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 The late Eocene Florissant lake shales are host to the most diverse early freshwater 

diatom flora known in the fossil record.  These 34.05 ± 0.08 Ma deposits also yield well-

preserved terrestrial and aquatic fossils that represent life during the approach to the final phase 

of cooling that followed the thermal maximum of the early middle Paleogene.  

 This study begins with a synthesis of the earliest (pre-Neogene) records of non-marine 

diatom genera from the Florissant and 8 other fossil localities.  Nearly all pre-Neogene diatom 

genera are extant genera, and genus richness increased through time.  Cumulative richness for 

the Florissant diatoms is 33 genera, 14 of which are first-time recorded occurrences.  Florissant 

has 18 more genera than any of the 6 older floras examined.   

 The next component of the study is a detailed floristics assessment of the Florissant 

diatoms conducted at the Clare's Quarry site.  A total of 20 freshwater diatom genera are 

described and imaged, 8 of which are first occurrences in the geologic record.  Among these 20 

genera, 4 new species and 2 new varieties are named.  As many as 48 taxa show affinities for 

known modern species.  In total, 55 taxa are described and illustrated.   

 The study concludes with an integrated examination of the paleolimnology of Florissant 

lake at Clare's Quarry from sedimentological characteristics of host lithologies, autecological 

preferences of the most similar modern diatom taxa (modern analogs), and the occurrences of 
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associated macrofossils.  Evidence is found in support of an anoxic hypolimnion and a deep 

bathymetry for the depocenter.  The interpreted diatom paleoecology places this plankton-rich, 

open-water lake site within range of major stream outflow that introduced lake marginal and 

non-lake-dwelling diatoms, and plant and insect macrofossils into the lake.  Slow suspension 

settling of diatoms, fine clays, and airfall tuffs characteristic of deep lake sedimentation is 

interrupted by fines of episodic distal turbidites. 

 This investigation demonstrates the power of integrating data from allied sub-disciplines 

to better characterize paleoenvironments and their inhabitants.
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INTRODUCTION 

 

 Diatoms, being single-celled photosynthetic algae, are important indicators of chemical, 

physical, and biologic parameters of modern aquatic ecosystems throughout the world.  Fossil 

freshwater diatoms are also used to interpret changes in water conditions in ancient lakes as old 

as Miocene.  Fossil diatoms are especially useful tools in tracking changes in paleoclimate.  

Studying the rich assemblage at Florissant allows one to not only document the diversity and 

history of the diatom groups in deeper time, but it also provides an opportunity to gain a better 

understanding of the paleolimnology of Florissant lake.  Florissant is a world-famous locality 

that has had much study of the generally terrestrial macrofossils that are so excellently preserved 

in the lake sediments, but there is still little that is actually known about the paleoenvironmental 

conditions within the lake, itself.  This study will examine the diatom flora and then use that 

flora, along with abiotic lines of evidence, to better understand the ancient lake.   

 

 

Project Objectives 

 

 The specific objectives of this research project are to re-examine the literature on the 

Florissant lake basin history, to identify the component taxa of the Florissant fossil diatom flora, 

to place this flora into a geochronologic context and compare it with known freshwater diatom 

floras from this early time period, to describe and image each Florissant diatom taxon, to 

determine what possible habitats the diatoms might represent, to relate the diatom occurrences to 

the different host lithologies, and to integrate the lithologic and stratigraphic evidence with all 
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the paleoecologic indicators to describe the paleolimnological parameters for the Clare's Quarry 

site.   

 

Organization of the Dissertation 

 

 Four over-riding questions posed by the research objectives are addressed in Chapters 1 

through 4.  Note that the manuscripts for Chapters 2 through 4 are composed and formatted 

according to requirements for publication in peer-reviewed publications, as indicated.  The 

principal questions, the ways they are addressed in each corresponding chapter, and their 

significance in the broader context are discussed below.  

 

Chapter 1. 

 What new interpretations about the history of the Florissant lake basin can be discerned 

from a re-examination of the published literature? 

 This chapter presents a synthesis of the major conclusions of historically published 

literature on the Florissant paleo-valley and lake system; and, on the basis of the integration of 

these data, considers alternative views from those commonly presented in the current literature.  

For example, this new examination uncovers the possibility that the Florissant paleo-lake could 

have had an extensive areal extent and duration that would exceed the estimates that are now in 

publication.  This opens up the opportunity for the Florissant Formation to become an even more 

significant fossil site that contains a wider array of habitats and covers a time period in which 

evolutionary changes among like taxa might be recorded. 
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Chapter 2. 

 How does the Florissant fossil diatom flora compare with other early non-marine diatom 

assemblages?  

 This chapter provides a synthesis of the Florissant fossil diatom genera and the flora of 8 

additional localities that cumulatively represent the complete record of published taxa from the 

earliest appearance of non-marine diatoms in late Cretaceous through late Oligocene.  The results 

demonstrate the greater genus-richness of the Florissant diatom flora in the context of the other 

known early floras.  Although the record suggests a general increase in diatom diversity during 

the Eocene epoch, it is recognized that optimal conditions for preservation may have played the 

more important role in this fossil record.  Nevertheless, diatom taxa from these Eocene sites are 

contributing a large number of new taxa for study and comparison with those from other sites.  

The Florissant and other Eocene localities are extending the geologic ranges of many extant 

freshwater diatom lineages by millions of years. 

 Publication: Has been through pre-review process for Micropaleontology. 

  

Chapter 3. 

 How diverse is the Florissant fossil diatom flora?  What taxa are represented, and what 

are their morphological characteristics?  Of the taxa present in Florissant lake sediments, which 

are extant; which have only been recorded in other fossil sites; and which have never before been 

described? 
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 This chapter is an illustrated descriptive account of each diatom taxon identified to genus, 

species, or variety (wherever possible) from the Florissant flora preserved at the Clare's Quarry 

site.  The taxa are presented in systematic order.  Comparisons with known taxa are provided, 

and new taxa are named.  This study provides to the diatom community the first described and 

illustrated account of the taxa observed at the Florissant locality.  These data will now be 

available for researchers world-wide to compare with taxa from modern and ancient floras.  This 

work also provides irrefutable evidence for the often-cited assessment that these 34 million year-

old Florissant diatoms have affinities to modern taxa. 

 Publication: To be submitted for publication in Bibliotheca Diatomologica. 

 

Chapter 4. 

 What do the Florissant fossil diatoms in combination with their respective host lithologies 

indicate about the nature of the paleo-lake and its catchment area? 

 This chapter examines and integrates the lithology and stratigraphy data with ecological 

information from the fossil diatoms and the occurrences of associated macrofossils to 

characterize the paleolimnological parameters of Florissant lake at the Clare's Quarry site.  This 

study demonstrates the value of using an integrated approach to addressing questions that have 

both biotic and abiotic implications.  The findings that include deep lake bathymetry, anoxic 

hypolimnion, slow sedimentation rate, encroachment of terrestrial mud deposits, airfall origin of 

tuffs, and the range of habitats that bordered the lake are strengthened by multiple lines of 

evidence.  This approach, applied to other Florissant sites could provide a set of stratigraphic 
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sections whose paleolimnological parameters have been determined.  This will create a 

patchwork of data points that can be used to more fully interpret the history of the lake system.    

 Publication: In preparation for submittal for publication in Palaeogeography, 

Palaeoclimatology, Palaeoecology. 

 

 

Future Directions for Research 

 

 My future research on the Florissant Formation will be concerned with obtaining data to 

address additional aspects of the history of the paleo-lake.  The following topics are of particular 

interest to me. 

 

Diatom floristics of the "middle shale" 

 Future investigations of the "middle shale" unit of the Florissant Formation at several 

sites within the Florissant Fossil Beds National Monument would allow comparisons of 

lithology, stratigraphy, mineralogy of any airfall tuffs, and the diatom flora with those aspects of 

the "lower shale" at Clare's Quarry.  Of particular interest are the "Original" Scudder site on the 

northwest end of Big Stump Hill and the MacGinitie-3 site north of Lower Twin Rocks Road. 

 Preliminary examination of samples from the section at the Original Scudder site reveals 

species of the genus Aulacoseira that have not yet been recognized at Clare's Quarry.  These are 

abundant in particular intervals.  Excellent SEM images attest to this.  A detailed floristics 

account of the diatom flora at this site would potentially shed further light on paleolimnological 
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parameters of this portion of the lake.  More broadly, such a study would further inform 

paleodiatomists of the early occurrence of additional species of Aulacoseira and add to our 

understanding of this long-ranging freshwater lineage. 

 The importance of a new study of the MacGinitie-3 site is based on the controversial 

observation in archived slides from that site of the diatom genus Stephanodiscus, along with a 

range of additional species that have not been documented elsewhere in the Florissant sections.  

A thorough new examination of the diatoms in this site would help to resolve the mystery 

surrounding this set of archival slides.  Of greater significance, should the genus Stephanodiscus 

be confirmed from the efforts of a new study at Florissant, it would revolutionize the current 

belief that this genus did not evolve until latest Miocene or Pliocene time (Krebs, 1994).  Such a 

first-occurrence of this genus would extend the fossil record for Stephanodiscus by nearly 29 

million years.  

 

Revisiting the stratigraphy of the Florissant Formation 

 A renewed field effort to examine the exposures throughout the entire region, both within 

and beyond the Monument boundary, could potentially answer questions about the stratigraphic 

order of the "lower," "middle," and "upper shale" units and could confirm the structural and 

stratigraphic relationships among these units and with the granite and Wall Mountain Tuff.  The 

incorporation of seismic and gravity surveys and water-well logs would enhance the likelihood 

of defining the geometry of the basin and tracking the volcanic and tectonic influences on the 

history of the lacustrine system.  Perhaps evidence for a local vent for the pyroclastics in the 

Florissant beds will be discovered. 
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 Potential parallels could be evaluated between the Florissant lake basin and other areas of 

late Eocene to middle Oligocene magmatism that are associated with extensional tectonics in the 

Wet Mountains region of Colorado (Klein et al., 2010).  Such work could potentially provide a 

more accurate perspective on how Tertiary continental lake basins in volcanically and 

tectonically active areas evolved in the southern Rocky Mountain region.   

 

High resolution analysis of diatom microlaminae 

 It has become evident during the current study that, while the "paper shale" on outcrop 

that can be split to within <1/3 mm thickness is generally interpreted as couplets containing a 

single discrete diatomite lamina, it has been shown in petrographic thin section that these 

diatomite laminae are not homogeneous in their microscopic architecture.  A high-resolution 

study of the diatom-rich microlaminae of the fossiliferous laminated shales is needed to clarify 

the depositional relationships among the various diatom taxa, the diatoms and the detrital 

clay/ash, the sapropel, and the macrofossils in the Clare's Quarry section.  This could show 

whether or not the diatoms were deposited in discrete microlaminae that reflect planktic seasonal 

blooms or in lenticular or disrupted microlaminae that reflect mixing with clays prior to settling 

to the lake floor.  The relative thickness of the more discrete bloom laminae could indicate 

seasonal events, and the chronological order of diatom taxa occurrences could suggest 

successional trends. 

   Although caution must be exercised when using taphonomic assemblages to represent 

living diatom populations, insights gained through this type of inquiry could further our 

understanding of trends suggestive of the life habits of these ancient relatives of modern diatoms.  
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More could be revealed about the potential relationship of diatoms and the preservation of leaves 

and insects in the Florissant locality that could potentially be more broadly applied to other 

Tertiary lacustrine fossil deposits.  This could advance our perspectives on the many factors that 

play a role in fossil taphonomy. 
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LITERATURE SYNTHESIS OF THE FLORISSANT ANCIENT LAKE 

SETTING 

 

Mary Ellen Benson
 

 

Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA 

 

 

Background 

 

 The late Eocene Florissant Formation in central Colorado is a world-famous fossil 

deposit that has been extensively studied over the past century.  Previous investigators have 

assembled a body of knowledge that continues to be cited by subsequent workers.  The following 

is a review of this seminal literature particular to the lake origin, maximum original areal extent, 

stratigraphy, age, volcanic source for tuffs, duration as a lake, type of lake and bathymetry, 

paleoclimate and topography, paleo-elevation, tectonic history of the basin, and hypotheses as to 

the processes of fossil preservation. 

 The purpose of this review is to present published interpretations about the general 

features and development of the Florissant lake basin to provide the reader with a general 

overview of the regional setting; and, where appropriate, to offer alternative perspectives, which 

have also been integrated into the discussion of Chapter 4. 
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Florissant fossil Lagerstätte: geological significance and location 

 

 The late Eocene Florissant Formation is a world-famous fossil Lagerstätte (“mother-

lode”) that contains extremely well-preserved paleobotanical and fossil insect and invertebrate 

assemblages from lacustrine facies, and mammal fossils from the associated fluvial deposits.  

The importance of this deposit is in, not only the extraordinary fossil preservation, but also its 

unique position in geologic time at the terminus of a long period of transition from the warm 

global climates of the Paleocene/Eocene thermal maximum (Prothero, 1994; Zachos et al., 2001).   

 The Florissant Formation is known from a relatively small area in the vicinity of the town 

of Florissant in Teller County, Colorado (Figure 1), west of Colorado Springs. 
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Figure 1.  Location of Florissant, Colorado (small rectangle). 

 

 

 

 

 

 

 



13 

 

 

1
3
 

 The Florissant Formation extends northwest and south of the town of Florissant (Figure 

2).  Principal fossil sites are located within the Florissant Fossil Beds National Monument, 

established in 1969, which is to the south of Florissant on County Highway 1.  The detailed 

paleontologic and paleolimnological studies featured in Chapters 2, 3, and 4 of this dissertation 

were conducted at the "Florissant Fossil Quarry" (referred to in this study as Clare‟s Quarry), a 

privately-owned commercial operation that is located just south of the town of Florissant and 

west of County Highway 1 (Figure 2). 
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Figure 2. Location map of the Clare‟s Quarry study site showing the maximum estimated 

present-day subsurface extent of the Florissant Formation and the boundary of the Florissant 

Fossil Beds National Monument. 
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Florissant paleo-lake setting from previous studies 

 

Origin of the lacustrine basin  

The Florissant paleo-lake system is interpreted as having formed as a consequence of the 

damming of a southward flowing fluvial drainage by lahars that flowed from volcanic terrane on 

the south and west (Evanoff et al., 2001).  The lithology of the damming material consisted of 

both fine volcanic lahars and coarse volcanic rubble generated by periodic eruptions of the 

Guffey volcano that is part of the Thirty-nine Mile volcanic field southwest of the modern areal 

extent of the Florissant Formation (Meyer, 2003; Epis and Chapin, 1974).  

 

Areal extent 

 Early efforts to define the areal extent of the Florissant Formation have resulted in 

generalized maps that exaggerate the area of actual surface exposure.  The principal example of 

this that persists in the literature is the geologic map by Wobus and Epis (1978) (Figure 2) that 

shows the entire area within the topographic valley trend as Florissant Formation.  It is 

demonstrated by Niesen (1969) and Evanoff et al. (1992) that, in fact, Quaternary alluvium and 

gravels cover most of the area mapped by Wobus and Epis (1978) as Florissant Formation.  The 

more detailed mapping of Niesen (1969) and Evanoff et al. (1992) demonstrates that the lake 

deposits are exposed only in ridge and hill slopes, trenches, and roadcuts.  Subsurface data have 

not been exploited to identify the formation's extent.  Although it is shown by Evanoff et al. 

(1992) that the Florissant lahar mudstone and fluvial sand unit is the topographically lowest of 
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exposures in the valley floor within the National Monument, the extent of the lacustrine beds has 

not been determined.    

  There are conflicting views among investigators as to the paleo-lake size and geometry 

and, consequently, the original position and nature of the shoreline.  While some believe the lake 

was limited to the present-day topographic trend (Evanoff et al., 2001; Meyer, 2003), others 

conclude that the lake area was larger than present-day topography would suggest (MacGinitie, 

1953; McLeroy and Anderson, 1966).  Meyer 's (2003) estimates for the areal extent of the 

paleo-lake of approximately 30 km
2
 (18.6 mi.

2
) uses the generalized dimensions (1.5 km wide 

and 20 km long) indicated by the Wobus and Epis (1978) map.  Meyer (2003) further states that 

the present-day outcrop area of the Florissant Formation indicates that there has been minimal 

structural change in this area since the Eocene.  MacGinitie (1953, p. 4) states, “The present 

outline of the (Florissant) beds is due to complex faulting and subsequent erosion, and does not 

represent, in any sense, an old lake margin.”  

 It is reasonable to conclude, therefore, that the original areal extent of the lake paleo-

basin is unknown; and that, as a result, much information about the original topography and the 

nature of the catchment area is unknown.   

 

Stratigraphy 

 Exposures of Florissant lake deposits within the Florissant Fossil Beds National 

Monument and surrounding area have been informally assigned to three units on the basis of 

outcrop characteristics.  These units are referred to as the “lower shale,” “middle shale,” and 

“upper shale” (Evanoff et al., 2001), each being recognized in separate exposures that do not 
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show unambiguous contacts with the other units.  These units are, therefore, separated from each 

other both stratigraphically and geographically.  All three units contain finely laminated shales 

referred to as “paper shales”, blocky shales, and mudstones that alternate with volcanic tuff beds.  

The finely laminated “paper shales” are described as couplets of submillimeter thick sheets of 

diatomite, tuff, and smectite clay (Weilbacher, 1963; McLeroy and Anderson, 1966; and O‟Brien 

et al., 2002). 

 Reference to these unique exposures by names that indicate vertical (therefore, implying 

chronologic) order suggests a certain depositional history that would benefit from further work to 

identify marker horizons.  Seismic surveys would be helpful in delineating the basin fill and in 

searching for lithologic horizons to correlate. 

 

Late Eocene age  

 A mean radiometric age of 34.05 ± 0.08 Ma for the Florissant Formation was determined 

with 
40

Ar/
39

Ar single-crystal sanidine laser-fusion analysis from four tuffs from the "upper shale" 

and one tuff from the "middle shale" from locations within the Monument (McIntosh and 

Chapin, 2004).  Additionally, mammal teeth and bones from brontotheres and Mesohippus 

recovered from the fluvial deposits that underlie the middle shale are consistent with the North 

American Mammal Age (NALMA) of Chadronian (Worley, 2004; Prothero, 2004) that places it 

in the late Eocene.  This has been further corroborated by additional mammal fossils recovered in 

the Florissant Formation (Lloyd et al., 2008).  

 

Source of the volcanic units in the Florissant Formation 
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 According to McIntosh and Chapin (2004), the source of the radiometrically dated 

volcanic tuffs in the "upper shale" and "middle shale" of the Florissant Formation is unknown for 

two principal reasons: there is neither a geochronologic nor a mineralogic match.  The 34.05 Ma 

mean age of the Florissant tuffs is inconsistent with any of the dated ignimbrites in the region.  

The mean radiometric age for the Guffey andesites is 36.1 Ma; and the Thirty-nine Mile 

Andesites are 35-36.5 Ma (McIntosh and Chapin, 2004).  These ages pre-date the Florissant 

radiometric age by at least 1 million years. 

 Compositionally, the Florissant tuffs from the "middle" and "upper shales" that were 

radiometrically dated in the McIntosh and Chapin (2004) study are inconsistent with the Guffey 

andesites and the ignimbrites of the Thirty-nine Mile volcanics.  The feldspar phenocrysts of the 

Florissant tuffs are dominantly plagioclase and those of the Guffey/Thirty-nine mile field are 

dominantly sanidine (McIntosh and Chapin, 2004).  The work by McIntosh and Chapin (2004) 

shows that the source for the intraformational Florissant tuffs is not likely to be the 

Guffey/Thirtynine mile field, but is yet, undetermined. 

 

Duration of the lake 

 An estimate of 2,500 –5,000 years for the duration of the lake was made by McLeroy and 

Anderson (1966) on the basis of observations from “middle shale” sites in the Florissant 

Formation.  This estimated duration period was determined by counting the diatomaceous 

(white) laminae in petrographic thin sections and attributing each to an annual diatom bloom.  

An exact count of each diatomaceous lamina would require the careful collection and preparation 

of thin sections throughout the entire exposure of middle shale to account for the inclusion of 



19 

 

 

1
9
 

frequent but non-uniform additions of pyroclastic material and non-bedded mudstone units that 

pervade the middle shale section; and, furthermore, the careful examination of each lamina is 

necessary to exclude ash laminae that are also light-colored.  Although it is true that this level of 

intensive analysis was done in the study by McLeroy and Anderson (1966), it is uncertain as to 

the amount of vertical section that was examined in this way.  Their approach would, however, 

provide a reasonable assessment of duration for the unknown portion of the middle shale 

examined.  It can only be surmised that the counts were then extrapolated to the overall thickness 

of the middle shale, providing an approximation of the minimum duration of the middle shale 

where the thicknesses had been measured.  As for the duration of a potentially larger lake 

system, such estimates can only be deduced from broader-ranging data.   

 Alternative estimates for the duration of the lake are based on the 35-36.5 Ma radiometric 

age of the lower member of the Thirty-nine mile Andesite (McIntosh and Chapin, 2004) that is 

credited with having dammed the drainage to form the lake (Epis and Chapin, 1974).  This 

breccia complex of predominantly fragmental intermediate to mafic rocks covers approximately 

2,600 km
2
 to an average depth of 150 m and possibly also assisted in forming the Antero lake 

basin (Epis and Chapin, 1974).  If the initial development of the Florissant lake occurred at 35-

36.5 Ma, the earliest lake sediments would have been deposited as much as one million years 

before the origin of the dated tuffs from the "middle shale" and the "upper shale" Florissant units. 

 This would extend the life of the entire lake system, now represented only by the 

preserved and exposed Florissant beds, to at least one million years, and possibly to as much as 

2.45 million years of duration.     
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Type of lake and bathymetry  

 Samples from five exposures of "middle shale" and "lower shale" of the Florissant 

Formation were petrographically examined by McLeroy and Anderson (1966).  These deposits 

were interpreted as being characteristic of a lake that was permanently stratified with no mixing 

of top and bottom waters on the basis of the preservation of laminations, the absence of evidence 

of scour or bottom turbulence, and the exclusion of benthic organisms (McLeroy and Anderson, 

1966).  The absence of benthos, the presence of pyrite, and the excellent fossil leaf and insect 

preservation attest to the likelihood that the hypolimnion was consistently anoxic and, therefore, 

inhospitable to bottom feeders and infauna (McLeroy and Anderson, 1966).  Permanent 

stratification would occur as a result of either lack of turbulent mixing or density instabilities that 

are insufficient to mix vertically adjacent water masses (Cohen, 2003).  It was recognized by 

McLeroy and Anderson (1966), that many modern subtropical lakes experience some overturn 

despite the apparent minimal seasonal temperature fluctuations.  As an alternative to thermal 

stratification, McLeroy and Anderson (1966) attributed the lack of mixing in Florissant paleo-

lake to chemical stratification that resulted in denser bottom waters due to increased salinity in 

the hypolimnion (monolimnion) compared with less saline waters of the epilimnion 

(mixolimnion).  The mechanism for this proposed increase in bottom-water salinity was the 

release of salts from the substrate, referred to as endogenic meromixis (Cohen, 2003).  This 

increase in total concentration of dissolved ions can include cations of sodium, potassium, 

calcium, and magnesium; and anions of chloride, carbonic acid, carbon dioxide, and sulfate 

(Cohen, 2003).  In open-basin lakes, the outflow rate would keep the solute concentrations in 

equilibrium (Cohen, 2003).  A build-up of these ions in the bottom-waters would be more likely 
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to occur in closed-basin lakes, and such concentrations would result in the precipitation of 

evaporate minerals (Cohen, 2003). 

 In this examination of the Florissant lake sediments at Clare's Quarry, the lake is 

interpreted as sufficiently deep to have a basinal (profundal) floor that remained below storm 

wave base.  This is indicated by the following features: the apparent lateral continuity of bedding 

thickness, absence of erosional contacts, lack of disruption of finely laminated beds, and 

excellent preservation of fossils.  These same observations are evidence that the lake, if it 

overturned at all, experienced only incomplete seasonal or annual mixing in the upper water 

column, never overturning the waters of the hypolimnion.  This is further shown by the 

secondary evidence of pyrite nodules and framboids in the sediments that indicate anoxic 

bottom-water conditions.  The anoxia would be compatible with the high organic influx into the 

lake whose respiration would have depleted the oxygen and elevated the levels of carbon dioxide 

in the bottom-waters.  The findings of this study do not support the hypothesis of the permanent 

chemical stratification proposed by (McLeroy and Anderson, 1966), as there is no mineralogic 

evidence for concentrations of mineral salts in the bottom-waters of the Florissant paleo-lake at 

Clare's Quarry.  Alternatively, if the Florissant paleo-lake were a very deep lake and permanently 

stratified, temperature-driven density stratification mechanisms could have played a role in the 

isolation of the hypolimnion and the consequent anoxia.  An example of a deep subtropical 

meromictic lake that maintains a temperature-driven density stratification is Lake Tanganyika 

(Plisnier et al. 1999).  In Lake Tanganyika, the mechanical energy from wind is insufficient to 

overcome temperature-driven density stratification, and a permanent thermocline exists that 

prevents mixing below about 100-200 meters (Plisnier et al. 1999). 
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Paleoclimate, topography, and elevation 

 On the basis of terrestrial paleobotanical evidence principally from the "middle shale," 

Florissant lake has been interpreted as a high-elevation, low-relief intermontane lake (Gregory 

and Chase, 1994; Evanoff et al., 2001) with a warm temperate to subtropical climate (Meyer 

2003; Leopold and Clay-Poole, 2001).  Paleo mean annual temperature has been estimated using 

the CLAMP method (Wolfe, 1995) as 12.8 ± 1.5 °C, with a mean annual precipitation of 72 ± 31 

cm with 57 ± 16 cm during the growing season (Gregory and McIntosh, 1996).  The NLR 

(nearest living relative) method gives an estimate of mean annual temperature as no lower than 

17.5°C (4-6.8° warmer than the CLAMP method) (Leopold and Clay-Poole, 2001).  Integrated 

leaf and pollen records suggest that the area experienced moderate summer rainfall and mild, dry 

winters (Leopold and Clay-Poole, 2001). 

 Estimates of elevation for the vegetated slopes surrounding the paleo-valley include those 

of MacGinitie (1953) (based on nearest modern relatives to the fossil flora of the "middle shale") 

that range from 300 to 900 meters.  More recent studies are based on lapse rates with temperature 

decreases of 1°C per 1,000 meters of elevation gain.  These estimates using the lapse rates 

established for the fossil flora produce a range from 1,900 to more than 4,100 meters (Meyer, 

2003) for the paleo-elevation of Florissant.   

 

Tectonic history of the modern Florissant valley 

 The tectonic history of the present-day Florissant valley is not well-known, and questions 

of the stratigraphic relationships among the three informal lacustrine units ("lower shale," 
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"middle shale," and "upper shale") of Evanoff et al. (2001) are largely unanswered.  Faults have 

been delineated by several workers (MacGinitie, 1953; Niesen, 1969; and Evanoff et al., 1992).  

Two important questions about the tectonic history are relevant to this study: (1) was there 

faulting in the Florissant lake valley prior to and during the deposition of the lake shales; and (2) 

was there post-depositional normal faulting that created a patchwork of lake sediment remnants 

preserved in grabens? 

 The Florissant lake valley was interpreted by MacGinitie (1953) to have undergone 

syndepositional faulting.  The following data were interpreted as supporting this view.  

MacGinitie (1953) showed a complexly faulted Florissant valley with a series of high-angle 

normal faults that formed grabens that were filled with preserved Florissant sediments.  He 

envisioned these sediments as in-filled synclines within the grabens, to which he attributed the 

dips and structural relationships that he observed in the field.  MacGinitie (1953) shows 

moderate to high-angle dips on basal breccias, lake beds, and the overlying rhyolites in areas 

within and proximal to the valley.  He interprets the timing of major tectonic deformation to have 

been subsequent to the extrusion of the Thirtynine Mile volcanic units and earlier than the 

eruption of the trachyte that overlies the Florissant lake beds and caps the hills just southwest of 

the town of Florissant.  This timing would be concurrent with the deposition of the lake 

sediments.   

 Evidence for post-depositional faulting includes many additional lines of evidence.  

McIntosh and Chapin (2004) document the mid to late Eocene period of volcanism in the central 

Colorado volcanic field as being from 32 to 38 Ma.  This was followed during the Neogene by 
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block faulting and erosion in the region, which resulted in the scattered nature of modern 

outcrops of units of similar age and composition (Steven, 1975; Epis and Chapin, 1974).   

 Geologic mapping by early investigators in the area has confirmed faulting within the 

modern Florissant valley.  Most recently, the geologic map of the Florissant Fossil Beds National 

Monument by Evanoff et al. (1992) shows five north to south trending inferred fault traces along 

the western flank of the modern Florissant valley.  Additionally, three more are variously 

oriented near the southern end of the Monument on the east and west sides of the valley center 

and in the vicinity of Lower Twin Rocks Road.  No offset is noted in the field along these 

possible faults. 

 Niesen (1969) mapped the geology of the modern Florissant valley designating the 

relatively few scattered Florissant Formation outcrops along flanking hillsides and exposures that 

emerge in the valley floor from beneath the more extensive Quaternary cover.  Niesen showed 

the approximate location of three high-angle normal faults that transect the area and can be 

interpreted to form an eastward tilted graben that preserved the Florissant Formation in its 

present topographic configuration (See discussion of Hanneman et al. (1996) seismic data 

below).  On Niesen‟s 1969 map, two (F-1 and F-2) faults run generally north to south on the east 

side of the valley and have down to the west offsets.  The third fault (F-3) is northwest to 

southeast trending in the area to the west of the modern valley and has a down to the northeast 

offset; it is inferred where it intersects the drainage at the southern end of the mapped extent of 

the valley just south of where the Thirtynine Mile Lower Andesite becomes prominent at the 

surface.  None of these faults is represented on the Evanoff et al. (1992) map; however, when 

Wobus and Epis compiled data for their 1978 USGS geologic map of the area, they incorporated 
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Niesen‟s F-3 fault as an inferred fault without showing any offset relationship.  Regionally, this 

fault is on trend with the Pulver Gulch-Rocky Gulch Fault to the northwest and parallels four 

additional northwest to southeast trending faults that transect the Thirtynine Mile volcanic field 

to the southwest (Wobus and Epis, 1978).  Although Wobus and Epis (1978) did not incorporate 

Niesen‟s F-1 and F-2 faults into their map, these two faults are on trend with a normal fault that 

is south of the mapped termination of the Florissant Formation within the valley.  This normal 

fault also has a down to the west offset and forms the east flank of Wrights Reservoir at the 

upper end of the northeast flowing arm of Fourmile Creek (Wobus and Epis, 1978).  

 From field observations, MacGinitie (1953) concluded that the present areal extent of the 

Florissant Formation is only a fragment of the original deposit, with no way of knowing how 

extensive this lake system might have been; he observed no thinning of the beds toward the 

margins of the modern mapped areal extent; and he speculated that the Florissant beds may have 

covered a very much larger area, observing that their present outline is a result of late Tertiary 

faulting in the region. 

 Further support for tectonic readjustment within the modern Florissant valley is provided 

by shallow seismic refraction and reflection surveys conducted over several areas within 

Florissant Fossil Beds National Monument by Whitehall Geogroup, Inc. and discussed in 

Hanneman et al. (1996).  The seismic survey differentiated valley-fill sediments from Pike‟s 

Peak Granite at the basement and in surface exposures.  Across the portion of the main Florissant 

valley in which Grape Creek trends north-south, a refraction line from the Petrified Forest area 

on the west of County Highway 1 shows that the Tertiary fill thickens toward Grape Creek to the 

east side of the valley (Hanneman et al. (1996).  Analysis of reflection data from the 
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southwestern part of the Monument, also on the west side of the main valley, indicates that the 

thickness of the Florissant Formation increases in the direction of Grape Creek to the east of the 

main valley (Hanneman et al., 1996).  In the southeastern area of the Monument in the vicinity of 

Lower Twin Rocks Road, refraction data show that a Tertiary paleovalley exists south of the 

eastern fork of the Grape Creek drainage; and once again, the sediments indicate a wedge-shaped 

valley fill that thickens from east to west, in contrast to the surveys that cross the main Florissant 

valley.  The published image of this seismic line (Hanneman et al., 1996) was examined, and  a 

thickness estimate of the valley-fill sediments of from 45 m on the thinner east side to 90 m on 

the thicker west side was calculated (Tien Grauch, pers. comm.).  And lastly, reflection data from 

the Barksdale Campground area northeast of Lower Twin Rocks Road suggest that a Tertiary 

paleovalley is situated to the east of the northeast trending portion of the Grape Creek stream 

valley (Hanneman et al. (1996).  The placement of Niesen‟s (1969) F-1 and F-2 faults is 

coincident with the location of the thickness trends observed in the seismic data.  For example, 

the F-2 fault that is interpreted as down to the west allows for the asymmetric preservation of in-

filled sediment in a wedge shape having the thick side adjacent to the up-thrown granite wall on 

the steep east flank of the Florissant valley.  Also, on the east side of the valley across from the 

Petrified Forest is an active spring in granite grus surrounded by quaking aspens situated along 

the fault trace of Niesen‟s F-2.  

 Examination of the groundwater source in the modern Florissant basin points to fracture 

systems in the granitic bedrock as the primary aquifer (Mast, 2007).  Several seeps and springs 

within the Florissant Fossil Beds National Monument are fed by groundwater that is delivered to 

the surface through fractures in the granite.  An example of one in the Monument is described 
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above on the east side of the valley from the Petrified Forest.  From recent compilations of water 

well data along the present-day valley immediately south of the Monument boundary, it is 

evident that domestic well-water is being produced from a system of fractures that cut both 

granite and the valley-fill shales that exist at depth (George Whitney, pers. comm., 2011).   

Furthermore, the juxtaposition of granite overlying shale in some of these wells gives additional 

strength to the likelihood of faults with measurable displacement.  The virtual separation of two 

parts of the mapped extent of the lake beds to the south of the Monument boundary by a drainage 

divide consisting of granite further suggests tectonic adjustment.        

 On the basis of these field observations of faulting, fracturing, and the abrupt thickness 

changes shown from seismic data, it is reasonable to agree with MacGinitie (1953), McLeroy 

and Anderson (1966), and Niesen (1969) that tectonic activity within the Florissant valley has 

resulted in the preservation of only remnants of the original Florissant Formation; and, therefore, 

much of the footprint and sedimentary record of the original lake basin is missing.    

 

Explanations for extraordinary fossil preservation 

 McLeroy & Anderson (1966) were among the first to describe sedimentary and 

stratigraphic evidence from the Florissant lake beds that points to the common contributing 

factors for excellent macrofossil preservation: minimal transport distance, early burial, burial in 

extremely fine sediments, accumulation in an anoxic setting, and lack of disturbance by physical 

or biological agents.  These observations strongly support deposition in a relatively deep-water 

position within an isolated hypolimnion. 
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 Additional observations of the exquisite nature of the fossil leaf and insect preservation at 

the fossil sites have led to other taphonomic hypotheses.  The most recent concept invokes 

bacterial and planktic diatom biofilm as trapping agents for leaves and insects.  They are 

envisioned as floating mats that are coated by the mucus and protected from degradation prior to 

sinking into an anoxic hypolimnion where they are preserved as fossils (Harding and Chant, 

2000, O‟Brien et al., 2002, and O‟Brien et al., 2008).  Such a hypothesis offers a process by 

which the leaves and insects could have been captured and delivered intact to the anoxic depths 

before burial.  The absence of diatoms in other well-preserved fossil leaf and insect deposits has 

not been addressed by proponents of this method.  The likelihood of diatoms, bacteria, and other 

algae in the periphyton along the lake shores and shallows of streams being in close proximity 

with deciduous leaves that are released in the fall suggest a greater potential opportunity for them 

to create cohesive leaf clusters.  High resolution analysis is needed that maps the diatom flora in 

the diatomite microlaminae, the associated detrital clays, and the plant leaves to establish a better 

understanding of the nature of their relationships.  The seasonality of the diatom blooms needs to 

be established as it relates to the timing of leaf accumulation. 

 

 

Conclusions 

 

 This body of data offers reasons to consider that the areal extent of the original Florissant 

lake system could have well-exceeded that of the present-day outline of the Florissant Formation.  

Field relationships and structural, seismic, and water-well log data attest to the tectonic 
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instability of the region, giving credence to the proposal that the known limits of the Florissant 

Formation represent only a remnant of the original fluvio-lacustrine system, now preserved in 

late Tertiary down-dropped fault blocks.  Future studies on the paleolimnology of the larger 

Florissant lake system would benefit from additional examination of these data. 

 While the lower andesite of the Thirtynine Mile volcanic field is credited with being the 

probable damming structure at the southern end of the fluvial drainage that created the lake, the 

geochronology and volcanic mineralogy of the tuffs within the Florissant Formation support the 

conclusion that the intraformational pyroclastic deposits are not from the Guffey/Thirtynine Mile 

volcanic field, as formerly proposed, and that the source is unknown.  Additional support for this 

conclusion is provided for the Clare's Quarry tuffs in Chapter 4. 

 The radiometric age of the tuffs interpreted as the dam at the outflow of the lake provides 

a new sense for the possible duration of the lake system that extends it from the previous 

estimates of 2,500 to 5,000 years for the "middle shale" to from 1 to 2.45 million years. 

 The biofilm macrofossil preservation model needs further examination to address some 

of the unresolved relationship issues as to the timing and proximity of leaf accumulation and 

planktic and benthic diatom blooms.   

 It is acknowledged that, as is common in geologic and paleontological studies, much 

evidence is missing and can never be recovered.  Although this review may not provide 

conclusive new data, it provides background for the discussion of the Florissant paleolimnology 

in Chapter 4.  Furthermore, it offers a survey of the data already in the literature that may open 

the door to new approaches in the quest for fresh clues to the history of this lake system, the 

basin dynamics, and the relationships to regional periods of volcanic and tectonic activity. 
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ABSTRACT 

 Recent studies of the non-marine diatom assemblages from Eocene deposits in North 

America extend the fossil record of several extant freshwater diatom lineages.  While the 

findings of these studies agree with the previously predicted timing of origin for major 

morphological diatom groups, these accounts increase the number of first-occurring genera from 
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that of  the former fossil record of non-marine diatoms.  Among the recently-studied sites 

discussed here are the early and middle Eocene deposits in Canada, dated respectively at 52 and 

>42 Ma, that provide the first published evidence of an early pulse in the post-Cretaceous 

radiation of freshwater diatoms.  In addition, a survey of previously reported fossil diatoms from 

the 34 Ma lake sediments of the Florissant Formation in central Colorado, supplemented by 

additional taxa from the current examination of that flora, has resulted in the first-known 

occurrences of many extant diatom genera.  In total, the Florissant Formation contains the most 

diverse (genus-rich) early freshwater diatom flora on record, which suggests a second pulse in 

freshwater diatom radiation during pre-Neogene time that contributed to the rich taxonomic 

diversity of today.   

 An overview of the pre-Neogene non-marine diatom biochronology from published 

records and from recent original work is presented.  Central to this contribution are two geologic 

range charts that synthesize these data.  With utilization of the geologic range charts, the pre-

Neogene non-marine (fresh and brackish water) diatom floras from the 9 published localities, 

supplemented by the latest findings from the Florissant Formation and other Eocene sites, are 

easily compared in composition and taxon-richness at the genus level and higher.  Cumulatively, 

the Florissant fossil diatom investigations yield a total of 33 freshwater diatom genera.  This 

number exceeds by 20 genera all other known non-marine diatom-bearing Eocene and older 

deposits.  The Florissant diatom flora consists of taxa with decidedly modern affinities, has 

superior diversity (taxon-richness), and yields the first-reported occurrence in the geologic record 

of 14 freshwater genera.   
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 From the 9 featured pre-Neogene (>23.8 Ma) sites, genera of centric, araphid, biraphid, 

and monoraphid morphologic groups are represented.  Although the first occurrences in these 

deposits must be treated as apparent first occurrences due to the innate incompleteness of the 

fossil record, such occurrences confirm that species of many of the modern non-marine diatom 

genera had evolved prior to the end of the Eocene (33.7 Ma). 

 It is anticipated that this synthesis of the pre-Neogene non-marine diatom floras will 

provide to the greater research community necessary paleontological data for interpreting the 

true geologic ranges of several diatom lineages.  Perhaps such data will generate insights to 

diatom phylogenetics that may lead to a greater understanding of their evolutionary histories.  

Further research could potentially relate changes in diatom forms to global events that include 

climate shifts. 

 

 

INTRODUCTION 

Organization 

 Central to this study on the early biochronology of non-marine diatoms are two geologic 

range chart illustrations that synthesize the generic lists of diatom occurrences from the 9 

published pre-Neogene localities throughout the world.  The discussion presents the rationale for 

the study, a review of the diatom fossil record, a paleoclimate context for trends in diatom 

diversity, major taphonomic processes that influence completeness of record, and the potential 

future use of fossil data in diatom phylogenetic research.  This section is followed by a detailed 

review of the published pre-Neogene non-marine diatom floras that includes the locality 
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descriptions, age, nature of each deposit, methods, and taphonomic constraints affecting the 

quality of the samples for each locality.  The age data provided in the original descriptions of 

each site are re-evaluated in the context of revisions to Cenozoic epoch boundaries and updated 

radiometric age assignments.  The significance of these findings to our understanding of early 

non-marine diatom biochronology is summarized. 

 

The Impetus for this Investigation 

 The course of late Mesozoic through Cenozoic radiation, evolution, and extinction of 

non-marine diatom lineages is not well-established due in great measure to the sparseness of the 

geologic record.  The late Eocene Florissant freshwater diatoms presently under investigation in 

central Colorado, along with early and middle Eocene freshwater floras from additional sites in 

North America, are greatly advancing our knowledge of early Cenozoic non-marine diatom taxa 

and potentially will foster interpretations of the evolution and extinction of species in the context 

of global events. 

 In support of an apparent response by diatom floras to large-scale processes is the 

coincident timing of observed increases in marine diatom species (Spencer-Cervato, 1999); 

species turnover (Barron and Baldaulf, 1995), and variability in size range of frustules (Finkel et 

al., 2005) with global climate change (Miller et al., 2009).  Similarly, freshwater diatom diversity 

shows parallels in timing with increases in marine diatom diversity observed for the Neogene 

floras (Krebs, 1994).  This study suggests paracontemporaneity of increases in the number of 

non-marine genera during the Paleogene with the rise in marine diatom species diversity that 

initiated in early and middle Eocene and built through late Miocene (Spencer-Cervato, 1999).  
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Global processes, such as climate change, that impacted nutrient availability in marine settings 

(Finkel et al., 2005), could have had a collateral effect on aquatic continental settings. 

 The geologic range chart is a graphic synthesis in which first-occurring freshwater diatom 

taxa from the late Eocene Florissant Formation are shown within the context of the known record 

of pre-Neogene freshwater diatoms.  It is a goal of this study, that these data, shown within a 

geochronologic framework, will promote greater discussion about the potential interplay 

between the course of freshwater diatom evolution and coincident global events. 

 

 

THE STATE OF THE ART OF DIATOM BIOCHRONOLOGY 

The Geologic Significance of Diatoms   

 Diatoms are microscopic, single-celled, photosynthesizing, golden-brown algae that live 

in marine, brackish, and freshwater systems.  They also inhabit soils and live on a variety of 

substrates that are exposed to light and moisture or moist air.  Modern diatoms are abundant and 

widely distributed within an array of aquatic habitats throughout the world and show great 

sensitivity to ecological variation (Barron, 1997).  On the whole, diatoms are key agents of 

global biotic productivity that fluctuates in response to global climate change (Scherer et al., 

2007; Barron and Baldauf, 1995).  Diatoms form bipartite, siliceous cell walls (frustules) that 

may be preserved in sediments for millions of years.  They are useful in biostratigraphic, 

paleoenvironmental, and evolutionary research due to their rapid rate of evolution, complex 

morphology, and wide global distribution (Harwood and Nikolaev, 1995; Bradbury, 1999).   
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Diatom Biochronology  

 The siliceous exoskeletons of marine diatoms have been found as fossils in rocks as old 

as early Jurassic (~190 Ma) (Rothpletz, 1896; 1900); yet, the earliest documented freshwater 

diatoms are from deposits only as old as early Cretaceous (~140 Ma) (Harwood and Nikolaev, 

1995; Harwood et al., 2007). 

 The marine diatom record for the last 110 million years is well-established due to deep-

sea drilling and is utilized in studies of evolution, paleobiogeography, and paleoceanography 

(Yanagisawa and Akiba, 1990; Yanagisawa, 1996).  Although the geologic record provides no 

direct evidence to show that marine diatoms existed before early Jurassic, estimates based on the 

rate of evolution of ribosomal genes suggest that diatoms originated near the Permian-Triassic 

boundary (~240 Ma) (Kooistra et al., 2003).  The combination of fossil morphological data with 

molecular genetic sequencing data suggests a more conservative age estimate of between late 

Triassic (~221 Ma) and early Jurassic (~190 Ma) for the earliest diatoms (Julius, 2007).  More 

recent molecular results from Brown and Sorhannus (2010) indicate that the diatom lineage 

evolved sometime near the Devonian-Carboniferous boundary (~354 Ma).  When comparing the 

fossil record with genetic data, it must be kept in mind that genetic speciation will have occurred 

before sufficient morphological differences are recognized that would distinguish separate 

lineages (Philippe et al., 1994).  Also, much of the early history of marine diatoms may have 

been lost to the dissolution of silica in seawater or by the absence of a biomineralized structure 

(hard cell wall) in the early forms (Harwood, 1999).  Regardless of the uncertainties surrounding 

the timing of diatom origins, the fossil record provides evidence that marine diatoms began to 

radiate by the early Cretaceous (~140 Ma) (Harwood and Nikolaev, 1995; Harwood et al., 2004). 
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 Primarily on the basis of marine diatoms, it has been estimated that, during Cretaceous 

through Paleogene time, diatom genera were evolving at the rapid rate of 1.63 genera/m.y., with 

an extinction rate of 1.29 genera/m.y. (Strelnikova, 1990).  This rate increased during Neogene 

time with a new genus evolving every 100,000 to 300,000 years (Barron and Baldauf, 1995).  A 

study by Theriot et al. (2006) in Quaternary lake deposits demonstrates that new diatom species 

could have evolved in as little as 4,000 years.  Such a rapid rate of evolution of species would 

provide markers for tracing these changes in ancient continental deposits. 

 In contrast to the rich marine diatom fossil record, non-marine diatoms from geologic 

deposits older than Neogene are relatively rare throughout the world, generally occurring 

sparsely in South Korea, Mexico, India, Canada, and the western United States.  In general, the 

pre-Neogene sites that are described in the literature contain relatively few taxa, with 

assemblages ranging from 3 to 12 genera.  It is uncertain as to whether this paucity of fossil non-

marine diatoms in pre-Neogene deposits is a result of limitations on silica frustule preservation in 

original depositional settings, the diagenetic remineralization of opaline frustules into amorphous 

non-skeletal biogenic silica or into opal-CT or quartz in older continental sediments, or the lack 

of preservation of representative diatom-bearing geologic units.  However, on the basis of the 

molecular data of the diatom lineage, it is not likely that such a delay in the appearance of fossil 

forms was due to the actual timing of the evolution of frustule-bearing freshwater diatoms.  In 

the early pre-Neogene, there are few unambiguously non-marine diatom-bearing Cretaceous or 

subsequent Paleogene sites on record.  Published reports of localities from the Paleogene-

Neogene boundary and younger describe more taxon-rich floras.  Paleocene records are not 
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known; however, the Eocene epoch is proving to be a time of transition in which diversity in taxa 

underwent major increases. 

 

Factors that Influence the Continental Diatom Fossil Record 

 Broad influences of climate and tectonic stability produce the environmental settings that 

are optimal for continental diatoms to flourish and evolve (Bradbury, 1999).  Secondly, 

environmental conditions in the post-mortem setting will determine the preservation of the 

diatom frustules (Stoermer and Smol, 1999). 

 Diatom Diversity in the Context of Global Climate Change 

 Although caution must be used when drawing parallels between the timing of diversity 

events of non-marine diatoms and those of marine diatoms, it is interesting to note that the non-

marine record assembled in this study shows major increases in the number of genera at times 

broadly coincident with peaks in the diversity of marine diatoms.  Two such increases in non-

marine diatom diversity correspond with the marine diversity peaks that occurred in middle 

Eocene (50-45 Ma) (Sims et al., 2006) and late Eocene to early Oligocene (38-22 Ma) 

(Strelnikova, 1990).  These increases in marine diatom diversity are turnover events that are 

associated with global cooling (Barron and Baldauf, 1995; Scherer et al., 2007).  

 It has been proposed by Scherer et al. (2007) and Barron and Baldauf (1995) that times of 

rapid evolutionary turnover in marine diatom species coincide with periods of major rapid 

cooling at high latitudes or major reorganization of ocean surface-water circulation due to 

changes in continental positions.  A proposed explanation for this rapid turnover is that cold 

ocean waters suppress competition from calcareous plankton such as coccolithophorids (Scherer 
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et al., 2007), enabling marine diatoms to flourish.  The high rate of extinction and rise of new 

species of marine diatoms was accompanied by a greater provincialism in the high latitude 

marine diatom assemblages (Barron, 1997). 

 On a smaller scale than that of the marine turnover trends, continental (non-marine) 

diatom species evolution and extinction during the Neogene are linked to variability in climate 

(Starratt, 2007) and tectonically dynamic settings that promote geologic stability of lake basins in 

which endemic forms evolve (Bradbury, 1999).  An example from Neogene deposits 

demonstrates speciation in the freshwater diatom assemblages at Tule Lake, California, that track 

gradual cooling and drying trends across the Pliocene-Pleistocene boundary (Bradbury, 1991; 

1992).  Similarly, examples of the impact of warming trends on freshwater diatom speciation are 

also known.  A late Quaternary example suggestive of climatic influence on freshwater diatom 

evolution is provided by the morphological shift of Stephanodiscus niagarae Ehrenberg to an 

endemic species S. yellowstonensis Theriot and Stoermer in Yellowstone Lake, Wyoming, over 

the period from 13.7 to 10.0 Ka that corresponds with a shift to a warmer climate (Theriot et al., 

2006).     

 The middle and late Eocene continental deposits that yield the bulk of the freshwater 

diatom fossil data are partial records of the initial 25 million year period of gradual global 

cooling from warm, tropical climates of the early Eocene thermal maximum “hot-house” 

conditions to the “ice-house” conditions that brought about polar ice sheets in Oligocene and 

Miocene time and eventually resulted in our modern global climate (Zachos et al, 2001; Miller et 

al., 1987).  The ~50 Ma middle Eocene freshwater deposits of Canada were not only 

contemporaneous with a time of marine diatom turn-over, as shown by Barron and Baldauf 
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(1989; 1995), but also exhibit an increased number of freshwater taxa over those recorded from 

the late Cretaceous.  Furthermore, the 34 Ma late Eocene Florissant freshwater deposits of this 

study correspond with an interval within a global relative cooling peak that endured for 

approximately 2.5 million years at the end of the Eocene and the beginning of the Oligocene 

epoch (Zachos et al, 2001; Miller et al., 1987).  This Eocene-Oligocene cooling peak not only 

corresponds with a diversity explosion in the marine realm, as described by Barron and Baldauf 

(1989; 1995), but the contemporaneous Florissant Formation doubles the number of new 

freshwater diatom genera relative to the early and middle Eocene tally.  The Florissant diatom 

flora contains the terminal record of the freshwater forms that evolved during the most extreme 

cooling period that followed the early Eocene thermal maximum.  The Florissant flora, therefore, 

populates a unique position along the pathway of major phylogenetic advances that drove the 

freshwater diatom species expansion that was to follow in the Neogene.       

 One might consider that aspects of the Eocene continental setting might have provided 

optimal conditions that allowed for the expansion of freshwater diatom species in North 

America.  Perhaps the development of isolated interior lakes in western North America as a 

result of late Cretaceous-early Tertiary Laramide and post-Laramide orogenic activity that 

continued in the Rocky Mountains until earliest Oligocene (Tweto, 1975), the contribution of 

volcanic silica and limiting nutrients, and the accompanying gradual global cooling provided the 

conditions conducive to rapid diatom speciation that resulted in species provincialism in the 

Florissant and other Eocene lake systems.  Repeated periods of geologically- or biologically-

driven dispersal of these presumed endemics into new niches as climates cooled may have 

promoted further speciation.    
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 Taphonomy 

 As the fossil record is the key component used to assemble a framework for the diatom 

biochronology in this discussion, investigators must be mindful of the imperfect nature of the 

fossil record of continental diatoms, and acknowledge the taphonomic processes that impact the 

type and quality of preservation that, when favorable, result in the occurrence of fossil sites.  The 

completeness of the geologic record of non-marine diatoms is, therefore, not only dependent 

upon the timing of continental diatom evolution and the preservation of diatom-bearing 

sedimentary deposits, but it also requires optimal conditions for the preservation of the silica that 

is the principal component of the cell wall (frustule) of diatoms. 

The diatom frustule is sensitive to the concentration of dissolved silica, pH, and 

temperature of the water in both the water column of the lake and in the substrate pore-fluids 

after burial.  The frustules, composed of hydrated silicon dioxide (opal-A), tend to be relatively 

stable in subaqueous environments that remain silica-rich and have a pH of <9 (Stoermer and 

Smol, 1999).  Conversely, frustule dissolution will occur in environments that are deficient in 

dissolved silica and/or are highly alkaline. 

Once the frustules have been incorporated into the bottom sediments, prolonged exposure 

to geothermal heat of >35 C in regions of high heat-flow or during burial to 500-600 meters can 

result in the transformation of opal-A to opal-CT (porcellanite) and eventually to quartz (chert) 

(Hein et al., 1978).  Such mineral transformation alters the structure of the frustule (Williams et 

al., 1985).  In extreme cases, the frustule appears only as a relict image or is completely 

obliterated in a groundmass of amorphous biogenic silica (Mustoe, 2005).  Even when the 

frustule remains relatively intact, if the host sediments become silicified, the matrix cannot be 
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disaggregated to free the frustules.  A similar difficulty occurs in deposits where diatoms are 

encased in phosphatic coprolites.  In both cases, the examination of diatoms is limited to cross-

sectional views in petrographic thin section and to scanning electron microscopy. 

Another low-grade diagenetic process that renders the diatom-bearing host-rock shales of 

volcanic terranes resistant to disaggregation is the redistribution of both the biotic amorphous 

diatom silica and the abiotic amorphous silica derived from the alteration of volcanic ash to 

smectite clays.  This process is one of adsorption of the dissolved silica by the clays in high-

silica waters (Williams et al., 1985).  The adsorbed silica is better-ordered opal-CT and acts to 

bind the clay grains, locking the diatoms into the matrix.  Freshwater fossil diatoms encased in 

limestone; however, have an advantage of being capable of release from the matrix by dissolving 

the host-rock in dilute hydrochloric acid (Lohman and Andrews, 1968). 

As detailed taxonomic analysis is required to provide useful data on fossil diatoms, the 

deposits that have undergone the least amount of alteration will yield the most reliable data.  The 

pre-Neogene floras described here are variously limited by the factors outlined above.  For each 

flora surveyed in this study, the taphonomic conditions of the sample material are noted, and 

wherever provided by the original author, the sample preparation method is included. 

   

Diatom Paleontology and Phylogenetic Research  

 As well as the on-going debate among diatomists over unresolved questions of the timing 

and controls of diatom evolution, there remains uncertainty as to the genetic relationships among 

many diatom clades (Sims et al., 2006; Julius, 2007; Harwood et al., 2007).  Although marine 

diatom records pre-date those of continental diatoms, there is controversy over whether diatoms 
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that inhabit brackish water and freshwater environments evolved from marine taxa as the rising 

seas invaded land masses over geologic time, or whether fresh or brackish water forms gave rise 

to marine taxa.  Many researchers believe that these concepts are not mutually exclusive and find 

evidence supportive of both potential scenarios. 

  Most of our understanding of diatom biochronology in “deep time” is based upon the 

marine fossil record, which is extensive for late Mesozoic and Cenozoic eras.  Modern diatom 

taxonomic and ecologic studies greatly contribute to the growing knowledge of fossil diatom 

systematics and paleoecology.  Morphologic data are coupled with molecular sequencing data to 

develop hypotheses about relationships among lineages (phylogenetics).  This research leads to 

the development of hypotheses about evolution (Julius, 2007).  Approximately 24,098 diatom 

species are currently described (Julius, 2007), and new modern taxa are continually being added.  

Diatom systematics is a work-in-progress, with a pressing need for revisions that incorporate 

genetic data for many modern taxa. 

 While in pursuit of an accurate perspective on early (pre-Neogene) biochronology of non-

marine diatoms, investigators must balance the ever-changing trends in the systematics of 

modern taxa with the depauperate nature of the fossil record.  Despite the difficulty of obtaining 

paleontological data on pre-Neogene continental deposits, continued progress in this direction is 

necessary to provide morphological data on fossil taxa within a temporal context in order to 

strengthen phylogenetic interpretations.       

 

Geologic Framework for Diatom Biochronology  
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 Any chronologic record is built upon a time-frame.  The accuracy of that time-frame and 

the consistency with which it is used in the literature impact the reliability of the interpretations 

made from such an assembly of data.  Therefore, it is imperative that accuracy and consistency in 

reference to periods of geologic time be attempted in any discussion of biochronology at the 

geologic scale.  Standardized Cenozoic epochs and epoch subdivisions have undergone revision 

in the literature over time, as additional fossil discoveries and refinements in radiometric dating 

of volcanic materials and in magnetostratigraphy occurred.  Much of the early paleontological 

fieldwork in western North America was done by vertebrate researchers who developed and used 

a system of biochronology referred to as the North American Land Mammal Ages (NALMA) 

(Wood et al., 1941).  Many field descriptions show age assignments to this system, which was 

revised by Woodburne (1987) and later by Prothero (1995).  This system continues to be relevant 

when used in concert with radiometric ages as presented for the North American western interior 

in Smith et al. (2008).  For these reasons, it is important when reviewing fossil literature 

published several decades ago to determine the currency of the age data. 

 For the sake of accuracy and consistency, the references to Cenozoic epochs and their 

subdivisions in this literature review are qualified as to their most reliable age assignments.  The 

Cenozoic epoch boundaries and subdivisions by Berggren et al. (1995) were adopted as the 

standard reference for the “1998 Geologic Time Scale” by the Geological Society of America.  

The epoch boundary delineations of Berggren et al. (1995) are applied to the units discussed in 

this review: Eocene epoch (54.8-33.7 Ma); with the principal subdivisions as follows: early 

Eocene (=Ypresian stage) (54.8-49.0 Ma), early middle Eocene (=Lutetian stage) (49.0-41.3 

Ma), late middle Eocene (=Bartonian stage) (41.3-37.0 Ma), and late Eocene (=Priabonian stage) 
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(37.0-33.7 Ma).  Although the NALMAs show a slight overlap at the upper and lower epoch 

boundaries, the Eocene NALM ages follow from oldest to youngest in this order: Wasatchian 

(upper 4 biozones) and Bridgerian (lower biozone = Br-1) in early Eocene; Bridgerian (upper 2 

biozones = Br-2 and Br-3), Uintan (all biozones), and Duchesnean (all biozones) in middle 

Eocene; and Chadronian (all biozones but top of uppermost) in late Eocene (Prothero, 1995). 

 

 

PRE-NEOGENE NON-MARINE DIATOM FLORAS  

Geologic and Taxonomic Record of Pre-Neogene Non-marine Diatom Floras 

 The following is a brief account of the published reports and unpublished new findings of 

fossil non-marine diatoms from known pre-Neogene deposits.  The documented pre-Neogene 

non-marine diatom sites are in South Korea, India, Mexico, Canada, and the United States.  Data 

from the published records for some of the North American localities were supplemented upon 

examination of slides reposited in the California Academy of Sciences in San Francisco.  The 

published data are further augmented by the results of a new study of the fossil diatoms from the 

Clare‟s Quarry site in the late Eocene Florissant Formation of Colorado (Benson and Kociolek, 

in review).  The summaries presented here include the age, location, type of matrix, method of 

sample preparation, list of diatom taxa, and paleoecologic interpretation, where provided by the 

original reference.  The order of taxa listed throughout the text and Tables follow the 

classification of freshwater diatoms presented in Round et al. (1990).  Many of the earliest 

deposits are profoundly altered by taphonomic or diagenetic processes that limit diatom 

identification of the few occurring taxa to thin section or SEM.  For this reason, matrix and 
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method of preparation are included to emphasize the difficulty of obtaining detailed taxonomic 

and quantitative assemblage data from these ancient deposits.   

 All the featured deposits, but for those in the early Cretaceous Myogok Formation in 

South Korea, contain extant freshwater diatom genera and species that have strong affinities to 

modern species.  The Korean taxa are included in the summaries for the purpose of 

completeness; however, because the focus of this examination is on fossil assemblages that have 

an affinity to modern freshwater taxa, the Korean deposit is not included in the taxonomic 

comparisons. 

 The North American fossil freshwater diatom localities discussed here are shown in 

Figure 1.  The Deccan Traps sites in India are featured in Figure 2.   

 

   

Figure 1.  Locations of pre-Neogene non-marine diatom deposits in North America discussed in 

this review. 
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Figure 2.  Locations of late Cretaceous non-marine diatom deposits in India. 

 

 

 A synthesis of the freshwater diatom genera occurring in the 8 North American sites and 

those cumulatively from the Deccan Traps sites in India is presented in the annotated geologic 

range chart in Table 1., which illustrates the currently known pre-Neogene freshwater diatom 

biochronology.   
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Table 1.  Annotated pre-Neogene freshwater diatom biochronology chart.  This geologic range 

chart for late Cretaceous (columns on right) through Paleogene (mid-left columns) shows genus 

ranges with first record of occurrences appearing at the far right end of each colored bar.  Genera 

with first-occurrences in the late Cretaceous are tracked with the blue bars, those in the early 

Eocene with pink bars, those in the middle Eocene with orange bars, those in the late Eocene 

with yellow bars, and those in the Oligocene with green bars.  The annotations (initials) in each 

column show the sources of these observations, and the Key to Abbreviations gives literature 

citations for each. 
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 This geologic range chart illustrates the timing of first-occurrences of reported freshwater 

taxa that have modern affinities for the period prior to Neogene.  A comparison of the 

assemblages from the nine featured localities shows the 7 earliest-occurring and longest-ranging 

freshwater diatom genera from the late Cretaceous (shown in blue bars), an increase of 6 genera 

in the early Eocene (shown in pink bars), a surge of 16 additional genera in middle Eocene 

(shown in orange bars), and the subsequent increase of 14 genera at the late Eocene Florissant 

site (shown in yellow bars).  The two sites chosen to represent the Oligocene add 4 more genera 

(shown in green); however, this number understates the diversity that follows in late Oligocene 

and Miocene deposits, especially in western North America (Bradbury and Krebs, 1995).  This 

chart demonstrates the importance of the Florissant site as a unique record of the taxa that had 

evolved by late Eocene time in the interior lakes of western North America. The following 

paragraphs provide an account of the information that contributed to this presentation of the early 

fossil freshwater diatom biochronology. 

 

Early Cretaceous Non-marine Diatoms of South Korea 

 The earliest non-marine diatoms are recognized from the (140-130 Ma) early Cretaceous 

Myogok Formation in the Jasong synthem (Valanginian-Hauterivian) of South Korea (Chang et 

al., 2003; and Harwood et al., 2004; 2007).  The deposit is interpreted as representing 

sedimentation in tectonically active intermontane grabens.  The taxa include the following 

genera: Calyptosporium, Cypellachaetes, Pseudopyxilla, and Hyalotrochus (Harwood et al., 

2007).  The diatoms are relatively well-preserved resting spores and are morphologically 

dissimilar to the taxa observed in other non-marine deposits of pre-Neogene age.  For this 
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reason, this site is not included in the comparison chart of Table 1.  These taxa have greater 

affinity to the marine diatoms from early Cretaceous deposits of Antarctica (Gersonde and 

Harwood, 1990; Harwood and Gersonde, 1990) and Australia (Nikolaev and Harwood, 1997; 

Nikolaev et al., 2001) than to other known pre-Neogene freshwater diatom floras (Harwood et 

al., 2007). 

 

Late Cretaceous Non-marine Diatoms of Mexico 

 The next earliest flora is the (70 Ma) late Cretaceous non-marine diatoms from the 

Tarahumara Formation, near Huepac, Sonora, in northern Mexico (Chacon-Baca et al., 2002; and 

Beraldi-Campesi et al., 2004).  According to the authors, these diatoms range in habitat from 

freshwater lacustrine to brackish and are preserved in carbonaceous cherts associated with 

stromatolites.  In addition to the diatoms, there are other algal microfossils, pollen grains, plant 

and fungal spores, fungal filaments, crustaceans, and organs of vascular plants that are 

interpreted as belonging to freshwater systems (Beraldi-Campesi et al., 2004).  Only basic shapes 

of frustules and filamentous colonies are seen in the prepared petrographic thin-sections.  The 

forms described from these beds are observed to have affinities for the following four extant 

genera: Melosira, Fragilaria, Tabellaria, and Amphora (Chacon-Baca et al., 2002; and Beraldi-

Campesi et al., 2004).  Of these four genera, only Tabellaria is an exclusively freshwater form 

(Round and Sims, 1981). 

 

Late Cretaceous Freshwater Diatoms of India 
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 The next earliest confirmed freshwater diatoms are reported from three sites within the 

late Cretaceous (>65 Ma) Deccan intertrappean beds (Maastrichtian) of India.  The Mohgaon-

Kalan fossil locality is located 0.5 km west of the village (22˚ 1‟N; 79˚ 11‟E), in the Chhindwara 

District of Madhya Pradesh (Ambwani et al., 2003).  The material is described by the author as 

buff-colored diatomaceous chert collected from an excavated water well from a section 

composed primarily of red and green silty clays, sandstones, marls, laminated clays and shales 

with marls and limestones in thin fossiliferous sedimentary beds between basaltic flows that 

dammed drainages to form lakes.  Also reported are pollen, palynomorphs, egg shells of 

dinosaurian and avian affinities, and freshwater pelecypods.  Because of the resistive nature of 

the chert matrix, the method of examination of the diatoms was via petrographic thin sections 

and SEM imaging methods.  Aulacoseira sp. was the only diatom taxon identified (Ambwani et 

al., 2003). 

 A second locality is in the Lameta Formation (slightly older Maastrichtian), 13 km 

northeast of Warora, Pisdura, Chandrapur District, Maharashtra (Ambwani et al., 2003).  The 

sample material in which the diatoms were found was poorly phosphatized dinosaurian 

coprolites; therefore, petrographic thin sections and SEM imaging were used to examine the 

single taxon of Aulacoseira sp. (Ambwani et al., 2003). 

 A third study was conducted on the Deccan lacustrine intertrappean sediments near the 

village of Naskal, Andhra Pradesh, India (Singh et al., 2007).  Diatoms were recovered from 

within the rhizopod (Thecamoeba) cysts at Lucknow and examined by Eugene Stoermer (one of 

the authors of the referenced article).  The diatom-bearing cysts occur in carbonaceous shale, 

along with unidentifiable leaf remains and other microfossils.  Preparation methods included 
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crushing the sample to ~5mm pieces, treatment with dilute nitric acid, heating, and rinsing to 

oxidize and remove all soluble organic matter.  This was followed by mixing the residue with 

polyvinyl alcohol, spreading onto cover slips, drying, and mounting onto slides with Canada 

balsam.  Of the diatoms observed, all were pennate forms encased in the cysts, so detailed 

aspects of their morphology were poorly visible.  Only the following two taxa were identifiable 

to genus: Nitzschia and Planothidium (Singh et al., 2007). 

 

Early Eocene Freshwater Diatoms of British Columbia, Canada 

 The richly fossiliferous early Eocene (~52 Ma) lake deposits of Horsefly, British 

Columbia, Canada, have yielded freshwater diatoms (Wolfe and Edlund, 2005).  Although 

reported as early middle Eocene by the original authors, Wolfe and Edlund (2005) give a 

numerical age range of 44-52 Ma for the Horsefly lake beds, indicating that it crosses the 

boundary from early Eocene-middle Eocene (Berggren et al., 1995).  This age range is based 

upon the following: palynological evidence (Rouse et al., 1971), paleoichthyological data 

(Wilson, 1977), and paleomagnetic (Symons and Wellings, 1989) correlations to radiometrically 

dated sequences (Hills and Baadsgaard, 1967).  Although the Horsefly deposit, itself, has not 

been radiometrically dated, more recent studies of stratigraphically correlative fossil fish and 

plant deposits place the age between ~50.5-52.0 Ma (Barton and Wilson, 2005).  One such site is 

Quilchena in which sanidine from tephras from within the fossil beds have been dated at an 

40
Ar/

39
Ar age of 51.5 ± 0.4 Ma (Villeneuve and Mathewes, 2005).  Although the exact timing of 

the appearance of the diatoms studied in the Horsefly samples cannot be determined from this 
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information, the maximum age assignment of 52 Ma (early Eocene) is used for the Horsefly 

deposit in this study.  

 Two sites are described as the lower varved section exposed immediately upstream from 

Hobson‟s Horsefly Mine in the H2 sequence of Wilson and Barton (1996) and a correlative 

exposure 15 km to the SE (Black Creek Road fossil locality) (Wolfe and Edlund, 2005).  The 

field descriptions state that samples were taken from a 33.5 cm thick section of 767 varved 

couplets of white (summer) diatomaceous laminae separated by dark (winter) pyrite-rich clays 

interbedded with 31 discrete beds of tuff or ash-rich graded turbidites.  Preservation and 

abundance are described as “remarkable for material of this age.”  The authors report that well-

preserved centric diatoms were present in 20% of the white laminae; and primarily highly 

fragmented araphid pennate diatoms (Fragilariaceae), constituting a diatom hash, were observed 

in 80% of the white laminae.  Almost all centric and pennate diatoms were said to be fractured 

due to compaction or microtectonics, and extraction of intact specimens from the sediment 

matrix was only rarely achieved (Wolfe and Edlund, 2005).  Diatom identifications were made 

via petrographic thin sections after the sample material was stabilized with epoxy, and by SEM 

imaging of broken surfaces.  A new species of a new genus was described: Eoseira wilsonii 

Wolfe & Edlund n. gen., n. sp.  E. wilsonii is viewed as an ancient form within the centric family 

Aulacoseiraceae to which the genus Aulacoseira belongs.  Eoseira is not known from any other 

fossil locality and is one of the few described freshwater diatom genera that is now extinct 

(Wolfe and Edlund, 2005). 

 J.P. Bradbury‟s USGS Locality Record of the Horsefly deposit (reposited at California 

Academy of Sciences) includes a handwritten note indicating the presence of the following 
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genera: “Diatoma hiemale, Melosira?, Tetracyclus lacustris, and Eunotia?” along with 

Chrysophyte cysts. 

 For this study, examinations were made in 2007 of one of Bradbury‟s prepared biological 

slides [#16VI81-3(3)] of Horsefly material that was collected by M.V.H. Wilson (06-16-81) and 

reposited at the California Academy of Sciences.  The slide in the CAS database is identified as 

Accession #701462, Slide #1021059.  The following 5 genera were recognized: Aulacoseira, 

Frustulia, Meridion, Diatoma, and Tabellaria.  This brings the total to-date genera observed 

from Horsefly to 8.  Refer to Plate 1. (Figure 7) for an image of Diatoma sp. from this study.    

  

Middle Eocene Freshwater Diatoms of Wyoming 

 A diverse freshwater diatom flora was recovered from the middle Eocene (~48 Ma)  

(Smith et al., 2008) Wagon Bed Formation, Beaver Divide, Fremont County, Wyoming, by 

Lohman and Andrews (1968).  The diatom locality is referred to as the “Beaver Divide 

escarpment” (SE1/4 SE1/4 sec 24, T 32N, R 95 W) (USGS diatom loc. 5416, same as USGS 

Cenozoic loc. 20031).  The diatom-bearing material was in reworked slump blocks of cherty 

limestone of the Eocene Wagon Bed Formation that were incorporated into the Beaver Divide 

Conglomerate Member of the Oligocene White River Formation.  Diatoms were found entombed 

in the limestone-filled interiors of calcareous freshwater mollusks that had escaped silicification, 

resulting in their relatively higher quality of preservation than diatoms in the original source 

formation (W1/2 SE1/4 SE1/4 sec 5, T 32N, R 84 W) (USGS diatom loc. 5422) (Lohman and 

Andrews, 1968).  Both the diatom flora and the host gastropod limestone found at the studied site 

were interpreted by Lohman and Andrews (1968) to be of the Wagon Bed Formation because, 
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although completely replaced by silica at other localities, the same diatom flora and the same 

fauna in the gastropod-bearing limestone are known within the Wagon Bed Formation 

elsewhere, and neither has been found anywhere in the Oligocene White River Formation.  

 A discrepancy regarding the age of the Wagon Bed Formation is perpetuated in the 

modern literature by the fact that the Lohman and Andrews (1968) published account reports that 

the formation was of “late Eocene” age despite the fact that these original authors also state that 

the source material for the diatoms was of “Uintan” NALM age, which is of middle Eocene age 

(Prothero, 1995).  The middle Eocene age for the Wagon Bed Formation is further supported by 

revisions to the Eocene-Oligocene stratigraphy in the Beaver Divide area (Emry, 1974) that 

demonstrate a substantial hiatus represented by an erosional unconformity between the Wagon 

Bed units and the overlying Oligocene White River Formation.  Further evidence that places the 

age of the Wagon Bed Formation located on the southern rim of the Wind River basin well 

within the middle Eocene are K/Ar ages ranging from 45.5-46.0 Ma from the upper 

volcaniclastic facies (Pekarek et al., 1974) and an 
40

Ar/
39

Ar age of 47.7 ± 0.12 Ma from sanidine 

in the white lignitic tuff within the fluvial-lacustrine facies (Smith et al., 2008) that is likely to be 

the facies that contained the diatom-bearing gastropod limestone.  It is for these reasons that this 

study accepts the age of 48 Ma for the Wagon Bed diatoms, which places them in the early 

middle Eocene. 

 The diatoms in the Wagon Bed Formation examined by Lohman and Andrews (1968) 

were recovered following dissolution of the limestone.  As many as 9 freshwater diatom genera 

were identified.  Of these, Ambistria was named as a new genus.  The remaining 8 genera 

observed from this material are these: Melosira, Anaulus, Fragilaria, Navicula, Anomoeoneis, 
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Pinnularia, Stauroneis, and Nitzschia.  Twenty-seven new species were described.  Seven other 

species identified were only known from younger Cenozoic deposits.  The genus Anaulus is 

present in marine deposits of the late Cretaceous (Campanian) of western Siberia (Strelnikova, 

1975).  Melosira is identified in late Cretaceous (Campanian) of western Siberia (Strelnikova, 

1975), but also from fresh-to-brackish water habitats of the late Cretaceous (Maastrichtian) in 

Mexico (Chacon-Baca et al., 2002; Bernaldi-Campesi et al., 2004). 

 

Middle Eocene Freshwater Diatoms of Idaho 

 Fossil freshwater diatoms have been recovered from the middle Eocene (~45 Ma) lake 

deposits of the Dewey beds, Challis volcanics, Valley County, Idaho (Axelrod, 1998).  These 

beds also contain a rich macrobotanical forest flora referred to as the Thunder Mountain flora 

that is described as middle Eocene by Axelrod (1998).  The informally named Dewey beds are 

volcaniclastic sedimentary rocks that were deposited in the Thunder Mountain caldera following 

cessation of the eruptive phases.  The age of the lake beds is confined to the period between 46.3 

Ma, which is the age of the underlying Sunnyside Rhyolite, and 43 Ma, which is the age of the 

unconformably overlying Lookout Mountain Latite (Leonard and Marvin, 1984; and Adams, 

1985).  For this review, the age of the Dewey bed diatoms is considered to be approximately 45 

Ma. 

 The locality is near the Dewey Mine, in the Rainbow Peak USGS 7 ½ minute quadrangle, 

in the Thunder Mountain mining district (unpublished notes of J.P. Bradbury, USGS, reposited at 

the California Academy of Sciences).  The CAS database description states that the samples 

were collected by B.F. Leonard in 1986, from “a roadcut at 7,680 feet elevation, 0.3 miles 
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northeast of the mine, 0.3 miles upgrade from a cookhouse and 0.1 miles east-southeast of a 

spring.”  As described by Axelrod (1998), the shales are diatomaceous and contain fine-grained 

bentonitic layers that have expanded and broken the strata into small (3-7 cm long) blocks and 

chips.  The diatomaceous lake beds are 3-4 m thick.  They are associated with paleomacroflora 

of Equisetum and Typha, along with fine sediments and lignite suggestive of a lake shore setting 

(Axelrod, 1998).  According to J.P. Bradbury, USGS (as noted in Axelrod, 1998), this material 

contains only a single diatom species identified as Aulacoseira cf. A. hibschii.    

 For this study, examinations were conducted in 2007 on 2 prepared biological slides from 

the Dewey beds material reposited at the California Academy of Sciences.  The slide identified 

in the CAS database as Accession #702135, Slide #1028080 contained unknown centrics 

including the genus Aulacoseira.  A second slide identified as CAS Accession #702136, Slide 

#1028081 contained unknown centrics and the following 8 genera: Aulacoseira, Eunotia, 

Frustulia, Tabellaria, Diatoma, Tetracyclus, possibly Fragilaria, and possibly Gomphoneis.  

Refer to Plate 1. (Figures 3 through 6) for images of specimens of some of the genera observed 

in this study. 

 

Middle Eocene Freshwater Diatoms of Northwest Territories, Canada 

 Fossil freshwater diatoms occur in the middle Eocene (>42 Ma) lake beds that overlie the 

(~48 Ma) Giraffe Pipe kimberlitic diatreme, Slave Province, Northwest Territories, Canada 

(Wolfe et al., 2006; Siver and Wolfe, 2007; Wolfe and Siver, 2009; and Siver et al., 2010).  The 

locality is described as being in the Lac de Gras kimberlite region, ~300 km northeast of 

Yellowknife, NWT; 64˚ 44‟ N, 109˚ 45‟ W.  The Giraffe Pipe is one of several kimberlites 
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within the Ekati Mine property that are assigned a Rb-Sr phlogopite model age of 47.8 ±1.4 Ma, 

indicating emplacement in early middle Eocene (Creaser, et al., 2004).  As detailed by the 

referenced diatom investigators above, the diatoms were obtained from samples collected from a 

47° angled drill core that penetrated a ~120 m (thickness corrected) portion of the crater-fill 

sediments before laterally intersecting Proterozoic granodiorite external to the crater wall.  From 

top to base, the core (thickness corrected) contained ~37 m of Quaternary glacial till, 33 m of 

terrestrial woody peat, two air-fall tephra beds (that provide the upper-limit age for the lake 

sediments), 51 m of stratified lake shale and mudstone, and ~5 m of granodiorite before reaching 

total depth.  This evidence indicates that, following the eruptive stages of the kimberlite 

intrusion, the depression filled with meteoric water to form a small closed-basin lake with an 

estimated diameter of 250-400 m, which filled with fine lake sediments to later become topped 

by terrestrial sediments (Wolfe and Siver, 2009), and was eventually eroded and covered with 

Quaternary glacial material.  The lake shales and mudstones are described as both massive and 

fissile, splitting along bedding planes; and are either laminated or mottled with nodular opal-A 

(Wolfe and Siver, 2009). 

 Although the anticipated Giraffe kimberlite was not encountered during this core drilling 

endeavor, and the total thickness of the crater-fill sediments was not reached; age constraints on 

the diatoms from the lake sediment core are provided by the overlying air-fall tephra beds with 

fission track dates (39 to 42 Ma) that average ~40 Ma (Wolfe and Siver, 2009) and by collateral 

palynological evidence that shows the post-eruptive crater-fill from the core to be of middle 

Eocene age (Hamblin et al., 2003).  For these reasons, the age of these diatoms for this review is 

conservatively placed at >42 Ma to correspond with the age of the oldest overlying tephra. 
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 From the Wolfe et al. (2006) study, centric diatom soft-parts (chloroplast remnants, 

organelles), as well as intact frustules, were seen.  Associated microfossils are said to include 

colonial chlorophytes and scaled chrysophytes.  The single genus described in this study is 

Aulacoseira with affinities to the extant A. alpigena and A. lirata (Wolfe et al., 2006).  The 

authors discuss their method of sample preparation for viewing diatom cells in the matrix with 

light microscopy by embedding with resin and grinding to thin sections ~ 30 μm thick.  These 

were examined at 1000 x under oil immersion using differential interference contrast optics.  

Additionally, fresh fractures perpendicular to the bedding plane were examined with a field 

emission scanning electron microscope (FEI SEM).  Transmission electron microscopy (TEM) 

was also employed: small sediment granules (~5 mm
3
) were embedded unstained in low-

viscosity resin, sectioned to ~50 nm, and examined with a field emission TEM.    

 Continued research on the middle Eocene Giraffe Pipe lake sediments has generated 

additional diatom taxa.  The sample material was prepared for viewing the diatoms via both SEM 

and the standard light microscopy methods.  The genus Eunotia, collected from massive organic 

mudstone from the terminal lake phase deposits just below the tephra-bearing contact with the 

peaty paludal facies, was described by Siver and Wolfe (2007).  Further work on samples from a 

25 m thick portion of the lake bed facies represented in the approximate middle of the core has 

resulted in the first-appearance of the following: three centric diatom genera of the 

Stephanodiscaceae family (Cyclotella, Discostella, and Puncticulata); four pennates of the 

Fragilariaceae family (Fragilaria, Fragilariaforma, Staurosira, and Staurosirella); and one 

pennate of the Tabellariaceae family (Oxyneis) (Wolfe and Siver, 2009; Siver et al., 2010).  The 

genus Actinella was reported from this site (Siver and Wolfe, 2009; Siver et al., 2010).  Two 
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additional genera (Nupela) (Siver et al., 2010) and (Pinnularia) (A.P. Wolfe and P.A. Siver, 

personal communication, 2010) are also observed at Giraffe Pipe.  Collectively, so far, this 

locality has yielded a total of 13 genera, 9 of which are first-occurrences.  

 

Late Eocene Freshwater Diatoms of Colorado 

 The late Eocene Florissant Formation is a world-famous fossil Lagerstätte (“mother-

lode”) that contains extremely well-preserved paleobotanical, fossil insect, and fossil vertebrate 

assemblages from lacustrine and associated fluvial deposits.  Three lake bed shales designated 

“upper,” “middle,” and “lower” by Evanoff et al. (2001) alternate with and are finely interbedded 

with mudstones, coarse volcanic tuffs, and volcanic ash.  Sanidine crystals in the “upper shale” 

tuffs and “middle shale” cap rock provide an average 
40

Ar/
39

Ar radiometric age of 34.05 ± 0.08 

Ma (McIntosh and Chapin, 2004).   The Florissant Formation is isolated to a relatively small area 

in the vicinity of the town of Florissant in Teller County, Colorado (Figure 3). 
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Figure 3.  Location map of Florissant, Colorado (small rectangle). 

  

  

 Present-day exposures of the Florissant Formation are limited to scattered roadcuts into 

the subsurface and slopes of hills and ridges that roughly flank the present-day creek drainages 

northwest and south of the town of Florissant (Figure 4).  Principal fossil sites are located within 

the Florissant Fossil Beds National Monument to the south of Florissant on County Highway 1; 

however, this area is closed to private collecting, and permits must be obtained from the National 

Park Service for approved research only.  Additional collecting by workers in the early part of 

the 20
th

 Century was done in areas now outside the Monument, but most of these are closed to 
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the public.  The only publicly accessible collecting locality is the privately-owned commercial 

Florissant Fossil Quarry (referred to in this study as Clare‟s Quarry) at which a fee is charged for 

restricted collecting.  Clare‟s Quarry is located just south of the town of Florissant and west of 

County Highway 1 (Figure 4).   
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Figure 4. Location map of Florissant study area showing the outline of the Florissant Fossil Beds 

National Monument, the Clare‟s Quarry fossil site (black triangle), and the “Petrified Forest” 

fossil locality.  Three additional fossil sites are MacGinitie-3 (MG3, black diamond), Princeton 

1880 (PRN, black bull's-eye), and US 24 roadcut (RDC, white bull's-eye).  The two unmarked 

roads that extend eastward from County Highway 1 are Upper Twin Rocks Road (north) and 

Lower Twin Rocks Road (south).  
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 Fossil diatoms have been noted in the lake sediments of the Florissant Formation from 

early records (MacGinitie, 1953; Lohman, 1960; McLeroy and Anderson, 1966; Lohman and 

Andrews, 1968) and later studies (O‟Brien et al., 2002; 2008); yet, no one prior to the current 

investigators has published taxonomic descriptions and images that document the composition of 

these diatom assemblages.  The following accounts demonstrate both the early interest in the 

diatoms at Florissant and the more recent effort to characterize the diatom flora. 

 Many localities within the Florissant Formation have been examined for diatoms.  

Sample voucher material collected by early investigators, diatom slides, and descriptions of 

stratigraphic sections from the Florissant Formation are reposited at the National Museum of 

Natural History (the Smithsonian Institute) (NMNH) in Washington, D.C. and at the California 

Academy of Sciences (CAS) in San Francisco.  

 The earliest published taxonomic reference to Florissant fossil diatoms is a brief 

statement characterizing the assemblage as highly diverse (Lohman, 1960).  Subsequently, 

Lohman reported that a minimum of 30 diatom species were recognized from the Florissant 

Formation (Lohman and Andrews, 1968), but no taxonomic lists or descriptions were published 

by Lohman.  No records of Florissant diatom taxa were found in Lohman‟s career files that are 

archived at the U.S. Geological Survey in Denver.  In 2010-11, however, an exhaustive search by 

Ms. Linda Hollenberg, Museum Specialist/Assistant Collections Manager in the Department of 

Botany at the National Museum of Natural History, recovered Lohman's hand-written taxonomic 

lists of diatoms observed in slides from 3 sites in the Florissant Formation from 1940, 1957, and 

1965. 
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 The recovered unpublished lists from Lohman‟s work on record at NMNH include the 

following information.  Lohman examined 3 slides (#2106, 2107, and 2108) from sample 2993 

collected by H.D. MacGinitie in 1937, from a locality described as “1 ½ mile southwest of town 

(of Florissant),” which corresponds with the general area historically referred to as the "Petrified 

Forest," which is approximately central within the National Monument boundary and just west of 

County Highway 1 (Figure 4).  This area contains strata that are considered by Evanoff et al. 

(2001) to be the "middle shale" informal member.  In these slides, Lohman identified these 18 

diatom genera: Melosira, Melosira roeseana Rabenhorst (=Orthoseira according to Round et al., 

1990), Fragilaria, Diatoma, Synedra, Tabellaria, Tetracyclus, Eunotia, Rhoicosphenia, 

Gomphonema, Gomphoneis, Achnanthes, Frustulia, Pinnularia, Caloneis (=Pinnularia 

according to Round et al., 1990), Navicula, possibly Amphora, and Nitzschia.  The NMNH 

records show that Lohman also examined slide #3024 from sample 4417 that he collected in 

1957 (F5-4) described as “¼ inch thick blue black laminated fairly soft shale, 5 ft. 

stratigraphically below #4416,” from the Princeton 1880 locality (locality #5 on MacGinitie‟s 

1953 map) also in the "middle shale" of Evanoff et al. (2001) in which he identified the genera 

Tetracyclus and Melosira.  

 Among the voucher samples and slides in this archival collection at CAS are 2 slides 

(Accession #40220, Slide #345080 and Slide #345083) and material collected by H.D. 

MacGinitie on an uncertain date, from site number 3 that is north of the road cut on Lower Twin 

Rocks Road (MacGinitie, 1953) and is in the "middle shale".  Records in the CAS database show 

that the genus Stephanodiscus was identified by Galina Khursevich in the two slides from the 

MacGinitie-3 site.  Also, in the CAS archived collection, there is a sample collected by H.D. 



70 

 

 

7
0
 

MacGinitie in 1937, from the location in the "middle shale" historically referred to as the 

“Petrified Forest in the vicinity of the Big Stump.”  Included also in the CAS archived collection 

is a set of 12 slides from samples collected by W.S. Burbank and K.E. Lohman in 1950, that 

were taken from a stratigraphic section whose location is generally consistent with the site 

referred to as the “Petrified Forest.”  A second set attributed to K.E. Lohman was collected in 

1957, and contains 5 slides from samples from an uncertain locality referred to only as 

“Florissant lake beds” assumed to be "middle shale."  One additional slide and sample collected 

by Lohman in 1957, was obtained from an unspecified outcrop along Lower Twin Rocks Road.  

Another single slide from a sample that was probably taken from a Lower Twin Rocks Road 

exposure was collected by C.A. McLeroy and R.Y. Anderson on an unrecorded date.  As well as 

can be determined from the descriptions provided, these sample sites are now within the 

boundary of the Florissant Fossil Beds National Monument and are most likely to have been 

collected from the “middle shale” of Evanoff et al. (2001). 

  Three of the slides from the CAS archival collections referenced above were examined in 

the current investigation on the “middle shale.”  Two from Lohman‟s 1957 collection are these: 

Accession #601857, Slide #375003; and Accession #601858, Slide #375005.  The third CAS 

slide is from the MacGinitie-3 site: Accession #40220, Slide #345080.  Additionally, for this 

study, new slides were prepared from several samples collected in 2006 and 2007 from the 

“middle shale” at three sites in the Florissant Fossil Beds National Monument.  Two of these 

sites were formerly collected by Scudder within the area of the old “Petrified Forest,” and the 

third is a re-visit to the MacGinitie-3 site north of Lower Twin Rocks Road. 
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 The findings of this diatom assemblage assessment of the “middle shale” sites in total are 

as follows.  The diatom genus recognized as Stephanodiscus was only observed in the CAS 

archived slide #345080 prepared by G. Hanna from material collected from the MacGinitie-3 

site.  It is important to note that concern has been expressed by the CAS staff regarding possible 

contamination of slides prepared by Hanna due to the lab procedures that were followed.  Adding 

to the cautionary position regarding the occurrence of Stephanodiscus in the Florissant flora is 

the fact that this genus does not appear in the NMNH unpublished taxonomic lists of Lohman, it 

is not observed in the 2 Lohman 1957 CAS slides examined in this study, it is not found in slides 

from the newly sampled Petrified Forest sites, nor was it seen in slides made from the re-sampled 

MacGinitie-3 site.  In addition to the suspicious occurrences of Stephanodiscus in the CAS 

Hanna slide #345080 from the MacGinitie-3 site, the following genera were identified in that 

slide: several species of Aulacoseira (derived from Melosira), Fragilaria, Diatoma, Synedra, 

Tetracyclus, Eunotia, Navicula, Gomphonema, Achnanthoid genera, Planothidium, and 

Pinnularia.  These taxa, at least at the genus level, are consistent with those found in the other 

reports; yet, at the species level, many of those seen in this slide have not yet been documented 

elsewhere in the Florissant samples.  From the Lohman 1957 collection, the slides identified as 

Accession #601857, Slide #375003 and Accession #601858, Slide #375005 contained mostly 

Aulacoseira; but Planothidium was also observed in Slide #375003 (shown in Plate 1., Figures 1 

and 2).  Many of the same genera were represented also in the slides made recently from the 

other "middle shale" sites of the old Petrified Forest area in this study.  Overall, this examination 

of all the available records of previous work and from the current examination of samples from 

the "middle shale" sites at Florissant has produced a list of these 17 genera: Aulacoseira, 
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Orthoseira, Fragilaria, Diatoma, Synedra, Tabellaria, Tetracyclus, Eunotia, Rhoicosphenia, 

Gomphonema, Gomphoneis, Achnanthes, Frustulia, Pinnularia, Navicula, possibly Amphora, 

and Nitzschia.  The presence of the genus Stephanodiscus has not been verified by this 

investigation; therefore, is not included in the current list of genera in the Florissant fossil diatom 

flora.  Of these genera, the following 6 are reported for the first time in the geologic record: 

Orthoseira, Synedra, Rhoicosphenia, Cymbella, Gomphonema, and Achnanthes (Tables 1 and 2).  

 "Lower shale" (Evanoff et al., 2001) sites of the Florissant Formation include these two:  

a locality on US 24 east of the town of Florissant examined by Lohman in 1957; and the 

exposure at the Florissant Fossil Quarry (Clare‟s Quarry site), the private fossil quarry just south 

of the town of Florissant (Figure 4).  An overview of the fossil diatom flora from the "lower 

shale" sites is presented, beginning with the unpublished taxonomic lists by Lohman from the 

NMNH records.  The material examined included two samples collected by Lohman in 1957, 

from a locality described as the “0.4 mile east of town (of Florissant) on south side of US 24, 

center W½ NE¼ SW¼ sec. 1, T13S, R71W, Lake George 7½ min. quad.”  Lohman identified in 

the "lower shale" 11 of the 18 genera noted above from the "middle shale" sites and 2 additional 

genera.  From sample 4429 described as “gray, light weight tuffaceous shale from top of 

exposure,” slide #3579, Lohman identified these genera: Melosira, Diatoma, Meridion, 

Tetracyclus, and Navicula.  From sample 4428 described as “massive gray-brown mudstone, 4 ft. 

stratigraphically below top,” slide #3578, Lohman identified these 13 genera: Melosira, 

Fragilaria, Diatoma, Meridion, Tetracyclus, Eunotia, Rhoicosphenia, Cymbella, Gomphonema, 

Achnanthes, Frustulia, Pinnularia, and Navicula.  This list adds 2 genera (Meridion and 

Cymbella) to the taxa he recorded from the "middle shale" sites.  These 5 genera from the 
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"middle shale" sites, Orthoseira, Synedra, Tabellaria, Amphora, and Nitzschia, were not noted 

by Lohman in these samples from the "lower shale" roadcut site.  The following discussion 

focuses on the published and recent investigations in the "lower shale" at Clare's Quarry. 

 Two published accounts reference Florissant fossil diatoms in the "lower shale" at Clare's 

Quarry.  These two studies provide taxonomic lists that confirm the occurrence of a total of 22 

genera (Round and Williams In Harding and Chant, 2000; and Stoermer In Meyer, 2003) from 

the Clare's Quarry.  In the current independent investigation, a detailed sampling of the Clare‟s 

Quarry site has yielded an additional 8 genera, bringing the total to-date number of genera to 30.  

Of the total 30 genera from these three studies at Clare‟s Quarry, 13 are first-time occurrences in 

the fossil record.  Details of these studies at Clare‟s Quarry are provided in the following three 

paragraphs. 

 From the “lower shale” at the Clare‟s Quarry site, 6 diatom genera were identified by 

Frank Round and David Williams, as reported by Harding and Chant (2000).  Although the 

samples were described as “vertically continuous blocks of laminated lacustrine sediment” from 

the quarry exposure, no reference was given as to the stratigraphic position of individual 

samples.  Samples were made into polished thin sections for examination with SEM and into 

petrographic thin sections for viewing with a petrographic microscope.  Freshly split bedding 

surfaces that contained macrofossils were examined for diatoms with backscattered and 

secondary electron microscopy.  Energy dispersive X-ray spectroscopy was also used for 

element analysis.  The following is the list of genera reported: Synedra, Diatoma, Achnanthes, 

Fragilaria, Gomphoneis, and Cymbella.   The assemblages were found to consist almost 

exclusively of pennate diatoms, dominated (>85%) by one species of Synedra.  Second in 
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abundance was Diatoma sp.  Specimens of Achnanthes sp. and Fragilaria sp. were uncommon, 

and rarer were Gomphoneis sp. and Cymbella sp. (Harding and Chant, 2000).   

 A preliminary examination of samples from Clare‟s Quarry by Eugene Stoermer, cited by 

Meyer (2003), indicated that taxa with affinities for 19 modern freshwater diatom genera were 

observed.  No reference as to collection methods or stratigraphic position was recorded (Eugene 

Stoermer, personal communication, 2006).  Sample preparation included the standard hydrogen 

peroxide method (Stoermer et al., 1995) followed by placing a beaker of rinsed sample in 

distilled water into an oven set to 100º C over night (Sarah Spaulding, personal communication, 

2006).  The genera observed by Stoermer are listed: Aulacoseira, Synedra, Achnanthidium, 

Planothidium, Diatoma, Melosira, Navicula, Eunotia, Gomphonema, Pinnularia, Meridion, 

Nitzschia, Fragilaria, Staurosirella, Fragilariaforma, Ellerbeckia, Epithemia, Rhopalodia, and 

Tetracyclus.  This report adds 16 genera to the number observed by Round and Williams.  

Stoermer stated that other possibly extinct forms were also observed.  Aulacoseira and Synedra 

were the most abundant genera in these samples (Meyer, 2003).    

 The current investigation at the Clare‟s Quarry site has resulted in the identification of a 

minimum of 20 freshwater genera and 1 allochthonous specimen of a marine genus.  The 

samples were collected from a 5 meter-thick stratigraphically-controlled vertically-continuous 

section of interbedded laminated shale, volcanic tuff, and homogeneous mudstone.  Several 

genera include multiple species.  The descriptions and images of these taxa are provided in a 

separate manuscript that is in preparation.  An initial goal to quantify relative abundances of taxa 

was not possible at this site due to challenges to sample disaggregation posed by the indurated 

state of the matrix.  To address this challenge, several preparation methods, modified from Green 
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(2001), were used.  These included the standard hydrogen peroxide method, sodium 

hexametaphosphate with sodium carbonate method, and treatment with sulfuric acid.  In the end, 

complete matrix disaggregation was not achieved, and mechanical crushing was the preferred 

method, as it was believed to yield a more representative taxonomic sample than the other 

methods attempted.  This method was augmented with SEM imagery.  The list of freshwater 

genera observed in this independent study include the following: Aulacoseira, Orthoseira, 

Fragilaria, Staurosira, Diatoma, Synedra, Tetracyclus, Eunotia, Gomphonema, Achnanthidium, 

Planothidium, Platessa, Psammothidium, Diadesmis, Frustulia, Pinnularia, Adlafia, Navicula, 

Stauroneis, and Nitzschia.  This list adds 9 genera to those observed by Round and Williams and 

Stoermer in the studies referenced above.  Although the qualitative relative abundance of taxa 

varied among sample intervals, the overall vastly most abundant genera were Synedra, Diatoma, 

and Aulacoseira.  Planothidium, Platessa, Navicula, and Gomphonema genera were uncommon.  

The genera Fragilaria, Staurosira and Tetracyclus were very uncommon, yet they were 

morphologically diverse. The remaining genera were rare to very rare.  From the three above-

noted studies, a total of 30 freshwater genera are recorded from the Florissant Formation at the 

Clare‟s Quarry locality.  This study adds 5 genera to the cumulative 8 first-occurring non-marine 

genera listed above in the accounts of Round and Williams and Stoermer.  The following 13 

Florissant diatom genera are the earliest occurrences in the freshwater fossil record from the 

“lower shale”: Ellerbeckia, Orthoseira, Synedra, Cymbella, Gomphonema, Achnanthes, 

Achnanthidium, Platessa, Psammothidium, Diadesmis, Adlafia, Epithemia, and Rhopalodia.  

Additionally, a marine diatom genus, Actinoptychus, (confirmed by David Harwood, personal 

communication) was present only as a single fragmented specimen in a single sample; and it 
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constitutes an anomalous occurrence, thought to have been transported by wind or avian transit.  

This genus is not discussed further here as it is not a freshwater form, and the first appearance of 

Actinoptychus is in marine deposits of late Cretaceous (Campanian) age in western Siberia 

(Strelnikova, 1975).   

 In addition to the 30 genera observed in the “lower shale” at Clare‟s Quarry, the 

identification by Lohman of Rhoicosphenia in the lower shale of the US 24 roadcut increased the 

total number of genera to 31.  The additional two genera (Tabellaria and Amphora) observed by 

Lohman in the middle shale sites bring the total number of Florissant fossil diatom genera to 33.  

Of these, the number of first-occurring freshwater diatom genera discovered in the Florissant 

Formation is 14.  The results of this comprehensive review of the record, along with additional 

original work are provided in a simple set of taxonomic lists that tally the occurrences of the 33 

genera, now documented, for the Florissant fossil diatom flora (Figure 5).  The composited 

generic list from the Florissant diatom investigations is shown in Table 1., where it can be 

visually compared with the generic lists for the other pre-Neogene deposits herein reviewed. 
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Figure 5. Chart of 33 diatom genera that represent the Florissant fossil diatom flora, their 

occurrences according to location, and those that are first-time occurrences in the geologic 

record.  (Location symbols are keyed to map in Figure 4: MG3 is MacGinitie-3, PRN is 
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Princeton 1880, PET is undifferentiated Petrified Forest, and RDC is the US 24 roadcut east of 

Florissant.) 

 

 

Oligocene Freshwater Diatoms of Oregon 

 Nine genera of freshwater diatoms have been recovered from an early Oligocene  

(29.83 Ma) pyroclastic debris flow that was deposited in a shallow-marine forearc basin in the 

Pittsburg Bluff Formation in northwestern Oregon (McKnight et al., 1995).  The identified 

genera include Melosira, Cocconeis, Cymbella, Eunotia, Fragilaria, Gomphonema, 

Gomphopleura, Pinnularia, and Tetracyclus.  At the time, these findings extended the geologic 

range of the genus Gomphonema by approximately 15 Ma, as it was previously thought to have 

evolved in the Miocene (Kociolek and Stoermer, 1993).   

 

Oligocene to Miocene Freshwater Diatoms of Montana 

 A freshwater diatom flora was described from the Canyon Ferry, Montana, 

paleobotanical fossil locality of approximately late Oligocene to early Miocene age (Van 

Landingham, 1970).  The locality is about 12 miles N-NW of Townsend, Montana, on the west 

bank of Canyon Ferry Reservoir.  The diatomaceous layers occur in the uppermost unit (the 

volcanic ash and tuff unit) of the four units of the Oligocene complex. This unit has a thickness 

of 800 ft. and is conformably overlain by Miocene sediments consisting mainly of sand, gravel, 

and clay with a thickness of approximately 500 ft.  The boundary between the Miocene and 

Oligocene is described as poorly defined and transitional (Van Landingham, 1970).  Because the 

material was unconsolidated, biological slides were made using a conventional slurry method.  
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The taxonomic list includes a total of 15 genera. Van Landingham (1970) characterizes the flora 

as being dominated by Melosira distans (65%) and M. granulata (22%).  Species of Fragilaria 

were reported to occur as follows: Fragilaria lapponica (revised to genus Staurosirella Williams 

& Round) (4%), F. construens var. venter (revised to genus Staurosira Ehrenberg) (2%), and F. 

brevistriata (revised to genus Pseudostaurosira Williams & Round) and F. virescens (~1%).  

Additional genera are Achnanthes, Cocconeis, Cymbella, Gomphonema, Navicula, Pinnularia, 

Stauroneis, Surirella, Synedra, and Tetracyclus (Van Landingham, 1970).   

 

 

SUMMARY OF OBSERVATIONS 

Graphic Synthesis of the Early Fossil Freshwater Diatom Record 

 The data in the geologic range chart of pre-Neogene non-marine diatom families and 

genera (Table 1.) have been extracted to create a simplified generic range chart (Table 2.).  This 

chart identifies first-occurrences of genera through time, as indicated by the fossil record.  These 

patterns in the fossil record show the latest time of first-occurrence; but, due to the potential for 

missing fossil data, they may not reflect true evolutionary trends of these major freshwater 

diatom lineages.  

 

Perspectives on the Geologic Range Charts 

 The geologic range chart in Table 2. should be used with the understanding that, as a 

geologic record, it is inherently incomplete.  A lesson learned from the literature is that, with the 

increased number of sampled sites, the timing of first-occurrences has gotten pushed farther 
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back.  For example, prior to the year 2000, the pre-Neogene freshwater diatom published record 

was limited to 4 of the 9 localities discussed here, restricting the earliest first-occurrences to 

middle Eocene, and reducing the total number of observed genera from the current 47 to only 26.  

It would be a mistake, therefore, to assume that this chart contains sufficient information upon 

which to fully test the phylogenetic hypotheses.  Potential inconsistencies between the fossil 

record and predictions from the genetic phylogenies should be evaluated in the context of the 

spotty nature of the fossil data and the inescapable variability in the paleohabitats sampled. 

 Although care has been taken in this study to use fossil localities that have relatively 

well-documented radiometric ages, the fossil literature is often inexact as to the age of the 

diatom-bearing deposits being reported, especially where no associated datable volcanic material 

is available.  As discussed previously, even where age is provided, both marine and freshwater 

literature show inconsistency in age assignments relative to the Cenozoic epochs.  It is, therefore, 

important to show numerical ages based on the actual radiometric dates, where possible.  As 

more reviews of diatom first-occurrences take place, it will be increasingly important for the 

specific diatom-bearing intervals to be stratigraphically refined and for age data to be updated 

and integrated into the literature.    
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Table 2.  Simplified pre-Neogene freshwater diatom biochronology chart.  This geologic range 

chart for late Cretaceous (base) through Paleogene (top) time shows occurrences (black dots) for 

the 47 genera of freshwater diatoms with modern affinities from the nine fossil localities featured 

in this study.  The three major morphological groups (centrics, araphids, and raphids) are labeled 

across the top.  Ages of the localities are indicated by dashed horizontal lines.  The dotted 

vertical bars (maximum reported ranges) are artificially terminated in early Miocene in this chart, 

but all these genera with the exception of Eoseira are modern and would extend into the 

Holocene.   
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Timing of the Expansion of Major Diatom Groups 

 In terms of large-scale trends in the evolution of diatoms, it is generally agreed that 

centric diatoms graded into araphid pennates, and araphid pennates graded into the raphe-bearing 

pennate diatoms, which are a natural group (Alverson and Theriot, 2005).  Furthermore, SSU 

rRNA sequences and preliminary molecular clock calculations of Sorhannus (2007) predict that 

early representatives of modern araphid diatoms had evolved by the early Cretaceous (~ 100 

Ma), and that raphid taxa had evolved by the late Cretaceous (~ 75 Ma). 

 The results of the current study support these general trends (Table 2.).  The record shows 

the occurrence of 2 centric genera, 2 araphid genera, and 3 raphid genera in the 2 late Cretaceous 

non-marine deposits of record.  Many more genera of these major groups appear in the 

Paleogene sites.  All the genera that occur in these 9 Late Cretaceous through Paleogene sites 

show strong taxonomic affinities to modern taxa.  Some examples of these taxa are shown in 

Plate 1.   

 Table 2. shows that at least as many as 2 non-marine centric genera had evolved by late 

Cretaceous; and, with the addition of 7 genera from Paleogene sites, it confirms that at least as 

many as 9 centric genera had evolved prior to the beginning of the Neogene. 

 The prediction by Sorhannus (2007) that araphid diatoms had evolved by the early 

Cretaceous (~ 100 Ma) was not tested in this study, as no freshwater fossil records were 

available for the time period prior to late Cretaceous.  Nevertheless, 2 araphid genera are 

documented from the 2 late Cretaceous sites.  An additional 10 araphid genera were observed 

from the Paleogene sites.  This would indicate that at least as many as 12 freshwater araphid 

genera had evolved prior to the beginning of the Neogene.    
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 Sorhannus‟ (2007) assertion that raphid taxa had evolved by the late Cretaceous (~ 75 

Ma) is supported by the observation of 3 freshwater raphid genera from the 2 deposits of late 

Cretaceous age in this study.  A tally of the earliest occurrences of raphid genera shows that, 

from the 1 early Eocene and 3 middle Eocene sites of record, 9 additional raphid genera were 

recorded, totaling 12 raphid taxa prior to the late Eocene Florissant site that provided 11 more 

raphid genera, bringing the total to 23 raphid genera.  A minimum of 3 more raphid genera 

appear in the remaining Paleogene sites featured in the chart.  In sum, at least as many as 26 

modern freshwater raphid genera had evolved prior to the beginning of the Neogene. 

 This study agrees with the view that all three major modern freshwater diatom groups had 

evolved prior to late Cretaceous.  The occurrences of these major groups as early as the late 

Cretaceous strongly indicate that the earliest and most primitive forms of these taxa first 

appeared prior to the time interval for which freshwater fossil data have been recovered and 

published. 

 

Advances in Freshwater Diatom Biochronology at the Genus Level 

 Wolfe and Edlund (2005) have described in the early Eocene Horsefly lake deposits of 

British Columbia, Canada, the now-extinct new genus Eoseira that is believed to be an ancient 

link between Aulacoseira and older centric diatoms.  Wolfe and Siver (2009), in middle Eocene 

Giraffe Pipe lake sediments from the Northwest Territories, Canada, have pushed back the range 

for 3 genera in the Stephanodiscaceae family of non-marine diatoms.  Among these is Cyclotella, 

whose previously-accepted time of origin was 20 million years later in the Miocene (Krebs, 

1994; Krebs et al., 1987).  Also at the Giraffe site, Wolfe and Siver (2009) and Siver and Wolfe 
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(2007) have extended the currently published freshwater fossil record of the genus Eunotia by 

more than 25 million years from the formerly posted record of origination in middle Miocene (15 

Ma) (Bradbury et al., 1985).  Extending this record, the previously unpublished observations 

presented in this study show occurrences of Eunotia in both the early Eocene Horsefly beds of 

British Columbia and the middle Eocene Dewey beds of Idaho that substantially pre-date the 

Eunotia occurrence in middle Eocene Giraffe site.  Further work by Siver et al. (2010) in the 

middle Eocene of the Northwest Territories extends the record of the genus Actinella by about 6 

million years from the former first-occurrence in deposits ranging from late Eocene to Oligocene 

age.  The first-ever fossils of the extant genera Nupela and Oxyneis were recovered from the 

Giraffe site in the Northwest Territories (Siver et al., 2010).   

 Previously published accounts of the diatoms from the late Eocene Florissant lake 

deposits of central Colorado, aided by the current investigation, provide a rich new flora that 

extends the geologic range of as many as 14 extant freshwater genera.  The Florissant diatom 

flora is exceptional because it is the earliest highly diverse freshwater flora known, with species 

representing as many as 33 modern genera.  The 14 geologically first-appearing genera include   

Ellerbeckia, Orthoseira, Rhoicosphenia, Achnanthidium, Platessa, Psammothidium, Diadesmis, 

Adlafia, Epithemia, and Rhopalodia that were not formerly reported prior to the Neogene.  The 

first-occurrences of Synedra and Achnanthes are pushed back by 10 million years from the 

Oligocene-Miocene deposits at the Canyon Ferry locality in Montana (Van Landingham, 1970).  

The first-occurrences of Cymbella and Gomphonema are pushed back by 4 million years from 

the middle Oligocene Pittsburg Bluff locality in Oregon (McKnight et al., 1995).  The remaining 

Florissant genera provide a continuation of the record of 17 earlier recognized genera.    
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Implications of this Study for Freshwater Diatom Biochronology 

 Despite the caveats regarding the incompleteness of the fossil record, this range chart of 

pre-Neogene freshwater diatom sites provides concrete morphologic evidence based on the 

presence, rather than the absence, of taxa that reflect, in part, the sequence and timing of 

phylogenetic changes that mark the early establishment of modern freshwater diatom populations 

in North America.  It has been shown that, although the mechanisms at play may not be fully 

understood, these floral changes are temporally somewhat coincident with increases in 

taxonomic diversity observed in the marine diatom realm that are linked to global cooling events.  

In the following paragraphs, first-occurrences of genera shown in this study are discussed in 

relation to some of the predicted lineage relationships of Sorhannus (2004), Sims et al. (2006), 

Siver and Wolfe (2007), and Brown and Sorhannus (2010).  Also briefly mentioned are the 

possible influences of human history and habitat on the current fossil record. 

 Although the singular species of the araphid genus Synedra observed at Florissant is a 

freshwater taxon, as substantiated by collateral macrofossil data, the genus Synedra also contains 

species that are associated with marine or marginally marine and brackish water environments.  

Previous to this study, first-reports of the marine species of Synedra are from early Oligocene 

(Barron and Baldauf, 1995).  Not only the earlier first-occurrence of the non-marine form, but 

also the presence of Synedra as a dominant taxon in the Florissant lake sediments potentially 

signals an early tolerance for a freshwater habitat for this genus that began at least as early as the 

late Eocene. 
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 The araphid Fragilaria-like forms of the family of Fragilariaceae are reported from as 

early as late Cretaceous in fresh to brackish water deposits of Mexico (Chacon-Baca et al., 2002; 

Bernaldi-Campesi et al., 2004).  These limited Cretaceous occurrences were followed in the 

Paleogene by what appear to be surges in the freshwater Fragilariaceae diversity in the middle 

Eocene sites of North America and in the late Eocene flora of Florissant that correspond with 

increased diversity in Fragilariaceae genera in the marine realm (Sims et al., 2006).  Whether 

such diversity increases are real or an artifact of the limited number of fossil sites, there is in the 

Florissant substantial morphological variability observed in the Fragilariaceae taxa, especially 

among the Staurosiroid forms.   

 On the basis of the more recent work of Brown and Sorhannus (2010) that pushes back 

the origins of diatoms to the Carboniferous -Permian boundary, all the evidence mounted in the 

current study reflects only the most recent portion of the evolutionary history of diatoms.  

 The addition to the fossil record of the genus Adlafia in the late Eocene Florissant is 

possibly due to the fact that earlier workers did not distinguish it from species of the genus 

Navicula (Round et al., 1990).   

 On an ecological note, the late Eocene Florissant flora uniquely yields the first-identified 

centric Orthoseira specimens and diminutive species of the raphid genus Diadesmis, both of 

whose modern relatives occupy moist aerophytic niches.  The timing of first-occurrences of these 

genera in the Florissant deposits may be attributed to a general lack of preservation of sediments 

from these marginal habitats in older fossil sites.    

  

Future Directions 
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 The challenges to discovering the earliest vestiges of freshwater diatom forms will be 

met through the continued search for diatom-bearing deposits that pre-date the current freshwater 

fossil record.  This will require the efforts of a large body of investigators to pool their energies 

globally in such a search. 

 Continued work on known pre-Neogene floras will be necessary to further populate and 

amend the current biochronology.  In this pursuit, the compelling task at hand for the freshwater 

paleodiatomist is to describe and document the taxa from even the most difficult of rock matrices 

in an effort to close the gaps in the early record.  Continued high-resolution species-level 

analysis of the late Eocene Florissant diatom flora at the Clare‟s Quarry site and other 

stratigraphic sections within the Florissant Fossil Beds National Monument will help to more 

fully characterize the resident taxa and their ecological associations.  Such intensive floristic 

work at Florissant has the potential to uncover subtle species shifts through time that can be 

evaluated in the context of changes or stability in the depositional setting. 

 We will look forward to further advancements from the species-level taxonomic work 

that continues in the early and middle Eocene sites of Canada by Siver, Wolfe, Edlund, and 

colleagues and anticipate the growing set of phylogenetic implications emerging from such 

work.  With more study of freshwater diatom-rich Eocene sites and the future discovery of 

additional floras in earlier pre-Neogene deposits, a clearer sense of the timing of the evolution of 

ancestral forms will emerge.  With a more accurate biochronology as a framework, future 

workers can better evaluate possible links between diatom evolution and the complex processes 

that drive or reflect global change.  
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Plate 1. 

 

Figure 1. Aulacoseira sp., valve view.  Light microscopy image of specimen from the “middle 

shale” of the late Eocene Florissant Formation, Teller County, Colorado.  Collected from the 

Lohman 1957 section, Lower Twin Rocks Road.  California Academy of Sciences Accession 

#601857, Slide #375003.  (Scale bar = 10 μm.) 

 

Figure 2. Planothidium sp., valve view.  Light microscopy image of specimen from the “middle 

shale” of the late Eocene Florissant Formation, Teller County, Colorado.  Collected from the 

Lohman 1957 section, Lower Twin Rocks Road.  California Academy of Sciences Accession 

#601857, Slide #375003.  (Scale bar = 10 μm.) 

 

Figure 3. Undetermined centric, valve view.  Light microscopy image of specimen from the 

middle Eocene Dewey beds, Valley County, Idaho.  Collected by Leonard in 1986.  Thunder 

Mountain mining district. California Academy of Sciences Accession #702135, Slide #1028081.  

(Scale bar = 10 μm.) 

 

Figure 4. Eunotia sp. 1, valve view.  Light microscopy image of specimen from the middle 

Eocene Dewey beds, Valley County, Idaho.  Collected by Leonard in 1986.  Thunder Mountain 

mining district. California Academy of Sciences Accession #702135, Slide #1028081.  (Scale 

bar = 10 μm.) 

 

Figure 5. Eunotia sp. 2, valve view.  Light microscopy image of specimen from the middle 

Eocene Dewey beds, Valley County, Idaho.  Collected by Leonard in 1986.  Thunder Mountain 

mining district. California Academy of Sciences Accession #702135, Slide #1028081.  (Scale 

bar = 10 μm.) 

 

Figure 6. Frustulia sp., valve view.  Light microscopy image of specimen from the middle 

Eocene Dewey beds, Valley County, Idaho.  Collected by Leonard in 1986.  Thunder Mountain 

mining district. California Academy of Sciences Accession #702135, Slide #1028081.  (Scale 

bar = 10 μm.) 

 

Figure 7. Diatoma sp., valve view.  Light microscopy image of specimen from the early Eocene 

Horsefly beds, British Columbia, Canada.  Collected by Wilson in 1981.  California Academy of 

Sciences Accession #701462, Slide #1021059.  (Scale bar = 10 μm.) 
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Summary/Abstract 

 The late Eocene diatom flora from the lacustrine deposits of the Florissant Formation in 

Teller County, Colorado, is typical of the ancient community of Aulacoseira-pennate genera 

(Fragilaria) of Krebs (1994) that is characteristic of temperate freshwater lakes of the Paleogene 

of western North America.  The current study centers on the diatom taxa in samples from a 

measured stratigraphic section exposed at the Clare‟s Quarry site near the small town of 

Florissant.  Diatom taxa are documented through the systematic descriptions and illustrations 

presented here.  The fossil diatom flora of this locality includes a minimum total of 21 genera 

from 14 families.  All but 3 of the families are represented by a single genus.  The most diverse 

family is Fragilariaceae with 4 genera.  Eight of the total 21 genera are first occurrences within 

the geologic record.  Although the diatom frustules are relatively well-preserved in this site, 

processing challenges inherent with indurated shales and mudstones have rendered results that 

highlight the appearance of variously identifiable individuals rather than providing a quantitative 

assemblage assessment.  This study is a survey of taxa using light microscopy and scanning 

electron microscopy.  These findings are organized according to the classification of freshwater 

diatoms (modified from Round et al., 1990; and Kingston, 2003).  The discussion contains 

descriptions and image plates of 4 new species, 2 new varieties of known species, 2 nominate 
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varieties of known species, 8 numbered species that are similar to known species but that 

have insufficient data to confidently assign to either a known species or to propose a new species 

name; 38 morphotypes for this site that are identifiable only to genus, and 1 morphotype that is 

of an uncertain affiliation within the centric group.   

 

Introduction 

 Background  

 For more than the past one hundred and thirty years, the Florissant area of central 

Colorado has been known as a location for giant petrified Sequoia tree stumps and exquisitely 

preserved plant leaf, pollen, insect, spider, mollusk, fish, shorebird, and mammal fossils 

contained in the lacustrine and associated fluvial deposits of late Eocene age (Meyer, 2003).  The 

area that includes the majority of this fossil Lagerstätte was preserved in 1969, by the U.S. 

National Park Service as the Florissant Fossil Beds National Monument.  The lake bed shales are 

interbedded with mudstones, volcanic ash, and coarse volcanic tuffs that contain sanidine 

crystals that provide an average 
40

Ar/
39

Ar radiometric age of 34.05 ± 0.08 Ma (McIntosh and 

Chapin, 2004).  The understanding of the lake history is based upon the interpretation that the 

lacustrine system formed as a result of lahars that dammed the fluvial drainage (Evanoff et al., 

2001).  A series of three lake deposits, designated “lower,” “middle,” and “upper” shales are 

recognized within the Florissant paleobasin (Evanoff et al., 2001).    

 Among the algal microflora that inhabited the Florissant lake system are freshwater 

diatoms (division Bacillariophyta and classes Coscinodiscophyceae, Fragilariaophyceae, and 

Bacillariophyceae).  Fossil diatoms at Florissant were recognized in early investigations 
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(MacGinitie, 1953) as contributors to the laminated nature of the lake beds.  Pioneering 

studies that relate diatoms to sedimentation processes were conducted by Weilbacher (1963) and 

McLeroy and Anderson (1966) and form the basis for many of our current interpretations about 

the paleolimnology of the ancient lake.  Studies that associate diatom and bacterial biofilm with 

macrofossil preservation are more recent contributions (Harding and Chant, 2000; O‟Brien et al., 

2002; O‟Brien et al., 2008).  Florissant diatoms in a set of samples from the Florissant Fossil 

Quarry (Clare‟s Quarry) were identified to genus level, and interpretations about their autecology 

were made by Frank Round and David Williams as noted in Harding and Chant (2000).  A 

second set of samples from the same site was examined by Eugene Stoermer from which a list of 

19 modern genera for which the fossil diatoms showed morphologic affinity was noted in Meyer 

(2003).  A contribution of the current research is an illustrated floristics assessment of 

representatives of the unusually diverse Florissant fossil diatom flora from the field site referred 

to as Clare‟s Quarry. 

  Rationale for Study 

 The freshwater diatom fossil record is deficient in tracing the course of diversification 

from the early forms of the Cretaceous period that are reported in Chang et al. (2003), Harwood 

et al. (2004, 2007), Chacon-Baca et al. (2002), Beraldi-Campesi et al. (2004), Ambwani et al. 

(2003), and Singh et al. (2007) to those of decidedly modern affinity that begin to appear in the 

early and middle Eocene deposits (Lohman and Andrews, 1968; Wolfe and Edlund, 2005; 

Bradbury In Axelrod, 1998; Wolfe et al., 2006; Siver and Wolfe, 2007; Wolfe and Siver, 2009) 

and that dominate the flora of this late Eocene Florissant locality.  The Florissant diatom flora is 

a representation of diversification of genera and species that is unprecedented in the early fossil 
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record.  This investigation demonstrates that the Florissant diatom flora is the most diverse 

(genus rich) early freshwater diatom flora known.  Additionally, with few exceptions such as the 

middle Eocene Giraffe Pipe locality in Northwest Territories of Canada (Wolfe et al., 2006; 

Siver and Wolfe, 2007; Wolfe and Siver, 2009; and Siver et al., 2010), Cretaceous and Eocene 

freshwater diatom deposits are so altered by diagenesis or other taphonomic processes that 

researchers are generally limited to thin section imagery of only single taxa.  Despite the 

taphonomic damage and processing difficulties inherent with these indurated shales at Florissant, 

with extreme diligence, a relatively representative survey of the diatom flora was possible.  For 

this reason, and the geologic significance of this highly diverse flora, the Florissant deposit is a 

uniquely favorable locality for accessing the record of the many late Eocene first-occurring 

modern taxa.     

 

Location 

 The study area is south of the town of Florissant in Teller County, Colorado.  The town 

of Florissant is reached via U.S. Highway 24, and is 38 miles west of Colorado Springs, which is 

70 miles south of Denver (Text Figure 1.).   
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Text Figure 1.  Location map for Florissant study area west of Colorado Springs. 

 

 

 The site of this investigation is the Florissant Fossil Quarry (referred to here as Clare‟s 

Quarry) that is located just south of the town of Florissant and north of the Florissant Fossil Beds 

National Monument (Text Figure 2.). 
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Text Figure 2.  Location of Clare‟s Quarry site in relationship to the town of Florissant and the 

Florissant Fossil Beds National Monument. 

 

 

   The Clare‟s Quarry site is a stratigraphic section of the “lower shale” of the Florissant 

Formation (Evanoff et al., 2001) within a small, privately-owned, commercial fossil quarry on 
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the east-facing wall of a forested knoll west of County Road 1, less than 0.2 miles south of 

the town of Florissant and less than 0.4 miles north of the Florissant Fossil Beds National 

Monument.  The quarry is within the U.S. Geological Survey Lake George 7.5 minute 

topographic series quadrangle map in the SE ¼, SE ¼, Section 2, T13S, R71W; at 38º 56.605‟ N, 

105º 17.459‟ W.  Samples were collected from a 5-meter thick stratigraphic section whose base 

is at an elevation of 8,272 feet (2,521.3 meters).  A detailed description of the host rock and 

implications about the depositional setting of the Florissant Formation at Clare‟s Quarry are 

being prepared in a separate manuscript.  Text Figure 3. shows the stratigraphic section with the 

host lithology types and the samples illustrated in this study. 

 

 

 

 

 



 

 

110 

 

Text Figure 3.  Clare‟s Quarry stratigraphic section showing lithologic units and position of 

samples for diatom specimens that are illustrated in the image plates. Letters indicate shale/mud 

cycles.  
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Materials and Methods 

 Collection Methods 

 Field collection at the Clare‟s Quarry site was done on June 15, 2005 and July 14, 2006.  

The bedding at the exposure is flat-lying from north to south and dips into the hillside ~2º to 

N27ºW.  The quarry face had been frequently cut during the past decade by the owners using 

heavy equipment in fossil retrieval operations.  A stratigraphic section on the east-facing quarry 

wall was measured (Text Figure 3.).   Before collecting samples, surfaces were swept clean.  

Hammer and chisel were used to break into the rock to obtain fresh material.  Stratigraphically 

contiguous samples were removed from the total section of 4.91 meters.  Each sample was 

placed into a labeled plastic zip-lock bag and sealed.  The measured stratigraphic position 

relative to the “zero” marker horizon was marked on each bag.  The section was photographed 

with the scale in place to document the sample positions relative to the lithologic units.  Samples 

were further cleaned with pressurized air and distilled water, and detailed descriptions were 

completed. 

 Preservation and Taphonomic Considerations 

 At this study site, the diatoms are relatively well-preserved as to their mineral 

constituency and microstructural integrity; although, under SEM, etching of frustule surfaces is 

indicated in some samples.  It is reasonable to assume, therefore, that some amount of the cell 

wall silica may have been lost or re-ordered, in some cases possibly contributing to a weakening 

of frustule walls.  It is unclear whether valve disarticulation and girdle band detachment are due 

to natural causes during sedimentation and burial or to preparation methods.  The natural process 
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of compaction has resulted in plastic deformation of elongate diatom forms such as Diatoma 

and Synedra and differential elastic and brittle collapse of cylindrical frustules of Aulacoseira.  

The probable diagenetic redistribution of amorphous silica of both biogenic origin and from 

devitrification of volcanic glass and partial alteration of feldspars to clays has resulted in an 

indurated shale and mudstone matrix that resists disaggregation.  As an anthropogenic overprint, 

the decision to crush the samples to make the slurry for slide preparation resulted in the 

fragmentation of a large number of frustules.  Secondary breakage occurred from splitting the 

matrix and sputter-coating the SEM stubs. 

 In the end, this floristics study represents neither intact living diatom populations (life 

assemblages or biocoenoses), nor death assemblages (thanatocoenoses) (Schäfer, 1972).  It is, 

rather, the product of a systematically conducted survey of a taphonomic diatom assemblage 

(taphocoenosis) (Stoermer and Smol, 1999) that represents portions of the living population that 

occupied various niches within and peripheral to the lake in which their frustules were deposited.  

The taxon list is a record of the uncommon to rare sightings of whole and greater than half 

frustules or valves surviving the destructive processing methods previously described.  For this 

reason, caution must be observed with regard to size ranges of the individuals recorded in this 

study, as it reflects only the frustules that remained relatively intact after preparation.  Although 

accurate for those individuals, it does not fully represent the potential size range of the taxa 

present in the assemblage.  The floral composition presented here has been generated from both 

light microscopy and scanning electron microscopy (SEM).  The individual diatoms observed 

under light microscopy represent the group of taxa that were structurally sound enough to 

survive the rigors of burial and the destructive processing techniques; and, as well, they were 
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within a particular size range that allowed for some whole or greater than half valves to 

survive such conditions.  On the other hand, SEM images are from completely non-directed 

searches on prepared stubs from samples selected for their known richness or diversity.  The 

SEM survey results are somewhat less restricted by structural soundness and size range of the 

frustule, but are biased in favor of sample intervals that reflect greater diatom concentrations and 

greater diversity of taxa.        

 Sample Preparation 

 Field samples were examined and described as to lithology, sedimentary features, 

stratigraphic contacts, and macrofossil content.  Subsamples were selected and prepared under a 

binocular microscope to isolate the fresh interior portion of the rock.  Each subsample was 

cleaned with pressurized air, then washed in distilled water, and freeze-dried in the lab.  

Experimentation with matrix disaggregation using the following three chemical methods 

prescribed in  Green (2001) modified by George Breit, USGS (personal communication), and 

augmented with timed motorized shaker and sonication.  These methods are (1) heating in 30% 

hydrogen peroxide, cooling, and applying hydrochloric acid; (2) heating in sodium 

hexametaphosphate; and (3) heating in sulfuric acid.  None of these tested methods resulted in 

matrix disaggregation.  For these methods in total, a range of 48-84% of the initial 1 gram 

sample volume remained intact after extended test times.  In the end, the diatom light microscope 

slides were prepared using three methods: slurries from sonication of whole rock chips in 

distilled water air-dried on cover slips using Battarbee chamber method (Battarbee, 1973) and 

permanently mounted on glass slides using Naphrax or Zrax mounting medium; mechanical 

crushing and pulverization of whole rock chips with mortar and pestle in distilled water 
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rendering a slurry for direct application onto cover slips that were heat-dried on a hot plate 

and permanently mounted; and slurries drawn from the hydrogen peroxide and the sodium 

hexametaphosphate preparations for direct application onto cover slips that were heat-dried on a 

hot plate and permanently mounted.  Scanning electron microscopy samples were prepared as 

follows: freshly broken samples were cleaned with pressurized air; fresh, untreated chips and 

residual treated chips from each of the chemical methods were mounted on stubs with double-

sided black tape; stubs for low-vacuum imagery were sputter-coated with gold and palladium, 

and those for field emission or ionic beam imagery were not coated. 

 Data Analysis 

 The diatom slides were examined and digitally photographed under 1000x magnification 

with Olympus Vanox and Olympus BX 51 light microscopes.  Scanning electron microscopy 

was performed with JEOL Tungsten JSM-5800 low vacuum instrument at the US Geological 

Survey in Denver; and FE JEOL JSM-7401-F field emission and FEI Nova 600-I focused 

electron beam instruments at the Nanomaterials Characterization Facility at the University of 

Colorado.  Strictly quantitative methods were not attempted due to the high degree of valve 

fragmentation resulting from destructive processing methods necessitated by the lack of matrix 

disaggregation. 

 Specimen Repository 

 All specimens featured in this study are reposited at the University of Colorado Natural 

History Museum in Boulder.  Clare‟s Quarry site has the UCM Locality #2005015.  The 

specimens are catalogue numbered from UCM #40917 through #41045, as detailed in the up-

coming discussion.  
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Results 

 Taxonomy 

 The taxa of the Florissant fossil diatom flora are presented in the order of the 

classification of freshwater diatoms modified from Round, Crawford, & Mann (1990); and 

Kingston (2003).  Representative diatom taxa of the following 14 modern families are observed 

in this investigation at the Clare‟s Quarry site: Aulacoseiraceae Crawford, Orthoseiraceae 

Crawford, Heliopeltaceae H.L. Smith, Fragilariaceae Greville, Tabellariaceae Kützing, 

Eunotiaceae Kützing, Gomphonemataceae Kützing, Achnanthidiaceae D.G. Mann, 

Diadesmidaceae D.G. Mann, Amphipleuraceae Grunow, Pinnulariaceae D.G. Mann, 

Naviculaceae Kützing, Stauroneidaceae D.G. Mann, and Bacillariaceae Ehrenberg. 

  These are the 21 genera that are identified in this study: Aulacoseira G.H.K. Thwaites, 

Orthoseira G.H.K. Thwaites, Actinoptychus C.G. Ehrenberg, Fragilaria H.C. Lyngbye, 

Staurosira C.G. Ehrenberg, Diatoma Bory de St.-Vincent, Synedra C.G. Ehrenberg, Tetracyclus 

J. Ralfs, Eunotia C.G. Ehrenberg, Gomphonema C.G. Ehrenberg, Achnanthidium Kützing, 

Planothidium Round et Bukhtiyarova, Platessa Lange-Bertalot, Psammothidium Bukhtiyarova et 

Round, Diadesmis Kützing, Frustulia C.A. Agardh; Rabenhorst, Pinnularia C.G. Ehrenberg, 

Adlafia Moser, Lange-Bertalot et Metzeltin, Navicula Bory de St.-Vincent, Stauroneis 

Ehrenberg, and Nitzschia Hassall.  All of these genera live in modern aquatic and associated 

settings, and the taxa observed in this study show extreme affinity to modern species. 

 The taxonomic descriptions and illustrations that follow include 4 newly described 

species, 2 new varieties, 2 nominate varieties of previously known species, 8 numbered species 
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for this site that are similar to known species but that have insufficient data to confidently to 

propose a new species name or assign them to a known species, and (in the style of Siver and 

Wolfe, 2007) 38 numbered morphotypes for this site from specimens that are identifiable only to 

genus, as well as one centric morphotype whose genus is unresolvable.    

 Taphonomy 

 In SEM, the diatom frustules show various degrees of destruction including plastic 

deformation and brittle collapse attributed in part to compaction during burial.  Despite the 

damaged condition of most specimens and the partial occlusion of frustules by residual matrix in 

the samples, light microscopy provided relatively good images of the uncommonly whole and 

nearly-whole specimens that allowed identification to genus, and in some cases, to species level.  

The SEM imagery made it possible to distinguish finer features that allowed for greater certainty 

as to genus and, in some cases, to species or variety level. 

 Note that size ranges provided in the following descriptions are intended to show only the 

range of what was observed in this study and is not intended to limit the range of the taxon 

described. 

 

 

--Species List 

---Class Coscinodiscophyceae 

    Aulacoseira G.H.K. Thwaites 1848 

 Aulacoseira clarensis sp. nov. 

Plate 1, Figures 1-7; Plate 2, Figures 1-6. 
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Syntypes 

UCM #s 40917 – 40926 

Figured Specimens  

UCM #40927  

 

Description 

Morphology: centric frustule; tapering cylindrical valve in girdle view; valve height greater than 

diameter; moderately tall collum; valve face flat in smaller end of size range, but one face of 

joined sibling pairs shows slight convex-up face in larger valve size range; valve face interior 

areolae are evenly distributed and covered with round to irregular velar plates; mantle exterior 

areolae small, evenly-spaced, narrow elliptical to rectangular in shape; rounded elliptical velar 

plates cover areolae on mantle interior; at least 1 supporting strut below areolae is seen from 

mantle exterior; rows of mantle areolae straight or slightly spiral to the left away from linking 

spines (sinistrorse); robust linking spines are flat spatulate (broadly anvil- or spade-shaped) at 

ends, robust stems of linking spines extend from mantle rim and become profoundly flattened 

spatulate (broadly anvil- or spade-shaped) ends that display apiculate tips in some individuals; 

linking spines may bear silica granules; at least one row of areolae enters the stem of each 

linking spine and becomes a single slit before terminating; separation valves not identified; 

ringleiste solid, moderately thick, and very shallow; one or more (probably two) rimoportulae 

positioned over the 3 areolar rows nearest to the ringleiste are distinguished best in SEM; simple 

rimoportula shape is subapically elongate oval with aperture slit slanted to right or to left toward 
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ringleiste; pervalvar rows of fine nodes (milling) along outer rim of collum; translucent 

copulae sometimes observed in SEM over frustules or entire filaments; wide variability in height 

to diameter ratio among individuals; this variability is also observed between sibling frustules of 

filaments.    

Dimensions: Diameter: 2.5-13.0 μm (in girdle view, measured at valve   face)    

  Height: 6-21 μm  

  Rows of areolae/10 μm: 20-30 

  Areolae/10 μm: 16-18  

  Mantle height/valve diameter ratio: 1.6-2.4  

 

Comments 

Taphonomic Effects: in girdle view, valves become increasingly flared from valve face toward 

and into the collum due to compressional failure in a direction perpendicular to the mantle 

surface (compaction direction that corresponds generally with the interpreted bedding plane of 

the host rock).  Compressional fractures in mantle, visible only in SEM, may run subparallel or 

transverse to pervalvar axis.  The flattening is less pronounced at the narrower, structurally more 

stable valve face terminus where the linking spines are often still interlocked with a sibling 

valve.  The measured girdle-view diameter at the valve face is used as the valve diameter for 

these differentially flattened specimens.  As the two valve faces, held together by the still 

interdigitated linking spines, form a structurally sound entity after taphonomic collapse and 

removal of the mantle wall, individuals in valve view are also somewhat commonly observed in 

both SEM and LM.  
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Orientation/Habit/Associations: frustules typically lie in girdle view, often in groups of 

tangential, parallel-oriented filaments forming a series of compacted monospecific layers or 

layers with other elongate taxa such as Synedra and Diatoma.  Specimens in some samples are 

observed as single frustules or valves of disarticulated filaments that show random lateral 

orientation and lie among other randomly-oriented individuals of Synedra and Diatoma, as well 

as less common Gomphonema, Navicula, Tetracyclus, Achnanthidium, Planothidium, 

Psammothidium, Fragilaria, Staurosira, Eunotia, Pinnularia, and Stauroneis.  This species 

occurs ubiquitously in the laminated shales of this site, but with the exception of a thick interval 

that is dominated by Synedra and Diatoma in which it is noticeably absent.  A. clarensis sp. nov. 

is best illustrated from samples CQ2-1-03, CQ1-11-12, CQ1-12-13, and CQ1-13-14. 

 

Most Similar Published Species:  A. italica (Ehrenberg) Simonsen emend. R.M. Crawford, Y.E. 

Likoshway & R. Jahn. 

Reference: (Crawford et al., 2003) 

Morphology: “Valves united by broadly anvil- or spade-shaped linking spines that vary in length 

among sibling valve pairs.  A single row (rarely two) of areolae run up into the stem of the spine 

which may bear a number of granules.  Separation spines of the same length as linking spines but 

tapering to a fine point are formed very rarely.  Areolae are subcircular, or more usually, angust-

elliptic to fine slits and arranged in sinistrorse, spiralling rows.  Velum a spongiform plate 

covering the inner aperture of the areola and suspended by 3 or 4 supports from the sides of the 

areola.  Valve face more or less covered by randomly arranged areolae or areolae absent.  
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Rimoportulae one or more, usually two, per valve, visible with difficulty in the LM and 

positioned 4-5 areolae distant from the ringleist.  Outer aperture of rimoportula not 

distinguishable in SEM from areolae; inside aperture terminates a straight tube lying flat against 

the valve surface and oriented transverse to the areolar rows.  Ringleist solid, narrow and 

shallow.  This species forms resting spores.” (Crawford et al., 2003) 

Dimensions: Diameter: 3-32 μm (Krammer and Lange-Bertalot, 1991) 

  Height: 8-20 μm (Krammer and Lange-Bertalot, 1991) 

  Rows of areolae/10 μm: 18-25 (Crawford et al., 2003) 

  Areolae/10 μm: 10-20 (Crawford et al., 2003) 

Ecology: “not well known but clearly differs from the planktonic species in occurring with 

species of the genera Gomphonema, Rhopalodia, Epithemia, Cymbella, Encyonema, Eunotia, 

Pinnularia, Neidium, Synedra, Surirella and Stauroneis; all of them essentially benthic and 

characteristic of a very different environment from the open water plankton of A. ambigua and A. 

granulata (Ehrenberg) Simonsen for example.” (Crawford et al., 2003)  

Geologic range of A. italica: middle Eocene to modern.  The earliest described was (as 

Meloseira italica) in the middle Eocene Wagon Bed Formation in Wyoming (Lohman & 

Andrews, 1968).  [Original published age for the host deposit of the Wagon Bed Formation was 

“late Eocene;” however, updated radiometric dating of associated volcanics (Smith et al., 2008) 

confirms an age of 47-49 Ma, placing it in early to middle Eocene.] 

Modern occurrences, while they do exist, may not be as common as in the fossil record 

(Crawford et al., 2003).   
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New Species Diagnosis 

The new species is designated on the basis of the following characteristics: greater density of 

areolae rows per 10 μm when compared with A. italica, being more similar in striae density to 

Melosira italica var. multistriata Patrick (Patrick, 1940); the closer proximity of the rimoportulae 

to the ringleiste; and the distinctive rimoportula that, as seen from valve interior, is a simple 

labiate structure with a diagonally-slitted aperture, rather than the flat transverse tube with an 

apically-oriented straight-slitted aperture as with A. italica (Crawford et al., 2003).  The location 

and shape of the one or two rimoportulae are similar to that of A. ambigua (Grunow) Simonsen, 

but this new species is distinguished from A. ambigua primarily on the basis of the solid 

ringleiste (rather than hollow) and sinistrorse (rather than dextrorse) mantle striae (Potopova et 

al., 2008). 

 A distinguishing feature of this fossil species at this site is the hour-glass shape of joined 

sets of sibling valves in girdle view.  Although this is a taphonomic distortion due to differential 

collapse of the valves toward the frustule center (as seen in SEM) and is interpreted as an artifact 

of the burial process rather than an original shape, it is suggestive of relatively weak walls of the 

mantle, ringleiste, and collum, as opposed to other species of Aulacoseira observed elsewhere in 

the Florissant deposits.  It is uncertain as to whether the less-well silicified walls are a species 

characteristic, an environmentally-induced phenomenon (Stoermer et al., 1985; Stoermer and 

Julius, 2003), or if partial dissolution of the frustule of this taxon might have occurred in the 

water column prior to burial.  

 

Etymology 
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The name recognizes the uniqueness of this species to the Florissant Formation and its 

particularly common occurrence at the Clare‟s Quarry site.  It bears the epithet of the family who 

owns the quarry. 

 

 

 Aulacoseira sp. 1, [aff. A. distans (Ehrenberg) Simonsen]  

Plate 3, Figures 1-6. 

 

Figured Specimens  

UCM #40928  

  

Description 

Morphology: centric frustule; large regularly-spaced round areolae on valve face; linking spines 

surround valve face in valve view; deep ringleiste with possibly one or two rimoportulae on the 

interior surface of the ringleiste. 

Dimensions: Diameter: ~8 μm 

  Height: not observed  

  Rows of areolae/10 μm: not observed 

  Height/diameter ratios: not observed  

 

Comments 

Taphonomic Effects: undetermined; taxon observed only in valve view under LM.  



 

 

123 

 

Orientation/Habit/Associations: rarely seen, occurring with Orthoseira, Diadesmis, Synedra, 

Frustulia, Pinnularia, Gomphonema, Achnanthes, Fragilaria, Navicula, and a rare undetermined 

centric.  Sample CQ1-8-09. 

 

Most similar published species: A. distans (Ehrenberg) Simonsen 

References: (Krammer, 1991a); (Crawford and Likhoshway, 1999); (Potapova et al., 2008). 

Description: “cylindrical valves; rows of areolae straight, parallel or almost parallel to the 

pervalvar axis; spines are small, situated at the end of each pervalvar costae.  The ringleiste is 

thick, solid and deep.  There are several rimoportulae situated near the ringleiste.  They are not 

visible from the outside of the valve, but open inside as short tubes.” (Potapova et al., 2008).  

“Has distinct heterovalvy, separation valves have no spines, areolae over whole valve face, 

spines on the mantle edge are usually positioned between rows of areolae on the mantle which 

are in more or less straight rows, deep thick ringleist with numerous rimoportulae against its 

inner side” [Crawford and Likhoshway, 1999, upon re-examination of original material of 

Aulacoseira distans (Ehrenberg) Simonsen].  

Dimensions: Diameter: 4-20 (35?) μm (Crawford and Likhoshway, 1999) 

  Height: 3.5-10.0 μm (Krammer and Lange-Bertalot 1991a); 

    8-10 μm (Crawford & Likhoshway, 1999) 

     The following accounts were provided in Potapova et al. (2008): Mantle Height to Diameter 

Ratio: always <1, usually ranges 0.3-0.8; 

Rows of Areolae per 10 μm: 11-15; Areolae per 10 μm along pervalvar axis: 13-17.    
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Ecology: “small species like A. distans are rarely found in the phytoplankton of larger lakes and 

are more usually reported from the bottom sediments of smaller, soft/acid-water lakes.” (Florin, 

1981; Camburn & Kingston, 1986; Haworth, 1988; Siver & Kling, 1997). 

 

Geologic range of A. distans: “abundant in many fossil freshwater samples and unlikely to be 

found as a  modern form” (Krammer, 1991a; Crawford and Likhoshway, 1999). 

 

 

 Aulacoseira morphotype „Clare‟s 1‟  

Plate 4, Figure 1. 

 

Figured Specimens  

UCM #40929  

 

Description 

Morphology: centric frustule, straight-sided cylindrical valve in girdle view; valve height greater 

than diameter; moderately wide collum; evenly spaced, nearly straight rows of round areolae; 

shallow ringleiste at interior of mantle-collum contact. 

Dimensions: Diameter: 6 μm  

  Height: 15.5 μm  

  Rows of areolae/10 μm: est. 20/10 μm 
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  General height/diameter ratios: ~3:1 

 

Comments 

Taphonomic Effects: intact valves rare; distinquished only in girdle view under LM. 

 

Orientation/Habit/Associations: occurs as individuals in association with  A. clarensis sp. nov. at 

this site.  Sample CQ2-1-03.  

 

 

 Aulacoseira morphotype „Clare‟s 2‟ 

Plate 4, Figure 2. 

 

Figured Specimens  

UCM #40930  

  

Description 

Morphology: centric frustule, cylindrical girdle view, mantle areolae partially covered by a 

copula, irregular to rounded mantle areolae; rows of mantle areolae show a dextrorse curvature, 

small linking spines emerge from mostly single pervalvar costae;   

Dimensions: Diameter: est. 13.5 -15.0 μm 

  Height: 12.5 μm  

  Rows of mantle areolae/10 μm: est. 24 
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  Areolae in pervalvar direction/10 μm: est. 22 

  General height/diameter ratios: 0.83 - 0.93  

 

Comments 

Taphonomic Effects: sibling valve crushed; linking spines show much breakage; taxon observed 

only in external girdle view with SEM.  

 

Orientation/Habit/Associations: rarely seen, occurring with A. clarensis sp. nov., Synedra, 

Diatoma, Tetracyclus, Fragilaria, Achnanthidium, Planothidium, Psammothidium, and 

Staurosira.  Sample CQ1-13-14. 

 

 

 Aulacoseira morphotype „Clare‟s 3‟ 

Plate 4, Figure 3. 

 

Figured Specimens  

UCM #40931  

  

Description 

Morphology: centric frustule, valve face areolae, robust stems of linking spines; slit-like 

extensions of pervalvar areolae rows at base of linking spines.  

Dimensions: Diameter: est. 4-5 μm 
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  Height: not observed  

  Rows of areolae/10 μm: not observed  

  General height/diameter ratios: not observed  

 

Comments 

Taphonomic Effects: breakage of attached sibling valve; taxon observed only at angle to girdle 

and valve view with SEM.  

 

Orientation/Habit/Associations: single specimen observed and only in SEM, occurring with 

Aulacoseira clarensis sp. nov., and the suite that are found in Sample CQ1-13-14. 

 

 

 

 Orthoseira G.H.K. Thwaites 1848 

 Orthoseira roeseana (Rabenhorst) O‟Meara 

Plate 5, Figures 1-15; Plate 6, Figure 1. 

  

Figured Specimens  

UCM #40932 - 40935  

  

Description 
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Morphology: centric frustule, cylindrical in girdle view, valve diameter slightly greater than 

height; three large processes (carinoportulae) in a broad hyaline area at center of valve face with 

well-developed collars to the exterior; valve face dense with rows of coarse round areolae 

radiating from central hyaline area; valve costae become rib-like and terminate in short blade-

like marginal spines; on the mantle margin, the spines originate from single pervalvar costae, 

from two costae that converge, or as detached costae from a marginally branched set; from the 

base of the spines, the curved and branched costae create the appearance of anastomosing striae 

toward the mid-mantle; between mantle costae, irregularly pervalvar rows of coarse areolae 

become finer towards the unornamented distal mantle; copulae are split and ligulate, exposing 

rows of mantle areolae that extend beneath; mantle height/valve diameter ratio <1.  

Dimensions: Diameter: 13-17 μm 

  Height: est. 11-16 μm  

  Rows of mantle areolae/10 μm: 10-18 

  Mantle areolae/10 μm: est. 20 

  Height/diameter ratios: est. 0.85-0.94   

 

Comments 

Taphonomic Effects: although only fragments of frustules in girdle view are most often observed 

at this site, they are somewhat common in some samples.  Their characteristic large size, coarse 

anastomosing areolar rows on the mantle fragments, the radial coarse areolae rows on valve face, 

and blade-like spines are readily recognized as this genus.  
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Orientation/Habit/Associations: few seen as entire valves under LM; most commonly as 

large fragments of mantle in LM; only a single, partly-occluded specimen observed in SEM.  

Samples CQ1-8-09, CQ1-12-13, and CQ1-27-35.  

 

Species assignment: O. roeseana (Rabenhorst) O‟Meara. 

References: (Poulíčková and Hašler, 2007; Krammer & Lange-Bertalot, 1991a; Hustedt, 1930; 

Houk, 1993; Spaulding & Kociolek, 1998) 

Description: centric frustule, cylindrical valve in girdle view, generally valve width greater than 

mantle height, flat valve face with radial rows of areolae and 1-4 (mostly 3) carinoportulae in 

central hyaline area, blade-like pervalvar marginal spines.   

Dimensions:  Diameter: 8-70 μm 

  Length: 6-13 μm 

 

Note on strong subspecific affinity to Houk‟s (1993) O. roeseana (“epidendron” group) 

described as follows: “relatively deep valve mantle with longitudinal rows of distinct pori, 

occasionally dichotomising towards the cingulum.  A regular ring of mostly long, simply tapered 

or spatulated, sometimes forked spines occur at the valve margin.  The spines have short ribs at 

the valve mantle and valve face margin.  Between these ribs there are distinct shallow 

depressions with rows of pori.  On the valve face the single radial rows of puncta are continuous 

from the depressions towards the center, however, the central part is almost without pori but with 

2-7 carinoportulae.  The aforementioned circular patches on the valve margin (in other forms) 

were not observed.  The cingulum is composed of several, mostly 3-5, relatively wide, areolated 
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open and closed bands.  The cell size fluctuates over a wide range in diameter (6-40 μm) and 

length (15-38 μm).”  (Houk, 1993, p. 388-395) 

 

Ecology: “Orthoseira species are found almost exclusively in subaerial habitats, particularly in 

bryophyte communities growing on alkaline substrata and are rarely found in lakes or high-order 

streams.” (Stoermer and Julius, 2003); “recorded from Hungarian and American caves” (Kol, 

1964; St. Clair & Rushforth, 1976); “as a photobiont from lichens” (Lakatos et al., 2004); and 

“mostly found among wet mosses or on soil attached to roots of some higher plants, or as a mat 

on dripping stones or rocks” (Houk, 1993).  Living populations of Orthoseira roeseana 

(Rabenhorst) O‟Meara are observed at well-illuminated sites outside limestone caves and at their 

entrances in the Czech Republic (Poulíčková and Hašler, 2007).    

 

Geologic Range of genus Orthoseira: unknown in the fossil record as freshwater taxon prior to 

this occurrence. Many modern species of this genus exist. 

 

 

 

 Actinoptychus C.G. Ehrenberg 1841, 1843  

  Actinoptychus sp. 1, [aff. A. senarius Ehrenberg (= A. undulatus)] 

Plate 7, Figures 1-3 

 

Figured Specimens  
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UCM #40936  

 

Description 

Morphology: centric frustule, valve face densely punctate and sectored into estimated six sectors 

that are alternately raised and depressed; areolar striae somewhat radial from center of valve 

face, especially so on raised sector; a single, round rimoportula on exterior of raised sector near 

margin of valve face; row of marginal nodes or short spines just above mantle; distinct, finely 

ribbed mantle at valve face margin.  Species not observed in girdle view, so height/diameter 

ratios cannot be determined at this site. 

Dimensions: Diameter: est. 24 μm  

  Height: not observed  

  Rows of mantle areolae/10 μm:  not observed 

  General height/diameter ratio: not observed  

 

Comments 

Taphonomic Effects: only a single, incomplete valve in valve view under LM is identified in this 

investigation. 

 

Orientation/Habit/Associations:  seen only as a single valve fragment in LM in Sample CQ1-10-

11.  

 

Most similar published species: A. senarius Ehrenberg [= A. undulatus] 
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Reference: (Round et al., 1990). 

Description: centric frustules, discoid, solitary; valve face sectored into 6 sectors that are 

alternately elevated or depressed; central area plain or granulate; valve areolae in radiate striae; 

external tubes of rimoportulae prominent, usually located at distal points on radii of elevated 

sectors; thickened rim around valve margin; spines on mantle margin, growths, or siliceous 

ridges, and the edge is produced into a smooth flange; copulae plain, split, and wide. 

 

Ecology: A. senarius Ehrenberg seems to be restricted in its paleogeographic distribution due to 

its preference for brackish water environments: this species is known from brackish marginal 

marine Paleocene and early Eocene deposits (Van Eetvelde and Dupuis, 2004).   

 

Geologic range of genus Actinoptychus: unknown in the fossil record from freshwater lake 

deposits prior to this occurrence; known from as early as late Cretaceous marine shelf deposits of 

the Moreno Shale of California (Harwood and Nikolaev, 1995).  A. senarius is recorded from 

Paleocene brackish marginal marine deposits in the Dieppe-Hampshire sub-basin of the North 

Sea Basin in the UK and France, and in the late Paleocene and early Eocene of the Paris Basin, 

France (Van Eetvelde and Dupuis, 2004). 

 

 

 

Undetermined Centric 

 Centric morphotype „Clare‟s 1‟ 
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Plate 8, Figures 1-6 

 

Figured Specimens  

UCM #40937  

  

Description 

Morphology: centric frustule, round in valve view; fine marginal striae that grade into distinctly 

areolated striae that converge into center of valve face; robust spines are suggested along margin. 

Dimensions: Diameter: est. 20 μm 

  Height: undetermined 

  Valve Face Rows of Areolae/10 μm: est. 22 

  Mantle Striae/10 μm: undetermined 

 

Comments 

Taphonomic Effects: substantial breakage of frustule and partially obscured by attached matrix; 

view skewed, so measurements are approximate. 

 

Orientation/Habit/Associations: extremely rare, as only one single observation at this site.  

Associated with these genera Synedra, Aulacoseira, Planothidium, Gomphonema, Diatoma in 

Sample 1-10. 
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---Class Fragilariophyceae 

 Fragilaria H.C. Lyngbye 1819 

 Fragilaria vaucheriae var. lohmans var. nov. 

Plate 9, Figures 1-8; Plate 10, Figures 1-7 

  

Syntypes 

UCM #s 40938 – 40951 

  

Description 

Morphology: araphid pennate, ovate-elliptical, fusiform, elliptical lanceolate to linear elliptical 

frustules; rectangular in girdle view; broadly or acutely rounded apices; slightly inflated 

hemispheric fascia sometimes extends beyond center point on valve face; narrow sternum; 

uniseriate lineolate valvar striae are parallel to very slightly radiate and extend onto mantle; 

striae offset at sternum by one-third to one-half width of costae; lineolae within each stria 

shorten from rectangular to round toward sternum; apical pore field of porelli in parallel rows 

discernable only in SEM; no linking spines observed, no labiate process evident from exterior, 

and internal views obstructed; several girdle bands uniserially punctate along margin; although 

generally symmetrical, some individuals (especially of the more ovate forms) show slight apical 

and transapical asymmetry, and a few have a tear-drop shape; length/width ratio is widely 

variable.   

Dimensions: Width: 2.5-3.5 μm  
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  Length: 6.5-36.0 μm  

  Valve face striae/10 μm: 16-20  

   Length/width ratio: 2.6-10.3 

 

Comments 

Taphonomic Effects: survived burial and lab preparations relatively well.  Girdle bands 

somewhat separated from valves and compressed.  Elongate individuals tend to show more 

breakage.   

 

Orientation/Habit/Associations: found as singles, often in a group, but not seen in ribbon-like 

filaments.  Commonly associated with Aulacoseira clarensis sp. nov., Synedra, Diatoma, 

Staurosira, and Gomphonema.  Samples CQ1-11-12 and CQ1-13-14. 

 

Most similar published species: F. vaucheriae (Kützing) Petersen var. vaucheriae. 

References: (Patrick & Reimer, 1966; and Krammer & Lange-Bertalot, 1991a) 

Description: (from Patrick and Reimer, 1966) “Frustules usually in short or fairly long chains, 

occasionally occurring singly.  Valve linear to linear-lanceolate; narrowed toward the rostrate, 

rounded apices.  Pseudoraphe narrow.  Central area usually on only one side of the valve.  Striae 

parallel or slightly radiate, occasionally slightly shortened opposite the central area.”   

Dimensions: (from Patrick & Reimer, 1966) 

   Breadth: 2-4 μm  

  Length: 10-40 μm 
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  Valve face striae/10 μm: 12-16 

  Length/width ratio: 5-10 

Dimensions: (from Krammer & Lange-Bertalot, 1991a) 

  Breadth: 4-5 μm  

  Length: not stated 

  Valve face striae/10 μm: 9-14 

  Length/width ratio: undetermined 

     

Ecology: F. vaucheriae is a modern freshwater species and seems to prefer cool water (Patrick 

and Reimer, 1966); often it is abundant in eutrophic reservoirs (Hoagland and Peterson, 1990).   

 

Geologic range of genus Fragilaria: an extant genus whose earliest recorded occurrences are 

from the late Cretaceous (70 Ma) Tarahumara Formation in Sonora, Mexico, (Chacon-Baca et 

al., 2002; Bernaldi-Campesi et al., 2004). 

 

New Variety Diagnosis 

Fragilaria vaucheriae var. lohmans var. nov. is distinguished from the nominate variety by the 

following characteristics: the frustule shape ranges from ovate to fusiform and elliptical-

lanceolate to linear-lanceolate; length and width ranges are smaller; apices range from broadly 

rounded to cuneate, rather than rostrate; greater density of striae on valve face; and the fascia 

varies from unilateral to nearly fully bilateral in some individuals. 
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Etymology 

The name recognizes the pioneering work on fossil diatoms done by Kenneth E. Lohman of the 

U.S.G.S. from the 1950s and 1960s in which the earliest collections were made at Florissant and 

other Tertiary sites in the western U.S.   

 

 

 

 Staurosira C.G. Ehrenberg 1843; P. Petit ex Pelletan 1889 

 Staurosira morphotype „Clare‟s 1‟ [aff. S. construens var. venter (Ehrenberg) Hamilton; 

S. venter (Ehrenberg) Cleve & Möller] 

Plate 11, Figures 1-3; Plate 13, Figures 1-3. 

  

Figured Specimens  

UCM #40952 - 40957  

  

Description 

Morphology: araphid pennate frustule; broadly elliptical to fusiform or clavate in valve view 

with broadly rounded to round cuneate apices; rectangular in girdle view; broad to narrow axial 

area; uniseriate striae with round to transapically elongate oval puncta; short striae extend onto 

mantle; marginal linking spines originate from costae, are solid at base, and project outwards 

from valve face and then re-curve back toward valve; imperforate cingulum has multiple 

elements; apical pore fields not observed. 
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Dimensions: Width: 2.75-3.50 μm 

  Length: 4.0-7.5 μm  

  Valve face striae/10 μm: 14-20 

  Length/width ratio: 1.45-2.14 

 

Comments 

Taphonomic Effects: relatively good frustule survivability from destructive slide preparation 

methods.  

 

Orientation/Habit/Associations: occur in chains or singly; associated with Aulacoseira, and 

diverse pennate taxa.  Samples CQ1-13-14.  

 

Most similar published species: Staurosira construens var. venter (Ehrenberg) Hamilton; 

Staurosira venter (Ehrenberg) Cleve & Möller 

References: Patrick & Reimer (1966); Morales (2006b)   

Description: round to elliptical and rhomboidal valve shape; variable size, shape, and striae 

density; sternum generally narrow and lanceolate, but width variable; valvocopula wider than 

other girdle elements; distinguished from Staurosirella pinnata by its finer striae; intermediate in 

size, shape, and striae density between S. construens and S. construens var. pumila.  

Dimensions: (from Patrick & Reimer, 1966) 

  Width: 3-6 μm 

  Length: 5-9 μm 



 

 

139 

  Valve face striae/10 μm:  14-16, variable 

  Length/width ratio: 1.50-1.67 

 

Dimensions: (from Morales, 2006b) 

  Width: variable 

  Length: variable 

  Valve face striae/10 μm:  14-19, variable 

  Length/width ratio: variable 

 

Ecology for variety: (Patrick & Reimer, 1966) this variety prefers water of fairly low nutrient 

content (oligotrophic to mesotrophic). 

 

Ecology for genus: taxa from this genus are a common component of shallow water floras in 

rivers and lakes. (Kingston, 2003)  

 

Geologic Range of genus Staurosira: a modern genus whose earliest recorded occurrence is by 

Wolfe & Siver (2009) in the middle Eocene Giraffe Pipe lacustrine deposits of Northwest 

Territories, Canada. 

 

Discussion 

The presence or absence of spines in Staurosira and Staurosirella species complexes is unsettled 

among investigators (Morales & Manoylov, 2006); and, according to Paull et al. (2008, p. 222), 
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neither spine shape nor presence of a hollow/solid core within a spine is a reliable character 

for distinguishing among Staurosira venter and Staurosirella pinnata.  

 

 

 Staurosira morphotype „Clare‟s 2‟ [aff. S. incerta Morales] 

Plate 12, Figures 1-2, & 4; Plate 13, Figures 4-8. 

  

Figured Specimens  

UCM #40958 - 40966  

  

Description 

Morphology: valves generally isopolar, araphid pennate frustule; centrally-expanded, elongate 

elliptical to rhombic and lanceolate in valve view with cuneate to rostrate apices; or may be 

heteropolar with respect to apical axis; rectangular to wedge-shaped in girdle view; narrow, 

elliptical to lanceolate axial area; narrow, uniseriate striae with apically elongate elliptical to 

rectangular areolae; broad costae; striae extend onto rounded mantle; internally, striae areolae 

covered by vola; imperforate cingulum; apical pore field on valve.    

Dimensions: Width: 3.0-3.5 μm 

  Length: 10-14 μm  

  Valve face striae/10 μm: 13-14  

  Length/width ratio: 3.33-4.00  
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Comments 

Taphonomic Effects: relatively good survivability from destructive slide preparation methods.  

 

Orientation/Habit/Associations: occur in chains or singly; associated with Aulacoseira, and 

diverse pennate taxa.  Samples CQ1-13-14.  

 

Most similar published species: Staurosira incerta Morales 

Reference: Morales (2006c) 

Description: “frustules rectangular in girdle view forming chains by means of marginal spines; 

valves isopolar with rostrate apices; central sternum narrow and lanceolate; striae are parallel or 

slightly radial toward the poles; striae of slit-like areolae that bear delicate vola; spines are 

hollow, spatulate and located on costae; apical pore fields well-developed and located on the 

valve mantle; no rimoportulae are present; several non-areolate bands compose cingulum; 

valvocopula is much wider than other elements; valvocopula is closed and has fimbriae that 

attach to the costae a the valve interior.”  

Dimensions:   Width: 4-6 μm 

   Length: 8-17 μm 

   Valve face striae/10 μm: 13-16 

   Length/width ratio: 2.0-2.8 

 

Ecology of species S. incerta: alkaliphilous and oligotraphentic (Morales, 2006c). 
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 Staurosira morphotype „Clare‟s 3‟  

Plate 12, Figure 3. 

  

Figured Specimens  

UCM #40967  

  

Description 

Morphology: araphid pennate frustule; elliptical valve with round cuneate  apices; narrow, 

uniseriate striae with apically elongate elliptical to rectangular areolae; broad costae; striae 

extend onto rounded mantle; no spines observed; wide imperforate valvocopula; apical pore field 

positioned on valve face at poles. 

Dimensions: Width: 3 μm 

  Length: 10 μm  

  Valve face striae/10 μm: 12-14 

  Length/width ratio: 3.33 

 

Comments 

Taphonomic Effects: relatively good survivability from destructive slide preparation methods.  

 

Orientation/Habit/Associations: occur in chains or singly; associated with Aulacoseira, and 

diverse pennate taxa.  Samples CQ1-13-14.  



 

 

143 

 

 

 

 Diatoma Bory de St.-Vincent 1824  

 Diatoma tenuis Agardh 

Plate 14, Figures 1-5. 

 

Figured Specimens  

UCM #40968 - 40971  

  

Description 

Morphology: araphid, linear frustule with broadly rounded apices; regularly-spaced transapical 

internally-raised costae visible from exterior as hyaline areas; fine uniseriate transapical valvar 

striae of round puncta are slightly off-set at sternum and extend onto mantle where they become 

deflected away from bases of costae; narrow sternum extends length of valve connecting apical 

pore fields; polar striae radiate from axial area; radial rows of poroids form valvar apical pore 

field; no apical spines observed; internal lateral valvar labiate structure in polar region; two rows 

of poroids on valvocopula, two rows of transapically elongated poroids on each of multiple 

ligulate cingulum bands.    

Dimensions: Width: 5 μm 

  Length: > 60 μm; no complete valves observed   

  Striae/10 μm: 7/2 μm; est. 35/10 μm 
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  Costae/10 μm: 6     

  Striae/2 Costae: 7 

  Areolae/10 μm: est. 75 

  Length/width ratio: est. ~ 12.0  

 

Comments 

Taphonomic Effects: because of their elongated linear valve shape, individuals in LM are 

fragmented during the destructive slide preparation; often seen in matted masses along with other 

elongate genera; SEM views commonly show plastic flexure of frustules in layers among other 

diatoms and matrix grains.  

Orientation/Habit/Associations: extremely common in most laminated shale samples.  

Associated with Synedra in CQ1-17-19; and elsewhere often with Synedra, Aulacoseira, 

Gomphonema, and monoraphids; figures illustrate specimens in samples CQ1-13-14 and CQ2-0-

04. 

 

Species Assignment: D. tenuis Agardh 

References: Morales and Potapova (2000) NAWQA for name validation; abbreviated 

description, dimensions, and ecology below from Williams (1985).      

Description: valves linear with slightly sub-capitate pole; striae indistinct in LM; primary and 

secondary transapical ribs evident; in SEM, a small discrete internally-raised sternum extends the 

length of valve connecting apical pore fields; uniseriate areolated valvar striae extend onto 

mantle;  usually one labiate process per valve situated within a single pole; pore fields indistinct 
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in LM; girdle region visible but bands not differentiated in LM; a tiny lip at external portion 

of valve mantle adjacent to valvocopula; a few spine stubs scattered at tips of pore fields; the 

valvocopula has twin rows of poroids, one row each for pars interior and pars exterior; 

valvocopula band is open; four or more ligulate cingulum bands are observed, each with two 

rows of poroids.    

Dimensions:  Width: 2-5 μm 

  Length: 20-120 μm   

  Striae/10 μm: 16-20 

  Costae/10 μm: 6-10  

  Length/width ratio: 10-24 

 

Ecology: Williams (1985) states that this species generally ranges from freshwater to brackish.  

According to Moss (1981), upper size range specimens of D. tenuis (11.2-72.9 μm) are confined 

to planktic habitats, while those in the lower size range (18.2-48.8 μm) are confined to the 

periphyton.  Additionally, Moss (1981) states that, during the autumn neither Diatoma nor 

Synedra formed planktic populations, but these species did grow and reproduce in the 

periphyton.    

 

Geologic range of genus Diatoma: a modern genus whose earliest reported occurrence is in 

material collected by M.V.H. Wilson from the early Eocene Horsefly lake deposits of British 

Columbia, Canada, recorded as Diatoma hiemale by J.P. Bradbury in notes with the diatom 

herbarium collection at California Academy of Sciences (CAS).  Also, Diatoma tenuis was 
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recognized from the Horsefly material by Benson and Kociolek for this study in a slide 

identified as CAS Accession #701462, Slide #1021059.  

 

 

 

 Synedra C. G. Ehrenberg 1830 

 Synedra sp. 1 [aff. S. ulna (Nitzsch) Ehrenberg; S. acus Kützing] 

Plate 15, Figures 1-5. 

  

Figured Specimens  

UCM #40972 -40976  

  

Description 

Morphology: araphid pennate, linear lanceolate isopolar frustules gradually tapering to acutely 

rounded cuneate apices; central area slightly swollen with hemispheric fascia extending semi-

bilaterally; parallel transapical striae aligned or slightly off-set at a straight and narrow sternum; 

uniseriate striae of lineolate to elliptical areolae terminating in round areolae at sternum; apical 

pore fields observed on mantle in SEM, but indistinguishable in LM; imagery of apical interior 

insufficient to determine presence of labiate processes that are diagnostic of this genus; 

valvocopula has a single row of poroids; other cingulum elements also have a row of poroids.   

Dimensions: Width: 4-6 μm (range observed for complete individuals)  

  Length: 74-88 μm (range observed for complete individuals) 
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  Valve face striae/10 μm: 16-19 

  Length/width ratio: 14.67-18.50 (range observed for complete individuals) 

 

Most similar published species 1: Synedra ulna Nitzsch, Synedra ulna (Nitzsch) Ehrenberg  

Reference: Morales, Hamsher & Mantell (2007) NAWQA. 

Synedra ulna Nitzsch:  

Description 1. (original description by Nitzsch 1817, translated from Latin by Karin C. Ponader): 

narrow, very long, linear with acute apices; it exceeds all related species in length in relationship 

to width. 

Synedra ulna (Nitzsch) Ehrenberg: 

Description 1. (description of Hustedt, 1959): linear to lanceolate (linear in girdle view) with 

narrow ends. 

Description 2. (description of Patrick & Reimer, 1966): apices can be rostrate and either broadly 

or sharply rounded; the axial area is narrow and expands at the center of valve leaving a 

commonly square or rectangular central area devoid of striae; striae are parallel throughout the 

valve. 

Dimensions: (from Hustedt, 1959) 

  Width: 5-9 μm 

  Length: 50-350 μm 

  Valve face striae/10 μm: 8-12 

  Length/width ratio: 10.0-38.9 
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Most similar published species 2: Synedra acus Kützing: 

Description 1: (original description by Kützing 1844): long and narrow valves, fine-structured 

and an even tapering of its apices. 

Description 2: (description of DeToni, 1892): valves narrowly lanceolate almost fusiform with 

apices that can range from rostrate to capitate; central sternum narrow; central area oblong or 

square. 

Dimensions: (from Hustedt, 1959) 

  Width: 5-6 μm 

  Length: 100-300 μm 

  Valve face striae/10 μm: 12-14 

  Length/width ratio: 20-50 

   

Genus Assignment: 

Due to obscured features in these specimens, the only distinction observed between individuals 

of this genus and those of Fragilaria cf. F. vaucheriae is the extended length of the Synedra 

frustule. 

 

Comments 

Taphonomic Effects: in situ specimens as seen in SEM show that frustules are both fractured and 

flexed from burial compaction; their needle-like shape, the taphonomic structural damage, and 

the mechanical crushing during slide preparation result in few entire specimens; most of the 

groundmass in the majority of slides is a Synedra-rich hash. 
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Orientation/Habit/Associations: one of the three most abundant genera observed in the laminated 

shales of the Clare‟s Quarry locality; often found in clusters or matted layers sometimes with 

frustules aligned in parallel and other times randomly oriented; Synedra layers are often equally 

populated with either Diatoma tenuis and/or Aulacoseira clarensis sp. nov. 

 

Ecology 1: planktic Synedra species can be abundant in oligotrophic, mesotrophic, and eutrophic 

lakes; whereas benthic species can be common in rivers (Kingston, 2003, p. 616, citing several 

authors).  

 

Geologic range of genus Synedra: occurs in modern environments and is unknown in the fossil 

record prior to this occurrence in late Eocene. 

 

 

 

 Tetracyclus J. Ralfs 1843  

 Tetracyclus sp. 1 [aff. T. polygibbum (Pantocsek) Jousé] 

Plate 16, Figures 1, 4, 5; Plate 17, Figure 3. 

 

Figured Specimens  

UCM #40977 - 40980  
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Description 

Morphology: araphid pennate, slightly heteropolar frustule; elongate elliptical valve shape with 

broadly rounded apices; and rectangular in girdle view.  The valve exterior is described: axial 

area indiscernible on valve exterior; two light-toned transapical shadows indicate internal 

primary costae (transapical ribs); small round areolae on valve face somewhat aligned along 

margin but are increasingly scattered toward sternum and do not form distinct transapical rows or 

striae.  Internally, the sternum has diffuse borders; primary ribs extend completely across mid-

region of valve face, whereas each polar region has a marginal secondary rib that does not reach 

the sternum and is often curved toward mid-region of valve; between primary ribs and lateral to 

the sternum are straight, linear, transapical depressions (or ghost striae) that generally contain 

areolae.  In both internal and external valve views, apical surfaces contain porelli forming 

densely-spaced radiating striae; mantle is tall and smoothly rounded; apical and central striae 

irregularly extend from valve face onto mantle. Cingulum consists of a valvocopula with a 

septum and open ligulate primary copulae that contain septa.  A series of pervalvar parallel bars 

line the interior of each copula and are formed as extensions of pores on the obscured pars 

interior of each band.  No pleura are observed.  Total cingulum elements in a sequence is as 

many as nine girdle bands.  Among the specimens placed into this group, a single, transapically-

oriented labiate process is observed in one hemisphere within the mid-region of the interior valve 

face.  

Dimensions: Width: 6-10 μm 

  Length: 15-19 μm 

  Mantle height (as seen in SEM): est. 2.8 μm 
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  Valve face striae/10 μm: est. 20 

  Striae between 2 costae: 8-10 

  Costae/10 μm: 2-4 

  Length/width ratio: 1.9-2.5 

 

Comments 

Taphonomic Effects: individuals of this genus tend to survive the taphonomic processes 

relatively well, owing to their compact shape, thick cell wall, and the increased structural 

integrity provided by the costae. 

 

Orientation/Habit/Associations:  Found in valve view and as separated septa in association with a 

variety of other pennate diatoms including Synedra, Diatoma, and the centric Aulacoseira.  

Sample CQ1-13-14. 

 

Ecology for genus: “the species of this genus are usually found in shallow water and seem to 

prefer cold water” (Patrick & Reimer, 1966) 

 

Geologic range of genus Tetracyclus: early Eocene to modern.  T. lacustris was recognized by 

Platt Bradbury (archival notes at California Academy of Sciences) from the early Eocene 

Horsefly deposit in British Columbia, Canada. 

 

Most Similar Published Species 
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Tetracyclus polygibbum (Pantocsek) Jousé 

Reference: the following description and dimensions are from Williams (1996). 

Description: valve shape gently elliptical; apices broadly rounded; robust primary transapical 

ribs and seldom secondary or tertiary ribs; sternum is central, linear and slightly raised, one to 

two (maximum of three) labiate structures that vary in location from valve face to the mantle-

valve juncture, apical pore fields are absent, and there is no information about the cingulum.  

Dimensions: Width: 7.5-10.0 μm 

  Length: 20-45 μm 

  Valve face striae/10 μm: 15-25 

  Striae between 2 costae: 8-10 

  Costae/10 μm: 1-3 

  Length/width ratio: 2.7-4.5  

   

 

 Tetracyclus sp. 2 [aff. T. ellipticus (Ehrenberg) Grunow]  

Plate 17, Figures 1, 2. 

 

Figured Specimens  

UCM #40981 - 40982  

 

Description 
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Morphology: araphid pennate, isopolar frustule; circum-elliptical valve shape with broadly 

rounded apices; rectangular in girdle view; faint narrow linear sternum; fine transapical striae; at 

least one primary costa and possibly secondary costae in polar areas; at least one labiate structure 

lateral to sternum in mid-region of valve face interior.  

Dimensions: Width: 7.0-8.5 μm 

  Length: 11-12 μm 

  Valve face striae/10 μm: est. 20  

  Striae between 2 costae: undetermined  

  Costae/10 μm: 3  

  Length/width ratio: 1.41-1.57  

 

Comments 

Taphonomic Effects: individuals of this species tend to survive the taphonomic processes 

relatively well, owing to their compact shape, thick cell wall, and the increased structural 

integrity provided by the costae.  Only light microscope views, so unable to match valve views 

with girdle views for further description. 

 

Orientation/Habit/Associations:  Found in valve view and as separated septa in association with a 

variety of other pennate diatoms including Synedra, Diatoma, and the centric Aulacoseira.  

Samples CQ1-10-11 and CQ1-12-13. 

   

Most Similar Published Species 1: Tetracyclus elliptica (Ehrenberg) Grunow var. elliptica 
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Reference: description and dimensions that follow are from Patrick & Reimer (1966).   

Description: “frustules in girdle view rectangular, with intercalary bands and septa. Valve 

elliptical to elliptical-lanceolate.  Pseudoraphe narrow, often indistinct.  Costae varying in length, 

some extending across the valve, others marginal.  Fine punctate striae between the costae.  This 

taxon is distinguished by its shape.”   

Dimensions: Width: 16-32 μm 

  Length: 30-50 μm 

  Striae/10 μm: 20-24 

  Costae/10 μm: 2-4  

  (Calculated Length/width ratio: 1.56-1.88) 

 

Most Similar Published Species 2: Tetracyclus ellipticus (Ehrenberg) Grunow var. ellipticus 

Reference: description and dimensions are from Williams (1996). 

Description: “valves gently elliptical (almost circular in some valves) with broadly rounded 

poles; transapical ribs robust, primary, rarely secondary or tertiary; striae more or less parallel; 

sternum central, linear, slightly raised; pore fields greatly reduced at polar mantle, but evident; 1-

2 (maximum 3) rimoportulae present, located either on valve face or (less frequently) at 

mantle/face junction; cingulum consisting of 3 distinct components: all bands open, ligulate.  

Valvocopula attaching by crenelated lip overlaying ribs; pars interior consisting of 2-4 (5) 

distinct rows of poroids (which coalesce internally), ligula absent; septum extending from pars 

interior with small pore penetrating pole of band.  Primary copulae number no more than ca. 10 
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elements, each having pronounced advalvar ligula.  Secondary copulae of 4 elements; pore 

area and septum absent, but pars interior consisting of 1-3 rows of poroids.  Pleura not 

observed.” 

Dimensions: Width: 25-40 μm 

  Length: 30-45 μm 

  Striae between costae: 5-10 

  Costae/10 μm: (2) 3-4  

  (Calculated Length/width ratio: 1.13-1.20) 

Geologic range of species Tetracyclus ellipticus (Ehrenberg) Grunow: found in Miocene Clarkia 

Formation in Idaho (Bradbury et al., 1985); the recorded range of this species is from Oligocene 

to Quaternary (Li, 1982); but it has never been reported from deposits as old as those in this 

study (late Eocene).  

 

 

 Tetracyclus sp. 3 [aff. T. lata (Hustedt) D.M. Williams]  

Plate 17, Figures 4-6. 

 

Figured Specimens  

UCM #40983  

 

Description 



 

 

156 

Morphology: araphid pennate, isopolar frustule; elliptic-fusiform valve shape; broadly 

cuneate apices; robust primary and secondary costae, narrow, faint sternum; fine transapical 

striae; at least one labiate structure lateral to sternum in mid-region of valve face interior. 

Dimensions: Width: 10.0-10.5 μm 

  Length: 19-22 μm 

  Valve face striae/10 μm: est. 30  

  Striae between 2 costae: 6-7  

  Costae/10 μm: 2-3  

  Length/width ratio: 1.9-2.1  

 

Comments 

Taphonomic Effects: individuals of this species tend to survive the taphonomic processes 

relatively well, owing to their compact shape, thick cell wall, and the increased structural 

integrity provided by the costae.  Only light microscope views, so unable to match valve views 

with girdle views for further description. 

 

Orientation/Habit/Associations:  Found in valve view and as separated septa in association with a 

variety of other pennate diatoms including Synedra, Diatoma, and the centric Aulacoseira.  

Samples CQ1-13-14. 

 

Most Similar Published Species: Tetracyclus lata (Hustedt) D.M. Williams 

Reference 1: description and dimensions that follow are from Williams (1996).   
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Description: linear to lanceolate valve shape; central linear faint sternum; robust primary 

costae and seldom secondary or tertiary costae; labiate structures occur on the valve face or 

mantle and usually are 2, but range from 1-3, with a  maximum of 6; cingulum is unknown.  

Dimensions: Width: 2-25 μm 

  Length: 40-75 μm 

  Valve face striae/10 μm: undetermined  

  Striae between 2 costae: 8-10  

  Costae/10 μm: 2-4  

  (Calculated Length/width ratio: 3-20) 

 

   

 Tetracyclus sp. 4 [aff. T. rhombus (Ehrenberg) Ralfs in A. Pritchard]  

Plate 17, Figures 7 & 8. 

 

Figured Specimens  

UCM #40984  

 

Description 

Morphology: araphid pennate, isopolar frustule; lanceolate-fusiform valve shape; broadly 

cuneate apices; sternum indistinct; robust primary costae and two sets of secondary costae; fine 

transapical striae; at least one labiate structure lateral to sternum in mid-region of valve face 

interior.   
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Dimensions: Width: 11.0 μm 

  Length: 26.5 μm 

  Valve face striae/10 μm: undetermined   

  Striae between 2 costae: undetermined  

  Costae/10 μm: 3  

  Length/width ratio: 2.41 

 

Comments 

Taphonomic Effects: individuals of this species tend to survive the taphonomic processes 

relatively well, owing to their compact shape, thick cell wall, and the increased structural 

integrity provided by the costae.  Only light microscope views, so unable to match valve views 

with girdle views for further description. 

 

Orientation/Habit/Associations:  Found in valve view and as separated septa in association with a 

variety of other pennate diatoms including Synedra, Diatoma, and the centric Aulacoseira.  

Samples CQ1-13-14. 

 

Most Similar Published Species: Tetracyclus rhombus (Ehrenberg) Ralfs in A. Pritchard 

Reference: description and dimensions that follow are from Williams (1996).  

Description: linear-lanceolate valves; central, linear faint sternum; robust primary costae, seldom 

secondary or tertiary costae; apical pore fields are possibly absent; labiate structures occur on the 
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valve face and mantle and usually are 2, but range from 1-3, with a  maximum of 6; mantle 

possesses an external ridge; cingulum is undescribed.   

Dimensions: Width: 30-40 μm 

  Length: 30-65 μm 

  Valve face striae/10 μm: 15-20   

  Striae between 2 costae: 8-10  

  Costae/10 μm: 2-3  

  (Calculated Length/width ratio: 1.0-1.6) 

 

Geologic range of the species Tetracyclus rhombus (Ehrenberg) Ralfs in A. Pritchard: known 

from the Miocene Latah Formation, Spokane, Washington (Williams, 1996). 

 

 

 Tetracyclus sp. 5 [aff. T. lancea (Ehrenberg) M. Peragallo in Heribaud]  

Plate 17, Figure 9. 

 

Figured Specimens  

UCM #40985  

 

Description 
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Morphology: araphid pennate, isopolar frustule; linear-lanceolate valve; cuneate apices; 

central, linear narrow sternum; robust primary costae; fine transapical striae; at least one labiate 

structure lateral to sternum in mid-region of valve face interior.   

Dimensions: Width: 9.5-12.0 μm 

  Length: 30.0-35.0 μm 

  Valve face striae/10 μm: est. 30 

  Striae between 2 costae: 8-10  

  Costae/10 μm: 3  

  Length/width ratio: 2.92-3.16 

 

Comments 

Taphonomic Effects: individuals of this species tend to survive the taphonomic processes 

relatively well, owing to their compact shape, thick cell wall, and the increased structural 

integrity provided by the costae.  Only light microscope views, so unable to match valve views 

with girdle views for further description. 

 

Orientation/Habit/Associations:  Found in valve view and as separated septa in association with a 

variety of other pennate diatoms including Synedra, Diatoma, and the centric Aulacoseira.  

Samples CQ1-12-13. 

 

Most Similar Published Species: Tetracyclus lancea (Ehrenberg) M. Peragallo in Heribaud  

Reference: description and dimensions that follow are from Williams (1996).  
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Description: linear-lanceolate valves; central, linear sternum; robust primary costae, seldom 

secondary or tertiary costae; labiate structures occur on the valve face and usually range from 1-

3, but can be 4; an apical pore field is either absent or greatly reduced; the cingulum has 4 

components with all bands open and ligulate; pars interior has 2-4 rows poroids coalescing as a 

bar internally; septum extends from pars interior with a series of small pores penetrating the 

band; pars exterior is plain; primary copulae consist of 10-12 bands with advalvar ligula; 

secondary copulae consist of approximately 4 bands without a ligula pore; a single pleural band 

is present; the mantle has an external ridge; occasional small stubble spines are positioned at the 

mantle-valve face border. 

Dimensions: Width: 15-25 μm 

  Length: 60-140 μm 

  Valve face striae/10 μm: 5-8  

  Striae between 2 costae:  

  Costae/10 μm: 3-4  

  (Calculated Length/width ratio: 4.0-5.6)  

 

 

 Tetracyclus morphotype „Clare‟s 1‟ 

Plate 16, Figure 2. 

 

Figured Specimens  

UCM #40986  
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 Description: interior of polar region of a copula with septum showing porelli penetrating 

the exterior and into the rim.  Sample CQ1-13-14. 

 

 

 Tetracyclus morphotype „Clare‟s 2‟ 

Plate 16, Figure 3. 

 

Figured Specimens  

UCM #40987  

  

 Description: polar puncta on valve extending onto mantle that has a distinct mantle step 

(below the linear depression that parallels mantle rim) that is characteristic of this genus but not 

observed in other individuals  examined at this site.  Sample CQ1-13-14. 

 

 

 

---Class Bacillariophyceae 

 Eunotia C. G. Ehrenberg 1837 

 Eunotia morphotype „Clare‟s 1‟ 

Plate 18, Figures 1-4. 
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Figured Specimens  

UCM #40988 - 40990  

  

Description 

Morphology: biraphid  pennate, asymmetrical to apical axis, elongate slightly-arcuate valve 

shape with slightly convex dorsal margin and a straight ventral margin; rounded asymmetrical 

cuneate apices; a broad, nearly straight sternum; transapical uniseriate striae of round puncta; 

striae extend over a steep-sided dorsal mantle; distal raphe ends are positioned near apical 

sternum margin and curve away from sternum.  Ultrastructures not observable in these 

specimens.  In SEM, observe valvocopula with two rows of advalvar poroids; and several 

cingulum elements, each with double rows of poroids.  

Dimensions: Width: est. 3.5-4.0 μm  

  Length: est. 40.0 μm 

  Valve face striae/10 μm: 22-24  

  Length/width ratio: 10.0-11.4  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in valve view in LM; associated with a 

variety of pennates and Aulacoseira in samples CQ1-11-12 and CQ1-13-14. 
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Ecology of genus: among the modern species, a wide variety of conditions are tolerated from 

aerophytic habitats to flowing or still waters; and from alkaline to circumneutral pH to highly 

acidic (Kingston, 2003).            

 

Geologic range of genus Eunotia: occurs in modern environments; earliest occurrence is in the 

early Eocene Horsefly lake deposits of British Columbia, Canada, as recorded by J.P. Bradbury 

in notes with diatom herbarium collection at California Academy of Sciences (CAS).  Also, 

species of Eunotia were observed for this study from the middle Eocene Dewey beds of Idaho, 

by Kociolek and Benson in the slide identified as CAS Accession #702136, Slide #1028081 from 

material reposited at California Academy of Sciences.  The Dewey beds are lake deposits within 

the Challis volcanics in the area of the Thunder Mountain mining district described in Axelrod 

(1998). 

 

 

 

 Gomphonema C. G. Ehrenberg 1832 

 Gomphonema morphotype „Clare‟s 1‟ 

Plate 19, Figures 1-5. 

 

Figured Specimens  

UCM #40991 - 40995  
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Description 

Morphology: biraphid pennate, elongate, heteropolar frustule; clavate in valve view; wedge-

shaped in girdle view; poles broadly rounded; astigmate; broad sternum; uniseriate, generally 

lineolate striae on valve face extend onto tall mantle; broadly-spaced striae are sigmoidal and 

radial near central area and become parallel toward apices; although most puncta within the 

striae are lineolate and elongated in a subapical direction becoming shortened as they approach 

the sternum, the final punctum of each of the 12 striae in central region is a round unoccluded 

poroid; away from the central area and parallel to the sternum, the final punctum of each stria is 

a loculate pore that is occluded by a single reniform vola that leaves a crescent-shaped slit 

convex to sternum.  An interrupted stauros is present at the central area of the valve face where it 

is partially bisected in one hemisphere by a shortened stria of a few round poroids entering from 

the valve margin; a split apical pore field with rows of small round poroids is present at foot pole 

of each valve; raphe proximal ends simple, and distal ends straight at terminus.  Cingulum 

elements number three or more and indicate a row of poroids.     

Dimensions: Width: est. 6-7 μm  

  Length: 30-32 μm  

  Valve face striae/10 μm: 9-11 

  Lineolae/10 μm: 11/2 μm; so, est. 55/10 μm  

  Length/width ratio: 4.6-5.0 

 

Comments 
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Taphonomic Effects: somewhat intact after burial and lab preparations.  Brittle fracture of 

valves, separation of cingulum, and destruction of ribs between lineolae within striae are 

somewhat common, as observed in SEM. 

 

Orientation/Habit/Associations: found as single associated with Synedra, Tetracyclus, 

Aulacoseira, and Diatoma in samples CQ1-13-14 and CQ2-1-03.   

 

Ecology of genus Gomphonema: modern species are found in nearly every habitat type in 

circumneutral lakes and streams (Kociolek & Spaulding, 2003). 

 

Geologic range of genus Gomphonema:  a modern genus with no reported occurrence earlier 

than this late Eocene deposit. 

 

 

 Gomphonema morphotype „Clare‟s 2‟ 

Plate 20, Figures 1-3; Plate 21, Figure 3. 

 

Figured Specimens  

UCM #40996 - 40997  

 

Description 
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Morphology: biraphid pennate, elongate, heteropolar frustule; wedge-shaped girdle view; 

coarsely outlined striae visible on mantle; narrow fascia indicated by apically lineate hyaline area 

in central area; cingulum elements number three or more and show a row of poroids at head pole; 

apical pore fields delimited at foot pole.     

Dimensions: Width: undetermined  

  Length: 43 μm  

  Mantle striae/10 μm: 8-9   

  Length/width ratio: undetermined 

 

Comments 

Taphonomic Effects: somewhat intact after burial and lab preparations.   

 

Orientation/Habit/Associations: found as single associated with Synedra, Tetracyclus, 

Aulacoseira, and Diatoma in samples CQ1-13-14.   

 

 

 Gomphonema morphotype „Clare‟s 3‟ 

Plate 20, Figures 4, 5. 

 

Figured Specimens  

UCM #40998  
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Description 

Morphology: biraphid pennate, naviculoid to slightly heteropolar lanceolate frustule; narrow 

sternum; coarse striae slightly radiate in central area, becoming more parallel toward poles; 

asymmetrical fascia with an interrupted stauros in central area; possible stigma near sternum on 

narrow side of fascia; apical pore fields delimited at foot pole.     

Dimensions: Width:  4 μm  

  Length: 21-22 μm  

  Valve face striae/10 μm: 9-12 

  Length/width ratio: 5.25-5.50  

 

Comments 

Taphonomic Effects: somewhat intact after burial and lab preparations.   

 

Orientation/Habit/Associations: found as single associated with other pennates in sample CQ1-

18-20.   

 

 

 Gomphonema morphotype „Clare‟s 4‟ [aff. G. lindsayi Kociolek,    

 Spaulding, Sabbe et Vyverman] 

Plate 20, Figure 6. 

 

Figured Specimens  
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UCM #40999 

 

Description 

Morphology: biraphid pennate, heteropolar frustule; clavate in valve view; wedge-shaped in 

girdle view; poles broadly rounded; astigmate; flat to slightly concave valve face; uniseriate 

striae of loculate crescent-shaped lineolae converging toward axial area; proximal raphe ends 

simple, slightly expanded and separated by an extremely narrow area; distal raphe ends are 

slightly deflected in same direction and extend onto tall mantle; raphe bisects well-defined apical 

pore field on mantle at foot pole; fine, densely-spaced loculate lineolate striae prominent along 

valve margin and on mantle of head pole; cingulum appears closed at head pole; a single row of 

poroids ornaments the advalvar margin of the valvocopula. 

Dimensions: Width in middle: undetermined 

  Length: 31 μm  

  Valve face striae/10 μm: 7-8 

  Length/width ratio: undetermined 

 

Comments 

Taphonomic Effects: recognized only in SEM; relatively intact after burial; brittle fracture of 

cingulum; damage to head pole. 

 

Orientation/Habit/Associations: solitary, commonly associated with Synedra and Aulacoseira.  

Sample CQ1-13-14. 
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Most similar published species: G. lindsayi Kociolek, Spaulding, Sabbe et Vyverman 

Reference: Kociolek, Spaulding, Sabbe, and Vyverman (2004). 

Description: valves lanceolate-clavate with poles rounded; raphe straight, lateral, with external 

proximal ends small, positioned close together; internal proximal ends broadly recurved; axial 

area narrow at poles, expanded towards center; stigma lacking; striae lineate, parallel to radiate at 

poles; apical pore field distinct at foot pole; valves have slit-like or C-shaped areolae; proximal 

raphe endings slightly dilated; distal endings curved in same direction and extend onto mantle; 

apical pore field positioned on mantle; striae at head pole appear more closely spaced on mantle.  

Is comparable to G. lowei Kociolek, Spaulding, Sabbe et Vyverman (with 6-7 striae per 10 μm), 

but has finer striae (9-13 per 10 μm). 

Dimensions: Width: 4-8 μm 

  Length:  16.0-35.5 μm 

  Valve face striae/10 μm: 9-13   

  Length/width ratio: 4.00-4.44 

Ecology: brown-water habitats in Tasmania, Australia. Collected by J.P. Bradbury in 1984 and 

1985 as part of a paleolimnology study (Bradbury, 1986).  

 

Distinction from G. lowei and G. lindsayi: G. morphotype „Clare‟s 4‟ has 7-8 striae per 10 μm.  

 

 

 Gomphonema morphotype „Clare‟s 5‟ 



 

 

171 

Plate 21, Figures 1, 2. 

 

Figured Specimens  

UCM #41000  

 

Description 

Morphology: biraphid, broadly clavate, heteropolar frustule; broadly-rounded cuneate apices; 

filiform raphe; medium width sternum; possibly unilateral fascia; uniseriate lineolate striae are 

slightly radial in central region and become more parallel toward poles; proximal raphe ends not 

discernable in this specimen; distal raphe ends are hooked; distal raphe end at foot pole bisects 

apical pore field.  

Dimensions: Width: est. 4 μm  

  Length: est. 18 μm  

  Valve face striae/10 μm: est. 13 

  Lineolae/10 μm: est. 16 

  Length/width ratio: est. 4.5 

 

Comments 

Taphonomic Effects: frustule impacted by partial brittle collapse, as seen in SEM.  

 

Orientation/Habit/Associations: Occurs in association with wide variety of pennates and 

Aulacoseira in samples CQ1-11-12.  
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 Gomphonema morphotype „Clare‟s 6‟ 

Plate 21, Figure 4. 

 

Figured Specimens  

UCM #41001  

 

Description 

Morphology: biraphid, wedge-shaped girdle view of heteropolar frustule; broadly-rounded head 

pole; slightly cuneate foot pole; biseriate areolate striae of small round puncta that extend onto 

tall mantle; perforated cingulum open at head pole. 

Dimensions: Width: undetermined 

  Length: est. 32 μm  

  Mantle striae/10 μm: est. 10 

  Length/width ratio: undetermined 

 

Comments 

Taphonomic Effects: frustule impacted by partial brittle collapse, as seen in SEM.  

 

Orientation/Habit/Associations: Occurs in association with wide variety of pennates and 

Aulacoseira in samples CQ1-13-14.  
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 Gomphonema morphotype „Clare‟s 7‟ 

Plate 22, Figures 1, 2, 3, 4. 

 

Figured Specimens  

UCM #41002 - 41003 

 

Description 

Morphology: biraphid, naviculoid to slightly heteropolar, broadly lanceolate frustule; narrowly 

cuneate apices; narrow sternum; no fascia present; internal central nodule in central area and 

canal-like internal nature of striae; internal proximal raphe ends are slightly unidirectionally 

curved; uniseriate lineolate striae are radial to sinusoidal in central region and become straight 

and parallel toward apices; cuneate apex with a simple distal raphe end and apical poroids may 

be the head pole; interpreted as foot pole, distal raphe end is hooked and bisects valvar apical 

pore field.  

Dimensions: Width: est. 15-16 μm  

  Length: est. 44-46 μm  

  Valve face striae/10 μm: 12-15 

  Lineolae/10 μm: est. 24 

  Length/width ratio: 2.93-2.88  
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Comments 

Taphonomic Effects: frustule impacted by partial brittle collapse in SEM.  

 

Orientation/Habit/Associations: only two individuals recognized in this deposit, as only in SEM 

are polar regions characterized.  Occurs in association with wide variety of pennates and 

Aulacoseira in sample CQ1-13-14.  

 

 

 

 Achnanthidium  Kützing 1844 

 Achnanthidium morphotype „Clare‟s 1‟  

Plate 23, Figures 1, 2, 3, 4. 

  

Figured Specimens  

UCM #41004 - 41006  

  

Description 

Morphology: monoraphid  (heterovalvar) pennate, lineate lanceolate frustule with rounded to 

slightly rostrate apices; uniseriate striae that are parallel to slightly radiating; rounded, elliptical 

to lineolate areolae; filiform raphe deflected to opposite sides poleward; distinct central area only 

on raphid valve; simple proximal raphe ends; distal raphe ends indistinct in observed specimens.   

Dimensions: Width: est. 5.0-6.5 μm 
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  Length: est. 18-19 μm 

  Valve face striae/10 μm: 20-22 

  Length/width ratio: 2.9-3.6 

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in valve view in LM; associated with a 

variety of pennates and Aulacoseira in samples CQ1-13-14. 

 

Ecology for the genus Achnanthidium: usually a stipitate habitat (attached to substrate by a 

mucilaginous stalk) (Kingston, 2003); thriving in moving water and in rapids (Peterson & 

Hoagland, 1990; Peterson & Stevenson, 1992), and in wave zones of lakes (Brown, 1973; 

Kingston, 1980); tend to be in flowing, turbulent, oxygenated waters (Cholnoky, 1968).  Living 

populations of A. minutissimum Kützing Czarnecki have also been observed in well-illuminated 

sites outside limestone caves and at their entrances (Poulíčková and Hašler, 2007).            

 

Geologic range of genus Achnanthidium: a modern genus whose earliest recorded occurrence is 

from the late Eocene of this deposit.  
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 Planothidium Round & Bukhtiyarova 1996 

 Planothidium morphotype „Clare‟s 1‟  

Plate 24, Figure 1. 

  

Figured Specimens  

UCM #41007  

  

Description 

Morphology: monoraphid  (heterovalvar) pennate, lineate lanceolate frustule with rounded to 

cuneate apex; multiseriate striae that are parallel to slightly radiating; distinct horseshoe-shaped 

marginal sinus in central area only on araphid valve. 

Dimensions: Width: est. 4 μm  

  Length: undetermined 

  Valve face striae/10 μm: 5/2 μm, est. 25/10 μm 

  Length/width ratio: undetermined 

 

Comments 

Taphonomic Effects: only a single fragmentary specimen observed.  

Orientation/Habit/Associations: uncertain; in sample CQ1-11-12. 

 

Ecology for the genus Planothidium: adnate on sand and pebbles, more common in alkaline 

waters (Bukhtiyarova & Round, 1996).  Living populations of P. lanceolatum (Brébisson) 
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Lange-Bertalot have been observed in well-illuminated sites outside limestone caves and at 

their entrances (Poulíčková and Hašler, 2007). 

 

Geologic range of genus Planothidium: a modern genus whose earliest recorded occurrence is 

cited by Singh et al. (2007) from the late Cretaceous Deccan traps of India.  

 

 

 Planothidium morphotype „Clare‟s 2‟  

Plate 24, Figure 2. 

  

Figured Specimens  

UCM #41008  

  

Description 

Morphology: monoraphid (heterovalvar) pennate, lineate lanceolate frustule with rounded apices; 

striae are parallel to slightly radiating poleward;  relatively wide lanceolate sternum, distinct 

horseshoe-shaped marginal sinus in central area only on araphid valve. 

Dimensions: Width: 3 μm  

  Length: 13 μm 

  Valve face striae/10 μm: 23  

  Length/width ratio: 4.33  
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Comments 

Taphonomic Effects: valves sometimes split apart.  Orientation/Habit/Associations: uncommon; 

usually seen in valve view in LM; associated with a variety of pennates and Aulacoseira in 

samples CQ1-13-14. 

  

 

 Planothidium morphotype „Clare‟s 3‟  

Plate 24, Figures 3 & 4. 

  

Figured Specimens  

UCM #41009  

  

Description 

Morphology: monoraphid (heterovalvar) pennate, lineate lanceolate to elliptical frustule with 

rounded cuneate apices; striae are parallel to slightly radiating poleward; raphid valve has a 

stauros interrupted by a single shortened stria, a filiform raphe, and simple proximal and distal 

raphe ends.  Araphid valve has a narrow lanceolate sternum and a distinct horseshoe-shaped 

marginal sinus in central area. 

Dimensions: Width: 4.5 μm  

  Length: 12 μm 

  Valve face striae/10 μm: 20  

  Length/width ratio: 2.67 
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Comments 

Taphonomic Effects: valves sometimes split apart, many broken.   

 

Orientation/Habit/Associations: uncommon; usually seen in valve view in LM; associated with a 

variety of pennates and Aulacoseira in samples CQ1-13-14. 

 

 

 Planothidium morphotype „Clare‟s 4‟  

Plate 24, Figures 5, 6, & 7. 

  

Figured Specimens  

UCM #41010  

  

Description 

Morphology: monoraphid (heterovalvar) pennate, lineate lanceolate frustule with rounded 

cuneate apices; striae are parallel to slightly radiating poleward; raphid valve has a bilateral 

rectangular stauros, a filiform raphe, and simple proximal and distal raphe ends.  Araphid valve 

has a narrow lanceolate sternum and a unilateral central area, as the marginal sinus. 

Dimensions: Width: 5 μm  

  Length: 18 μm 

  Valve face striae/10 μm: 9/5 μm; est. 18/10 μm 
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  Length/width ratio: 3.6  

 

Comments 

Taphonomic Effects: valves often broken. 

 

Orientation/Habit/Associations: uncommon; usually seen in valve view in LM; associated with a 

variety of pennates such as Diatoma, Fragilaria, Gomphonema, Navicula, and Tetracyclus in 

sample CQ1-18-20. 

 

 

 

 Platessa Lange-Bertalot 2004 

 Platessa florissantia sp. nov. 

Plate 25, Figures 1-4. 

 

Syntypes 

UCM #s 41011 – 41014 

  

Description 

Morphology: monoraphid  (heterovalvar) pennate, short elliptical to elongate-elliptical frustule 

with rounded to round cuneate apices; narrow, imperforate cingulum; parallel to slightly 

radiating uniseriate striae may become biseriate poleward; uniseriate areolae are apically 
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elongated, whereas biseriate areolae are small and round; mantle areolae in a single row align 

with but are separated from the valvar striae.  The raphid valve is flat to slightly concave; has a 

straight filiform raphe that ends both proximally and distally in a simple, straight, slightly 

expanded fissure on the valve exterior; the position of the distal raphe ending is either at the 

valve face-mantle juncture or is valvar to this juncture; and has a nearly symmetrical stauros that 

may be interrupted only by one or two very short striae from the valve margin.  Characteristics of 

the araphid valve have not been described here, as such data are inconclusive in these samples.   

Dimensions: Width: 3.5-5.0 μm  

  Length: 8.0-11.5 μm 

  Valve face striae/10 μm: 20-22 

  Length/width ratio: 2.3 

 

Comments 

Taphonomic Effects: valve separation and cingulum detachment common; due to the very small 

size of frustules, only specimens observed in SEM can be described with necessary detail to 

distinguish this genus from Achnanthidium and related taxa. 

 

Orientation/Habit/Associations: with a variety of pennates and Aulacoseira in samples CQ1-11-

12 and CQ1-13-14. 

 

Most similar published species 1: Platessa conspicua (A. Mayer) Lange-Bertalot, formerly 

Achnanthes conspicua A. Mayer.  
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References: descriptions below are from Krammer and Lange-Bertalot  

(2004), as translated in Morales (2006a). 

Description of genus: the genus Platessa is distinguished from other genera that have been split 

from Achnanthes sensu lato in that it has a flatter valve shape; there is a slight concavity to the 

raphe valve and convexity to the araphid valve, which is the opposite of Psammothidium; 

externally, the distal and proximal raphe ends are straight, unlike those of Planothidium; 

although the areolae are generally arranged in biseriate rows, they show a tendency to become 

single rows; the areolae tend to be stretched apically, rather than transapically, as in 

Achnanthidium. 

Description of species: P. conspicua has elliptical to linear-elliptical valves with broadly rounded 

ends; raphe valve has a narrow axial area and a hyaline area crossing the central area that looks 

as if one stria has been omitted. This hyaline area is not obviously thickened. The rapheless valve 

is similar, except that the axial area is more broadly lanceolate. 

Dimensions:  Width: 4-6 (7.5) μm 

  Length: 7-16 (20) μm 

  Valve face striae/10 μm: 11-16 

  (Calculated length/width ratio: 1.75-2.67) 

 

Most similar published species 2: Achnanthes conspicua A. Mayer 

Reference: descriptions from Mayer, 1919, as described in Morales (2002). 

Description: valves broadly elliptical with acute or rounded apices; striae on raphe valve parallel 

in central region to strongly radiate toward apices; central region has a narrow clear area on both 



 

 

183 

sides of central nodule; pseudoraphe valves have slightly radial striae, which in larger 

specimens are slightly more separated in the central region; central sternum is lanceolate with 

expanded region at center of valve; externally, proximal ends of raphe are not widened and end 

directly opposite each other, and distal raphe ends terminate at valve face/mantle junction and do 

not bend; striae on raphe valves have 2-5 rows of areolae; and striae on pseudoraphe valves have 

2 or more rows of areolae. 

Dimensions: (from Mayer, 1919) 

  Width: 5.5 μm 

  Length: 10-12 μm 

  Valve face striae/10 μm: 13-14 

  (Calculated length/width ratio: 1.82-2.18) 

Dimensions: for North American populations (from Morales, 2002) 

  Width: 3.5-5.5 μm 

  Length: 3.5-13 μm 

  Valve face striae/10 μm: 13-16 

  (Calculated length/width ratio: 1.00-2.36) 

Ecology for the species Achnanthes conspicua: found in oligotrophic to eutrophic waters, 

especially those with low alkalinity and middle to high electrolytes (Krammer & Lange-Bertalot, 

2004).  
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Geologic range of genus Platessa: a modern genus whose origins are  derived from revisions 

of the genus Achnanthes, whose earliest recorded occurrence is reported by Frank Round and 

David Williams In Harding & Chant (2000) in this late Eocene deposit. 

 

New Species Diagnosis  

Platessa florissantia sp. nov. is distinguished from the genus type species P. bavarica Lange-

Bertalot & G. Hofmann (Krammer and Lange-Bertalot,  

2004) by the following characters: its entire and perfectly elliptical valve outline; wider copulae; 

a distinct, imperforate rim of silica at the valve face-mantle juncture; a wider stauros on the 

raphid valve, the greater tendency for uniseriate than biseriate striae, a narrower lanceolate 

sternum on the araphid valve.  Platessa florissantia sp. nov. is distinguished from Platessa 

conspicua (A. Mayer) Lange-Bertalot by the tendency to have mostly uniseriate tending toward 

biseriate striae, rather than 3 or more rows of areolae per stria, and the greater density of striae of 

20-22 per 10 μm compared with 11-16 per 10 μm in P. conspicua. 

 

Etymology 

The name refers to the geologic formation of Florissant and its place name from the town of that 

name in Colorado in which this species is first described. 

 

 

 Platessa morphotype „Clare‟s 1‟  

Plate 25, Figure 5. 
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Figured Specimens  

UCM #41015  

  

Description 

Morphology: monoraphid  (heterovalvar) pennate, elongate elliptical, slightly convex araphid 

valve with rounded apices; uniseriate striae that are parallel to slightly radiating; areolae apically 

elongated; a single row of mantle areolae; a narrow lanceolate sternum and a unilateral central 

area on this araphid valve. 

Dimensions: Width: est. 4.5 μm  

  Length: 10 μm 

  Valve face striae/10 μm: 18 

  Length/width ratio: 2.22 

 

Comments 

Taphonomic Effects: only a single specimen observed and in SEM.  

Orientation/Habit/Associations: in sample CQ1-11-12. 

 

 

 

 Psammothidium Bukhtiyarova & Round 1996 

 Psammothidium morphotype „Clare‟s 1‟  
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Plate 26, Figures 1 & 2. 

  

Figured Specimens  

UCM #41016 

  

Description 

Morphology: monoraphid  (heterovalvar) pennate, elongate elliptical, slightly convex araphid 

valve with rounded apices; uniseriate striae that are parallel to slightly radiating; areolae apically 

elongated; a single row of mantle areolae; a narrow lanceolate sternum and a unilateral central 

area on this araphid valve. 

Dimensions: Width: 7 μm  

  Length: 13.5 μm 

  Valve face striae/10 μm: 26 

  Length/width ratio: 1.93 

 

Comments 

Taphonomic Effects: only a single specimen observed and in SEM.   

 

Orientation/Habit/Associations: associated with a variety of pennates and Aulacoseira in sample 

CQ2-1-03. 
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Ecology for the genus Psammothidium: most species of the modern genera are restricted to 

acidic waters (Flower & Jones, 1989; Bukhtiyarova & Round, 1996). 

 

Geologic range of genus Psammothidium: a modern genus whose existence is derived from 

revisions of the genus Achnanthes.  The earliest recorded occurrence of Achnanthes is reported 

by Frank Round and David Williams In Harding & Chant (2000) in this late Eocene deposit. 

 

 

 

 Diadesmis Kützing 1844 

 Diadesmis morphotype „Clare‟s 1‟ 

Plate 27, Figure 1. 

  

Figured Specimens  

UCM #41017  

  

Description 

Morphology: biraphid pennate, naviculoid frustule with broadly rounded to rounded cuneate 

apex; flat valve face with sparse, occluded, elongate puncta separated by transapical ribs; silica 

ridge at valve face and mantle juncture; and shallow mantle with a single row of poroids.   

Dimensions: Width: undetermined  

  Length: undetermined  
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  Valve face striae/10 μm: undetermined  

  Length/width ratio:undetermined  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstones of samples CQ1-27-35. 

 

Ecology for the genus Diadesmis: typically aerophytic and tends to be associated with mosses 

and attached to damp rocks; often in waters of low conductance and slightly low pH (Kociolek & 

Spaulding, 2003).  Diadesmis is almost restricted to subaerial habitats like damp moss or rock; 

the following species are observed at well-illuminated sites outside limestone caves and at their 

entrances: D. aerophila (Krasske) D.G. Mann, D. contenta (Grunow ex Van Heurck) D.G. 

Mann, and Diadesmis gallica W. Smith (Poulíčková and Hašler, 2007).   

 

Geologic range of genus Diadesmis: occurs in modern environments; earliest recorded 

occurrence is in this late Eocene deposit. 

 

 

 Diadesmis morphotype „Clare‟s 2‟ 

Plate 27, Figure 2. 
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Figured Specimens  

UCM #41018  

  

Description 

Morphology: biraphid pennate, naviculoid frustule with rounded cuneate apex; centrally 

expanded frustule with rounded cuneate apex; a filiform raphe bisects sternum ridge; simple 

proximal raphe ends are widely spaced; rounded bilateral fascia; and dense, slightly radial rows 

of puncta. 

Dimensions: Width: est. 3 μm  

  Length: est. 13 μm 

  Valve face striae/10 μm: est. 32-34 

  Length/width ratio: est. 4.33  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ2-2-05. 

 

 

 Diadesmis morphotype „Clare‟s 3‟ 

Plate 27, Figure 3. 

  



 

 

190 

Figured Specimens  

UCM #41019 

  

Description 

Morphology: valve view of fragment showing central area with rounded bilateral fascia and 

widely spaced simple proximal raphe ends; slightly expanded central area of rectangular-shaped 

portion in valve view; dense, parallel to slightly radial rows of puncta. 

Dimensions: Width: est. 4 μm  

  Length: est. undetermined 

  Valve face striae/10 μm: est. 26 

  Length/width ratio: undetermined  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ1-10-11. 

 

 

 Diadesmis morphotype „Clare‟s 4‟ 

Plate 27, Figure 4. 

  

Figured Specimens  



 

 

191 

UCM #41020 

  

Description 

Morphology: girdle view of incomplete frustule showing rectangular shape; shallow mantle and 

mantle poroids, hyaline thickness of broad fascia in central area, and cingular elements.   

Dimensions: Width: undetermined 

  Length: undetermined 

  Striae or poroids on mantle/10 μm: 27 

  Length/width ratio: undetermined  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ1-10-11. 

 

 

 Diadesmis morphotype „Clare‟s 5‟ 

Plate 27, Figures 5-6. 

  

Figured Specimens  

UCM #41021  
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Description 

Morphology: polar fragment showing rounded cuneate pole with a straight raphe within a broad 

axial area bordered by short straight striae and a silica ridge at valve face and mantle juncture; 

simple distal raphe ending; two opposing crescent-shaped hyaline areas lateral at pole. 

Dimensions: Width: undetermined 

  Length: undetermined 

  Striae or poroids on mantle/10 μm: 26   

  Length/width ratio: undetermined  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ2-2-05. 

 

Note Regarding Uncommon Crescent Feature: the two opposing crescent-shaped hyaline areas 

lateral at pole observed in this specimen.  Similar features are observed at both poles in SEM 

internal views of modern specimens of Diadesmis aerophila (Krasske) D.G. Mann from caves in 

central Moravia in the Czech Republic (Poulíčková and Hašler, 2007).   

 

 

 Diadesmis morphotype „Clare‟s 6‟ 

Plate 28, Figures 1-2. 
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Figured Specimens  

UCM #41022 - 41023  

  

Description 

Morphology: greater-than-half valve fragment with broadly rounded to cuneate apex; narrowly 

separated proximal raphe ends on rounded bilateral fascia; raphe bisects thick, broad sternum; 

parallel to slightly radial elongate puncta are separated by transapical ribs; silica ridge at valve 

face and mantle juncture. 

Dimensions: Width: est. 3 μm 

  Length: est. 20-22 μm 

  Valve striae/10 μm: 26    

  Length/width ratio: est. 6.67-7.33  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ2-0-04. 

 

 

 Diadesmis morphotype „Clare‟s 7‟ 

Plate 28, Figure 3. 
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Figured Specimens  

UCM #41024  

  

Description 

Morphology: small, biraphid pennate, linear elliptical frustule with rounded apices; straight 

raphe within broad, lanceolate sternum; distinct round, bilateral central area (central nodule); 

fine, parallel valvar striae whose density is unresolvable in LM. 

Dimensions: Width: 2.5 μm 

  Length: 11 μm 

  Valve striae/10 μm: undetermined    

  Length/width ratio: 4.4  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ1-12-13. 

 

 

 Diadesmis morphotype „Clare‟s 8‟ 

Plate 28, Figure 4. 
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Figured Specimens  

UCM #41025  

  

Description 

Morphology: small, biraphid pennate, lineate rectangular frustule with rounded apices; straight 

raphe within medium-width sternum; distinct round, bilateral central area (central nodule); fine, 

parallel valvar striae. Dimensions: Width: 2.5 μm 

  Length: 12 μm 

  Valve striae/10 μm: 32    

  Length/width ratio: 4.8  

 

Comments 

Taphonomic Effects: commonly incomplete frustules due to mechanical damage in processing.  

 

Orientation/Habit/Associations: uncommon; usually seen in mudstone of sample CQ1-8-09. 

 

 

 

  

 Frustulia C.A. Agardh 1824; Rabenhorst 1853  

 Frustulia rhomboides var. coloradensis var. nov. 

Plate 29, Figures 1-5. 
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Syntypes 

UCM #s 41026 – 41028 

  

Description 

Morphology: biraphid, rhombic lanceolate frustule with rounded cuneate apices; a straight, 

filiform raphe within a broad sternum terminates in a tip formed at juncture of two axial ribs at 

distal raphe end (porto crayon); dense, parallel to slightly radiate, uniseriate striae of small round 

puncta form a cross-pattern due to the relatively uniform spacing of puncta in apical and 

transapical directions; fascia absent; externally, slightly transapically expanded proximal raphe 

ends are widely separated by an elongate central nodule; internally, the proximal raphe ends are 

slightly deflected and the central nodule is eccentric, being slightly expanded on one side; 

externally, distal raphe ends are “T-shaped”; an irregular row of poroids parallels raphe along 

both sides of axial area.  

Dimensions: Width: 20 μm 

  Length: est. 78 μm 

  Transverse striae/10 μm: 30-31  

  Longitudinal striae/10 μm: est. 36  

  Length/width ratio: est. 3.9 

 

Comments 



 

 

197 

Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation.  

 

Orientation/Habit/Associations: very uncommon; associated with a wide variety of pennate taxa 

and the genus Aulacoseira in sample CQ1-13-14 and  with Diadesmis in CQ1-10-11. 

 

Most Similar Published Species: F. rhomboides var. amphipleuroides (Grunow) Cleve  

Reference: Patrick & Reimer, 1966 

Description: this variety differs from the nominate variety in that the siliceous ribs enclosing the 

raphe are slightly eccentric and bent a little; and also the central nodule is elongate.   

Dimensions:  Width: 15-30   

  Length: 70-160 μm   

  Transverse striae/10 μm: 22-24 

  Longitudinal striae/10 μm: 18-24  

  Length/width ratio: 4.67-5.33  

Ecology of Frustulia rhomboides var. amphipleuroides : (from Patrick & Reimer, 1966) found in 

slightly acid water of low mineral content.  

 

Geologic range of genus Frustulia: a modern genus whose earliest occurrence has been observed 

in early and middle Eocene by Kociolek and Benson for this study in slides reposited at the 

California Academy of Sciences from the Horsefly lake deposits in British Columbia, Canada, 
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(CAS Accession #701462, Slide #1021059) and the Dewey beds in Idaho, (CAS Accession 

#702136, Slide #1028081), respectively.  

 

New Variety Diagnosis: 

This new variety Frustulia rhomboides var. coloradensis var. nov. 

is distinguished from F. rhomboides var. amphipleuroides by its greater density of transverse and 

longitudinal striae and from the nominate variety both by its greater density of striae and by its 

eccentric elongated central nodule. 

 

Etymology: 

The name recognizes the state of Colorado in which this species is found. 

  

 

 

 Pinnularia C.G. Ehrenberg 1843  

 Pinnularia morphotype „Clare‟s 1‟ 

Plate 30, Figure 1. 

 

Figured Specimens  

UCM #41029  

  

Description 
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Morphology: biraphid, linear frustule with broadly rounded apices; filiform raphe with distal 

ends deflected and simple proximal ends slightly unilaterally deflected to opposite side from 

distal raphe end deflections; very closely-spaced proximal raphe ends; parallel biseriate alveolate 

striae of round puncta, each stria having a single areola nearest the wide axial area; a broad 

stauros fascia in central area. 

Dimensions: Width: est. 7 μm 

  Length: 42 μm  

  Striae/10 μm: 8-9 

  Length/width ratio: est. 6  

 

Comments 

Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation.  

 

Orientation/Habit/Associations: uncommon; sometimes associated with Diatoma; observed in 

samples CQ1-11-12. 

 

Ecology of this genus: often abundant in low conductance, slightly acidic freshwaters (Kociolek 

& Spaulding, 2003).    
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Geologic range of genus Pinnularia: a modern genus whose earliest reported occurrence is 

by Lohman & Andrews (1968) in the 47-49 Ma. middle Eocene Wagon Bed Formation in 

Wyoming. 

 

 

 Pinnularia morphotype „Clare‟s 2‟ 

Plate 30, Figure 2. 

 

Figured Specimens  

UCM #41030  

  

Description 

Morphology: biraphid, linear frustule with broadly rounded apex; raphe with distal ends 

deflected and simple proximal ends slightly unilaterally deflected to opposite side from distal 

raphe end deflections; coarse outlines of alveoli are radial near central area and parallel toward 

pole. 

Dimensions: Width: est. 7 μm 

  Length: undetermined 

  Striae/10 μm: 6-7 

  Length/width ratio: undetermined 

 

Comments 
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Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation.  

 

Orientation/Habit/Associations: uncommon; observed in sample CQ1-10-11. 

 

 

 Pinnularia morphotype „Clare‟s 3‟ 

Plate 30, Figure 3. 

 

Figured Specimens  

UCM #41031 

  

Description 

Morphology: biraphid, linear frustule with broadly rounded apex; raphe with distal ends 

deflected; coarse alveoli radiate away from poles. 

Dimensions: Width: est. 5 μm 

  Length: undetermined 

  Striae/10 μm: est. 10 

  Length/width ratio: undetermined 

 

Comments 
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Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation. 

 

Orientation/Habit/Associations: uncommon; observed in sample CQ1-10-11. 

 

 

 Pinnularia morphotype „Clare‟s 4‟ 

Plate 30, Figure 4. 

 

Figured Specimens  

UCM #41032  

  

Description 

Morphology: biraphid, linear frustule with broadly-rounded to slightly subcapitate apex; raphe 

with distal ends deflected around terminal nodule at apex; coarse alveoli radiate away from 

central area, become parallel mid-poleward, and then radiate away from poles at apex; a fascia 

partially visible in central area.   

Dimensions: Width: est. 3.5 μm 

  Length: est. 30 μm 

  Striae/10 μm: 17  

  Length/width ratio: est. 8.57 
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Comments 

Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation. 

 

Orientation/Habit/Associations: uncommon; observed in sample CQ1-10-11. 

 

 

 Pinnularia morphotype „Clare‟s 5‟ 

Plate 30, Figure 5. 

 

Figured Specimens  

UCM #41033  

  

Description 

Morphology: biraphid, linear frustule fragment of central area showing multiseriate alveoli 

converging on central area around a lanceolate rhombic bilateral fascia; proximal raphe ends are 

unilaterally deflected. 

Dimensions: Width: est. 9 μm 

  Length: undetermined 

  Striae/10 μm: 9-10 

  Length/width ratio: undetermined 
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Comments 

Taphonomic Effects: because of their large size and elongated shape, individuals in LM are 

fragmented during the destructive slide preparation. 

 

Orientation/Habit/Associations: uncommon; observed in sample CQ1-10-11. 

 

  

 

 Adlafia Moser, Lange-Bertalot et Metzeltin 1998 

 Adlafia tellerii sp. nov. 

Plate  31, Figures 1-7. 

 

Syntypes 

UCM #s 41034 – 41041 

 

Description 

Morphology: biraphid pennate, naviculoid, linear elliptical to lanceolate frustule shape; broadly 

rounded apices; striae radial to sinusoidal in central region, become nearly parallel away from 

center, after which a shortened stria on each side of the sternum marks a reversal in angle of 

striae (abruptly convergent) that continues polewards; striae are uniseriate with round puncta; 

striae extend along height of tall mantle; straight filamentous raphe to valve margin where 

deflection prominent; proximal raphe ends simple and slightly expanded; distal raphe ends 
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unilaterally deflected onto apical mantle in a curve that well-exceeds 90 degrees; short 

curved striae continue on mantle on both sides of raphe, terminating against a hyaline ridge that 

follows the raphe curve.  Cingulum elements often missing; when present, valvocopula has a 

transverse row of poroids on both advalvar and abvalvar margins. <25 μm length; organic 

occlusions on areolae not differentiated in this fossil material. 

Dimensions: Width in middle: est. 4.5-6.0 μm  

  Length: est. 15-22 μm 

  Frustule height: est. 3-4 μm  

  Valve face striae/10 μm: 16-18 

  Areolae/10 μm: est. 24   

  Length/width ratio: 3.33-3.67   

 

Comments 

Taphonomic Effects: relatively intact after burial, but for some areas of dissolution (corrosion) of 

valve mantle margin and associated cingulum elements on some individuals, as observed in 

SEM. 

 

Orientation/Habit/Associations: solitary, sometimes associated with Fragilaria.  Observed only 

in SEM and only in Sample CQ1-11-12.   

 

Most similar published species:  Adlafia muscora (Kociolek et Reviers) Moser, Lange-Bertalot et 

Metzeltin. 
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References: Kociolek & Spaulding, 2003; Morales, 2003 - 8th NAWQA; the following 

description is taken from Moser, Lange-Bertalot & Metzeltin, 1998, In Morales & Le, 2005.    

Description: naviculoid, linear to linear-lanceolate frustule shape; rostrate to subcapitate apices; 

areolae round and occluded by a porous vola which lies at the outer periphery of each individual 

areola.  In Morales (2003), this areolae covering is described as “a persistent extracellular 

organic coating that remains on modern specimens after acid digestion”.  Uniseriate radial striae.  

Raphe is simple filiform with external distal ends strongly deflected in the same direction; 

external proximal ends may be undeflected or slightly unilaterally deflected in direction opposite 

distal end deflection.  Internally, distal raphe ends have a relatively small raised lip-like 

termination (helictoglossa); internally, proximal raphe ends are conspicuously unilaterally bent 

in opposite direction from distal ends.  Girdle bands closed with two rows of poroids present on 

the valvocopula.     

Dimensions: Width: (not specified) 

  Length:   <25 μm 

  Valve face striae/10 μm: (not specified)  

  Length/width ratio: (not specified) 

Ecology: aerophytic habitats, especially around mosses; some species found in oligotrophic lakes 

(Kociolek & Spaulding, 2003). 

 

Next most similar published species:  Adlafia suchlandtii (Hustedt) Lange-Bertalot. 

Reference: from Moser, Lange-Bertalot & Metzeltin, 1998, In Lange-Bertalot, 2001.  
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Description: valves linear; apices almost indistinctly protracted, cuneately narrowed with 

obtusely rounded ends.  

Dimensions: Width: 2.5-3.0 μm (type material); 2.0-3.5 μm (other) 

  Length: 12-15 μm (type material); 11-20 μm (other) 

  Valve face striae/10 μm: 26-28   

  Length/width ratio: 4.8-5.0 (type); 5.5-5.7 (other)  

Ecology for species: in various waters, predominantly associated with oligosaprobic conditions; 

locally frequent on intermittently wet bryophytes; aerophilous.   

 

Geologic range of genus Adlafia:  an extant genus not previously recognized in the fossil record 

prior to this late Eocene occurrence. 

 

New Species Diagnosis: 

This new form is assigned to the genus Adlafia rather than the genus Placoneis on the basis of its 

less than 25 μm length. 

Adlafia tellerii sp. nov. is distinguished from the genus type species A. muscora and from A. 

suchlandtii by its broadly rounded apices.  The absence of the areolar vola described by Morales 

(2003) has little diagnostic relevance in fossil forms, as such organic material would not be 

expected to survive natural deterioration brought about by taphonomic processes. 

 

Etymology     
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The name recognizes the location in which not only this new species is found, but in which 

the earliest record of the genus Adlafia is reported.  It bears the epithet of the Colorado county of 

Teller in which this study was conducted. 

 

 

 

 Navicula Bory de St.-Vincent 1822 

 Navicula eomenisculus sp. nov. 

Plate 32, Figures 1-3. 

 

Syntypes    

UCM #41042 - 41043 

 

Description 

Morphology: biraphid, naviculoid frustule; broadly lanceolate valves; symmetrical in apical and 

transapical planes; poles gradually tapering toward acutely rounded, cuneate apices; moderately 

narrow axial area containing a ridge in which the raphe lies; filamentous raphe with simple 

proximal and distal raphe ends; astigmate; small central nodule; striae uniseriate with slit-like 

areolae (lineolae); striae straight parallel in apical regions becoming slightly radiating and 

sinusoidal in center; 3-4 shorter striae on each side of central area. 

Selected Dimensions: 

  Width in middle: 12-14 μm  
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  Length: 30-34 μm  

  Striae/10 μm: 12-13 at center, 15 toward apices 

  Lineolae/10 μm: 24-30  

  Length/width ratio: 2.43-2.50 

 

Comments 

Taphonomic Effects: despite their larger size, frustules of this species tend to have survived the 

taphonomic and lab processes relatively well. 

 

Orientation/Habit/Associations:  Found as singles in valve view in association with a variety of 

other pennate diatoms including Synedra, Diatoma, and the diminutive monoraphid forms, as 

well as the centric Aulacoseira.  Samples CQ1-13-14 and CQ1-32-50. 

 

Most similar published species: Navicula menisculus Schumann. 

References: Morales (2001); Lange-Bertalot (2001); Krammer & Lange-Bertalot (2008, 

reprinted from 1997 & 1999); Pantocsek (1902). 

Description 1 (from Morales, 2001): broadly lanceolate with frequently perfectly cuneate ends; 

axial area is narrow, striae are very conspicuous; lineolae are often visible during routine 

analyses; striae are radiate and sometimes somewhat curved at the central portion of the valve 

due to the fact that the raphe lies on a depression (ridge) that runs along the axial area of the 

valve.  The striae are slightly radiate to parallel at the valve ends.  Although this taxon may 
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occasionally have a short stria flanked by smaller ones at one side of the central area, the 

reverse is usually true; i.e., a smaller stria is surrounded by two longer ones. 

Dimensions: (none given) 

Description 2 (from Lange-Bertalot (2001): valves, considerably uniform in outlines, broadly 

lanceolate tapering to the cuneate ends, not protracted, simply rounded acutely to somewhat 

obtusely; raphe moderately lateral, central pores distinct, slightly deflected to the secondary side; 

axial area moderately narrow, almost linear; central area relatively small, circular to rhombic; 

striae moderately radiate becoming parallel to somewhat indistinctly convergent at the ends; 

lineolae comparatively coarse.  

Dimensions: from Lange-Bertalot (2001): 

    Width: 11.0-12.5 μm 

   Length: 32-50 μm 

   Striae/10 μm: 8.5-9.5 

   Lineolae/10 μm: 24-25 

   Length/width ratio: 2.9-4.0  

Description 3 (from Krammer & Lange-Bertalot (2008, reprinted from 1997 & 1999): valves 

broadly lanceolate. 

Dimensions:  Width: 7.5-12.0 μm  

   Length: 15-50 μm 

   Striae/10 μm: 8-12 

   Lineolae/10 μm: 25-30 

   Length/width ratio: 2.00-4.17 
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Description 4 (from Pantocsek, 1902): valves lanceolate, subrostrate poles, straight raphe, 

central nodule inflated, striae radiate. 

Dimensions: Width: 9-11 μm 

   Length: 27-29 μm 

   Striae/10 μm: 10 

   (Calculated length/width ratio: 2.64-3.00) 

Ecology of N. menisculus from Lange-Bertalot (2001): meso- to moderately eutrophic, chalk-

rich and hence well-buffered freshwater lakes, intolerant to saprobity levels higher than oligo- to 

β-meso-saprobic.  

 

Geologic range of the genus Navicula: earliest recorded occurrence of this modern genus is in 

middle Eocene Wagon Bed Formation of Wyoming by Lohman and Andrews (1968). 

 

New Species Diagnosis 

The new species is designated on the basis of the following characteristics that distinguish it 

from N. menisculus Schumann: greater density of striae of 12-13 per 10 μm in center and 15 per 

10 μm toward poles; the slighter angle of radiation of the central area striae; the more gradual 

tapering along valve margin toward acutely rounded, cuneate apices, that results in more sharply 

angled poles; and the 2.5:1 length/width ratio of the valve that gives it a more centrally expanded 

shape. 

 

Etymology     
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The name recognizes the close similarity of the new species with N. menisculus Schumann, 

and the Eocene epoch in which the new species makes its first appearance in the fossil record.   

 

 

 

 Stauroneis C.G. Ehrenberg 1843   

 Stauroneis morphotype „Clare‟s 1‟ 

Plate 33, Figures 1-3. 

 

Figured Specimens  

UCM #41044  

  

Description 

Morphology: biraphid, lanceolate elliptical frustule with narrowly rounded cuneate apices; a 

narrow rectangular bilateral stauros fascia (central nodule) in central area; parallel uniseriate 

striae of small round puncta, becoming slightly radial toward pole; narrow axial area; straight 

simple distal raphe end; simple proximal raphe end; and pseudoseptum evident at valve apex 

interior.  

Dimensions: Width: 16.5 μm 

  Length: est. 60 μm 

  Striae/10 μm: 18-19  

  Areolae/10 μm: est. 16 
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  Length/width ratio: est. 3.64  

 

Comments 

Taphonomic Effects: because of their large size and elongated linear valve shape, individuals in 

LM are fragmented during the destructive slide preparation. 

 

Orientation/Habit/Associations: very uncommon; found in sample CQ2-1-03. 

 

Ecology of genus Stauroneis: both benthic and planktic habitats of lakes and streams (Kociolek 

& Spaulding, 2003).   

 

Geologic range of genus Stauroneis: a modern genus whose earliest reported occurrence is by 

Lohman & Andrews (1968) in the 47-49 Ma. middle Eocene Wagon Bed Formation in 

Wyoming. 

  

 

 

 Nitzschia Hassall 1845   

 Nitzschia morphotype „Clare‟s 1‟ 

Plate 34, Figures 1-2. 

 

Figured Specimens  



 

 

214 

UCM #41045  

  

Description 

Morphology: raphid keeled, fragmentary lineate elliptical frustule with rounded apices; 

transapical striae; a fibulate raphe system and keel on right lateral of valve, and hyaline areas of 

fibulae prominent.    

Dimensions: Width: est. 6.5-7.0 μm 

  Length: undetermined 

  Striae/10 μm: 20-21  

  Length/width ratio: undetermined.  

 

Comments 

Taphonomic Effects: because of their elongated linear valve shape, individuals in LM are 

fragmented during the destructive slide preparation. 

Orientation/Habit/Associations: very uncommon; found in sample CQ1-10-11. 

 

Ecology of genus Nitzschia: many freshwater species are epipelic in microhabitat; this genus also 

contains planktic, epilithic, and epiphytic species (Lowe, 2003).  

 

Geologic range of genus Nitzschia: a modern genus whose earliest reported occurrence is by 

Singh et al. (2007) in the late Cretaceous Deccan Traps of India.  
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Discussion 

 Of the 21 diatom genera identified in the Clare‟s Quarry site in the Florissant Formation, 

three are clearly dominant within the flora in the laminated shale units.  This is the result of the 

intentional effort to isolate slide source material to the light-colored fine diatomite laminae of the 

laminated shale facies.  These most abundant taxa are species of the genera Synedra, Diatoma, 

and Aulacoseira, which are elongate in frustule morphology.  Among these, the Aulacoseira 

forms filamentous colonies.  Their modern species are capable of living in the plankton of lakes, 

although they are not exclusive to planktonic habitats.  Synedra and Diatoma occur in the 

Florissant flora as monospecific genera.  The specimens of Synedra are similar to S. ulna and S. 

acus, but are not conspecific to any known species.  The individuals of Diatoma are assessed to 

be conspecific with the modern D. tenuis.  The clearly dominant species of Aulacoseira at 

Clare‟s Quarry is A. clarensis sp. nov., which is closely similar to A. italica, a form known 

mostly from fossil deposits.  Uncommonly, taxa that have affinities for A. distans, A. granulata, 

and possibly A. valida are also noted.  All other taxa observed are uncommon to rare in 

abundance.  Tetracyclus, Gomphonema, Achnanthidium, and Navicula are uncommon.  The 

genera Fragilaria and Staurosira are very uncommon, but morphologically diverse; and the 

remaining genera are rare. 

 Of major significance is the fact that this flora contains the geologically earliest 

recognized occurrence of the following 8 genera: Orthoseira, Synedra, Gomphonema, 

Achnanthidium, Platessa, Psammothidium, Diadesmis, and Adlafia.  Additionally, the isolated 

occurrence of Actinoptychus, although assumed to be allochthonous in origin, signifies its first-
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reported occurrence in freshwater deposits; however, its range as a marine taxon extends 

back to late Cretaceous (Strelnikova, 1975). 

 The 12 freshwater genera that were reported in the fossil record prior to the late Eocene 

of this deposit include the following: Aulacoseira, Fragilaria, Staurosira, Diatoma, Tetracyclus, 

Eunotia, Planothidium, Frustulia, Pinnularia, Navicula, Stauroneis, and Nitzschia.  As discussed 

in the body of this report, Fragilaria was first reported from late Cretaceous continental deposits 

of Mexico; Aulacoseira, Planothidium, and Nitzschia were first observed from late Cretaceous 

continental deposits of India; and the remaining genera were first reported in early and middle 

Eocene lake deposits from British Columbia and Northwest Territories, Canada, and Wyoming 

and Idaho, USA.  A review of the pre-Neogene non-marine diatom biochronology that includes a 

graphic synthesis and compares the flora from these deposits is in preparation in a separate 

manuscript. 

 The ecologic implications of the Florissant fossil diatom flora are in keeping with modern 

inland lakes that contain not only lake-dwelling taxa, but residents of a wide array of 

environments that border the lake, such as littoral benthics, riverine, and aerophytic species 

(Spaulding and McKnight, 1999).  A forthcoming manuscript is in preparation that discusses the 

diatom ecology in the context of the sedimentology of this deposit to better define the processes 

at play in this lake environment. 

 This new account of the Florissant fossil diatom flora provides the clear evidence that 

supports the view that freshwater diatoms representing a minimum of 21 modern genera and 

several modern species had evolved prior to the existence of the 34 million year age of the 

Florissant lake system.  Specifically, this record fills an informational gap about the phylogenetic 
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progression of freshwater diatoms between early and middle Eocene floras of Canada, 

middle Eocene floras of Wyoming and Idaho, and the diverse and well-documented Neogene 

floras from other sites in western North America. 
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Plate 1-Aulacoseira clarensis sp. nov. 

 

Figure 1.  Aulacoseira clarensis sp. nov., SEM, showing girdle view of sibling valves joined by 

linking spines.  Representative valve width at sibling juncture.  Valve apparent diameter 

expanded due to flattening at less heavily silicified ringleiste and collum.  Rimoportula seen on 

mantle interior adjacent to ringleiste.  Sample CQ2-1-03.  Syntype UCM #40917. 

 

Figure 2.  Aulacoseira clarensis sp. nov., SEM, enlargement of rimoportula of specimen shown 

in Figure 1.  Orientation of slit is to the left toward the ringleiste.  Sample CQ2-1-03.  Syntype 

UCM #40917.   

 

Figure 3.  Aulacoseira clarensis sp. nov., SEM, detail of rimoportula of a different individual.  

Orientation of slit is to the right toward the ringleiste.  Note the solid, moderately thick, shallow 

ringleiste.  Sample CQ1-12-13.   Syntype UCM #40918. 

 

Figure 4.  Aulacoseira clarensis sp. nov., SEM, girdle view of exposed linking valve of frustule 

showing subtle sinistrorse spiraling of areolar rows on mantle exterior.  Spatulate linking spines 

interlock sibling valves.  Sample CQ1-13-14.  Syntype UCM #40919. 

 

Figure 5.  Aulacoseira clarensis sp. nov., SEM, flat, broadly spatulate linking spines with 

apiculate tips.  Spines are rimmed with granules.  One or more areolar rows enter the stem of 

each spine.  Sample CQ1-13-14.   Syntype UCM #40920. 

   

Figure 6.  Aulacoseira clarensis sp. nov., SEM, rows of elliptical to rounded rectangular areolae 

on exterior of valve mantle.  Within the areolae, tiny struts are visible that support the velar 

plates in the interior of valve.  Sample CQ1-13-14.  Syntype UCM #40921. 

 

Figure 7.  Aulacoseira clarensis sp. nov., SEM, view of thick-based linking spines with heavily 

silicified stems; two spines interlocking with spatulate terminae seen on right.  One or more 

areolar rows enter the stem of each spine.  Sample CQ1-13-14.  Syntype UCM #40922. 
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Plate 2-Aulacoseira clarensis sp. nov. 

 

Figure 1.  Aulacoseira clarensis sp. nov., SEM, gently concave interior of valve face with dense 

areolae covered by subcircular velar plates.  Broadly spatulate linking spines with granules and 

apiculate tips along girdle on left and right.  Sample CQ1-13-14.  Syntype UCM #40923. 

 

Figure 2.  Aulacoseira clarensis sp. nov., SEM, detail of specimen shown in Figure 1.  Dense 

coverage of areolae on interior of valve face and velar plates that are positioned over the areolae.  

Sample CQ1-13-14.  Syntype UCM #40923. 

 

Figure 3.  Aulacoseira clarensis sp. nov., SEM, external translucent sheathing copula covering 

frustule; shown at sibling juncture with underlying linking spines and mantle areolae faintly 

visible.  Sample CQ1-13-14.  Syntype UCM #40924.  

 

Figure 4.  Aulacoseira clarensis sp. nov., LM, two images of same individuals in girdle view at 

different focal lengths.  One complete frustule in center joined at each end to sibling valves.  

Right image illustrates the prevailing “hour-glass” frustular girdle view profile; the wide, plain 

colli of the frustule; the darkened lateral dimples in the valve walls pervalvar from the colli 

indicate the shallow depth of the ringleiste.  Left image shows linking spines at sibling juncture; 

small, evenly-spaced, elliptical to rectangular mantle areolae; and gentle sinistrorse spiraling of 

areolar rows on mantle exterior.  Although no conclusive rimoportulae are observed, a slight 

hyaline feature adjacent to the ringleiste in the left image is suggestive of a rimoportula, as seen 

in SEM images in Plate 1.  Sample CQ1-13-14.  Syntype UCM #40925. 

 

Figure 5.  Aulacoseira clarensis sp. nov., LM, two images of same individuals in valve view at 

different focal lengths.  Both images show dense coverage of areolae on valve face and linking 

spines along the girth.  Lowermost spines rimming the lower image illustrate the broadly 

spatulate-anvil shape.  Sample CQ1-13-14.  Syntype UCM #40926. 

 

Figure 6.  Aulacoseira clarensis sp. nov., LM, linking spines extending from a fragment of valve 

mantle.  A single intact spine shows the broadly spatulate-anvil shape.  Sample CQ1-13-14.  

Figured Specimen UCM #40927. 
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Plate 3-Aulacoseira sp. 1 

 

Figure 1-6.  Aulacoseira sp. 1, LM, six images of same individual in valve view at different focal 

lengths.  Valve covered with large round areolae, linking spines marginal to valve face; Fig. 4-6 

deep, solid ringleiste with one or two possible  rimoportulae on the interior surface of the 

ringleiste.  Sample CQ1-8-09.  Figured Specimen UCM #40928. 
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Plate 4-Aulacoseira morphotypes “Clare‟s 1, 2, & 3” 

 

Figure 1.  Aulacoseira morphotype “Clare‟s 1”, LM, two images of same individuals in girdle 

view at different focal lengths.  Both images show the less common straight valvar girdle view 

profile and a very wide collum.  Left image is a view of exterior of mantle with evenly spaced, 

nearly straight rows of round areolae.  Right image is an interior view with darkened indications 

of a shallow ringleiste at mantle-collum contact and mottled texture of velar plates on interior 

mantle wall.  Sample CQ2-1-03.  Figured Specimen UCM #40929.         

 

Figure 2.  Aulacoseira morphotype “Clare‟s 2”, SEM, uncollapsed centric valve in girdle view 

with dextrorse spiraling of areolar rows on mantle exterior partially obscured by sheathing 

copula, lying adjacent to the typical A. clarensis sp. nov. collapsed (hour-glass) morphotype.  

Sample CQ1-13-14.  Figured Specimen UCM #40930. 

 

Figure 3.  Aulacoseira morphotype “Clare‟s 3”, SEM, separation valve with thick based, conical 

separation spines at ends of pervalvar costae.  Elongate mantle areolae at outer stem of spines.  

Valve face areolae visible.  Sample CQ1-13-14.  Figured Specimen UCM #40931. 
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Plate 5-Orthoseira roeseana (Rabenhorst) O‟Meara 

 

Figure 1-3.  Orthoseira roeseana, LM, three images of same individual in girdle view at different 

focal lengths.  Narrow collum visible; areolar striae on mantle anastomosing both toward and 

away from spines, blade-like spines marginal to valve face; Fig. 2-3 ring-like suggestions of 

velar plates over areolae in valve interior.  Sample CQ1-12-13.  Figured Specimen UCM 

#40932. 

 

Figure 4-9.  Orthoseira roeseana, LM, six images of same individual in valve view at different 

focal lengths.  Three rimmed carinoportulae in central area; radial valve face striae of coarse 

round areolae.  Sample CQ1-8-09.  Figured Specimen UCM #40933. 

 

Figure 10-15.  Orthoseira roeseana, LM, six images of same individual in girdle view at 

different focal lengths.  Cingulum visible in 12-15; copulae split and ligulate, exposing rows of 

mantle areolae that extend beneath; robust anastomosing areolar striae on mantle, becoming finer 

toward collum; blade-like spines marginal to valve face.  Sample CQ1-12-13.  Figured Specimen 

UCM #40934. 
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Plate 6-Orthoseira roeseana (Rabenhorst) O‟Meara 

 

Figure 1.  Orthoseira roeseana, SEM, relict blade-like spines on mantle along valve face margin.  

Spines are extensions of mantle costae and valve face costae, but for occasional spine bases that 

originate as separate costae around which mantle costae curve or branch, creating the appearance 

of anastomosing striae toward the spines.  Sample CQ1-27-35.  Figured Specimen UCM #40935. 
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Plate 7-Actinoptychus sp. 1 

 

Figure 1-3.  Actinoptychus sp. 1, LM, three images of same individual in valve view at different 

focal lengths.  Valve fragment is sectored into six sectors that alternate in high and low relief.  

Valve face has radiating large round areolae and nodes and spines are suggested along margin in 

Figs. 2 & 3; Fig. 1 suggests a rimoportula on the marginal area of the raised sector.  Sample 

CQ1-10-11.  Figured Specimen UCM #40936. 
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Plate 8-Undetermined Centric 

 

Figure 1-6.  Centric morphotype „Clare‟s 1‟, LM, fragmented valve view of same individual in 

six images at different focal lengths.  Figs. 1 & 2 show large round valve face.  Figs. 2 & 3 

reveal fine marginal striae that seem to grade into distinctly areolated striae that converge into 

the center of the valve face, as observed in Figs. 4-6.  Robust marginal spines are suggested on 

the left margin in Figs. 4-6.  Sample CQ1-9-10.  Figured Specimen UCM #40937. 
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Plate 9-Fragilaria vaucheriae var. lohmans var. nov. 

 

Figure 1. Fragilaria vaucheriae var. lohmans var. nov., SEM, whole lanceolate frustule with 

valves apart, bilateral fascia (central area), diminution of lineolae length to rounded puncta 

toward sternum.  Sample CQ1-13-14.  Syntype UCM #40938. 

  

Figure 2. Fragilaria vaucheriae var. lohmans var. nov., SEM, whole ovate frustule with valves 

apart, bilateral fascia (central area), diminution of lineolae  length to rounded puncta toward 

sternum.  Sample CQ1-13-14.  Syntype UCM #40939. 

  

Figure 3. Fragilaria vaucheriae var. lohmans var. nov., SEM, partly crushed whole lanceolate 

frustule with bilateral fascia and apical pore field on left.  Sample CQ1-13-14.  Syntype UCM 

#40940. 

      

Figure 4. Fragilaria vaucheriae var. lohmans var. nov., SEM, surface with group of frustules 

showing a range of morphotypes.  (Light horizontal streaks across image are artifacts of SEM.)  

Sample CQ1-11-12.  Syntype UCM #40941. 

 

Figure 5. Fragilaria vaucheriae var. lohmans var. nov., SEM, enlarged view of frustule apices 

from image in Figure 3, showing apical pore fields.  (Light horizontal streaks across image are 

artifacts of SEM.) Sample CQ1-11-12.  Syntype UCM #40941. 

   

Figure 6. Fragilaria vaucheriae var. lohmans var. nov., SEM, elongate frustule with completely 

bilateral fascia.  Such forms are easily confused with Synedra sp.  Distinguished from Synedra 

sp. by its less-well-delimited fascia boundaries, more pronounced offset of striae, and lineolae 

size diminution towards sternum.  (Light horizontal streaks across image are artifacts of SEM.)  

Sample CQ1-11-12.  Syntype UCM #40942.   

 

Figure 7. Fragilaria vaucheriae var. lohmans var. nov., SEM, internal valve view showing 

transapical striae, bilateral fascia, and girdle bands.  Sample CQ1-11-12.  Syntype UCM #40943. 

    

Figure 8. Fragilaria vaucheriae var. lohmans var. nov., SEM, fusiform valve showing a slightly 

inflated unilateral fascia with dark areas of phantom striae.  Sample CQ1-11-12.  Syntype UCM 

#40944.   
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Plate 10-Fragilaria vaucheriae var. lohmans var. nov. 

 

Figure 1.  Fragilaria vaucheriae var. lohmans var. nov., LM, lanceolate frustule with valves 

apart; slightly bilateral fascia (central area); striae parallel.  Sample CQ1-13-14.  Syntype UCM 

#40945.  

 

Figure 2.  Fragilaria vaucheriae var. lohmans var. nov., LM, lanceolate frustule with valves 

apart; slightly bilateral fascia (central area); striae parallel.  Sample CQ1-13-14.  Syntype UCM 

#40946. 

 

Figure 3.  Fragilaria vaucheriae var. lohmans var. nov., LM, lanceolate to clavate frustule with 

apicular and transapical asymmetry; strongly bilateral fascia (central area); striae parallel to 

slightly radial from sternum.  Sample CQ1-13-14.  Syntype UCM #40947. 

 

Figure 4.  Fragilaria vaucheriae var. lohmans var. nov., LM, elliptic-lanceolate frustule with 

valves apart; unilateral fascia (central area); striae parallel to slightly radial from sternum.  

Sample CQ1-13-14.  Syntype UCM #40948. 

 

Figure 5.  Fragilaria vaucheriae var. lohmans var. nov., LM, lanceolate frustule with valves 

apart; strongly bilateral fascia (central area); striae parallel to slightly radial from sternum; apices 

missing or obscured.  Sample CQ1-13-14.  Syntype UCM #40949. 

 

Figure 6.  Fragilaria vaucheriae var. lohmans var. nov., LM, elliptic-lanceolate frustule with 

valves apart; apically and transapically asymmetrical; unilateral fascia (central area); striae 

somewhat radial from sternum.  Sample CQ1-13-14.  Syntype UCM #40950. 

 

Figure 7.  Fragilaria vaucheriae var. lohmans var. nov., LM, elliptic-ovate frustule with 

transapical asymmetry; unilateral fascia (central area); striae parallel to slightly radial from 

sternum; sternum shows curvature adjacent to fascia.  Sample CQ1-13-14.  Syntype UCM 

#40951. 
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Plate 11-Staurosira morphotype „Clare‟s 1‟ 

 

Figure 1.  Staurosira morphotype „Clare‟s 1‟, SEM, valve view at angle of elliptical frustule 

shows medium-width elliptical axial area; short uniseriate striae of transapically elongate 

elliptical areolae; narrow striae and broad costae show slight off-set across axial area; marginal 

spines on costae project outward away from valve, then are re-curved back toward valve at 

termina; round broken bases of spines are solid, rather than hollow.  Sample CQ1-13-14.  

Figured Specimen UCM #40952. 

 

Figure 2.  Staurosira morphotype „Clare‟s 1‟, SEM, valve view at angle of clavate frustule shows 

narrow axial area; narrow uniseriate striae of round areolae show slight off-set laterally; costae 

broad; marginal spines on costae project outward away from valve, then are abruptly re-curved 

back toward valve at termina; round broken bases of spines are solid, rather than hollow.  Sample 

CQ1-13-14.  Figured Specimen UCM #40953. 

 

Figure 3.  Staurosira morphotype „Clare‟s 1‟, SEM, girdle view of elongate elliptical or 

lanceolate frustule shows steep-sided mantle; cingulum elements are indistinctly discernable; 

round areolae of narrow valvar striae extend onto mantle; marginal spines on broad costae.  

Sample CQ1-13-14.  Figured Specimen UCM #40954. 
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Plate 12-Staurosira morphotypes „Clare‟s 2 & 3‟ 

 

Figure 1.  Staurosira morphotype „Clare‟s 2‟, SEM, three-quarters valve view of centrally-

expanded lanceolate frustule with rostrate apices shows medium-width elliptical axial area; 

narrow uniseriate striae of apically-elongate elliptical to rectangular areolae; broad costae; striae 

and costae show slight off-set across axial area; apical pore field barely discernable on mantle; 

no marginal spines present.  Sample CQ1-13-14.  Figured Specimen UCM #40958. 

 

Figure 2.  Staurosira morphotype „Clare‟s 2‟, SEM, three-quarters valve view of centrally-

expanded lanceolate frustule with rostrate apices shows side of girdle area; medium-width 

elliptical axial area; narrow uniseriate striae of apically-elongate elliptical to rectangular areolae; 

broad costae; striae and costae show slight off-set across axial area; apical pore field barely 

discernable on mantle; no marginal spines present.  Sample CQ1-13-14.  Figured Specimen 

UCM #40959. 

 

Figure 3.  Staurosira morphotype „Clare‟s 3‟, SEM, broken valve view of centrally-expanded 

lanceolate frustule with rounded cuneate apices shows side of girdle area and part of valve face; 

part of valvar axial area exposed; narrow uniseriate striae of apically-elongate elliptical to 

rectangular areolae; broad costae; apical pore field discernable on valve face at pole; no marginal 

spines present; wide valvocopula on valve to the right.  Sample CQ1-13-14.  Figured Specimen 

UCM #40967. 

 

Figure 4.  Staurosira morphotype „Clare‟s 2‟, SEM, interior of broken centrally-expanded 

lanceolate frustule with rostrate apices shows internal view of uniseriate striae with minute volae 

barely discernable.  Sample CQ1-13-14.  Figured Specimen UCM #40960. 
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Plate 13-Staurosira morphotypes „Clare‟s 1 & 2‟ 

 

Figure 1.  Staurosira morphotype „Clare‟s 1‟, LM, valve view of broadly elliptical frustule with 

broadly rounded apices; narrow, parallel to slightly radial striae separated by broad costae that 

are slightly off-set across axial area.  Sample CQ1-13-14.  Figured Specimen UCM #40955. 

 

Figure 2.  Staurosira morphotype „Clare‟s 1‟, LM, valve view of elongate elliptical frustule with 

broadly rounded apices; narrow elliptical axial area; narrow, parallel to slightly radial striae 

separated by broad costae that are slightly off-set across axial area.  Sample CQ1-13-14.  Figured 

Specimen UCM #40956. 

 

Figure 3.  Staurosira morphotype „Clare‟s 1‟, LM, valve view of fusiform frustule with cuneate 

apices; narrow elliptical axial area; narrow, parallel to slightly radial striae separated by broad 

costae that are slightly off-set across axial area.  Sample CQ1-13-14.  Figured Specimen UCM 

#40957. 

 

Figure 4.  Staurosira morphotype „Clare‟s 2‟, LM, valve view (on left) and wedge-shaped girdle 

view (on right) of lanceolate frustule with rostrate apices; narrow lanceolate axial area; narrow, 

parallel to slightly radial striae separated by broad costae that are slightly off-set across axial 

area.  Sample CQ1-13-14.  Figured Specimen UCM #40961 (left) and Figured Specimen UCM 

#40962 (right). 

 

Figure 5.  Staurosira morphotype „Clare‟s 2‟, LM, valve view of rhombic lanceolate frustule 

with cuneate apices; narrow lanceolate axial area; narrow, parallel to slightly radial striae 

separated by broad costae that are slightly off-set across axial area.  Sample CQ1-13-14.  Figured 

Specimen UCM #40963. 

 

Figure 6.  Staurosira morphotype „Clare‟s 2‟, LM, valve view of clavate frustule with one pole 

broadly rounded rostrate and the other, narrowly rostrate; narrow lanceolate axial area; narrow, 

parallel to slightly radial striae separated by broad costae that are slightly off-set across axial 

area.  Sample CQ1-13-14.  Figured Specimen UCM #40964. 

 

Figure 7.  Staurosira morphotype „Clare‟s 2‟, LM, valve view of centrally-expanded lanceolate 

frustule with rostrate apices; elliptical axial area; narrow, parallel to slightly radial striae 

separated by broad costae that are slightly off-set across axial area.  Sample CQ1-13-14.  Figured 

Specimen UCM #40965. 
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Figure 8.  Staurosira morphotype „Clare‟s 2‟, LM, valve view of elongate, centrally-expanded 

lanceolate frustule with rostrate apices; narrow axial area; narrow, parallel to slightly radial striae 

separated by broad costae that are slightly off-set across axial area.  Sample CQ1-13-14.  Figured 

Specimen UCM #40966. 
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Plate 14-Diatoma tenuis Agardh 

 

Figure 1-2.  Diatoma tenuis, SEM, part of frustule in external valve view showing parallel striae, 

transapical costae, and straight narrow sternum.  Fig. 2 is close-up view of Fig. 1, showing 

slightly off-set uniseriate striae of small round puncta, sternum, and costae.  Sample CQ1-13-14.  

Figured Specimen UCM #40968. 

 

Figure 3.  Diatoma tenuis, SEM, external view of broadly rounded apex with radial striae and 

extended sternum beyond terminal costa, and distinct apical pore field.  Sample CQ1-13-14.  

Figured Specimen UCM #40969. 

 

Figure 4.  Diatoma tenuis, LM, valve view of broadly rounded apex revealing terminal costae, 

radial apical striae, extended sternum, and single transapical labiate structure on left lateral.  

Sample CQ2-0-04.  Figured Specimen UCM #40970. 

 

Figure 5.  Diatoma tenuis, SEM, external valve view showing slightly off-set striae at sternum on 

valve face, perforated valvocopula, and partially-attached perforated cinguli.  Striae separated by 

costae extend onto mantle, as seen on left valve.  Sample CQ1-13-14.  Figured Specimen UCM 

#40971. 
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Plate 15-Synedra sp. 1 

 

Figure 1.  Synedra sp. 1, SEM, complete frustule in valve view showing partially bilateral fascia.  

Sample CQ1-13-14.  Figured Specimen UCM #40972.  

 

Figure 2.  Synedra sp. 1, SEM, apical pore field on mantle. Sample CQ1-13-14.  Figured 

Specimen UCM #40973.   

 

Figure 3.  Synedra sp. 1, SEM, girdle view of perforated cingulum. Sample CQ1-13-14.  Figured 

Specimen UCM #40974. 

 

Figure 4.  Synedra sp. 1, SEM, frustule in valve view with valves separated.  Sample CQ1-11-12.  

Figured Specimen UCM #40975. 

 

Figure 5.  Synedra sp. 1, LM, valve view showing narrow sternum and very slight off-set of 

parallel striae.  Sample CQ1-13-14.  Figured Specimen UCM #40976.  
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Plate 16-Tetracyclus sp. 1 & T. morphotypes „Clare‟s 1 & 2‟ 

 

Figure 1.  Tetracyclus sp. 1 [aff. T. polygibbum (Pantocsek) Jousé], SEM, valve view showing 

slight heteropolar frustule, radial puncta at poles, axial area indiscernible on valve exterior, and 2 

light transapical shadows indicating internal primary costae (ribs). Areolae on valve face mid-

section are increasingly scattered toward sternum rather than aligned in transapical rows.  

Sample CQ1-13-14.  Figured Specimen UCM #40977. 

 

Figure 2.  Tetracyclus morphotype „Clare‟s 1‟,  SEM, interior of polar region of a copula with 

septum showing porelli penetrating the exterior and into the rim. Sample CQ1-13-14.  Figured 

Specimen UCM #40986. 

 

Figure 3.  Tetracyclus morphotype „Clare‟s 2‟,  SEM, polar puncta on valve extending onto 

mantle.  This taxon has a distinct mantle step (below the linear depression that parallels mantle 

rim) that is characteristic of this genus but not observed in the individuals shown in Figures 1, 2, 

4 and 5.   Sample CQ1-13-14.  Figured Specimen UCM #40987. 

 

Figure 4.  Tetracyclus sp. 1 [aff. T. polygibbum (Pantocsek) Jousé],  SEM, frustule interior with 

internal views of valve and cingulum that show two primary costae (transapical ribs), one 

secondary costa, a wide irregular sternum, distinct shallow apunctate (ghost) striae between the 

mid-section costae, dense radiating polar puncta, and a broken valvocopula lined with pervalvar 

rows of pores and an abvalvar septum in cross-section, a minimum of six alternating primary 

copulae lined with pervalvar rows of pores, and pervalvar-oriented pores on each ligula.  Sample 

CQ1-13-14.  Figured Specimen UCM #40978. 

 

Figure 5.  Tetracyclus sp. 1 [aff. T. polygibbum (Pantocsek) Jousé],  SEM, girdle view showing 

extensions of valve puncta onto the rounded, steep valvar mantle (note that the rows of puncta 

along costae are shortened); and the valvocopula and eight additional cingulum elements, each 

with uniseriate rows of slit-like puncta on the advalvar band margin and pore areas on the 

ligulae.  Sample CQ1-13-14.  Figured Specimen UCM #40979. 
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Plate 17-Tetracyclus sp. 1-5 

 

Figure 1.  Tetracyclus sp. 2 [aff. T. ellipticus (Ehrenberg) Grunow], LM, valve view showing 

broadly elliptical shape; at least one primary costa and two others (may be primary or 

secondary).  Sample CQ1-10-11.  Figured Specimen UCM #40981.  

 

Figure 2.  Tetracyclus sp. 2 [aff. T. ellipticus (Ehrenberg) Grunow], LM, valve view showing 

elliptical shape with broadly rounded apices; primary costae and one or more labiate structures 

lateral to sternum in mid-region on valve face.  Sample CQ1-12-13.  Figured Specimen UCM 

#40982. 

 

Figure 3.  Tetracyclus sp. 1 [aff. T. polygibbum (Pantocsek) Jousé], LM, elongate elliptical valve 

showing at least two robust costae; fine transapical striae are discernable.  Sample CQ1-10-11.  

Figured Specimen UCM #40980.  

 

Figure 4-6.  Tetracyclus sp. 3 [aff. T. lata (Hustedt) D.M. Williams],  LM, three valve views at 

different focal lengths showing in Figure 4 three primary costae and two sets of secondary 

costae; the surface areolae in fine transapical striae; central, linear, narrow, slightly raised 

sternum; labiate structure right lateral to sternum in mid-region on valve face.  Figure 5 shows 

distinct primary and secondary costae.  Figure 6 shows a single open septum.  These three 

images are at same scale.  Sample CQ1-13-14.  Figured Specimen UCM #40983.      

 

Figure 7-8.  Tetracyclus sp. 4 [aff. T. rhombus (Ehrenberg) Ralfs in A. Pritchard], LM, two valve 

views at different focal lengths showing in Figure 7 four primary costae and one or two sets of 

secondary costae, and at least one labiate structure lateral to the sternum in the mid-region on the 

valve face.  Figure 8 shows the septum. These two images are at same scale.  Sample CQ1-13-

14.  Figured Specimen UCM #40984. 

 

Figure 9.  Tetracyclus sp. 5 [aff. T. lancea (Ehrenberg) M. Peragallo in Heribaud], LM, large 

lanceolate-fusiform in valve view showing six primary costae and a narrow, linear sternum.  

Sample CQ1-12-13.  Figured Specimen UCM #40985. 
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Plate 18-Eunotia morphotype „Clare‟s 1‟ 

 

Figure 1-2.  Eunotia morphotype „Clare‟s 1‟, SEM, frustule in external valve view showing 

multiple perforated cingula and parallel to radial valve face striae that extend over steep-sided 

mantle.  Fig. 2 is detailed view of apex of Fig. 1, showing uniseriate striae of small round puncta 

and double rows of poroids on cingulum elements.  Sample CQ1-11-12.  Figured Specimen 

UCM #40988. 

 

Figure 3.  Eunotia morphotype „Clare‟s 1‟, LM, valve view of asymmetrically cuneate apex with 

distinct distal raphe, areolate striae, and broad sternum.  Sample CQ1-13-14.  Figured Specimen 

UCM #40989. 

 

Figure 4.  Eunotia morphotype „Clare‟s 1‟, LM, valve view of asymmetrically cuneate apex with 

distinct distal raphe, areolate striae, and broad sternum.  Sample CQ1-13-14.  Figured Specimen 

UCM #40990. 
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Plate 19-Gomphonema morphotype „Clare‟s 1‟ 

 

Figure 1.  Gomphonema morphotype „Clare‟s 1‟, SEM, whole clavate frustule in valve view 

showing lineolate striae converging toward axial area in central area and parallel to radial toward 

poles, simple proximal raphe ends, partially obscured interrupted astigmate stauros in central 

area, straight simple distal raphe ends, and apical pore field at foot pole.  Sample CQ1-13-14.  

Figured Specimen UCM #40991. 

 

Figure 2.  Gomphonema morphotype „Clare‟s 1‟, SEM, valve view showing lineolate striae 

reduced in length as converge toward axial area to become a round areola at final position 

adjacent to sternum in central area; poleward from central area, the final areolae nearest sternum 

are crescent-shaped (convex toward sternum) with reniform volae; simple proximal raphe ends 

are closely spaced, and an interrupted astigmate stauros forms central area.  Filiform raphe 

bisects sternum. Sample CQ1-13-14.  Figured Specimen UCM #40992. 

 

Figure 3.  Gomphonema morphotype „Clare‟s 1‟, SEM, internal valve view of fragment exposing 

coarsely cut striae beneath surface lineolae; typical of several Gomphonema species.  Sample 

CQ1-13-14.  Figured Specimen UCM #40993. 

 

Figure 4.  Gomphonema morphotype „Clare‟s 1‟, SEM, external surface of foot poles of frustule 

with straight distal raphe end that bisects sternum and extends through apical pore field; 

poleward striae are lineolate; and cingula are partially attached.  Sample CQ2-1-03.  Figured 

Specimen UCM #40994. 

 

Figure 5.  Gomphonema morphotype „Clare‟s 1‟, SEM, external surface of foot pole of frustule 

with straight distal raphe end that bisects sternum and extends through apical pore field; 

poleward striae are lineolate with final lineolae nearest sternum crescent-shaped; and cingula are 

partially attached.  Sample CQ1-13-14.  Figured Specimen UCM #40995. 
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Plate  20-Gomphonema morphotypes „Clare‟s 2, 3, 4‟ 

 

Figure 1-3.  Gomphonema morphotype „Clare‟s 2‟, LM, whole frustule in girdle view (same 

individual at three focal lengths); coarse internal nature of striae along mantle; thickened hyaline 

area at fascia; distinct borders of apical pore field at foot pole; perforated cingulum.  Sample 

CQ1-13-14.  Figured Specimen UCM #40996. 

 

Figure 4-5.  Gomphonema morphotype „Clare‟s 3‟, LM, whole frustule in valve view (same 

individual at two focal lengths).  Fig. 4 shows possible stigma on  left side of stauros; radiating 

striae near central area that become parallel toward poles; straight raphe with simple proximal 

and distal ends.  Fig. 5 is same individual as in Fig. 4, but different focus allows borders of apical 

pore field at foot pole to become visible.  Sample CQ1-18-20.  Figured Specimen UCM #40998. 

 

Figure 6.  Gomphonema morphotype „Clare‟s 4‟, SEM, whole wedge-shaped frustule in girdle 

view with valve face visible at low angle showing slightly concave valve face (depressed along 

sternum); extremely closely-separated simple proximal raphe ends in central area; uniseriate 

valve face striae of partially-occluded small reniform lineolae that extend onto tall mantle; distal 

raphe ends are unilaterally deflected and extend onto apical mantle; prominent apical pore field 

on mantle at foot pole bisected by raphe end; closely-spaced loculate reniform lineolae on head 

pole mantle; cingulum appears closed at head pole; single row of poroids adorns the advalvar 

margin of the valvocopula.  Sample CQ1-13-14.  Figured Specimen UCM #40999. 
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Plate 21-Gomphonema morphotypes „Clare‟s 5, 2?, 6‟ 

 

Figure 1-2.  Gomphonema morphotype „Clare‟s 5‟, SEM, Fig. 1 is whole clavate frustule in 

valve view showing lineolate striae converging toward axial area; simple proximal raphe ends; 

interrupted stauros in central area; and unilaterally hooked distal raphe ends at poles.  Fig. 2 is 

close-up of individual in Fig. 1 and shows apical pore field bisected by hooked distal raphe end 

at foot pole.  Sample CQ1-11-12.  Figured Specimen UCM #41000. 

 

Figure 3.  Gomphonema morphotype „Clare‟s 2?‟, LM, internal valve view of partial valve 

showing  foot pole with hooked distal raphe end bisecting radial rows of poroids that compose 

the apical pore field. Sample CQ1-13-14.  Figured Specimen UCM #40997. 

 

Figure 4.  Gomphonema morphotype „Clare‟s 6‟, SEM, damaged clavate frustule in girdle view 

showing biseriate striae of small round puncta.  Perforated cingulum elements visible at head 

pole.  Sample CQ1-13-14.  Figured Specimen UCM #41001. 
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Plate 22-Gomphonema morphotype „Clare‟s 7‟ 

 

Figures 1-2.  Gomphonema morphotype „Clare‟s 7‟, SEM, greater-than-half frustule showing 

interior and exterior of valves.  Fig. 1 shows internal central nodule in central area and canal-like 

internal nature of striae; internal proximal raphe ends are slightly unidirectionally curved; 

uniseriate lineolate striae are radial to sinusoidal in central region and become straight and 

parallel toward apices.  Figure 2 is an enlarged view of cuneate apex with a simple distal raphe 

end and apical poroids.  Sample CQ1-13-14.  Figured Specimen UCM #41002. 

 

Figure 3-4.  Gomphonema morphotype „Clare‟s 7‟, SEM, Fig. 3 is three-quarter frustule showing 

internal and external views of lineolate striae, striated central area, and cuneate apex.  Fig. 4 is 

close-up of lineolate striae and valvar apical pore field that is bisected by a deflected distal raphe.  

Sample CQ1-13-14.   Figured Specimen UCM #41003. 
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Plate 23-Achnanthidium morphotype „Clare‟s 1‟ 

 

Figure 1.  Achnanthidium morphotype „Clare‟s 1‟, SEM, nearly whole frustule showing raphid 

valve view with parallel to slightly radiating uniseriate striae, round to elliptical areolae; filiform 

raphe appears deflected to opposite sides toward poles; distinct central area; simple proximal 

raphe ends; distal raphe ends are indistinct in this specimen.  Sample CQ1-13-14.  Figured 

Specimen UCM #41004. 

 

Figure 2.  Achnanthidium morphotype „Clare‟s 1‟, SEM, nearly whole frustule showing araphid 

valve view with parallel to slightly radiating uniseriate striae; elliptical to lineate areolae; 

narrow- to medium-width sternum.  Sample CQ1-13-14.  Figured Specimen UCM #41005. 

 

Figure 3-4.  Achnanthidium morphotype „Clare‟s 1‟, LM, three-quarter frustule shown at 

different focal lengths with parallel to slightly radiating striae and a rounded apex.  Fig. 3 shows 

the raphid valve with an interrupted stauros in the central area and simple proximal raphe ends of 

a straight filiform raphe.  Fig. 4. shows the araphid valve with a diminished central area.  Sample 

CQ1-13-14.  Figured Specimen UCM #41006. 
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Plate 24-Planothidium morphotypes „Clare‟s 1 - 4‟ 

 

Figure 1.  Planothidium morphotype „Clare‟s 1‟, SEM, central area of internal view of araphid 

valve with a horseshoe-shaped marginal sinus on right and a lanceolate-shaped sternum that 

abruptly narrows poleward away from central area.  Coarseness of striae suggests that they are 

multiseriate.  Sample CQ1-11-12.  Figured Specimen UCM #41007. 

 

Figure 2.  Planothidium morphotype „Clare‟s 2‟, LM, frustule with valves separated; striae are 

parallel to slightly radiating; the araphid valve is to the right with a wide lanceolate sternum, and 

a horseshoe-shaped marginal sinus is on right side of central area.  Sample CQ1-13-14.  Figured 

Specimen UCM #41008. 

 

Figures 3-4.  Planothidium morphotype „Clare‟s 3‟, LM, of the same individual.  Fig. 3 shows 

the raphid valve with a stauros interrupted by a single stria on left in the central area, and simple 

proximal raphe ends of a straight filiform raphe.  Fig. 4. shows the araphid valve with a 

horseshoe-shaped marginal sinus on right central area and no central area on left.  Sample CQ1-

13-14.  Figured Specimen UCM #41009. 

 

Figures 5, 6, & 7.  Planothidium morphotype „Clare‟s 4‟, LM, of the same individual.  Fig. 5 is 

the raphid valve with a bilateral rectangular stauros in central area.  Fig. 6 shows the central 

convexity of the raphid valve as the focal length changed.  Fig. 7 is the araphid valve with a 

unilateral central area representing the marginal sinus.  Sample CQ1-18-20.  Figured Specimen 

UCM #41010. 
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Plate 25-Platessa florissantia sp. nov. and P. morphotype „Clare‟s 1‟ 

 

Figure 1.  Platessa florissantia sp. nov., SEM, elliptical frustule showing slightly concave raphid 

valve at angle; imperforate cingulum partially detached; straight filiform raphe; proximal and 

distal raphe ends are simple and slightly expanded; uniseriate striae of apically elongated areolae 

parallel to slightly radiating; single row of mantle areolae; stauros distinct.  Sample CQ1-13-14.  

Syntype UCM #41011. 

 

Figure 2.  Platessa florissantia sp. nov., SEM, elliptical frustule showing slightly concave raphid 

valve at angle; underlying araphid valve offset to side; straight filiform raphe; proximal and 

distal raphe ends are simple and slightly expanded; uniseriate striae of apically elongated areolae 

parallel to slightly radiating; single row of mantle areolae; stauros distinct.  Sample CQ1-11-12.  

Syntype UCM #41012. 

  

Figure 3.  Platessa florissantia sp. nov., SEM, elliptical frustule showing slightly concave raphid 

valve at angle; imperforate cingulum partially detached; straight filiform raphe; proximal and 

distal raphe ends are simple and slightly expanded; uniseriate striae of apically elongated areolae 

in central region become biseriate with smaller round areolae toward poles; striae parallel to 

slightly radiating; stauros distinct.  Sample CQ1-13-14.  Syntype UCM #41013. 

 

Figure 4.  Platessa florissantia sp. nov., SEM, elliptical frustule showing flat raphid valve face; 

cingulum partially detached; straight filiform raphe; proximal and distal raphe ends are simple 

and slightly expanded; uniseriate striae of apically elongated areolae; striae parallel to slightly 

radiating; single row of mantle areolae discernable; stauros distinct; many of exterior areolae and 

raphe are thinly occluded.  Sample CQ1-13-14.  Syntype UCM #41014. 

 

Figure 5.  Platessa morphotype „Clare‟s 1‟, SEM, elliptical frustule showing slightly convex 

araphid valve face; underlying raphid valve offset to side; uniseriate striae of apically elongated 

areolae; striae parallel to slightly radiating; single row of mantle areolae discernable; unilateral 

central area.  Sample CQ1-11-12.  Figured Specimen UCM #41015.  
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Plate 26-Psammothidium morphotype „Clare‟s 1‟ 

 

Figure 1.  Psammothidium morphotype „Clare‟s 1‟, SEM, elliptical frustule with rounded apices 

showing uniseriate striae parallel to slightly radiating; transapically expanded areolae that are 

partially occluded on exterior and exterior by cribria.  Raphid valve (broken portion on lower 

left) is slightly convex and has a single row of mantle areolae.  Araphid valve interior has narrow 

lanceolate sternum and a unilateral central area.  Sample CQ2-1-03.  Figured Specimen UCM 

#41016. 

 

Figure 2.  Psammothidium morphotype „Clare‟s 1‟, SEM, detailed view of lower apex of 

individual in Fig. 1, showing external and internal details of mantle areolae, cribria covering the 

transapically elongated areolae within the uniseriate striae.  Sample CQ2-1-03.  Figured 

Specimen UCM #41016. 
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Plate 27-Diadesmis morphotype „Clare‟s 1-5‟ 

 

Figure 1.  Diadesmis morphotype „Clare‟s 1‟, SEM, mostly obscured frustule showing flat valve 

face with sparse, occluded, elongate puncta separated by transapical ribs; broadly rounded to 

cuneate apex; silica ridge at valve face and mantle juncture; and shallow mantle with a single 

row of poroids.  Sample CQ1-27-35.  Figured Specimen UCM #41017. 

 

Figure 2.  Diadesmis morphotype „Clare‟s 2‟, LM, valve view showing centrally expanded 

frustule with rounded cuneate apex; a filiform raphe bisects sternum ridge; simple proximal 

raphe ends are widely spaced; rounded bilateral fascia; and dense, slightly radial rows of puncta.  

Sample CQ2-2-05.  Figured Specimen UCM #41018. 

 

Figure 3.  Diadesmis morphotype „Clare‟s 3‟, LM, valve view of fragment showing central area 

with rounded bilateral fascia and widely spaced simple proximal raphe ends.  Sample CQ1-10-

11.  Figured Specimen UCM #41019. 

 

Figure 4.  Diadesmis morphotype „Clare‟s 4‟, LM, frustule of rectangular shape in girdle view 

showing shallow mantle and mantle poroids, hyaline thickness of broad fascia in central area, 

and cingular elements.  Sample CQ1-10-11.  Figured Specimen UCM #41020. 

 

Figure 5-6.  Diadesmis morphotype „Clare‟s 5‟, LM, polar fragment of same individual at two 

focal lengths showing rounded cuneate pole with a straight raphe within a broad axial area 

bordered by short straight striae and a silica ridge at valve face and mantle juncture; simple distal 

raphe ending; two opposing crescent-shaped hyaline areas lateral at pole.  Sample CQ2-2-05.  

Figured Specimen UCM #41021. 
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Plate 28-Diadesmis morphotype „Clare‟s 6, 7, & 8‟ 

 

Figure 1.  Diadesmis morphotype „Clare‟s 6‟, LM, greater-than-half valve fragment with external 

valve view; broadly rounded to cuneate apex; narrowly separated proximal raphe ends on 

rounded bilateral fascia; raphe bisects thick, broad sternum;  parallel to slightly radial elongate 

puncta are separated by transapical ribs; silica ridge at valve face and mantle juncture.  Sample 

CQ2-0-04.  Figured Specimen UCM #41022. 

 

Figure 2.  Diadesmis morphotype „Clare‟s 6‟, LM, greater-than-half valve fragment with internal 

valve view; broadly rounded to cuneate apex; narrowly separated proximal raphe ends on 

rounded bilateral fascia; raphe bisects thick, broad sternum;  parallel to slightly radial elongate 

puncta are separated by transapical ribs; silica ridge at valve face and mantle juncture.  Sample 

CQ2-0-04.  Figured Specimen UCM #41023. 

 

Figure 3.  Diadesmis morphotype „Clare‟s 7‟, LM; small, whole, linear elliptical frustule in valve 

view with rounded apices; straight raphe within a prominent medium-width lanceolate sternum; 

round, bilateral central area (central nodule) distinct; fine parallel valvar striae unresolvable in 

LM.  Sample CQ1-12-13.  Figured Specimen UCM #41024. 

 

Figure 4.  Diadesmis morphotype „Clare‟s 8‟, LM, small, whole, linear rectangular frustule in 

valve view; straight raphe within a prominent medium-width sternum; round, bilateral central 

area (central nodule) distinct; parallel valvar striae discernable.  Sample CQ1-8-09.  Figured 

Specimen UCM #41025. 
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Plate 29-Frustulia rhomboides var. coloradensis var. nov. 

 

Figure 1-3.  Frustulia rhomboides var. coloradensis var. nov., SEM, Fig. 1 is rhomboid 

lanceolate frustule in external valve view showing rounded cuneate poles; straight, filiform raphe 

within a broad, apically perforated sternum; dense, parallel, uniseriate striae of small round 

puncta form a cross-pattern due to the uniform spacing of puncta in apical and transapical 

directions; fascia absent; proximal raphe ends widely separated.  Fig. 2 shows “T-shaped” distal 

raphe end.  Fig. 3 features widely-spaced proximal raphe ends that are slightly transapically 

expanded; an irregular row of poroids parallels raphe along both sides of axial area.  Sample 

CQ1-13-14.  Syntype UCM #41026. 

 

Figure 4. Frustulia rhomboides var. coloradensis var. nov., LM, internal structure of valve apex 

showing tip formed at juncture of two axial ribs at distal raphe end (porto crayon); cross-pattern 

of apically and transapically aligned puncta.  Sample CQ1-13-14.  Syntype UCM #41027. 

    

Figure 5. Frustulia rhomboides var. coloradensis var. nov., LM, interior of valve face showing 

eccentric central nodule where proximal raphe ends in a slight deflection.  Sample CQ1-10-11.  

Syntype UCM #41028. 
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Plate 30-Pinnularia morphotypes „Clare‟s 1-5‟ 

 

Figures 1.  Pinnularia morphotype „Clare‟s 1‟, SEM, external valve view showing a broad 

stauros fascia in central area; parallel biseriate alveoli of small round puncta; filiform raphe with 

closely-spaced simple proximal ends with slight deflection and an oppositely deflected hooked 

distal end.   Sample CQ1-11-12.  Figured Specimen UCM #41029. 

 

Figure 2.  Pinnularia morphotype „Clare‟s 2‟, LM, polar fragment of valve showing broad 

outlines of alveoli and a hooked distal raphe end.  Sample CQ1-10-11.  Figured Specimen UCM 

#41030.    

 

Figure 3.  Pinnularia morphotype „Clare‟s 3‟, LM, apical fragment of valve showing closely-

spaced outlines of alveoli and a hooked distal raphe end.  Sample CQ1-10-11.  Figured Specimen 

UCM #41031.  

 

Figure 4.  Pinnularia morphotype „Clare‟s 4‟, LM, greater-than-half valve fragment showing 

broad fascia extending to valve margin on one side of central area; central alveoli converge on 

central area, mid-way poleward alveoli are parallel, and polar alveoli diverge away from apex 

around a hyaline apical nodule.  Sample CQ1-10-11.  Figured Specimen UCM #41032.   

 

Figure 5.  Pinnularia morphotype „Clare‟s 5‟, LM, valve view of central area fragment showing 

multiseriate striae alveoli converging on central area around a lanceolate rhombic bilateral fascia; 

proximal raphe ends are unilaterally deflected.  Sample CQ1-10-11.  Figured Specimen UCM 

#41033. 
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Plate 31-Adlafia tellerii sp. nov. 

 

Figure 1.  Adlafia tellerii sp. nov., SEM, whole frustule in valve and girdle view showing 

uniseriate striae of round areole converging toward axial area; proximal raphe ends simple , 

slightly expanded; distinct central area; tall mantle; distal raphe ends are unidirectionally 

deflected, broadly curving to base of mantle to nearly 180 degrees and bisecting area of densely-

spaced rows of porelli at apices; cingulum not visible.  Sample CQ1-11-12.  Syntype UCM 

#41034. 

 

Figure 2.  Adlafia tellerii sp. nov., SEM, whole frustule in girdle and valve view showing 

uniseriate striae of round areole converging toward axial area; proximal raphe ends simple , 

slightly expanded; distinct central area; tall mantle; distal raphe ends are unidirectionally 

deflected, broadly curving to base of mantle to nearly 180 degrees and bisecting area of densely-

spaced rows of porelli at apices; only apical cingulum elements visible.  Sample CQ1-11-12.  

Syntype UCM #41035. 

 

Figure 3.  Adlafia tellerii sp. nov., SEM, whole frustule in girdle and valve view showing 

uniseriate striae of round areole converging toward axial area; proximal raphe ends simple , 

slightly expanded; distinct central area; tall mantle; distal raphe ends are unidirectionally 

deflected, broadly curving to base of mantle to nearly 180 degrees and bisecting area of densely-

spaced rows of porelli at apices; cingulum broken, but visible.  Sample CQ1-11-12.  Syntype 

UCM #41036. 

 

Figure 4.  Adlafia tellerii sp. nov., SEM, two whole frustules in girdle and valve view showing 

uniseriate striae of round areole converging toward axial area; proximal raphe ends simple , 

slightly expanded; distinct central area; tall mantle; distal raphe ends are unidirectionally 

deflected, broadly curving to base of mantle to nearly 180 degrees and bisecting area of densely-

spaced rows of porelli at apices; on lowermost frustule, cingulum shows both advalvar and 

abvalvar marginal uniseriate rows of puncta.  Sample CQ1-11-12.  Syntypes UCM #41037 (top) 

and UCM #41038 (bottom). 

 

Figure 5.  Adlafia tellerii sp. nov., SEM, two whole frustules in girdle and valve view showing 

uniseriate striae of round areole converging toward axial area; proximal raphe ends simple , 

slightly expanded; distinct central area; tall mantle; distal raphe ends are unidirectionally 

deflected, broadly curving to base of mantle to nearly 180 degrees and bisecting area of densely-

spaced rows of porelli at apices; on uppermost frustule, cingulum folded between valves.  

Sample CQ1-11-12.  Syntypes UCM #41039 (top) and UCM #41040 (bottom). 
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Figure 6-7.  Adlafia tellerii sp. nov., LM, whole lineate elliptical frustule in valve view at two 

focal lengths.  Fig. 6 shows short central area between proximal raphe ends; distinct central 

nodule and thickened sternum of valve interior; slightly expanded simple proximal raphe ends; 

and unidirectionally deflected distal raphe ends.   Fig. 7 is external valve view with slightly 

asymmetrical hour-glass stauros at astigmate central area; radiating striae bordering central area 

that become parallel in polar directions; simple proximal raphe ends slightly expanded; apical 

nodules prominent.  Sample CQ1-13-14.  Syntype UCM #41041. 
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Plate 32-Navicula eomenisculus sp. nov. 

 

Figure 1.  Navicula eomenisculus sp. nov., LM, central area of valve face showing slightly 

radiating to sinusoidal striae in central region; and external proximal raphe ends are simple 

without curvature.  Raised axial region is moderately narrow, but prominent, and is bisected by 

the raphe.  Sample CQ1-13-14.  Syntype UCM #41042.   

 

Figure 2-3.  Navicula eomenisculus sp. nov., LM, whole valve view showing two different focal 

lengths.  Fig. 2 features the gradual tapering of the valve toward sharply angled poles; acutely 

rounded, cuneate apices; the “ridge” that forms the axial area and the straight raphe; striae 

slightly curve to radiate away from central area, but become straight and parallel toward apices.  

Fig. 3 shows a central nodule as thickened hyaline area and lineolae forming the striae.  Sample 

CQ1-32-50.   Syntype UCM #41043.  
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Plate 33-Stauroneis morphotype „Clare‟s 1‟ 

 

Figures 1-3.  Stauroneis morphotype „Clare‟s 1‟, LM, greater-than-half frustule fragment in 

valve view.  Fig. 1 shows a narrow bilateral stauros fascia in central area; and parallel to radial 

uniseriate striae of small round puncta.  Fig. 2 features narrowly cuneate apex with straight 

simple distal raphe end.  Fig. 3 reveals the pseudoseptum at apex.  Sample CQ2-1-03.  Figured 

Specimen UCM #41044. 
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Plate 34-Nitzschia morphotype „Clare‟s 1‟ 

 

Figures 1-2.  Nitzschia morphotype „Clare‟s 1‟, LM, polar fragment in valve view showing 

transapical striae, raphe and keel on right lateral, and fibulate hyaline areas prominent.  Sample 

CQ1-10-11.  Figured Specimen UCM #41045. 
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Indices to Taxa 

 

Systematic Index to Taxa 

 

Aulacoseira clarensis sp. nov. 

Aulacoseira sp. 1 

Aulacoseira morphotype „Clare‟s 1‟ 

Aulacoseira morphotype „Clare‟s 2‟ 

Aulacoseira morphotype „Clare‟s 3‟ 

 

Orthoseira roeseana (Rabenhorst) O‟Meara 

 

Actinoptychus sp. 1 

 

Undetermined Centric morphotype „Clare‟s 1‟ 

 

Fragilaria vaucheriae var. lohmans var. nov. 

 

Staurosira morphotype „Clare‟s 1‟ 

Staurosira morphotype „Clare‟s 2‟ 

Staurosira morphotype „Clare‟s 3‟ 
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Diatoma tenuis Agardh 

 

Synedra sp. 1 

 

Tetracyclus sp. 1 

Tetracyclus sp. 2 

Tetracyclus sp. 3 

Tetracyclus sp. 4 

Tetracyclus sp. 5 

Tetracyclus morphotype „Clare‟s 1‟ 

Tetracyclus morphotype „Clare‟s 2‟ 

 

Eunotia morphotype „Clare‟s 1‟ 

 

Gomphonema morphotype „Clare‟s 1‟  

Gomphonema morphotype „Clare‟s 2‟ 

Gomphonema morphotype „Clare‟s 3‟ 

Gomphonema morphotype „Clare‟s 4‟  

Gomphonema morphotype „Clare‟s 5‟ 

Gomphonema morphotype „Clare‟s 6‟ 

Gomphonema morphotype „Clare‟s 7‟ 
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Achnanthidium morphotype „Clare‟s 1‟ 

 

Planothidium morphotype „Clare‟s 1‟ 

Planothidium morphotype „Clare‟s 2‟ 

Planothidium morphotype „Clare‟s 3‟ 

Planothidium morphotype „Clare‟s 4‟ 

 

Platessa florissantia sp. nov. 

Platessa morphotype „Clare‟s 1‟ 

 

Psammothidium morphotype „Clare‟s 1‟ 

 

Diadesmis morphotype „Clare‟s 1‟ 

Diadesmis morphotype „Clare‟s 2‟ 

Diadesmis morphotype „Clare‟s 3‟ 

Diadesmis morphotype „Clare‟s 4‟ 

Diadesmis morphotype „Clare‟s 5‟ 

Diadesmis morphotype „Clare‟s 6‟ 

Diadesmis morphotype „Clare‟s 7‟ 

Diadesmis morphotype „Clare‟s 8‟ 
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Frustulia rhomboides var. coloradensis var. nov. 

 

Pinnularia morphotype „Clare‟s 1‟ 

Pinnularia morphotype „Clare‟s 2‟ 

Pinnularia morphotype „Clare‟s 3‟ 

Pinnularia morphotype „Clare‟s 4‟ 

Pinnularia morphotype „Clare‟s 5‟ 

 

Adlafia tellerii sp. nov. 

 

Navicula eomenisculus sp. nov. 

 

Stauroneis morphotype „Clare‟s 1‟ 

 

Nitzschia morphotype „Clare‟s 1‟ 
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Alphabetical Index to Taxa 

 

Achnanthidium 

 A. morphotype „Clare‟s 1‟  

Actinoptychus 

 A. sp. 1 

Adlafia 

 A.  tellerii sp. nov. 

Aulacoseira 

 A. clarensis sp. nov. 

 A. sp. 1 – [aff. A. distans (Ehrenberg) Simonsen]  

 A. morphotype „Clare‟s 1‟  

 A. morphotype „Clare‟s 2‟ 

 A. morphotype „Clare‟s 3‟ 

Diadesmis 

 D. morphotype „Clare‟s 1‟ 

 D. morphotype „Clare‟s 2‟ 

 D. morphotype „Clare‟s 3‟ 

 D. morphotype „Clare‟s 4‟ 

 D. morphotype „Clare‟s 5‟ 

 D. morphotype „Clare‟s 6‟ 

 D. morphotype „Clare‟s 7‟ 
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 D. morphotype „Clare‟s 8‟ 

Diatoma 

 D. tenuis Agardh 

Eunotia 

 E. morphotype „Clare‟s 1‟  

Fragilaria 

F. vaucheriae var. lohmans var. nov.  

Frustulia 

 F. rhomboides var. coloradensis var. nov.  

Gomphonema 

 G. morphotype „Clare‟s 1‟ 

 G. morphotype „Clare‟s 2‟ 

 G. morphotype „Clare‟s 3‟ 

 G. morphotype „Clare‟s 4‟ 

 G. morphotype „Clare‟s 5‟ 

 G. morphotype „Clare‟s 6‟ 

 G. morphotype „Clare‟s 7‟ 

Navicula 

 N. eomenisculus sp. nov. 

Nitzschia 

 N. morphotype „Clare‟s 1‟ 

Orthoseira 
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 O. roeseana (Rabenhorst) O‟Meara 

Planothidium 

 P.  morphotype „Clare‟s 1‟ 

 P.  morphotype „Clare‟s 2‟ 

 P.  morphotype „Clare‟s 3‟ 

 P.  morphotype „Clare‟s 4‟ 

Pinnularia 

 P.  morphotype „Clare‟s 1‟ 

 P.  morphotype „Clare‟s 2‟ 

 P.  morphotype „Clare‟s 3‟ 

 P.  morphotype „Clare‟s 4‟ 

 P.  morphotype „Clare‟s 5‟ 

Psammothidium 

 P.  morphotype „Clare‟s 1‟ 

Stauroneis 

 S.  morphotype „Clare‟s 1‟ 

Staurosira 

 S.  morphotype „Clare‟s 1‟ 

 S.  morphotype „Clare‟s 2‟ 

 S.  morphotype „Clare‟s 3‟ 

Synedra  

 S.  morphotype „Clare‟s 1‟ 
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Tetracyclus 

 T. sp.1 – [aff. T. polygibbum (Pantocsek) Jousé] 

 T. sp.2 – [aff. T. ellipticus (Ehrenberg) Grunow] 

 T. sp.3 – [aff. T. lata (Hustedt) D.M. Williams] 

 T. sp.4 – [aff. T. rhombus (Ehrenberg) Ralfs in A. Pritchard]  

 T. sp.5 – [aff. T. lancea (Ehrenberg) M. Peragallo in Heribaud] 

 T. morphotype „Clare‟s 1‟ 

 T. morphotype „Clare‟s 2‟ 

   

Undetermined Centric 

 Centric morphotype „Clare‟s 1‟ 

 

 

 

 



 

 

307 

 

 

 

 

 

 

 

CHAPTER 4 



 

 

 

3
0
8
 

Paleolimnology from diatom paleoecology and sedimentology for the late 

Eocene Florissant Formation, Clare's Quarry, Teller County, Colorado, USA 

 

 

Mary Ellen Benson
a*

, Dena M. Smith
b1 

 

a
Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA 

b
Department of Geological Sciences, and Natural History Museum, University of Colorado, 

Boulder, Colorado 80309, USA 

 

*Corresponding author. Tel.: 303-232-3852. 

E-mail address: maryellen.benson@colorado.edu 

  

1
E-mail address: dena.smith@colorado.edu 

 

(This manuscript is prepared for submittal for publication in Palaeogeography, 

Palaeoclimatology, Palaeoecology.) 

 

 

Abstract 



 

 

309 

 The late Eocene Florissant Formation in central Colorado has been recognized for 

nearly a century as a richly productive and diverse fossil Lagerstätte containing giant tree 

stumps, plants, diatoms, insects, other invertebrates, fish, and birds from the lacustrine facies and 

mammal remains from the fluvial facies.  The current investigation focuses on the Clare‟s 

Quarry site where biotic and abiotic evidence are assessed to reveal insights into the lake 

character and the processes of deposition that resulted in the accumulation and preservation of 

the fossil-bearing host rock. 

 The sedimentary and stratigraphic record shows that the study site was positioned within 

a deep-water lake setting in which bottom-waters remained isolated and anoxic for long periods.  

During times with low rates of sedimentation that are interpreted as "normal lake deposition," the 

primary process of deposition was suspension settling of fine terrestrial clays from the outflow of 

streams; diatoms that bloomed in the epilimnion; diatoms transported from lake margin and 

stream environments; leaves and insects from marginal terrestrial habitats; and airfall volcanic 

ash and granular tuff.  These normal lake sedimentation periods were episodically interrupted by 

rapidly deposited, suspension-settled fine clays from the distal regions of mud-dominated 

subaqueous lake marginal deposits that prograded into and retreated from the lake at intervals.    

 The fossil diatom flora consists of 3 dominant genera whose modern relatives live, at 

various seasons and at various times in their life cycle, in the planktic zone of the epilimnion of 

lakes, in the bottom sediments, or in the periphyton along the shallows of lakes and streams.  A 

wide array of additional diatom taxa from lake margin, stream, bog or wetland habitats are 

represented in the rare fraction observed in these sediments.  The diatom taxa provide support for 

the lake depth and range of habitats that are interpreted as peripheral to the ancient lake.  
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1. Introduction 

 

 The late Eocene Florissant fossil Lagerstätte locality in central Colorado is a unique 

source of paleontological data for terrestrial and aquatic flora and fauna preserved in lacustrine 

and fluvial sediments.  Despite the wealth of research findings generated over the past century, 
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the understanding of the processes that controlled biologic productivity and deposition of 

sediments within the aquatic habitats of the lake and lake margin remains incomplete. 

 The current study focuses on the physical and chemical parameters of the aquatic habitats 

and the sedimentary processes that resulted in the accumulation and preservation of the lake 

deposits.  This effort relies primarily on the integration of data from fossil diatoms (microscopic 

algae) and associated macrofossils with evidence from the lithologic character, stratigraphic 

relationships, and diagenetic mineralogy of the host-rock at the study site.  The site selected for 

this study is Clare's Quarry because of its excellent stratigraphic exposure and its purported 

diverse diatom flora (Meyer, 2003). 

 The following sections set the framework for this paleolimnological investigation by 

providing an overview of the Florissant deposit, the lake origin, age, location, paleoclimate, and 

paleotopographic setting.  These parameters influence the physical and chemical processes and 

affect the biologic productivity in the lake.  The role that diatoms potentially play in the 

assessment of the paleolimnology is reviewed as context for this discussion.    

 

1.1 Geological setting 

 

1.1.1 Florissant fossil Lagerstätte: description, significance, age, and location 

  

 The late Eocene Florissant Formation is a world-famous fossil Lagerstätte that contains 

extremely well-preserved paleobotanical and fossil insect and invertebrate assemblages from 

lacustrine facies, and mammal fossils from the associated fluvial deposits.  The lake is 
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interpreted as a lahar-dammed fluvial drainage in which fossils accumulated in the fine 

sediments (Evanoff et al., 2001).  The importance of this deposit is in, not only the extraordinary 

fossil preservation, but also its unique position in geologic time at the terminus of a long period 

of transition from the warm global climates of the Paleocene/Eocene thermal maximum 

(Prothero, 1994; Zachos, 2001).  Three lake bed shales designated “upper,” “middle,” and 

“lower” by Evanoff et al. (2001) alternate with and are finely interbedded with mudstones, 

coarse volcanic tuffs, and volcanic ash.  Sanidine crystals in the “upper shale” tuffs and “middle 

shale” cap rock provide a mean 
40

Ar/
39

Ar radiometric age of 34.05 ± 0.08 Ma (McIntosh and 

Chapin, 2004).  The Florissant Formation is known from a relatively small area in the vicinity of 

the town of Florissant in Teller County, Colorado (Figure 1). 
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Figure 1.  Location of Florissant, Colorado (small rectangle).
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 Exposures of the Florissant Formation are limited to scattered roadcuts that penetrate 

the subsurface and to slopes of hills and ridges that roughly flank the present-day creek drainages 

northwest and south of the town of Florissant (Figure 2).  Principal fossil sites are located within 

the Florissant Fossil Beds National Monument, established in 1969, which is to the south of 

Florissant on County Highway 1; however, this area is closed to private collecting.  The only 

publicly accessible collecting locality is the privately-owned commercial Florissant Fossil 

Quarry (referred to in this study as Clare‟s Quarry) that is the site of this study and is located just 

south of the town of Florissant and west of County Highway 1 (Figure 2). 
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Figure 2. Location map of the Clare‟s Quarry study site showing the maximum estimated 

present-day subsurface extent of the Florissant Formation and the boundary of the Florissant 

Fossil Beds National Monument. 
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 The Clare‟s Quarry study site is an approximately 5 meter thick stratigraphic section 

consisting of these four primary lithologies: diatomaceous laminated shales (“paper shales”), 

brown mudstones, a single grey conchoidal mudstone, and coarse to fine-grained volcanic tuffs.  

Fourteen sequences of shale and mudstone were recognized and alphabetically assigned letter 

designations of AA through M from top to base.  The Clare‟s Quarry section is considered by 

Evanoff et al. (2001) to represent the “lower shale” of the Florissant Formation.   

 

1.1.2 Florissant paleoclimate, topography, and elevation inferred from paleobotany 

 

 On the basis of terrestrial paleobotanical evidence, the Florissant paleo-lake has been 

interpreted as a high-elevation, low-relief intermontane lake (Gregory and Chase, 1994; Evanoff 

et al., 2001) with a warm temperate to subtropical climate (Meyer, 2003; Leopold and Clay-

Poole, 2001).  Paleo mean annual temperature (MAT) estimated from leaf morphology using the 

CLAMP method (Wolfe, 1995) was found to be 12.8 ± 1.5 °C.  The NLR (nearest living relative) 

method provides an estimate of MAT as no lower than 17.5°C (4-6.8°C warmer than the 

CLAMP method) (Leopold and Clay-Poole, 2001).  Boyle et al. (2008) used a weighted-

averaging partial least squares regression (WAPLS) to estimate mean annual temperature using 

higher-level taxa in modern forest plots and determined temperature estimates of 12.5-18.1°C for 

Florissant.  These results are consistent with a warm temperate lowland or subtropical to tropical 

highland climate, and they encompass the previous estimates from leaf morphology and NLR 

methods.  The WAPLS study implies a possibility for infrequent air-temperature freezing at the 

lowest end of the genus-level MAT estimate range of 14.5 ± 2.2°C for Florissant, but states that 
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it marks the lower bounds of plausibility for the paleotemperture (Boyle et al., 2008).  As 

MAT must be <8-10°C for an ice cover to form on a lake (Kalff, 2002), the lowest end of the 

range for MAT estimates from all methods is well above this temperature.  On the basis of these 

temperature estimates, it is unlikely that Florissant lake would have experienced any period of 

ice-over. 

 Estimates of paleo-elevation for the vegetated slopes surrounding the paleo-valley from 

MacGinitie (1953) (using nearest modern relatives to the fossil flora) range from 300 to 900 m.  

Studies based on lapse rates with temperature decreases of 1°C per 1,000 meters of elevation 

gain produce a range from 1,900 to > 4,100 m (Meyer, 2003) for the paleo-elevation of 

Florissant.  If the genus-based WAPLS estimate of 14.7°C is used for MAT with previous leaf 

morphology estimates of late Eocene sea-level temperature, an estimate for Florissant paleo-

elevation would fall within the range of ~1,600- 2,800 m (Boyle et al., 2008).    

 A mean annual precipitation of 72 ± 31 cm with 57 ± 16 cm during the growing season is 

estimated from leaf morphology (Gregory and McIntosh, 1996).  Meyer (2003) gives a range of 

50-80 cm of annual rainfall with most of it occurring during the growing season in the late spring 

and early summer and a distinct dry season.  Integrated leaf and pollen records suggest that the 

area experienced moderate summer rainfall and mild, dry winters (Leopold and Clay-Poole, 

2001). 

 

1.2 Fossil diatoms in lake studies 

 

1.2.1 Diatoms as indicators of paleolimnology 
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 As diatoms are photosynthesizing algae, they require light in their aquatic environments.  

Modern diatoms live in waters ranging from marine to fresh, standing to flowing, and in wet 

soils and moist air that surrounds and sustains bryophyte communities (Stoermer and Smol, 

1999).  Many taxa live in habitats that are within the photic zone of freshwater lakes and streams.  

Limiting nutrients include nitrogen and phosphorus, and soluble silica must be available in the 

water for metabolic function and for the production of a hard cell structure (frustule) (Round et 

al., 1990).  Diatoms occupy planktic habitats in lakes and streams, and benthic habitats in littoral 

zones of lakes and stream margins.  Planktic diatom communities develop best in water depths 

no shallower than approximately 1.8 m (Bradbury and Winter, 1976; Haworth, 1979).  

Depending upon the light penetration through the seasons, benthic diatom communities thrive in 

water depths that range from 3 to 9 m (Stone and Fritz, 2004).  One of the more specialized 

benthic habitats includes moss-covered rocks and tree bark in splash zones of fluvial systems in 

which aerophytic diatoms thrive in the moist air (Patrick and Reimer, 1966).  

 Diatom frustules, as sedimentary particles, in deep lakes can include taxa from the 

planktic epilimnion of the lake, planktic taxa from in-flowing streams, and benthic taxa that 

thrive in the littoral zones of the lake and margins of streams (Stevenson and Smol, 2003).  The 

flattest, most central part of a lake basin will contain a sediment record that integrates indicators 

from across the lake (Stevenson and Smol, 2003). Contributions from higher reaches of the 

water-shed can be found as allochthonous frustules in the lake sedimentary record. 

 Paleolimnologists use diatoms recorded in the sediments as proxies for physical 

(temperature, light, and turbulence) and chemical (pH, dissolved organic carbon, nutrients, and 
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salinity) conditions (Battarbee et al., 2001).  These parameters are reflected in diatom 

assemblage compositions.   Although biological controls are important also, such factors are 

difficult to identify with any certainty from the sediment record (Battarbee et al., 2001).  

  

  

1.2.2 Diatom taphonomy in paleolimnology 

 

 The accuracy of any survey of fossil diatom taxonomic diversity or any interpretation of 

paleolimnology that is based on diatoms is dependent upon the accumulation and preservation of 

forms that are representative of the living population.  The number and types of individuals per 

volume of sediment will be impacted by the habitats represented, the seasonal bloom cycle, the 

availability of nutrients, physical transport within the lake, ingestion and redeposition by 

consuming organisms, sedimentary reworking of the substrate, and post mortem destructive 

mechanisms such as breakage and dissolution. 

 Just as diatom productivity is dependent upon the availability of nutrients and dissolved 

silica in the water, the preservation of diatom frustules in the rock record of a lake is largely 

influenced by the chemistry of the water column and the pore waters of the substrate.  Much 

paleolimnology research has found that diatom data from lake sediments are a reliable indicator 

of the living population (Battarbee, 1979, 1981; Haworth, 1980).  Other studies, however,  

indicate that post-mortem dissolution of diatom frustules is so prevalent in lake waters that the 

diatoms present in the sediments are not representative of the living population in the epilimnion 
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in either quantity or taxonomic composition, as some taxa are more prone to dissolution than 

are others (Battarbee et al., 2005).   

 Although no direct evidence of frustule dissolution was encountered in the current study 

at Clare's Quarry, this investigation recognizes that the taxa in the sediments may not be fully 

representative of the populations of diatoms that lived in the ancient lake waters.  This work is, 

rather, an analysis based on information that can be obtained from those taxa that are present, as 

they must represent portions of the ancient living populations that occupied various niches within 

and peripheral to the lake in which their frustules were deposited.  Caution is used when 

interpreting aspects of the paleolimnology that singly rely on the diatom data; and collateral 

sedimentary evidence is viewed as more reliable support for general conclusions made in this 

study.   

 

 

2. Goals of study  

 

 The purpose of this study is to examine the paleontologic and sedimentary evidence at the 

Clare‟s Quarry site for new clues to the paleolimnology of the Florissant lake system.  This 

includes the identification and analysis of evidence that points to lake and lake marginal habitats, 

lake bathymetry, chemical and physical parameters of the lake, and processes of deposition of 

the lake sediments.  A unique contribution of this study over previous works is the incorporation 

of the diatom paleontology and paleoecology as collateral evidence for the lake setting that 

contributed to this fossil Lagerstätte.  Furthermore, this study is built on a stratigraphic and 
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lithologic framework that allows for the observation of patterns among diverse types of data 

that can lead to interpretations of relationships among the biotic and abiotic components. 

 

 

3. Methods 

 

3.1 Sample collection 

 

 A total of 74 contiguous lithologic samples of non-uniform volume were collected from 

the measured stratigraphic section at Clare‟s Quarry (Figure 3.).  Among these were 45 samples 

from the 14 designated shale facies (AA-M) of this study, 25 from the 11 recognized brown 

mudstone facies (A-M), 1 composite sample from the single grey conchoidal mudstone facies (C 

mudstone), and 3 from the 2 thickest discrete volcanic tuff facies.  The samples were examined 

with a binocular microscope and described as to lithology, sedimentary features, stratigraphic 

contacts, and macrofossil content. 

 

3.1.1 Diatom sample preparation 

 

 For diatom studies, subsamples of non-uniform size were selected from the 45 shale and 

25 mudstone facies and prepared under a binocular microscope to isolate the fresh interior 

portion of the rock.  Each subsample was cleaned with pressurized air, then washed in distilled 

water, and freeze-dried in the lab. 
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 Diatom light microscope slides were prepared using either of two chemical methods 

or two mechanical methods.  The two chemical preparation methods were guided by procedures 

set forth by Green (2001) and modified by G. Breit (pers. com., 2009).  Secondary subsamples (1 

gram dry mass each) were processed by one of these two methods: (1) heating in 30% hydrogen 

peroxide, cooling, and applying hydrochloric acid; or (2) heating in sodium hexametaphosphate.  

Slurries were drawn from the rinsed hydrogen peroxide and the rinsed sodium 

hexametaphosphate preparations for direct application onto cover slips that were heat-dried on a 

hot plate and permanently mounted.  The mechanical preparation methods included these: (1) 

Battarbee chamber settling method (Battarbee, 1973) of  slurries from sonication of crushed 

sheet-thin chip secondary subsamples (~2.5 mm each) in distilled water that were air-dried on 

cover slips and permanently mounted on glass slides; or (2) mechanical crushing and 

pulverization of sheet-thin chip secondary subsamples (~2.5 mm each) with mortar and pestle in 

distilled water rendering a slurry for direct application onto cover slips that were heat-dried on a 

hot plate and permanently mounted.  All permanent mounts of cover slips onto glass slides were 

made using Naphrax or Zrax mounting medium. 

 Scanning electron microscopy samples (~2.5 mm diameter) consisted of either freshly 

broken samples or residual treated chips from each of the two chemical methods described above 

that were cleaned with pressurized air and mounted on stubs with double-sided black tape.  Stubs 

for low-vacuum imagery were sputter-coated with gold and palladium, and those for field 

emission or ionic beam imagery were not coated.   

 

3.1.2 Lithologic sample preparation 
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 Thirty-four subsamples were selected for petrographic examination from the 26 principal 

volcanic tuff beds from the study site, most having laminated shales in direct contact with the 

tuffs.  The goal was to examine the tuffs for textural and mineralogic properties, but also to 

determine the constituents of the diatomaceous shale laminae.  Friability and splitting along 

bedding planes were serious concerns during preparation.  To remedy this prior to sawing, where 

necessary, the subsamples were injected with blue epoxy.  Then, the blocks were cut, labeled, 

and carefully packaged for shipment to a commercial vendor for thin section preparation. 

 

3.2 Microscopy 

 

3.2.1 Diatom identification 

 

 Light microscope slides were viewed using an Olympus BX 51 light microscope with 

100x objective and camera system; and a JEOL JSM-5800 low vacuum SEM at the US 

Geological Survey in Denver, and FE JEOL JSM-7401-F field emission and FEI Nova 600-I 

focused ionic beam instruments at the Nanomaterials Characterization Facility at the University 

of Colorado.  Strictly quantitative methods were not attempted due to the high degree of valve 

fragmentation resulting from destructive processing methods necessitated by the lack of matrix 

disaggregation. 

 

3.2.2 Stratigraphic survey of diatom genera   
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 For a relative sense of the distribution of diatom genera primarily within the shale units 

through the stratigraphic section, a timed survey was conducted using an Olympus BX 51 light 

microscope with a 100x objective.  Estimates were made of the relative frequencies of 

occurrence of 18 of the 21 genera that were recognized in Benson and Kociolek (in review, see 

also Chapter 3).  Additionally, the Achnanthidium-Platessa-Psammothidium genera were lumped 

into the single group “Achnanthoid” because of the difficulty of differentiating these diminutive 

forms in the light microscope.  Ninety minute surveys along specific slide transects were done on 

a total of 29 slides (22 of shale and 7 of mudstone).   Raw counts were recorded for specimens 

that ranged from fragments (< 10% to ≥ 50%) to the rare whole frustule.  The decision whether 

or not to count the specimen was determined only by the examiner‟s certainty as to genus.  The 

visual estimates for these three dominant genera were guided by the American Geologic Institute 

Data Sheet - visual comparison charts for estimating percentage composition (Terry and 

Chilingar, 1955).    

 

3.2.3 Petrography of lithologic units 

 

 Of the 35 petrographic thin sections of principal tuffs and their affixed laminated shales, 

selected samples were examined using a Zeiss Petrographic microscope with ProRes C5 camera 

and software; and an Olympus BX 51 light microscope with 10x, 40x, and 100x objectives and 

camera system.   
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3.3 X-ray diffraction for mineral content 

 

 The four primary lithologies constituting the stratigraphic section at Clare‟s Quarry are 

diatomaceous laminites (“paper shales”), brown mudstones, grey conchoidal mudstones, and 

coarse to fine-grained volcanic tuff.  Owing to the difficulty of optically identifying clay-sized 

minerals derived from the alteration or weathering of volcanic particles, representative samples 

of each of the four primary lithologies were analyzed using x-ray diffraction and interpreted with 

the RockJock program (Eberl, 2003) by George Breit at the U.S. Geological Survey. 

 Samples of a nodule within the tuffs of the L shale and the surrounding matrix were 

analyzed by x-ray diffraction to determine what authigenic minerals had formed in the lake. 

 

3.4 SEM with electron dispersive spectroscopy for mineral identification  

 

 Euhedral mineral crystals within pumice blebs in the tuffs were identified with electron 

dispersive spectroscopy (EDS) analysis under scanning electron microscopy with the JEOL 

JSM-5800 low vacuum SEM at the U.S. Geological Survey.  

 

 

4. Results of investigation  

 

 The results of the lithologic and stratigraphic analysis include descriptions, mineral 

content from x-ray diffraction, secondary minerals, mudstone to shale ratios, and descriptions 
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and origin of volcanic components.  The findings from the diatom paleontological 

examination are the diatom floral components, stratigraphic distribution, relationships of taxa to 

lithology, and paleoautecological assessment.  The associated fossils are described and displayed 

in stratigraphic relationship to the diatom and sedimentary data.  These results are graphically 

presented in Figure 3 in which the lithologic units are shown in stratigraphic sequence creating a 

framework for comparing the occurrences of laminated shales, mudstones, and tuffs; nodules; 

diatoms, and associated fossils.  Each of these categories of findings is detailed in the following 

paragraphs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Annotated lithologic log of the stratigraphic section at the Clare‟s Quarry study site 

showing lithologic units, sample numbers (red = x-ray diffraction), trends in mud to shale ratio, 

the position and general distribution of altered pyrite nodules, and the general occurrence of 

fossil diatoms and associated macro-fossils, as identified by symbol keys above each column. 

 

 



 

 

 

3
3
0

 



 

 

331 

4.1 Lithology and stratigraphy 

 

 The stratigraphic section at Clare‟s Quarry consists of 4.91 meters of quarry wall that 

exposes tuffaceous laminated shales, brown mudstones, grey mudstones, and coarse to medium-

grained volcanic tuffs (Figure 3).  The “cap-rock tuff” is at the top of the section and the “big 

tuff” is in the lower half.  The shale and mudstone units alternate, and these alternating pairs are 

assigned letter designations AA through M.  These names for the tuffs and letters for the shales 

and mudstones are used throughout this and all discussions and figures that refer to the units in 

stratigraphic position. 

 The stratigraphic section at the study site and examples of its lithologic types are shown 

in greater detail in Figure 4.  Subhorizontal beds dip approximately 2 degrees to the northwest 

(Figure 4. A).  The coarse volcanic cap-rock tuff caps the exposure (Figure 4. B and C).  The 

units that underlie the cap-rock tuff include the following: a series of alternating buff-colored 

diatomaceous laminated shales with tuffs (Figure 4. D, F, H); brown blocky mudstones (Figure 

4. L); grey conchoidal mudstone (Figure 4. E); and medium to fine grained volcanic tuffs (Figure 

4. G).  These beds are laterally continuous over the approximately 30 m (98.43 ft) length of the 

exposure, each having a consistent thickness and lithology along the north to south oriented 

quarry face.  Such flat-lying beds, with undisturbed contacts, suggest that deposition took place 

on surfaces that were bathymetrically flat and distal from tectonic perturbations; that the setting 

was protected from lake tidal, storm wave, and fluvial erosion; and that the sediments remained 

free from biotic disturbance.  Sharp contacts between principal lithologic units are readily 
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observed in outcrop and are present between micro-scale units in thin-section.  Each principal 

lithologic type is individually described.  

 

 

 

 

 

 

 

 

 

 

Figure 4. A. Study site at Clare‟s Quarry (scale bar = 2.5 meters); B. a coarse volcanic tuff 

caprock in the exposure (scale bar = 50 cm); C. coarse lithic and crystalline texture of “caprock 

tuff” (scale bar = 10 mm); D. “B shale:” interbedded laminated shale and tuff (scale bar = 5 

mm); E. “C mudstone:” grey conchoidally fractured mudstone (scale bar = 5 cm); F. “F shale:” 

interbedded laminated shale and tuff (scale bar = 1 cm); G. the “big tuff:” 16 cm thick coarse and 

fine tuff (scale bar = 5 cm) ; H. “H shale:” interbedded laminated shale and tuff (scale bar = 15 

cm); I. fossilized tree stem in the middle of the “H shale” (scale bar = 5 cm); J. euhedral crystal 

of albite plagioclase feldspar found in pumice bleb shown in K (scale bar = 1 mm); K. pumice 

bleb showing compaction loading into underlying laminated shales in the middle of the “H 

shale” (scale bar = 1 mm); L. “M mudstone:” brown blocky, massive mudstone (scale bar = 2.5 

cm); M. nodule of jarosite after pyrite with goethite in a tuff unit of the “L shale” (scale bar = 1 

cm). 
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 The laminated shales (also called “paper shales”) are a complex of finely alternating 

diatomite laminae with very thin beds or laminae of detrital brown clay in the shales of the 

lowermost one-quarter of the section (K through M shales) or with very thin beds or laminae of 

volcanically-derived grey clay in the shales of the uppermost three-quarters of the section (A 

through J shales).  These shale-clay couplets are intermittently interlaminated with volcanic tuff 

that widely ranges in grain size and thickness.  The up-section replacement of the brown detrital 

clay component by the grey tuffaceous clay within the laminated shales corresponds with 

changes in the diatom and other fossil assemblages that are discussed in a later section. The 

diatom laminae primarily consist of individual < 1 mm (.20 -.33 mm) thick, diatom-rich, 

amorphous silica layers that conform to the surfaces upon which they accumulated.  Where they 

are formed on flat, even surfaces, they are flat and relatively uniform in thickness.  Where they 

overlie the irregularities of underlying less-plastic volcanic tuff grains, they show geopetal in-

filling; and where they are overlain by more dense volcanic tuff grains, they reflect settling and 

compaction irregularities.  There is no indication of disruption of the laminae by the tuff grains, 

as they were deposited on these extremely fine laminae, as there is no appreciable reduction in 

thickness, but for the minor irregularities from overlying grains settling followed by compaction 

into the underlying surface.  This strongly suggests that the underlying laminites were somewhat 

soft to elastic when the overlying tuffs were deposited.  Then, compaction after burial resulted in 

further accommodation of the harder, more dense volcanic grains by the more plastic 

diatomaceous laminae.  Had these diatom-rich laminae been in a more liquid state, such as that 

of a siliceous ooze, they could not have been preserved as discrete laminae.  After exposure, the 
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laminites split apart easily, giving rise to the term “paper shale”.  As the laminites split apart, 

they free the very thin tuff beds that are incorporated.  These interbedded tuffs within the 

laminated shales, as observed both in outcrop and thin section, consist of fine clay- to coarse 

sand-sized material interpreted as intermittent air-fall and reworked fines from suspension 

settling from terrestrial input events.  Pumice, euhedral to subhedral mineral crystals, and lithic 

grains and alteration products constitute these intercalated tuffs.  Graded bedding within the tuff 

units varies from normally graded (fining upward) to reverse grading followed by normal 

(coarsening upward, then fining upward).  Upon removal from outcrop, there is a strong 

tendency for the diatom laminae immediately adjacent to the tuff beds to remain affixed to the 

tuff beds, whether above or below them due to the compaction-induced microscopic 

interdigitation at their contacts. 

 Discrete volcanic tuff deposits also form thin to thick beds that constitute a primary 

lithology type at Clare‟s Quarry.  Laminated shale forms bounding and minor internal laminae 

within these units.  Petrographically, the discrete tuff beds consist of medium to coarse, 

subhedral to euhedral, phenocrysts of primarily plagioclase, sanidine, biotite, and other mafic 

minerals.  These phenocrysts show only partial alteration while retaining their original textural 

positions.  There is no evidence of detrital grains or matrix, and textures show no evidence of 

reworking.  The grains include partially hydrolyzed glass shards, juvenile lithoclasts (or wall-

rock xenoliths), and pumice blebs with preserved flow-textures containing euhedral albite and 

biotite phenocrysts.  Occasionally, perfectly intact diatom frustules are observed interstitial to the 

coarse phenocrysts.  The volcanic units are described in greater detail in section 4.1.4. 
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 Two types of mudstone units are observed in the Clare‟s Quarry section and, because 

of the different implications as to their origin, they are discussed separately.  The brown 

mudstone units are discrete beds that range from 6 to 31 cm thick and consist of medium brown, 

earthy, indurated micaceous clay.  These mudstones show fining upward just below the contact 

with the overlying shale/tuff bed.  In concert with this fining upward trend, each mudstone 

exhibits a waxy texture in the upper part, relative to the more silty and earthy nature of the main 

portion.  The exposed mudstone beds tend to have an irregular blocky fracture for the most part, 

but exhibit a subconchoidal fracture toward the fining upward top.  Scattered fine plant debris is 

also sometimes observed in the mudstone.  A single find of a relatively intact fossil leaf that does 

not conform to the bedding orientation, as indicated by the horizontal bed boundaries, suggests 

rapid burial.  No internal bedding orientation or parting surfaces are observed in the mudstone, 

although some wispy lineations are suggested.  Apparent from base to near the top is the 

subhorizontal organization of fine platey mineral grains such as mica.  No indication of 

bioturbation either by infauna or plant growth is evident.   

 The second type of mudstone occurs in only one exposed bed in the Clare's Quarry 

section.  It is a massive grey conchoidally fractured mudstone that forms a 85 cm thick unit that 

exhibits pillow-like structures in outcrop.  It has sharp lower and upper contacts with the 

laminated shales.  It separates the underlying C shale from the overlying B shale.  The contact of 

this grey mudstone with the underlying C shale is the “zero marker” (Figure 3) of Meyer 

(personal communication, 2005).  The unit exhibits variations among the fine clay-sized 

constituents.  No evidence of bioturbation is observed, and no signs of graded bedding are found.  

Organic debris is absent from this unit.   
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4.1.1 Mineral content of units from x-ray diffraction analysis  

 

 X-ray diffraction results (Figure 5-A through C) show that all primary lithologies are 

dominantly composed of smectite, a weathering product of the volcanic terrane, ranging from 34 

to 47 weight % (wt.%) among them.  The second most abundant constituent in all, except for the 

thick tuff bed (CQ15) (Figure 5-B), was glass/amorphous silica, ranging from 39 to 42 wt.% in 

the diatomaceous laminites; 39 wt.% in the grey conchoidal mudstone; and 17 wt.% in the brown 

mudstones. 

 

 

 

 

 

 

 

Figure 5.  X-ray diffraction charts showing mineralogic composition in weight percent for 

selected samples of the primary lithology types at Clare‟s Quarry: chart A is laminated shales, 

chart B is volcanic tuffs, and chart C is mudstones.
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 Common to the two types of volcanic tuffs (Figure 5-B) is the depauperate amount of 

crystalline quartz of less than 0.5 wt.%.  Except for this low amount of crystalline quartz and the 

shared high content of smectite, they show variability in composition.  After smectite at 37 wt.%, 

the next most abundant minerals in the thick tuff bed (CQ15) were plagioclase at 23 wt.%, 

anorthoclase at 17 wt.%, glass/amorphous silica at 14 wt.%, and potassium feldspar at 9 wt.%.  

After smectite at 42 wt.%, the next most abundant minerals in the frothy tuff of L shale (CQ46) 

was glass/amorphous silica at 35 wt./%, halloysite/kaolinite at 10 wt.%, and illite/mica at 8 wt.%.  

The high glass/amorphous silica content in the frothy tuff of L shale (CQ46) was visually 

suggested by the dominance of pumice in the sample.  Coupled with the absence of plagioclase, 

the presence of halloysite in the frothy tuff implies weathering in an intense leaching 

environment (Moore & Reynolds, 1997).   

 It is reasonable that the diatomaceous laminites (CQ14, CQ2-SP3, and CQ25) (Figure 5-

A) have high glass/amorphous silica content ranging from 39 to 42 wt.%, as the diatom frustules 

are opal and would appear to have the signature of amorphous silica.  These dia-laminites have 

very high smectite at from 34 to 47 wt.%.  They have a range of from 3 to 6 wt.% of crystalline 

quartz.  Their total feldspar contents are in the range of from 6 wt.% (CQ2-SP3), to 11 wt.% 

(CQ25), to 17 wt.% (CQ14).  The higher feldspar composition is suggested in CQ25 and CQ14 

because of the porcellanitic weathering texture, especially in CQ14 which has greater 

anorthoclase.  Sample CQ2-SP3, with much less feldspar and higher goethite, splits more readily 

along bedding planes and is more typical of the term “paper shale.”  CQ25 is unique among the 

dia-laminites in that it has 10 wt.% illite/mica. 
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 The brown mudstones (CQ-35 and CQ13sp) (Figure 5-C) are very similar in 

mineralogy.  They are high in smectite at 35 and 39 wt.%, respectively; glass/amorphous silica is 

17 wt.% for each.  They each are relatively high in crystalline quartz at 13 and 10 wt.%, 

respectively; but CQ35 has 30 wt.% total feldspars and CQ13sp has 22 wt.%.  Another 

difference is that CQ35 has 5 wt.% illite/mica and CQ13sp has 12 wt.%.   

 The grey conchoidal mudstone (CQ-SX2-4) (Figure 5-C) contains 40 wt.% smectite, 39 

wt.% glass/amorphous silica, and 20 wt.% total feldspars.  The much higher glass/amorphous 

silica content of this grey conchoidal mudstone of 39 wt.% contrasts with the 17 wt.% of the 

brown mudstone, and, along with its pillow-like textures, strongly suggest a high content of 

volcanic glass (ash).      

  

 

4.1.2 Secondary minerals and textures after pyrite 

 

 At Clare‟s Quarry, convincing indirect evidence of pyrite in the Florissant lake beds is 

observed in two forms.  These are (1) replacement minerals after pyrite nodules in tuff beds and 

(2) external molds after framboidal pyrite as grains within the shale beds, as observed in SEM.  

Nodules and flat concentrations of oxidized iron are found in the tuff beds associated with the 

laminated shales.  One of the nodules from a tuff from the L shale was shown by x-ray 

diffraction analysis to consist of the minerals jarosite (a secondary sulfate) at the core and 

goethite (iron oxide) at the rim.  Jarosite is a replacement mineral after sulfides, and among 
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them, commonly, pyrite (Deer et al., 1992).  The presence of jarosite in the nodule indicates 

the former presence of crystalline pyrite in nodular concentrations. 

 

 

4.1.3 Terrestrial mudstone to lake shale ratio sequences 

 

 The stratigraphic section exhibits cyclical changes in the sediment contribution over time 

(Figure 3).  This is reflected in the repetition of sequences composed of units of laminated 

tuffaceous shales that are abruptly overlain by units of brown massive mudstones.  The mudstone 

to shale ratios within these sequences show four sets of sequences that reveal, from base to top, 

one full and one partial cycle.  Upon close examination, many fine details build on these gross 

features to reveal important clues about the depositional and diagenetic setting.   

 One can determine from the gross pattern (Figure 3) that there is an increase in the 

mudstone to shale thickness ratio (“mudding up”) and a decrease in this ratio (“mudding down”).  

A complete mudstone:shale cycle is defined here as a mudding up sequence followed by a 

mudding down sequence.  These patterns are illustrated in Figure 3 in which Sequence 1 (a 

mudding up sequence) followed by Sequence 2 (a mudding down sequence) together form a 

single mudstone:shale cycle. 

 A further look at the progression of these mudstone:shale cycles up-section at Clare‟s 

Quarry shows that the second cycle begins with Sequence 3 (a second mudding up sequence) 

that was interrupted early by the 16 cm thick pyroclastic airfall tuff (“big tuff” of G).  It does not 

appear that the deposition of the big tuff had any disruptive effect on the mudding up sequence 
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as the mudding up sequence continues with the C shale (Sequence 4).  This 4
th

 sequence was 

interrupted early by the 85 cm thick C mudstone (a grey, massive, conchoidally fractured, 

pillow-textured, volcanic glass-rich, airfall deposit).  It appears that the mudding down sequence 

was skipped, but the mudstone:shale ratios were re-set at a very low mudstone:shale ratio as it 

began again with Sequence 4.  (Note that the thickness of the big tuff unit has been omitted from 

the mudstone:shale ratio calculations.)  The next sequence is incomplete, but begins with the 

Unit AA shale and is interrupted by a >50 cm thick very coarse crystalline, plagioclase-rich 

airfall tuff referred to as the cap-rock tuff.  (Note that, again, neither the C ash-rich mudstone nor 

the cap-rock tuff thicknesses was used in calculating mudstone:shale ratios.) 

 

4.1.4 Volcanogenic components  

 

 Ver Straeten (2007) observed that volcanogenic sediments in the ancient Florissant lake 

beds are of three basic types: simple, coarse-to fine-grained, normally graded beds, of probable 

airfall origin; medium to coarse pumiceous beds of airfall or riverine input; and mixed 

volcanogenic/detrital sediment of riverine origin. 

 In the current study at Clare‟s Quarry, samples of the caprock tuff of unit AA and the big 

tuff of unit G, along with a number of thinner tuffs interbedded with the shale units, were 

petrographically examined.  The samples are compositionally uniform, regardless of their 

thickness and grain size.  They consist of euhedral and marginally altered crystals of plagioclase-

dominated feldspars, and minor sanidine, biotite, hornblende, and quartz; marginally devitrified 

glass shards, partially corroded pumice grains; and juvenile lithic grains that are rich in 
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plagioclase and mafic phenocrysts.  Texturally, the caprock tuff of unit AA is non-sorted and 

non-graded, the grains are supported in a glass-altered matrix that is devoid of detrital material.  

The big tuff of the G unit shows compositional consistency with the caprock tuff, but has greater 

variety in texture. 

 The big tuff consists of a series of 6 subunits characterized as follows: (1) a basal pumice 

bed of altered glass shards and glassy FeO2-rich micro-lapilli with accretionary rims, and lined 

and filled vugs; (2) a set of two beds of medium to fine-grained particles each overlying a thin 

layer of grey ash, the lower one appears to fine-upward into the central grey ash layer and is 

followed by a coarsening upward bed; the granular portions contain partially altered glass shards, 

marginally altered plagioclase crystals, juvenile lithic grains with plagioclase phenocrysts, 

probable sanidine, and possibly amorphous silica; (3) a medium to coarse grained somewhat 

reverse-graded unit with increasing altered ash showing shrinkage cracks as a soft matrix toward 

the top; and contains marginally altered crystals of plagioclase, juvenile lithic grains with 

plagioclase and mafic phenocrysts, accretionary micro-lapilli, and lined and filled vugs; (4) a 

medium to coarse granular bed with non-sorted particles overlying a white clay that overlies a 

thin grey ash layer; composition of grains is the same as in 3; (5) a fine to medium granular bed 

that is somewhat sorted, but shows no size grading; the finer material includes a groundmass of 

altered ash; the grains are crystals of rim-altered plagioclase, FeO2-rich micro-lapilli with 

accretionary rims with lined and filled vugs, and altered “ghost” juvenile lithic grains that have 

left the more stable plagioclase phenocrysts floating in the clay; (6) a set of fine, medium, and 

coarse granular beds separated by 3 thin grey ash layers that seem to contain the coarsest of the 
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grains; a large portion of the larger grains appear white (as in the pumice) in hand specimen; 

and in thin section, they show a similar texture and composition as that detailed in 5. 

  Additionally, isolated pumice blebs that are encased between the shale laminae in the H 

shale were examined and found to contain euhedral crystals of a slightly calcic albite, as 

identified by electron dispersive spectroscopy analysis (EDS), and euhedral biotite crystals in a 

matrix of linear vesicular pumice.   

  

4.1.5 Volcanic source of tuffs 

 

 The dominance of  plagioclase feldspar phenocrysts relative to those of sanidine and 

quartz is important in determining the volcanic source for the tuffs at Clare's Quarry and in the 

Florissant deposits, in general (McIntosh and Chapin, 2004).  As described above, the two 

thicker volcanic tuff units at Clare's Quarry show an intermediate mineralogic composition with 

dominantly plagioclase phenocrysts and a lower sanidine and quartz content.  In contrast, the 

phenocrysts in tuffs of the Guffey andesites of the Thirty-nine Mile field are dominantly sanidine 

and quartz (McIntosh and Chapin, 2004). 

 

4.2 Paleontology 

 

4.2.1 Clare’s Quarry fossil diatom flora  
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 The diverse fossil diatom flora from Clare's Quarry consists of a minimum total of 21 

genera from 14 families, all of which are extant in modern lake and associated environments 

(Benson and Kociolek, In Review).  Differences between the fossil diatom flora in this study and 

the modern taxa are principally at the species level, although several modern species are also 

represented in the Clare‟s Quarry flora.  The taxonomic list of the Clare's Quarry diatom flora is 

constructed in the systematic order as modified from Round et al. (1990) (Figure 6). 
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Figure 6. Diatom taxa observed at Clare's Quarry, shown according to systematic order. 
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4.2.1.1 Diatoms in a stratigraphic context 

 

 The stratigraphic distribution of 18 diatom genera plus the “Achnanthoid” group in the 

shales and mudstones are determined from estimates of relative frequencies and are shown in 

Figures 7 and 8.  The taxa occurring at an estimated average of ≥1% are shown in relative 

percent (blue); whereas, those at < l% are shown in counts (red).  Consistently, the three most 

common genera are Synedra, Diatoma tenuis, and Aulacoseira clarensis.   
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Figure 7. Estimated relative percent of diatom genera for laminated shales (A & B through F 

Shales). Genera are listed from left to right in order of decreasing relative abundance 
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Figure 8. Estimated relative percent of diatom genera for laminated shales (G through I Shales 

and K through M Shales); and an average of five mudstone units.  (Genera are listed from left to 

right in order of decreasing relative abundance.) 
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 4.2.1.2 Diatom assemblage trends relative to lithologic type 

 

 At the Clare‟s Quarry site, fossil diatom frustules were observed primarily from the 

laminated shales in which the dominant diatom genera were Synedra, Diatoma, and Aulacoseira.  

Uncommon to rare within these shales were species of the genera Fragilaria, Staurosira, 

Tetracyclus, Eunotia, Gomphonema, Planothidium, Frustulia, Pinnularia, Adlafia, Navicula, 

Stauroneis, and Nitzschia, and the Achnanthoid group.  Orthoseira was extremely rare.  Diatom 

frustules were also present, but rare, in the brown mudstones and included the genera typical of 

the shales, along with an increased occurrence of Orthoseira and the appearance of Diadesmis.  

Additionally, in petrographic thin section, diatoms typical of the laminated shales, especially 

Aulacoseira, were observed interstitially among the coarse grains of some of the tuff units.  Each 

assemblage is discussed according to host lithofacies. 

 Three principal diatom assemblages are distinguished within the laminated shales 

(Figures 7 and 8) on the basis of relative dominance of the 3 most abundant and widespread 

genera.  Laminated shales of the lithofacies sequences M through G are characterized by the 

dominance of the genera Synedra and Diatoma tenuis, with the virtual absence of Aulacoseira.  

The assemblage of the laminated shales of lithofacies sequences F through C is also dominated 

by Synedra, but the second most dominant genus varies between Diatoma tenuis and 

Aulacoseira.  The third assemblage is recognized in the laminated shales of lithofacies sequences 

B through A and contains both Synedra and Aulacoseira as co-dominant genera, with the virtual 

absence of Diatoma tenuis.  The uncommon and rare genera in all 3 of the laminated shale 

assemblages are similar and include the Achnanthoid group, and the genera Planothidium, 
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Navicula, Tetracyclus, Fragilaria, Staurosira, Gomphonema, very rare Orthoseira, and very 

rare Stauroneis.       

 The diatom assemblage observed in the brown mudstones (Figure 8-G) includes the 

following distribution as to the relative frequency.  The matrix grains dominated the slurry, 

which produced very few diatoms.  Those observed, however, were clearly dominated by 

Synedra and less so by Diatoma tenuis.  Frequent among the less common were the genus 

Orthoseira and the Achnanthoid group.  Rare were Navicula and Aulacoseira.  Very rare were 

Pinnularia, Tetracyclus, Diadesmis, Staurosira, and Gomphonema.  Extremely rare were 

Fragilaria, Eunotia, Nitzschia, Frustulia, and Planothidium.  Only a single fragment of 

Actinoptychus was found in any of the Florissant material, and that specimen was from the 

brown mudstone facies. 

 Although the grey conchoidal mudstone of sequence C was also surveyed in the same 

way for diatoms, it contained only a trace that consisted of 3 fragments of Synedra, 1 fragment of 

Diatoma tenuis, 2 >half frustules of Diadesmis, and 1 fragment of Orthoseira.   

 In summary, this survey shows a dominance of 3 genera (Aulacoseira, Synedra, and 

Diatoma) over the remaining 15 genera and 1 group recognized. The significance of the diatom 

generic distributions within these units is discussed in a later section. 

 

4.2.1.3 Diatom bloom occurrences as laminae in the paper shales  

 

 An examination of the diatomite laminae in petrographic thin section reveals that the 

laminated shales consist of somewhat laterally continuous microlaminae in which diatom taxa 
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show distinct patterns of distribution.  As an example of these patterns of taxonomic 

groupings, photomicrographs from the richly diatomaceous sample CQ1-13-14 of the F shale 

unit are shown in Figure 9.  In this sample, mono-generic microlaminae of Aulacoseira (Figure 

9-B) alternate with nearly bi-generic microlaminae of Synedra and Diatoma tenuis (Figure 9-A); 

and these alternate with mixed microlaminae of Aulacoseira, Synedra, and Diatoma tenuis 

(Figure 9-C).  Interspersed between these groupings are microlaminae with various amounts of a 

light-colored (flocculated?) clay or ash matrix that has incorporated a sparse array of additional 

benthic diatoms such as Tetracyclus (Figure 9-D) and genera of the Fragilariaceae family 

(Figure 9-E) along with Aulacoseira, Synedra, and Diatoma tenuis.  At intervals between the 

diatom laminae, a dark golden brown organic fabric is encountered that contains probable 

benthic diatoms including Tetracyclus and others of undetermined affinity (Figure 9-F). 
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Figure 9. Photomicrographs from sample CQ1-13-14 of the F shale featuring taxonomic 

groupings of diatoms in somewhat continuous microlaminae: A. Synedra and Diatoma tenuis; B. 

Aulacoseira; C. a mixed assemblage of Synedra, Diatoma, and Aulacoseira; D. Synedra, 

Diatoma, and Aulacoseira with the added presence of other benthic pennates in a slightly opaque 

matrix; E. shows the mixture of all the diatom taxa in areas with and without the matrix of D.; 

and F. organic material containing diatoms such as probable benthic Tetracyclus and others of 

undetermined affinity.  (Scale bars represent 10 μm except in F., which is 20 μm.)   
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4.2.1.4 Diatom paleoautecological analysis  

 

 As all the genera observed in the diatom flora at Clare‟s Quarry are extant genera, and the 

taxa observed in this study include or show extreme affinity to modern species; it is reasonable to 

approximate the habitat preferences and tolerances of the fossil forms by referring to those of 

their nearest modern species; or, generally to those of the same genus or family (Round and 

Bukhtiyarova, 1996a, b; and Round, 1997).  As a result, the diatom habitats interpreted for the 

Florissant flora are inferred on the basis of autecological parameters at the family, genus, or 

species levels for the modern analogs (Figure 10). 

 

 

 

Figure 10. Diatom taxa from Clare's Quarry with inferred autecological parameters for modern 

analog taxa.  Life habits are T = tychoplanktic, P = planktic, B = benthic, Ba = benthic 

aerophytic.  pH is nu = neutral, ac = low, or ak = high. Salinities are F = fresh, B = brackish, M = 

marine. Nutrient levels are O = oligotrophic, M = mesotrophic, E = eutrophic.   
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 Each genus observed at the study site is discussed in terms of the habitat preferences that 

are provided in the cited literature, the source for the data in Figure 10.  Any omissions in types 

of information are due entirely to the limitations of the information available in the references 

surveyed.  For this reason, it should be understood that this review, whose results are illustrated 

in Figure 10., is not presented as a complete account and is not intended to limit sub-habitats for 

diatom genera to those data provided here.  It is but a guide to the array of sub-habitats 

represented in the fossil taxa for Florissant lake.  The genera are arranged according to the 

systematic order of Round et al. (1990).  They are later discussed in terms of their occurrences 

relative to the host lithologies and associated fossils.   

 

4.2.1.4.1 Aulacoseira 

 

 One of the three most abundant diatom genera observed at the Clare‟s Quarry site is 

Aulacoseira clarensis sp. nov., which is most similar to the modern and fossil species A. italica 

(Ehrenberg) Simonsen emend. R.M. Crawford, Y.E. Likoshway and R. Jahn.   

 The genus Aulacoseira is tychoplanktic, growing mostly in the plankton, but having the 

capacity to survive burial in sediments (Stoermer and Julius, 2003).  The ecologic parameters of 

the species A. italica, as the modern analog for the new fossil species A. clarensis, have been 

characterized by Crawford et al. (2003) as “not well known.”  This species is said to occupy a 

clearly different habitat from that of the open-water planktic species of A. ambigua and A. 

granulata (Ehrenberg) Simonsen in that it occurs with benthic species that include the genera 



 

 

357 

Gomphonema, Eunotia, Pinnularia, Synedra, and Stauroneis (Crawford et al., 2003).  

Species of Aulacoseira may exist in several different forms due to silica limitation in which 

heavily structured or thinly structured valves may convey ecological meaning (Stoermer et al., 

1985).  Suggestive of an at least part-time residence in the planktic setting, however, is the 

observation of Lund (1954) that turbulence is important in keeping the subspecies subarctica of 

A. italica in suspension.  Hustedt (1957) noted that Aulacoseira italica is oligohalobous and 

alkaliphilous.  Gasse (1986) found a dominance of A. italica var. bacilligera in Lake Tana, 

Africa, in which the waters range in pH from 7.5-8.4.  Aulacoseira italica var. tenuissima from 

Lake Lovojärvi, South Finland, thrives in a pH range of 7.0-7.5 (Simola et al., 1990), placing it 

well within the range of a circumneutral pH.  This range of circumneutral to moderately alkaline 

for Melosira italica (Aulacoseira italica) is confirmed, and a designation of fresh to brackish 

water is noted by Rymer et al. (1988).   

 Less common at the study site are specimens of a species of Aulacoseira that has affinity 

to the fossil species A. distans (Ehrenberg) Simonsen.  A. distans is characterized as rarely found 

in the phytoplankton of larger lakes and is more usually reported from the bottom sediments of 

smaller, soft/acid-water lakes (Florin, 1981; Camburn and Kingston, 1986; Haworth, 1988; Siver 

and Kling, 1997).  Moos et al. (2005) concluded that A. distans should be classified as a 

tychoplanktic species; and that, as such, it prefers shallow water, but exists over a wide range of 

depths.  Weckstrom et al. (1997) determined that most varieties of A. distans have an optimum 

temperature range of 10.89 to 12.15°C.  A. distans is among the species associated with slightly 

acidic, oligotrophic conditions found in relatively cold climates (Leira, 2005). Because of the 

requirement of wind circulation to maintain the suspension of the heavily silicified frustules of 
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this species within the epilimnion, the occurrence of A. distans in great abundance would 

indicate high wind speeds, suggesting a lake setting with open exposure or high elevation (Liu 

and Shi, 1989).   

 

4.2.1.4.2 Orthoseira 

 

 Orthoseira species are found almost exclusively in subaerial habitats, particularly in 

bryophyte communities growing on alkaline substrata and are rarely found in lakes or high-order 

streams (Patrick and Reimer, 1966; Stoermer and Julius, 2003).  O. roeseana is found in 

association with lichen in tropical cloud forests (Lakatos et al., 2004); and in shallow, 

illuminated entrances of limestone caves (Poulickova and Hasler, 2007). 

 

4.2.1.4.3 Actinoptychus 

 

 Actinoptychus senarius Ehrenberg is restricted to brackish and brackish marginal marine 

environments (Van Eetvelde and Dupuis, 2004).   

 

4.2.1.4.4 Fragilaria  

 

 The genera of the family Fragilariophyceae are part of the spring periphyton community 

of rivers that can respond, with rapid growth, to small additions of organic and inorganic 

nutrients (Perrin et al., 1987).  Taxa live in the periphyton, epipsammon, epiphyton, epipelon, 
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epidendron, haptobenthon, and plankton (Kingston, 2003).  Degree of environmental 

disturbance and nutrient availability can influence their habitat preference (Kuhn et al., 1981).  

Certain planktonic populations in large lakes can selectively develop either offshore (Stoermer 

and Yang, 1970) or nearshore (Stoermer, 1968).  This family includes the following genera that 

are found in the study site: Fragilaria, Staurosira, Diatoma, and Synedra.   

 The genus Fragilaria includes species that thrive as phytoplankton in lakes (Kingston, 

2003).  A species identified in the fossil site of this study is F. vaucheriae that is found in 

streams in the Arctic where it occurs among mixed periphyton communities on rocks in streams 

with reduced current flow (Ki et al., 2009).  F. vaucheriae is often abundant in eutrophic modern 

reservoirs (Hoagland and Peterson, 1990) and prefers fresh water that has a cool temperature 

(Patrick and Reimer, 1966).  F. vaucheriae is reported from benthic habitats in moderately 

alkaline waters ranging in pH from 8.0 – 9.4 (Castenholz, 1960). 

 

4.2.1.4.5 Staurosira 

 

 The genus Staurosira includes the former Fragilaria construens and F. elliptica.  

Staurosira species are a common component of shallow water floras in rivers and lakes 

(Kingston, 2003).  Specimens of Staurosira from the study site most closely resemble these two 

species: S. construens var. venter (Ehrenberg) Hamilton, which prefers water with a fairly low 

nutrient content (oligotrophic or mesotrophic) (Patrick and Reimer, 1966); and S. incerta 

Morales, which is alkaliphilous and oligotraphentic (favoring nutrient-poor conditions) (Morales, 

2006).  Gasse (1986) reports that S. construens occurs under a wide range of conditions, but it is 
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mostly found in fresh waters with medium pH.  Rymer et al. (1988) show that S. construens 

var. venter can live in waters with a pH ranging from circumneutral to moderately alkaline and in 

fresh to brackish waters.    

 

4.2.1.4.6 Diatoma  

 

 The araphid pennate genus Diatoma occurs in the Clare‟s Quarry site as a single species 

with an elongate morphology that is identified as Diatoma tenuis Agardh.   

 Diatoma tenuis has a high tolerance for Na, SO, and conductivity of the water (Potapova 

and Charles, 2003).  Williams (1985) states that D. tenuis generally ranges in habitat from fresh 

to brackish water.  According to Moss (1981), D. elongatum (synonomous with D. tenuis) forms 

planktic colonies in the spring and not in the autumn; yet, they live and reproduce in the 

periphyton of the same lakes during both spring and autumn.  D. tenuis occupies both epiphytic 

and planktic habitats (Krammer and Lange-Bertalot, 2004).  D. elongatum (D. tenuis) is reported 

from benthic habitats in moderately alkaline waters ranging in pH from 8.0 – 9.4 (Castenholz, 

1960). 

 

4.2.1.4.7 Synedra 

 

 A single species of the araphid pennate genus Synedra is one of the three most abundant 

taxa recognized at the study site and is most similar to the two modern species Synedra ulna 

(Nitzsch) Ehrenberg and Synedra acus Kützing. 
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 The genus Synedra includes species that thrive as phytoplankton in lakes and can be 

very abundant in oligotrophic, mesotrophic, and eutrophic lakes during different seasons 

(Kingston, 2003).  Species of Synedra that co-occur with Diatoma tenuis form planktic colonies 

in lakes in the spring but not in autumn; whereas, they are abundant in the periphyton of these 

same lakes in both spring and autumn (Moss, 1981). Benthic Synedra populations can also be 

major components of river communities (Main, 1988).  A designation of fresh to brackish water 

and a pH range of circumneutral to moderately alkaline are reported for S. ulna by Rymer et al. 

(1988).  S.ulna and S. acus are both found in moderately alkaline lake settings with pH ranging 

from 8.0 – 9.4 (Castenholz, 1960). 

 

4.2.1.4.8 Tetracyclus 

 

 Tetracyclus is not well known from modern floras, being most frequently found in fossil 

deposits (Kingston, 2003).  Specimens from the study site closely resemble the following 

modern species: T. polygibbum (Pantocsek) Jousé, T. elliptica (Ehrenberg), T. lata (Hustedt) 

D.M. Williams, T. rhombus (Ehrenberg) Ralfs in A. Pritchard, and T. lancea (Ehrenberg) M. 

Peragallo in Heribaud.  A general ecology of the genus indicates that species of Tetracyclus are 

usually found in shallow water and seem to prefer cold water (Patrick and Reimer, 1966).   

 

4.2.1.4.9 Eunotia 
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 Eunotia are benthic diatoms with cells that may grow singly, in filaments, or at the 

ends of short stalks, attached to a variety of substratum types (Kociolek and Spaulding, 2003).  

Within the genus Eunotia, species show a range of tolerance for nutrient concentrations and 

organic contaminants.  Some species are restricted to oligotrophic waters, others prefer eutrophic 

waters, and others prefer habitats of high sulfate levels (Kociolek and Spaulding, 2003).  Species 

are found in a wide variety of habitats from aerophytic to flowing or still waters and conditions 

from alkaline to circumneutral pH to highly acidic (Kingston, 2003).  The genus is most diverse 

in softwater or acid-water habitats (Patrick and Reimer, 1966; Krammer and Lange-Bertalot, 

1991).  Some species live in the tops of sphagnum plants (Patrick and Reimer, 1966). 

 

4.2.1.4.10 Gomphonema 

 

 Species of Gomphonema produce long, mucilaginous stalks, with the cells growing 

upward from the point of attachment of the stalk.  The colonies form thick, mucilaginous masses 

attached to surfaces along the shores of lakes, rivers, and streams (Kociolek and Spaulding, 

2003).  Some forms have been characterized as lake inhabitants, whereas others are considered to 

be rheophils (living in high-flow streams).  At times, some taxa are found in the plankton of 

lakes.  Cells may grow individually or form massive benthic colonies that blanket any available 

substrate, some being epiphytes (Patrick and Reimer, 1966).  Some are cosmopolitan, while 

others are restricted to specific regions (Kociolek and Spaulding, 2003); many are found across a 

wide range of pH levels. 
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4.2.1.4.11 Achnanthidium 

 

 Freshwater monoraphid diatoms are benthic in habit, living attached to substrata in 

shallow to mid-depth habitats of lakes and rivers (Stoermer, 1980).  Many are specialized for life 

as epiphytes, and others frequently occur attached to sand and rocks (Kingston, 2003).  Taxa live 

primarily as unicells, either on short stalks (Achnanthidium), or adnate to the substratum 

(Psammothidium, Planothidium, and Platessa).  In the latter habit, the raphe valve is against the 

substratum, potentially allowing the cell to move to new locations (Kingston, 2003). 

 Achnanthidium species are haptobenthic unicells on short stalks, common on a wide 

range of substrata including plants and rocks; have a stipitate habit and are found in turbulent, 

well-oxygenated water; taxa are held above the dense prostrate masses of other taxa on stalks, 

where they can take advantage of more rapid replenishment of the host of chemical constituents 

flowing past (Kingston, 2003).  They thrive in moving water and rapids (Peterson and Hoagland, 

1990) and in wave zones of lakes (Brown, 1973).  Small cells like A. minutissimum are 

physiologically more active than larger diatom cells, due partly to their large surface to volume 

ratios (Kingston, 2003).  Achnanthidium minutissima tolerates alkaline waters (Potapova and 

Charles, 2003; Castenholz, 1960). 

 

4.2.1.4.12 Planothidium 

 

 The genus Planothidium is a benthic adnate form attached to sand or pebbles, and is more 

common in alkaline waters (Bukhtiyarova and Round, 1996). 
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4.2.1.4.13 Platessa (formerly Achnanthes conspicua Mayer) 

 

 The new fossil species Platessa florissantia sp. nov. described from this study site is most 

similar to the modern species Achnanthes conspicua Mayer from which the genus Platessa was 

derived.  Achnanthes conspicua is found in oligotrophic to eutrophic waters, especially those 

with low alkalinity and middle to high electrolytes (Krammer and Lange-Bertalot, 2004).  

 

4.2.1.4.14 Psammothidium 

 

 The genus Psammothidium is an adnate benthic, most abundant on sand, and prefers 

soft/acidic waters (Flower and Jones, 1989; Bukhtiyarova and Round, 1996). 

 

4.2.1.4.15 Diadesmis 

 

 The genus Diadesmis is characteristically aerophytic and tends to grow in association 

with mosses and attached to damp rocks.  It occurs across North America, often in waters of low 

conductance and slight acidity (Kociolek and Spaulding, 2003).  This genus may be found in 

oligotrophic waters (Patrick and Reimer, 1966). 

 

4.2.1.4.16 Frustulia 
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 Frustulia occurs in benthic habitats singly or in mucilaginous tubes.  Species are 

found across North America, and they are often abundant in slightly acid waters that are high in 

dissolved organic carbon and low in conductance (Patrick and Reimer, 1966; Kociolek and 

Spaulding, 2003). Frustulia is also found growing on the tops of sphagnum plants (Patrick and 

Reimer, 1966).  

 

4.2.1.4.17 Pinnularia 

 

 Pinnularia is often abundant in low conductance, slightly acidic freshwaters (Kociolek 

and Spaulding, 2003).  Also, some species are benthic aerophytic, being associated with lichen 

(Lakatos et al., 2004).  

 

4.2.1.4.18 Adlafia 

 

 Specimens of the genus Adlafia were recognized at the study site and were described as a 

new species Adlafia tellerii sp. nov.  This new fossil species is most similar to two modern 

species A. muscora (Kociolek et Reviers) Moser, Lange-Bertalot et Metzeltin, which lives in 

aerophytic habitats, especially around mosses (Moser, Lange-Bertalot and Metzeltin, 1998).  The 

fossil species A. tellerii is also quite similar to A. suchlandtii (Hustedt) Lange-Bertalot, which is 

found in various waters, and is also aerophytic, and predominantly associated with intermittently 

wet bryophytes (Moser, Lange-Bertalot and Metzeltin, 1998). 
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4.2.1.4.19 Navicula 

 

 The genus Navicula is a large taxonomic group that has a broad distribution in nearly 

every freshwater habitat across North America (Kociolek and Spaulding, 2003).  Some prefer 

low current conditions of streams or lakes.  More specifically, however, the specimens from this 

study are described as the new species Navicula eomenisculus sp. nov., which is most similar to 

the modern species N. menisculus Schumann.  N. menisculus prefers mesotrophic to moderately 

eutrophic conditions in chalk-rich, well-buffered freshwater lakes (Lange-Bertalot, 2001). This 

species tends to be benthic (Hoagland et al., 1982). 

 

4.2.1.4.20 Stauroneis 

 

 Species of the genus Stauroneis range from benthic to planktic habitats of lakes and 

streams (Kociolek and Spaulding, 2003).  Some species prefer alkaline waters.  Also, some 

species are aerophytic, being associated with lichen (Lakatos et al., 2004). 

 

4.2.1.4.21 Nitzschia 

 

 Most species of Nitzschia are epipelic in microhabitat, but the genus also contains 

planktic, epilithic, and epiphytic species (Lowe, 2003).  Epipelic habitats are most abundant in 

slow-moving streams or in lentic environments such as lakes, ponds, and wetlands.  Diatoms 

from this group can also be found in quiet pools of swift streams where slower current velocities 
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allow fine sediments to fall from suspension (Lowe, 2003).  These species contain 

endocellular symbiotic cyanobacteria and can therefore fix nitrogen; they usually occur singly, 

but may form stellate colonies or live in mucilage tubes (Lowe, 2003).  Some species live 

endophytically in sphagnum leaves (Patrick and Reimer, 1966).  Species of Nitzschia are 

reported from benthic habitats in moderately alkaline waters ranging in pH from 8.0 – 9.4 

(Castenholz, 1960). 

 

4.2.2 Associated fossils in stratigraphic context 

 

 Previously reported fossils from Clare's Quarry are leaves from the genera 

Cedrelospermum (an extinct genus in the elm family), Fagopsis (an extinct genus of the beech 

family), Chamaecyparis (false cedar), and Sequoia (redwood) (Meyer et al., 2004).  The 

common insects are ants, beetles, and crane flies (Meyer et al., 2004).  A complete, extremely 

well-preserved shorebird, a probable relative of the modern plover (Order Charadriiformes, 

Family Charadriidae) (Meyer, 2003), was found in 1997 by a quarry owner from a bed that 

approximately corresponds to the L mudstone of this study (Cole Anderson, pers. comm., 2011).  

A fossil fish was recovered from the contact between the H shale and the overlying H mudstone 

(Nancy Clare Anderson, pers. comm., 2005).  Diatoms were observed in the shales (Harding and 

Chant, 2000; O'Brien et al., 2002: O'Brien et al., 2008; Meyer, 2003) at Clare's Quarry. 

 In the current study, the macrofossil occurrences observed are described and reported in 

stratigraphic and lithologic context and are shown in Figure 3.  Plant fossils observed include 

leaves and leaf fragments found in the shale units: Sequoia, in the L shale; Chamaecyparis, in 
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AA and H shales; other conifer, in H shale; broadleaf trees, in AA, C, H, and L shales.  The 

leaves and leaf fragments in the mudstone units are fewer, but include these: Typha, in the B 

mudstone; and broadleaf trees, in the L mudstone.  Additionally, a fossilized tree stem with a 

diameter of >5 cm was observed in the approximate center of the H shale (Figure 4. I). 

Incomplete or whole individual insects were occasionally recovered from the AA, H, J, 

K, L, and M shales; and from the K mudstone.  Rare spider specimens were found in the AA and 

M shales. 

 Ostracod specimens (~0.7 mm in length) identified as the species Cypris florissantensis 

are reported from several Florissant localities (Meyer, 2003).  Specimens resembling this species 

were observed in the laminated shales and on surfaces of ash in tuff beds at Clare‟s Quarry.  

More commonly, there are specimens of a bean-shaped type of ostracod (possibly related to the 

genus Candona) that is extremely tiny and widely observed on fine-grained laminae in many 

units at Clare‟s Quarry.  The small bean-shaped ostracods in Clare‟s Quarry appear to be external 

molds, but some of the larger specimens of Cypris appear to have some of shelly material 

remaining.  The ostracods are exclusive to either laminated shales or ash beds, and are not 

observed in the mudstones.  

 Mollusks present at Clare‟s Quarry include rare Planorbis-like aquatic gastropods that 

are often associated with tuffs above the G Shale, and are interpreted by Wagner et al. (2004) to 

suggest a deeper lake habitat in the uppermost part of the exposure. 

  From a paleobotanical census study by Wagner et al. (2004), a comparison of leaves 

found at Clare‟s Quarry with those from the "middle shale" shows that there is a higher 

representation of Chamaecyparis and a lower occurrence of Fagopsis at Clare's Quarry.  Both 
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Fagopsis and Chamaecyparis are indicative of valley-bottom vegetation (Meyer, 2003).  

Additionally, it was observed by the Wagner team that Typha (cattails), an aquatic macrophyte 

that occupies locally shallow and marshy areas near the shoreline of freshwater bodies (Meyer, 

2003) was concentrated in distinct layers at Clare‟s Quarry (Wagner et al., 2004). 

 

 

5. Discussion 

 

5.1 Depositional, volcanic, and secondary processes 

 

5.1.1 Episodic inflow of terrestrially-derived mud into the deep lake basin 

 

 Potential controls on the mudstone:shale depositional trends include climate, volcanism, 

and tectonism, as primary drivers.  A complete mudstone:shale cycle likely represents the 

progradation and retreat of lake marginal mud deposits (lacustrine pro-delta) that mirrors gradual 

shifts in precipitation, availability of  terrestrial mud, topography of the catchment area, or basin 

bathymetry.  

 With only the abbreviated view at Clare‟s Quarry, relative to the larger depositional 

record, it cannot be determined with certainty whether or how major pyroclastic events might be 

related to the processes that controlled the mudstone:shale cycles.  It might be anticipated, 

however, that, with increased frequency of the more intense volcanic activity (as demonstrated 

by the big tuff of G, the C mudstone ash deposit, and the cap-rock tuff of AA), increased local 
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rainfall, increased volume of volcanically-derived soils, volcanically induced earth tremors 

dislodging slope cover, and topographic readjustment that increased gradient of terrain could 

have led to an increased mud supply into the basin.  Although the deposition of the big G tuff 

(Sequence 3) seems to have had little direct impact on the mudstone:shale ratio, immediate 

changes in the diatom flora directly following this event suggest an environmental response 

within the lake.  The increased volcanism that resulted in the C mudstone ash deposit (Sequence 

4) is coincident with the skipped mudding down (mud retreat) sequence and, rather, re-sets the 

mudstone:shale ratio to a very low number.  This suggests a restoration of deeper water or a 

cessation of processes that drive the mud entry into the lake.  Independent diatom and other 

fossil data coincident with the interruption of the mudding up sequences (Sequences 3 and 4) 

would tend to favor a possible up-section increase in lake bathymetry.                

 The terrestrial mud supply was never sufficient to entirely fill, in any single deposit or in 

any mudding up cycle, the portion of the basin represented at Clare‟s Quarry, as the deep lake 

bathymetry remained viable after each mud event.  Evidence for this is the observation that the 

laminated shale deposits were consistently restored.   

 

5.1.2 Airfall origin of the volcanic tuffs 

 

 Textural features and mineralogic composition of the caprock tuff and the big tuff of G 

are consistent with airfall tuffs.  The compositional indicators for airfall tuffs are the presence of 

euhedral plagioclase, biotite, and probable hornblende crystals, juvenile magmatic grains, 

accretionary micro-lapilli or spherical shards, and fine cuspate glass shards (Cas and Wright, 
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1987).  In terms of alteration, the following is recognized: relict glass shards show in situ 

devitrification, juvenile lithic matrix show in situ diagenetic alteration leaving behind the lath-

shaped feldspar phenocrysts in their original random orientations; and the plagioclase crystals are 

in a relatively fresh condition.  Furthermore, there is no evidence of reworking such as wear or 

breakage.  Any grain-size or grain-density sorting is rather imperfect and can be explained best 

by airfall processes rather than water-lain deposition.  In some units, there is apparent graded 

bedding which might be interpreted as reverse graded as often as normal graded bedding.   

Finally, on the basis of textural relationships within the coarse tuffs, the clay component is a 

product of in situ alteration of the glass shards or airfall volcanic dust, and it contains no aspects 

of detrital origin.  There are no coarse detrital components in any of the samples examined.  

Furthermore, the units are compositionally consistent with each other.   This mineralogic 

composition and textural character is typical of the direct delivery of pyroclastic material from an 

eruptive volcanic event into the lake (Königer and Stollhofen, 2001; and Ed DeWitt, pers. 

comm., 2010).  

 A study of the preservation potential of airfall tuffs in an ancient deep lake in the 

tectonically-controlled Saar-Nahe Basin in Germany shows that tuffs that accumulate in offshore 

lacustrine settings have a high preservation potential.  The contributing factors to the tuff 

preservation include the availability of accommodation space during lake-level rise; the virtual 

absence of wave reworking or fluvially-generated currents; the slow sedimentation rates of the 

non-pyroclastic sediment; and the absence of bioturbation in an anaerobic lake bottom (Königer 

and Stollhofen, 2001).  The Saar-Nahe tuff deposits exhibit sharp and planar contacts, planar 

lamination, (multiple) graded bedding, and laterally constant thickness.  Those tuffs alternate 
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with black laminated shales that signify the maximum flooding stage of the lake (when it was 

deepest).  These characteristics are also observed in the Clare's Quarry tuffs.   

  

5.1.3 Source of the tuffs 

 

 The source of the airfall tuffs in Clare's Quarry is undetermined.  Petrography of the 

caprock of the AA sequence and the big tuff of the G sequence and x-ray diffraction of the G tuff 

showed that the dominantly plagioclase phenocrysts and lower sanidine and quartz content 

distinguish these tuffs from those of the Guffey/Thirtynine Mile field, according to the 

mineralogy of McIntosh and Chapin (2004).  This distinction of the Clare's Quarry tuffs is 

consistent with the findings of McIntosh and Chapin (2004) for the radiometrically dated tuffs 

from the "middle shale" and "upper shale" of the Florissant Formation. 

 

5.1.4 Secondary mineralogic processes 

 

5.1.4.1 Pyrite and jarosite formation 

 

 The precipitation of pyrite in a sedimentary setting takes place under reducing conditions 

that are created in anoxic aqueous environments (Goldhaber and Kaplan, 1975) or in waters with 

high concentrations of organic matter (Cohen, 2003).  The formation of nodular and framboidal 

pyrite occurs during the early stages of diagenesis and indicates oxygen deficiency in the 

sediments (Wignall and Newton, 1998). 
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 Early diagenetic pyrite nodules in tuffs and framboids within the laminated shales of 

Clare‟s Quarry favor anoxia in the sediments of the lake, contributing to the excellent 

preservation of macrofossils.  This is further evidence of a deep lake depositional setting at the 

study site. 

 The later-stage alteration of pyrite to jarosite signals a time when groundwaters became 

very acidic (pH of 2-4) and oxidizing, which facilitated the alteration of the mineral from a 

sulfide to a sulfate (Brophy and Sheridan, 1965).  As the timing of the replacement of the pyrite 

nodules by jarosite is undetermined, it could have occurred with post-depositional changes in 

lake water or groundwater chemistry or with subsequent exposure and weathering. 

 

5.1.4.2 Smectite clay formation 

 As illustrated by x-ray diffraction, smectite is the dominant clay mineral in the Clare‟s 

Quarry section.  Smectite clay is a product of weathering and alteration of volcanic glass and 

silicate minerals in volcanic terranes (Moore and Reynolds, 1997).  It is also formed as a 

precipitate in pore spaces of permeable rocks in weathering conditions associated with very slow 

movement of water in environments ranging from swampy lowlands to arid and semiarid regions 

(Berner, 1971).   

 The chances for alteration and preservation of an ash-fall deposit depends upon the 

environment in which it falls; therefore, the types of clays that are the alteration products can 

indicate aspects of the environment in which it fell (Moore and Reynolds, 1997).  This is 

especially true in subaqueous environments of deposition, as water is necessary for the leaching 

away of ions that are freed in the alteration reactions.  The alteration mineral kaolinite can result 
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from ash falling into the highly acidic aqueous environment of a coal swamp; smectite 

indicates that silica-rich ash fell into a mildly alkaline aqueous environment; and zeolites or 

zeolite with k-spar indicate ash-fall in a highly alkaline setting such as a playa lake (Moore & 

Reynolds, 1997).  The dominance of smectite in the absence of kaolinite in the Clare‟s Quarry 

section suggests that the airfall volcanic ash may have accumulated in a mildly alkaline lake 

basin.  The absence of zeolites and carbonates in the sediments, however, rules out a highly 

alkaline setting for the deep basin. 

The percentage of smectite in the all the lithologies at Clare‟s Quarry far exceeds the 

estimated amount that would have been derived from the alteration of the ash within the lake (G. 

Breit, pers. comm., 2011).  It is probable, therefore, that a large portion of the smectite was of 

detrital origin.       

 

5.2 Paleontology and habitat recognition 

 

5.2.1 Correlation of diatom genera with lithologies 

 

Diatoms from the light-colored submillimeter laminae in the shales contain 3 dominant 

genera (Synedra, Diatoma tenuis, and Aulacoseira).  The modern equivalent species of the 

genera Synedra, Diatoma tenuis, and Aulacoseira can occupy the planktic habitat of open-water 

deep mid-latitude lakes during periods of their life cycles and produce seasonal or annual 

blooms.  As well, they thrive during other seasons in either a dormant state in the sediments, as 

with Aulacoseira, or as blooms in the benthic periphyton of streams and lakes during other 
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seasons, as with Synedra and Diatoma tenuis.  The grey or brown organic clay portion of the 

couplets within the laminated shales contain mixtures of diatoms that include not only Synedra, 

Diatoma tenuis, and Aulacoseira, but also the less common non-planktic taxa. 

 The lack of matrix among the frustules of Aulacoseira, Synedra, and Diatoma tenuis in 

the pure diatomite laminae of the shales strongly suggest that they were from planktic blooms 

(Figure 9. A, B, and C).  It is likely that the diatoms in the mixed clay laminae (Figure 9. D, E, 

and F) were brought into the lake during periods (possibly seasons) of higher runoff that 

delivered individuals from the distant stream and lake margin habitats. 

 While diatoms are rarely observed in the brown mudstones, those that are present suggest 

a diverse assemblage that could have lived in the planktic zone, in shallow lacustrine or fluvial 

habitats, on moss-covered rocks along tributaries, or in wetlands.  Such an assemblage supports 

the interpretation that these mudstones were distal deposits of lacustrine turbidites from storm 

events.  In such deposits, shallow-water, littoral, and riverine diatoms were transported as 

allochthonous particles into the deeper lake basin. 

 

5.2.2 Diatom paleoecology and habitats 

 

 The autecological assessment of the modern analogs for the fossil diatom taxa from 

Clare‟s Quarry (Figure 10), in conjunction with the genus distribution surveys (Figures 7 and 8), 

illustrates that the fossil diatom genera are most representative of tychoplanktic/planktic habitats 

of lake surface waters that were dominantly circumneutral to mildly alkaline, as represented by 

the modern taxa Aulacoseira italica, Synedra ulna, and Diatoma tenuis.  Although represented 
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by less frequently appearing taxa, a diverse array of benthic habitats is indicated that includes 

marginal lake and stream settings that range in pH from mildly acidic to mildly alkaline and offer 

a wide range of substrate surfaces for attachment. 

Observe that the planktic habitats that sustain populations of Aulacoseira, Synedra, and 

Diatoma tenuis are the photic regions of the open-water epilimnion of deep lakes where water 

circulation is available for buoyancy during planktic habitation.  The photic zone of lakes tends 

to become more alkaline as phytoplankton (diatoms and other algae) consumes carbon dioxide; 

whereas, the hypolimnion receiving substantial amounts of organic matter tends to become 

acidic with the concentration of carbon dioxide and carbonic acid (Patrick and Reimer, 1966).  

Thus, the biotic activity influences the properties of the diatom habitat zones.  As only the photic 

zone is the region of diatom growth, the pH indicated by the diatoms reflects only that of the 

photic zone portion of the lake epilimnion and littoral margins, and not necessarily that of the 

deeper lake.    

 The array of habitats inferred for the Clare‟s Quarry diatom flora is synthesized into these 

four ecological settings in which only relative depth is implied (Figures 11 and 12): mildly acidic 

lake and lake margin conditions, circumneutral to mildly alkaline lake and lake margin 

conditions, swift-flowing rivers, and slow-flowing streams.  The primary life zones within these 

environments include the epilimnion of a deep lake and swift-flowing rivers, littoral/shallow 

water from lake and stream margins, aerophytic zones from peat bogs or from moss-covered 

rocks in splash zones of rivers.  The species of many genera show a variation in pH tolerances 

and nutrient requirements and are found in several habitats; whereas, others are more restricted 
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in habitat preferences.  Some are exclusively planktic or benthic; whereas, others can live as 

either. 

 The modern diatom genera that thrive in each sub-habitat within the four ecological 

settings are indicated in Figures 11 and 12.  The tychoplanktic Aulacoseira distans prefers  

mildly acidic conditions, as do the following benthic taxa: Psammothidium, Frustulia, 

Pinnularia, Diadesmis; and Eunotia tolerates a wide range of pH.  Preferring circumneutral to 

mildly alkaline lake surface waters are the tychoplanktic taxon Aulacoseira italica and the 

sometimes planktic taxa Synedra ulna, Diatoma tenuis, Fragilaria vaucheriae, Stauroneis, 

Nitzschia, and Gomphonema.  Benthic taxa that thrive in circumneutral to mildly alkaline lake 

margins include Fragilaria vaucheriae, Diatoma tenuis, Nitzschia, Gomphonema, Staurosira 

construens, Achnanthidium minutissima, Planothidium, Platessa conspicua, Navicula 

menisculus, Orthoseira roeseana, Stauroneis, and Eunotia.  Benthic diatoms that live in the 

shallow turbulent zones bordering high-flow rivers or streams include Achnanthidium and 

Gomphonema, while Nitzschia and Eunotia prefer quiet pools away from the fast water flow.  

The benthic species of Gomphonema, Staurosira, Eunotia, Stauroneis, and Nitzschia can live in 

shallow water zones of slow-flowing streams.   Aerophytic benthic diatoms such as Orthoseira 

roeseana (that prefers higher pH), Eunotia, Diadesmis (that prefers lower pH), Frustulia, 

Pinnularia, Adlafia, Stauroneis, and Nitzschia can be found attached to moss-covered rocks in 

splash-zones, associated with other bryophytes near pools along the banks of streams, in the 

sphagnum moss of peat bogs, and in shallow alkaline settings.  No pH data is provided for the 

benthic Tetracyclus or the aerophytic benthic Adlafia, so they are included in both lake 

environment depictions.  Diatoms that prefer water with low conductivity are Diadesmis, 



 

 

378 

Frustulia, and Pinnularia; while Diatoma tenuis has a higher tolerance for conductivity, 

showing a preference for increased sodium and sulfate in the environment.  Achnanthidium 

minutissima thrives well in turbulent, well-oxygenated waters in fast-flowing streams.  Nutrient 

requirements differ among genera, as well, with Fragilaria vaucheriae and Navicula menisculus 

commonly found in eutrophic waters; and Diadesmis and Aulacoseira distans thriving best in 

oligotrophic waters.  Synedra ulna, Eunotia, and Platessa conspicua can tolerate a range of 

nutrient levels from high to low.  Frustulia tolerates habitats with high organic carbon content.   
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Figure 11. Proposed environmental settings and sub-habitats likely to be inhabited by these 

diatom genera from the Florissant diatom flora showing A. mildly acidic conditions in the photic 

zone, and B. circumneutral to mildly alkaline conditions in the photic zone.  (Scale is relative.) 
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Figure 12. Proposed environmental settings and sub-habitats likely to be inhabited by these 

diatom genera from the Florissant diatom flora showing A. a swift-flowing river, and B. a slow-

flowing stream.  (Scale is relative). 
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 The four ecological settings featured here are common within the watershed of most 

inland balanced or over-filled lakes (Bohacs et al., 2000) and reflect subtle changes tied to 

seasonal precipitation, storm events, and basin geometry adjustments that result in lake water-

level fluctuations over time.  Although the sub-habitats from a circumneutral to mildly alkaline 

lake and swift-flowing streams are overwhelmingly better represented in the diatom record at the 

study site, to some degree, all of these habitats supplied diatom frustules that were delivered into 

the deep lake setting at a position distal from the point of inflow of rivers or major streams, 

where they are now recovered from the lake sediments. 

 The habitats suggested by the diatom data are corroborated in other Florissant sites by the 

ecological range of terrestrial plant leaf and pollen, and insect taxa from moist riparian and drier 

slopes, along with bryophytes from stream-side and aquatic macrophytes from wetlands (Meyer, 

2003).  We propose that the diatom genera within the Clare‟s Quarry fossil flora originated from 

the habitats shown in Figures 11 and 12 and, accordingly, that those habitats were part of the 

larger Florissant paleo-lake system, despite the fact that several of these habitats have left no 

sedimentary record in the preserved portions of the deposits that now define the Florissant 

Formation.   

 

5.2.3 Diatom seasonality 

 

 Considerations as to the seasonality of diatom blooms in the late Eocene Florissant lake, 

located in the mid-latitudes with a warm-temperate to subtropical climate, are guided by modern 

diatom bloom cycles, interpretations of fossil sites of similar age, and interpretations of 
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microlaminae within the rock record at the study site.  The bloom cycles of planktic diatoms 

can be affected by local conditions such as climate, insolation determined by geographic latitude, 

and the introduction of fluvial input and volcaniclastic material into the lake system.  As a 

general guide, modern lakes in middle and high latitudes have diatom blooms that occur during 

early spring to early summer, sometimes with a less pronounced second maximum in autumn; 

whereas, modern tropical and subtropical (lower latitude) lakes have winter diatom blooms 

(Zolitschka, 1990). 

 From the fossil record, an example of a high latitude lake that existed during the globally 

warm early Eocene is represented at Horsefly, British Columbia, Canada.  The study of the fossil 

diatoms suggests the summer as the primary bloom season.  Samples are described as varved 

couplets of white (summer) diatomaceous laminae separated by dark (winter) pyrite-rich clays 

that are interbedded with discrete beds of tuff or ash-rich graded turbidites (Wolfe and Edlund, 

2005). 

 The opposite is shown for the middle latitude subtropical Eocene lake site of Eckfeld 

Maar, Germany.  In this example, the late middle Eocene diatomaceous laminites consist of 

light-colored laminae, largely composed of diatoms and clay minerals, that alternate with dark-

colored laminae of mixed origin (mineral and plant detritus and green algae) (Mingram, 1998).  

In this site, diatom blooms seemed to coincide with the time of quiet sedimentation during the 

drier winter season (Mingram, 1998).    

 The paleobotanical interpretations of Meyer (2003) and Gregory and McIntosh (1996) for 

the Florissant paleoflora indicate wetter spring and summer growing seasons followed by drier 

periods in fall and winter.  If a pattern of drier winter blooms, similar to that at Eckfeld Maar, 
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dominated the productive cycles of the Florissant fossil diatoms, the close association 

between the diatom-bearing units and the occurrence of abundant well-preserved leaf fossils 

could be explained as the result of seasonally co-occurring autumn-winter processes.  Secondly, 

the sedimentary evidence that indicates extremely slow rates of deposition for the shale 

containing the diatom microlaminae and the low volume of associated detrital material is 

consistent with deposition during periods of low rainfall, such as the drier autumn or winter. 

 Contrary to the sedimentary suggestion of Florissant primary tychoplanktic/planktic 

diatom production occurring in the autumn or winter are studies by Lund (1954) and Moss (1981 

First, the Lund (1954) study shows that the tychoplanktic Aulacoseira italica, the modern analog 

for the fossil species A. clarensis, blooms in the spring.  Populations of Melosira italica (A. 

italica), spend the summer in the lake sediments and rise to the epilimnion in autumn where they 

persist over the winter as plankton; yet, growth does not begin until spring when blooms are 

triggered by increases in light and temperature.  So, the presence of Aulacoseira frustules in the 

sediments may give a mixed seasonal signal, with some representing bloom periods and others, 

non-growth periods.  The second study by Moss (1981) on the modern Diatoma tenuis and 

modern analog species of Synedra shows that these taxa produce planktic blooms in the spring.   

 Evidence of seasonal progression of the tychoplanktic Aulacoseira and planktic Synedra 

and Diatoma tenuis are identifiable as discrete microlaminae in the sedimentary record at the 

Clare‟s Quarry site.  Microlaminae observed in petrographic thin-section photomicrographs 

(Figure 9.) of the F shale (Figure 3.) are interpreted as spring blooms and non-growth 

accumulations of the fossil taxa.  The matrix-free microlaminae containing only Aulacoseira 

(Figure 9. B) represent discrete spring blooms of Aulacoseira.  Matrix-free microlaminae 
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containing mixed Aulacoseira, Synedra, and Diatoma tenuis (Figure 9. C) represent 

transitional periods of Aulacoseira growth co-occurring with spring blooms of the planktic 

Synedra and Diatoma tenuis.  Microlaminae with clay matrix and mixed taxa of planktics and 

benthics (Figure 9. D and E) represent periods of allochthonous input of clay and diatoms from 

the lake, stream, and marginal environments.  Such discrete microlaminae of taxa strongly 

suggest a seasonal progression of the 3 tychoplanktic/planktic taxa in the F shale unit at the 

Clare‟s Quarry site.  Additional work is needed to fully characterize these successions as to their 

order and periodicity; and to survey additional diatomaceous shale units within the section. 

 To reconcile the potential contradiction between the sedimentary record that indicates 

slow sedimentation rates for the diatom laminae (suggestive of autumn or winter frustule 

accumulation) and the spring diatom blooms shown from the studies of modern tychoplanktic 

(Lund, 1954) and planktic (Moss, 1981), the following is proposed.  The sedimentation rate for 

the diatomaceous shales in the deep lake setting of Clare‟s Quarry was consistently slow 

throughout the seasons, with the depocenter being sufficiently far offshore from the fluvial input 

of sediments.  Exceptions to the slow rate of sedimentation occurred during the cyclical 

deposition of discrete mudstone units that represent the rapid influx of terrestrial mud and are 

devoid of diatomaceous laminae.          

 

5.2.4 Relationships among diatoms, associated fossils, and lithofacies  

 

 As diatoms are present primarily in the laminated shales, and the leaf and insect fossils 

are generally found in the laminated shales, they show a gross coincidence (Figure 3).  The 
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especially rich leaf and insect/spider-bearing units of the H, J, K, L, and M shales tend to be 

dominated by Synedra and Diatoma tenuis specimens and appear to be deficient in Aulacoseira.  

Within this group of Synedra and Diatoma tenuis dominated shale intervals, there are also the 

apparent increase in the conifer leaf specimens, the occurrence of a tree stem, and the discovery 

of a bird specimen and a fish fossil.  It is observed that Aulacoseira specimens are more 

prevalent in the laminated shale intervals that have no insects, and are coincident with units that 

contain mollusks (especially gastropods).  The increase in Orthoseira and Diadesmis (aerophytic 

benthics) specimens occurs in the B mudstone and is coincident with the observation of the 

macrophyte Typha, found only in the B mudstone. 

 The virtual absence of diatoms and other fossils in the grey conchoidal mudstone is 

consistent with the diagnosis of this unit as an airfall deposit of volcanic ash. 

 From the brown mudstone, the rare bird specimen in its excellent condition of 

preservation with beak, bones, eye, and feathers in place shows that no scavenging and no 

destruction by transport occurred after death.  The preservation of this bird called for rapid 

sinking of its carcass into the anaerobic hypolimnion of the lake, extremely rapid burial by the 

fine muds that encased it, and compaction that flattened its three dimensional form.  This set of 

processes was possible because of the rapid influx of the muds that formed the host L mudstone 

unit.  Further evidence for a rapid rate of sedimentation in a quiet setting is the leaf fossil 

mentioned earlier that cut across the horizontal bedding direction.  Diatoms are less abundant in 

these mudstones than in the laminated shales, but are of the same genus composition with the 

added presence of the aerophytic bryophyte-dwelling Diadesmis and Orthoseira, suggesting 

input from the splash zones of streams and other moist habitats outside the lake.   
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5.2.5 Diatom contribution to macrofossil preservation: the biofilm model revisited 

 

 The biofilm model of Harding and Chant (2000), O‟Brien et al. (2002), and O‟Brien et al. 

(2008) is a concept that, if viable, could explain how large quantities of leaf and insect remains 

underwent only minimal apparent deterioration before burial; however, this concept requires that 

planktic diatom blooms occurred penecontemporaneously with the entry of the leaves and insects 

into the lake.  As angiosperms dominate the fossil flora at Florissant (Meyer, 2003), they are 

likely to have shed their mature leaves in autumn.  The seasonality of the tychoplanktic/planktic 

diatom blooms in this fossil site is interpreted as having followed the pattern of modern mid-

latitude lakes, with all three dominant genera, Aulacoseira, Synedra, and Diatoma tenuis having 

produced spring, rather than autumn, blooms (Lund, 1954; Moss, 1981).   

The potential is doubtful for the dominant tychoplanktic/planktic diatoms of the fossil 

species Aulacoseira clarensis, Synedra, or Diatoma tenuis at Clare‟s Quarry to have acted as 

binding agents for leaf mats in the epilimnion during autumn (when the leaves would have been 

accumulating) for the following reason.  The modern analogs for these three taxa bloom in the 

spring: Aulacoseira italica (Lund, 1954); and Synedra and Diatoma tenuis (Moss, 1981).  So, the 

timing of the growth periods of the 3 dominant tychoplanktic/planktic diatom taxa is not 

contemporaneous with the delivery of mature leaves to the lake surface in autumn. 

 An alternative model explaining the proximity of the leaf fossils with diatom laminae is 

based upon the observations by Moss (1981) that, although the modern Diatoma tenuis and 

modern analog species of Synedra produce planktic blooms in the spring, they also produce 
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autumn blooms in benthic habitats of the periphyton of lake and stream margins.  If, in fact, 

the leaves were bound by bacteria- and benthic diatom-generated biofilm associated with 

Diatoma tenuis and Synedra of the periphyton during autumn, this would support a localized 

matting process along the shallows of the lake and streams and would require the rafting of the 

leaf clusters into the open-waters of the lake in the spring or summer, during the periods of 

higher rainfall.  This interpretation is suggested by the presence of what appear to be probable 

benthic diatom taxa associated with the organic matter in the photomicrograph of the F shale at 

Clare‟s Quarry (Figure 9. F).   

   

5.3 Proposed lake history: paleolimnological interpretation for the Clare’s Quarry section of the 

Florissant Formation 

 

 From this assessment of the nature of the sediments, their boundary relationships, and the 

distribution of diatoms and other fossil material, the following lake history at the Clare's Quarry 

site is proposed. 

 The high-elevation lake region, surrounded by low relief topography, experienced a 

warm temperate to subtropical climate with no period of ice-over on the lake.  As evidenced by 

the excellent preservation of leaf and insect fossils and the undisturbed laminated nature of the 

shales, the lake was deep enough for its floor to have consistently escaped circulation from wind, 

normal waves, storm waves, and seasonal or annual overturn.  Only incomplete seasonal or 

annual mixing that did not reach the basin bottom waters probably occurred.  Perhaps 

temperature-driven density stratification created a stable cell within the hypolimnion, and the 
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relatively cool waters slowed organic decay by any resident aerobic bacteria.  The 

confinement of bottom-waters set up anoxia in the lower water column and in the substrate as 

oxygen became depleted through respiration of the settling organic material.  These anoxic 

conditions prevented habitation in the hypolimnion and its substrate by aerobic life forms, 

leaving detritus and sediments undisturbed.  Pyrite nodules and framboids formed in the anoxic 

substrate. 

 Sedimentation onto the deep basin floor from the pelagic region of the lake occurred at a 

relatively slow rate and consisted of the suspension settling of particles from these sources: (1) 

autochthonous tychoplanktic and planktic lacustrine diatoms; (2) allochthonous planktic and 

benthic diatoms from flowing stream habitats, benthic diatoms and ostracods from stream and 

lake marginal habitats, minor amounts of organic detrital clay from the terrestrial setting; and (3) 

periodic airfall ash.  In addition, the deep lake sedimentation included pyroclastically-loaded 

individual and clusters of terrestrial plant leaves and insects that were suspended in the 

epilimnion.  Within the basin, laminated shales were laid down, and pulses of pyroclastic 

material were incorporated as interbeds and inter-laminae.  The coarser pyroclastic material 

made the volumetrically largest contribution and was deposited at a much higher sedimentation 

rate than the laminated shales.  

 On the quiet basin floor, diatom frustules accumulated in microlaminae, along with 

extremely small amounts of ash/clay airfall and stream-delivered fine detrital material, forming 

couplets.  In the early period of deposition, the clays within the couplets were organic-rich and 

brown; but, later, became primarily a non-organic grey ash/clay.  From the planktic 

environments of the lake and streams, monospecific microlaminae of Synedra frustules 
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alternated with microlaminae of Synedra and Diatoma tenuis, and allochthonous clay-rich 

microlaminae of mixed taxa of less common pennate benthics from the shallow stream margins 

or littoral zone.  These diatomite microlaminae alternated with microlaminae of organic matter.  

The occurrences of these taxonomic groupings are interpreted as follows.  The Synedra-

dominated microlaminae, whether alone, or with Diatoma tenuis, represent seasonal blooms of 

these planktic taxa from both lake and stream habitats.  The mixed-taxa microlaminae represent 

stream runoff with an assortment of lake and stream planktics and stream benthics, along with 

small quantities of fine clay.   

 Although the depositional center for the laminated shales was relatively deep and 

undisturbed, and, therefore, distal from points of inflow of any fluvial system that drained areas 

of high to medium stream flow, the diatom assemblages reflect contributions from the upper 

reaches of streams and terrestrial settings that were transported into the lake.  The habitats 

suggested by the diatom data are corroborated by the range of terrestrial plant and insect taxa 

from moist riparian and drier slopes, along with bryophytes from stream-side and aquatic 

macrophytes from wetlands.   

 Episodically, this deep lake setting received discrete, high-volume deposits of fine clay 

particles that were delivered to the lake from the bordering terrestrial environments.  These 

particles arrived on the lake floor through suspension settling from mud deposits that entered up-

slope regions of the lake, possibly as underflows from turbidity currents originating from flood 

events from rivers.  These fine clay-sized particles were widely dispersed as suspended plumes 

over the deep lake where they were rapidly deposited into the deep basin of this slightly acidic 

freshwater lake, quietly covering the flat-lying laminated shales without disruption on even the 
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finest scale.  The initial phase of mud particles consisted of platey minerals such as clay and 

micas that settled as flat-lying grains to form the blocky texture of the mudstones.  This was 

followed by the final phase of the mud deposition characterized by a notable fining upward of 

the clay particles that produced a smooth and almost waxy texture at the top of each mudstone 

bed.  This process produced moderately thick tabular units of massive, brown mudstone (with 

sharp, but non-erosional, upper and lower contacts) that alternate with the laminated shale units.  

The mineralogy of these brown mudstones (Figure 5-C) is high in the feldspars, amorphous 

silica, and smectite clay and fine granular quartz and mica derived from weathering of the 

surrounding volcanogenic terrain.  The concentration of diatoms within these mudstone units is 

very low; however, the taxa that appear are consistent with those observed in the laminated 

shales of the basin floor deposits, but for the added presence of two genera (Diadesmis and 

Orthoseira) that are aerophytic in habitat, living attached to moss on rocks and logs in splash 

zones and in intermittently wet areas along the margins of streams.  On the basis of the texture, 

mineralogic content, lateral continuity, thickness, sharp stratigraphic contacts, macrofossil 

content, and diatom content, the origin of these deposits is consistent with suspension settling of 

fine particles into the deep interior of the lake at a position distal from a possible mud delta front. 

 The relative periodicity of these intermittent mud deposit events is suggested by the 

mudstone to shale ratio of sequences that show progressive increases and decreases in mudstone 

to shale thicknesses.  It is hypothesized that these fluctuations represent variations in pro-delta 

progradation into and retreat from the lake.  These mud encroachments and retreats were 

interrupted by resurgences of volcanic activity that produced high volumes of pyroclastic airfall 

material that fell into the lake.  As these volcanic events increased in frequency, the lake level 
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may have deepened as evidenced by the increased presence of the tychoplanktic diatom 

species of Aulacoseira in the epilimnion.  Aulacoseira frustules from seasonal blooms 

accumulated on the basin floor as monospecific microlaminae.  Alternating with Aulacoseira 

were microlaminae of the sometimes planktic Synedra and Diatoma tenuis.  Aquatic clams and 

gastropods from offshore habitats were captured in the pyroclastics and were preserved in the 

bottom sediments. 

 The final depositional event recorded in the section at the study site was the coarse airfall 

tuff of the caprock deposited in the lake basin to a thickness that exceeded 50 cm.        

 

 

6. Conclusions 

 

 An integration of paleoecological data from the diatom flora and associated macrofossils 

with sedimentary evidence and volcanic petrology has enriched the paleolimnology assessment 

of the ancient Florissant lake basin at the Clare's Quarry site.  A summary chart is provided of 

the conclusions based on information obtained from this study (Figure 13). 

 

 

 

Figure 13. Chart of interpretations about the Florissant paleo-lake from the sedimentary and 

paleontological data at Clare's Quarry.  
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 The typical sediment accumulation style within this deep lake habitat was one in 

which extremely slow sedimentation of diatom frustules; fine and medium-grained pyroclastics; 

and leaves, insects, and plant debris accumulated in an undisturbed anoxic setting where they 

formed laminated shales.  Bottom-water anoxia was maintained by incomplete mixing due to 

depth and oxygen depletion through organic matter respiration.  Coarse pyroclastics from an 

undetermined volcanic source episodically fell into the lake and sank to form discrete tuff beds.   

This set of processes characterized the deep-water basin deposition.  This normal lake 

sedimentation was punctuated by processes from outside the lake that abruptly delivered 

homogeneous terrestrial muds to the basin floor.  The repetition of units of laminated shales 

alternating with massive brown mudstones at the study site represents the convergence of two 

different sediment regimes. Thus, the depositional model is one in which periodic sudden 

influxes of mud were deposited onto the lake margin, at some distance from the study site.  Each 

of these mud incursion events was followed by suspension settling of the dispersed finer fraction 

from the water column onto the distal deep water lake basin floor. 

 The calculated mudstone to shale ratios suggest “mudding-up/mudding-down” sequences 

that compose cycles reflecting progradation and retreat of suspension settled fines at the distal 

periphery of a mud-encroached lake margin.  These progressive increases in the volume of 

mudstone to laminated shale are probably in response to climatically induced increased-

precipitation events; abruptly increased topographic slope and stream gradient; increased 

availability of volumes of mud to be mobilized down slopes, and/or agitation of the ground (from 

earthquake or tremor) to loosen the mud on unstable slopes. 
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 The diatom frustules and associated fossils accumulated in a deep lacustrine setting 

distal from the point of inflow of major streams.  While perhaps only a partial record of the 

original populations, the modern analogs for the fossil diatoms indicate habitats from four major 

environments: mildly acidic lake conditions, circumneutral to mildly alkaline lake conditions, 

swift-flowing river settings, and slow-flowing stream settings.  The life zones within these 

environments and the modern diatoms that occupy them include the planktic and benthic 

habitats.  Planktic habitats include the following: (1) mildly acidic lake surface waters 

(Aulacoseira distans); and (2) circumneutral to mildly alkaline lake surface waters (Aulacoseira 

italica, Synedra ulna, Diatoma tenuis, Stauroneis, Fragilaria vaucheriae, Nitzschia, and 

Gomphonema).  Benthic habitats include these: (1) mildly acidic lake margins (Psammothidium, 

Frustulia, Pinnularia, Diadesmis, and Eunotia); (2) circumneutral to mildly alkaline lake 

margins (Fragilaria vaucheriae, Diatoma tenuis, Nitzschia, Gomphonema, Staurosira 

construens, Achnanthidium minutissima, Planothidium, Platessa conspicua, Navicula 

menisculus, Orthoseira roeseana, Stauroneis, and Eunotia); (3) shallow water turbid zones 

bordering high-flow rivers or streams (Achnanthidium and Gomphonema); (4) quiet pools away 

from the fast stream flow (Nitzschia and Eunotia); (5) shallow water zones of slow-flowing 

streams (Gomphonema, Staurosira, Eunotia, Stauroneis, and Nitzschia); and (6) very rarely, 

terrestrial (aerophytic) benthics attached to moss-covered rocks in splash-zones and associated 

with other bryophytes near pools along the banks of streams, in the sphagnum moss of peat bogs 

(Diadesmis prefers lower pH), and in alkaline settings (Orthoseira prefers higher pH).  Overall, 

the habitats best represented in the Florissant deposits at Clare‟s Quarry are the planktic zones of 

circumneutral to mildly alkaline lake surface waters. 
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 The assessment of the fossil diatom taxa followed by their autecological implications 

for the seasonality of planktic and benthic blooms illuminates a possible alternative explanation 

for the proximal relationship of diatoms with leaf and insect fossils. This alternative model pairs 

the fossil leaves and insects with the autumn blooms of benthic diatoms within the periphyton of 

lake and stream margins, as opposed to the spring blooms of planktic diatoms of the open-water 

lake.  This finding is contrary to the implied role of the diatom in the biofilm macrofossil 

preservation model (Harding and Chant, 2000; O‟Brien et al., 2002; and O‟Brien et al., 2008) 

that calls upon planktic blooms in the spring as binding agents for the leaf and insect fossils. 

 This investigation at Clare's Quarry is unique in that it is the only Florissant study that 

characterizes the diatom assemblages and the first to do so in the context of the sedimentary data.  

Furthermore, biotic and abiotic evidence is presented in chronological order that allows tracking 

of changes in the lake processes over time.  A stratigraphic sequence of lithologic units is 

described, providing a standard section for Clare‟s Quarry, which can be compared with other 

sections and potentially used for future correlation of pyroclastic beds.  In addition, this study is 

exceptional in its use of diatoms to interpret paleolimnology in such an ancient lake.  While this 

study at Clare's Quarry finds consistency with previously published interpretations of a deep lake 

bathymetry and anoxic bottom-waters for sites in the "middle shale," it also describes processes 

of deposition and diatom habitat parameters that expand our perspectives on the lake as a multi-

faceted and dynamic ecosystem.  The utilization of multiple lines of evidence strengthens our 

interpretations of the specific site while expanding our thinking about the larger lake system.   

 The observations brought forth in this study add perspective to the geometry and history 

of the lake whose sediments host this important fossil Lagerstätte.  These new data refine our 
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understanding of the geologic processes that impacted the aquatic habitat and created the 

sediment reservoir which preserved this unique paleontological record.     
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 SUMMARY 

 

 This investigation of the late Eocene freshwater diatom flora from the Florissant 

Formation has expanded the biochronology of non-marine diatoms by extending the geologic 

ranges of 14 genera by several million years.  These findings shore up the observations of many 

diatom investigators that non-marine diatoms must have originated long before their first fossil 

records would suggest.   This study is the first diatom floristics survey ever completed at the 

Florissant locality and, thereby, characterizes these taxa in detail.  With the recognition of 33 

extant diatom genera, the locality is credited with being the most diverse early freshwater diatom 

flora yet recorded.  Four new species and 2 new varieties were identified and described. 

  The Florissant diatoms are the oldest fossil diatoms to be used with their modern analog 

taxa to help determine the conditions of a lacustrine paleoenvironment.  This study is unique in 

that diatom data was used in concert with the sedimentary evidence to probe the mysteries of the 

lake basin and its history.  A particularly useful outcome is the evidence for the peripheral lake 

margin habitats that shows that the entire lake system was not restricted to a deep basin.  The 

diatoms, along with sedimentary evidence, reflect episodic influxes of terrestrial fine sediments 

that attest to major events that may have been driven by fluxes in paleoclimate or tectonic and 

volcanic activity. 

  This work has further stimulated curiosity about regional tectonic- and climate-

controlled events that influenced the depositional history of the Florissant lake system and the 

diagenetic processes that affected the lake sediments.  The integration of diatom fossils with 

abiotic evidence has provided insights into the general paleolimnology of the ancient lake. 
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