over a 

narrow range of temperatures, the wetting-dewetting transition occurs gradually over a broader 

range of temperatures. Furthermore, for these chemically dissimilar graft–matrix composites there 

is a critical extent of wetting which marks the onset of dispersion-aggregation transition; this 

critical extent of wetting is equal to the extent of wetting of an equivalent chemically identical or 

athermal nanocomposite. Since the wetting-dewetting transition for chemically different graft-

matrix composites occurs over a range temperatures rather than a distinct temperature, there are a 

range of “partially wet” and “partially dewet” states that occur between the “fully wet” and “fully 
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dewet” states. This means that the extent of wetting, i.e. the extent of mixing between the 

grafted layer and matrix chains, can be tuned within the aggregated and dispersed 

morphologies by varying the chemical properties of the system, such as graft-matrix 

interactions or graft/matrix composition, at specific graft and matrix chain lengths. 

Furthermore, the presence of a critical degree of wetting suggests that the temperature at which 

the dispersion-aggregation transition occurs can be tuned by influencing the wetting-dewetting 

behavior of the composite using these composite design properties.  

In this study, we show that, for nanocomposites with  
𝑁𝑔𝑟𝑎𝑓𝑡

𝑁𝑚𝑎𝑡𝑟𝑖𝑥
 ≤ 1, by using graft and matrix 

polymers which are random copolymers of attractive and athermal monomers, we tune the overall 

degree of wetting and the dispersion-aggregation transition  by varying the fraction of attractive 

monomers in the graft (𝑓𝐺) and matrix (𝑓𝑀 ) chains and Flory-Huggins interaction parameter 

between the attractive graft and matrix monomers, 𝜒𝐺𝑀 . At constant 𝑓𝐺/𝑓𝑀  , simultaneously 

reducing the magnitude of 𝑓𝐺  𝑎𝑛𝑑 𝑓𝑀 reduces the degree of wetting in the dispersed state while 

maintaining a constant dispersion-aggregation transition 𝜒𝐺𝑀 . In contrast, varying 𝑓𝐺/𝑓𝑀  tunes 

both the wetting of the grafted layer and the dispersion-aggregation transition. Additionally, 

varying 𝑓𝐺  and/or  𝑓𝑀 tailors the chain conformations of the graft and matrix polymers in the wet 

and dewet states, where composites with higher 𝑓𝐺 , 𝑓𝑀  values show larger variation in their 

ensemble averaged radius of gyration 〈𝑅𝑔
2〉 with varying 𝜒𝐺𝑀 . Interestingly, at the dispersion-

aggregation transition, the graft and matrix chains in the chemically dissimilar composites adopt 

chain conformations identical to those of the graft and matrix chains in an equivalent chemically 

identical (athermal) composite.  
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9.2 APPROACH 

9.2.1 Model 

We model polymer grafted spherical nanoparticles in a polymer matrix using a generic coarse-

grained model. The nanoparticle (denoted as P) is modeled as a rigid-body of several 1d diameter 

beads (where d ≈ 1nm). The nanoparticle consists of surface beads to preserve the excluded volume 

of the particle and grafting sites to anchor the graft chains. The surface and grafting site beads 

overlap in the rigid body of the particle, with the grafting site beads isotropically located on the 

spherical particle surface. Each graft (G) or matrix (M) polymer is modeled as a fully-flexible 

bead-spring chain [36, 37], with each polymer bead of size d representing a group of monomers or 

Kuhn segment on the polymer chain, and harmonic springs linking the beads having a force 

constant of k = 50 kBT/d2 and a bond rest length of r0 = 1d, mathematically represented as 

 
𝑈𝑏𝑜𝑛𝑑(𝑟) =

1

2
𝑘(𝑟 − 𝑟0)

2 (1) 

where r is the center to center distance between the bonded beads.  

 Any attractive graft or matrix monomer-monomer interactions are modeled using a 

Lennard-Jones (LJ) potential: 

 
𝑈𝐿𝐽(𝑟) = 4휀 [(

𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] 

 

(2) 

where 휀 is the well depth, 𝜎 is the contact distance, and r is the center-center distance of the 

interacting beads. Any athermal graft or matrix monomer-monomer interactions are modeled via 

a purely-repulsive Weeks-Chandler-Andersen (WCA) potential with 휀 = 1.0 𝑘𝐵𝑇: 

 

𝑈𝑊𝐶𝐴(𝑟) = {
4휀 [(

𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] + 휀, 𝑟 < 2
1
6𝜎

0, 𝑟 ≥ 2
1
6𝜎

 (3) 
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The athermal particle-particle and particle- (graft or matrix) monomer interactions are always 

modeled using the WCA potential.  

In this study the nanoparticle size is maintained at D = 5d, grafting density at Σ = 0.76 

chains/d2, and the graft length at Ngraft = 10 and matrix length as Nmatrix = 10 or 50. The graft and 

matrix chains are random copolymers of attractive and athermal monomers, with each graft and 

matrix chain having an independently randomized sequence of monomers.  The composition of 

the graft and matrix random copolymers are varied via 𝑓𝐺  and 𝑓𝑀, the fraction of attractive beads 

per chain of the graft and matrix chains respectively, over the range of 0.0 to 1.0. For example 

𝑓𝐺 = 𝑓𝑀 = 1.0 corresponds to the fully attractive homopolymer graft and matrix case and 𝑓𝐺 =

𝑓𝑀 = 0.0 corresponds to the fully athermal homopolymer case (i.e. chemically identical graft-

matrix case). Figure 9.1 below describes some of the chain compositions studied in this work. 

 

Figure 9.1: Schematic depiction of some of the graft and matrix chain compositions considered in 

this work. Note that the graft monomers are isotropically .grafted to the particle surface and that, 

in these images, some of the grafted chains are hidden for clarity. Grey beads represent athermal 

monomers, blue and green beads represent attractive monomers in graft and matrix chains 

respectively. This figure is best viewed in color. 
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The attractive graft-graft (blue-blue) and matrix-matrix (green-green) interactions are 

maintained constant with LJ interaction strength 휀𝐺𝐺 = 휀𝑀𝑀 = 0.5 𝑘𝐵𝑇, while the attractive graft-

matrix LJ interaction strength  휀𝐺𝑀  is varied from 0.3 to 2.0 kBT. All grey graft and matrix 

monomer-monomer or monomer particle interactions are treated as athermal. The overall graft-

matrix Flory-Huggins interaction parameter 𝜒𝐺𝑀 is defined as 

 
𝜒𝐺𝑀 =

𝜒𝐺𝑀
∗

𝑧
= (휀𝐺𝑀 − 0.5 (휀𝐺𝐺 + 휀𝑀𝑀))/𝑘𝐵𝑇 (4) 

where 𝜒𝐺𝑀
∗  is the standard Flory-Huggins interactions parameter, scaled by lattice coordination 

number z. Supplementary Figure 9.7 shows how our simulated 𝜒𝐺𝑀  parameter relates to real 

experimental temperatures for a specific blend of poly(styrene) and poly(vinyl-methyl-ether). We 

caution the reader that, while these data provide a useful connection between our simulations and 

experiments, we do not have access to experimental data for exactly the same graft lengths, matrix 

lengths, or compositions used in our study. We present the data in Supplementary Figure 9.7 only 

as a point of reference to the reader. We also note that the random copolymer composites in this 

study are similar to an experimental nanocomposite system studied (experimentally) by Hayward 

and coworkers. [38] In that study, the authors considered a polymer grafted nanoparticle with poly-

2-vinyl-pyridine-r-styrene (P2VP-r-PS) graft random copolymer in a poly-4-vinyl-phenol-r-

styrene (P4VPh-r-PS)  matrix. While PS, P2VP, and P4VPh are all structurally similar, P2VP and 

P4VPh are hydrogen bond donor and acceptors (and therefore are “attracted” to one another) and 

PS in the graft and matrix chains act as relatively athermal comonomers. In our simulations, the 

attractive G and M beads are (qualitatively) similar to the attractive P2VP and P4VPh monomers 

with isotropic LJ interactions rather than directional H-bond interactions, and the athermal 

monomers in the graft and matrix chains in our model are similar to the PS comonomers.  
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9.2.2 Method 

Using the model described above, we conduct Brownian dynamics (BD) simulations in the 

canonical ensemble using the graphical processing unit based HOOMD-blue package [39, 40]. We 

first create an initial configuration in the following manner: We generate a particle of a desired 

diameter with isotropically distributed graft points, with the chains extending radially from these 

graft points embedded on the particle surface. In order to make it easier to insert the grafted particle 

into the simulation box, a short simulation with strong Lennard-Jones monomer-monomer and 

monomer-particle attraction is run to compress the grafted chains from these extended 

conformations. Copies of this one compressed grafted nanoparticle are then randomly placed in a 

large cubic box to achieve the desired filler fraction along with the desired number of matrix 

chains. The filler fraction of the nanocomposite in this study is maintained at 𝜙𝐺 = 0.13 where 𝜙𝐺  

is defined as 

 
𝜙𝐺 =

𝑉𝑔𝑟𝑎𝑓𝑡𝑠

 𝑉𝑔𝑟𝑎𝑓𝑡𝑠 + 𝑉𝑚𝑎𝑡𝑟𝑖𝑥
 (5) 

where 𝑉𝑋 is the total volume occupied by component X in the system.  

At an integrator temperature of Tinital = 5.0, the initial configuration is then integrated using 

a Brownian dynamics integrator for 5e6 time steps to both mix and relax the graft and matrix 

chains. The box is then compressed to the desired volume fraction over 10e6 steps, and then mixed 

again for 15e6 steps at the compressed state. For all simulations, the total occupied volume fraction 

in the simulation box is maintained to be 𝜂 =0.35, and we maintain 60,000 matrix beads to enforce 

a minimum box size of ≈ 44dx44dx44d. We then vary the integrator temperature T from Tinital = 

5.0 to Tfinal = 1.0 using ten, geometrically sized quenches over a period of 50e6 time steps. After 

the annealing is completed, we run the simulations for an additional 50e6 time steps where we 

sample the equilibrium configurations of the system every 0.5e6 time steps to calculate the 



290 

 

ensemble averages of various thermodynamic and structural properties. The starting temperature, 

ending temperature, number of quenches, quench temperatures, and number of time steps of each 

stage of the protocol are chosen after rigorously testing many protocols, and finding that this 

protocol is the most computationally efficient that produced statistically similar equilibrium states 

from different initial conditions. Our simulation protocol is visually depicted in Supplementary 

Figure 9.8. 

9.2.3 Analyses 

The average radius of gyration of the graft (matrix) chains quantifies the chain conformations 

averaged over all of the graft (matrix) chains in the system. 

 

〈𝑅𝑔
2〉 = (

1

𝑛𝑋𝐶 ∗ 𝑁𝑋
)∑∑(𝑟𝑖,𝑗 − 𝑟𝑖,𝑐𝑜𝑚)

2

𝑁𝑋

𝑗=1

𝑛𝑋𝐶

𝑖=1

 (6) 

where 〈Rg
2〉 is the average squared radius of gyration, in units of d2, nXC  is the number of graft or 

matrix chains in the system(across all particles), NX is the length of the graft or matrix chains, ri,j 

is the position of monomer j on chain i, and ri,com is the center of mass of chain i.  

The wet matrix fraction quantifies the extent of wetting of the grafted layer by matrix 

monomers: 

 wet matrix fraction =
𝑛𝑀,𝑤𝑒𝑡
𝑛𝑀

  (7) 

where nM is the total number of matrix monomers in the system and nM,wet is the number of matrix 

monomers that are wetting grafted layers. We find nM,wet by first calculating the graft-monomer 

count field throughout the simulation box, then finding the spatial locations of the isosurfaces 

corresponding to a monomer count of 0.01, and then counting the number of matrix monomers 

that are within this closed isosurface. For this study, we found that an isosurface corresponding to 
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an average monomer count of 0.01 best captures the outer edge of the grafted layer of isolated 

particles or clusters of particles.  

We calculate the particle-particle, graft-graft, and matrix-matrix pair correlation functions, 

(gPP(r) gGG(r), and gMM(r)), to quantify the spatial correlation between these various species.[41] 

In order to better assess the extent of phase separation between the components of our simulation, 

we also convert the real space pair correlation functions to Fourier space structure factors via: 

 
𝑆𝑋𝑋(𝑞) = 1 +

4𝜋𝜌𝑋
𝑘

 ∫ 𝑟 ⋅ (𝑔𝑋𝑋(𝑟) − 1) ⋅ sin(𝑞𝑟) 𝑑𝑟 (8) 

where SXX(q) is the value of the structure factor for pair XX (PP, MM, or GG) at wavenumber q, 

𝜌𝑋 is the number density of beads of type X, and gXX (r) is the pair correlation function for pair 

XX at a real-space distance r.  

 In order to ensure that no unrealistic density fluctuations appear in our simulated 

composites, we calculate the average minimum and maximum local volume fraction along with 

the overall average local volume fraction. The local volume fraction is calculated by subdividing 

the simulation box at each timestep into 100 equal sized cuboids and calculating the occupied 

volume fraction separately for each small region. The average minimum and maximum local 

volume fractions are then calculated by averaging the values of the instantaneous minimum and 

maximum cuboid volume fractions, respectively, over the last 50e6 timesteps of the simulation. 

Similarly, the overall average local volume fraction is calculated by averaging all of the cuboid 

volume fractions over the last 50e6 timesteps. Based on these data shown in Supplementary Figure 

9.9, we limit the data presented for the 𝑓𝐺 = 𝑓𝑀 = 1.0  (homopolymer) and 𝑓𝐺 = 𝑓𝑀 = 0.7 

composites to 𝜒𝐺𝑀 > −0.5 as unrealistic density fluctuations appear below this 𝜒𝐺𝑀 .  All other 

systems studied show near constant density fluctuations at all 𝜒𝐺𝑀, while 𝑓𝐺 = 𝑓𝑀 = 1.0 and 0.7 

show systematically increasing density fluctuations as 𝜒𝐺𝑀 decreases at all 𝜒𝐺𝑀 < 0.5 
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9.3 RESULTS AND DISCUSSION 

 

Figure 9.2: Simulation snapshots, low-q value of the matrix-matrix structure factor, and wet 

monomer fraction. In all parts, the particle diameter is D=5d, the grafting density =

0.76 𝑐ℎ𝑎𝑖𝑛𝑠/𝑑2 , the graft chain monomer volume fraction is 𝜙𝐺 = 0.13 and the total volume 

fraction in the simulation box is 𝜂 = 0.35. Parts a, c and e are for composites with 𝑓𝐺 = 𝑓𝑀 =

1.0 and parts b, d and f are for composites with 𝑓𝐺 = 0.7 , 𝑓𝑀 = 0.1. The graft length is Ngraft = 10 

in all parts, while a matrix of length Nmatrix=10 is denoted with red triangles and Nmatrix=50 is 

denoted with black circles. The horizontal dashed lines in parts c,d and e,f represent the low-q 

structure factor and wet monomer fraction (respectively) of the equivalent athermal (𝑓𝐺 = 𝑓𝑀 =

0.0)  composite. The vertical dashed lines in parts c-f mark the location of the dispersion-

aggregation transition. The error bars in part b-f are standard deviations calculated from 50 

uncorrelated configurations for each system; the error bars when not visible are smaller than the 

size of the symbol. 

In Figure 9.2 we present simulation snapshots and data which quantify the dispersion-

aggregation state and the extent of wetting-dewetting for two graft and matrix chain compositions: 

𝑓𝐺 = 1.0, 𝑓𝑀 = 1.0 (Figure 9.2a, Figure 9.2c, and Figure 9.2e)  and 𝑓𝐺 = 0.7,𝑓𝑀 = 0.1 (Figure 

9.2b, Figure 9.2d, and Figure 9.2f). Figure 9.2a and Figure 9.2b are representative simulation 
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snapshots which visually depict the dispersed and aggregated morphologies for both the 

homopolymer and random copolymer 𝑓𝐺 = 0.7 , 𝑓𝑀 = 0.1 composites. At negative 𝜒𝐺𝑀, equivalent 

to lower temperatures in a composite with lower critical solution temperature (LCST) phase 

behavior (Supplementary Figure 9.7), the grafted particles of both chain compositions show a 

dispersed morphology. At positive 𝜒𝐺𝑀 , equivalent to higher temperatures in the LCST phase 

diagram, the grafted particles phase separate from the matrix chains into an aggregated 

morphology. In Figure 9.2c and Figure 9.2d, we plot the value of the matrix-matrix structure factor 

𝑆𝑀𝑀  as 𝑞 → 0 as a function of 𝜒𝐺𝑀 in order to quantify the extent of phase separation in the 

nanocomposite with 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 10 and 50. Low values of 𝑆𝑀𝑀(𝑞 → 0) are indicative of dispersed 

morphologies while an upturn in 𝑆𝑀𝑀(𝑞) as 𝑞 → 0 indicates the onset of aggregation of matrix 

chains. The dispersion -aggregation transition (vertical lines in Figure 9.2c through Figure 9.2f) is 

identified as the 𝜒𝐺𝑀 at which a sharp increase in 𝑆𝑀𝑀(𝑞 → 0) occurs and we find good qualitative 

agreement between these data and the visual analysis. The dispersion-aggregation transition for 

the homopolymer graft-matrix pair at both values of 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 is sharp and occurs at 𝜒𝐺𝑀 ≈ 0 while 

the random copolymer composites go through dispersion to aggregation transition at 𝜒𝐺𝑀 ≈

−0.75 for 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50 and 𝜒𝐺𝑀 ≈ −0.65 for 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 10. We note that the particle-particle 

and graft-graft structure factors also show upturn at 𝑞 → 0 at approximately the same 𝜒𝐺𝑀  as the 

matrix-matrix structure factor (Supplementary Figure 9.10). Figure 9.2c and Figure 9.2d also show 

that the dispersion-aggregation transition is slightly broader for the random copolymer (𝑓𝐺 =

0.7,𝑓𝑀 = 0.1) composites compared to the homopolymer composites. The increased breadth of 

the dispersion-aggregation transition for the random copolymer composite compared to the 

homopolymer composites is also seen in the graft-graft and matrix-matrix structure factors 

(Supplementary Figure 9.10). 
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 Interestingly, for the homopolymer composites, varying Nmatrix shows insignificant 

differences in the dispersion-aggregation transition even though in chemically identical 

homopolymer graft and matrix composites, increasing Nmatrix at constant Ngraft has been shown to 

dictate dispersion/aggregation. [5, 7, 19-21] For the random copolymer 𝑓𝐺 = 0.7, 𝑓𝑀 = 0.1 

composites (Figure 9.2d), as 𝑁𝑚𝑎𝑡𝑟𝑖𝑥  decreases the dispersion-aggregation transition 𝜒𝐺𝑀  shifts 

right to less negative values.  

 We present the extent of wetting of the grafted layer by the matrix chains using the wet 

monomer fraction as a function of Flory Huggins 𝜒𝐺𝑀 in Figure 9.2e and Figure 9.2f for 𝑓𝐺 =

1.0, 𝑓𝑀 = 1.0 and 𝑓𝐺 = 0.7, 𝑓𝑀 = 0.1, respectively. For all composites, the wet monomer fraction 

gradually decreases over the entire range of 𝜒𝐺𝑀. The gradual wetting-dewetting transitions are in 

contrast to the comparatively sharp dispersion-aggregation transitions (characterized by the 

𝑆𝑀𝑀(𝑞 → 0) data in Figure 9.2c and Figure 9.2d) marked by vertical lines in Figure 9.2e and 

Figure 9.2f. Thus, wetting-dewetting and dispersion-aggregation transitions cannot be treated as 

synonymous as one occurs gradually over a broad range of 𝜒𝐺𝑀 while the other occurs over a much 

smaller range of 𝜒𝐺𝑀. This phenomena has also been shown experimentally in our recent work 

[35] for a PS (graft) grafted silica in PVME (matrix) analogous to the simulated homopolymer 

Ngraft=10 and Nmatrix =50 composites discussed here. Similar to the  𝑆𝑀𝑀(𝑞 → 0) data, for the 

composites with fully attractive homopolymer graft and matrix chains, the 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 10 and 

𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50 cases have nearly identical wetting at all 𝜒𝐺𝑀, which is in line with their similar 

dispersion-aggregation behavior discussed in Figure 2c. For the random copolymer cases there are 

small differences in the wet monomer fraction profiles of 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 10 and 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50  in line 

with their slightly different dispersion-aggregation transitions in Figure 9.2d.  
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Strikingly, for both graft-matrix compositions and both matrix lengths, the dispersion-

aggregation transition (vertical lines in Figure 9.2c through Figure 9.2d) is approximately located 

where the wet monomer fraction of the attractive composite equals the wet monomer fraction of 

the equivalent athermal composite (horizontal lines). The presence of this “athermal critical wet 

monomer fraction” suggests that the dispersion-aggregation transition occurs when the enthalpic 

and entropic driving forces are in perfect balance, bringing about a system that is effectively 

athermal. This is equivalent to saying that the effective interaction parameter between the polymer 

grafted particles and the matrix chains 𝜒𝐹𝑀
𝑒𝑓𝑓
 is equal to zero at the dispersion-aggregation transition 

𝜒𝐺𝑀. 

We rationalize the thermodynamic driving forces that bring about the trends in Figure 9.2 

as follows. The composites with chain compositions of 𝑓𝐺 = 0.7, 𝑓𝑀 = 0.1 have a more negative 

transition 𝜒𝐺𝑀 than that of the homopolymer composites due to reduced enthalpic driving forces 

for wetting from the reduced number of possible attractive graft-matrix (G-M) interactions. These 

reduced enthalpic driving forces for wetting also explains why, at the same 𝜒𝐺𝑀 the homopolymer 

composites have a higher extent of wetting when compared to the random copolymer composites. 

Since one effect of reducing the matrix length is to reduce the conformational entropy loss of the 

matrix wetting the grafted later, we would expect reducing matrix length to also increase the 

dispersion-aggregation transition 𝜒𝐺𝑀. Indeed, for the random copolymer composites with 𝑓𝐺 =

0.7 and 𝑓𝑀 = 0.1, there is a small increase in the transition 𝜒𝐺𝑀 when the matrix length is reduced 

from 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 =50 to 10. Conversely, for the same reduction in matrix length, there is no change 

in the dispersion-aggregation 𝜒𝐺𝑀 for the homopolymer composites. Based on this, we conclude 

that the dispersion-aggregation and wetting-dewetting transitions for the homopolymer composites 

are primarily enthalpically driven, while the random copolymer composites at 𝑓𝐺 = 0.7, 𝑓𝑀 = 0.1, 
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due to the reduced number of attractive G and M monomers, show small effects from varying 

entropic driving forces.  

 

Figure 9.3: 𝑊𝑒𝑡 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑎 𝑎𝑛𝑑 𝑐) 𝑎𝑛𝑑 𝑆𝑀𝑀(𝑞 → 0)  (b and d) versus Flory-

Huggins 𝜒𝐺𝑀  at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50  for varying symmetric (a and b) and asymmetric (c and d) 

attractive monomer graft and matrix chain compositions. Also shown are the dispersion-

aggregation transition 𝜒𝐺𝑀(vertical dashed lines) and the wet monomer fraction and 𝑆𝑀𝑀(𝑞 → 0) 

for the equivalent athermal composite (horizontal dashed lines). The error bars are standard 

deviations calculated from 50 uncorrelated configurations for each system; the error bars when 

not visible are smaller than the size of the symbol.  

While 𝜒𝐺𝑀  describes the enthalpic driving forces for graft-matrix mixing, the effective 

interaction parameter, 𝜒𝑒𝑓𝑓 , includes both entropic and enthalpic driving forces for mixing of 

various components in the composite. In particular, 𝜒𝑒𝑓𝑓 serves as a proxy for the free energy of 

mixing between the various composite components and is equal to zero at a mixing-demixing 

transition between those components. If the athermal critical wet monomer fraction determines the 
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onset of the dispersion-aggregation transition, and it occurs when the entropic and enthalpic 

driving forces in the composite are in balance, i.e.  filler-matrix 𝜒𝑒𝑓𝑓 = 0, one should be able to 

tune the dispersion-aggregation transition by tailoring the graft and matrix chain composition 

which in turn impact the filler-matrix 𝜒𝑒𝑓𝑓.  

In Figure 9.3a and Figure 9.3c, the wet monomer fraction as a function of 𝜒𝐺𝑀 is shown 

for several different symmetric (𝑓𝐺 = 𝑓𝑀, Figure 9.3a) and asymmetric (𝑓𝐺 ≠ 𝑓𝑀 , Figure 9.3c) 

graft and matrix chain compositions. For all composites with 𝑓𝐺  or 𝑓𝑀 < 1.0, the attractive and 

athermal graft and matrix monomers are randomly located along the chains. For all graft-matrix 

compositions shown, with increasing 𝜒𝐺𝑀, the wet monomer fraction gradually decreases until it 

reaches the wet monomer fraction of the corresponding athermal composite (horizontal line) at 

which point the onset of the dispersion-aggregation transition occurs (vertical lines). As was done 

in Figure 9.2 the dispersion-aggregation transition is determined independently from the wet 

monomer fraction calculation by using 𝑆𝑀𝑀(𝑞 → 0) (Figure 9.3b and  Figure 9.3d), or 𝑆𝐺𝐺(𝑞 →

0) and 𝑆𝑃𝑃(𝑞 → 0) (Supplementary Figure 9.11) for each system. We note that,   for the 𝑓𝐺 =

0.1, 𝑓𝑀 = 0.7 composites, even though 𝑆𝑀𝑀(𝑞 → 0) (blue upward triangles) does not intersect the 

athermal 𝑆𝑀𝑀(𝑞 → 0)  (horizontal line), the 𝑆𝐺𝐺(𝑞 → 0) and 𝑆𝑃𝑃(𝑞 → 0)  in Supplementary 

Figure 9.11 along with visual analysis show that the marked transition point (vertical blue dashed 

line) is clearly where the composite transitions from dispersed to aggregated morphologies.  

For the composites with symmetric graft and matrix chain compositions ( 𝑓𝐺 = 𝑓𝑀) in 

Figure 9.3a and Figure 9.3b, the dispersion-aggregation transition occurs at 𝜒𝐺𝑀 ≈ 0 with the 

magnitude of 𝑓𝐺  and 𝑓𝑀 tuning the overall extent of wetting of the grafted particles for 𝜒𝐺𝑀 < 0 

in the dispersed state. Conversely, Figure 9.3c and Figure 9.3d show that varying the asymmetry 

of the graft-matrix composition (i.e. 𝑓𝐺/𝑓𝑀) tunes both the extent of wetting of the grafted layer 
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and the 𝜒𝐺𝑀 of the dispersion-aggregation transition simultaneously. Furthermore, by reducing the 

magnitude of 𝑓𝐺  and/or 𝑓𝑀  or varying the asymmetry ratio 𝑓𝐺/𝑓𝑀  from 1, we broaden the 

dispersion-aggregation transition (Figure 9.3b and Figure 9.3d). For example, while the 

homopolymer graft and matrix composites (𝑓𝐺 𝑓𝑀⁄ = 1) transition over a 𝛿𝜒𝐺𝑀  of ≈ 0.05, the 

𝑓𝐺 = 0.7, 𝑓𝑀 = 0.1 and 𝑓𝐺 = 0.5, 𝑓𝑀 = 0.5 composites both have slightly broader transitions at 

𝛿𝜒𝐺𝑀 ≈ 0.2 . The composites with the lowest 𝑓𝐺  and 𝑓𝑀  showed the broadest dispersion to 

aggregation transition. In the near-athermal limit of 𝑓𝐺 = 𝑓𝑀=0.1, the extent of wetting (Figure 

9.3a) and the characteristics of the dispersed and aggregated states (Figure 9.3b) are only 

marginally different than the equivalent athermal composite. We also note that reducing either 

𝑓𝐺  𝑜𝑟 𝑓𝑀  does not necessarily produce a symmetric reduction in the dispersion-aggregation 

transition 𝜒𝐺𝑀  (compare (0.7,0.1)  and (0.1,0.7) ), and composites with higher composition 

asymmetry show higher differences between reducing the graft or matrix composition.  

All composites with symmetric chain composition (𝑓𝐺 = 𝑓𝑀) reach the athermal critical 

wet monomer fraction at the same 𝜒𝐺𝑀, leading to the dispersion-aggregation 𝜒𝐺𝑀 being identical 

for these composites. This is despite the fact that, for the composites with symmetric chain 

compositions at 𝜒𝐺𝑀 below the dispersion-aggregation 𝜒𝐺𝑀, decreasing 𝑓𝐺  and/or𝑓𝑀 decreases the 

extent of wetting. This means that the extent of wetting in the dispersed state can be tuned by 

decreasing 𝒇𝑮 𝒂𝒏𝒅𝒇𝑴  symmetrically, and that the wetting is tuned independently of the 

location of the dispersion-aggregation 𝝌𝑮𝑴. In contrast, the composition asymmetry ratio 

(𝒇𝑮/𝒇𝑴) tunes both the extent of wetting of the grafted layer and the dispersion-aggregation 

𝝌𝑮𝑴 simultaneously.  

To explain the above trends, we first point to the fact that the number of like interactions 

(GG and MM) are maximized in aggregated morphologies while the number of unlike interactions 
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(GM) are maximized in dispersed morphologies, as shown by the number of like and unlike 

monomer-monomer contacts in Supplementary Figure 9.12. As discussed above, our data suggests 

that the composites with attractive G and M monomers are mostly dominated by enthalpic driving 

forces, therefore by promoting either like or unlike interactions, one is in turn driving the 

composite towards aggregated or dispersed morphologies, respectively. The values of 𝑓𝐺 𝑎𝑛𝑑 𝑓𝑀 

at constant graft and matrix chain lengths relate to the total number of attractive graft and matrix 

monomers in the composite, therefore the 𝑓𝐺/𝑓𝑀 ratio is related to the stoichiometric balancing of 

like and unlike attractive monomer interactions. When, 𝑓𝐺 𝑓𝑀 ⁄ deviates from unity it increases 

the favorability of the aggregated morphology due to the fact that there are more possible like 

monomer interactions than unlike monomer interactions. Based on this, a stronger enthalpic 

driving force for graft-matrix mixing is then needed to stabilize the dispersed morphology resulting 

in a more-negative 𝜒𝐺𝑀  for the asymmetric graft-matrix compositions than the symmetric ones.  
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Figure 9.4: Matrix chain radius of gyration, 𝑅𝑔
2 , distributions for varying 𝜒𝐺𝑀, at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50, 

and for varying graft and matrix chain compositions (𝑓𝐺 , 𝑓𝑀) (as labeled). 

 The matrix polymer chain conformations presented in Figure 9.4, show that there is no 

strong effect of 𝜒𝐺𝑀 or 𝑓𝐺 , 𝑓𝑀 on the matrix 𝑅𝑔
2 distributions; for all 𝜒𝐺𝑀 and chain compositions 

the mean of the distribution is approximately 〈𝑅𝑔
2〉 ≈ 14 − 16 d2  (Supplementary Figure 9.13). 

While Supplementary Figure 9.3 shows some systematic variation in the averages of the chain 

distributions this effect is small compared to the width of the distribution as shown in Figure 9.4. 

The lack of variation in the matrix chain distributions is surprising given that all systems in Figure 

9.4 have a dispersion-aggregation transitions (Figure 9.3b and Figure 9.3d) in the range of 𝜒𝐺𝑀 
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presented with varying extents of grafted layer wetting (Figure 9.3a and Figure 9.3c). In addition, 

as the matrix chain attractive monomer composition 𝑓𝑀 increases, the amount of effective intra-

chain attraction increases, which should increase the enthalpic driving forces for the matrix chains 

to assume compressed conformations. We attribute the lack of variation in the matrix chain 

conformations to the matrix chains being the bulk component in the composite (𝜙𝑀 = 1 − 𝜙𝐺 =

0.87)  and therefore, despite changes in dispersion-aggregation and wetting-dewetting, the 

majority of matrix chains are separated from graft chains and therefore unaffected by 𝑓𝐺 , 𝑓𝑀 or 

𝜒𝐺𝑀.  

 

Figure 9.5: Graft chain radius of gyration, 𝑅𝑔
2 , distributions for varying 𝜒𝐺𝑀, at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50, 

and for varying graft and matrix chain compositions (𝑓𝐺 , 𝑓𝑀) (as labeled).  
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 In contrast to the matrix 𝑅𝑔
2  distributions, the graft 𝑅𝑔

2  distributions (Figure 9.5) show 

variations with both 𝜒𝐺𝑀  and graft-matrix composition. The homopolymer (Figure 9.5a) and 

symmetric random copolymer composites with 𝑓𝐺 = 𝑓𝑀 = 0.7 or 0.5 (Figure 9.5b and Figure 9.5c) 

show increase in mean Rg2 (Supplementary Figure 9.13) or extension of graft chains with 

decreasing 𝜒𝐺𝑀. The 𝑅𝑔
2 distributions of the two composites with asymmetric or low (𝑓𝐺 = 𝑓𝑀 =

0.1 𝑜𝑟 0.3) graft and matrix compositions (Figure 9.5d through Figure 9.5i) are less sensitive to 

varying 𝜒𝐺𝑀. In other words, the cases with the higher attractive graft and matrix compositions 

show the largest shifts in graft 𝑅𝑔
2. This trend in graft chain expansion mimics the trend in the wet 

monomer fractions in Figure 9.3a and Figure 9.3c. The composites with the largest variations wet 

monomer fraction values with changing 𝜒𝐺𝑀 also show the largest changes in chain conformation. 

This follows logically as the composites with the higher extents of wetting must have more 

extended graft chains to accommodate the matrix chains which are penetrating grafted layers. 

These data demonstrate that by varying the composition of attractive monomers in the graft and 

matrix chains, we not only tune the extent of wetting-dewetting of the grafted layer and the 

dispersion-aggregation𝜒𝐺𝑀, but also the conformations of the graft chains. 



303 

 

 

Figure 9.6: Matrix (a) and graft (b) chain radius of gyration, 𝑅𝑔
2 , distributions at the dispersion-

aggregation transition 𝜒𝐺𝑀 for each composite with varying graft and matrix chain compositions. 

 Figure 9.6 shows the 𝑅𝑔
2  distributions at the dispersion-aggregation 𝜒𝐺𝑀  for the nine 

composite compositions along with the 𝑅𝑔
2  distribution of the equivalent athermal composite. 

Remarkably, the graft and matrix chain 𝑅𝑔
2  distributions at the dispersion-aggregation 𝜒𝐺𝑀 for all 

composite are identical to their corresponding athermal chain 𝑅𝑔
2  distributions. This further 

highlights that, irrespective of the graft and matrix random copolymer composition at the 

dispersion-aggregation transition  𝜒𝐺𝑀 , these chemically-dissimilar graft-matrix composites 

assume a state that is effectively athermal. At the dispersion-aggregation 𝜒𝐺𝑀 (where 𝜒𝑒𝑓𝑓 = 0), 

both the wetting of the grafted layer (Figure 9.3a and Figure 9.3c) and the distribution in graft and 

matrix chain conformations match that of the equivalent, chemically identical (athermal) 
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composite. The chain conformations and extent of wetting-dewetting of the athermal composite 

serve as baseline values for the attractive composites, and variations in 𝜒𝐺𝑀 increase or decrease 

the chain extension and wetting of the grafted layer away from these baselines. The degree to 

which variations in 𝜒𝐺𝑀 affect the extension of the graft chains or wetting-dewetting is tuned by 

the graft and matrix chain composition, as shown by the graft chain 𝑅𝑔
2 distributions in Figure 9.5. 

9.4 CONCLUSION 

For polymer grafted particle filled composites with chemically different graft and matrix chains, 

the extent of wetting-dewetting and/or the 𝜒𝐺𝑀  or temperature of the dispersion-aggregation 

transition is tuned by varying the fraction of attractive monomers in the graft (𝑓𝐺) and matrix chains 

(𝑓𝑀). For all graft and matrix chain compositions studied, there is critical extent of wetting, equal 

to the extent of wetting of an equivalent athermal (chemically identical) composite that marks the 

onset of the dispersion-aggregation transition. At the dispersion-aggregation transition, not only 

does the extent of wetting in the chemically different composites match that of the chemically 

identical (athermal) composites, but the graft and matrix chain conformations at all chain 

compositions also match that of the athermal case.   

In these chemically different composites, with increasing fraction of attractive monomers 

in the graft (𝑓𝐺) and matrix chains (𝑓𝑀), the enthalpic driving forces increasingly dominate over 

the entropic driving forces. As a result, the effect of matrix length at constant graft length on the 

wetting/dewetting and dispersion-aggregation is diminished for the fully attractive homopolymer 

composites with 𝑓𝐺 = 𝑓𝑀 = 1.0 compared to those with 𝑓𝐺 < 1.0 and 𝑓𝑀 < 1.0. The magnitudes 

of 𝑓𝐺  and 𝑓𝑀 and the ratio 𝑓𝐺/𝑓𝑀, to some degree, independently tune the extent of wetting and the 

dispersion-aggregation transition 𝜒𝐺𝑀 . When 𝑓𝐺 = 𝑓𝑀 , reducing the magnitude of 𝑓𝐺  𝑎𝑛𝑑 𝑓𝑀 

reduces the extent of wetting in the dispersed state while maintaining a constant dispersion-
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aggregation transition 𝜒𝐺𝑀. In contrast, varying 𝑓𝐺/𝑓𝑀 tunes both the wetting of the grafted layer 

and the dispersion-aggregation transition 𝜒𝐺𝑀. We attribute the effect of 𝑓𝐺/𝑓𝑀 on the dispersion-

aggregation transition 𝜒𝐺𝑀 to the fact that deviations from unity 𝑓𝐺/𝑓𝑀 will create interaction site 

stoichiometries that favor like interactions (GG and MM) over unlike interactions (GM) which 

increase the favorability of the aggregated state. Finally, we find that while the matrix chain 

conformations are relatively unaffected by varying 𝑓𝐺 , 𝑓𝑀, 𝑜𝑟 𝜒𝐺𝑀 , the graft chain extension is 

tuned by varying these parameters. The composites with higher 𝑓𝐺  𝑎𝑛𝑑 𝑓𝑀 magnitudes show the 

highest variability in graft chain extension with varying 𝜒𝐺𝑀.  

 These results demonstrate the tunability of composite morphology with chemically 

different graft and matrix chains. While the wetting-dewetting and the dispersion-aggregation, of 

chemically identical graft-matrix composites is tuned by varying physical parameters (e.g. 

molecular weights of graft and matrix or grafting density)  the morphology of chemically different 

composites is  tuned by choosing the graft and matrix chemistries, or varying  𝜒𝐺𝑀   via temperature 

or solvent selection. The presence of a broad wetting-dewetting transition in the chemically 

different composites also allows for control over the extent of wetting in both the dispersed and 

aggregated morphologies, a phenomena that has not been shown to exist in chemically identical 

composites. Fine control over the extent of wetting-dewetting in composites presents useful control 

knob for tuning rheological properties that are strongly dependent on the mixing/entanglement of 

the graft and matrix chains.[42-49] 
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9.7 SUPPLEMENTARY 

 

Figure 9.7: Simulated Flory-Huggins 𝜒𝐺𝑀  versus temperature for a blend of deuterated 

polystyrene (dPS) at 𝑁𝑑𝑃𝑆 = 465000 and poly-vinyl-methyl-ether (PVME) at 𝑁𝑃𝑉𝑀𝐸 = 10,000. 

The data points were extracted from Figure 4 of [1] while the line is a linear fit intended as a 

guide to the eye. To convert from real experimental units to reduced simulation units, a reference 

volume of 1148 𝑐𝑚3/𝑚𝑜𝑙 (based on a PS Kuhn length of 1.24 nm [2]), and a coordination number 

of z=26 was used. 

Figure 9.7 References 

[1] Jelenič, J.; Kriste, R. G.; Oberthür, R. C.; Schmitt-Strecker, S.; Schmitt, B. J., Investigation of 

exothermic polymer blends by neutron scattering. Die Makromolekulare Chemie 1984, 185 (1), 

129-156. 

[2] (Anisotropy of Segments and Monomer Units of Polymer Molecules) Brandrup, J.; Immergut, 

Edmund H.; Grulke, Eric A.; Abe, Akihiro; Bloch, Daniel R. (1999; 2005). Polymer Handbook 

(4th Edition).. John Wiley & Sons.  
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Figure 9.8: Schematic diagram of the simulation protocol used in this study. 
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Figure 9.9: Overall average (solid), minimum and maximum (dashed) local volume fraction, 𝜂,  of 

the simulated composites for 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50 (black circles) and 10 (red triangles) and for graft and 

matrix chain composition (𝑓𝐺 , 𝑓𝑀) as marked. 
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Figure 9.10: Low-q value of the graft-graft (a,b) and particle-particle (c,d) structure factors. In 

all parts, the particle diameter is D=5d, the grafting density = 0.76 𝑐ℎ𝑎𝑖𝑛𝑠/𝑑2 , the graft chain 

monomer volume fraction is 𝜙𝐺 = 0.13 and the total volume fraction is 𝜂 = 0.35. Parts a and b 

are for composites with 𝑓𝐺 = 𝑓𝑀 = 1.0 and parts c and d are for composites with 𝑓𝐺 = 0.7 , 𝑓𝑀 =

0.1. The graft length is Ngraft = 10 in all parts, while a matrix of length Nmatrix=10 is denoted with 

red triangles and  Nmatrix=50 is denoted with black circles. The horizontal lines in represent the 

low-q structure factor of the equivalent athermal (𝑓𝐺 = 𝑓𝑀 = 0.0) composite The error bars are 

standard deviations calculated from 50 uncorrelated configurations for each system; the error 

bars when not visible are smaller than the size of the symbol. 
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Figure 9.11: Graft-graft monomer structure factor 𝑆𝐺𝐺(𝑞 → 0)(a and c) and particle-particle 

structure factor 𝑆𝑃𝑃(𝑞 → 0) (b and d) versus Flory-Huggins 𝜒𝐺𝑀  at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50 for varying 

symmetric (a and b) and asymmetric (c and d) graft and matrix chain compositions. Also shown 

are the dispersion-aggregation transition 𝜒𝐺𝑀 (vertical lines) and 𝑆𝐺𝐺(𝑞 → 0) or 𝑆𝑃𝑃(𝑞 → 0) for 

the equivalent athermal composite (horizontal lines). The error bars are standard deviations 

calculated from 50 uncorrelated configurations for each system; the error bars when not visible 

are smaller than the size of the symbol.  
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Figure 9.12: Average number of Graft-Graft (a,d) Graft-Matrix (b,e) and Matrix-Matrix (c,f) 

monomer contacts versus Flory-Huggins 𝜒𝐺𝑀 at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50 for varying symmetric (a, b, and 

c) and asymmetric (c, d, and f) graft and matrix chain compositions. Two monomers are in 

“contact” when they are within the cutoff distance for the attractive Lennard-Jones interactions 

(i.e. center to center distance < 2.5d). 
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Figure 9.13: Average 𝑅𝑔
2  versus Flory-Huggins 𝜒𝐺𝑀  at 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 50  for graft (a and c) and 

matrix (b and d) chains at varying symmetric (a and b) and asymmetric (c and d) attractive 

monomer graft and matrix chain compositions as shown in the legend. 
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10 CONCLUSION  

10.1 COPOLYMER GRAFTED NANOPARTICLES IN IMPLICIT SOLVENT 
Chapter 2 presented a study on the assembly of copolymer grafted nanoparticles in implicit solvent, 

with the goal of elucidating design rules to help materials scientists create prescribed 

nanostructures and particle morphologies. In this chapter, we explored a wide parameter space 

associated with the chemical and physical properties of the copolymer grafted nanoparticles and 

correlated these parameters with the resultant properties of the assembled nanostructure.  

 Specifically in Chapter 2, we elucidated the effect of blockiness in the grafted copolymer 

sequence at varying monomer-monomer and monomer-particle interactions on size, shape and 

structure of assembled copolymer grafted nanoparticles. The grafted chain conformations are 

closely linked to how monomer sequence facilitates the chain’s ability to form energetically 

favorable attractive monomer contacts while minimizing unfavorable repulsive monomer contacts.  

As the graft sequence blockiness increases, attractive monomer contacts are brought together more 

easily due to the favorable topological placement of like monomers along the chain. Within the 

assembled nanocluster, the alternating sequence, (A1B1)12, forms “networks” of attractive 

monomer contacts in contrast to the distinct domains of attractive monomers formed by blockier 

monomer sequences. In the case of A-A or B-B monomer attraction without A-B repulsion, we 

observed decreasing cluster size and decreasing connectivity within the cluster with increasing 

graft sequence blockiness for particle sizes D=4d and D=12d, with (A1B1)12 always being an outlier 

in these trends. The effect of graft sequence on cluster shape is reduced for D=12d as compared to 

D=4d at constant graft length. Lastly, monomer-particle interactions only weakly affect the 

assembly of copolymer grafted nanoparticles when the particle size is small relative to the graft 

length, and the strength of particle-monomer interactions are commensurate with the monomer-
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monomer interactions. The effects of monomer-particle interactions on the cluster size, shape, and 

structure are enhanced with significantly strong particle-monomer interactions, and/or with 

substantially large particle sizes relative to graft lengths. 

10.2 HOMOPOLYMER GRAFTED NANOPARTICLES IN CHEMICALLY IDENTICAL POLYMER MATRIX  
Chapter 3-7 focused on systems of homopolymer grafted nanoparticles in a chemically identical 

homopolymer matrix. Due to the chemical similarity of the graft and matrix chains, the driving 

forces that control the nanocomposite morphology in these composites are purely entropic in 

nature. It is the balance of graft-matrix mixing entropy and the conformational entropy of the grafts 

and matrix chains which dictates the wetting of the grafted layer by matrix chains and, in turn, the 

dispersed or aggregated morphology adopted by the composite. In these chapters, we explored the 

effect of graft and matrix polydispersity and graft and matrix flexibility on the morphology of the 

composites using theory and simulations.  

In Chapters 3, 4, and 5, we studied the effect of graft-length polydispersity on 

nanocomposite morphology. We showed that increasing graft-length polydispersity increases the 

wetting of the grafted layer over a monodisperse grafted layer. The increased wetting of the grafted 

layer results in an increasingly repulsive potential of mean force between the grafted particles in 

the explicit polymer matrix. This means that polymer nanocomposites with graft-length 

polydispersity have a stabilized dispersed morphology over those with monodisperse grafted layers 

due to increased grafted layer wetting by the matrix chains, and increased effective repulsion 

between the grafted particles. We also showed that to maximize the effective repulsion between 

the grafted particles, it is best to synthesize grafted particles at high grafting density with polymer 

graft length distributions that maximize monomer crowding near the particle surface to shield 

particle-particle attraction, and minimize crowding at farther distances from the particle to increase 
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wetting of the grafted layer by matrix chains. Polydisperse (log-normal) graft length distributions 

and bidisperse graft length distributions with few long chains among many short chains satisfy this 

criterion, and better disperse grafted particles in a chemically identical matrix than monodisperse 

grafts or bidisperse graft length distributions with equal number of short and long chains, with 

equivalent average graft length. 

 In Chapter 6, we studied the effect of matrix bidispersity on the wetting of monodisperse 

grafted layers and grafted particle dispersion for chemically identical grafted and matrix chains. 

We found that short matrix chains in a bidisperse matrix have a higher correlation with the grafted 

particles at short distances than either than the long matrix chains in the same bidisperse matrix or 

short matrix chains in a monodisperse matrix. These results indicate that bidispersity in the matrix 

causes short matrix chains to preferentially wet the grafted layers over the long matrix chains. We 

showed that the preferential wetting of the grafted layer by the short matrix chains is likely due to 

their much higher mixing entropy when compared to the longer matrix chains wetting the grafted 

layer. Interestingly despite the increased wetting of the grafted layer, the particle-particle 

correlation functions show either no change with increasing matrix bidispersity or a slightly 

increased tendency for particle aggregation. This is due to the fact that, while the particle-short 

matrix monomer and particle-long matrix monomer correlation functions showed the effects of 

increasing matrix bidispersity, the particle-all matrix monomers correlation function, and therefore 

the total wetting, remained unaffected by the matrix bidispersity.  

 In Chapter 7, we studied the effect of graft and matrix flexibility on nanocomposite 

morphology for monodisperse graft and matrix chains. We found that the wetting of the grafted 

layer by chemically identical matrix chains is strongly dependent on the flexibility of the graft and 

matrix  chains. Decreasing flexibility of the grafts more significantly improves the wetting of the 
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grafted layer than decreasing flexibility of the matrix. Furthermore, finite filler fraction simulations 

show that decreasing flexibility improves dispersion due to increasing wetting of the grafted layer. 

These results suggest that polymer grafted nanoparticles filled polymer nanocomposites with 

larger persistence length polymers (graft and matrix), one would see a larger window in the phase 

space where the particles would be dispersed. 

10.3 HOMOPOLYMER GRAFTED NANOPARTICLES IN CHEMICALLY DISSIMILAR POLYMER MATRIX  
Chapters 8 and 9 were focused on systems of polymer grafted particles in a chemically dissimilar 

polymer matrix. In contrast to the studies presented in Chapters 3-7, these composites have 

attractive interactions between the graft and matrix chains, mimicking the effective interactions of 

a lower-critical solution temperature (LCST) blend pair. Our goal in these studies was to 

understand the connection between wetting and dewetting in these composites and to leverage this 

connection to create highly tunable composite materials.  

 In Chapter 8, using coarse-grained simulations, along side x-ray and neutron scattering 

(conducted by experimental collaborator Prof. Ramanan Krishnamoorti and his research group) , 

we demonstrated that, unlike chemically identical graft-matrix systems, a sharp dispersion to 

aggregation transition is distinct from the gradual continuous wetting to dewetting transition in a 

polymer nanocomposite with a chemically dissimilar graft-matrix polymer pair that exhibits LCST 

behavior. We showed that the dispersion to aggregation transition occurs when the extent of 

wetting in the attractive graft-matrix polymer pair approaches that of the analogous chemically 

similar graft-matrix polymer composite. Finally, we compared the behavior of grafted-particle 

based nanocomposites with chemically-dissimilar graft and matrix chains to a free polymer blend 

of the graft and matrix chains. We found that the mixing-demixing transition for the free blend 

was significantly sharper than the composite wetting-dewetting transition, suggesting that grafting 
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the polymer chains to nanoparticles significantly alters the entropic driving forces for wetting 

dewetting. This study presented in Chapter 8 showed, for the first time, that chemically-dissimilar 

graft-matrix composites have distinct phase behavior from their more highly studied chemically-

identical counterparts.  

 In Chapter 9, we showed that the unique phase behavior of the chemically dissimilar graft-

matrix composites could be leveraged to create composites with highly tunable graft-matrix 

mixing and chain conformations. In these chemically different composites, with increasing fraction 

of attractive monomers in the random copolymer graft (𝑓𝐺) and matrix chains (𝑓𝑀), the enthalpic 

driving forces increasingly dominate over the entropic driving forces. As a result, the effect of 

matrix length at constant graft length on the wetting/dewetting and dispersion-aggregation is 

diminished for the fully attractive homopolymer composites with 𝑓𝐺 = 𝑓𝑀 = 1.0 compared to 

those with 𝑓𝐺 < 1.0 and 𝑓𝑀 < 1.0. The magnitudes of 𝑓𝐺  and 𝑓𝑀  and the ratio 𝑓𝐺/𝑓𝑀 , to some 

degree, independently tune the extent of wetting and the dispersion-aggregation transition 𝜒𝐺𝑀. 

When 𝑓𝐺 = 𝑓𝑀 , reducing the magnitude of 𝑓𝐺  𝑎𝑛𝑑 𝑓𝑀  reduces the extent of wetting in the 

dispersed state while maintaining a constant dispersion-aggregation transition 𝜒𝐺𝑀. In contrast, 

varying 𝑓𝐺/𝑓𝑀 tunes both the wetting of the grafted layer and the dispersion-aggregation transition 

𝜒𝐺𝑀. We attributed the effect of 𝑓𝐺/𝑓𝑀 on the dispersion-aggregation transition 𝜒𝐺𝑀 to the fact 

that deviations from unity 𝑓𝐺/𝑓𝑀  will create interaction site stoichiometries that favor like 

interactions (GG and MM) over unlike interactions (GM) which increase the favorability of the 

aggregated state. Finally, we found that while the matrix chain conformations are relatively 

unaffected by varying 𝑓𝐺 , 𝑓𝑀 , 𝑜𝑟 𝜒𝐺𝑀 , the graft chain extension is tuned by varying these 

parameters. The composites with higher 𝑓𝐺  𝑎𝑛𝑑 𝑓𝑀  magnitudes show the highest variability in 

graft chain extension with varying 𝜒𝐺𝑀. These results demonstrated the tunability of composite 
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morphology with chemically different graft and matrix chains. While the wetting-dewetting and 

the dispersion-aggregation, of chemically identical graft-matrix composites is tuned by varying 

physical parameters (e.g. molecular weights of graft and matrix or grafting density)  the 

morphology of chemically different composites is  tuned by choosing the graft and matrix 

chemistries, or varying  𝜒𝐺𝑀  via temperature or solvent selection. 

10.4 FUTURE WORK 
In Chapter 2, we studied the assembly of copolymer grafted particles in an implicit solvent using 

Monte Carlo simulations. While these studies provide useful insight for experimentalists looking 

to synthesize nanoparticles into controlled nanostructures, one interesting next study would be to 

reduce the level of coarse graining in our model to study the effects of specific types of two- and 

three-body interactions that better capture the chemistry of specific systems. For example, there 

are many biological and synthetic polymers that interact strongly with water and other solvents, 

so a model that properly included enough chemical detail in the polymer and (possibly explicit) 

solvent to capture solvent effects would be needed for these systems. While this more detailed 

model would be greatly restricted in its ability to study large parameters spaces as we have in 

Chapter 2, it would instead allow researchers to explore particle assembly for specific systems of 

interest where our current, simple model might fail. Another interesting question involving the 

level of chemical detail in the model would be the effect of polymer flexibility on particle 

assembly. Much of our reasoning in these chapters centers on balancing the entropic loss 

associated with chain stretching with the enthalpic driving force for attractive monomer-monomer 

contacts. By decreasing the flexibility of the graft chains, we would be able to tune this entropic 

loss and it is currently unclear how this would affect assembly. While we studied the effect of 

flexibility for homopolymer grafted particles in an explicit homopolymer matrix in Chapter 7, 
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these results do not provide much insight into copolymer grafted particle assembly due to the 

inherent differences in the thermodynamics of the two systems. Understanding the role of graft 

flexibility on the assembly of copolymer grafted nanoparticles would provide materials scientists 

yet another avenue towards controlling particle assembly.  

 One question left unanswered is the effect of an explicit polymer matrix on the assembly 

of copolymer grafted particles with varying graft monomer sequence and blockiness. Recent work 

by Jayaraman and coworkers [1] have studied the effect of varying polymer interactions on the 

assembly of diblock copolymer grafted particles in homopolymer matrix. In line with the results 

of Chapters 2, they found that the chain conformations and assembly of the grafted particles largely 

depended on whether the inner or outer block was attractive to the homopolymer matrix. 

Furthermore, they also extended these studies to diblock grafted nanoparticles in homopolymer 

matrix blends with the focus on how the particles affected the interfacial configuration and 

energetics of the blends.[2] While these studies provide great insight into how copolymer grafted 

particles assemble in polymer matrix rather than implicit solvent, they do not study the effect of 

monomer sequence or blockiness on assembly in explicit matrix. Advances in radical 

polymerization techniques have made the synthesis of arbitrary chain sequences a reality and, 

based on our results in Chapter 2, we would expect blockiness to play a large role in determining 

the shape, size and structure of particle assemblies in explicit polymer matrix. Unfortunately, due 

to the vastly different thermodynamics, these results cannot be inferred from the implicit solvent 

results alone, therefore a separate detailed study is needed.  

In Chapters 3-7, we presented studies on homopolymer grafted particles in a chemically-

identical homopolymer matrix. While it is generally accepted that increased dispersion leads to 

better mechanical properties, and this thesis presents several new methods of stabilizing and tuning 
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dispersion, we do not study the secondary effect of these techniques on the macroscopic material 

properties. For example, we found that graft length polydispersity stabilized dispersions of 

polymer grafted particles. It is not clear how graft-length polydispersity stabilized composites 

would differ from monodisperse grafted composites when considering the segmental dynamics, 

glass transition temperature, and rheology of the nanocomposite. While these properties were 

recently studied in experiments and simulations for monodisperse graft and matrix systems [3] [4, 

5], we cannot immediately extrapolate their results to polydisperse systems. Furthermore, the 

increased wetting of the grafted layer by the matrix chains in the presence of graft polydispersity 

could enhance the entanglement of the long graft chains with the matrix chains, when graft and 

matrix molecular weights are greater than the entanglement molecular weight. Therefore, it would 

be worth investigating systematically how polydispersity in grafts impacts the mechanical 

reinforcement of the nanocomposite. Identical arguments to these can be made for studying the 

thermomechanical and rheological properties of flexibility stabilized particle dispersions. Studies 

into the secondary effects of polydispersity and flexibility stabilized dispersion are essential steps 

towards evaluating the industrial applicability of these techniques.  

 In Chapters 8 and 9, we studied homopolymer grafted nanoparticles in a chemically 

different polymer matrix. We found that, unlike the chemically-identical composites, the wetting-

dewetting transition was broad and independent of the dispersion-aggregation transition. Due to 

this difference, we showed that that the degree of wetting of the dispersed state can be tuned by 

varying the temperature, graft-matrix 𝜒𝐺𝑀, and graft and matrix chain composition. The ability to 

tune the degree of wetting within the dispersed phase opens the possibility of directly tuning the 

material properties of the composite by controlling graft -matrix mixing. The thermomechanical, 

rheological, and mechanical properties will, to differing degrees, be connected to the extent of 
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graft matrix mixing. A detailed study of one or more of these phenomena is needed to understand 

how these chemically-different graft-matrix systems can be leveraged to create highly tunable 

composite systems.  
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