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Current optical imaging techniques to image inside biological matter are limited in penetra-

tion to a depth of about a millimeter due to the highly scattering nature of tissue. Multimode

fibers (MMF), with their small footprint, high resolution and efficient light collection make ex-

cellent candidates for minimally invasive endoscopes that can potentially go much deeper inside

tissue. Light propagating through an MMF however experiences modal dispersion and inter-modal

coupling, leading to a random speckle pattern on the other end. Imaging through them requires a

means of controlling the illumination on the object and measuring the return signal from the object

for many such controlled illuminations. Wavefront shaping enables this control by employing an

interferometric calibration of the fiber’s input-output relationship or transmission matrix.

In this thesis, we address three main challenges in MMF imaging: robustness, speed and

resolution. We first present a technique to improve the MMF imaging speed and simplify the

calibration process by employing the naturally occurring speckle patterns at the MMF output for

scanning the object. By combining the return signals for different speckle illuminations with a

reconstruction algorithm, the object can be recovered using fewer measurements from a simpler

and more robust system.

Secondly, we demonstrate high-speed wavefront shaping using a one-dimensional modulator

operating at 350 kHz, known as a grating light valve (GLV). We characterize the wavefront shaping

performance of the modulator, present an optimal optical configuration to maximize its performance

and show record speed of focusing light through an MMF using it, hence paving the way to faster

MMF imaging.

Furthermore, we demonstrate mode control through an MMF with more than 7000 modes.

With the achieved mode tunability, we can select a smaller subset of modes to create focal spots



iii

at the fiber output and characterize the bend sensitivity of different mode groups within the fiber

mode set. We show that certain modes of the fiber are more resilient to bending than others.

Finally, we present a technique to achieve the optical sectioning and resolution gain of confocal

imaging, while retaining a high signal to noise ratio. The technique generalizes the principles of

image scanning microscopy to complex media and enables a practical solution to achieve optical

sectioning for imaging 3-D samples with high resolution by employing multiple virtual pinholes to

collect the back-scattered light from the endoscope.
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Chapter 1

Introduction

Endoscopes are powerful imaging tools that have enabled huge advances in medicine. While

the concept of examining the inaccessible parts of the body has been around since the ancient

times, the actual term, endoscopy was coined in the 1850s by Antonin Jean Desormeaux. By the

end of the nineteenth century, endoscopes had become common tools for examining body cavities

such as the bronchial, gastro-intestinal and urethral passages. However the lack of availability of

viable illumination sources that could be safely transported to the region of interest was a major

deterrent to further advances.

The emergence of fiber optics brought about a change in this scene when Harold Hopkins

developed a fibroscope consisting of a bundle of flexible glass fibres that could coherently transmit

an image. The next few years saw a rapid improvement in the design, efficiency and miniaturization

of fiber optic systems, which opened doors to various life saving endoscope-assisted as well as purely

endoscopic surgical procedures.

However, thus far, the applications of endoscopes have been limited only to body cavities.

The large footprint of current endoscopes prohibits their use in in-vivo microscopy. In this Thesis we

propose a minimally invasive single- multimode fiber endoscope capable of deep-tissue penetration

for enabling in-vivo micro-endoscopy. In what follows, we review some general concepts around

different types of fiber endoscopes and multimode fibers (MMFs). We also present a literature

review of multimode fiber imaging research followed by a discussion of current benchmarks and

open challenges in the field. Finally, we end the chapter with an overview of this Thesis.
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1.1 Optical fibers

Optical fibers are transparent waveguides typically made of glass or polymers that can guide

light through them by the principle of total internal reflection. They typically consist of two

regions: a high refractive index core which confines the light and a lower refractive index cladding

that surrounds the core. They can be broadly classified into two types- single and multimode fiber.

Single mode fibers (SMFs) support a single mode and have a small core with a diameter of a few

microns. Multimode fibers (MMFs) on the other hand supports multiple modes and have core

diameters in the range of 10-100 microns.

MMFs can be further classified on the basis of the refractive index profile of the core into

step and graded index (GRIN) MMFs. While the step index fibers have a constant core index, the

GRIN fibers have a radially varying graded index profile. The gradual decrease in index from the

center of the core towards the cladding helps minimize modal dispersion. A schematic of an SMF

and step-index and GRIN MMFs is shown in Fig 1.1 .

nx

x
n

n
x

core cladding
Single mode

Multimode
Step index

Multimode
Graded index

Figure 1.1: Schematics of different optical fibers on the basis of number of propagating modes and
refractive index profile. The refractive index (n) profile of each of the fiber cross-sections is shown
on their right. Ray trajectories in different fibers are also depicted. In a single mode fiber, the
incident light can only propagate in a straight path through the fiber. In a multimode step-index
fiber, the light that enters within the acceptance cone reflects back and forth from the core-cladding
interface. In contrast the rays in a graded index fiber bend gradually due to the gradually changing
refractive index inside the core.
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Besides the two standard types above, there are specialty fibers that are designed for specific

applications. An example is Multicore fibers (MCFs) that have multiple cores embedded in a

common cladding within a single fiber. These are made from all-glass fiber technology where an

index variation due to a varying glass composition is the guiding mechanism. MCFs can be useful

as they can support as many independent modes as the number of cores within a single strand of

flexible fiber.

Photonic crystal fibers (PCFs) are another type of optical fibers that consist of a microstruc-

tured arrangement of air holes inside another higher refractive index material such as undoped

silica. PCFs can have either a solid core like conventional optical fibers or a hollow core. Light

propagation in solid and hollow-core fibers is governed by the effective index model and the Pho-

tonic Bandgap (PBG) effect respectively.Hollow-core PCFs are especially useful for delivering high

peak power ultrashort pulses due to their low loss and non-linear effects [16, 102].

Fibers can also be classified on the basis of the number of claddings they have. Double clad

fibers (DCFs) that have a separate inner and outer cladding of different refractive indices are useful

for various endoscopic applications. These are often used to decouple the regions of illumination

and detection in endoscopic applications to improve collection efficiency.

1.2 State of the Art in minimally invasive endoscopy

Modern endoscopes are largely made either using one of the optical fibers mentioned in the

previous section, their hybrids, or miniature rod lenses. We describe below each of the above

types in more detail along with their advantages and disadvantages for endoscopic applications. A

summary of the cross-sectional diameters and the advantages and disadvantages of all the types

is provided in figure 1.2. The outer diameter for the optical fibers corresponds to their cladding

diameter.
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Type Typical cladding 
diameter

Advantages Disadvantages

Fiber bundle 0.25-few 
millimeters

Memory effect eliminates 
mechanical scanning, low 
dispersion

Bulky, low light throughput to 
thickness ratio,  pixelation
artefacts

Single mode fiber 80-125 microns
Flexible, preserves phase 
information, no dispersion

Needs mechanical scanning, low 
light throughput although can be 
improved using a double clad 
fiber, sensitive to misalignment

GRIN lens 0.35-2 millimeters
Compact, high tolerance to 
perturbation, low dispersion

Rigid, prone to aberrations, FOV 
smaller than diameter, cannot be 
made longer without increasing 
thickness

Multicore fiber 125-300 microns Memory effect eliminates 
mechanical scanning, low 
dispersion

Low light throughput without a 
double cladding, replicas due to 
core periodicity limit FOV, 
sensitive to bending

Multimode fiber 125-300 microns Maximum light throughput, 
many degrees of freedom

Prone to modal and chromatic 
dispersion, highly sensitive to 
bending

Figure 1.2: Summary of current state of the art endoscopes

1.2.1 Single modes fibers (SMFs)

Most widely used endoscopes consist of SMF bundles [66, 86, 172] where each fiber is used to

relay one pixel of image information.These fibers exhibit low dispersion and a phenomenon called

the memory effect, which allows laterally shifting the distal illumination by tilting the incident

wavefront sent through the fiber, hence eliminating the need for a distal scanning mechanism.

However, the field of view (FOV) is limited by the range of memory effect. Moreover, these

bundles are bulky and rigid with a typical thickness of a few millimeters. The core in SMFs is only

about a few microns in diameter and comprises a small fraction of the fiber cross-sectional area,

which limits their light carrying capacity and leads to pixelation in images. While they are quite

useful for imaging within body cavities, inserting them through soft tissue can cause significant
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damage.

Alternatively, a single SMF equipped with a scanning mechanism on its far or distal side such

as a MEMs mirror or a piezo actuator has been used as a flexible endoscope [99, 136]. However,

despite the advantage of flexibility they have low throughput unless separate fibers are used for

light collection, which makes it bulky. The use of DCFs [70, 27] as endoscopes, where the core is

used for guiding the excitation light and the collection is done through the inner cladding which

is larger in area and supports multiple modes, has also shown to improved collection efficiency.

Moreover, with an optimized photonic crystal fiber design that minimizes group velocity dispersion

(GVD) and pulse distortion, these fibers can enable high quality nonlinear imaging modalities such

as two photon excitation (TPE) imaging, coherent anti-Stokes Raman scattering (CARS) imaging

and second harmonic generation (SGH) imaging [116]. However the need for a scanning mechanism

at the distal tip for both these types of endoscopes limits their robustness and makes them difficult

to miniaturize.

1.2.2 Gradient index (GRIN) lenses

GRIN lenses are another popular choice of endoscopes which have a parabolic radial refractive

index profile and behave like conventional lenses except, they are miniature rods. These are more

compact with typical diameters of 500 microns and can be used for multiple imaging modalities

such as confocal microscopy [108] TPE imaging [13], CARS imaging [193] and SGH imaging [152].

However, they are prone to optical aberrations, which limit their FOV and image quality. Thin

GRIN lenses are also short in length and hence have limited penetration. Furthermore, their rigidity

limits their maneuverability inside tissue.

1.2.3 Multicore fibers (MCFs)

Endoscopes made using MCFs have also been gaining interest due to their various advantages

[11] such as minimal inter-core coupling, low dispersion compared to MMFs, and a number of

independent degrees of freedom dictated by the number of cores in a single fiber strand. Other
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advantages include the memory effect which eliminates the need for a distal scanning mechanism

[168, 170], as described earlier for SMF bundles. MCFs can also be employed for non-linear imaging

[44, 168] due to their low dispersion characteristics. Moreover, MCFs often have a large collection

efficiency when the fiber is double-clad and the inner cladding is used for light collection, however

the second cladding increases the fiber footprint. MCFs also have their own set of drawbacks such

as difficulty of fabrication and scalability. Moreover, the imaging field of view is limited by the

occurrence of replicas due to the periodicity of the cores.

1.2.4 Multimode fibers (MMFs)

MMFs on the other hand, can support thousands of modes in a hair-thin cross-section of 100

µm, making them the highest bandwidth, minimally invasive endoscope of a given cross-sectional

area. Moreover, the large number of degrees of freedom allows creating complex field distributions

at their distal end and enables high resolution imaging through them, limited by their numerical

aperture (NA), when a means of shaping the incident illumination is available. They also do not

require a mechanical scanning mechanism and are low cost and easy to fabricate. All these ideal

endoscopic characteristics however are also accompanied with a few challenges.

MMFs are prone to modal dispersion and inter-modal coupling, which needs to be compen-

sated for, to enable imaging through them. Furthermore, the output of an MMF is sensitive to

bending and other perturbations which can affect imaging quality when they are used in a dynamic

environment. The dispersion also makes non-linear imaging through MMFs challenging. Luckily

linear imaging can be accomplished through MMFs by means of wavefront shaping [145, 83, 30].

Furthermore, combined with methods for compensating temporal dispersion, nonlinear imaging

[126, 166, 50, 175] has also been successfully demonstrated through MMFs. There have also been

various effective attempts in dealing with the problem of fiber bending [58, 30, 83, 65, 78, 105].

Methods for further improvement still remain an interesting area of research.

Despite the challenges, the efficient design of MMFs and their immense potential as a min-

imally invasive endoscope provide compelling reasons for further investigation into MMF imaging
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and makes it the central topic of this Thesis. In the following sections, we provide a background

into the basic principles, origin, existing work and current benchmarks for imaging through MMFs

which will unveil the motivation behind the work presented in this Thesis.

1.3 Light propagation through a multimode fiber

A light beam incident at the input of the MMF is guided through it only if it is launched

at an angle α that allows total internal reflection within the fiber. By applying Snell’s law, the

maximum acceptance angle is given by Eq. 1.1.

sin(αmax) =
(n21 − n22)1/2

n0
=
NA

n0
(1.1)

where NA = (n21 − n22)0.5 is a characteristic parameter of an optical fiber known as the numerical

aperture and and n1, n2 and n0 are the refractive indices of the core, cladding and the medium in

which the fiber exists respectively. Another important parameter of a fiber whose core radius is r0

is its V-number or the normalized frequency, which is related to the NA by Eq. 1.2.

V =
2πr0
λ

NA (1.2)

An MMF supports a set of modes determined by its refractive index profile. The mode

field solutions for a given MMF can be obtained by solving the wave equation. In the following

subsections, we present the derivation of mode fields for a step-index and graded index MMF along

with expressions for their propagation constants and number of supported modes.

1.3.1 Helmholtz equation

An electric field, E = E(r, φ, z) sent towards an MMF obeys the Helmholtz equation, ∆2E+

n2(r)k20E = 0, assuming a homogeneous medium with a constant refractive index, n(r) = n1. When

the refractive index has a radial dependence, the Helmholtz equation is still approximately valid

using a piece-wise constant model, assuming that the index varies much slower that a wavelength.

In the above equation, ∆ denotes the Laplacian operator in cylindrical coordinates, k0 = 2π/λ0,
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λ0 is the wavelength of the incident field. The Helmholtz equation, with the Laplacian operator

expanded, is given by Eq. 1.3.

∂2E

∂r2
+

1

r

∂E

∂r
+

1

r2
∂2E

∂φ2
+
∂2E

∂z2
+ n2k20E = 0 (1.3)

If we assume that the guided modes are travelling in the z-direction with a propagation constant,

β and are periodic in the angle φ with a period 2π, then E = E(r, φ, z) = u(r)e−jlφe−jβz, where

u(r) is the radial field function and l corresponds to the azimuthal mode number and takes integer

values. Substituting this form in Eq. 1.3, we get Eq. 1.4:

d2u

dr2
+

1

r

du

dr
+ (n2(r)k20 − β2 −

l2

r2
)u = 0 (1.4)

1.3.2 Step-index fibers

Let us consider a step-index fiber with a constant core refractive index, n1 and a cladding

refractive index, n2. Let the core diameter be r0. A wave is guided through the fiber if its

propagation constant obeys n2k0 < β < n1k0. We define kT and γ in Eq. 1.5 and 1.6:

k2T = n21k
2
0 − β2 (1.5)

γ2 = β2 − n22k20 (1.6)

Hence, for guided waves, kT and γ are real. We can then rewrite Eq. 1.4 for the core and

the cladding separately as shown in Eq. 1.7 and 1.8.

d2u

dr2
+

1

r

du

dr
+ (k2T −

l2

r2
)u = 0, r < r0 (core) (1.7)

d2u

dr2
+

1

r

du

dr
− (γ2 +

l2

r2
)u = 0, r > r0 (cladding) (1.8)

The solution to the above two differential equations are the family of Bessel functions. Excluding

the functions approaching ∞ at r = 0 and r = ∞, the bounded solutions are given by Eqs. 1.9
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and 1.10, where Jl(x) is the lth order Bessel function of the first kind and Kl(x) is the modified lth

order Bessel function of the second kind.

u(r) ∝ Jl(kT r), r < r0 (core) (1.9)

u(r) ∝ Kl(γr), r > r0 (cladding) (1.10)

Most fibers are designed to be weakly guiding i.e., n1 ≈ n2. Under this condition, the guided

rays are paraxial and the longitudinal field components are much weaker than the transverse field

components, making the guided waves approximately transverse electromagnetic (TEM) in nature.

The linear polarization in the x and y directions then form orthogonal polarization states. The

linearly polarized (l,m) modes, denoted as LPlm have the same propagation constants and spatial

distribution. The weakly guiding approximation or the LP approximation hence allows us to fully

describe the mode field solutions using Eqs. 1.9 and 1.10.

To determine the propagation constants of the guided modes, we match the tangential com-

ponents of the fields in Eqs. 1.9 and 1.10 at the core/cladding interface to obtain the condition in

Eq. 1.11.

(kT r0)J
′
l (kT r0)

Jl(kT r0)
=

(γr0)K
′
l(γr0)

Kl(γr0)
(1.11)

By simplifying the above expression using Bessel function identities for the derivatives, J ′l and K ′l ,

and defining, X = kT r0 and Y = γr0 we obtain the characteristic equation, Eq. 1.12.

XJl±1(X)

Jl(X)
=
Y Kl±1(Y )

Kl(Y )
(1.12)

Recalling the definition for the V-number of the fiber, V = (NA)k0r0, we observe that V 2 =

X2 +Y 2. Hence given V and l, the above equation can be written in terms of a single unknown, X,

with Y 2 = V 2 −X2. The solutions for this equation can be obtained graphically by plotting the

left and right hand sides of the equality and finding the points of intersections of the two curves.
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For large V-number fibers, an approximate expression for the propagation constants is given by

Eq. 1.13.

βlm = n1k0[1−
(l + 2m)2

M
∆] (1.13)

where M is the number of propagating modes, given by 4/π2V 2 for large V-number fibers

and ∆ = (n21 − n22)/(2n21) ≈ (n1 − n2)/n1.

1.3.3 Graded-index fibers

For a Graded-index fiber with a continuously varying refractive index in the core, the Helmholtz

equation in Eq. 1.3 is approximately obeyed, subject to the substitutions, k = n(r)k0 and

n2(r) = ε(r)/ε0, when the index, n(r) varies slowly within a wavelength. Consider a power-law

refractive index profile, n(r) given by Eq. 1.14.

n(r) = n1[1− 2∆(
r

a
)α]1/2, (

r

a
) ≤ 1 (1.14)

where, α is the profile parameter that determines the steepness of the profile. For the special case

of a parabolic index profile, with α = 2 in Eq. 1.14, solution to the Helmholtz equation has the

form of Laguerre-Gauss modes [18] as shown in Eq. 1.15.

El,m(ρ, phi, z) = ρle−ρ
2/2Llm−1(ρ

2)sin(lφ+ θ0)e
−jβz (1.15)

where, the radial variable is given as ρ = r/a
√
V and the generalized Lagurre polynomial is defined

in Eq. 1.16.

Llm−1(ρ
2) =

m−1∑
s=0

(m− 1 + l)!(−1)sρ2s

(l + s)!(m− 1− s)!s!
(1.16)

where θ0 = 0orπ/2 represents the pairs of degenerate modes when l is non-zero.

Using the WKB approximation [75], the propagation constant of of a mode in a GRIN MMF

is given by Eq. 1.17 [76].

β = k0n1[1− 2∆(
p

P
)2α/(2+α)]1/2 (1.17)
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where, p is the principle mode number defined as, x = 2m+ l− 1 and P is the maximum principle

mode number, given by Eq. 1.18.

P =

√
α

α+ 2
k0n1r0

√
∆ (1.18)

The total number of modes in a GRIN MMF is given by M = α
α+2V

2/2, which is V 2/4 for a GRIN

MMF with a parabolic index profile. Fig. 1.3 shows two example LG modes with (m=1,l=4) and

(m=3,l=4) respectively.

Figure 1.3: Example Laguerre-Gauss mode field solutions for a GRIN fiber with a parabolic index
profile with (m=1,l=4) and (m=3,l=4) respectively.

1.3.4 Dispersion in MMFs

A short pulse travelling through an MMF experiences a number of dispersion effects that

spread it into a wider time interval. We discuss different sources of dispersion in optical fibers

below.

Modal dispersion occurs in MMFs due to the difference in group velocities of the different

modes of the fiber. The differential delay between modes increases as a function of the length of

the fiber. For a fiber of length L and minimum and maximum group velocities of vmin and vmax

respectively, the spread in the received pulse is given by L/vmin − L/vmax. However, since all the
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modes are not excited equally, the overall pulse duration estimated for a triangular envelope is

στ = 1/2(L/vmin − L/vmax). For a step-index fiber, vmin = c1(1 −∆) and vmax = c1, leading to

a delay time of στ = L∆/(2c1). On the other hand, a GRIN MMF has a much smaller modal

dispersion since its group velocities are equalized by the gradually varying refractive index profile.

A GRIN MMF with a parabolic index profile is found to be optimal for minimizing dispersion,

with vmin = c1(1 − ∆2/2) and vmax = c1. The delay time for a parabolic profile GRIN fiber is

hence a factor of ∆/2 smaller, i.e., στ = L∆2/(4c1). Although the pulse broadening due to modal

dispersion is proportional to the fiber length, inter-modal coupling, which comes into play beyond

a certain critical length, alters this dependence. Inter-modal coupling leads to exchange of optical

power between modes that have similar propagation constants as a result of imperfections in the

fiber, random surface irregularities and refractive index inhomogeneities.

Material dispersion is another type of dispersion, which occurs due to the wavelength

dependence of the refractive index of the glass used in fabricating the optical fiber. Material

dispersion is also proportional to the fiber length. Even when material dispersion is negligible,

the group velocities of the different modes have a wavelength dependence, leading to another type

of dispersion namely, waveguide dispersion. The combined effect of material and waveguide

dispersion is also known as chromatic dispersion.

Another source of pulse broadening is polarization mode dispersion(PMD). This effect

arises due to small random variations in the birefringence of the fiber along its length, caused by

slight refractive index variations and ellipticity of the fiber cross-section. While the effects of these

inhomogeineities is difficult to assess, a statistical model used to consider them predicts that the

RMS value of the pulse broadening due to PMD is proportional to the square root of the fiber

length.

Finally, nonlinear dispersion is a yet another source of dispersion of high-intensity beams

travelling through the fiber core. After a certain intensity level is reached, the refractive index

becomes intensity dependent. Since the phase is proportional to the refractive index, the high-

intensity portions of the beam undergo a phase shift with respect to the low-intensity portions, an
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effect called self-phase modulation. This effect gives rise to instantaneous frequencies shifted by

different amounts, hence contributing to pulse dispersion.

The combination of the above effects in a given MMF leads to a random interference pattern

at the output end, known as a speckle pattern, which distorts all spatial information. Although

the spatial information is distorted, it can still be recovered by characterizing the input-output

relationship of the MMF using its transmission matrix (TM). In principle, this relationship should

be theoretically derivable by solving the wave equation for the Eigen modes of the fiber, using the

fiber’s precise index distribution and including all the dispersion effects. However in practice, the

exact geometrical and refractive index parameters are difficult to precisely control during fabrication

and the fiber is prone to inherent defects and asymmetries as well as environmental perturbations

and temperature variations that modify its properties, making it impractical to predict its TM.

Therefore, we measure the TM of an MMF experimentally. The following section describes how

this is achieved.

1.4 MMF Imaging using the transmission matrix method

Imaging through MMFs can be accomplished by experimentally measuring the fiber’s TM

[145] . Once the TM is known, it can be used to predict the input illumination required to generate

a controlled output illumination. By scanning a set of orthogonal illuminations over the object, its

reconstruction can be obtained . The entire process can be described in two steps: calibration and

scanning as detailed below and illustrated in figure 1.4.

1.4.1 Calibration

The purpose of calibration is to measure the TM of the MMF, which provides information

about the expected output field for an arbitrary input field launched into the fiber. A vectorized

output field Emout appearing on the distal side of the fiber, where m is the output mode index, can

be described as a weighted sum over all the input modes, Ein launched into the fiber, each with a
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Phase-shifting reference Known patterns
MMF
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Distal endProximal end

Scanning

Figure 1.4: Illustration of imaging through MMFs using the TM method. Top and bottom schemat-
ics describe the calibration and scanning processes respectively.

weight tmn corresponding to the mth output mode and nth input mode, as described in Eq. 1.19.

Emout =
N∑
n=1

tmnE
n
in (1.19)

The set of TM coefficients for all N number of input modes and M number of output modes

generates the full TM.

In order to measure these weights experimentally with both phase and amplitude information,

we send a complete basis set of orthogonal input fields into the fiber accompanied with a phase-

stepping reference field. . In most cases these fields are constant in amplitude with their phase

dynamically modulated. If using an amplitude spatial light modulator such as the DMD, phase

modulation is achieved by projecting computer-generated amplitude holograms [31]. The DMD’s

active area is divided into two sections, one (typically centered) for the basis-function changing

pattern and another for the phase-stepping reference, typically surrounding the first one.

The intensity measurements of the fiber output for each projected pattern, as the reference

field is phase stepped three times, enables recovery of the output field using phase-shifting inter-
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ferometry [32] as described in eq 1.20.

t∗n =
I0n − Iπn

4
− iI

0
n − 2I

π/2
n + Iπn
4

(1.20)

Here Iin denote the output mode intensities for the nth input mode and their superscripts

denote the phase step of the reference field. Repeating the above output field measurements for

N input modes gives us the observed TM, which we denote as Kobs. Kobs is only an estimate of

the fiber TM, since the reference field employed for calibration propagates through the fiber and

transforms into a speckle pattern instead of an ideal plane wave reference typically employed for

interferometry.

1.4.2 Scanning

Once the TM of the MMF is measured, we can use it to predict the input field, Ein required

to generate any desired out field, Etarget using Eq. 1.21.

Ein = K†obsE
target (1.21)

A common choice of scanning illumination is the canonical basis of focal spots. To recover an

N-pixel object, N focal spots are created through the fiber and projected on the object. The object

then reflects back a signal proportional to their overlap back into the fiber which can be detected

using a bucket detector. This signal put together provides the desired image of the object.

Over the decade, this technique has been widely adopted for MMF imaging. However it is

not the only one in existence and neither the first one. The following section delves into a brief

history of the origin of MMF imaging.

1.5 Multimode fiber imaging timeline

The idea of using MMFs for imaging was not born recently. The first attempt to retrieve

images through MMFs was made by Spitz et al. [169] more than 50 years ago where the hologram

of an object placed in front of the fiber, was recorded using a photographic plate on its distal
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side. The hologram was then read out with a counter-propagating beam to reconstruct the object

in its initial position. Although this was interesting, it did not allow controlling the light coming

out on the distal side of the fiber, which is where the object of interest is located in endoscopic

applications. Many other papers came out following this work centered around the idea of optical

phase conjugation [80, 189, 72, 69]. However, at the time, photo-refractive crystals were the only

available option to dynamically perform phase conjugation and they were slow and inefficient.

Imaging with MMFs was hence not feasible yet. This scenario changed with the advances in the

wavefront shaping technology that made devices like spatial light modulators (SLMs) and digital

micromirror devices (DMDs) available, to modulate the wavefront of light almost in real-time.

Four decades after Spitz’s work on phase conjugation, Vellekoop et al. [182] demonstrated

wavefront shaping to create a focal spot behind a scattering medium using an iterative algorithm.

This work kick started the field of wavferont shaping for imaging through turbid media. Soon after

that, Popoff et al. [145] showed that one can measure the TM of a scattering medium by projecting

known orthogonal patterns on it and measuring the output response for each such pattern on the

distal side. Using the TM, one can then predict the input wavefront to create a desired complex

pattern on the other side, as explained in the previous section. Both these papers were not directly

linked to MMF imaging, but they set the foundation for the future work in the field.

Beginning around 2011, the first publications employing liquid-crystal spatial light modula-

tors for controlling the distal fields through MMFs came out [52, 138, 41, 139, 30]. Much of this

work either employed the TM measurement approach by Popoff or digital phase conjugation to pro-

duce focal points on the distal end and scan them laterally to recover the object. Other approaches

included a technique called turbid lens imaging that allowed widefield imaging by averaging over

many speckle projections [40] or non-local sampling and optimization based reconstruction of the

object [123]. Yet another interesting approach employed spatio-spectral encoding for a bend or

motion-insensitive approach to perform incoherent imaging [12]. Most of these used SLMs for

phase modulation of the input wavefront which could update at upto 100 Hz and served as the

bottleneck in imaging speed. Caravaca et al. [30] showed that DMDs, which are binary amplitude
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Figure 1.5: Schematic timeline of multimode fiber imaging

modulators and operate at a refresh rate of 22 kHz could be used for phase modulation by combin-

ing pixels, projecting gratings on the macro-pixels and shifting them. Their fast switching speed

allowed an order of magnitude improvement in imaging speed, thereby making real-time MMF

imaging more feasible.

Other important milestones in the progress of MMF imaging include two photon imaging

[126, 166], confocal MMF imaging [118, 117], first in-vivo imaging in a live mouse [133] and just

recently, Raman and CARS imaging [50, 175]. With such significant developments, all within the

last decade, the prospects for MMF endoscopy are encouraging and suggest that their progress

towards feasibility in clinical applications.

1.6 Current challenges and benchmarks

Although excellent imaging capabilities have been demonstrated with MMFs, there are still

a few significant challenges that remain to be addressed. In this section, we identify three of the

major challenges and present some of the existing work and current benchmarks related to them

that will allow us to gauge the path to in-vivo imaging.
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1.6.1 Speed

In in-vivo imaging, speed is an important consideration as speckle decorrelations occur due

to scattering of light from blood at the millisecond timescale besides other slower decorrelation

phenomena due to breathing and motion[111]. In the context of functional brain imaging as well,

neural activity can change at a rate as fast as a few milliseconds [158]. A practically feasible

endoscope therefore needs to be able to acquire an image ideally faster but at least at the same

timescale. The bottleneck for speed in MMF imaging is limited by the refresh rate of the wavefront

shaper . Caravaca et al. set the benchmark for wavefront shaping speed to 22 kHz by demonstrating

the use of DMDs for phase modulation [30]. Since imaging with MMFs is done using a scanning

approach, it follows that to image a 100x100 pixel object, it would need 10000 measurements

leading to an imaging frame rate of 2.2 frames/sec. There is considerable room for improvement

here. Besides the wavefront refresh rate, the imaging frame rate can also be improved if the number

of measurements needed to generate a given size of image could be reduced. One approach to enable

this is to perform a random access to probe predefined points at a faster rate instead of using the

sequential raster scan approach currently used.

1.6.2 Robustness

Another important challenge as mentioned before, is the sensitivity of MMFs to bending. A

lot of interesting work has been done along this path over the years. In an initial attempt, the

speckle from a straight fiber was restored after it was bent by applying a second compensating

bend to the fiber [10]. Caravaca et al. proposed a real-time bend correction [30] by continuously

measuring the fiber TM very quickly using a DMD for fast wavefront update. However, it requires

access to the distal side for correction.

Another approach proposed by Farahi et al. [58] is to use a virtual coherent light source that

allows the reflected speckle from the MMF to act as a signature for different bend configurations.

By calibrating for all possible configurations, the reflected speckle allows identifying and applying
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the appropriate correction to restore the original foci on the distal end. While it is interesting,

the method works only for a finite number of bend configurations that have been calibrated for.

Also if there are too many configurations, the computation time increases, making a real-time

implementation difficult. Ploshner et al. [142] proposed a theoretical model to mimic real fiber TMs

and to estimate how they change when their geometrical configuration is known. This is interesting,

however knowing the exact bend configuration of the fiber in real-time is often infeasible.

Gu et al. [83] proposed to use a partial reflector at the distal end of the fiber for bend

correction feedback. However, it is based on the assumption that the fiber TM is unitary or lossless,

which is unrealistic since even precision-fabricated MMFs have an associated non-zero loss [34, 82]

. Also the fabrication of the partial reflector can be challenging. The same group later relaxed the

unitary constraint and performed bend correction [82] by exploiting correlations between TMs of

the fiber before and after bending. However, the correction calculated without knowledge of the

distal fields shows only slight improvement and suggests need for better design of the reflector at

the distal tip.

Recent preliminary efforts have also been made to overcome the bending problem by replacing

the distal calibration with a proximal calibration. Theoretical studies have demonstrated that with

the help of a reflection feedback mechanism, we can measure three unique realizations of the double

pass TM and use it to solve for the single-pass TM [78]. A design of a metasurface reflector stack

to measure the double-pass TM for three unique wavelengths has been proposed[78], however its

practical implementation needs significant work towards design and fabrication of reflector stacks

and their installation at the distal end of the fiber while keeping it ultrathin. Another approach

uses a guide star at the distal end and exploits the quasi-radial memory effect in MMFs [110] to

measure the approximate TM from the proximal end. While this is promising work, it allows only

partial images to be retrieved, limited by the spatial extent of the guide star.

There have also been experimental studies to identify robust types of fibers and more resilient

bend configurations. Loterie et al. [119] present a study of different bend configurations and identify

a specific bend geometry- s-bends - as more robust to bends than others. Caravaca et al. [32] shows
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that the refractive index profile of MMFs is also a factor in robustness. Their experiments show

that graded index fibers are more robust. Both these papers also establish that there is some

intrinsic tolerance to bending and a focus created on the distal end is retained for displacements of

a few millimeters of the distal tip or the middle part of the fiber. Although it is hard to predict a

hard bound to the motion range within which live animal imaging can be accomplished, it would

undoubtedly be useful to extend the bend tolerance of MMFs from a few millimeters to centimeters.

Another factor in robustness comes from the sensitivity and stability requirements of the

system as a whole. As described earlier, imaging using the TM method requires interferometric

stability for calibration, which might not be feasible in a dynamic environment. Relaxing stability

constraints will also make way for more robust endoscopes.

1.6.3 Optical sectioning and resolution

When imaging inside a tissue volume, optical sectioning is very important to eliminate back-

ground and improve axial resolution. Depth of field in MMF imaging is limited by the NA of the

fiber. A typical NA of MMFs used for imaging is 0.3, which gives a wavelength dependent depth

of field of 22.2λ. For a 532 nm laser source, this figure is about 12 µm. The diffraction limited

resolution in MMF imaging on the other hand is determined by the numerical aperture of the

MMF, which is 0.89 µ m for a fiber with NA 0.3 and a laser wavelength of 532 nm. Since a zero

working distance is impractical and the effective NA decreases with increasing working distance,

the practical resolution limit is close to a micrometer. Sub-micron scale imaging can be useful to

explore, for instance, fine dendtritic structure, actin filaments etc.

Several techniques have been demonstrated to achieve both better sectioning and resolution.

Two photon imaging [166, 126] was shown to provide excellent intrinsic optical sectioning, however

it needs time gating and dispersion pre-compensation optics design to account for the temporal

dispersion of ultrashort pulses. Confocal imaging [118, 117] uses a virtual or physical pinhole

to improve sectioning and resolution, however, it suffers from the problem of low signal to noise

ratio (SNR) and difficulty in translation to fluorescence imaging since most of the light is rejected.
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Saturated excitation [106], which uses the nonlinear fluorescence from saturated fluorophores to

provide both better sectioning and resolution has also been demonstrated as an effective solution

however, it requires very high peak power levels that are infeasible for use with biological tissue.

Resolution enhancement has also been shown by use of a multiple scatterer before the fiber

[39, 140, 21] however it comes at the cost of transmission loss of light. Another interesting approach

used a parabolic tip design [21] to increase the effective NA of the fiber to up to 1. However the

design requires a non-zero working distance, which makes the endoscope more susceptible to tissue

induced light distortions due to index mismatch. Recently, resolution beyond the diffraction limit

[6] has also been demonstrated using MMFs by assuming sparsity in samples. This work is similar

to our work presented in chapter 2 [33]. However, it uses extremely sparse point objects with limited

fields of view and requires SNR levels of the sample higher than those feasible with bio-compatible

markers. Although a host of effective methods exist to achieve sectioning and resolution, a reliable

and robust method that could work while maintaining reasonable SNR levels is desirable.

1.7 Thesis overview

The goal of this Thesis is to deal with the challenges in MMF imaging described in the

previous section- speed, robustness, optical sectioning, SNR and resolution. In chapter 2, we present

a technique that simplifies MMF imaging by employing speckle patterns for scanning the object.

Using the naturally occurring output of the MMF for imaging allows simplifying the calibration and

eliminating the need for coherent control over the output field. Furthermore, the method requires

intensity-only measurements and fewer number of illuminations than one would need for focal spot

scanning, hence leading to improved imaging speed and robustness. We further present a method

to optimize the compressibility of our measurements by eliminating redundancies in our sampling

illuminations. Our algorithm minimizes the correlations in the speckle patterns used for imaging,

hence improving sampling efficiency and allowing higher compression. Furthermore, the technique

relies on assuming sparsity of the sample which also enables some degree of optical sectioning and

resolution improvement.
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In chapter 3, we present an approach to further push the speed of MMF imaging by more than

an order of magnitude by employing a one-dimensional wavefront modulator called a grating light

valve (GLV) that has a refresh rate of 350 kHz. The speckle produced after the scatterer that is

subject to one-dimensional wavefront modulation shows some interesting features, especially when

the scatterer exhibits a phenomenon known as the memory effect [95]. We present an analysis on

the dependence of the speckle shape on the amount of memory effect of a scatterer and propose the

optimal configurations for imaging through them. We also show focusing though an MMF using

the GLV at a record speed of 2 ms, as well as focusing through a dynamically changing scattering

medium. We make the case that the single dimension control does not limit our capability to

manipulate the output through the scattering media as long as enough degrees of freedom are

available.

In chapter 4 we diverge from imaging and present a technique to tailor the fiber mode

composition at the output of an MMF with thousands of modes, which we refer to as myriad-mode

fiber (MyF). While precise mode control has been demonstrated in relatively few-mode fibers,

the method proposed here is scalable, enables generation of complex mode combinations and is

particularly useful for MyFs, such as when the number of modes is comparable to the number of

modes of the wavefront shaping spatial light modulator. MyFs are attractive for imaging due to

their higher NA and bigger field of view. By selecting only a subset of fiber modes to create focal

spots at the output as an example, we demonstrate the ability to combine the advantages of MyFs

for imaging with the advantages of few-mode fibers for bend resilience and robustness.

Chapter 5 addresses the challenge of optical sectioning and resolution in multimode fiber

imaging for imaging through 3-D samples. Towards this end, we generalize the principle of image

scanning microscopy [130] and adapt it to imaging through complex media like MMFs. We also

describe an imaging methodology where the excitation and detection pathways could be different,

as is common in various endoscopy applications. We demonstrate high signal-to-noise ratio imaging

with good optical sectioning and improved resolution compared to the single pixel imaging approach

used in the earlier work. We also present a scheme to generalize the method to arbitrary output
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illumination such as speckle patterns.

Finally in chapter 6, we discuss the future directions to advance the work presented in this

Thesis and conclude with a summary of its contributions. Fig. 1.6 shows a schematic mapping of

the contribution of each chapter to the different goals of this Thesis namely, speed, robustness, and

resolution, SNR and optical sectioning.

Resolution, SNR 
and optical 
sectioning

Speed
Robustness

2. 
Speckle 
imaging

3. 
Wavefront 
shaping at 
350 kHz

5. Multiview 
Scattering Scanning 
Imaging Confocal 

(MUSSIC) 
microscopy

4. 
Mode 
control

Figure 1.6: Thesis Overview



Chapter 2

Speckle imaging through multimode fibers

2.1 Introduction

Coherent light propagating through an MMF is randomized through it leading to a speckle

pattern at its distal end. Current methods for imaging through an MMF requires control over

the distal illumination of the MMF, which is achieved either by (1) measuring the MMF’s TM,

(2) using an optimization procedure [52, 122], or (3) by training a neural network [150, 148]. The

TM calibration is an interferometric procedure that is sensitive to environmental perturbations.

Moreover, since the quantities being measured are fields, at least three intensity measurements are

required for measuring each speckle field. An alternate method for TM measurement using only

intensity measurements involves using phase retrieval algorithms [132, 53], however they usually

require careful tuning of multiple parameters and their convergence is often not guaranteed. The

optimization approach on the other hand is time consuming while the neural network approach

also requires hours of training over large data-sets before it can learn the TM.

In this chapter, we present a method for simplifying the TM calibration process by eliminating

the need for controlling the distal illumination and by employing the natural output of the MMFs-

speckle patterns as the sampling illuminations. Our method uses only intensity measurements

and all the computation required for image recovery can be done offline, unlike in the case of TM

recovery using phase retrieval algorithms, where computation is required before imaging can be

performed.

The idea of using speckle patterns for scanning the object for imaging with MMFs is in fact
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not a recent discovery. It was first proposed by Bolshtyansky et al. [23] who simulated the total

integrated signal coming from a reflective object illuminated with speckles produced by an MMF

and demonstrated coherent imaging. The concept was later demonstrated experimentally through

an MMF first with reflective samples [123]. Although this approach still requires a calibration

step, it is simpler because it only requires to measure the optical speckle intensities as opposed to

wavefront shaping based methods that require speckle field measurements.

Interestingly, besides the advantage that speckles are readily produced by propagation through

MMF, they have also been shown to have ideal properties for reducing or compressing the number

of measurements needed to fully characterize the object due to their ability to perform non-local

sampling [180, 184, 4]. This means that as opposed to scanning focal spots, the most common

choice of distal illuminations for imaging through MMFs, which typically need scanning of N num-

ber of focal spots, speckle patterns require a smaller number, M < N measurements to obtain an

N pixel image of an object.

This compression is achieved with the help of some prior knowledge about the object such

as its sparsity, where sparse matrices refer to matrices whose most elements are zero-values. This

technique of applying object sparsity information to solve for it is known as compressive sensing

[29].

Although speckle imaging has been demonstrated before, the advantage of speckles for com-

pressive sampling had remained unexploited. In our work reported in [104], we demonstrate com-

pressive imaging through MMFs for the first time, which allows reducing the number of measure-

ments. Our work is also the first fluorescence imaging demonstration using speckles. Soon after,

Amitonova et. al. [5] also demonstrated a similar method using well-separated binary objects made

of fluorescent beads.

Our work demonstrates that the technique can be scaled up using a bigger fiber with more

modes and larger and more densely populated fields of view. Moreover, in our further work reported

in [33], we also demonstrate that the technique works well with relatively thicker objects which

introduce background light to the scene of interest. We show that we are able to eliminate this
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background effectively with the help of the sparsity assumption to obtain a clean image of the object.

Furthermore, we present an algorithm to optimize the set of speckle pattern used for reconstruction

so as to recover the object with the least number of sampling efficient speckle patterns.

Finally, we show that the above concept can also be extended to implement both photoa-

coustic and fluorescence endoscopic imaging through a small cross section MMF. Combining the

pre-recorded speckle patterns and the corresponding fluorescence and photoacoustic signals from

the object at the distal tip of the MMF with reconstruction algorithms, we obtain images of bio-

logical test samples in vitro with both modalities with a minimally invasive microendoscope.

2.2 Methods

Speckle imaging through an MMF can be performed in two steps- calibration and scanning

similar to the TM method, followed by a third offline step to process the acquired data for object

reconstruction. All of these steps are detailed below.

2.2.1 Calibration

The purpose of the calibration process in speckle imaging is to acquire knowledge of all the

distal speckle pattern intensity distributions. The set of speckles used in imaging should ideally

form a complete basis to ensure that every point in the field of view is being sensed by at least

one speckle pattern and that there are no holes or unprobed regions. Furthermore, each speckle

pattern should ideally be unique and sample the object differently so as to avoid redundancy in

measurements. In order to ensure such speckle patterns are being produced by the MMF, the

input illuminations sent through the MMF must consist of uncorrelated patterns. We choose the

binary Guassian random basis for input illuminations. As the random patterns are projected onto

the near side or proximal facet of the fiber, the speckle patterns emerging on the distal side are

recorded. Unlike the TM method, we do not need phase information here, so all measurements are

intensity-only and single shot. A complete basis of speckle patterns forms the incoherent TM of

the fiber, which we will denote as A.
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Figure 2.1: Principle of speckle illumination imaging through a MMF: A set of M pre-calibrated
speckle intensity patterns sample the object plane to generate M corresponding signals yi propor-
tional to the overlap between each speckle Ai and the object, x. The total integrated signal is
detected using a single pixel detector.

2.2.2 Scanning

After calibration, the camera and accompanying optics after the fiber are removed and the

sample object is brought to the distal end. Each speckle pattern produced during calibration is then

reproduced and projected onto the object which in response, produces a return signal proportional

to the amount of overlap between itself and the projected speckle pattern. This signal, which could

be fluorescence or a photoacoutic signal or both, then recouples into the fiber and is detected on

the proximal side using a bucket detector.

This detected signal, which we denote by yi, where i is the index of the speckle pattern is

mathematically given by the overlap integral of the object and the ith speckle pattern given by Eq.

2.1

yi =

∫∫
area

Ai(u, v)x(u, v)dudv (2.1)

The intensity fluctuations from speckle pattern to speckle pattern in the object plane trans-

lates into fluctuations of the signal Ai, thereby encoding sample information at the positions at

which the speckle grains overlap with the object, reminiscent of the working principle of a single

pixel camera [54]. Figure 2.1 illustrates the principle of imaging with speckle illumination.
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2.2.3 Reconstruction algorithm

Given the matrix A containing the recorded speckle patterns in its rows and vector y con-

taining the measured return signal from the sample, the entire imaging system can be represented

in matrix form by eq 2.2.

y = Ax (2.2)

A conventional choice for the A matrix is the canonical basis where the object is scanned point-

by-point. The matrix A is then an identity matrix, which means that y is a direct mapping of x.

Focal point scanning however requires a coherent TM calibration as described in the TM method.

Alternately, when A consists of random speckle patterns, solving for x requires inversion of the

matrix A. Unfortunately, A is often a large, rectangular and badly conditioned matrix and its

inverse does not exist. Nevertheless, there are still various ways of finding an estimate of x. We

choose to combine and employ the techniques detailed below for our reconstruction.

(1) Correlation or ghost imaging: Correlation imaging [4, 143, 98] relies on the fact that every

return signal yi is a measure of the overlap between the ith speckle pattern and the object

and therefore is similar to the weight of the speckle pattern contributing to the object.

Hence, every jth pixel of the object is computed as the correlation of the jth pixel of all

the speckle patterns with return signals y as shown in Eq. 2.3.

xj =
E[Ãj ỹ]

σAσy
(2.3)

(2) Regularized least square: Solving for x by minimizing the least square difference of the

left and right hand side of Eq. 2.2 is an effective method to solve inverse problems with

the simple solution A-1b when the matrix A is non-singular. However when A is non-

invertible and poorly conditioned, the closest estimate to its inverse can be noisy and

leads to meaningless solutions with huge norms. Regularizing the problem by adding the

euclidean norm of the object to the cost function helps reduce noise and improve the

estimate for x. This is also known as Tikhonov regularization and a free parameter, β is
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used to determine the amount of regularization or weight of the object’s euclidean norm in

the cost function.

(3) Least square optimization with priors: When we have some prior information about the

object of interest such as sparsity, it can be used to improve the estimate of the object

and enable recovery with fewer number of measurements. Depending on the type of object

that we are interested in, different priors such as sparsity in the spatial domain [84] or the

spatial gradient domain [164] are suitable. An advantage of using a sparsity prior is its

robustness to outliers. Since we are interested in enabling imaging of neural activity which

is sparse in the spatial domain or objects representative of them such as fluorescent beads,

we employ the spatial sparsity constraint to solve for the object.

Sparsity can be enforced in our solution by adding an l1 norm in the cost function [29]. We

introduce a free parameter, α to tune the weight of this term in the cost function. We also

know that the fluorescence signal being detected is positive and hence impose a positivity

constraint on the object.

On combining the priors described in (2) and (3), we solve for the object using a sparsity

and positivity constrained and Tikhonov regularized least square optimization problem given by

Eq. 2.4.

min
x
||Ax− y||22 + α||x||1 + β||x||2 s.t. x ≥ 0 (2.4)

We use a fast converging algorithm called fast iterative shrinkage algorithm (FISTA) [14], which

has a convergence rate of O( 1
k2

) for solving the above problem. We initialize the algorithm with the

correlation image obtained in (1) as a first guess. An optimal solution is reached in a computation

time of less than 2 minutes and 50 iterations for a 10, 000× 40, 000 A matrix. This computation is

done offline after all data acquisition.
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2.3 Selection of speckle patterns for best compression

As mentioned earlier, the ability to reduce the number of measurements needed for object

recovery depends on how sampling efficient and how unique the speckle patterns being used to

scan the object are. An ideal set of M speckle patterns would form a complete basis set which can

encode information about every point at the fiber distal tip.

At the same time, each speckle pattern must be able to retrieve unique information about the

sample in order to eliminate redundancies. The optimal compression ratio N/M is achieved when

we have enough speckle patterns to sample the whole field of view and the correlations between

speckle patterns is minimized. We quantify these correlations by their mutual coherence, defined

as

µij =
Ai,∗ ·Aj,∗
|Ai,∗| · |Aj,∗|

(2.5)

where µij is the mutual coherence between the ith and jth patterns. The M ×M mutual coherence

matrix can be constructed containing the correlation of each speckle with every other speckle.

Candes et al. presented the lower bound for the number M in terms of the number of pixels in

the object, N , the sparsity of the object, S, maximum coherence function µmax and a constant C

given by Eq. 2.6.

M ≤ C µmax S log(N) (2.6)

For any given object, the only parameter that we can optimize is the mutual coherence of speckle

pattern. It turns out that it is infeasible to make the correlation between speckle patterns zero.

This is because a fraction of the light reflected from the DMD could be unmodulated. Moreover, the

modes of the fiber have naturally overlapping trajectories making it impossible for their intensity

correlations to be zero.

We recorded speckle intensities at the distal side of the fiber in experiment and plot their

mutual coherence matrix In fig. 2.2. We also plot the same matrix for a simulated Gaussian

random intensity matrix. It can be observed here that the mutual coherence matrix for the recorded

speckle patterns show some structure due to higher correlations as compared to the former. there
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Figure 2.2: Comparison of mutual coherence matrix of 1000 experimentally recorded speckle in-
tensity patterns through the fiber and of simulated Gaussian random intensity patterns in the
computer. (a) Coherence matrix of random patterns shown almost no structure and little correla-
tions. (b) The coherence matrix of speckle patterns on the other hand shows line-like structures
due to high correlations that have a mean of about 0.5.

is therefore room for improvement.

We present an algorithm below that allows us to pick a smaller optimal set of speckle patterns

with reduced correlations from a larger set of speckle patterns. The algorithm involves the following

steps:

(1) Set the speckle self-correlation terms on the diagonal elements of the coherence matrix, to

zero. This way only correlations between different speckles are analyzed.

(2) Calculate the norm of each row in the mutual coherence matrix. The row Ri with maximum

norm signifies that the ith speckle pattern has maximum correlations with all other speckle

patterns in the set.

(3) Set the ith row and column in the coherence matrix to zero and note the index, i, of the

speckle to be deleted from the set. The new coherence matrix corresponds to correlations

among M-1 patterns.

(4) Repeat 2 and 3 till the number of non-zero rows in the coherence matrix becomes equal to

the size of the desired optimized set.

Note that the coherence matrix is symmetric, which means the above optimization can equivalently

be performed on columns instead of rows of the coherence matrix, leading to the same results. The
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last M number of patterns left in the coherence matrix constitute the optimal set of least correlated

speckle patterns.

2.4 Resolution limit

Resolution limit in speckle imaging is dictated by the NA of the MMF. The fiber used in our

experiments has an NA of 0.29. With a green laser source of wavelength 532 nm, the diffraction

limited resolution is 0.92µm. However, the object is places a small distance away from the fiber

to prevent damage to the fiber tip. By the time the speckle diffracts to the object plane, it has

a slightly larger grain size of 1.6µm, which we calculate by performing the autocorrelation of the

recorded speckle pattern.We prove using experimental data in fig. 2.3 that the resolution in the TM

method which is dictated by the full-width half maximum of the focal spot matches the resolution

in speckle imaging measured by the speckle grain size. In chapter 5, we propose a method to

improve the imaging resolution by a factor of 2.

-15 -10 -5 0 5 10 15

Distance (microns)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
rm

al
ize

d 
in

te
ns

ity

Focus
Speckle
autocorrelation

1.6 μm

Focused 
illumination

Speckle 
autocorrelation

(a) (b)

Figure 2.3: Comparison of resolution in the TM method and Speckle imaging. (a) Zoomed in images
of a focal spot recorded on a camera during imaging with the TM method and the computed
autocorrelation of a speckle pattern recorded during correlation imaging. (b) Overlayed cross-
sections and the full width at half maxima extracted at positions indicated by red lines in the two
images in (a) show that the resolution in both cases are identical.
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2.5 Experimental Setup

A schematic description of the experimental setup used for speckle imaging is shown in figure

2.4. The excitation light is provided by of a 532 nm CW Coherent Verdi-G laser which passes

through a spatial filter SF and is incident on a DMD (TI-DLP Discovery 4100)which performs

wavefront modulation at a refresh rate of 22 KHz. A 30-cm long graded index MMF (Newport F-

MLD) with an NA of 0.29 is used for imaging. The outer diameter of the MMF (without protective

cladding) is 125 µm and accounts for the total footprint of the endoscope. The 100 µm-diameter

MMF core is used to guide the source light, and also collect fluorescence.

EMCCD

DMD

MO1DM MO2

IRIS

LASER

CMOS

MMF
SH

SF

L1

L2
L3

CALIBRATION MODULE

Figure 2.4: Experimental setup for fluorescence imaging using speckle illumination through a mul-
timode fiber.

For the calibration step, a set of 10, 000 binary random patterns are projected onto the DMD

using a square patch of 96x96 independent macropixels on its active area. Each macropixel is used

to project a grating and consists of 8x8 physical pixels of the DMD. The gratings projected on

the macropixels can be shifted in the transverse direction to allow phase modulation in the −1st

order of the Fourier plane of the DMD [43]. A 4f system is used to image the DMD plane onto the

the back focal plane of a a 20x magnification microscope objective MO1. The phase modulated
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−1st order is isolated using a pinhole placed in the Fourier plane of this 4f-system. The microscope

objective MO1 then couples the Fourier plane of the phase modulated patterns into the fiber.

This light is scrambled through the fiber and a speckle pattern appears on the distal end

which is then imaged using a 40x microscope objective MO2 and lens L3 onto a CMOS camera

(Hamamatsu Orca Flash 2.8). The plane where the speckle patterns are being imaged is slightly

offset from the distal facet of the fiber so that the sample to be imaged placed right after it can be

in sharp focus.

After calibration, the calibration module composed of the microscope objective, lens and

CMOS camera is removed and replaced with the fluorescent sample mounted on a sample holder

SH. The same set of patterns used for calibration are projected on the sample and for each pattern

projection, a corresponding fluorescence signal coming back to the proximal end of the fiber is

recorded using an Andor iXon+ Electron multiplying gain CCD (EMCCD). The excitation photons

are rejected using a dichroic mirror DM (Chroma ZT532rdc-UF1) and a bandpass filter (Chroma

ET590/50m).

It should be noted here that the only information we require is the total integrated fluores-

cence intensity across the whole fiber cross-section. A photomultiplier tube (PMT), which is faster

and cheaper can therefore also serve our purpose instead of the EMCCD. We employ the EMCCD

in our experiments simply because of its availability in the system and other parallelly ongoing

experiments.

Luckily, using the EMCCD and capturing images instead of the total signal allowed a small

boost in the SNR in our measurements. The fluorescent light collected at the proximal end of

the fiber contained a contribution from the autofluorescence of the fiber, more prominently in the

fiber cladding. This undesired signal added noise to our measurements and could be discarded (by

operating in the image acquisition mode of the EMCCD) by selectively cropping out the fluorescence

signal coming from the fiber core region.

Once all the fluorescence data is collected the experiment is complete. Lastly, an additional

background signal in the absence of the object is also recorded and subtracted from all the fluo-
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rescence data to improve the SNR further. The processed fluorescence data is finally fed to the

reconstruction algorithm, which yields our desired images.

2.6 Results

2.6.1 Fluorescence imaging

c) d)

a) b)

Figure 2.5: Experimental results of fluorescence imaging using an MMF with a numerical aperture
of 0.29. a,b) Imaging of 4 µm orange beads from TetraSpeck Fluorescent Microspheres Sampler
kit: a) Widefield fluorescence image captured on the distal side of the fiber. b) 192×192 pixel
object reconstruction using 10000 speckle patterns. (c,d) Fluorescence imaging of red fluorescent
retrobeads in a mouse brain slice: c) Widefield fluorescence image of the sample. d) 192×192 pixel
object reconstruction using 10000 speckle patterns. Scale bar is 30µm.

We perform imaging of 4 µm orange beads from a TetraSpeck fluorescent microspheres sam-

pler kit and summarize the results in Fig. 2.5. Fig.2.5 a shows a reference widefield fluorescent

image that was obtained with a CMOS camera directly imaging the fluorescent sources at the

output/distal side illuminated with speckle patterns. The image is averaged over 1000 speckle

pattern illuminations. The 192×192 pixels (N = 36864) image from fluorescence collected at the

input/proximal side of fiber is shown in Fig. 2.5 b. It can be observed that the complex distribution

of beads is well-recovered while preserving the boundaries of both individual and clustered beads.
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M = 10, 000 speckle patterns were used to reconstruct the image, corresponding to about 25% of

the total number of reconstructed pixels.

We also performed imaging of red fluorecent retrobeads (0.05 - 0.2µm) from Lumafluor,

microinjected into the dorsomedial striatum (DMS) of a mouse brain, which was then sliced and

mounted on a microscope slide. This sample has a thickness of 30 µm. Fig. 2.5 c shows a

reference widefield fluorescent image of the sample and Fig. 2.5 d shows the corresponding image

reconstructed with our approach, and also clearly demonstrates the recovery of individual clusters

of retrobeads in neurons.

It can be observed that the resolution of the reconstructed object is dictated by the grain size

of the speckle produced by the excitation wavelength, thanks to which the reconstruction image on

Fig. 2.5 d is better resolved than the reference widefield fluorescence image on Fig. 2.5 c obtained

by direct imaging with the longer wavelength fluorescent light. Another interesting feature that

can be observed is that the sparsity assumption allows a better z-sectioning by eliminating the out-

of-focus features from the reconstruction image seen in the reference widefield fluorescence image

on Fig. 2.5 c.

2.6.2 Influence of speckle pattern selection

We further present an analysis on the effect of choosing an optimal set of speckle patterns

with least cross-correlations for imaging. The selection is made using the algorithm described in

section 2.3. Fig. 2.6 a illustrates an example showing how speckle pattern optimization affects the

image quality when imaging with M = 3000 speckle patterns. When the 3000 speckle patterns are

chosen randomly out of a larger set of 10000 patterns, the reconstructed image is shown in Fig. 2.6

a (middle image, ”No Optimization”) and when an optimized set of 3000 speckle patterns is chosen

for imaging, a better recovery of the image is obtained as illustrated in Fig. 2.6 a (right image,

”After Optimization”).

In Fig. 2.6 b and c respectively, we further demonstrate imaging with higher compression

ratios, N/M using a range of decreasing number of optimized speckle patterns and observe the trend
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Figure 2.6: Effect of the set of speckle pattern optimization on the reconstructed images of 4 µm
orange beads from TetraSpeck Fluorescent Microspheres Sampler kit using optimized patterns. (a)
Left: widefield fluoresence image. Middle: image reconstructed with M = 3000 speckle patterns
randomly chosen out of 10000 speckles patterns. Right: image reconstructed with M = 3000
speckle patterns chosen as to minimize cross-correlations between speckle patterns. The image
obtained without optimizing the choice of speckle patterns misses some features of the original
object. The image obtained after optimization illustrates the improved sampling efficiency for an
optimized choice of the speckle patterns. (b) Reconstructed images using different number M of
speckle patterns. The set of 8000, 3000 and 1500 speckle patterns were chosen optimally out of
the 10000 available speckle patterns in order to minimize the cross-correlations inside each speckle
set, as for (a). (c) Plots of correlation coefficient and relative mean square error (RMSE) between
reconstructed images and the reference image (Mmax = 10, 000), as a function of the size M of the
speckle set.
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in reconstruction quality. In Fig.2.6 b, we begin with the full speckle pattern set of M = 10, 000

and decrease the M value down to 1500 patterns. We observe that with M as low as M = 3000,

a N = 40, 000 pixel image remains recoverable while maintaining a good qualitative correlation

coefficient with the reference image, whereas for M = 1500, significant features of the object

are lost. Fig. 2.6 c provides a more quantitative insight into how the size of the speckle set

influences the reconstruction in terms of the relative mean square error shown in blue and the

correlation coefficient shown in red, of the reconstruction images with respect to the reference

image. Simulation data for this plot are obtained by using signal values computed from equation

2.2 with A containing the chosen set of experimentally measured speckle patterns and the object O

as the image 2.5 b with M=10,000. Both simulated and experimental curves show a decay in error

and increase in the correlation coefficient with increasing number of patterns, as expected. The

effect is more pronounced in the case of the experimental data, which is likely due to the influence

of experimental noise.

2.7 Hybrid photoacoustic and fluorescence imaging

Note: The work presented in this section is part of a collaboration with Dr. Antonio Caravaca

and Prof. Emanuel Bossy. The experimental results shown were obtained by Dr. Antonio Caravaca.

So far we demonstrated the use of the speckle imaging technique for fluorescence imaging.

However, the technique is not limited to one modality. Fluorescent indicators offer good molecular

specificity and a direct measure of the fast spatio-temporal calcium dynamics. However, they

are insensitive to the vascular hemodynamics and blood oxygenation variations, which provide

valuable complementary information about neurovascular coupling in health and disease. On the

other hand, photoacoustic imaging is an emerging multi-wave imaging modality that couples light

excitation to acoustic detection via the photoacoustic effect (sound generation via light absorption).

It provides images of non-radiative optical absorption typically from endogenous contrast agents

such as hemoglobin or melanin. While the capacity of photoacoustic imaging for resolving vascular

hemodynamics is well-established [91], their lack of molecular specificity has allowed only indirect
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and delayed measurement of neural activation.

Combining fluorescence and photoacoustic imaging is therefore attractive to obtain comple-

mentary information [185] and has proved effective for intracellular temperature mapping [71], su-

perficial tumor detection [3, 101, 191] and surgical guidance [120]. Recently, photoacoustic imaging

has also been employed for calcium imaging using the photoacoustic contrast of certain fluores-

cent calcium indicators [48] or using photoacoustic calcium indicators for combined photoacoustic

and fluorescence imaging [153] with promising results. This combination can enable simultane-

ous monitoring of fast spatio-temporal neurodynamics and vasular hemodynamics, hence providing

unprecedented capabilities for neural activity detection.

Combining the two modalities in a multimode fiber endoscope is possible [33] by employing a

pulsed laser instead of a continuous wave laser to observe the photoacoustic signal and an additional

commercial fiber optical hydrophone (FOH) attached to the MMF for the photoacoustic feedback.

The hydrophone can measure the acoustic pressure optically using a Fabry-Pérot interferometer at

the fiber tip [127]. It has a broadband detection from 1MHz to 30 MHz and is a bucket detector

providing a voltage signal proportional to the total pressure detected. The FOH also has a diameter

of 125 µm and is attached next to the MMF, making the entire footprint of the endoscope 250 µm

. Imaging of red blood cells along with fluorescent beads is demonstrated in figure 2.7.

a) b)

Figure 2.7: Hybrid imaging of red blood cells and 11 µm diameter fluorescence particles dyed with
nile red. a) Bright-field microscope image of the sample at the distal tip using the calibration
CMOS camera b) False color hybrid image reconstruction of the red blood cell (in red) and the
fluorescence particles (in green). Scale bar is 30 µm.
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2.8 Conclusion

We present a technique to simplify imaging through MMFs by employing their natural output

illuminations i.e., speckle patterns for scanning the object of interest. We show that using speckle

patterns is more efficient as it allows multiplexing our measurements by extracting information

about the object from multiple points simultaneously. This eliminates the need for wavefront

shaping to control the output illumination of the fiber and shifts the complexity of demultiplexing

information from the experiment to a computer. Computational complexity is less of a problem

since once the data is acquired, its reconstruction can be done offline and does not need active

input from the imaging system.

Furthermore, this technique relies purely on intensity measurements, which can all be made in

single-shot without needing interferometric stability. This makes the system simpler, more robust

and useful in dynamically changing environments. Another limitation that we overcome is the

presence of blind spots in images due to holes in the reference field used during TM calibration.

Since the reference field in the TM method also propagates through the fiber and ends up being a

speckle pattern, it has nulls where field information cannot be gathered and focal spots cannot be

created. This leads to non-uniformity in the reconstructed images, which can be avoided altogether

through speckle imaging.

We also presented a method to optimize the speckle pattern set for a stationary MMF system,

such that maximum information about the object can be recovered using the smallest possible num-

ber of speckle patterns, hence improving the imaging speed. We showed good quality recovery of

40, 000 pixel objects using as few as 3000 speckle patterns which leads to a compression ratio, N/M

of 13, making the imaging frame rate 13 times faster. Furthermore, we demonstrate that the spar-

sity assumption helps achieve some degree of optical sectioning and resolution improvement.These

improvements however come at the cost of reduced SNR due to use of fewer illumination patterns

and their spread out nature.

Nevertheless, we show that the technique is not limited to fluorescence and combining it with
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photoacoustic imaging in a single endoscope can allow extracting complementary information about

the object. The combination of photoacoustic and fluorescence imaging - two prevalent imaging

modalities for in-vivo imaging through biological tissue - put together in a 250 µm thin fiber system

makes for a powerful tool that could have a range of biomedical applications, including deep brain

neural activity detection.

2.9 Appendix

2.9.1 Fast iterative shrinkage-thresholding algorithm (FISTA) for sparsity con-

strained optimization problems

Gradient descent algorithms are effective for solving optimization problems with a differ-

entiable cost function. For non-smooth functions like in Eq. 2.4, a class of iterative shrinkage

thresholding algorithms are typically employed [45, 63, 38] which are rooted in the proximal forward-

backward iterative schemes [26, 141] for solving convex problems with a non-smooth term in the

cost function.

Let us consider the general minimization problem shown in Eq. 2.7.

min
x

F (x) = f(x) + g(x) : x ∈ Rn (2.7)

where f(x) is a smooth convex function which is continuously diffrentiable with Lipschitz continuous

gradient L(f) and g(x) is a continuous and non-smooth convex function.

We know that if g(x) = 0, the above problem can solved using the iterative gradient algorithm

with the kth iterate given by Eq. 2.8.

xk = xk−1 − tk∇fxk−1 (2.8)

where tk > 0 is a suitable step size. The above gradient iteration can be rewritten as a proximal

regularization [42] of the function f at xk−1 described in Eq. 2.9.

xk = argminx{f(xk−1 + 〈x− xk−1,∇f(xk−1)〉+
1

2tk
||x− xk−1||2} (2.9)
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In the equation above, the first two terms in the curly braces are the first order Taylor expansion

of the function f(x), and the third term corresponds to the maximum quadratic curvature of the

function.

In our case, g(x) = λ||x||1 , so the corresponding iterate is given by Eq. 2.10.

xk = argminx{f(xk−1 + 〈x− xk−1,∇f(xk−1)〉+
1

2tk
||x− xk−1||2 + λ||x||1} (2.10)

We now choose 1/tk = L, which is ideally chosen to be the curvature of the function f at a

given point. For any L > 0, let us now define the function in curly braces above at an arbitrary

point y, instead of the last iterate, xk−1 and call it QL(x, y) as shown in Eq. 2.11.

QL(x, y) = f(y) + 〈x− y,∇f(y)〉+
L

2
||x− y||2 + λ||x||1 (2.11)

Further, we define the minimizer, pL(y) = argmin{Ql(x, y) : x ∈ Rn}. ISTA algorithms

solve this problem by evaluating every new iterate xk = pL(xk−1), hence resulting in a convergence

in function values as O(1/k), where k is the iteration number.

On the other hand, the FISTA algorithm evaluates the new iterate at a third point, y which

is calculated with knowledge of the last two iterates instead of only the last one. The calculation

of the iterates of x and y values are summarized in Eqs. 2.12, 2.13, 2.14.

xk = pL(yk) (2.12)

yk+1 = xk + (
tk − 1

tk + 1
)(xk − xk−1) (2.13)

tk+1 =
1 +

√
1 + 4tk2

2
(2.14)

The initial value for t is chosen as 1 and the initial y value is chosen to be the same as

the initial x value, x0. By evaluating every new iterate at y, which has memory of both the last

two iterates, helps minimize overshooting outsize the solution space and enables a much faster,

non-asymptomatic convergence rate of O(1/k2).



Chapter 3

High speed focusing using a 350 kHz wavefront modulator

3.1 Introduction

In Chapter 2, we discussed that the use of speckle patterns for imaging through MMFs can

help reduce the number of required measurements, hence improving imaging speed. The funda-

mental limit of the MMF imaging speed however is determined by the wavefront shaping rate.

Wavefront shaping (WFS) is a key aspect in imaging through scattering media, be it biological

tissue, a ground glass diffuser or a multimode fiber. Measuring the TM by shaping the incident

wavefront allows controlling the field on the distal side of the medium, which is used to scan an

object. Luckily, the WFS technology has seen rapid advances in the last couple decades and many

options have become commercially available. Figure. 3.1 presents a summary of the state of the

art devices used for WFS along with their speed and number of pixels they support.

The most widely used WFS devices are liquid crystal spatial light modulators (SLMs) which

have millions of independent active pixels fitted in a few centimeter square area and are capable

of phase modulation. These comprise of nematic liquid crystals on which a voltage can be applied

to change their orientation, hence modulating the phase delay gathered by the light propagating

through them. Modulation speed of these devices can go up to 100 Hz, limited by the switching

speed of nematic crystals. SLMs can alternately also comprise of ferroelectric crystals [113], which

are binary, but have faster switching speed leading to a wavefront modulation rate of up to a few

kHz. Another type of SLM are based on micro-electromechanical system (MEMs) mirrors [22].

Each mirror can be actuated by applying a piston to it to achieve varying phase delays. These have
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Figure 3.1: Map of different wavefront shaping devices in terms of modulation speed and number
of modulating pixels.

thousands of pixels and can operate at about 10 kHz.

DMDs on the other hand are binary amplitude modulators which have mirrors that can be

deflected at two angles to turn the pixel on or off. Although they are designed for amplitude only

modulation, groups of pixels can be combined to project gratings on them, which can be shifted to

achieve phase modulation in the Fourier plane of the DMD. One of the techniques to implement

this is Lee holography [30] and was introduced in chapter 2. Since DMDs have millions of pixels

, sufficient pixels are available even after grouping them into macropixels. Their fast modulation

speed of 22 kHz combined with their independence to polarization and broadband operation makes

them attractive candidates for imaging through scattering media.

Another type of WFS technology consists of programmable acousto-optic deflectors (AODs).

These are comprised of an acousto-optic crystal through which an applied RF signal allows creating

a refractive index grating. This grating can be programmed to deflect light into a desired order and

modulate its phase. Experimental demonstration of focusing through scattering media [60] using

AODs has been done with hundreds of independent pixels and impressive modulation speeds up to

155 kHz. Scaling of the number of pixels is possible by increasing the crystal size.

A faster yet solution is offered by 1-D devices called grating light valves (GLVs). These
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are also MEMs based and consist of ultra-light aluminium coated ceramic ribbons that can be

moved with the help of an applied voltage. GLVs stand out from the above technologies in their

superior switching speed of a few 100 kHz and their one-dimensional geometry. Adapting them to

our application of focusing through scattering media and implementing a system design that works

around it will be the focus of this chapter.

We will also explore in this chapter, some of the interesting effects of using a 1-D modulator

to control 2-D fields. When a wavefront incident on a weak scatterer is tilted within an angular

range, the output wavefront is equally tilted in the near field, leading to a translation of the far-field

speckle pattern. This phenomenon is known as the memory effect [68, 61, 95], and is illustrated

in figure 3.2 a. In the presence of large memory effect, when the illumination on the scatterer

is elongated along one of the spatial dimensions, the speckle pattern appears elongated in the

perpendicular direction, thereby hindering full control over the field in both dimensions.

However, we will show that by reshaping the line illumination from the GLV into a square-

shape by employing different magnifications along the horizontal and vertical directions, we are able

to achieve speckle patterns with isotropic statistics after the scatterer, regardless of its scattering

strength. We demonstrate this principle in simulation by modeling our system along with scatterers

with varying degrees of memory effect. By employing the right illumination configuration, we enable

full 2D control over the output field and perform a 1D to 2D transformation of light through the

scatterer.

Furthermore, we perform focusing experiments using the TM method at a record speed of 2.4

ms. We show focusing through different scattering media such as a ground glass diffuser, chicken

breast, TiO2 and a multimode fiber. We also perform dynamic focusing while the speckle pattern

incident on the detector is translated in real-time to present statistical analysis of the focusing

performance. We also show the dependence of the focus quality on the number of modes used for

TM calibration and the pixel binning factor. Finally, to demonstrate the fast wavefront shaping

speed of the system, we perform continuous focusing through a rapidly changing dynamic sample.

The decorrelation time, defined as the time duration within which the correlation of a changing
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speckle field with its initial state remains above a certain threshold value, of the dynamic sample

used in our experiment was about twice the focusing time.

3.2 2D control through scattering media using a 1D modulator

When a 1-D light beam is incident on a scattering medium, it scatters through its length

and all the independent modes that were aligned along one dimension are spread out in a two

dimensional space giving rise to a 2-D speckle field. If the scatterer is strong and allows complete

spreading of modes in 2-D such that the resulting speckle field is fully developed and has no memory

effect, the 1-D GLV can control the 2-D speckle field in a manner similar to that of a 2-D SLM

with the same number of independent pixels. However, when the scatterer has memory effect, the

resulting speckle fields can exhibit translational correlations that lead to speckle fields preserving

some structure from the incident fields.
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Figure 3.2: Model of a scatterer with memory effect. (a) A point source incident normally on
a thin scatterer of thickness l spreads out with a Gaussian distribution and standard deviation,
σ that increase in proportion to the thickness. When the point source is incident, tilted at an
angle δθ to the normal, the near field distribution after the scatterer also experiences the same
tilt, leading to a spatial shift, δx of the original speckle pattern in the far-field. (b) The TM of a
scatterer with memory effect can be modeled as the Hadamard product of a random matrix and
a convolution matrix with a circular Gaussian kernal whose standard deviation is σ. The TM for
2-D fields corresponding to a scatterer with σ = 3 is shown on the far right. The image represents
the absolute value of the TM and shows a specific band-diagonal structure.

We analyze the effect of such correlations by building a model to mimic a scatterer with
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varying degrees of memory effect similar to the one proposed by Judkewitz et al. [95], but instead

extended from 1-D to 2-D fields. By propagating fields arriving from the GLV through the scatterer,

we can predict the shape of the resulting speckle fields.

3.2.1 Model of a scattering medium with memory effect

A scattering medium with memory effect has two distinct properties namely random scat-

tering and spatial correlations within a certain range. While the former can be modeled using a

random TM, the latter is characterized by shift invariance in a certain region around the source

which can be represented using a convolution matrix with a circular Gaussian kernel. The stan-

dard deviation of the Gaussian kernel here, σ corresponds to the spatial extent or spread of a point

source after propagating through the scatterer.

It therefore follows that combining the two effects, the 2-D TM of a scatterer with memory

effect, Tscatterer can be mathematically described by eqn. 3.1 where R is a simulated random matrix,

whose columns represent vectorized 2-D random speckle fields and G is a convolution matrix, whose

columns contain vectorized and 2-D Gaussian fields with standard deviation σ, circularly shifted by

a pixel every column, to cover the entire field of view (FOV). The symbol ◦ denotes the Hadamard

or element-wise product.

Tscatterer = R ◦ G (3.1)

The σ value above is directly proportional to the length of the scatterer and is a measure of

the scattering strength of the medium. The matrix model is depicted in figure 3.2 b.

3.2.2 Speckle shape analysis

Once we have our model for the TM of the scatterer, we can propagate the incoming field

from the GLV through it and simulate the speckle patterns in the far field. Here we consider two

configurations for the illumination of the scatterer namely the 2-D image plane of the GLV in which

each pixel is stretched horizontally such that the 1D line beam from the GLV is transformed to a
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square using cylindrical lenses and a 4-F system, and the 2-D Fourier transform of the above image

plane. We refer to them as image plane and Fourier plane illuminations respectively for conciseness.

Figure 3.3 (g) shows a plot of the evolving speckle shape for scatterers with increasing thick-

ness. Elongation factor is defined here as the ratio of major and minor axes of the average speckle

grain and the average speckle grain is computed here by the autocorrelation of the output speckle

fields. It can be observed that the elongation factor drops at a rate 1/σ for the case of Fourier

plane illumination, while it constantly remains near unity in the case of image plane illumination,

even for a small σ value. Hence, the image plan illumination is more suitable for thin scatterers in

order to allow full 2-D control on the output fields.

The results are summarized in figure 3.3. We can observe that in the case of Fourier plane

illumination that consists of a 1-D array of spots, the far field speckles appear elongated in the

orthogonal direction of the illuminating array. With increasing scatterer thickness, this elongation

decreases and the speckle grains become more isotropic. The same effect will occur for a scatterer

of a given thickness and decreasing mean free path.

On the other hand, during image plane illumination, where the two orthogonal axes have

been magnified differently such that the GLV image illuminating the scatterer is square-shaped,

round speckle patterns are always observed irrespective of the scatterer thickness, as depicted in

figures 3.3 (d,e,f).

3.3 Experimental Setup

The experimental setup for focusing through scattering media using a GLV is depicted in

figure 3.4. We used a continuous wave 532 nm laser for the majority of our experiments and a 460

nm laser for one of the experiments done in the Fourier plane illumination configuration.The laser

beam is expanded and collimated using a 4-F system and focused down to a 1-D line on the GLV

using a cylindrical lens. The GLV is tilted at a small angle of about 10◦ to deflect the reflected

light to another cylindrical lens which collimates it into a square-shaped beam. It is critical to

achieve a truly isotropic square-shaped illumination experimentally because breaking the isotropy
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Figure 3.3: Speckle shape analysis for different illumination configurations and varying scatterer
thickness. (a) Fourier plane of the GLV phase pattern. A zoomed in part of the phase map of 1D
spots is depicted. The colour bar represents phase values. (b,c), Simulation of speckle fields after
scatterers with σ = 1 and 8, respectively, when the GLV Fourier plane shown in (a) propagates
through them. The images show speckles intensities in the scaterrer far field. (d) Image plane
of the GLV phase pattern. The 1D pixels with alternating phases and constant amplitude are
expanded to horizontal stripes. The colour bar represents phase values. (e,f) Simulation of speckle
fields after the scatterer with σ = 1 and 8, respectively when the GLV image plane shown in (d)
propagates through them. (g) Speckle elongation as a function of scatterer thickness or σ for Fourier
plane (blue) and image plane (orange) illumination. The plot shows that the elongation in speckle
patterns reduces at a rate 1/σ of decreasing scatterer thickness for Fourier plane illumination, while
it remains absent, with a unity elongation factor in the case of image plan illumination. Each data
point in the plot is averaged over 100 random realizations of the scatterer. The insets within the
plot illustrate the evolving characteristic shapes of speckle autocorrelation when σ = 1, 2 and 8,
respectively, during Fourier plane illumination.
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of the beam can cause recurrence of elongation in the output. This is done by carefully controlling

the magnification of both the axes of the beam by a precise alignment of the cylindrical lenses to

prevent any astigmatism. The lenses are mounted on tilt-controlled stages and their alignment is

optimized to remove any residual elongation in the output speckle.

A 4-F system, with an aperture in the Fourier plane to block the reference beam during

focusing, then images the square-shaped GLV plane onto the scatterer or the back focal plane of an

20x magnification objective, depending on weather the image plane or Fourier plane configuration

is used.

Figure 3.4: Experimental Setup for focusing through scattering media using a GLV. A laser beam
illuminates the GLV, whose reshaped image or Fourier plane illuminates the scatterer. The output
plane of the scatterer is then imaged using an objective lens, through a pinhole onto an APD. The
same image is also relayed to a camera for monitoring the full speckle field. L1–L4: lenses with
focal lengths 50 mm, 300 mm, 300 mm and 50 mm respectively; CL1–2: cylindrical lenses each
with focal lengths 150 mm; Obj.: microscope objectives; P: polarizer. The set-up above shows
the Fourier plane illumination configuration and can be switched to image plane illumination by
removing the objective lens before the scattering medium. b, An example phase pattern showing
one of the 1D Hadamard basis elements, surrounded by a reference during TM calibration.

A 10x magnification objective is used to image the output speckle field. A linear polarizer

permits one of the linearly polarized components of the speckle field to be detected, which is then

split into two arms using a beamsplitter. One arm goes to a pinhole followed by a fast avalanche

photodiode (APD) that measures the intensity of the speckle grain to be optimized. The pinhole

size is adjusted to match the speckle grain size and reject the remaining part of the speckle field.
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The APD voltage is digitized using a fast data acquisition card (DAQ) and sent to the computer to

calculate the optimized wavefont for focusing. The second arm goes to a camera that records the

entire speckle field for reference. We use the TM method detailed in chapter 1 for focusing. 1-D

binary Hadamard patterns are projected in the central part of the GLV active area along with a

reference field on their either sides, as depicted in figure 3.4 b. The patterns are preloaded on the

GLV to eliminate delay from data transfer between the PC and the GLV and perform wavefront

update at maximum frame rate. Each field measurement is made using three phase measurements

(0, π/2, π, as before. We used 64 to 1024 number of modes for different optimizations and the

calibration time scaled in proportion to the number, between 2 ms to 10 ms respectively.

The optimized wavefront for focusing is displayed on the GLV immediately after calibration

with a delay of less than 250 µs. Since the reference pixels do not contribute to the focus intensity,

a high frequency grating is projected on them that diffracts light into the higher orders, which can

then be blocked using the aperture in the Fourier plane of the 4-F system after the GLV. A bright

focal spot appearing in the speckle field whose intensity is proportional to the number of modes

used for optimization, can be viewed on the reference camera.

3.4 Results

We performed focusing through different scattering media to demonstrate the real-time fo-

cusing performance of the GLV. While a C++ program, that controls all system computation and

synchronization, handles the TM calibration and optimal wavefront projection for focusing, the

camera monitors the speckle pattern evolution in real-time. The results are presented in detail in

the sections below.

3.4.1 Focusing through a ground glass diffuser and dynamic media

We first performed focusing through a ground glass diffuser with a diffusion angle of ∼ 5◦

(Thorlabs, DG05-1500) in the image plane configuration. Here we used either N = 256 or 512

modes for TM measurement, which needed 3N = 768or 1536 pattern updates on the GLV. Figure
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Figure 3.5: Focusing through a ground glass diffuser and dynamic scattering samples using the
GLV. (a) Speckle field before optimization. (b) Focal spot created during the optimization program
using 256 modes for TM measurement. (c) Focal spot created during the optimization program
using 512 modes for TM measurement. Colour bars represent the intensity on the camera.(d)
APD signal measuring the intensity of the speckle grain being optimized while the optimization
program is running. The blue and red curves correspond to optimizations using 256 and 512
modes respectively. (e) Enhancement statistics while focusing through a ground glass diffuser.
Each data point represents the mean enhancement measured from 500 frames captured during a
different optimization. The errorbars show the standard deviation and the cross marks and circles
represent the maximum and minimum enhancement values. (f) APD signals while continuous
focusing through a static and a a dynamic scatterer using 1024 modes for optimization. The blue
curve corresponds to the static sample with gelatin and lipid concentrations of 2.5 mg ml1 and
0.5% and the red curve corresponds to the dynamic sample made with a more dilute solution
containing gelatin and lipid concentrations of 5 µg l1 and 0.01%. By fitting an exponential to the
curve for the dynamic sample (shown in dotted black), we find that its speckle decorrelation time
is approximately 17 ms. All above experiments were done using an excitation wavelength of 532
nm.
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3.5 (a) shows the speckle field before TM calibration and 3.5 (b,c) show snapshots from the camera

while the focus optimization program is running, using N = 256 or 512 modes respectively for TM

measurement. A single optimization cycle involves TM measurement for 2.4 ms or 4.7 ms when

using N = 256 or 512 modes respectively, followed by optimal wavefront projection for focusing for

another 5 ms. The frame rate of the camera was around 30 ms, which means the images obtained

are averaged over multiple TM calibration and focus projection cycles.

We can observe that the focus enhancement, which we define as the ratio of the peak focal

intensity and the average intensity of the optimized speckle field, increases with the number of

modes, N. The signal recorded on the APD at any given time during the two optimizations is

shown in figure 3.5 (d). The dips in the intensity signal correspond to the TM measurement time

and the peaks correspond to focus projection time. It can be observed that the optimization using

512 modes takes about twice as long as the optimization using 256 modes as we expect.

We also performed a statistical analysis of the focusing performance of the GLV while the

optimization program ran, by recording movies of the speckle field as it was translated with the

help of an adjustable mirror. The moving speckle field resulted in a new speckle grain reaching the

APD through the pinhole, hence representing different optimizations every cycle. Figure 3.5 (e)

shows the errorbars of focal spot enhancements from 500 selected frames shown as a function of

the number of modes used for TM measurement.

The plot shown is obtained by selection and post-processing of the raw image frames extracted

from the recorded movies. This involved selecting 500 out of 2000 frames in each movie to report

focusing optimizations of speckles with a measurable reference signal, based on the following criteria.

First, we removed frames in which the focus was located at the edge of the speckle field because

the negligible background beyond the speckle field led to amplified enhancement. For this, we

calculated the deviation of the mean pixel value in all the frames and discarded the frames that

had anomalously high deviations. Second, the images where the pre-optimization reference speckle

was weak at the desired focus position, typically showed lower enhancement. The frames with

enhancements lower than a threshold value were removed to this end. We also removed pixel noise
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by median filtering to ensure correct calculation of the enhancement. Finally, we applied a duty

cycle correction on the enhancement values to account for the fact that the recorded frames are

integrated over both measurement and focusing time. Effectively the statistical analysis represents

500 focusing optimizations of speckle grains overlapping with a measurable reference field.

As expected we observe an almost linear increase in enhancement with the number of modes.

Example images of focal spots created using N = 128, 256, 512 and 1024 modes are shown in figure

3.6 (a-d). Here as well, we observe the focal spot enhancement improving consistently with the

number of modes.

Figure 3.6: Evolution of focus enhancement as a function of number of modes used for TM mea-
surement. Example images of focal spots created after a ground glass diffuser using (a) 128, (b)
256, (c) 512, and (d) 1024 modes show enhancement values of 30, 37, 62, 74 respectively.

Furthermore, to really take advantage of the optimization speed of the GLV we performed

focusing through dynamic media in the image plane configuration. We created dynamic scattering

solutions with different speckle decorrelation times by controlling their viscosities to mimic dynamic

biological tissue using gelatin, water and intralipid. Towards this end, we heated 10 ml of water

to 40◦ C and dissolved 50 mg of gelatin (ACROS gelatin type A) and 0.5 ml of intralipid (20%

solution) to form a uniform solution. We then cooled down the prepared samples, diluted them

further to shorten their decorrelation times and mounted them on a depression concave slide. The

slides were positioned vertically on a slide holder after the microscope objective for focusing through

them. This time we used 1024 modes for optimization that took 10 ms and projected the optimal

wavefront for 50 ms.

Figure 3.5 (f) shows the APD signal during focus optimization through two of the samples
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prepared in the above described manner. The less viscous sample whose focal intensity is shown

in blue, is static in the 50 ms timescale hence retaining the focus intensity until the end of the

cycle. On the other hand, for a more dilute sample indicated in red, that has a decorrelation time

of about 17 ms, the created focus decays quickly because the sample medium is changing quickly.

Nevertheless, thanks to the rapid focus optimization program, the focus can be recreated through

the sample in another 10 ms and this process can keep repeating for as long as desired.

3.4.2 Focusing through multimode fibers

Figure 3.7: Focusing through a multimode fiber using the GLV. Speckle field (a) before and (b)
after optimization. Colour bar represents the intensity on the camera. We employed the Fourier
plane illumination configuration and 256 modes for TM measurement in the experiment and found
enhancement values similar to that observed for other scattering media. The fibre used in the
experiment is a graded-index MMF with a diameter of 50 µm with 800 modes and has a length of
30 cm. The white circle demarcates the fibre core.

Having demonstrated the ability to focus through diffusers and dynamic media, we apply

the technique to MMFs. Towards this end, we replace the diffuser with a 30 cm long MMF along

with coupling optics that include a 20 x magnification microscope objective whose NA is matched

to that of the fiber. The GLV image plane is incident on the back-focal plane of the fiber and

another 20x microscope objective collects the light at its output and images it onto the APD and

camera. Although the Fourier plane of the GLV is incident on the front facet of the fiber, we do not

see any elongation due to the fact that MMFs do not exhibit translational memory effect. Light



56

propagating through the MMF is completely randomized leading to a random speckle field with

round speckles, irrespective of the input illumination configuration. The optimization routine used

with the MMF remained the same as described earlier. Figure 3.7 (a,b) show the output speckle

fields before and after optimization.

3.4.3 Statistical analysis of enhancement

In this section we show the performance of our system as a function of several parameters

namely number of modes, pixel ratio, and the type of scatterer. For all these experiments, we

recorded movies of real time focusing through scattering samples while the output speckle field was

manually translated with respect to the APD, using an adjustable mirror.

Figure 3.8: Statistics of GLV focusing performance as a function of pixel ratios and number of
modes

In the first experiment we focus through a diffuser using different number of modes and pixel

ratios. The term “pixel ratio” refers to the ratio of GLV pixels to Hadamard mode pixels or the

binning size of individual GLV pixels. For example, a pixel ratio of 4:1 means that 4 GLV pixels

were used to project each Hadamard mode pixel.

For the second experiment, we performed focusing through three samples - chicken breast,

Titanium dioxide (TiO2) nanoparticles solution, and a diffuser. The chicken breast was cut into

a ∼ 500µm thick slice and mounted on a microscope slide and the TiO2 sample was prepared
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by diluting TiO2 nanoparticles in water and drying it on a microscope slide. Figure 3.8 (a-b)

summarize the statistics of the first and second experiment respectively.

The post-processing of all the movie frames in both experiments was performed exactly

as detailed in section 3.4.1. We can observe from the plots that binning more pixels together and

using more number of modes both contribute in improving enhancement. In the second experiment,

focusing through a diffuser yields better results than a chicken breast and TiO2 particles.

3.5 Discussion

We demonstrate the use of a 350 kHz phase modulator that enables imaging through scat-

tering media at the millisecond timescale. The performance of the GLV as a wavefront shaper can

be further improved by accounting for or modifying some of its non-ideal features.

The theoretically achievable focal intensity enhancement when focusing through a scattering

medium using N number of independent phase control pixels, is π(N−1)/4+1 [181]. In experimental

conditions, the enhancement can be lower due to the presence of noise [2]. The enhancement in our

experiments was limited to 20% of the ideal case. This can be explained by a number of factors.

Firstly, the common sources of noise in wavefront shaping resulting from wavefront distortions from

dust or mechanical design imperfections in the optical system, diffraction effects due to the pixel

pitch of the GLV, the unmodulated light in the zero order and measurement noise due to mechanical

and thermal instabilities contribute in reducing the enhancement.

Besides these, some factors dependent on the GLV design also affect the enhancement sig-

nificantly. One of these effects is caused due to the limited stroke size of the active ribbons on the

GLV. While an ideal phase modulator allows a full range of 2π rad phase modulation, we could

achieve a phase modulation range only slightly greater than 3π/2 rad with the GLV, limited by the

ribbon stroke size.

Another interesting effect arises due to the low fill factor of the GLV pixels, which results

in a modulated background signal. Each independent GLV pixel is composed of six parallel active

ribbons on which a voltage is applied to displace them along their surface normal for phase mod-
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ulation. Some of the incident light misses the ribbons and is reflected back from the back-plane

behind them. This light interferes coherently with the light reflected form the ribbons to generate

a high-frequency diffraction grating, whose efficiency is modulated with the ribbon displacement.

This modulated light component contributes to uncontrolled background in the optimized speckle,

hence reducing the enhancement. This effect also explains the better performance of the TM mea-

surement configurations which use a small number of pixels in the phase stepping reference relative

to the number of fixed signal pixels. For example, when using 512 signal modes for TM measure-

ment, the enhancement increases by ∼ 62% when we double the signal to reference pixels ratio, as

observed in Fig. 3.8.

We performed simulations to analyze the strength of a number of general and GLV-specific

effects and the corresponding enhancement plot and further details are presented in the Appendix

section 3. We find that the most significant effect is due to the modulated background signal.

Another source of error includes the non-uniformity of the incident beam, especially along

the direction of the 1-D array of the GLV pixels. Although we overfill the GLV active area with

the 1-D focused Gaussian beam, its intensity decreases away from the center. Hence the true TM

modes deviate from the ideal modes that we assume for calculation of the optimal mask for focusing,

leading to phase errors and reduced enhancement. This error can be corrected by using a beam

with a larger waist or using a Powell lens for a flatter illumination.

Moreover, there are optical aberrations in the experimental setup. The use of cylindrical

lenses makes the system susceptible to astigmatism. We carefully minimize the astigmatism in the

system by using specialized mounts with tip/tilt and 3-D translation control and maximizing the

symmetry of the beam in the far-field.

3.6 Conclusion

We present a fast wavefront shaping system using a grating light valve for focusing through

scattering media at least more than an order of magnitude faster than other currently available

wavefront modulators. Despite the 1-D design of the modulator, we show that it can be used to
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control 2-D fields after the scatterer in a manner similar to a 2-D SLM does using an optimal

optical configuration. We also present a statistical model for a scatterer with memory effect that

helps us study the speckle shape as a function of the illumination condition and the strength of the

scatterer.

Furthermore, we demonstrate record speed of focusing in 2.4 ms through various scattering

media such a ground glass diffuser, chicken breast, TiO2 particles and a multimode fiber. To

take advantage of the real-time focus optimization, we also show continuous focusing through

a dynamic scatterer. Finally, we present statistics of the focusing performance of the GLV by

recording movies and measuring the focus enhancement, as different speckles are optimized in real

time,demonstrating the robust and continuous system operation.

In the context of MMF imaging, the GLV can allow us to push the imaging speed from 2.2

frames/sec using DMDs to 35 frames/sec for a 100× 100 pixel object. The fast calibration enables

real-time adaptive correction of a rapidly bending fiber, when access to the distal side is possible.

3.7 Appendix

Note: The work presented in the appendix was a collaborative effort and is included for

the sake of completeness of the description of this project. The results presented in section 3.7.1

were obtained by Dr. Omer Tzang and the results in section 3.7.3 were obtained by Dr. Simon

Labouesse and Dr. Omer Tzang.

3.7.1 Phase calibration of the GLV

The displacement of the GLV ribbons with increasing applied voltage is highly nonlinear

and depends on the wavelength and angle of incidence of the incident light as well as the optical

alignment. Hence, the GLV voltage-to-phase curve has to be calibrated to ensure accurate phase

modulation. Towards this end, we display square phase gratings on the GLV with the even pixels

set to the minimum voltage, while the odd pixels are stepped up in voltage over the full voltage

range and the zero order diffraction efficiency is recorded during this process. If we assume a perfect
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square phase grating with period L, its amplitude transmission function is given by Eq. 5.11.

t(x) = 1− [(1− ejφ)
∞∑

n=−∞
cne

j2πnx
L ] (3.2)

cn in the above equation correspond to the Fourier coefficients of the square phase wave

defined as, cn = 1/2sinc(n/2). The expression in the far field is the Fourier transform of the

expression in Eq. 5.11, which is shown in Eq. 3.3.

F [t(x)] = δ(fx)− (1− ejφ)

∞∑
n=∞

1

2
sinc(

n

2
)δ(fx −

n

L
) (3.3)

Integrating the above expression around the zeroth diffraction order yields a cosine signal

which provides a direct measure of the phase modulation. In our experimental calibration, this

signal around the zero order of the GLV Fourier plane is selected by a pinhole and detected by

a photodetector as the GLV voltage of is cycled through its full range. A similar measurement

around the first order is also made and the zeroth and 1st order diffraction efficiencies are plotted

in Fig. 3.9 (a) in blue and red curves respectively.

The simulated cosine curve (blue) differs from the experimental response (black) measured

by the photodetector as shown in Fig. 3.9 (b). In order to accurately predict the GLV voltages

required to implement different phase values, we perform a least square fit between the simulated

and experimental curves in Fig. 3.9. Hence, for each phase value between 0 to 2π we noted the

corresponding intensity on the y-axis of the simulated curve and found its closest numerical value

in the experimental curve to generate a phase to GLV voltage look-up table. This curve relating

the phase to the GLV voltage bits in our experiments is shown in Fig. 3.9 (c).

We note in Fig. 3.9 (b) that the modulation depth is limited to a little over 3π/2. We therefore

manually set the first half of the rest of the phase values to the GLV voltage corresponding to the

maximum attained phase value and the second half to the zero-phase GLV voltage in Fig. 3.9 (c).
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Figure 3.9: Experimental calibration of the GLV phase-to-voltage curve. (a) Simulated diffraction
efficiencies of the zeroth and first orders in the GLV Fourier plane in blue and red respectively. (b)
Normalized simulated (blue) and experimental (black) diffraction efficiencies of the the zero order
of the GLV Fourier plane when a square phase grating with increasing contrast is projected on
the GLV. (c) Calibrated look-up table defining the phase value to GLV-voltage transformation to
implement phase modulation in the 0 to 2π range. This calibration was performed using a 460
nm laser. Separate calibration procedures were carries out for different wavelength and optical
configurations.

3.7.2 Experimental speckle shape and enhancement for different illumination

configurations

As described in section 3.2, certain scatterers with memory effect, such as diffusers can give

rise to elongated speckle patterns in their far-field when illuminated with anisotropic beams that

are more spread in one spatial dimension than the other. In our system, we can eliminate this

elongation by choosing the image plane illumination configuration of the GLV where the beam is

magnified differently along its two spatial axes, such that it transforms into a square-shaped beam.

Here we show a comparison of focal spots produced in the case of both image and Fourier plane

illuminations in our experiment to highlight their differences. Interestingly, while the shape of

the two focal spots are quite different, their enhancement values are similar. This indicates that

memory effect does not limit the number of degrees of freedom on the scatterer.
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Figure 3.10: Speckle shape and enhancement comparison for focal spots produced using (a) image
and (b) Fourier plane illumination configurations. The enhancement for the two focal spots are
similar despite the different shapes of the speckle grains.. The elongation factor measured for the
speckle produced by Fourier plane illumination is found to be 2.76, corresponding to a thin diffuser
with σ =2.7. The experiment with image plane illumination was done using a 532 nm laser, while
that with the Fourier plane illumination was done with a 460 nm laser.

3.7.3 Analysis of factors affecting focus enhancement

We performed simulations for focusing through scattering media by accounting for various

imperfections in the GLV design using the TM approach and study their effect on the focus en-

hancement. We simulated 2-D fields and assumed 200 independent GLV pixels, of which 8 were

used for a phase stepping reference. The number of Hadamard modes was the same as the number

of independent signal pixels, i.e., 192. The resulting enhancement as a function of the number of

modes being used for TM measurement is plotted in Fig. 3.11, for a number of effects dependent

on the GLV design.

The theoretical enhancement, assuming phase only modulation using N number of inde-

pendent phase control pixels, is π(N − 1)/4 + 1 [181]. The blue circles indicate the theoretical

enhancement, which matches well with the ideal case where we employ phase-only modulation for

TM calibration, but assume complex modulation capability for projecting the optimal wavefront

for focusing. The TM approach corresponds to the case where we assume phase-only modulation

for focusing as well.

Further, using the TM approach, we simulated four more effects arising due to the particular
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Figure 3.11: Simulation of enhancement as a function of the number of optimized modes for various
GLV imperfections. the plots are averaged over 200 different scattering media realizations and the
errorbars indicate the standard deviation.

design of the GLV, namely, the memory effect, insufficient modulation depth, modulated back-

ground signal and the shape of the GLV ribbons. The memory effect was incorporated using the

TM model detailed in section 3.2.1. We employed the Fourier plane illumination in this model to

study the effect of speckle elongation on enhancement. We find that the enhancement is unaffected

by memory effect. Although against intuition, the shape of the speckle does not affect the intensity

of the focus because the intensity scales with the number of phase control pixels, irrespective of

their arrangement.

Next we model the effect of incomplete modulation depth of the GLV, resulting from the

insufficient stroke size of the ribbons. We found a modulation depth close to ∼ 3π/2 when using

the 460 nm laser. To simulate this effect, we set all the phase values in the optimal phase mask for

focusing between 3π/2 and 7π/4 to 3π/2 and the remaining phase values between 7π/4 and 2π to

2π. The enhancement curve incorporating this effect is plotted in purple and shows that this effect

affects the enhancement only marginally.
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We also study the diffraction effects due to a finite pixel pitch of the GLV. Each GLV pixel

consists of six ∼ 3.75 wide ribbons with ∼ 0.5 gaps between each of them. As explained in

the discussion section, a high frequency grating can result from a coherent interference of the

light reflected from the GLV pixels and from the back-plane behind them. When the pixels are

phase-stepped, the diffraction efficiency of this grating varies, leading to a background modulated

signal which interferes with the TM mode measurements, especially for the modes with smaller

transmission efficiency.

We simulate the background signal as we cycle all the GLV pixels through the full phase

modulation range (0-2π) as illustrated in Fig. 3.12 (a). We numerically calculate the zero order

diffraction efficiency as a function of the GLV voltage which is plotted in black in Fig. 3.12 (b). We

also show the corresponding zero order intensity measured from our experimental setup, while all

the GLV pixels are phase stepped, in black in Fig. 3.12 (c) for a comparison. We assume the GLV

pixels-to- back-plane distance to be an equivalent of a π phase shift in the simulation to match the

experimental trend. We also show for comparison the first order and zero order diffraction efficiency

in red and blue curves respectively in Fig. 3.12 (c). These curves were were measured while a high

frequency grating with the even pixels fixed to zero phase and the odd pixels increasingly stepped

up in phase, were projected on the GLV.

We observe that the experimental background signal has additional features compared to the

simulated curve. This is because the true distance between the GLV pixels and its back-plane is

unknown and could be different than the equivalent of a π phase shift, as we assumed. Moreover,

the oscillations in the experimental curve could be a result of multiple reflections between the two

planes due to an angular incidence of light. These complex effects are difficult to model because of

too many free parameters. However, their fundamental cause is the interference of light from the

pixels and the GLV back plane and we proceed with our simple model for simulating the modulated

background signal as described above.

To analyze the effect of the background signal on the focus enhancement, we simulate each

pixel using 3 ribbons, of which one is fixed to emulate the GLV back-plane, while the other two
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Figure 3.12: Background signal due to inter-pixel gaps in the GLV. (a) Illustration of a GLV
grating created when all the pixels are collectively used to project phase values from 0 to 2π. (b).
Simulation of the background signal calculated from the zero order diffraction efficiency, as the
GLV pixels are cycled between 0 to 2π phase values. (c). Experimental characterization of the
background signal (black and the zero and first order diffraction efficiency when a high-frequency
grating with even pixels fixed to zero phase and odd pixels modulated between 0 to 2π are projected
on the GLV

can phase step according to the applied voltage. The light green curve in Fig. 3.11 shows the

enhancement trend in the presence of a background signal. We find a significant drop of 40% in

the enhancement, which shows that the background signal can affect the enhancement strongly.

Finally, we investigate the effect of non-uniform bending of the ribbons of the GLV. The

phase modulation mechanism of the GLV involves ribbons suspended above a substrate, on which

a voltage is applied to bend the ribbons towards the back-surface. Since the ribbons are many

times longer than wider, the bending geometry of the ribbons can be non-uniform. We investigated

this issue by placing a detector in the magnified image plane of the GLV and translating it across

the length of the ribbons. The image of the GLV shows horizontal stripes, since we stretch out

the GLV line into a square shape, as explained earlier. We plot the diffraction efficiency curves

measured by the photodetector in Fig. 3.13 at two locations a and b in blue and red respectively.

The locations a and b are as indicated in the inset of Fig. 3.13.

We observe that the modulation depth at b is slightly reduced. This effect can be minimized

by forming a tight focus on the ribbons. The length of the ribbons is 220 and we calculated the

width of the incident Gaussian beam in the GLV plane to be only 10 , hence ensuring that this
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Figure 3.13: First order diffraction efficiency for different horizontal locations (a and b) of the GLV
pixel array. The red and blue curves correspond to the first order diffraction efficiency measured
by a photodetector placed at two locations (a) and (b) respectively in the image plane of the GLV.
The difference of the two curves, (a-b) is shown by the green curve and demonstrates that the
modulation depth can vary along the length of the pixels due to their non-uniform bending. The
inset shows a cropped region in the GLV image plane and marks the locations (a) and (b) where
the photodetector was placed.

effect remains small.

We modelled this effect by assuming that 2 of the three ribbons in our GLV simulation

produce the desired phase shift, while the third one produces a phase shift only 7/8 th of the

desired phase shift, hence introducing a small phase error. The particular fraction was chosen

based on the experimental observation shown in Fig. 3.13. The enhancement curve representing

this effect is shown in light blue in Fig. 3.8. We find a decrease in enhancement of 7.7%, which

is much smaller compared to the effect of the background signal. Hence, the background signal is

found to be the most prominent factors affecting the focus enhancement.



Chapter 4

Tunable mode control through multimode fibers

4.1 Introduction

Multimode fibers (MMFs) have found application in classical [67, 173, 90, 92] and quantum

communication [94], high dimensional quantum key establishment [7, 124, 121], transport of spa-

tially entangles qubits [115], conservation of orbital angular momentum [81], sensing [15, 114, 159],

energy delivery [97, 125, 1], computation [49, 109], phase conjugation [138, 169, 79, 189]and

imaging[139, 123, 40]. Particularly interesting is the recent demonstration of ultrathin imaging

endoscopes via wavefront shaping control to compensate for the effects of dispersion and mode

coupling [133, 177, 33].

All these applications are enabled by some form of control over the modes of the fiber.

Recently, spatial light modulators (SLMs) have been used for controlling all the modes in the

fiber mode basis of typical multimode fibers with ∼> 200 modes [34, 35, ?]. However the method

requires precise alignment, polarization control, and a number of SLM pixels much greater than

the number of modes in the fiber. On the other hand, large-core MMFs with thousands of modes,

which we refer to as myriad-mode fibers (MyF) here, are better suited for imaging due to their

efficient light collection and high-resolution imaging capability. Mode control in MyFs remains

a major challenge due to the large number of degrees of freedom and the detrimental effects of

inter-modal and polarization coupling [178].

Specifically, in the field of fiber-optic communication, MMFs hold significant interest due to

their large information carrying capacity. The achievable data rates through MMF transmission
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Figure 4.1: Illustration of methods for mode control in the fiber mode basis. (a) Mode control
via excitation and generation of pure fiber modes. (b) Fiber mode composition of the input and
output fields in (a). Since individual pure modes are excited and detected, their corresponding
mode compositions are identical delta functions. (c) Proposed method for mode control in the fiber
mode basis via excitation of Hadamard functions and detection of focal spots. (d) Fiber mode
composition of the input and output fields in (c). Since Hadamard functions and focal spots are
complex combinations of the individual fiber modes, their mode compositions are distinct complex
signals. By performing a change of basis we can select the fiber modes that we control at the output
and minimize the other mode coefficients. Here, as an example we minimize the second half higher
order mode coefficients in order to generate a target output pattern using only the first half lower
order modes.

systems however are still severely limited by modal dispersion, coupling and nonlinearities. Mode

division multiplexing is a promising technique which allows using different modes of the MMF as

separate information channels to enhance the fiber capacity. It has been demonstrated by offset

launching [147], using phase plates or gratings [157, 62], photonic crystal fibers [144] or multicore

fibers [192] by phase and amplitude modulation using spatial light modulators [36, 155] and multi-

plane light conversion devices [?]. These techniques aim for precise control of individual fiber modes

and are hence not easily scalable to MMFs supporting thousands of modes.
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In this report, we present a method to select specific groups of fiber modes at the output of an

MyF using a phase-only spatial light modulator at its input. As an application example, the selected

modes are constructively interfered at a predefined location in the fiber output, hence forming a

focal spot. While we use the Hadamard basis at the input and generate focal spots at the output,

we achieve mode control in the fiber mode basis via a digitally implemented basis transformation.

Figure 4.1 illustrates the difference in methodology between the currently used techniques for fiber

mode control through multimode fibers and our technique for fiber mode control through myriad

mode fibers.

As a result, one can take advantage of the different properties of mode groups and their

interactions. The fiber mode composition of the focal spot can be tuned by modifying the input

pattern. Furthermore, we perform experiments to compare the sensitivity of focal spots to fiber

bending when created using two different complementary mode sets. Towards a quantitative eval-

uation of the quality of mode control, we define specific efficiency and fidelity metrics that help

understand the possibilities and limitations of mode control.

4.2 Mode control in the fiber mode basis

Wavefront shaping is becoming a key technique in imaging and energy delivery through

scattering media and MMFs. One of the preferred approaches involves characterization of the

medium, in our case the fiber, through the transmission matrix (TM) [145, 34]. The measured

TM, can be used to generate target field distributions at the fiber distal end such as focal spots.

Here, we employ the phase-shifting interferometric approach for TM calibration using an internal

reference frame [145, 32] and recover the output field using three intensity measurements. The

calibration method is detailed in SI section 1.

Let us consider the problem of generating a physically feasible output field, Etarget, at the

distal end of the fiber. Etarget can be written as a superposition of all the fiber modes. Assuming a

radially symmetric parabolic refractive index profile, the linearly polarized (LP) modes of a GRIN

(graded- index) MyF can be represented using the Laguerre-Gauss (LG) field solutions [18, 85]. We
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note that the actual modes of the fiber will deviate from the LG mode profiles, depending on the

true refractive index profile, imperfections and bend configuration of the fiber. Notwithstanding,

to demonstrate the method here, we implement mode control in the LG mode basis as they are a

very good approximation of the actual modes.

For an MyF with Nm number of modes per polarization, stored in the columns of a matrix,

F, which we call the mode matrix, we can represent an Nout- pixel Etarget field in the modal basis

by taking its product with the inverse of the F matrix. However, F can only be invertible when

it is a square matrix, which is true only when the number of samples in Etarget is equal to the

number of fiber modes. In the experiments described below, we over-sample each speckle grain

appearing at the output to maintain a good SNR, which leads to a highly rectangular and non-

invertible F matrix. Hence, for the general case, we find the modal representation of Etarget using

the Moore-Penrose pseudo-inverse of F, F+ as described in Eq. 4.1.

Mtarget = F+Etarget (4.1)

Here, Mtarget is an Nm × 1 vector of mode coefficients corresponding to the vectorized 2D

field Etarget , F is the Nout×Nm mode matrix and F+ denotes its pseudo-inverse. In order to tune

the mode composition of the target field, we find the orthogonal projection of Etarget , E′target onto

a selected subset of N ′m < Nm modes stored in an Nout × N ′m mode matrix, F ′ as shown in Eq.

4.2.

E′target = F ′F ′+Etarget (4.2)

where F ′+ denotes the pseudoinverse of F ′ defined as F ′+ = (F ′†F ′)−1F ′† and † denotes the

conjugate transpose. In physical terms, E′target is the closest output field (least norm solution of

the least squares problem) to Etarget that can be generated with the selected Nm′ modes.

The measured complex-valued TM of the fiber, Kobs is then used to generate the mode tailored

field E′target at the fiber distal end by projecting an optimal phase mask on the fiber proximal end,

Ein calculated using Eq. 4.6.

Ein = K†obsE
′
target (4.3)
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Fig. 4.2 depicts the entire process with all the columns reshaped to 2D only for visualization.
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Figure 4.2: Illustration of mode control for focusing through a fiber using its transmission matrix.
(a) The projection of the target field onto the selected mode subset yields its mode- tailored
approximation, E′target. (b) The optimal input phase mask, Ein required to produce the target field
at the fiber distal end is found using the conjugate transpose of the transmission matrix. (c) The
optimal mask is projected on the fiber proximal end, to produce the output field Eout = E′target
after propagation through the fiber. The space dimension in all variables is extended from 1D to
2D for visualization.

We define two metrics to evaluate the mode control performance at the output fields, efficiency

and fidelity. The efficiency, denoted by η, is defined as the ratio of total energy in the selected fiber

modes and the sum total energy in all the modes as shown in Eq. 4.7.

η(Eout) =
||E′out||2

||E′out||2 + ||E′′out||2
(4.4)

In the equation above, the single and double primes denote the selected and non-selected

mode components of the experimental output field Eout, which were calculated by back-projecting

the output field, Eout on the fiber modes basis, as before, by multiplying it with F ′F ′+ and F ′′F ′′+

respectively. The fidelity on the other hand, denoted by C, is defined as the Pearson correlation
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coefficient between the target and experimentally obtained intensities as defined in Eq. 4.5.

C(Iout, Itarget) =
COV (Iout, Itarget)

σIoutσItarget
(4.5)

Here, COV denotes the covariance function and σ denoted the standard deviation of the

variable in the subscript. While the efficiency characterizes the confinement of energy in the selected

modes, the fidelity characterizes the spatial control ability.

4.3 Experimental setup

The experimental setup used in our experiments is illustrated in Fig. 4.3. It consists of a

532 nm, CW laser and a DMD that can be used for phase modulation of the incident beam using

computer-generated holography [32].

L1
DMD

L2
MMF

TS

MO1 MO2

LASER

SF
L3

CMOS

CL

LP

LP

Figure 4.3: Experimental setup for mode control and focusing through an MyF. L1, L2, L3: lenses,
MO1, MO2: Micro- scope objectives for coupling light in and out of the fiber, LP: Linear polarizer.
SF: Spatial Filter, CL: Clamp to hold to fiber distal end, TS: 1D translation stage used for bending
the fiber, CMOS: Camera to measure the distal end intensity.

Because the DMD provides only binary-amplitude modulation, the effective number of phase

pixels (4096 in our case) is significantly lower than the number of binary pixels (262144). A

microscope objective couples the Fourier transform of the modulated wavefront into the MyF and

another microscope objective and lens L3 are used to image the MyF distal tip onto a CMOS

camera. We use a ∼ 40 cm long graded index MyF with a diameter of 100 µm (Newport F-MLD)
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for all experiments. We place a linear polarizer at the distal tip to limit the TM measurement

to a single polarization. In the absence of polarization coupling, this would mean that the 4096

independent phase pixels of the DMD control 3570 single polarization modes of the MyF. However

graded index fibers show significant polarization coupling [166] which leads to loss of some light

to the unoptimized orthogonal polarization and in turn reduces the focus enhancement, defined as

the ratio of the peak focal intensity and the average output intensity. In any case, extension of the

approach to two polarizations in the TM is relatively straightforward [176, 47].

Different sets of basis functions can be chosen to measure the TM, including canonical plane

waves or focal spots at the input facet of the fiber. For this study, we chose the Hadamard

phase basis because of its ease of implementation with the DMD. The calibration required 12288

measurements which were made in about three minutes. The calculation of the pseudoinverse of

the mode matrix has a complexity of O(NinN
2
out) and is made in advance to determine the mode

selected E′target fields. After calibration,we used the TM to generate phase conjugated focal spots

at the output. We choose focal spots because of their importance in imaging. In addition, they are

easily generated using the conjugate transpose approximation of the inverse of the TM. Generation

of more complex patterns is also possible, although it requires a regularized TM inversion which is

computationally more demanding [146]. The optimal phase masks to project each focal spot are

determined using Eq. 4.6 with a computational complexity of O(NinNout). Each generated focal

spot fields, Eout was measured using three phase measurements, just as done during calibration

and their corresponding mode coefficient vectors, Mout are determined using Eq. 4.1, but for Eout

instead of Etarget.

4.4 Results

To demonstrate mode tunability, we created focal spots using two subsets of modes in the

mode group-ordered mode matrix F .A first set of scanning spots was created with the half lowest

order modes (LOMs) in F and the second set of spots was created using the half highest order

modes (HOMs). Figure 4.4 illustrates two examples of focal spots, one using each of the above two
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mode sets. Figure 4.4 (a-d) show the absolute value of the target and experimental output fields,

E′target and Eout for the two focal spots and figure 4.4 (e,f) show their corresponding targeted

and experimental mode compositions, M ′target and Mout. We can observe that while the mode

coefficients of the non-selected modes cannot be completely suppressed in the experiment, the

mode coefficients of the selected modes are in good agreement with their targeted values.

𝜂 = 83%

𝜂 = 74%

𝜂! = 97%

𝜂! = 100%

C = 91%

C = 96%

(a) (b)

(c) (d)

(e)

(f)

Figure 4.4: Experimental demonstration of focusing with mode control. (a,b) Absolute value of the
expected and experimental electric fields respectively when focusing using LOMs. (c,d) Absolute
value of the expected and experimental electric fields respectively, when focusing using HOMs. (e)
Modal composition of fields in (a) and (b). (f) Modal composition of fields in (c) and (d). Insets
display a zoom-in on the focus profile. Experimental efficiencies of full fields, η, and of cropped
windows, ηw, are indicated in respective figures and the fidelities, C, are indicated within their
mode coefficient plots.

The high efficiency and fidelity values obtained for the focal spots generated with selected

modes are indicated in Fig. 4.4. We also analyzed a circular window of radius 8 pixel wide around

the focal spot for both fields and the corresponding efficiency values are shown in the top-right

zoom-in insets. The increase in efficiency indicates that although some energy remains in the

unselected modes within the full field, the focal spot is primarily a result of the interaction of the

selected modes.
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Figure 4.5: Statistics of mode control through MyFs as a function of radial location of the focal
spots and the number of modes selected for optimization. All sub-figures show data simulated
using the experimentally measured TM. (a,b) Average efficiency with standard deviation errorbars
of focal spots as a function of their radial location (1965 focal spots). The focal spots are evenly
spaced across the entire fiber cross section and split into 16 radial zones for the plot. We define
radial zones as equal area annuli/circle with increasing inner and outer radii. The number of focal
spots in each radial zone is 121 ± 7. (a) Comparison of LOM efficiencies for focal spots created
with mode control using only LOMs (red curve) and without mode control or using all the fiber
modes (blue curve). (b) Comparison of HOM efficiencies for focal spots created with mode control
using only HOMs (red curve) and without mode control or using all the fiber modes (blue curve).
(c, d) Net radial intensity profile of (c) LOMs and (d) HOMs mode sets. (e) Cross section of the
LOMs and HOMs profiles corresponding to the thick dotted lines marked in (c) and (d). A thin
dotted line divides the fiber cross section into “LOMs dominated” and “HOMs dominated” regions,
depending on which mode set has a higher intensity profile in the region. (f-k) Example of a digitally
computed focal spot (f,i) and their corresponding LOMs (g,j) and HOMs (h,k) components created
using all the fiber modes or without mode control (f-h) and using LOMs or with mode control(i-k).
(f) Digitally computed focal spot created without mode control. (g) LOMs component of the focal
spot field in (f) computed by back projecting the field on the fiber mode basis as described in the
main text. (h) HOMs component of the focal spot field in (f). (i) Focal spot field at the same
location as in (f) but digitally computed using only LOMs outside its optimal region. (j) LOMs
component of focal spot field in (i). (k) HOMs component of focal spot field in (i). The proportion
of energy in the LOMs in the spot fields shown in (f) and (i) are indicated inside the figures. (l)
Efficiency of the focal spot shown in Fig. 4.4 (b), digitally computed using, different number of
mode coefficients from its full mode coefficient set, Mtarget. (m-o) Zoom-ins of the evolving focal
spot when 100, 1000 and all the 3570 modes are considered in the target field.
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Interestingly, when focusing in the near field of the distal end of the fiber, the mode efficiency

varies with the radial location of the focal spot when a given HOM or LOM set is selected. This is

because different modes have different spatial support and are more or less suitable for the target

output. To demonstrate this, we show plots of efficiency of mode-controlled focal spots created at

increasing distance from the center of the fiber using LOMs and HOMs respectively [Fig. 4.5 (a)

and (b) (red curves)]. The plots represent the statistics of 1965 focal spots spread evenly across the

fiber cross section. All focal spot fields are digitally computed using the experimentally measured

TM and the optimal phase mask calculated in Eq. 4.6. We observe that when focusing with LOMs,

the efficiency decreases away from the center of the fiber and flattens at the boundary, while for

the HOMs, the efficiency decreases between radial zones 5 - 10, increases near the boundary and

then decreases again. Both these trends roughly follow the net intensity profiles of the LOMs and

HOMs mode sets respectively, which are shown in the circular insets of Fig. 4.5 (e) [Fig. 4.5 (c)

and (d)]. The intensity profiles are calculated as the sum total intensity of all the modes in a mode

set. The cross sections of the intensity profiles of the two mode sets are plotted in Fig. 4.5 (e)

and show that the LOMs dominate the central fiber region and do not extend all the way to the

boundary, where the HOMs start to dominate. Hence, focusing in the central region is optimal for

mode control using LOMs, while focusing in the outer boundary region is better done with HOMs.

Even without mode control, these choices intrinsically yield the highest efficiency values.

To compare the optimized mode compositions of focal spots with their corresponding intrinsic

ones, we also show in Fig. 4.5 (a) and (b), the efficiency of LOMs and HOMs respectively for the

focal spots created without mode control or using all the fiber mode (blue curves). When we

do not employ mode control, we calculate the efficiency as the intrinsic proportion of energy in

the particular mode subsets chosen in Fig. 4.5 (a) and (b). It can be noted that even as the

focus moves away from the regions where the selected mode sets dominate, which we refer to as

their corresponding optimal regions, mode control enables creating focal spots with up to 66% and

73% more energy in the selected modes. The only exception is observed at the boundary of the

fiber when HOMs are selected. For this special case, the mode control makes no difference in the
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efficiency, which makes sense since LOMs do not extend till the fiber boundary and hence cannot

contribute to focal spots at the boundary.

In general, although the efficiency and fidelity values can be lower outside the optimal region

of mode sets, the proportion of energy in the selected modes improves significantly due to mode

control. To visualize this improvement, we show the digitally computed output fields and their

LOM and HOM components for a focal spot created without and with mode control i.e., using all

the fiber modes and using LOMs [Fig. 4.5 (f-h) and (i-k) respectively]. Mathematically, the output

fields, Eout [5 (f) and (i)] were computed as the product of the input fields Ein found in Eq. 3

with Kobs. The E′target used to calculate the input fields were calculated using all the fiber modes

i.e., E′target = Etarget for 5 (f) (without mode control) and using Eq. 4.2 with F ′ containing only

LOMs for 5 (i) (with mode control). The LOMs and HOMs mode components of each of the above

output fields [5(g,h) and 5(j,k)] were found by back-projecting the output fields, Eout on the fiber

modes basis by multiplying them with F ′F ′+, where F ′ is the fiber mode matrix with the LOMs

or HOMs in its columns. The HOMs component is non-zero even when LOMs are chosen to create

the spot field because the mode control efficiency is not 100 %.

The particular spot shown is created near, but not quite at the fiber boundary. We find

that even for LOM selection, mode control allows improving the proportion of LOM energy from

46% to 74% and suppresses the energy in the HOMs. Furthermore, the contribution from LOMs

to the focal spot alone is also enhanced from 28% to 78%, while the contribution from HOMs

is diminished to 22%. It should be noted, that although mode control succeeds in putting more

energy in LOMs even when the focal spot is created outside their optimal regions, the enhancement

decreases. This is explained by the fact that the non-selected HOMs, which dominate the region,

no longer participate in forming the focal spot when mode control is employed. Appendix B, Fig.

4.7 shows experimental examples of two focal spot fields, and their corresponding mode coefficients,

created outside their optimal regions.

Another interesting aspect of this method is that it is more efficient in generating mode-

controlled fields that involve interaction of many modes rather than few modes or just a pure
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mode. This can be explained by the fact that as the number of modes interacting in the target field

increases, the higher the number of optimized modes is and the weaker the unoptimized speckle

background becomes. Fig. 4.5(l) illustrates this phenomenon. Each data point represents a unique

mode control optimization and as the number of modes in the target field increases, we observe an

increase in the efficiency of the mode-controlled output field. The output fields at all points are

digitally computed from the TM and the target field as before. For this plot, we chose the mode

coefficients of the focal spot shown in Fig. 4.4 b, and performed different optimizations using its

1st, 1st and 2nd, 1st 2nd and 3rd, and so on with the following cumulative mode coefficients. We

normalized all the target fields by their Euclidean norm for calculating the efficiency. The insets in

the plot in Fig. 4.5 (l) labelled 4.5 (m-o) show zoom-ins of the evolving output focal spot when the

first 100, 1000 and all the 3570 mode coefficients respectively are considered in the target field. We

can observe that as more modes are selected, the unoptimized background due to the unselected

modes decreases, leading to better efficiency as well as focus enhancement.

Ƞ=158

h1 h2

l2l1

(a) (b)

Figure 4.6: Experimental demonstration of bending resilience of focal spots created using different
mode sets. (a) Plot of normalized peak focal intensity of 200 near-axis focal spots created using
LOMs(red) and 200 near-boundary focal spots created using HOMs (blue) with translation of the
fiber distal tip. (b) Evolution of example focal spots l1 and h1 created using LOMs and HOMs
respectively at the initial fiber position into l2 and h2 after a 3mm translation of the distal tip.
The positions of the spots are marked in (a).

Finally, using inferences from Fig. 4.5 about the mode efficiencies of focal spots at various



79

locations, we studied the robustness of different mode-controlled focal spots to fiber bending. To-

wards this end, we generated 200 focal spots, each using either LOMs or HOMs in their optimal

regions (near fiber axis and at the boundary respectively). To test the robustness, we mount to-

gether the fiber clamp, CL and the objective MO1 shown in Fig. 4.3 on a translation stage in order

to introduce controlled movements to the fiber distal tip along the horizontal axis. The intensities

of the focal spots are recorded in displacement steps of 100 µm, upto 3 mm. Fig. 5.8 (a) shows the

change in the peak intensity averaged over 200 focal spots with translation and Fig. 5.8(b) shows

the evolution of two example focal spots from each of the two mode sets over the motion range.

It can be observed that the spots formed with HOMs retain a 30% higher focal intensity than

those formed with LOMs after a translation of 3 mm. This indicates that focal spots created using

HOMs in the boundary are more robust under these experimental perturbations. This improved

robustness could be a result of reduced intermodal coupling and the better stability of high orbital

angular momentum modes [81, 65, 64]. Interestingly, the insight from Fig. 4.5 (a-e) about the lack

of participation of LOMs in focal spots created at the fiber boundary supports this explanation.

4.5 Discussion and conclusion

We have demonstrated a method to select the mode composition at the output of a myriad-

mode fiber (MyF). While we create focal spots at the fiber output, the technique can be extended

to generate any desired complex output fields within the limits of the physical mode content of

the fiber. We have shown that mode selection with considerable accuracy is possible when the

focal spot is created at a proper output position in the fiber cross-section. A key aspect in our

experiments is that the number of independent fiber modes per polarization was comparable to the

number of controllable phase pixels (87%) unlike in prior SLM-based mode control methods that

use thousands of pixels for fibers with relatively fewer modes.

The efficiency and fidelity figures demonstrated here could be improved, for example, by

enabling simultaneous amplitude and phase modulation, including full polarization control, and by

employing adaptive alignment techniques to enhance mode overlap and coupling efficiency [34, 37].
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Furthermore, we did not take any special measures for thermal or mechanical stabilization in

our experiment, so our results could be affected by any perturbations to the fiber after the TM

calibration. Moreover, we used a 40 cm long fiber prone to misalignment, bends and intermodal and

polarization coupling. Using shorter fibers can greatly reduce the magnitude of all these effects and

lead to closer to LG-like mode profiles [142]. Additionally, while the LG modes are a good model for

graded index fiber, it is well known that commercial fibers have less than perfect index profiles. More

precise estimates of the true modes can be attained by a singular value decomposition of the fiber’s

TM or using other mode characterization techniques [37, 142, 171]. Mode control performance is

also limited by imperfections arising from the wavefront shaper. Phase errors can occur from the

imperfect phase encoding of the binary amplitude holograms employed for phase modulation with

the DMD. Another source of phase error is the 8-level discretization of the phase patterns projected

on the DMD. The coupling efficiency of the phase pattern projected from the DMD into the fiber

is also a critical factor in mode controllability. For instance, the coupling efficiency of the higher

order Hadamard modes to the fiber is poor and can restrict the controllable fiber modes, suggesting

other bases might provide even better performance.

As opposed to prior work, efficient mode control in MyF is much more challenging due to

the limited number of degrees of freedom provided by the DMD and the inherent complexity of

the system. However, the approach ensures that maximum energy is confined to the selected

modes at the output and although all the fiber modes still propagate to the distal end of the fiber,

the focal spot itself, which is many times brighter than the background, is primarily a result of

the interaction of the selected modes. It should also be emphasized, that the technique controls

the mode composition at the output of the fiber, which is not necessarily the same as the mode

composition throughout propagation due to mode coupling resulting from perturbations of the fiber

(bending, imperfections, etc). Because the mode composition throughout the fiber is complex, our

technique is more suitable for generating complex mode combinations rather than a combination

of fewer modes or a pure mode, unlike other traditional mode control techniques.

The proposed method also provides an avenue for combining the advantage of large core MyFs
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for a larger bandwidth, higher NA and bigger field of view, with the bend resilience of an MMF

with fewer modes. The extent of intermodal coupling or bend sensitivity of an MMF is inversely

proportional to the difference between the propagation constants of the modes [134]. Hence, a

fiber of a given NA with a small number of modes exhibits better resilience to bending than one

with a larger number of modes. By only selecting a subset of modes while shaping the output

wavefront of an MyF, we can ensure reduced intermodal coupling and hence improve the fiber’s

robustness. Here, we performed an experiment to observe the bend resilience of different mode

sets and found that focal spots created using HOMs in the boundary of the fiber show improved

resilience. Interestingly, better robustness of HOMs, high frequency speckles composed of HOMs,

and/or near-boundary spots has also been reported in other types of robustness experiments with

MMFs involving translation of s-bends [119] or bending the central part of the MMF [40, 82, 58].

Although we observed better robustness only in the boundary, we can generate arbitrary fields in

the far field of the fiber using these bend resilient modes to achieve better robustness overall [165].

These insights could prove helpful in controlling the bend resilience of an MyF for both imaging

and communication applications.

The idea of mode selection through few-mode MMFs is already a topic of wide interest in the

field of fiber-optic communication. Mode selection in MyF combined with MIMO processing, could

allow the use of groups of modes with similar dispersion and delay profiles as different channels,

where the number of channels can be much smaller than the total number of modes in the fiber.

Other possible applications of mode selection in MyF include control of individual mode groups for

spatio-temporal focusing, quantum communication, and energy delivery.

4.6 Appendix

4.6.1 Focusing with mode control outside the optimal region of a mode set

As shown in Fig. 4 of the main text, if we create a mode controlled focal spot in the non-

optimal region of the selected mode set (HOM or LOM), we can direct significant energy from the
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dominant modes in the region to the non-dominant selected modes. We have defined the optimal

region for a mode set as the spatial region where the selected mode set contains more net energy

relative to its complementary mode set and vice versa for the non-optimal region. Here we show the

experimental version of the digitally computed focal spot shown in Fig. 4 (i), where we focus near

the fiber boundary using lower order modes (LOMs) [Fig. 4.7 (a, b)]. We also show a second focal

spot created near the fiber center using HOMs in Fig. 4.7 (c, d). The corresponding target and

experimental mode coefficients are also shown in Fig. 4.7 (e, f). We observe that the efficiencies

and fidelities are lower for these examples, however the proportion of energy in the selected modes

due to the mode control optimization is still significant.

𝜂 = 62%

𝜂 = 57%

(a) (b)

(c) (d)
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Figure 4.7: Experimental demonstration of focusing with mode control outside the optimal regions
of the respective mode sets. (a,b) Absolute value of the expected and experimental fields respec-
tively when focusing using LOMs. (c,d) Absolute value of the expected and experimental fields
respectively, when focusing using HOMs. (e) Modal composition of fields in (a) and (b). (f) Modal
composition of fields in (c) and (d). Insets display a zoom-in on the focus profile. Experimental
efficiencies of full fields, η, and of cropped windows, ηw, are indicated in respective figures and the
fidelities are indicated along with their mode coefficient plots.
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4.6.2 Comparison of efficiency statistics of experimental and digitally computed

mode-controlled output fields

Here we compare the mode control efficiencies of experimentally generated focal spots with

those computed digitally using the measured TM. The efficiency plots when focusing using LOMs

and HOMs are shown in Fig. 4.8 (a) and (b) respectively. We observe that the trend of the

two curves matches quite well. The experimental values are in general lower, most likely due to

measurement noise, perturbations to the fiber and phase errors from the DMD.

Figure 4.8: Average efficiency of focal spots as a function of their radial location (1965 focal spots).
The error bars denote standard deviation values. Radial zones are equal area annular/circle across
the fiber section, as defined in Figure. 4 of the main text, each containing 121± 7 focal spots. (a)
Comparison of efficiencies w.r.t LOMs for mode-controlled focal spots created digitally (red curve)
and experimentally (blue curve). (b) Comparison of efficiencies w.r.t HOMs for mode-controlled
focal spots created digitally (red curve) and experimentally (blue curve).

4.6.3 Enhancement statistics of experimental and digitally computed mode-

controlled output fields

The enhancement of a focal spot, defined as the ratio of peak focal intensity and the average

image intensity, also varies with the radial position. In Fig. 4.9 we show two focal spots- one

near the fiber axis and another near its boundary, each created using all the fiber modes (AMs),

LOMs or HOMs. The all-mode data corresponds to focal spots created without mode control. We
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Figure 4.9: Enhancement as a function of radial position and mode selection. (a) Example of a
near-axis focal spot intensity image created without mode control, (b) the same spot created using
LOMs, and (c) using HOMs. (d) Example of a near- boundary focal spot intensity image created
without mode control, (e) created using LOMs, and (f) using HOMs. The enhancements, E are
indicated in green in the respective intensity images and the insets show a zoom-in on the focus
profile. The experimental mode efficiency, η measured from their respective fields are also shown
for the focal spot fields created with mode control. (g) Enhancement statistics of near- axis spots
and (h) near-boundary spots. The spots in (g) and (h) belong to a circular inner region and an
equal area annular outer region respectively in the fiber cross-section. Their exact locations are
indicated in the respective figure insets. The x-axis indicates the set of modes chosen to generate
the focal spots, AMs or all modes and LOMs and HOMs respectively. The y-axis shows the focus
intensity enhancement. The red error bars correspond to experimental data, while the black error
bars denote digitally computed focal spots using the experimental TM.

observe for both spots, as expected, that the best enhancement is achieved when all the modes are

optimized and least is achieved when we use the non-dominant modes to create the focus. Focal

spots created in the optimal regions of the selected mode sets yield intermediate enhancement, but

the best mode efficiencies.

The error bars for the enhancement statistics also confirm the above observation, and the

trend of the enhancement with varying mode compositions matches well for the digitally computed
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or simulated focal spots and experimental focal spots. Also, the maximum achievable enhancement

for near-boundary spots are smaller but remain steadier with varying mode compositions than the

near-axis spots. Again, this indicates that fewer modes exist at the fiber boundary, as inferred in

Fig. 4 of the main text.

4.6.4 Influence of mode selection on robustness

a1

a2

b2

b1
a1 a2

b1 b2

(a) (b)

Figure 4.10: Experimental demonstration of bending resilience of focal spots created with and
without mode selection. (a) Plot of normalized peak focal intensity of 150 near-boundary focal
spots created using AMs (red) and the same focal spots created using HOMs (blue) with translation
of the fiber distal tip. (b) Evolution of representative focal spots a1 and b1 created using AMs and
HOMs respectively at the initial fiber position into a2 and b2 after a 2 mm translation of the distal
tip. The displacement positions of the spots are marked in (a).

We compared focal spots created with and without mode selection to observe the effect of

using fewer modes and mode selection on robustness. We generated 150 focal spots, each with all

the modes (no mode selection, AM) and with HOM selection. The focal spots were created in the

same positions for both mode selections unlike in the comparison shown in Fig. 5 of the main text.

We moved the MyF distal tip along the horizontal axis in steps of 100 µm, up to 2 mm. Fig. 4.10

(a) shows the change in the peak intensity averaged over 150 focal spots with translation while Fig.

4.10(b) shows the evolution of two focal spots over the motion range in both cases.

We observe that the spots created using fewer HOMs are ∼ 10% more robust than those
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created using all the modes. This is explained by the fact that when all the fiber modes are used

for focusing, the change in the focal spot intensity due to fiber motion is larger as a result of all the

modes contributing to the spot. On the other hand, when only the HOMs are used for focusing,

the change in the focal spot intensity is smaller because it is a result of fewer mode interactions

and lower probability of mode coupling. Although the total change in the output field is the same

in both cases, the unselected LOMs in the second case primarily contribute and lead to change in

the background intensity.

4.6.5 Mode control metrics

We introduced the efficiency and fidelity metrics in the main text of this paper to evaluate

the mode control performance. Various other metrics have been considered. For instance, the

same calculations can be done for the digitally computed fields. Furthermore, we can also compare

the same focal spots generated digitally and experimentally. In this section, we present additional

calculations to make all the above comparisons. All calculations are made for the focal spots in

Fig. 3 (b) and (d) of the main text, which are named Spot 1 and Spot 2 respectively.

We generalize the efficiency and fidelity definitions from the main text and denote the effi-

ciency for any given quantity, E as η(E) and the Pearson correlation between two quantities A and

B as C(A,B), which is mathematically expressed in Eq. 4.6. We also measure the relative mean

square error between two given intensity images, defined in Eq. 4.7.

C(A,B) =
COV (A,B)

σAσB
=

∑N
i=1(A

i − Ā)(Bi − B̄)√∑N
i=1(A

i − Ā)2
√∑N

i=1(B
i − B̄)2

(4.6)

RMSE(I2/I1) =

∑Nout
i=1 (Ii2 − Ii1)2

||I1||2
(4.7)

4.6.5.1 Comparison of experimental with target fields and intensities

The efficiency, ηexpt = η(Eout) for the experimental fields, Eout w.r.t. the target field, Etarget,

and the fidelity, Cexpt = C(Iout, Itarget) and RMSEexpt = RMSE(Iout/Itarget) for the experimental
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intensities, Iout w.r.t the target intensities, Itarget , are summarized in Table S1. The high root mean

square errors can be attributed to the background speckle intensity from the unselected modes.

Table S1: Efficiency calculations for the experimental fields w.r.t to the target fields and fidelity
and RMSE calculations for experimental intensities w.r.t the target intensities.

Focal spot ηexpt (%) Cexpt (%) RMSEexpt (%)

Spot 1 (LOMs) 82.98 91.01 19.14
Spot 2 (HOMs) 74.22 96.45 21.19

4.6.5.2 Comparison of digitally computed and target fields and intensities

The efficiency, ηdig = η(Edig) for digitally computed output fields w.r.t the target fields,

and the fidelity, Cdig = C(Idig, Itarget) and RMSEdig = RMSE(Idig/Itarget) calculations for the

digitally computed output intensities, Edig or Idig w.r.t the target intensities are summarized in

Table S2.

Table S2: Efficiency calculations for the digitally computed fields w.r.t to the target fields and
fidelity and RMSE calculations for digitally computed intensities w.r.t the target intensities.

Focal spot ηdig (%) Cdig (%) RMSEdig (%)

Spot 1 (AMs) 66.98 90.02 35.87
Spot 1 (LOMs) 75.93 84.69 44.58
Spot 2 (AMs) 64.54 95.96 38.29

Spot 2 (HOMs) 64.55 96.02 38.27

We observe from the table above that the efficiency marginally improves by selecting LOMs

for the near axis focal spot while it barely changes for the focal spot at the boundary. This is an

expected observation as we have created focal spots with mode control in their optimal regions.

The efficiency curves in Figure 4 (a, b) also demonstrate this effect. On the other hand, the fidelity

decreases, and the root mean square error increases as a result of mode selection. These observations

are also explained by the increase in the background speckle intensity due to the unselected modes.
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4.6.5.3 Comparison of experimental and digital field and intensities

We can compare the digitally computed and experimental intensities using their cross fi-

delity, Cdig−expt = C(Idig, Iout) and RMSEdig−expt = RMSE(Idig/Iout). These calculations are

summarized in Table S3.We observe very high, albeit not perfect correlation between the digitally

computed and the experimentally obtained mode-controlled field.

Table S3: Cross-fidelity and RMSE calculations between digitally computed and experimental
output intensities.

Focal spot Cdig−expt (%) RMSEdig−expt (%)

Spot 1 (LOMs) 96.45 22.06
Spot 2 (HOMs) 99.4 10.12



Chapter 5

Multiview Scattering Scanning Imaging Confocal Microscopy through a

Multimode Fiber

5.1 Introduction

In chapter 1, we saw that using prior knowledge about the object of interest, such as sparsity,

can enable some degree of optical sectioning and resolution improvement. However the limited SNR

in speckle imaging makes these improvements difficult to achieve. Confocal microscopy [186, 137]

is a widely used technique that enables optical sectioning for imaging with high contrast from

within scattering tissue volumes. It employs a scanning focal spot to sequentially sample small

segments of the object followed by filtering of the backscattered light using a small pinhole in

the scanning spot’s conjugate plane, which blocks the out-of-focus light. In practice, the pinhole

diameter is chosen to be large enough to achieve a desired tradeoff between optical sectioning and

signal integrity. The technique has been widely successful, enabling for instance, clinical studies for

imaging of the cornea [93, 187], imaging in body cavities using fiber-optic catheters [100, 89] and

skin cancer detection [151, 77]. However, up to date, confocal imaging in the deep tissue regime

remains infeasible due to the highly scattering nature of tissue and insufficient signal-to-noise ratio

(SNR) levels.

Multiphoton microcopy is another effective approach to achieve optical sectioning with im-

proved penetration depth. It provides intrinsic optical sectioning without needing to filter the

backscattered light through a pinhole due to the two-photon [51] or multi-photon effect [88]. Unlike

confocal microscopy, which utilizes only ballistic photons, multiphoton microscopy allows detecting
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both ballistic and scattered photons [17], hence allowing imaging with better SNR. Furthermore,

the use of long excitation wavelengths helps achieve penetration depths up to 2 mm using long

excitation wavelengths [103, 88] or by employing optical clearing [135, 28]. However, the tech-

nique requires an expensive pulsed laser, the long wavelength excitation compromises the lateral

resolution, and the penetration depth is still limited to a few millimeters.

Alternatively, several endoscopic solutions have been proposed to image deep inside the tissue

using single-mode fibers [66, 136, 27], fiber bundles [172, 86], GRIN lenses [108, 13], multicore fibers

[170, 168] and multimode fibers [139, 41, 40, 123, 32, 133, 177, 33]. Among these, multimode fibers

(MMFs) make the most minimally invasive and efficient endoscopes that can relay the most amount

of information in a given cross section. Proof-of concept demonstration of confocal imaging through

multimode fibers have been made by digitally backpropagating from the detector to the object

plane and filtering the signal through a virtual pinhole [117, 107] or by means of optical correlation

[118]. These demonstrations showed imaging of 2-D samples through MMFs with optical sectioning

and improved contrast. However, their application in imaging thick tissue samples still remains

infeasible due to SNR limitations.

Here, we present Multiview Scattering Scanning Imaging Confocal (MUSSIC) microscopy

through MMFs, an approach to overcome the SNR limitation in confocal microscopy through

complex media by employing multiple coplanar virtual pinholes to collect multiple perspectives of

the object and appropriately processing and combining them to retrieve a high-SNR confocal image.

Our method builds on the principle of image scanning microscopy (ISM) [160, 130, 163, 154], which

is used to boost the SNR in confocal microscopy for shift invariant systems. However, in contrast

with ISM, MUSSIC does not require a direct measurement of the images of the scanning focal

spots. Moreover, we demonstrate that given the transmission matrix [145] of the system, MUSSIC

microscopy can be employed for a more general, shift-variant system such as a complex medium.

Our method is also key in unlocking the potential of confocal imaging for achieving super-

resolution [160, 19]. Theoretically, confocal microscopy has the capability to gain a factor of two

in the lateral resolution with respect to the diffraction limited resolution based on the Rayleigh
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criteria [19, 20]. However, achieving this gain in resolution is impractical as it requires using a

detection pinhole much smaller than the size of the scanning focal spot, which brings down the

signal strength below acceptable levels. MUSSIC microscopy, on the other hand can practically

achieve improved resolution by employing multiple small pinholes whose respective signals can be

combined to obtain a reconstruction with a higher SNR.

Improvement in imaging resolution through multimode fibers has been demonstrated using

two photon imaging [126, 166], saturated excitation [106], and by employing a multiple scatterer

before the fiber [39, 140]. These approaches however come at the cost of expensive short pulse

excitation sources, infeasibly high peak power or loss in transmitted light. Another approach used

a parabolic tip design [21] to increase the effective NA however the design reduces the field of view

and requires a non-zero working distance, which makes the endoscope susceptible to tissue induced

light distortions due to index mismatch. Recently, resolution beyond the diffraction limit [6] has

also been demonstrated using MMFs by assuming sparsity in samples however, it requires SNR

levels of the sample higher than those feasible with bio-compatible markers.

In this work, we present a generalized framework to demonstrate the principle of MUSSIC

microscopy through complex media and the theory for SNR and resolution gain. Further, we verify

the theory experimentally by performing MUSSIC microscopy through an MMF by measuring its

transmission matrix (TM). Using the TM, we generate focal spots on the far (distal) end of the

MMF. As the focal spots scan the object, we collect the reflected speckle patterns on the MMF’s

near (proximal) end. Using the MMF’s TM, we then back-propagate the collected speckle patterns

to the object plane [117, 107] to virtually access the scanning focal spot fields and implement

MUSSIC microscopy using the weighted pixel reassignment method [130, 163]. We evaluate the

SNR and resolution of the reconstructed images and compare our approach with the conventional

confocal and single pixel imaging approaches. Our experimental approach is quite general and

is also applicable to endoscopic imaging systems with separate excitation and detection paths

[27, 190, 131, 58].
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5.2 Principle of image scanning microscopy

Consider a scanning microscope shown in Fig. 5.1 (left) with Gaussian excitation and de-

tection point spread functions (PSFs) hex and hdet respectively and let the object’s transmission

function be t(u, s) where u and s are the object plane coordinates and the object scan position

respectively. If v denotes the detector plane coordinates and o(s, v) denotes the output field in the

detector plane, then the microscope can be described with the help of a convolution integral shown

in Eq. 5.1.

o(s, v) =

∫
hex(v − u)hdet(u)t(u+ s)du (5.1)

In a type II confocal scanning microscope [161] a pinhole is placed on the optical axis, i.e.,

v = 0. Assuming that the detection wavelength is identical to the excitation wavelength, the

detector plane field observed by the confocal pinhole is given by Eq. 5.2.

o(s, 0) =

∫
h2ex(s− u)t(u+ s)du (5.2)

The product of the excitation and detection PSFs (assumed identical) in the above equation

yield a net PSF with a
√

2 times smaller full width at half maximum (FWHM). This gain in

resolution however is difficult to achieve in practice as it requires a point-sized pinhole that rejects

most of the signal. In practice, the pinhole size is chosen to be large enough to allow a feasible

SNR.

One approach to preserve the resolution gain in the above system is to employ multiple small

pinholes instead of a single large one. When v 6= 0 in Eq. 5.1, the net PSF is a product of the

original excitation PSF with a shifted version of the on-axis detection PSF as depicted in Fig. 5.1

(right). This net PSF still has a
√

2 times smaller FWHM, albeit it is shifted with respect to the

net PSF of the on-axis pinhole. Hence, each of the off-axis pinholes can provide separate image

information with improved resolution, which can be combined together if the distance between the

pinholes is known. For example, when the detection and excitation wavelengths are identical, the
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image from a pinhole at a distance of d from the optical axis needs to be shifted by a distance d/2

towards the optical axis.

A readily available array of pinholes is a camera detector whose pixels can serves as individual

pinholes for implementing the above technique. Since the camera records images of the scanning

focal spots, this technique is known as image scanning microscopy[160, 130, 163, 154]. The process

of re-shifting and combining the images from different pinholes is known as pixel reassignment.

To date, ISM has enabled confocal microscopy with high resolution and SNR in various shift-

invariant microscopic systems that can be described using a convolution integral. However, its

applicability in the case of complex media such as MMFs has remained unclear. In the following

section, we present a generalized matrix formalism to describe the most general systems including

MMFs. We use the model to predict how principles similar to ISM can be applied to shift variant

systems.

scan
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Figure 5.1: Principle of resolution and SNR gain in image scanning microscopy. Left: A laser
scanning confocal microscope consisting of a 4-f system. The incident light (yellow) reaches the
sample plane to scan the sample as it is translated. The reflected light(red) is detected in the
conjugate image plane where it is filtered through an array of pinholes or a camera detector. Right:
Illustration of the excitation (yellow) and detection (red) PSFs of an off-axis pinhole and their
product or the net PSF (blue), which is shifted from the optical axis. The image obtained from
this pinhole can be re-shifted and combined with the on-axis image to boost the SNR of the image
reconstruction.

5.3 Generalized Matrix Formalism
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Consider a general imaging system whose input to output transformation is described by a

transmission matrix, T. Let the object’s reflectance be modeled using a diagonal matrix, O and

let the fields entering and leaving the systems be stored in a vectorized form in the columns of

2D matrices. Let these field matrices be denoted by the letter E followed by their corresponding

superscripts - ”in” for incident fields, ”p” for proximal fields and ”d” for distal fields. The proximal

fields reflected back through the system are then obtained using Eq. 5.3.

Ep = T tOTEin (5.3)

For a shift invariant system, the T matrix is a convolution matrix whose columns contain

the vectorized and circularly shifted PSF of the system as illustrated in the top row of Fig. 5.2.

Assuming reciprocity, the distal plane to the proximal plane propagation is represented by the T t

matrix. For a raster scan approach the incident field matrix, Ein is an identity matrix whose kth

column contains the vectorized focal spot at the kth input pixel. The kth column and row of the

Ein and Ep matrices respectively are expanded to 2D and also illustrated in the top row of Fig. 5.2

using arrows. The Ep matrix serves as the raw data whose on-axis and off-axis pixel values yield

the raw images needed to perform image scanning microscopy.

On the other hand, for a shift variant system, such as a complex media, the forward trans-

mission matrix, T is a complex-valued random matrix as shown in the second row of Fig. 5.2.

Using the TM approach described in chapter 1, we can shape the kth incident field Ein to create a

focal spot at the kth pixel in the distal plane. However, since we propagate back through the same

medium, the spatial information is lost again and the obtained proximal fields are random speckle

patterns.

To regain access to the scanning focal spots, as required for performing confocal microscopy,

we propose a method to virtually backpropagate from the proximal to the distal plane. This is

achieved by inverting the the T t matrix in Eq. 5.3 by multiplying the left and right side of Eq.

5.3 with the psuedoinverse of the T t matrix. The resultant fields are the virtual distal fields which
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can then be used to extract the on-axis and off-axis confocal images in a process similar to image

scanning microscopy.
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Figure 5.2: Generalized matrix formalism for imaging through complex media. Top row: Illustra-
tion of a shift invariant microscope consisting of a 4-F system. The visualizations of the different
matrices corresponding to each term in the system equation, Eq. 5.3 are displayed using arrows.
Examples of the vectorized input and proximal fields are shown after being expanded to 2D for
visualization. The transmission matrix of the shift invariant system is a convolution matrix with
an Airy disk kernel. Middle row: illustration of a shift variant complex medium. The visualizations
of the different matrices corresponding to each term in the system equation, Eq. 5.3 are displayed
using arrows. The input field is chosen such that it transforms into a focal spot at the kth pixel
after propagating through the system. The transmission matrix of the system is a complex random
matrix leading to a random speckle field in the proximal plane. Bottom row: Illustration of the
virtual backpropagation method. By multiplying the left and right hand sides of Eq. 5.3 with the
pseudo-inverse of the T t matrix, we can backproapagate to the distal plane and access the scanning
focal spots. This raw data is similar to that obtained in ISM for shift invariant systems.
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5.4 Principle of MUSSIC microscopy through a multimode fiber

Imaging through an MMF is performed by calibrating the relationship between the input

and output fields through the system, described by its TM. The TM can be measured empirically

with both phase and amplitude information by sending an orthogonal set of input fields into the

system accompanied with a phase-stepping reference field [145, 32] and measuring the corresponding

complex-valued output fields. A spatial light modulator (SLM) is employed to generate different

input fields. This system can also be described using Eq. 5.3. Here, we relax the reciprocity

constraint previously assumed and assume that the MMF has a forward TM, T , and a different

distal plane-to-proximal plane TM, T b. This generalization allows us to decouple the excitation and

detection paths, hence eliminating the need for precise matching of the excitation and detection

optics.

Let the subscripts denote the row and column indices of the matrices respectively. If we

denote the field illuminating the object, as Eil = TEin, then for the kth incident field, Ein∗k, where

the asterisk denotes the full set of indices along the particular dimension, the lth pixel of the

proximal field, Eplk is calculated using Eq. 5.4.

Eplk =

Nout∑
i=1

T bliOiiE
il
ik (5.4)

Eq. 5.4 shows an overlap function between the excitation and detection point spread functions

(PSFs), T bl∗ and Ei∗kl weighted by the object reflection function O, analogous to the overlap integral

used to calculate the resultant field at a confocal pinhole in a conventional confocal microscopy

system [19].

Unlike shift invariant confocal imaging systems, the excitation and detection PSFs for an

MMF follow a complex random distribution. Hence, to adopt the raster scan approach for MMF

imaging [139, 41, 32], an input field, Ein∗k = T †∗k must be projected on the SLM to create a diffraction

limited focal spot on the kth pixel on the distal side of the MMF. The dagger denotes the conjugate

transpose operation above. Since the detection path is also through the MMF, the focal spot
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scanning the object transforms to a speckle pattern after reflecting back to the proximal end of the

MMF, hence destroying all spatial information. To reverse the effect of the detection path, we can

digitally back-propagate the detected proximal speckle fields to the distal plane [117, 107] using

the MMF’s backward TM, as depicted in the schematic in Fig. 5.3 (a). The virtual distal field

denoted as Ed, is calculated by taking the product of the proximal fields with the inverse of the

backward TM. The TM is however a poorly conditioned matrix and its inverse does not exist. If we

approximate its inverse as its conjugate transpose, as we did earlier for creating phase conjugated

focal spots on the distal end, then the back-propagated fields, Ed can be calculated using Eq. 5.5.

Ed = (T b)†Ep = (T b)†T bOEil (5.5)

A zoom-in on an example virtual distal field in shown in Fig. 5.3 (b) along with the discrete

grid on which it is sampled. Each intersection point on the grid indicates a data point and can

be viewed as a virtual pinhole. We define DT b = (T b)†T b as the virtual detection PSF of the

system. Similarly, we define, the SLM-to distal plane excitation PSF, DT = TT †, which is also the

illumination field matrix, Eil, assuming that a plane wave is incident on the SLM. The matrices

DT and DT b have a structure similar to a convolution matrix used to represent the TMs of shift

invariant systems [179, 46]. Their Hadamard product yields the net PSF of the system which is

narrower than the individual PSFs as depicted in Figure 5.3 (c). This narrower net PSF is the

source of resolution gain in MUSSIC microscopy and the resolution enhancement is determined by

the size of each virtual pinhole relative to the size of the virtual detection Airy disk.

Once we obtain the full virtual distal field matrix, Ed, the on-axis confocal image is obtained

from its main diagonal, Edkk where k ∈ (1, Nil) denotes all distal scan positions. This main diagonal

comprises the measurements from the central virtual pinhole, p2 indicated in Fig. 1(b). Similar

mutually shifted confocal images are also obtained from the diagonals, Edlk, corresponding to the

neighboring pixels of k (such as p1 and p3 shown in Fig. 5.3 (b)) where l takes N2− 1 values other

than k in the N ×N− pixel neighborhood of each scan position k. All the N2 confocal images can

then be re-shifted to a common axis, weighted according to their signal strength and combined to
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Figure 5.3: Principle of MUSSIC microscopy through a multimode fiber. (a) Illustration of the
principle of MUSSIC microscopy through a multimode fiber. An SLM projects the phase patterns
to generate scanning focal spots on the distal end, where the object is located. Light reflected from
the object couples back into the fiber and reaches the proximal end as a speckle field. The proximal
speckle field is recorded and virtually backpropagated to the distal end using the backward TM.
This virtual distal field matrix comprises the MUSSIC raw data. (b) Resolution improvement
in MUSSIC microscopy. The excitation PSF, DT , the virtual detection PSF, DT b , and the net
PSF, calculated as the product of the former two are shown in yellow, red and blue respectively
for an example confocal image obtained from a virtual pinhole pi at a distance d from the on-
axis pinhole. Although the net PSF is shifted from the axis by a distance, d/2, it is narrower
than the former two PSFs, hence leading to an improved resolution. The excitation and detection
wavelengths are assumed to be identical here. (c) Zoom-in on the focal spot in the virtual distal
field shown in 1 (a), as demarcated by the red dotted line. Each intersection point of the grid
corresponds to a data point or pixel, that acts as a virtual pinhole. While the central pixel, p2
measures the on-axis confocal image, the pinholes p1 and p3 also measure similar confocal images
from different perspectives. (d) SNR improvement in MUSSIC microscopy. Illustration
of the process of retrieving a high SNR MUSSIC image from multiple confocal images obtained
from different virtual pinholes. Confocal images from the pinholes p1, p2 and p3, as marked in
1(b), identified by their corresponding colored- blue, green and red dots are shown on the top as an
example. Besides the image obtained from the on-axis pinhole, p2, all confocal images have parallax
errors determined by the location of their corresponding virtual pinholes. By applying appropriate
shifts and weights to them and combining them together, a single high-contrast MUSSIC image is
obtained.

yield a high-SNR MUSSIC image reconstruction as illustrated in Fig. 5.3 (d).

5.5 Methods

5.5.1 Calibration of forward TM, T

The forward TM, T is measured with both phase and amplitude information, by sending a

complete basis of orthogonal input fields into the fiber accompanied with a phase-stepping reference
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field. We choose the plane waves basis which transforms to focal spots in the Fourier plane, which

is then coupled into the MMF. These patterns are constant in amplitude and their phases are

modulated using a spatial light modulator (SLM). The SLM’s active area is divided into two

sections each for the changing grating pattern and a phase-stepping reference frame that surrounds

it. The intensity measurements at the fiber output for each projected pattern, as the reference field

is phase stepped, allows recovering the output fields [32, 145]. These output fields are vectorized

and used to build all the rows of the matrix T .

5.5.2 Calibration of backward TM, T b

The TM of an MMF obeys the reciprocity rule i.e., T b = T ′. However, since the TM is

recorded between the SLM and the distal plane, the above assumption only holds true if the

detection plane perfectly matches the SLM plane in scale and orientation. This is a practically

challenging task and requires a sensitive and time-consuming alignment procedure [117]. It also

does not account for coupling losses from the sample to the fiber distal end. Moreover, oftentimes, it

is desirable to separate the collection and detection pathways in endoscopes to improve throughput

or to gain some feedback from the distal end in which case T b 6= T ′. For other modalities like

fluorescence imaging, the excitation and detection PSFs are different by default due to difference in

the excitation and fluorescence wavelengths. With these considerations, here we propose a separate

calibration of the matrix T b from the distal plane to the detector plane. Towards this end, we place

a mirror at the distal end of the fiber and scan focal spots on it, while measuring the reflected fields

on the proximal end, denoted as Ep−mirror. These measurements give us an estimate of T b, which

we denote as T bobs as described in Eq. 5.6.

T bobs = Ep−mirror = T bIEil (5.6)

The matrix I in the above equation represents the mirror reflection matrix, which we assume to be

an identity matrix. The distal fields are then given by Eq. 5.7.

Ed = (T bobs)
†Ep = (Eil)†DT bOE

il (5.7)
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The additional rightmost term (Eil)† on the right-hand side of the above equation occurs because

of our double pass approach for calibration of T b. Since we use a raster scan approach, both the Eil

and (Eil)† matrices have the structure of a convolution matrix with a diffraction limited Gaussian

kernel and Ed still gives a measure of the confocal images of the object. Moreover, the theoretical

resolution gain is also preserved as the bandwidth of the terms on the left and right of the object, O,

in the above equation remain unchanged. Appendix section 1 provides a more detailed derivation

of Eq. 5.7.

5.5.3 Optimal inversion of backward TM and band-pass filtering

As mentioned earlier, we can use the conjugate transpose operator when the inverse of a

matrix does not exist. This method works well for generating perfect phase conjugated focal spots,

as required when raster scanning on the distal side of the fiber. However, when calculating the

backpropagated distal fields, the conjugate transpose is not the best inversion method. We can

optimize the inversion of the backward TM using a Tikhonov regularization technique [117, 146].

This involves computing the singular value decomposition of the backward TM, T bobs = USV † and

finding its inverse using Eq. 5.8.

(T bobs)
RI = V SRIU † (5.8)

SRI is the regularized inverse of the diagonal matrix of singular values, S, calculated by replacing

the singular values σi in the diagonal of S with σi/(σ
2
i +β2) , where β is the regularization parameter.

We find that by calculating the back-propagated distal fields using Tikhonov regularized inverse of

the T bobs instead of (T bobs)
† in Eq. 5.7 yields image reconstructions with improved contrast. For our

results, we chose a β value equal to 6% of the highest singular value of the backward TM.

5.5.4 Bandpass filtering, normalization and mean subtraction

We perform digital filtering to bandlimit all acquired data. This eliminates the noise in the

high frequencies and ensures that all acquired images have speckles with a minimum grain size
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limited by diffraction. The frequency cutoff is found by setting a minimum threshold to the total

energy in the frequency space averaged over all acquired images.

We also normalize the reconstructed confocal and MUSSIC images of the object w.r.t to their

“blank” counterparts or the confocal and MUSSIC images obtained when a mirror is placed at the

distal end. This helps account for the non-uniformity and intensity variations in the focal spots used

to scan the object and significantly improves the image quality. The effect is particularly strong

since we employ a non-uniform internal reference for phase measurements. Supplementary figure 1

shows a comparison of the reconstruction images before and after normalization. Furthermore, we

subtract the mean of all the columns of the backward TM from its every column. This ensures that

any unmodulated light that leads to a common background in all the measured speckle patterns

are eliminated.

5.5.5 Imaging without full field back-propagation

Calculating the full matrix Ed, is a computationally challenging feat, with complexityO(N2
ilNin).

However, in fact access to the full back-propagated distal fields is not necessary to calculate the

confocal or MUSSIC images. The only data points required in each distal field are in the neighbor-

hood of the scanning focal spot, for every scan position. This number, which we define as Npinholes

is chosen to be roughly equal to the number of pixels that sample a focal spot and is much lower

than the number of illuminations used for imaging. Hence, if we compute only the desired diago-

nals from the matrix Ed corresponding to the Npinholes neighboring pixels, the complexity of the

calculation drops down only to O(NpinholesNinNil) for the MUSSIC image and only O(NinNil) for

a single confocal image. When assuming the inverse of the backward TM to be its conjugate trans-

pose, this method for obtaining the confocal image has been termed the correlation method [117].

This is because the complex correlation between the proximal fields in the absence and presence

of the object, denoted here as T bobs or Ep−mirror and Ep respectively, is calculated by taking the

product of the conjugate transpose of the former with the latter and normalizing the result w.r.t.

the Euclidean norm of the former. The normalization here is identical to the normalization we
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describe in section 4. Imaging using the correlation method, enables MUSSIC reconstruction of a

20, 000-pixel image in 4 minutes. A comparison of this reconstruction with the reconstruction after

Tikhonov regularization of the backward TM reveals that although the regularization considerably

improves the image quality, the faster reconstruction also provides a pretty good estimate of the

object. This comparison is shown in Appendix figure 2.

5.6 Experimental Setup

The experimental setup for MUSSIC microscopy through an MMF is illustrated in Fig 5.4.

We use a 785 nm CW Crystal laser and a Meadowlark optics liquid crystal SLM (HSPDM 512)

for phase modulation. The laser beam goes through a half waveplate and polarizer for polarization

control, followed by a 4-F system to match the beam diameter to the active area of the SLM. The

SLM plane is then imaged onto the back-aperture of a microscope objective, OBJ 1, which couples

the light into the MMF. We used a step-index fiber of diameter 50 µm and 0.22 numerical aperture

(NA) for all our experiments. A polarizing beam-splitter (PBS) between the SLM and OBJ 1 is

used to direct the back-reflected light from the fiber onto a camera, CAM 2. A half waveplate before

the PBS allows controlling the polarization axis of the incident beam and a quarter waveplate along

with the PBS act as an optical isolator to prevent back-reflections from the proximal facet of the

fiber from reaching the camera. The distal facet of the MMF is imaged onto a camera, CAM 1 using

another lens during the forward TM calibration. A polarizer before the camera allows detection of

only one polarization component.

After the forward TM calibration, a mirror is placed near the fiber distal tip for calibration

of the backward TM. The backward TM is calibrated using back-reflected fields on the proximal

side of the fiber, while focal spots are projected on the distal side. A phase shifting reference frame

is simultaneously projected on the SLM along with the phase conjugated patterns for distal raster

scan, for measuring both the phase and amplitude of the back-reflected fields. The back-reflected

light from the mirror couples back into the fiber and is detected on the proximal side using another

camera, CAM 2. This camera images the back-aperture of the microscope objective OBJ 1 using
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Figure 5.4: Experimental setup for image scanning microscopy through an MMF. HWP 1-2: Half
waveplates, P1-3: linear polarizers, L1-7: lenses, MMF: 10 cm long step-index fiber from Thorlabs
(FG050LGA), PBS: polarizing beam-splitter, M1-2: mirrors, QWP: quarter waveplate, OBJ 1-2:
microscope objectives, CAM 1-2: cameras to measure distal and proximal intensities.

another 4-F system and is placed in a plane equivalent to the SLM plane. A polarizer before the

camera allows detection of a single polarization component.

After both calibrations, the sample to be imaged replaces the mirror at the distal facet of

the MMF, and the back-reflected fields from the object are recorded as it is raster scanned.

5.7 Results

5.7.1 SNR and resolution analysis

We perform confocal MUSSIC microscopy in simulation and compare the SNR and resolution

of the reconstructed images. We model the MMF TM as a complex random matrix and reconstruct

the image of a quadrant of the binary Siemens star using the simulated proximal speckle fields,

following the backpropagation process described earlier. We added Gaussian noise with 5% variance

to the simulated proximal fields before the image reconstruction. Each virtual pinhole in our

simulation has a radius of 0.11 Airy unit (a.u.), where we have defined 1 Airy unit as the radius of
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the Airy disk scanning the object. Hence one Airy disk spans across 9× 9 individual pinholes.

The ground truth object and its confocal and MUSSIC reconstructions are shown in Figs.

5.5 (a-d). Figs. 5.5 (b,c) show the confocal reconstructions using a 3 × 3 macro-pinhole and a

9 × 9 macro-pinhole respectively. Fig. 5.5 (d) uses the same group of 9 × 9 pinholes as 5.5 (c)

but employs the MUSSIC approach to process the data. We find that although the SNR improves

significantly between the confocal image reconstructions as the size of the macro-pinhole increases,

the resolution of the image degrades. On the other hand, the MUSSIC reconstruction, which uses

the same group of pinholes as the second confocal image retains the high-SNR, while also preserving

the resolution. The difference in resolution can be more clearly visualized in Fig. 5.5 (e) that shows

the normalized cross sections in the image reconstructions corresponding to the green solid lines in

Figs. 5.5 (a-d). We find that confocal reconstruction with the 1 a.u. pinhole fails to resolve the

image features, while the MUSSIC reconstruction using the same raw data resolves them just as

well as the confocal reconstruction with the 0.33 a.u. pinhole.

We also compare the root mean square error of different normalized reconstructions as a

function of the annular radius measured from the center of the Seimens star or the bottom right

corner. For this comparison, no noise was added to the reconstructions to analyze the effect of

using increasing number of pinholes on resolution. We divide the image quadrant into 15 radial

zones and plot the error w.r.t. the ground truth image in each zone for the different reconstruction

methods. We find that while the error for the confocal reconstruction images increases with the

radius of the macro-pinhole, the error in the MUSSIC reconstruction remains almost unchanged

as the number of used pinholes increases from 3 × 3 to 13 × 13. The inset images in the figure

show the radial zones 1, 5 and 15 from left to right. Next, we analyze the reconstruction error and

correlation as a function of the number of pinholes used, for the green line cross-sections marked

in Fig. 5.5 (a-d) in the absence of noise. We find that the error and correlation w.r.t. the ground

truth cross-section increases and decreases respectively as the number of pinholes constituting the

macro-pinhole increases for the confocal reconstruction. On the other hand, both metrics for the

MUSSIC reconstructions remain unaffected, indicating that the image quality is preserved.
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Figure 5.5: Comparison of confocal and MUSSIC image reconstructions. a) Binary object (ground
truth), (b) Confocal image obtained from a (b) 3 × 3 macro-pinhole of size 0.33 a.u. and (c) a
9 × 9 macro-pinhole of size 1 a.u. (d) MUSSIC image obtained using 81 pinholes, each of radius
0.11 a.u. (e) Plot of the normalized cross sections indicated by the solid green lines in (a-d). (f)
Root mean square error for 15 annular regions of increasing radii starting from the bottom right,
for normalized confocal images (black) and MUSSIC images (red) using 9 and 169 pinholes. The
insets illustrate the annular regions 1, 5 and 15 respectively. (g) Error and correlation of confocal
and MUSSIC images as a function of the number of pinholes used, as measured for the cross section
marked by the green solid lines shown in (a-d). (h) Optical transfer function of the system (h1)
and the average frequency response of the system for a point object obtained by performing virtual
confocal microscopy (h2) and MUSSIC (h3) using 81 pinholes. (i) Full width half maxima of the net
PSFs obtained from confocal and MUSSIC reconstructions as a function of the number of pinholes
used. The net confocal pinhole size in Airy units is indicated at various points in green font. The
black circular insets illustrate a 1 a.u. pinhole array in white with the red pinholes indicating the
pinholes used.

Furthermore, we compare the average frequency response for the confocal and MUSSIC

methods obtained for a point object using 81 pinholes. We find that the frequency cutoff of

the MUSSIC reconstruction is almost the double that of the OTF of the system, which is the
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theoretically claimed gain in resolution according to Rayleigh’s criteria [20, 19]. On the other

hand, the confocal reconstruction obtained from the 1 a.u. pinhole has a frequency cutoff 1.4 times

higher than that of the system OTF. Finally, we computed the PSFs for the confocal and MUSSIC

methods and plotted the full width half maxima (FWHM) of the PSFs as a function of the number

of pinholes used. We find that the FWHM for the confocal reconstruction increases with the number

of pinholes constituting a macro-pinhole, while the FWHM for the MUSSIC reconstruction remains

unchanged.

5.7.2 Experimental results

We experimentally demonstrate MUSSIC microscopy through a multimode fiber and compare

the reconstruction SNR as the number of pinholes increases in Fig. 5.6 (a-c). We also show the

single pixel image (SPI) reconstruction obtained by integrating the absolute values measured by

all the pinholes or pixels in Fig. 5.6 (d). The field of view (FOV) consists of the fourth and fifth

elements of the 7th group in the USAF 1951 resolution target, which have a resolution of 181−

and 203-line pairs/mm respectively. We observe a consistent improvement in image contrast as

the number of pinholes increases. The SPI image obtained from a much larger number of pinholes

has a higher-SNR but lower contrast as can be seen from the plot of the normalized average cross

section along the horizontal direction for the reconstructions in Fig 5.6 (a-d). The cross-sections

correspond to a cropped region indicated by dotted lines in Figure 5.6 (c). Moreover,we find a

factor of 6.2 improvement in the root mean square contrast in the MUSSIC reconstruction using

25 pinholes with respect to the SPI reconstruction.

Next, we demonstrate the optical sectioning capability of the MUSSIC technique. The FOV

shows the first element of the 7th group in the resolution target. We move the 2D target in steps

of 20 µ m in the axial direction and away from the fiber distal facet and capture the back-reflected

fields from the object at three z-positions. We compare the SPI reconstructions with the MUSSIC

reconstructions at the three positions in Fig. 5.7. We can observe that the object almost disappears

in the background already after a movement of 20 µm in the case of the MUSSIC images, while
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Number of  pinholes

0.11 a.u. x 1 pinhole 0.11 a.u. x 9 pinholes 0.11 a.u. x 25 pinholes

(e)

Figure 5.6: SNR comparison in MUSSIC microscopy. (a-d) Comparison of SPI, confocal and
MUSSIC reconstructions of a window in the USAF 1951 resolution target. The FOV is a 50
microns wide-160× 160-pixel window. (a) digital confocal reconstruction using a 0.11 a.u. pinhole,
(b) MUSSIC reconstruction using 9 ×0.11 a.u. pinholes and (c) MUSSIC reconstruction using 25
×0.11 a.u pinholes. (d) Single pixel image obtained by integrating the absolute value of the entire
proximal field. (e) Average cross section along the horizontal direction from the reconstructions in
(a-d) for a cropped region indicated by dotted lines in 3 (d). Scale bar is 10 µ m.

the SPI reconstructions carry a significant amount of energy from the sample even after a z-

displacement of 40 µm. Hence the MUSSIC approach performs better in rejecting the light out of

the image plane.

5.8 Discussion and conclusions

We have demonstrated MUSSIC microscopy through a multimode fiber to enable imaging

with optical sectioning, high contrast and improved resolution. Here we limit our experiments

to the coherent imaging modality, but the high SNR capability of MUSSIC microscopy paves a

feasible path to fluorescence imaging. Calibration of the multispectral TM of scattering media has
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Figure 5.7: Comparison of optical sectioning in MUSSIC microscopy and SPI through multimode
fibers. (a, b, c) SPI reconstruction at z=0, 20 and 40 µm respectively. (d, e, f) MUSSIC recon-
struction from 25 pinholes at z=0, 20 and 40 µm respectively. Postprocessing for the MUSSIC
images involved regularized TM inversion, bandpass filtering and normalization, as explained in
the methods section. Scale bar is 10 µm.

been demonstrated in multiple reports [24, 128, 129]. With the help of the multispectral TM, one

could for instance, scan multi-spectral focal spots on the proximal side while speckle patterns are

projected on the object at the distal end. With knowledge of the distal intensity patterns, the

object can be recovered [33, 107]. An advantage of scanning focal spots on the proximal side is

that it would eliminate the need for coherent backpropagation and enable imaging by solving a

simpler intensity-only inverse problem. We show a factor of 6.2 improvement in the root mean

square contrast in MUSSIC images with respect to the raster scan images and a factor of 3.8

improvement with respect to the confocal images. This is however not a fundamental limit and

further improvement is possible by increasing the number of confocal images being integrated for

the MUSSIC reconstruction and increasing the sampling rate of the distal fields. The cost to pay

in exchange is the computational complexity which grows linearly with the number of confocal
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images, Npinholes.

Besides the challenge of computational complexity, the quality of image reconstruction is

limited by several experimental factors. To keep our experimental setup simple ad robust to thermal

and mechanical fluctuations, we used an internal reference for phase measurements which transform

to a non-uniform speckle in the plane of interest with many nulls, also known as blind spots. We are

unable to recover the field from these blind spots, which degrade the image reconstruction quality.

Using complementary reference speckles [73, 87] or an external plane wave reference are possible

ways to eliminate the blind spots, although they either require increased measurement time or a

more complex setup with phase tracking to account for phase drifts. Bending sensitivity of the

fiber is another challenge and in our experiments the fiber was kept stationary after the forward

TM calibration to minimize this effect. Any perturbations after calibration lead to noise in the

image reconstruction. Despite these imperfections however, we demonstrate confocal microscopy

with improved SNR through a multimode fiber which could be of practical significance for various

microscopy applications in scattering media. A further generalization of the technique can be made

by choosing distal illuminations that are not focal spots, but arbitrary speckle patterns [107]. In this

case, we could calculate the back-propagated distal fields Ed by left multiplying the right-hand side

of Eq. 5.7 with the illumination matrix, Eil and right multiplying it with the conjugate transpose

or Tikhonov regularized inverse of the illumination matrix, Eil. The equations are explicitly shown

in the Appendix section 2. Speckle illumination is ideal for compressive sampling and can enable

imaging with fewer illumination patterns and shorter data acquisition times [33]. Furthermore, it

can also eliminate the need for wavefront shaping if a scanning focal spot field is chosen as input,

which only requires a focused beam and a steering mechanism.

Overall, our results successfully demonstrate the power of MUSSIC microscopy in enabling

high SNR and high-resolution imaging through an endoscope for investigating the deep tissue

regime. Given the generalized principle of the technique, its application is not limited to the raster

scan approach or to multimode fibers and can easily be adapted to other endoscopic probes that

might require different excitation and detection paths such as double-clad fibers.
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5.9 Appendix

5.9.1 MUSSIC reconstruction from a system with different excitation and detec-

tion PSFs

We described in the main text that when the detection and excitation paths are different,

the back-propagated distal fields can be calculated using equation 5. We rewrite the equation here

after expanding each term using the definition of calibrated backward TM, T bobs and the proximal

field matrix, Ep in equation 5.9.

Ed = (T bIEil)RIT bOEil (5.9)

We have replaced the conjugate transpose of the backward TM above with the Tikhonov regularized

inverse. If we define the product, DRI
T b

= (T b)RIT b, as the new diffraction operator, which is similar

in structure to the DT operator defined in the main text, equation 5.9 can be further simplified as

shown in equation 5.10.

Ed = (Eil)RI(T b)RIT bOEil = (Eil)RIDRI
T bOE

il (5.10)

In order to preserve the resolution gain in MUSSIC microscopy, the terms on the left and

right of the object should retain the bandwidths of the excitation and detection systems. The

right-hand term is the same as in the earlier case of identical excitation and detection PSFs. The

left-hand term is the matrix product of the inverse of the illumination matrix and the diffraction

operator for the backward transmission matrix, which also has the bandwidth of the detection or

the excitation system, whichever is smaller. When the two systems have the same bandwidth, the

resolution gain and sectioning properties of MUSSIC microscopy are preserved.

5.9.2 Generalized MUSSIC microscopy using speckle illumination

When the fields illuminating the object are not focal spots, but a set of random speckle

patterns, the matrices Eil and (Eil)RI no longer have the structure of the convolution matrix and
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their effect has to be reversed digitally by multiplying them with their respective inverse matrices.

Eq. 5.11 shows how we can obtain the focal spot equivalent, Efoc of the backpropagated distal

fields in this case.

Efoc = EilEd(Eil)RI = DRI
il D

RI
T ODRI

il (5.11)

where we define DRI
il = Eil(Eil)RI , as the diffraction operator corresponding the illumination fields.

This added computational complexity of O(N2
outNil) can enable imaging with arbitrary speckle illu-

minations with reduced number of illuminations, when the chosen patterns have small correlations

[33, 107]. Even when focused illumination is employed, there is inevitably some energy in the

background due to imperfect control over all the fiber modes due to insufficient overlap between

the fiber modes and modes of the spatial light modulator (SLM), and thermal and mechanical

perturbations. This background is a source of noise in the reconstruction. By measuring the fields

corresponding to the distal illuminations, and using the above generalized approach, we can convert

the energy in the background into signal and improve the quality of image reconstruction.

5.9.3 Effect of Normalization in image reconstruction

Here we compare the MUSSIC reconstruction made from 25 confocal images before and after

normalization with respect to the MUSSIC reconstruction from the proximal fields reflected from

the mirror. Figure 1 shows this comparison. We can observe that much of the non-uniformity

arising from the speckle reference used for phase measurement, is eliminated as a result of the

normalization, yielding a cleaner reconstruction.

5.9.4 MUSSIC Reconstructions using different inversion strategies

Figure 1 (a) and (b) show the MUSSIC reconstructions from 25 confocal images when the

conjugate transpose of the backward TM, and its Tikhonov regularized inverse are respectively

used to backpropagate to the distal plane. The latter requires computation of the backward TM’s

singular value decomposition and tuning of the regularization parameter, which is a time-consuming

process. On the other hand, the conjugate transpose is computed almost instantaneously and
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(a) (b)

Figure 5.8: Effect of normalization on image reconstruction. (a) MUSSIC reconstruction from
25 confocal images without normalization. (b) MUSSIC reconstruction in (a) normalized by the
MUSSIC reconstruction corresponding to the proximal fields reflected from the mirror during the
backward TM calibration.

allows MUSSIC reconstruction (with normalization) within 2.6 minutes using 9 confocal images

and within 5 minutes using 25 confocal images. Although the result from Tikhonov regularization

is significantly better, the conjugate transpose also provides a good estimate of the object.

(b)(a)

Figure 5.9: Comparison of MUSSIC reconstructions using different inverse estimates of the back-
ward TM. (a) MUSSIC recovery from 25 confocal images by assuming the inverse of the backward
TM to be its conjugate transpose matrix. (b) MUSSIC recovery from 25 confocal images using the
Tikhonov regularized inverse of the backward TM with β = 10% of its highest singular value.



Chapter 6

Summary, future work and outlook

6.1 Summary

This Thesis demonstrates key methodologies for advancing the multimode fiber imaging tech-

nology and applying it for minimally invasive endoscopy. With the highest bandwidth in the small-

est possible footprint, MMF make ideal candidates for endoscopy and have the potential to achieve

the same functionality as a bulky microscope objective. Here, we take a few steps closer to this

goal by improving the speed, robustness, resolution and optical sectioning in MMF imaging.

In Chapter 2, we demonstrated speckle imaging through MMFs, which eliminates the need

for coherent control and enables imaging through MMFs, using the naturally occurring random

speckle patterns at the distal end. The technique requires a simpler, intensity-only calibration

hence overcoming the issue of blind spots due to the speckle reference and requires a fewer number

of measurements than that required for a raster scan approach. We show a 13 times compression

in the number of measurements while minimally compromising the image quantity with the help

of an optimization algorithm that minimizes the correlations between the speckle pattern used

for the reconstruction. We demonstrate imaging of 4µm fluorescent beads as well as retrobeads

embedded in the brain slice of a mouse. Finally, we also demonstrate hybrid photo-acoustic and

fluorescence microscopy using a multimode fiber by adding an adjacent single mode fiber to collect

the photoacoustic signal.

In Chapter 3, we propose the use of a 1D wavefront modulator called a grating light valve for

wavefront shaping at 350 kHz. We demonstrate real-time and continuous calibration and focusing



114

through scattering media such as ground glass diffusers and multimode fibers, within 2.4 ms. We

also demonstrate the fast refocusing capability of the GLV by focusing through rapidly changing

dynamic media. Moreover, we analyze the dependence of the scatterer thickness and different

illumination configurations on the far field speckle shape by modelling a thin scatterer exhibiting

memory effect. With the help of this model, we determine the suitable illumination configuration

on the scatterer to achieve full 2D control over the field after the scattering media, using the 1D

GLV.

In Chapter 4, we demonstrate mode control in the fiber mode basis by exciting Hadamard

functions at the input and generating focal spots at the output as an example. As opposed to

conventional mode control techniques which excite and generate pure modes and are feasible only

for few-mode fibers, our technique is scalable to myriad mode fibers and allows generation of

complex fiber mode combinations via a digital basis transformation. We define various metrics to

evaluate the mode control and demonstrate their dependence on the spatial location of the focal

spots across the fiber cross-section. We also compare the bend resilience of different mode groups

in the fiber by creating mode controlled focal spots and find that modes with higher orbital angular

momentum are more resilient to bends.

Finally, in Chapter 5, we demonstrated a technique to achieve optical sectioning and improved

resolution through multimode fibers while maintaining a good signal to noise ratio. We present

the theory for the gain in resolution and optical sectioning when imaging through a multimode

fiber and demonstrate proof-of concept imaging of the USAF test target. We also show that the

technique is feasible when the detection and excitation paths are separate and when the scanning

illuminations are arbitrary speckle patterns instead of focal spots.
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6.2 Future Work

6.2.1 Improving speed and SNR in speckle imaging through Multimode fibers

In our work on imaging using random speckle patterns, the imaging speed of the system

was limited by the wavefront shaping modulator. This technique however does not necessarily

require a wavefront shaping modulator and faster alternatives such as galvanometric mirrors and

acousto-optic deflectors can be employed to generate random speckle patterns at relatively faster

speeds.

Although using speckle patterns enables imaging with fewer measurements and eliminates the

need for wavefront shaping, these benefits come at the cost of a lower signal-to-noise ratio (SNR).

A desired trade-off between the SNR and the compression can be achieved by employing focal spots

with some background speckle to scan the object. The ratio of the focal spot intensity and the

background speckle intensity can be varied to directly control the SNR and compression trade-off.

These hybrid illumination patterns are also easy to generate and require fewer phase control pixels

relative to the number of fiber modes. They are hence more feasible for implementation using a

Grating Light Valve (GLV), which has a limited number of phase control pixels, but a much faster

modulation speed. Future work could implement speckle imaging through MMFs using a GLV and

employ hybrid speckle patterns as described above. This could improve the SNR, imaging frame

rate, and provide a robust system suitable for imaging applications that require high temporal

resolutions such as real-time calcium imaging.

6.2.2 Towards high SNR fluorescence imaging with optical sectioning through

MMFs

We demonstrated MUSSIC microscopy through an MMF to achieve high-SNR confocal imag-

ing in the reflection mode. Extending the technique to fluorescence mode is desirable to visualize

specific regions of the tissue. Towards this end, we can calibrate the multispectral TM of the MMF

[24, 128, 129]. Recently, simultaneous spatio-temporal calibration of the multi-spectral TM using
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only spatial degrees of freedom was demonstrated by spatially separating out the different color

bands using a microlens array and diffraction grating [24]. Using a similar approach, but with the

same continuous wave laser used in our system, the fiber’s double-pass multispectral TM can be

measured from the SLM to the proximal camera while a bright florescent screen is placed on the

distal side.

With the help of the multispectral TM, one could, for instance, scan multi-spectral focal spots

on the proximal side while speckle patterns are projected on the object at the distal end. With

knowledge of the distal intensity patterns, the object can be recovered [33, 107]. An advantage of

scanning focal spots on the proximal side is that it would eliminate the need for coherent back-

propagation and enable imaging by solving a simpler intensity-only inverse problem.

6.2.3 Faster MUSSIC microscopy and better reconstruction algorithm

In our work on MUSSIC microscopy, we employed the classic pixel reassignment algorithm.

While, effective, it does not achieve the best possible resolution gain. Better reconstruction algo-

rithm such as a multi-view maximum likelihood deconvolution [154] can be adapted to shift variant

systems and employed to improve the lateral resolution and optical sectioning in MMF imaging.

Moreover, the imaging speed in MUSSIC microscopy is limited by the proximal camera speed in-

stead of the wavefront shaper. Use of fast SPAD arrays or multi-pixel photomultiplier tubes in

conjunction with the GLV can enable faster imaging speeds.

6.2.4 Deep learning for learning the multimode fiber model

The image quality in MMF imaging is critically dependent on how accurately the measured

transmission matrix (TM) models the MMF. Currently, the TM is measured by a calibration

approach requiring thousands of coherent measurements. Moreover, this TM describes a specific

stationary state of the MMF and can change when the MMF is subject to mechanical or thermal

perturbations.

Deep learning is emerging as a powerful tool for modelling complex systems and could be used
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to simplify MMF imaging systems. Recent work on retrieving the input images using the output

amplitude [150] or intensity patterns [25], or vice versa [56], controlling the output pattern using

only amplitude measurements [149], characterizing ultrafast pulses through multimode fibers [188],

controlling non-linearities [174], mode decomposition [9, 156], predicting input patterns transmitted

through an MMF with continuously varying shape [57], and predicting the bend configuration using

output speckle patterns [112] show great promise in the potential of deep learning for simplifying

MMF. A particularly interesting deep learning application would be for bend correction without

distal access using reflected speckle patterns as feedback.

6.2.5 Towards in-vivo microscopy with deep penetration in live animals

Finally, further work must be done to implement our methods with improved speed, SNR,

optical sectioning and robustness, in an in-vivo environment to perform calcium imaging. This

would involve a robust optical design with suitable accommodation for a live animal and designing

a mechanism for implanting the endoscope in the site of interest. Further along this direction, it

would be interesting to explore the potential of MMFs for deeper penetration by performing in-vivo

experiments in bigger organisms like primates.

6.3 Outlook

Within the short span of a decade, the realm of applications of multimode fibers has expanded

beyond optical communication to a vast range of fields such as endoscopy, sensing, manipulation,

energy delivery, quantum key distribution and computation. However, we have only just begun to

scratch the surface of possibilities with MMFs and more exciting times lie ahead.

Armed with high-speed wavefront shaping tools and techniques to achieve optical sectioning

and better resolution in imaging through MMFs, it would be interesting to explore their applica-

tions not just for in-vivo calcium imaging, but also for optogenetic stimulation targeting specific

molecules. Given their micron-scale resolution sufficient to resolve individual neurons and their

potential to target specific neurons using genetically encoded markers, MMFs could cause a signif-
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icant impact in the field of deep brain stimulation over more invasive and lower resolution, electro-

physiological and other electrical signal-based brain stimulation tools, especially for applications

requiring deep tissue penetration beyond the millimeter scale.

A significant challenge that must be countered to enable the MMF endoscopy technology is

to solve the problem of bend and motion sensitivity of MMFs. While various interesting approaches

have been proposed, a fast and robust mechanism that would enable correction for the changing

transmission matrix of a bending MMF is desired, and could hold the key to realizing the various

proposed endoscopic applications. An idea worth exploring is to employ a feedback mechanism to

track the changing TM such as back-reflected speckle patterns.

In working towards the goal of building a minimally invasive MMF endoscope that could

replace a microscope objective, exploring novel MMF designs is also an interesting research avenue.

Thus far, telecommunication fibers are largely employed in various experiments for MMF imaging,

sensing, manipulation etc., which do not necessarily possess optimal dispersion properties, non-

linear response, peak-power tolerance, bend sensitivity or even geometrical design. It would be

interesting to see how customization of MMF designs could help improve their performance in

different applications.

Overall, this is an exciting time for MMF research, characterized by continuous advances.

With further efforts, it is only a matter of time before MMFs will be enabling linear and non-linear

in-vivo endoscopic applications in various body organs.
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Andresen, and Hervé Rigneault. Nonlinear imaging through a fermat’s golden spiral multicore
fiber. Optics letters, 43(15):3638–3641, 2018.

[169] Erich Spitz and Alain Werts. Transmission des images à travers une fibre optique. Comptes
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