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Abstract

Many species rely on olfaction to navigate towards food sources or mates. Olfactory naviga-
tion is a challenging task since odor environments are typically turbulent. While time-aver-
aged odor concentration varies smoothly with the distance to the source, instaneous
concentrations are intermittent and obtaining stable averages takes longer than the typical
intervals between animals’ navigation decisions. How to effectively sample from the odor
distribution to determine sampling location is the focus in this article. To investigate which
sampling strategies are most informative about the location of an odor source, we recorded
three naturalistic stimuli with planar lased-induced fluorescence and used an information-
theoretic approach to quantify the information that different sampling strategies provide
about sampling location. Specifically, we compared multiple sampling strategies based on a
fixed number of coding bits for encoding the olfactory stimulus. When the coding bits were
all allocated to representing odor concentration at a single sensor, information rapidly satu-
rated. Using the same number of coding bits in two sensors provides more information, as
does coding multiple samples at different times. When accumulating multiple samples at a
fixed location, the temporal sequence does not yield a large amount of information and can
be averaged with minimal loss. Furthermore, we show that histogram-equalization is not the
most efficient way to use coding bits when using the olfactory sample to determine location.

Author summary

Navigating towards a food source or mating partner based on an animals’ sense of smell
is a difficult task due to the complex spatiotemporal distribution of odor molecules. The
most basic aspect of this task is the acquisition of samples from the environment. It is
clear that odor concentration does not vary smoothly across space in many natural forag-
ing environments. Using data from three different naturalistic environments, we compare
different sampling strategies and assess their efficacy in determining the sources’ location.
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Our findings show that coarsely encoding the concentration of samples at separate sensors
and/or multiple times provides more information than encoding fewer samples with
higher resolution. Furthermore, coding resources should be focused on discriminating
rare high-concentration odor samples, which are very informative about the sampling
location. Such a nonlinear transformation can be implemented biologically by the recep-
tor binding kinetics that bind odorants as a first stage of the sampling process. A further
implication is that animals as well as computational models of algorithms can operate effi-
ciently with a coarse representation of the odor concentration.

Introduction

Diverse species throughout the animal kingdom use olfactory cues for navigation tasks critical
to survival, including locating food sources and mating partners. However, olfactory naviga-
tion is not simple: odorants are often volatile and carried on rapidly changing currents, result-
ing in spatiotemporal distributions that are turbulent thereby defeating simple strategies such
as gradient detection. Consequently, recent efforts at understanding olfactory navigation have
focused on identifying the viable computational strategies for making navigation decisions

1, 2].

Here we focus on the most basic aspect of this process: how odor samples are encoded
in the first place. Since sensory resources are finite, tradeoffs are inevitable. For example,
resources may be allocated to encoding individual samples of odor concentration at a fine
level of detail, or alternatively, to encoding multiple samples, either in space or in time, but at a
coarser resolution for concentration. In this study, we investigate the implications of these and
related tradeoffs, using the tools of information theory. Specifically, we compare an array of
sampling and encoding strategies, asking to what extent they capture information about loca-
tion within an olfactory environment.

There are several aspects of the statistics of an odor plume that can give clues as to the
location of the source [3-7]. For example, the mean concentration varies smoothly in lateral
and longitudinal directions. However, animals do not base their navigation decisions on
mean concentration, as the time it takes to obtain stable estimates of mean concentration
exceeds the typical time taken by animals to make navigation decisions [8-10]. Other olfac-
tory features that have been proposed as useful for navigation decisions include the time
between odor encounters [11-13] and intermittency (the probability of the odor concentra-
tion above threshold) [4]. However, as for mean concentration, obtaining stable estimates of
these quantities takes more time than animals typically use for navigation decisions. Hence
averaged quantities—even if aided by other sensory inputs—are probably not used to guide
navigation decisions. These considerations motivate our focus on what can be learned from
brief, localized samples. We do not address the issue of how to integrate odor samples with
other sources of information.

A key starting point for our analysis is the explicit recognition that the resources available
for sampling and encoding an odor environment are finite, and that it is natural to quantify
these resources in terms of bits. This leads to the framework of information theory, which has
the advantage that it minimizes the assumptions about the odor distribution.

As mentioned above, the sampling strategies we consider explore tradeoffs between the
number of bits allocated to resolving concentration, and to sampling in space and time. The
focus on these tradeoffs is motivated by the diversity of the sampling strategies that animals
use. With regard to spatial aspects, most animals have two spatially separated antennae or
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nostrils which sample the olfactory environment, but the sensor spacing ranges from less than
amm to several cm. With regard to temporal aspects, insects’ olfactory receptors are continu-
ously exposed to odorants, while rodents take periodic samples and adjust their sniff rate
based on previous measurements [14-16].

In this article, we discuss sampling strategies based on local cues in light of how much infor-
mation they provide about sampling location. To compare different sampling strategies, we
computed the information that they conveyed about location, for three realistic olfactory envi-
ronments. In each environment, odor concentration was empirically determined via physical
measurements, planar laser-induced fluorescence [17]. We chose to use physical measure-
ments of actual plumes not only to avoid the assumptions made by models of turbulence or
the complexities of numerical simulations, but also because the non-idealities of physical mea-
surements take into account the real-world issues that confront the olfactory navigator.

Although the three environments differed with regard to flow rate, turbulence, and proxim-
ity to a boundary, a number of commonalities emerged. First, precise measurement of odor
concentration is generally not useful. That is, after allocating one or two bits to a coarse repre-
sentation of odor concentration, more information about location is gained by using addi-
tional bits for encoding concentrations at nearby locations in space or time, than by using
these bits to refine the representation of concentration. We also demonstrate that using “histo-
gram equalization” as a strategy to discretize odor concentration—which is optimal to convey
information about intensity per se [18]—is not optimal when the goal is to determine location.
That is, the optimal strategy for low-level sensory encoding depends on the ultimate use of the
information. Finally, with regard to sampling in time, we find that the additional information
gained from multiple samples is preserved even if the temporal order of the samples is ignored,
and this provides a rationale for simple post-receptoral processing strategies.

Methods
Plume measurements

Odor plume data were obtained experimentally using a surrogate odor (acetone) released in a
turbulent flow within a benchtop low-speed wind tunnel. We imaged the odor structure using
planar laser-induced fluorescence (PLIF); images were subsequently post-processed into cali-
brated matrices of normalized concentrations. We acquired three separate datasets varying in
mean flow rates and proximity to a boundary.

The wind tunnel has a test section measuring 1 m long, by 0.3 m tall, by 0.3 m wide. We col-
lected odor plume data at flow speeds of 5 cm/s and 10 cm/s. Ambient air enters the tunnel
through a contraction section and passes through a turbulence grid consisting of 6.4 mm
diameter rods with a 25.5 mm mesh spacing. Air exits the test section through a 15 cm long
honeycomb section used to isolate the test section from a fan located in the downstream con-
traction. The odor surrogate was released isokinetically through a 9.5 mm diameter tube on
the tunnel centerline. The tube orifice was located 10 cm downstream of the turbulence grid.
For one dataset, named boundary flow, a false floor spanning the length and width of the test
section was placed directly below the release tube.

Acetone vapor was used as a fluorescent odor surrogate. We generated the acetone vapor by
bubbling a carrier gas through liquid acetone. Because acetone is denser than air, the carrier
gas consisted of a mixture of air (59% v/v) and helium (41% v/v) such that the odor surrogate
mixture was neutrally buoyant in the wind tunnel. We used a water bath to maintain the tem-
perature of the odor mixture at ambient tunnel conditions.

A 1 mm thick light sheet from a Nd:YAG 266 nm pulsed laser illuminated the odor plume
in the test section, causing acetone vapor in the odorant mixture to fluoresce with an intensity
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Table 1. Overview of different datasets.

dataset label

fast flow A

slow flow B
boundary flow C

https://doi.org/10.1371/journal.pcbi.1006275.t001

Vavg, [cm/s] region [cm] (pixels) boundary
10 30 x 16 (406 x 216) no
5 30 x 16 (406 x 216) no
10 30 x 16 (406 x 216) yes

proportional to its concentration. The laser sheet enters and exits the tunnel through longitu-
dinal slits along the sides of the test section. Plume fluorescence was imaged through a glass
window in the tunnel using a high quantum efficiency sCMOS camera, with a bit depth of 16
bit, at a framerate of 15 Hz synchronized with the laser pulses. To enhance signal-to-noise,
images were binned to (512x512) pixels corresponding to a spatial resolution of 0.74 mm/
pixel. Raw images were processed to correct for background according to the equation

C(t7x7 ) :i%’ (1)

where c is the normalized concentration, I is the image from the camera (with background sig-
nal subtracted) and F is the flatfield image (also with the background signal subtracted). The
calibration coefficient, a,, was used to normalize the concentrations based on the source con-
centration at the tube exit.

Three datasets were collected, which had different combinations of wind tunnel flow rates
and false floor configurations (Table 1). The first condition, named fast flow, had a mean free
stream velocity of 10 cm/s, and the odor mixture was released into the center of the tunnel
without a false floor. The second condition, named slow flow, had a free stream velocity of 5
cm/s, and acetone was also released into the center of the tunnel without a false floor. The
third condition (boundary flow) had a free stream velocity of 10 cm/s, but in contrast to the
first condition, acetone was released with the false floor in place. All datasets were collected in
segments of 4 minutes. We had a total of 40 minutes (36000 frames) for the first and third con-
dition, and 36 minutes (32400 frames) for the second dataset.

The matrices of normalized concentrations provide a natural coordinate system. Time-
averaged odor concentrations and two typical snapshots for the three conditions are shown
in Fig 1. To compare olfactory cues across different flow conditions, we chose two grids of 16
and G

locations in each olfactory landscape (G ). Coordinates of the locations for the

narrow wide

grid choices (inlet location at the origin) are:

Gomow = 1(x,y) | x=1(22,5.9,9.6,13.3) cm, y=(—44,-1.5,1.5,44) cm},
Guwe ={(x,y) | x=(56,11.1,16.7,22.2) cm, y=(—2.6,—1.1,1.1,2.6) cm}.

The two grids were chosen to capture the environment close to the source and further away
from it above and below the centerline. The locations are indicated as blue circles (G
and green triangles (G
directly relevant to walking flies and other small insects.

Probability distributions of the odor concentrations of the upper half of all grid points are
shown in S1 Fig.

narrow )

) in Fig 1. The distances between gridpoints and the odor source are

wide

Mutual information

Our primary goal is to quantify the extent to which a small number of samples of odor concen-
tration within a plume provide information about the location of the sample. A principled
approach is to use Shannon’s mutual information (MI) [19] for this purpose. That is, using
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fast slow boundary

(A2) (B2)

Fig 1. Snapshots of plume measurements. Three different flow conditions were measured (A1 — A3 fast flow, B1 — B3
slow flow, and C1 — C3 boundary flow, for details see Table 1). Top row shows the time-averaged odor concentration
for each of the conditions. All concentrations are shown relative to the source concentration. The green triangles and
blue dots correspond to the two 16-location grids. A scalebar indicating 5 cm is shown at bottom right corner of A1-
C1. The middle and bottom rows (A2-C2, A3-C3) show two typical snapshots of the instantaneous odor concentration
for each of the flow conditions.

https://doi.org/10.1371/journal.pcbi.1006275.g001

entropy as a measure of uncertainty, we will determine the extent to which a given encoding
scheme reduces the uncertainty about the location of the sample. Thus, our two variables of
interest are location (£) and discretized odor samples (M); these are related in a complex sta-
tistical fashion. Specifically, this analysis quantifies the ability to discriminate between the 16
locations of either G or G ., when the only available information comes from odor inten-
sity samples.

The choice of 16 locations per grid is somewhat arbitrary, however, in order to get stable
information estimates with a given amount of data one trades off the number of locations with
the number of bits using for odor coding. We settled on 16 locations as they capture a good
proportion of the environment while allowing for the analysis of coding of odor samples with
up to 10 bits.

As is well-known, the MI between two random variables £ and M is [19, 20]:

I(L, M) =H(L) =Y p(m)H(L|m), (3)

meMm

where H(L) is the (unconditional) entropy of £, and H(L|m) is the entropy of the distribution
of £ conditional on m € M.

In our context, £ is the set of sampling locations G, . or G ... and m € M is a measure-
ment of the normalized odor concentration c(t, x, y). The specific representation of c as a
(coarser) measurement 1 is an integral part of the encoding schemes we consider.

We assume that the a priori probability of the locations I € L are equal. It follows that the
unconditional entropy is

H(C) =~ p(i)log, p(h) = log(|£]). (@)

leL
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where |£| is the number of sampling locations. Note that the MI (Eq 3) is a property of the
grid as a whole, not the individual points. Since all |£| grid points have the same a priori prob-
ability, the upper bound of the MI is log,(|£]). If the navigator has log,(|£]) bits of informa-
tion then it knows its location on the grid unambigously.

Posterior (conditional) distributions p(I|m) were calculated by Bayes theorem. Specifically,
we binned the odor concentrations c at each location p(m|l) and then normalized the likeli-
hoods by p(m). The entropy of these conditional distributions are given by

H(L|m) = = p(ljm)log,p(ljm). (5)

lel

This quantity, weighted by the probability that sample m occurs p(m), is summed over all
m € M to determine the average conditional entropy in Eq (3).

We used two contrasting strategies for representing the odor concentration as discrete sym-
bols (bins). In the first strategy, we divided the data into equal quantiles, i.e. we chose bound-
aries such that the distribution p(m) is uniform. This histogram-equalization procedure
maximizes the information conveyed about the odor concentration (i.e., M) [20, chap.2], but
does not necessarily maximize the information conveyed about sampling location. In the sec-
ond strategy, we adjusted these bin boundaries to increase the amount of information about
location. Because finding the bin boundaries that yield an absolute maximum is a multidimen-
sional discrete optimization problem, we used the following “greedy” iterative strategy to find
an approximate maximum. The first bin boundary is chosen to maximize I(£, M), and is
identified by an exhaustive search of the range of concentrations. Then, iteratively, the k-th
boundary is chosen to maximize I(L£, M) while keeping the k — 1 bin boundaries fixed. This is
also a one-dimensional search over the range of concentrations, and leads to a binary subdivi-
sion of one of the bins determined at the previous step. For analyses in which the odor at mul-
tiple temporal or spatial samples is encoded, we used the bin boundaries determined from
these single-sample optimizations.

The encoding strategies we considered are specified not only by the way that each sample is
encoded (i.e., the bin boundaries), but also by the number of spatial samples 7, and the num-
ber of temporal samples ey, Specifically,

S(nbits; rspat? rtemp)? (6)

denotes an encoding strategy that uses ny; to discretize odor intensity, applies this discretiza-
tion to rp, sSamples at nearby locations obtained at ey, points in time. Note that the number
of bins used to discretize odor concentration is given by 2™. When investigating strategies
with two sensors (e = 2), we take two samples at a distance of 0.3 cm (four pixels) centered
around the locations specified in Eq (2).

For sampling strategies specified by the notation of Eq (6), bin boundaries are obtained by
histogram equalization. To indicate that the “greedy” strategy has been used for obtaining bin
boundaries, we use the symbol 7}, . The total number of bits used for encoding a sample m is
given bY Mbits * Tspat * Ttemp (or e * T opat * rtemp)'

To ensure that our results do not reflect the idiosyncrasies of odor concentrations at spe-
cific locations, all calculations were repeated after jittering the grid location. Specifically, the
grid was rigidly moved from its standard location (as given in Eq (2)) by 0.74-2.22 mm (1-3
pixels) in x and y directions, yielding a total of 49 placements. In all figures of the results
section, mutual information at these jittered locations are shown as shaded blue and green
regions.
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Bias in the information estimates. As described above, we used the “plug-in” estimator
for entropy since this makes no assumptions about the nature of the distributions. However
this estimator (as well as any other entropy estimator) is subject to bias due to finite sample
size [21, 22]. Since fewer samples are available for estimating posterior distributions p(m|l)
compared to p(m), H(L|M) is more biased than H(L), and the estimate of mutual informa-
tion I(L, M) is therefore upwardly biased. This consideration, along with the need to keep the
bias small, limited the range of coding schemes that we considered.

To demonstrate that the bias was indeed small for the coding schemes considered, we
assessed it via the method of [23, 24]. Here, mutual information is expanded as a series in 1/N,
where N is the number of samples. Within the range of validity of the expansion, the 1/N-term
of this series is the bias estimate. S6 Fig in the Supporting Information section demonstrates
the validity of the asymptotic expansion for some coding schemes used in our analyses (by esti-
mating information from smaller subsets of the full dataset). The bias-corrected information is
the intercept with the ordinate. Given that the slope of the 1/N-term is virtually identical for
the jittered grid locations, we computed similar asymptotic expansions for the centered loca-
tions of the narrow- and wide grid of all coding schemes and subtracted the bias estimate from
all mutual information curves that involve more than one bit.

Results

A schematic overview of our analysis can be seen in Fig 2. We chose two grids of 16 locations
for independent analyses of estimating information that sampling from the odor field provides
about the navigator’s sampling location. Distance to the odor source is indicated in panel (A).
Practical considerations restrict the experimental analysis to distances in the cm range. These
are directly relevant to small insects.

Each of the 16 locations has a different distribution of odor probabilities as diagrammed in
Fig 2B. These were determined experimentally by PLIF, as described in the methods section.

The approach of evaluating a sampling strategy based on the amount of information it pro-
vides about location is cartooned in Fig 2C. A navigator starts with no knowledge of its loca-
tion, and hence assigns an equal probability to be in any of the 16 grid locations (£). The
navigator samples the environment and computes a posterior distribution. Based on the odor
sample, the posterior distribution weights the locations unequally. It therefore has a lower
entropy than the prior distribution. The average reduction in entropy is, by definition, the MI,
and this quantifies the partial knowledge that an odor sample conveys about location.

The main theme of this analysis is that an observer does not have access to the raw concen-
tration, but only to a degraded version of it. In Fig 2, we diagram the scenario in which the
observer discretizes a single odor sample into a specific number of levels; this discretized ver-
sion of the odor, rather than the raw odor concentration itself, is used to compute the posterior
distribution. As described below, we compare the utility of this sampling scheme to schemes in
which several samples, in time or in space, are encoded.

In keeping with the laboratory setting, we describe the analysis in terms of a fixed odor
source and an unknown location. Since the relevant quantity is the displacement between the
navigator and the source, this formulation corresponds to an actual navigation task, in which
the navigator knows its location and attempts to infer the location of the source.

Three ways to allocate coding resources

We considered encoding schemes that probed the three basic ways in which resources could
be allocated to encoding the odor measurements: for resolving concentration, for sampling
across space, and for sampling across time.
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Fig 2. Overview of the analysis. (A) shows the distance to the odor source for each of the locations of the two 16-location grid
choices (green triangles and blue dots) and the imaged area. (B) shows probability distributions of the normalized odor
concentrations (normalized by source concentration). The top panel shows the composite distribution, using data of all 16
locations, for the wide grid in the fast flow condition. Below are probability distributions for two selected locations (as indicated by
solid green triangles in the inset). (C) Schematic of the information-theoretic analysis. On the left is the prior probability, which is
equal for all 16 locations (depicted by equal height bars). The second column shows the composite distribution (top) and the result
of discretizing it into M levels (bottom). The discretization recognizes that the observer has limited coding resources available. A
sample from the discretized distribution results in an updated belief of where the observer is, represented by the posterior
distribution. Two example posterior distributions are shown, one for drawing the sample m, (orange), and one for drawing the
sample m;, (red). Posterior distributions have lower entropy than the prior distribution, since the locations are no longer equally
likely. The difference of the entropy of the prior and the weighted average of the posterior entropy is the information a navigator
can expect to learn about location with a given sampling strategy. Note that this panel is a diagram for the analysis of encoding a
single sample at a single time (S(n,,; 1, 1)); an analogous strategy is used to analyze encoding with two sensors and/or encoding of
multiple samples in time (S(y; par> Tiemp))-

https://doi.org/10.1371/journal.pcbi.1006275.9002

Here and in the other analyses below, parallel calculations were carried out for three
odor environments: fast flow (A), slow flow (B) and boundary flow (C), and for two sets of
locations (narrow grid (blue) and wide grid (green)) within each environment. The fast flow
and boundary flow conditions have the fastest inlet flow of 10 cm/s, but the boundary flow
dataset was taken near a boundary where the odor surrogate’s dynamics are affected by
boundary layer effects. Hence, boundary flow is the condition were diffusion has the biggest
impact; see Methods for details. As a consequence of the more diffusive regime of the
boundary flow condition the mutual information values we obtained for this condition are
somewhat higher than in the other two conditions. The slow flow dataset has an inlet veloc-
ity of 5 cm/s. Except as noted, the analyses with different datasets and different grid choices
yielded similar results.

Fig 3A1-3C1 shows results for strategies that devote all bits to encoding concentration at
one point in space and time (S(n;,; 1, 1)). As the resolution for odor concentration increases,
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Fig 3. Mutual information between location (£) and measurement (M) for different encoding strategies. The figure indices A, B
and C correspond to the different flow conditions (fast flow, slow flow and boundary flow); the rows 1-3 compare different encoding
strategies. In the first row the mutual information is calculated based on single samples taken at either the narrow grid (blue curves
correspond to blue circles in Fig 1) or the wide grid (green curves correspond to green triangles in Fig 1). A2-C2: Coding schemes
with increasing number of bits assigned to two sensors. Two samples separated in space were taken at a single time. Solid lines show
information using knowledge of which sample occurs in which sensor; dashed line shows information ignoring which of two sensors
measures which sample. A3-C3: Assigning bits to two temporal samples taken at the same location with a delay of 1.6 s. In all panels,
bold curves correspond to estimates for the locations as given in Eq (2) and shaded regions correspond to information estimates for
jittered locations (see Methods).

https://doi.org/10.1371/journal.pchi.1006275.g003

so does MI, but only up to a point: once four bits are used to resolving odor concentration,
additional resolution yields only minimal increases in ML

When measurements are made at two sensor locations (transversely separated by 0.3 cm),
using additional bits for coding allows MI to increase beyond the plateau encountered with a
single sensor (Fig 3A2-3C2). The benefit of spatial sampling is not merely the result of having
two independent samples. Specifically, MI computed after ignoring which sample corre-
sponded to which sensor was smaller, by up to 0.1 to 0.2 bits (dashed curves in Fig 3A2-3C2),
than the MI conveyed by a coding scheme that keeps track of which sample is which. This indi-
cates that sampling with two sensors enables extraction of a spatial feature of the odor plume
that varies along the vertical axis. This trend is also true for different spacing between two sen-
sors, as shown for half intersensor distance and double intersensor distance in S5 Fig. Note
that in the boundary flow condition, the curves continue to increase rapidly at the limits of
measurement, suggesting that MI is not close to saturation.

Encoding odor measurements at two consecutive times (separated by 1.6 s) also increases
MI beyond the plateau of a single sample, but not by as much as for two spatial samples (Fig
3A3-3C3). While each additional bit used for resolving the concentration of two consecutive
samples provides greater MI, the increases become progressively less, suggesting that MI has
reached a plateau when five bits of resolution are devoted to two samples separated in time.
Virtually identical results are obtained for longer intervals between samples; this is expected
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since MI reaches an asymptotic value as a function of sampling interval (see section temporal
encoding strategies below).

In the above analysis, we discretized the odor concentration into sub-intervals of equal
probability, as this histogram-equalization procedure provides the greatest amount of informa-
tion about the odor concentration itself [18, 20]. However, this does not yield the maximal MI
about location, so we carried out a further analysis that explored the discretization strategy.

For the simple case of discretization into two levels, we show how the MI depends on the
binarization threshold in Fig 4. For the boundary flow condition (C) the information curves
are flat over a large range for the narrow grid, and has a maximum above the median for the
wide grid. For the fast flow (A) and slow flow (B) condition the maximum of information is
obtained when the threshold is above the median for both grids. This suggests the most infor-
mative samples about location occur at high concentration. A threshold above the median
exploits this feature of the odor statistics and allows better discriminability between locations.
A comparison between the bin boundaries obtained by histogram-equalization and the opti-
mal bin boundary when binarizing odor can be seen in S2 Fig. It is evident that the optimal
bin boundary occurs at a higher concentration than the median for all but the narrow grid of
the most diffusive condition.

To investigate how a different choice of bin boundaries affects the results of Fig 3, we imple-
mented a “greedy” partitioning scheme (see Methods) in which the first cutpoint was chosen
to yield the maximal MI about location, and then successive cutpoints were chosen so that
each maximized the MI about location, given the previous partitioning. Results (see S3 Fig)
were very similar to the above analysis based on histogram-equalized bins (Fig 3). Although
one- and two-bit encoding schemes (two to four partitions) yielded more MI than histogram
equalization, the plateau seen in row 1 of Fig 3 was essentially unchanged. The advantage of
encoding schemes based on two spatial or two temporal samples persisted.

Comparing different encoding strategy based on two sensors

The above findings show that overall, there is surprisingly little benefit to allocating coding
bits to resolving odor concentration, compared to allocating them to capture several samples
across space or time. We hypothesized that resolution of odor concentration might become
more important in regimes that were more diffusive, especially when coupled with sampling at
two locations. To investigate this hypothesis, we compared coding schemes in which the same
number of bits (four bits at each of two spatial samples) were allocated to one, two, or four
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samples in time, and in which the spatial sampling was across the flow axis (as in Fig 3), or
along the flow axis.

Fig 5 shows that this hypothesis is supported. Considering first bin boundaries based on
histogram equalization, and sensor locations across the flow axis (unshaded portions of plots
in first row of Fig 5), two or more bits were only beneficial for the most diffusive environment
boundary flow (Fig 5C). Likewise, for sensor locations along the flow axis (shaded half of each
subplot), more than one bit of resolution was only helpful in this environment (boundary flow
(Fig 5C)).

Similar conclusions are reached when bin boundaries are determined via the “greedy” bin-
ning procedure: more than one bit of resolution for odor concentration is only useful in the
most diffusive environment (boundary flow (Fig 5C)), and has the greatest benefit when the
two sensors are across to the axis of flow. In the fast flow condition, increasing resolution while
decreasing the number of samples in time makes little difference (Fig 5A), and for the slow
flow condition (Fig 5B), increasing resolution while decreasing the number of samples leads to
a loss of information about location for either sensor orientation.

In sum, the results of Figs 4C, 5C1 and 5C2 show that in a diffusive regime the exact choice
of bin boundaries is not important, but devoting up to four bits to concentration resolution
has a benefit over accumulating multiple temporal samples. When the flow conditions are
more turbulent, a navigator benefits from classifying multiple odor samples at coarser resolu-
tion (Fig 5A and 5B), but the choice of the discretization threshold becomes important (Fig 44
and 4B). Consistent across conditions, sampling across the odor plume yielded more MI than
sampling along the mean flow direction (white vs. gray shaded regions in Fig 5).
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Temporal encoding strategies

Optimal time interval between samples. The utility of multiple samples at sequential
times is likely to depend on how the sampling interval interacts with flow conditions: for inter-
vals at which odor concentrations are strongly correlated, multiple samples are not likely to
provide a substantial increase in MI.

This interdependence is investigated in Fig 6, which shows the MI for two samples obtained
across a range of time separations. As in the last data point of Fig 3A3-3C3, all datasets have
five bits assigned to each of two samples.

The arrow in Fig 6 indicates the time at which a single sample provides 80% of the asymp-
totic value of information (7g) of two samples. Relatively short values are seen for the narrow
grid of the fast flow dataset (139 ~ 1.6 s blue curves in Fig 6A) and the slow flow dataset for both
grids (g9 & 1 s narrow grid, blue curves and gy ~ 1.5 s wide grid, green curves in Fig 6B).

For the boundary flow dataset g is approximately 3.5 s (Fig 6B) for both grids. Thus,

MI rises more quickly in the conditions fast flow (Fig 6A) and slow flow (Fig 6B) compared
with the boundary flow condition. This finding is unsurprising, since diffusion has the larg-
est impact in the boundary flow conditions and likely accounts for the larger value of 7.
However, the benefit of increasing the inter-sample interval reaches an asymptote in all
cases, as would be expected once the interval is sufficiently long so that the samples are
independent.

Information in the temporal sequence of measurements. To focus on the interaction of
concentration resolution and number of temporal samples, we compared strategies that sam-
pled at a single location, and traded off the number of bits allocated to resolving concentration
at each sample, with the number of samples. In each case, a total of ten bits were used.

When using histogram-equalization, for almost all flow environments and grid choices,
devoting all bits to single measurements provides the lowest amount of information (see Fig
7A1-7C1), and the most informative strategy is to assign two bits to concentration resolution
for five temporal samples (S(2; 1, 5)). However, for the fast flow and slow flow environments,
one bit of resolution provided even more information, provided that the threshold was chosen
in the optimal way (S(17; 1, 10)).

Although encoding multiple samples provides greater information than a single sample,
keeping track of the specific sequence of the samples (i.e. their temporal order) carries rela-
tively little information. This is shown by the difference between the solid black lines and the
dashed lines in Fig 7A1-7C1. (For the optimized threshold measurements of MI in Fig 7A1
and 7B1 the MI seems larger when ignoring the temporal order; this apparent anomaly is a
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consequence of data limitations and debiasing, since the bias on MI estimates that make use of
temporal order is higher than bias of MI estimates that ignore temporal order).

Compression of odor measurements. Until now, we compared encoding strategies based
on the number of bits required for a “naive” implementation, in which fy;"spaitemp bits are
used to represent each word of the code S (1, o Tiemp )- FHOWeVer, these naive representa-
tions are typically compressible, since the words do not occur with equal frequency. Specifi-
cally, the entropy of the distribution of code words provides an estimate of the extent to which
it may be compressed without loss [19], [20, chap.5]. Further compression may be possible if
correlations in the sequence of code words are present, but we ignore any such correlations
here.

These distribution entropies are shown by the filled symbols in Fig 7A2-7C2 for the codes
of Fig 7A1-7C1. As expected, when bin boundaries are chosen by histogram equalization
and there is only one temporal sample S(10; 1, 1), all code words are equally likely and
entropy is #y;s. However, when a single code word encompasses two temporal or more tempo-
ral samples, the words are unequally distributed, and lossless compression is possible. The
amount of lossless compression is strongest for the codes with optimized binarization levels
(S(1751,10)).

Since temporal order of the samples that constitute a code word contributed only a mod-
est amount of information (solid vs. dotted lines in Fig 7 top row), we also considered the
extent to which ignoring temporal order would allow for further compression. As shown by
the hollow circles in Fig 7, this enables approximately a factor of two of further compression,
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quite substantial compared to the minimal amount of information lost when temporal order
is neglected.

Discussion

In olfactory navigation, one of the main challenges is the complexity of the typical odor envi-
ronment. Typical environments are turbulent, and are characterized by short bursts of high
odor intensity interspersed with long durations of low odor intensity [7]. Thus, simple strategies
based on the gradient are likely to fail, and it is not obvious which aspects of the environment—
as sampled locally by a navigating organism—are most useful in determining location. To
address this question, without making specific assumptions about the form of these statistics or
the navigation strategy per se, we used an information-theoretic approach: we compared differ-
ent strategies for encoding odor samples in terms of the information they carry about location.
This information-theoretic approach is similar in spirit to a study investigating the feasibility of
communication via modulated release of pheromones in idealized environments [25].

Specifically, we examined encoding schemes with a fixed amount of coding resources (bits),
and evaluated codes that allocated these bits to encoding odor concentration in a coarse vs.
fine manner, or at one vs. two locations, or at one vs. multiple times. In the three odor environ-
ments we considered, there was little benefit in resolving odor concentration with high accu-
racy for single samples. The range where additional bits stop improving the information
significantly depends somewhat on the binning strategy. If the bins are allocated according to
histogram equalization, information plateaus when 3 or 4 bits per sample are allocated to con-
centration. But with a “greedy” binning procedure, this plateau is reached sooner.

Interestingly, a “greedy” binning strategy is effective in determining location even when
only using one or two bits to resolve odor concentration (binarizing or dividing odor concen-
trations into four levels). Merely binarizing the odor concentration—i.e., encoding odor con-
centration as either “low” or “high”—reveals more than half of the maximal information in all
conditions but the least turbulent. The binarizing cutpoint that maximizes information about
location is higher than the cutpoint that maximizes information about odor itself, i.e., the
median. For the more turbulent regimes, setting the cutpoint at the optimal level for location
yields almost double the amount of information than would be yielded by a median cutpoint.
The potential advantages of a “greedy” binning strategy over histogram equalization are even
greater when one considers that for greedy strategies, the resulting distribution of encoded
measurements has lower entropy than for histogram equalization, and thus, is amenable to
simple non-lossy compression.

Sampling odor at two locations, or several times, breaks through the plateau that is reached
as further bits are allocated to odor resolution. These strategies are always more informative
than devoting all bits to encoding concentration at a single location when more than four
bits are available. In the three environments we examined, a second sample separated in space
carries more information than a second sample separated in time. A considerable amount of
information is gained by comparing which sensor registers which sample. The amount of this
increase depends on the sensor spacing, with larger spacings yielding a larger increase in infor-
mation (see S5 Fig).

Comparison of concentrations in two sensors is advantageous in both diffusive and turbu-
lent environments. The advantage is to be expected in a diffusive environment, since this com-
parison vields an estimate of the gradient, but interestingly, our findings show that it persists
in turbulent environments as well.

Allocating the same number of bits to multiple temporal samples also increases the amount
of information transmitted about location. Consistent across odor environments, the sequence
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of samples, per se, matters very little. In contrast to the benefit of keeping track of which spatial
sample is which, we find little utility in tracking the specific sequence of temporal samples. In
other words, ignoring the sequence of measurements across time is a form of lossy compres-
sion that results in only a minimal loss of information about location. The effectiveness of this
compression (i.e., the ratio of the information about location to the output entropy) is greater
for a greedy binning strategy than for histogram-equalization.

Implications for odor coding systems

We now discuss the implications of our findings, first with regard to sensation and then with
regard to navigation algorithms. As a starting point, we consider the simple scenario of a sen-
sory system confronted with a continuous and widely varying input, but limited in the number
of symbols that it can use for encoding. As is well-known, information is maximized when
each of the symbols is used equally often, i.e., histogram equalization. Histogram equalization
can be implemented as a nonlinearity applied to the input prior to producing a neural output
[18]. For a positively skewed distribution, such as light intensities or odor intensities, the
nonlinearity is a highly compressive one, so that it takes into account the rarity of very large
inputs.

Here, however, we consider the task of maximizing information not about the sensory sig-
nal itself, but about location—which is related to odor concentration in a complex, stochastic
manner. As we showed, most of the available information about location can be conveyed by
a coarse discretization of the sensory range—in fact, by binarization. However, this only holds
if the cutpoint is properly chosen. In the two more turbulent odor environments considered
here, the optimal cutpoint is substantially higher than the median, which is the cutpoint associ-
ated with histogram equalization (see Fig 4). That is, discriminations in the upper range of
odor concentrations play a disproportionately greater role in determining location, than in
reconstructing the input per se. Correspondingly, implementation of this encoding requires a
nonlinearity that is less compressive for higher intensities than histogram equalization.

Optimal adaptation strategies, in the sense of being maximally informative, under naturalis-
tic stimuli are (to our knowledge) unknown. The problem of optimally discretizing a signal is
not just an olfactory problem but applies to other sensory modalities which face resource con-
straints as well (e.g. vision [26-28]).

While it is difficult to imagine a biologically-plausible mechanism that achieves the pre-
cisely optimal nonlinearity for conveying information about location, there is a simple and
plausible mechanism that can achieve an approximation: ligand-receptor binding in olfactory
receptor neurons [29]. In steady-state, this mechanism generates a nonlinear encoding
described by the Hill equation [30]. This transformation compresses signals at high concentra-
tions, because receptors become occupied, and more ligand is required to activate the remain-
ing receptors [31]. Thus, the degree of compression depends on the apparent dissocation
constant K, the odorant concentration at which half of the receptors are occupied. Setting K,
at the median odor concentration corresponds to histogram equalization: half of the time the
ligand binding will be below the median, and half of the time it will be above.

Interestingly, setting K; at the mean concentration, rather than the median, leads to less
compression than histogram equalization. This is because the measured odor concentrations
are positively skewed. Since the mean odor concentration is larger than the median, this setting
will produce a response that is less than half-maximal most of the time. Such a coding strategy
results in more information about location than histogram equalization, as we have outlined
above (see Fig 4). In order to implement this strategy, olfactory receptors or receptor neurons
would have to have an apparent K close to the mean concentration in the environment.
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Adaptation of K,; to the mean has been observed in olfactory receptor neurons of the fruitfly
[32-34], and might serve to increase the amount of information that the fly olfactory system
can encode about its location in a turbulent environment.

Implications for odor navigation algorithms

With regard to odor navigation algorithms, we note that these fall into two categories: those
that rely on local cues (e.g. comparison of concentration differences in two sensors [35], com-
parison of sample arrival times in two sensors [13], the combination of local anemotactic and
olfactory cues [36, 37]), and those algorithms that construct a cognitive map (like infotaxis [1]
and mapless [2]). We do not intend to argue for one kind of strategy over the other, but rather
to identify aspects of the odor navigation problem that apply to both, as both begin with the
acquisition of sensory samples. Our work suggests that these algorithms can operate on a
coarse representation of odor concentration since we find that a four-bit representation of
the odor intensity reveals almost the same amount of information as finer odor concentration
representation. We also found that sampling with two sensors adds substantially to the amount
of information about location, and this improvement is not just due to obtaining two samples,
but by comparing them in a labelled fashion (as observed in the second row of Fig 3). While
this is directly exploited by comparison algorithms using two sensors, we suggest that, naviga-
tion algorithms that use an internal model of the odor distribution like infotaxis and mapless
could also be improved by incorporating measurements from two sensors.

Finally, an important caveat of our study is that animals have multi-sensory cues available;
here we only consider the single modality of odor and do not integrate information of other
modalities, e.g visual or mechanosensory flow information, that navigators have access to. In
particular, it is crucial for moths and fruitflies to combine flow information via mechanosen-
sory input when walking and visual input when flying for successful navigation [38-41]. For
example, since the wind direction may meander substantially, a simple upwind movement can
lead a navigator out of the odor plume [8, 42]. Simultaneously recording flow and odor con-
centration, and analysis along the lines undertaken here, may shed light on useful sampling
strategies for combining both sources of information.

Conclusion

Determining the location of an odor source based on olfactory cues is a challenging problem.
We focused on how to optimally sample from the odor distribution when the goal is to deter-
mine location with respect to the source. This study shows that the sampling strategy that max-
imizes information about location under finite resources utilizes two sensors, allowing for the
comparison of spatially separated samples, while representing odor concentration in no more
than three to four bits. Furthermore, temporal sequences of samples can be averaged to pre-
serve resources while only minimally affecting the amount of information that the sequence
conveys.

Supporting information

S1 Fig. Probability distributions of concentrations at the sampling grids (only upper half
of locations shown). Columns (A), (B) and (C) correspond to the three conditions fast flow,
slow flow and boundary flow. Each row shows log probability distributions at four of the grid
points (as indicated by the colors in the inset, top two rows of the figure for the narrow grid
and bottom two rows for the wide grid).

(TTF)
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S2 Fig. Optimal binarization threshold and bin boundaries for histogram equalization (up
to 8 bits). The optimal binarization threshold is shown at the bottom of each panel and is
labelled 1*; above it are the bin boundaries of histogram equalization for up to 8 bits (256
bins). Each of the 49 grid placements contributes one sample per bin boundary. Blue corre-
sponds to the narrow grid and green corresponds to the wide grid of sampling locations. Col-
umns (A), (B) and (C) correspond to the three different conditions fast flow, slow flow and
boundary flow respectively. Note that optimal binarization threshold (row labelled 1*) is higher
than the histogram-equalization cutpoint (row labelled 1) in all cases except (C1), the narrow
grid boundary flow condition.

(TTF)

$3 Fig. Mutual information between location (£) and measurement (M) for different
encoding strategies using a “greedy” strategy to allocate bin boundaries. Blue curves corre-
spond to mutual information for the narrow grid and green curves correspond to calculations
for the wide grid. Solid curves represent locations as shown in Fig 1 and shaded curves repre-
sent jittered locations. In A2 — C2, solid lines show information, using knowledge of which
sample occurs at which sensor, dashed lines show information ignoring which of two sensors
measures which sample.

(TTF)

$4 Fig. Mutual information between location (£) and measurement (M) for encoding
strategies S(n; 1, 2) where the time between samples is 75, for each condition as indicated
by the arrow in Fig 6. Color code as in S3 Fig.

(TIF)

S5 Fig. Mutual information estimates for sampling at two sensors, as a function of the
spacing between them. The spacing used for all two sensor calculations in the main body is
shown as solid lines (regular spacing 2.96 mm), double spacing (5.92 mm) as dashed lines and
half spacing (1.48 mm) as dotted lines. Top row shows mutual information using knowledge
of which sample occurs in which sensor, bottom row shows mutual information neglecting
sensor identity. Conditions: fast flow A, slow flow B and boundary flow C.

(TTF)

S6 Fig. Mutual information estimates with smaller subsets of the data. The abscissa is the
reciprocal of the mutual information estimates over inverse number of samples per location.
Panels A, B and C correspond to the conditions fast flow, slow flow and boundary flow; coding
strategy is indicated at the top of each panel. Hollow blue and green circles represent mutual
information for the narrow- and wide grid. Solid lines represent least-squares fits. The intercept
with the ordinate represents the extrapolation of mutual information to the limit of infinite data.
(TTF)
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