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Abstract

An algebra <L, f, g> of languages over a finite alphabet
S {al,...,an} is defined with operations
f{Ll,...,Ln) =a;lyu..vay L, ua} and glL, ,.“,Ln) =2, L‘l TR TE I
and its first order theory is shown to be model complete. A character-
ization of the regular languages as unique solutions of sets of equa-
tions in <L, f,g> is given and it is shown that the subalgebra <R ,f,g>
where R is the set of regular Tanguages is a prime model for the theory

of <L, f,g>.






Let ¥ = {al,..,,an} be a finite alphabet and £* the free semigroup
with empty word A generated by . Let L[ be the class of all languages
over I, i.e., all subsets of *. We introduce two n-ary operations on
the Tanguages of L:

“F(Ll,“.,Ln) = all"l U.Lovay Lﬂ ey

g(Lla-cu,Lﬂ) = alLl U...,Uﬁnl.n

where a; Li denotes the language obtained by prefixing all the words of
L,i with the letter a.
Our first result is the following theorem which follows from

Theorem 3 of Mycielski and Perlmutter [3]:

Theorem 1: The first order theory of the algebra <L, f,g> is model

complete.

Proof: Let us define a simple bijection between L and the set of
infinite, oriented trees with nodes labeled from {f,g}, each node
having n successors. Given such a tree, label the edges emanating from
each node with the Tetters al through a, from teft to wight. Associate
with the tree the language consisting of all words of p* corresponding
to the consecutive labels of the edges of any path leading from the
root to a node labeled f. It follows that the algebra <L, f, g> is
isomorphic to the algebra R(_T of [3], where o specifies the two n-ary

function symbols f and g. Thus by Theorem 3 of [3], <L, f,q> is

model complete. ]

We now consider sets of equations for<[,f,q>, i.e., sets of
equations written solely in terms of the function symbols f and g

and variables X



-

Let us say that a language L is uniquely determined by a set of

equations E and a variable x iff E is satisfiable in <L, f, g> and

p
every assignment to the variables of E which satisfies E assigns

L to xp«

Lemma 1: If L is uniquely determined by some set of equations and a
variable, then L is uniquely determined by a set of equations E and Xy
where E has the unknowns Xis wen Xy and is of the form {Xi::ti c1l<i sm},

the ii'g being terms which are not variables.

Proof: Assume that L is uniquely determined by the set of equations D
and the variable Xp“ We define an equivalence relation, =, on the
variables appearing in D by

Xs = xj iff D ﬁ?xﬁ = xj is true in <L, f, g>.

From each equivalence class, we choose a representative, insuring that

xp is chosen as a representative of its class. We then replace all the

variables in D by their representatives, obtaining a set of equations D’

which is eqguivalent to D with respect to the remaining variables.

Using the isomorphism from Theorem 1 and Lemma B, Case I from [3],
we convert D' to an equivalent set of equations D'' = {x‘i ={
k
where the X 's are distinct variables and the tk‘s are terms which are
K

not variables. Now notice that the system D'' is satisfiable in <L, f, g>

= l<ksr?

for every assignment of the variables which do not occur on the left-hand
side of any equation of D' (see [ 2], formula (2)). Hence xp appears on
the left-hand side of some equation in D' . To finish the proof, we
substitute every variable of D' which does not appear on the left-hand
side of any equation by the variable xp. Finally, we rename the variables

to obtain a set of equations E of the desired form. [



"G

Our second theorem provides a characterization of the class of
regular languages (see eg. [2]) in terms of sets of equations in

<L, f,g>.

Theorem 2: The following are eguivalent:
(i) L is uniquely determined by some set of equations and a
variable in < L,f,g>,
(i1) L is uniquely determined by a set of equations E in unknowns
1> e Xy and the variable Xy where £ is of the form

):1<is<m} and 9; e (f.q] for each 1,
n

(iii) L is reqular.

Proof: We first show (i) #(ii). By Lemma 1, we may assume that L is
uniquely determined by EO = {xim‘i;u.i : 1<1i<m} and the variable Xy where
EQ has the properties stated in the lemma. From EO we will produce

-

a set of equations E of the form specified in (ii) in the following

way. Initially let E = EO‘ Then, given any equation of E of the
form xj = @(ul, ,".,uﬂ) where the ui's are terms and for some

K 1£i<§n,uk is not a variable, replace this equation with the two
equations x; = ¢ (Ups oously go Xgs Upyqs -on U ) and x, = up vhere i
is the least integer such that X does not appear in any equations
of E up to this point. We continue this operation as long as
feasible. Since terms are of finite depth, this process terminates
and it is apparent that it produces a set of equations E of the
required form which is equivalent to E with respect to the original

variables.



To show (ii) = (iii), we transform E into a finite automaton
M=<Q,z, 6,x1, F> accepting precisely the language L. Q, the set
of states of M,is defined to be the set of variables of E.

E = {al, .,.an} is the alphabet of M. &, the transition function, is
defined by S(staj) = Xij iff E has an equation of the form
Xy © @{xé s ... %s J. %, is the start state and F, the set of

, i
i n *

accepting states, is the set of those variables x, for which an

i

equation of the form X = f(xﬁ s eee Xy ) is in E. In view of the
1 n

definition of the operations f and g, it is obvious that M must accept
L, hence L is regular.

To see that (iii) # (i) it suffices to observe that given any
deterministic finite automaton M = <Q, 1, 6,x1, F> with Qc:{x15x2 -
and ¢ = {a‘, ...an} we can easily reverse the above construction,
obtaining a set of equations E such that E and Xq uniquely determine

the language L accepted by M. 1

Let R be the class of regular languages over E. Since R is closed
under tne operations f and g, <R, f, a> is a subalgebra of <L, f,g>. From

Theoren 2 we may easily deduce the following corollary:

Corollary 1: Every finite set of equations in f and g which has a
solution in <[, f,g> has a solution in <R, f,g>.
However, using [3] again, we obtain the following stronger

result:



Theorem 3: <R, f,g> is an elementary subalgebra of <L, f,g> and

is a prime model for its theory.

Proof: By the isomorphism of the proof of Theorem 1, <R, f,g> is

isomorphic to the algebra AQ of [3] where o is as before. Our result

follows from part (ii) of Theorem 3 of [3]. 0

In closing, let us mention a few open problems.

1. Is the theory of <[, f,g> decidable?

2. In 1], J. H. Conway defines and studies the operations:
p
3 .
= (L) = {w:a,wel}
8a1 1

which are existentially first order definable from f and g. Does the

. , 3 3 . . .
theory of the algebra <, T, 9s g <+ 3a 7 admit elimination of
[8 C
n n

quantifiers?
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