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Abstract

Alteration of metabolic pathways is a common mechanism underlying the evolution of new pheno-

types. Flower color is a striking example of the importance of metabolic evolution in a complex

phenotype, wherein shifts in the activity of the underlying pathway lead to a wide range of pig-

ments. Although experimental work has identi�ed common classes of mutations responsible for

transitions among colors, we lack a unifying model that relates pathway function and activity to

the evolution of distinct pigment phenotypes. One challenge in creating such a model is the branch-

ing structure of pigment pathways, which may lead to evolutionary trade-o�s due to competition

for shared substrates. In order to predict the e�ects of shifts in enzyme function and activity on

pigment production, we created a simple kinetic model of a major plant pigmentation pathway:

the anthocyanin pathway. This model describes the production of the three classes of blue, purple

and red anthocyanin pigments, and accordingly, includes multiple branches and substrate competi-

tion. We �rst studied the general behavior of this model using a naïve set of parameters. We then

stochastically evolved the pathway toward a de�ned optimum and analyzed the patterns of �xed

mutations. This approach allowed us to quantify the probability density of trajectories through

pathway state space and identify the types and number of changes. Finally, we examined whether

our simulated results qualitatively align with experimental observations, i.e., the predominance of

mutations which change color by altering the function of branching genes in the pathway. These

analyses provide a theoretical framework that can be used to predict the consequences of new

mutations in terms of both pigment phenotypes and pleiotropic e�ects.
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Introduction

Many complex phenotypes evolve through changes to the activity of metabolic pathways (Morrison

and Badyaev 2016; Nam et al. 2011; Pichersky and Gang 2000; Schuster et al. 2000; Strohman

2002). In addition to forming the basis for the extraction and transfer of energy within organisms,

metabolism contributes to phenotypes by producing essential cellular products such as structural

components, toxins, and pigments (Chen et al. 2014; Colón et al. 2010; Flowers et al. 2007;

Keller et al. 2005; Morrison and Badyaev 2017). Evolution of metabolic pathways is known to be

shaped by both the topological structure of pathways and the biochemical constraints of individual

enzymes (Dykhuizen et al. 1987; Morrison and Badyaev 2017; Nam et al. 2011). Furthermore,

the regulatory architecture governing pathway gene expression plays a vital role in the evolution

of pathway activity and the resulting alterations in phenotype (Braakman et al. 2017; Gompel

et al. 2005; Morrison and Badyaev 2017; Panettieri et al. 2018; Reed and Serfas 2004; True

et al. 1999; Wittkopp et al. 2003; Zhang et al. 2017). These properties make metabolic pathways

excellent systems to study the fundamental principles that underlie the genotype-phenotype map

for complex phenotypes.

A large body of theoretical work has been devoted to understanding the control of metabolic

pathways. Metabolic control analysis (MCA) arose from classical enzyme kinetics and solved the

problem of analyzing entire metabolic systems simultaneously, rather than focusing on individual

components in isolation (Cornish-Bowden 1995; Heinrich and Schuster 1996; Kacser et al. 1995).

These methods have been widely used to understand the behavior of metabolic pathways in both

basic and applied research (Chen et al. 2014; Colón et al. 2010; Hoefnagel et al. 2002; Schuster

et al. 1999, 2000; Stephanopoulos 1999). Still, few studies have used MCA to investigate the

evolution of metabolic pathways and the resulting phenotypes, and these have focused on simple

pathways with little or no branching (Heckmann et al. 2013; Rausher 2013; Wright and Rausher

2010). While the results point to predictable evolutionary patterns, such as the concentration of

�xed mutations in enzymes with the most control over pathway �ux, it remains unclear whether

these `rules' apply to the large and highly branched metabolic pathways common in biological
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systems. Such complex branched topologies are likely to generate trade-o�s due to competition for

substrates and enzymes (Dekel and Alon 2005; Dykhuizen et al. 1987), and thus may introduce

constraints on evolutionary trajectories (Guillaume and Otto 2012).

Although theory has not extensively examined the evolution of phenotypes arising from branch-

ing pathways, empirical studies can provide insight into the types of mutations that contribute to

evolutionary change. Evolutionary studies on experimental systems, such as carotenoid metabolism

in birds (Morrison and Badyaev 2016, 2018), various metabolic pathways in yeast (Wisecaver et al.

2014) and Drosophila (Flowers et al. 2007), and anthocyanin biosynthesis in �owering plants

(Smith and Rausher 2011; Streisfeld and Rausher 2009a,b), have demonstrated that causal mu-

tations can be drawn from several broad classes, such as regulatory vs. biochemical (structural)

and upstream vs. downstream. Depending on the genetic architecture, these classes tend to be

di�erentially favored during evolutionary trajectories, leading to detectable genomic �hotspots� for

phenotypic evolution (Cooper et al. 2003; Cresko et al. 2004; Esfeld et al. 2018; Martin and

Orgogozo 2013; Treves et al. 1998; Woods et al. 2006). Pleiotropic e�ects have commonly been

suggested as an explanation for these patterns (Gompel et al. 2005; Streisfeld and Rausher 2009b;

Wessinger and Rausher 2014) although other factors, such as target size and chromosomal location,

may also play a role (Arbeithuber et al. 2015). Determining how pathway structure gives rise to

these predictable patterns is critical for understanding the evolution of the phenotypes that result

from metabolic activity (Kuang et al. 2018; Wessinger and Rausher 2012b, 2014).

Flower color has proven to be a particularly useful model for studying the origin of novel phe-

notypes through metabolic evolution. Coloration in plants is primarily determined by the presence

of various pigment compounds, the most common of which are produced by the highly conserved

anthocyanin pathway (Fig. 1, S1). This pathway is part of the larger �avonoid biosynthesis path-

way, which produces an array of related �avonoid compounds, that includes the anthocyanins and

�avonols. These compounds play roles as pigments, sunscreens, stress response molecules, and act

as substrates for downstream reactions (Winkel-Shirley 2001). The network of enzymatic reactions

of the anthocyanin pathway gives rise to three principal classes of red, purple, and blue pigments

(the monohydroxylated pelargonidin, dihydroxylated cyanidin and trihydroxylated delphinidin, re-

4



spectively; Fig. 1, S1). Further downstream modi�cations of these basic building blocks result in

the diversity of colorful anthocyanin pigments found across the �owering plants.

Building on existing knowledge of this pathway, experimental work spanning several decades has

identi�ed genetic hotspots for �ower color evolution. For example, shifts among the three types of

anthocyanins consistently target two branching enzymes (F3'H and F3'5'H), whose activity deter-

mines the relative production of three anthocyanin precursors (DHM, DHQ, DHK, Fig.) (Streisfeld

and Rausher 2011; Wessinger and Rausher 2012b). These changes may involve structural mu-

tations that alter enzyme function (Wessinger and Rausher 2014), regulatory changes that shift

expression (Des Marais and Rausher 2010), or both (Smith and Rausher 2011). The observation

of repeated �xation of mutations at certain loci suggests a level of predictability in �ower color evo-

lution that may be explained by the underlying pathway structure. At a broad phylogenetic scale,

this genetic architecture may lead to evolutionary trends, such as the rarity of some �ower colors

(Ng and Smith 2018) and the highly asymmetric transition rates among phenotypes (Tripp and

Manos 2008). Nevertheless, testing such a relationship requires a theoretical framework that unites

the topology of the pathway with phenotypic evolution via changes in the function or expression of

pathway enzymes.

The present study takes the �rst step toward such a unifying framework by creating a mathemat-

ical model of the anthocyanin pathway based on classic enzyme kinetics along with a computational

pipeline for simulating evolution under directional selection. We use this framework to address four

key evolutionary questions: 1) What is the predicted steady-state activity of the anthocyanin path-

way based on its topology? 2) How does the pathway control (i.e., which enzymes determine �ux)

change during evolution toward a new phenotypic optimum? 3) Are certain loci and types of muta-

tions predictably involved in phenotypic evolution? 4) Do trade-o�s arising from pathway structure

constrain the evolution of pathway components? We hypothesize that the evolution of a new color

phenotype will require shifts in pathway control, accomplished by increasing or decreasing the activ-

ity of pathway reactions. Accordingly, mutations at loci with the greatest control are predicted to

be the greatest contributors to phenotypic transitions (Rausher 2013; Wright and Rausher 2010).

However, because of reticulations in the pathway created by the branching enzymes, we also expect
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that these transitions may lead to trade-o�s within and between branches of the pathway that

are under selection. The results of these simulation analyses will not only lay the foundation for

continued theoretical advances, but will also generate concrete, quantitative predictions that can

be tested in empirical systems.

Methods

Development and computational implementation of the mathematical path-

way model

We used the generalized rate law formulation of (Chou and Talaly 1977; Schäuble et al. 2013)

to specify rate laws for each enzymatic reaction in the pathway model (Supplemental text). This

formulation scales the Michaelis constant (KM , which relates to binding a�nity) for each enzyme-

substrate pair by those of competing enzymes to explicitly incorporate substrate competition. In

the absence of substrate competition, the rate law reduces to classic Michaels-Menten kinetics

(Chou and Talaly 1977; Schäuble et al. 2013). We chose to use irreversible Michaelis-Menten

kinetics, because in vivo measurements of �avonoid pathway dynamics have been described well

by an irreversible model (Groenenboom et al. 2013), but see (Halbwirth 2010; Halbwirth et al.

2006). Moreover, the irreversible form of the model reduces the required number of parameters

two-fold relative to the completely reversible equivalent (Schäuble et al. 2013).

Given that detailed kinetic studies are lacking for most anthocyanin pathway enzymes, we

designed a naïve model as a starting state to learn about the relative importance of di�erent model

parameters and the interplay between them. We chose values for catalytic constants and Michaelis

constants from a meta-analysis of enzyme properties in the BRENDA and KEGG databases (Bar-

Even et al. 2011; Kanehisa 2008; Schomburg et al. 2002). The model was initialized at a starting

state with all parameters of a certain type set to be equal. Values for Kcat (the catalytic rate

constant) were set to 14 s−1, the median of the distribution calculated in Bar-Even et al. 2011.

KM values were set to 0.013 mM , one tenth the median value of the empirical distribution to
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ensure that starting conditions of the model put the upstream substrate concentration well above

the KM of the �rst enzyme and all subsequent enzymes. Enzyme concentrations were initialized

to 0.001 mM , a value within the range of naturally-occurring protein concentrations (Miranda

et al. 2008). This model represents a naïve starting state, with no preference for any substrates,

allowing the �null� unbiased behavior of the pathway topology to be studied. Boundary conditions

of the model were imposed by using an upstream source that �ows into the pathway at a constant

concentration (0.01 mM) and sinks at the end of all branches. The sinks are encoded as simple

mass action processes with a single rate constant ksink (0.0005 M−1) that is the same for all sinks.

This process represents the di�usion of the pathway products away from the volume in which they

are synthesized, which is consistent with the physiological transport of anthocyanin pigments to the

vacuole (Petrussa et al. 2013; Poustka et al. 2007). We implemented this mathematical model

of the anthocyanin pathway in Python 3.6 using the Tellurium library (Choi et al. 2016) and the

Antimony (Smith et al. 2009) markdown language (see detailed description in supplemental text).

Evolutionary simulations between de�ned phenotypic states

We developed a custom Python library, called enzo (https://github.com/lcwheeler/enzo), to con-

duct stochastic evolutionary simulations of the pathway (see Supplemental text for details). Evo-

lutionary simulations are performed using the core PathwaySet object of enzo, which acts as a

wrapper for the Tellurium pathway model. Within the simulation framework, we randomly select

a single parameter from the model at each step and introduce a mutation with e�ect size ran-

domly sampled from a gamma distribution. Fixation events are determined based on a formula

that weights mutations by �tness e�ect size (see Supplemental text).

Given the structure of the pathway, mutations during these evolutionary simulations can alter

any of the enzyme parameters (KM , Kcat, and enzyme concentration Et). While these simulated

mutations are not modeled at the level of DNA substitutions, they have a close connection with

the kinds of variation found in natural systems. The KM and Kcat for each enzyme are determined

by its biophysical properties, which in turn are tied to its protein sequence (Bar-Even et al. 2011;

Kaltenbach and Tokuriki 2014; Khersonsky and Taw�k 2010). By contrast, enzyme concentration
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is controlled by regulation of gene expression and protein degradation (Cooper 2000), and in

the case of the anthocyanin pathway, regulation takes place largely at the level of transcription

(Quattrocchio et al. 2006). Thus, changes in KM and Kcat of anthocyanin pathway enzymes

likely occur through mutations in enzyme coding sequences (Johnson et al. 2001; Shimada et al.

2001) while changes in enzyme concentration evolve through mutations in cis-regulatory regions or

trans-regulatory loci (Sobel and Streisfeld 2013).

In our simulations, each enzyme has a single Et parameter (re�ecting the shared volume of all

pathway components in simulations), but can have multiple KM and Kcat values, depending on

the number of substrates. Changes in these parameters occur without correlated e�ects on other

parameters. For example, DFR (Fig. 1) can experience a mutation that improves its activity on one

substrate without changing activity on other substrates, consistent with the di�erent KM and Kcat

values for di�erent substrates that have been measured experimentally (Fischer et al. 2003; Katsu

et al. 2017; Miyagawa et al. 2015). While it might be biologically reasonable to assume some cost

of improvement on one substrate for activity on other substrates (Kaltenbach and Tokuriki 2014;

Khersonsky and Taw�k 2010), we surveyed the kinetic data for all multi-substrate anthocyanin

pathway enzymes in the BRENDA database (Schomburg et al. 2002) and were unable to detect

any consistent patterns of correlated changes, positive or negative. Nevertheless, our model could

be expanded to include correlated changes in future.

A total of 9,985 independent evolutionary simulations were run between the naïve starting state

and a new optimum, which we selected to be a blue-�owered state. We set the optimum as 90%

of the total steady state concentration comprising delphinidin, with a 10% tolerance. All other

concentrations were allowed to drift, subject only to the global constraint placed on total steady

state concentration of all species, which was held to within a 10% tolerance of that from the initial

starting state. These tolerance values are �exible arguments to the evolve function in enzo and can

be modi�ed to suit the needs of the user.
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Analysis of the simulated data

We designed a series of analyses to address the four questions outlined in the introduction. First,

in order to characterize the intrinsic behavior of the pathway, we used metabolic control analysis

(MCA), which was developed speci�cally for analyzing the control of �ux through metabolic path-

ways (Cornish-Bowden 1995; Heinrich and Schuster 1996; Kacser et al. 1995). The standard

approach in MCA is to calculate two properties for each pathway reaction: 1) the �ux and/or

concentration control coe�cients, which are the partial derivatives of each �ux/steady state con-

centration with respect to enzyme activity, and 2) elasticities, which are sensitivity coe�cients

calculated by taking the partial derivative of each reaction rate with respect to each substrate con-

centration. Together, these measures allow us to determine how pathway enzymes di�er in their

control over concentrations of �oating species (substrates and products) and how reactions vary in

their sensitivity to substrate concentration. We used the MCA tools in Tellurium (Choi et al. 2016)

to calculate control coe�cients and elasticities for our naïve model to assess how the structure of the

pathway relates to the steady-state pigment production. We applied the same tools in addressing

our second question regarding the changes in pathway control during evolution to a new optimum.

In this case, we repeated the MCA analyses on each evolved model and subtracted starting-point

control and elasticity matrices from the median-optimal matrices in order to quantify the shift in

control.

We next used the simulation data to identify the loci and the types of changes that contributed

to evolution toward the delphinidin optimum. For each of our simulations, we counted the num-

ber of �xation events involving each model parameter (e.g., enzyme concentration, Et, for DFR)

during the trajectories. Our enzo package also logged the selection coe�cients for each mutation

introduced during the simulations, and these were summarized across all trajectories to estimate

the distribution of �tness e�ects (DFE) for each model parameter.

Finally, we used the simulations to assess potential evolutionary trade-o�s arising from the

pathway structure. We �rst calculated mean Spearman correlation coe�cients (ρ) between all pairs

of �oating species as well as all pairs of model parameters (Et, KM , Kcat values) across all of
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the simulations. We also compared the distribution of parameter values after the evolutionary

simulation with the starting state in order to visualize these correlated changes in pathway activity.

Results

Mathematical model reveals behavior of anthocyanin pathway topology

Our naïve starting model, with all enzymes at equal concentrations and with equal kinetic param-

eters, yielded stable time-course dynamics (Fig. 2a) and resulted in a steady state with species

concentrations reaching into the low mM range (Fig. 2b). The steady state is characterized by

a bias toward products requiring the fewest biochemical reactions (kaempferol and pelargonidin),

resulting from the greater accumulation of these products early in the time-course (Fig. 2a). The

colored pigments pelargonidin, cyanidin, and delphinidin comprise 32.7% , 10.9% , and 6.6% of the

total steady state concentration, respectively (Fig. 2b). This chemical pro�le would likely result in

red or pink �oral coloration (Ng and Smith 2016a; Smith and Rausher 2011).

Metabolic control analysis of this naïve model indicated that pathway control is concentrated

in the upstream step of the pathway and in the branching enzymes that interact with multiple

�oating species. The �rst pathway enzyme, CHS, exerts strong positive control over all downstream

reactions and steady state concentrations (Fig. 3a), consistent with previous theoretical studies

(Rausher 2013; Wright and Rausher 2010). The control of the branching enzymes varies across

products in a manner re�ecting their position in the pathway. For example, F3'H has positive

control over cyanidin and delphinidin production, which both require its activity, and negative

control over pelargonidin, which does not require it (Fig. 3a). Similar patterns of contrasting

positive and negative control are seen for other branching enzymes, including F3'5'H, DFR, and

FLS. The �nal enzyme in the pathway (ANS) exhibits little control over any �oating species except

its substrates, a pattern consistent with its downstream position. The elasticity patterns were

similarly intuitive based on pathway structure. For example, CHI and F3H are highly sensitive to

the concentrations of their substrates. We also observed negative values due to competition, where,

for instance, the reactions involving substrates that compete with DHK (DHQ, DHM, Fig. 1; Fig.

10



S1) are negatively sensitive to DHK concentration (Fig. 3b).

Evolution towards delphinidin shifts pathway control

Our evolutionary simulations revealed that the evolutionary transition to delphinidin production

required the gain of pathway control by branches leading to or competing with delphinidin. Based on

MCA analyses of the 9,985 trajectories that succeeded in reaching 90% delphinidin without error (see

Supplemental Results), we observed that F3'H and F3'5'H, both required for delphinidin production,

sharply increased in their control coe�cients over all downstream substrates and products while

the competing enzyme that leads to �avonol production (FLS) lost control over pathway �ux (Fig.

3c,e). DFR shifted its activity to gain control over the �ux of DHM (the delphinidin precursor),

while DFR reactions involving competing substrates (DHQ and DHK) lost control over DHM �ux.

We found concordant changes in elasticities, with these enzymes becoming more sensitive to the

concentration of delphinidin precursors (DHM, LCD) and less sensitive to the competing substrates

(Fig. 3d,f). These patterns suggest that while the most upstream gene controls overall �ux, the

downstream branching enzymes control the type of pigment that is made.

Loci with greater pathway control are mutational targets

As predicted, we found that approximately 99% of mutations �xed during the simulations involved

F3'H, F3'5'H, DFR, or FLS (Table S1), the loci with strong control over delphinidin production.

These mutations are spread across all classes of parameters (KM , Kcat, and Et), (Fig. S4, Table

S1), but for some loci, are concentrated on particular parameters (Table S1 and Supplemental text).

Overall, mutations a�ecting all parameters for the branching enzymes show similar distributions

of �tness e�ects (DFE), from highly negative (s = −0.55) to highly positive (s = 0.45) (Fig. S3).

By contrast, the other pathway enzymes show narrow DFEs skewed towards negative �tness e�ects

(Fig. S3), re�ecting that these loci have little control on delphinidin production and that mutations

away from the original parameter values are largely detrimental. Across the 9,985 simulations, the

median selection coe�cient for �xed mutations was 0.044 (range, s = 2.4x10−6 to 0.43), with 90%

delphinidin production achieved with a median of 9 mutational steps (range = 3 to 80; Fig. 4c).
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Enzyme and substrate competition result in pleiotropic tradeo�s

Evolution toward the delphinidin optimum resulted in sharp and predictable trade-o�s in pathway

function and activity. Increased delphinidin production came at the cost of decreased production of

other pathway products, including the other two anthocyanidins and the three �avonols (Fig. 4d,e,

Fig. S2). These e�ects varied by the number of shared steps, such that compounds requiring the

fewest shared steps (namely pelargonidin and kaempferol) showed the strongest decreases. We also

observed trade-o�s across multiple enzymatic parameters for the loci under selection (F3'H, F3'5'H,

DFR, FLS; Fig. S5). For example, the Kcat values for DFR acting on the blue precursor DHM

were substantially improved while those for competing substrates (DHQ, DHK) were drastically

weakened, resulting in negative correlations (Fig. S5d).

Beyond these antagonistic relationships, we found cases of positive correlations in line with

selection toward delphinidin. For example, parameters a�ecting the same reactions (e.g. Kcat

and KM for DFR acting on DHK) are often positively correlated, whether they are coordinately

increasing (because they contribute to delphidinin production) or coordinately decreasing (because

they move �ux way from delphinidin) (Fig. S5). Similarly, we observed positive correlations between

delphinidin production and its two immediate precursors (DHM and LCD) (Fig. S5). Such positive

correlations were also seen for other products (pelargonidin, cyanidin) and their precursors (DHK

and LCP; DHQ and LCC, respectively). Overall, these patterns reveal how selection on a single

pathway product has reverberating e�ects across all products and precursors due to the changes in

amount and activity of their shared enzymes.

Discussion

In this study, we used a computational approach to probe the fundamental rules governing evolu-

tion of �oral pigmentation. We constructed a mathematical model of the anthocyanin biosynthesis

pathway, which produces a suite of red, purple, and blue pigments. Evolving this model from an

unbiased starting state toward a blue-pigmented state revealed the pathway components that are

capable of shifting �ux between pigment types. These components, in particular the concentration
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and activity of branching enzymes, were not only the primary mutational targets in our simula-

tions, but also constitute the evolutionary hotspots for transitions among �ower color phenotypes

in natural systems. We also observed strong trade-o�s inherent to the branched pathway topology,

which result in predictable shifts in pathway control that are likely to constrain evolution of �oral

pigmentation. As discussed below, these results have direct implications for connecting color phe-

notypes with metabolic pathway function and for understanding the evolution of �ower color more

broadly.

Intrinsic bias toward red coloration

Our naïve starting state model uncovered an inherent bias toward the production of red pelargonidin

pigments, an interesting �nding given that they are not the predominant pigments in natural

systems. Since this naïve model was based on equal concentrations and equal kinetic parameters

for all enzymes, we infer that the tendency towards pelargonidin production (at nearly two-fold

the amount of the other two pigments) relates to the topology of the pathway. Speci�cally, the

production of pelargonidin requires �ve enzymatic steps while the others, cyanidin and delphinidin,

require six and seven steps, respectively. This topological bias results in the early accumulation

of pelargonidin in the time-course of the model. Consistent with this notion, a similar pattern is

observed in the �avonols, where the mono-hydroxylated counterpart of pelargonidin (kaempferol)

is produced in greater quantities than the other two �avonols (Fig. 4d,e).

Although we lack an angiosperm-wide dataset on �oral pigments, multiple surveys indicate

that pelargonidin pigments are generally rare compared to the other classes of anthocyanins. For

example, in their survey of 530 species, Beale et al. (Beale et al. 1941) estimated the proportions

of taxa containing pelargonidin, cyanidin, and delphinidin-based �oral pigments to be 19%, 40%,

and 50%, respectively. In a more extreme example, studies in the tomato family suggest that as

few as 0.3% of the roughly 2800 extant species produce pelargonidin (Ng and Smith 2016b; Ng

et al. 2018). This pattern is not easily explained by genetic mechanisms, as the loss-of-function

mutations which often lead to red �owers (Smith and Rausher 2011; Wessinger and Rausher 2015)

would instead favor an accumulation of species producing pelargonidin. A more viable explanation
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is selection driving species away from the pelargonidin-pigmented state, possibly due to pleiotropic

e�ects on the production of the dihydroxylated �avonol quercetin, which is important for UVB

protection (Ryan et al. 1998, 2002). By developing a quantitative model linking pathway function

to both classes of �avonoids, this study will provide new avenues for testing such hypotheses in

future.

Hotspots of color evolution

Shifts in anthocyanin production, and in turn, �ower color, are commonly observed across an-

giosperms, making these transitions a valuable system for studying the predictability of evolution

at the molecular level (Streisfeld et al. 2011; Wessinger and Rausher 2012b). A growing suite of

studies has examined evolutionary transitions between �ower colorphenotypes, and these implicate

two branching enzymes, F3'H and F3'5'H, as the key players determining the type of anthocyanin

produced (Des Marais and Rausher 2010; Smith and Rausher 2011; Streisfeld and Rausher 2009b;

Wessinger and Rausher 2015). For example, the downregulation of F3'h (with 30-fold to 1000-fold

lower expression) was responsible for a switch from blue to red pigmentation in at least four evo-

lutionary cases (Wessinger and Rausher 2012b, 2014). Indeed, a survey of the literature to-date

(Table S3) reveals that all �fteen natural examples of transitions between pigment typesinvolved

F3'H, F3'5'H or both, while two of these involved mutations in DFR as well. Likewise �fteen of

the seventeen examples of engineered pigmentation shifts involved F3'H and/orF3'5'H (Table S3),

making thesethe major genetic targets for arti�cially modifying �ower hue(Tanaka Yoshikazu and

Brugliera Filippa 2013).Our evolutionary simulations from a red, mostly pelargonidin starting-

state to a blue, mostly delphinidin ending-state recovered a similar targeting of changes to F3'H

and F3'5'H (Fig. 4e; Table S1; Fig. S4). Mutations at these loci ranged from those altering kinetic

properties (enzyme function) to those altering enzyme concentration (analogous to expression) (Fig.

4e, Fig. S4). We observed a mean 5.3-fold increase in F3'H concentration, which combined with a

mean 5.3-fold increase in the Kcat for DHK and a mean 1.04-fold tightening of the KM for DHK,

yielded an overall 29-fold mean increase in F3'H activity (Fig. 4; Fig. S4). Changes in F3'5'H

activity followed a similar pattern (Fig. 4; Fig. S4). The action of these genes as hotspots for color
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evolution in nature and in our simulationsmakes sense because, while the upstream loci control �ux

across the entire pathway, F3'H and F3'5'H control the relative production of the three pigment

precursors (DHK, DHQ, and DHM). The preferential �xation of mutations at F3'H and F3'5'H

is also in line with theoretical work showing disproportionate occurrence of large-e�ect bene�cial

mutations at enzymes with the most control (Fig. 3, (Rausher 2013)). Overall, the striking simi-

larity between these empirical and theoretical studies points to a predictable relationship between

the structure of the pathway and loci that underlie phenotypic evolution (Wessinger and Rausher

2012a).

In addition to these major shifts in F3'H and F3'5'H expression and function, we found �xed

changes at two other loci, DFR and FLS, which have been implicated less often in natural systems

(Table S3). In accordance with selection for increased �ux toward delphinidin, DFR improved

its activity on the precursor (DHM) roughly 4-fold (on average) during the simulations. Such a

matching of �ux through the pathway with enzyme activity has been documented in the Iochroma

system, where DFR from the red species prefers the red precursor DHK while DFR from the blue

species prefers DHM (Smith et al. 2013). In this case, the evolution of DFR to track the primary

precursor (as determined by F3'H and F3'5'H activity) was interpreted as selection for optimal

pathway �ux (Smith and Rausher 2011; Smith et al. 2013). Our simulations also recovered

�xed mutations that reduced the activity of FLS and directed �ux away from �avonol production.

Although this gene has been shown to in�uence �oral anthocyanin production in one empirical case

(Yuan et al. 2016), its general importance as a locus of color evolution remains poorly understood.

Evolutionary trade-o�s in color production

One of the primary motivations for this study was to understand how the structure of the antho-

cyanin pathway relates to the phenotypic space for �ower color and the mechanisms for moving

through that space. Previous surveys have revealed gaps in this color space, i.e. phenotypes that are

theoretically possible but not observed in nature (Ng et al. 2018). For example, most taxa produce

primarily a single type of anthocyanin, and of those that produce two types, none include the two

extremes of the hydroxylation spectrum (pelargonidin plus delphinidin). One explanation for these
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complex patterns is the presence of trade-o�s, which could constrain the course of evolution (Ches-

more et al. 2016; Wagner and Lynch 2008). Our study took the �rst step toward modeling these

trade-o�s by tracking the changes in pathway function and output during an adaptive walk. These

simulations uncovered signi�cant `ripple e�ects' of selection for delphinidin, which were closely tied

to pathway structure. For example, evolution towards the blue state negatively a�ected production

of the other anthocyanins, but the decrease was stronger for the red pelargonidin pigments. This

pattern is predicted based on the fact that �ux toward delphinidin required higher activity of F3'H

and F3'5'H, sapping the DHK precursor for pelargonidin. These types of trade-o�s could account

for the focusing of production onto one or two anthocyanins as well as the inaccessibility of a phe-

notype comprising the two extremes (pelargonidin plus delphinidin). Nonetheless, in reaching 90%

delphinidin production, we did not observe the complete loss of pelargonidin as is seen in nature

(Ng et al. 2018). This discord may re�ect several factors that are not incorporated into our simple

model, such as the co-regulation of pathway enzymes by shared transcription factors (Albert et al.

2014; Mol et al. 1998).

Conclusions

This study provides independent support for in�uence of pathway topology on the distribution

of functional mutations for evolving anthocyanin pigmentation. We envision that our model will

be valuable for basic research aimed at understanding how selection acts on complex traits as

well as applied work focused on �ower pigmentation (Sasaki and Nakayama 2015; Shimada et al.

2001) or other phenotypes controlled by metabolic pathways. We note that the basic computational

approach developed here could be applied to any enzymatic pathway, opening the door to a broader

exploration of how the elements of pathway topology (e.g., length, degree of branching) in�uence

the evolutionary process. It is also straightforward to expand the model to include reversible

reactions, multiple `containers' (cellular compartments), pleiotropic mutations, complex selective

optima and other features common in biological systems. In the case of the anthocyanin pathway,

our ongoing and future research aims to connect this computational model with in vivo activity
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of the pathway and organismal phenotypes, with the ultimate goal of understanding how these

molecular mechanisms interact with selection in shaping phenotypic diversity.
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Fig 1. Diagram of the simpli�ed anthocyanin pathway model. The simpli�ed model
is depicted as an enzyme-centric pathway diagram, including the key anthocyanin and �avonol
branches (see Fig. S1 for classical substrate-centric diagram). Grey circles are enzymes. Arrows
indicate in�ux and out�ux of �oating species. Arrow placement indicates the linkage: e.g. DHM
to LCD to del. Blue arrows lead to delphinidin, red arrows lead to pelargonidin, purple arrows
lead to cyanidin. Inset shows general form of the irreversible rate law (accounting for substrate
competition): S1 is concentration of substrate 1, Kcat,1 is the catalytic constant (turnover rate) for
substrate 1, KM,1 is the Michaelis constant for substrate 1, the sum is over all other KM values and
concentrations for competing substrates (Schäuble et al. 2013). A complete set of rate laws for all
pathway reactions are available in the supplemental text. Floating species abbreviations are: PCoA
(P-Coumaroyl-CoA), cha (chalcone), nar (naringenin), DHK (dihydrokampferol), DHQ (dihydro-
quercetin), DHM (dihydromyricetin), que (quercetin), kam (kampferol), myr (myricetin), LCD (leu-
copelargonidin), LCC (leucocyanidin), LCD (leucodelphinidin), pel (pelargonidin), cya (cyanidin),
del (delphinidin). Del, cya, and pel are the anthocyanidins, which are glycosylated to form the vari-
ous anthocyanins. Kam, que, and myr are the �avonols. Enzyme abbreviations are: CHS (chalcone
synthase), CHI (chalcone isomerase), F3H (�avanone-3-hydroxylase), F3'H (�avonol-3'hydroxylase),
F3'5'H (�avonoid-3'5'hydroxylase), DFR (dihyro�avonol-4-reductase), FLS (�avonol synthase), ANS
(anthocyanidin synthase). The suite of glycosylating and methylating enyzmes (e.g. UF3GT, RT,
OMT, (Winkel-Shirley 2001)) that convert the core three anthocyanidins (shown) into the wide
range of anthocyanins are not included, for simplicity.
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Fig 2. Kinetic behavior of the naïve starting state model. a) time-course simulation
of the model showing anthocyanidin concentrations over time: pelargondin (red; highest saturation
curve), cyanidin (purple; middle saturation curve), and delphinidin (blue; lowest saturation curve).
b) Steady state concentrations of each �oating species in the naïve model. The intermediate �oating
species (e.g. nar and DHM) have a negligible concentration at steady state.
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Fig 3. Pathway control shifts to achieve a bias toward the delphinidin branch. a)
Heatmap of concentration control coe�cients for all pathway reactions (except for �sinks� at bound-
ary conditions) in the naïve starting state model. b) Heatmap of elasticity matrix for all pathway
reactions (except for di�usion �sinks� at boundaries) in the naïves starting state model. c) Median
optimal concentration control coe�cient matrix, taken over all 9,985 simulations. d) Heatmap of
median optimal elasticity coe�cient matrix, taken over all 9,985 simulations. e) Di�erence between
the two control coe�cient matrices (median optimal end-state matrixminus starting-state matrix).
f) Di�erence between the two elasticiity matrices (median optimal end-state matrix minus starting
state matrix). In heatmaps, abbreviated �oating species identi�ers are used for each unique �oating
species in the model (see Fig. 1). Each unique reaction in the pathway model is denoted using the
format �Enzyme(�oating species)�, for example ANS(LCD) represents the reaction resulting from
ANS acting on LCD as a subtrate. For di�erence matrices: purple indicates a negative shift in
control and green indicates a positive shift.

30



Fig 4. Simulated evolution of delphinidin production. a) Trajectories through delphini-
din space. Dark blue line shows mean trajectory, averaged across all 9,985 simulations. Shaded
blue area shows envelope containing 95% of trajectories. Top limit is maximum value at each step,
bottom limit is minimum value. b) Distributions of optimal (end-point) steady state concentrations
for each �oating species in the model shown as a boxenplot. c) Distribution of simulated trajectory
lengths (median length is 9 steps). d) Inset shows outline of the starting state model, in which all
parameters of a given type are equal (see methods). e) The mean values for the model parameters
from all delphinidin-optimized end points are shown on the pathway diagram. Enzyme circle size
is proportional to concentration. Arrow line thickness is proportional to mean Kcat/KM . The area
of squares at the end of branches are proportional to steady state concentrations of the indicated
�oating species produced by a model initialized with mean parameter values.
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Fig 5. Pleiotropic trade-o�s in pathway products. Heatmap of mean Spearman corre-
lations between concentrations of anthocyanins (pel, del, and cya) and �avonols (kam, que, myr)
across all 9,985 evolutionary trajectories. Abbreviations are the same as in Fig. 1. A full correlation
matrix for all �oating species and correlation matrices for model parameters are shown in Fig. S5.
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