Experiences With an Object Manager

for a Process—Centered Environment

Dennis Heimbigner

CU-CS-484-91 Revised 6 September 1991

&

University of Colorado at Boulder
Technical Report CU-CS-484-91

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309






Experiences With an Object Manager
for a Process—Centered Environment

Dennis Heimbigner

Revised 6 September 1991

1 Introduction

By now, there is a general understanding that object management!® is central to software engi-
neering environments. It serves as one of the primary means for integrating components of the
environment by providing a common set of data structures (schema) and a shared repository
for persistent objects. A sufficiently dynamic object manager is also important in providing
extensibility in an environment by allowing incremental extensions to the schema and hence to
the range of tools that can share information.

The Arcadia project[22] is constructing an environment which is one of the first of a new
class of process—centered (or process—driven) engineering environments. A process—centered en-
vironment is one in which the programmer is guided in the task of producing software according
to some methodology. Such an environment extends the more traditional tool-oriented envi-
ronment by adding the capability to specify the process by which software is to be constructed.
This is in contrast to a typical tool based environment in which the programmer is presented
only with a collection of tools and is given no help in deciding how to apply those tools to
produce a software product.

It is assumed that a process-centered environment will be controlled by a model of the pro-
cess written in some formalism. Osterweil[13] has proposed the use of an executable program-
ming language as that formalism. Such a language is called a process programming language
(PPL). Arcadia uses a process programming language approach as the basis for its environment.
Until recently, our (only) PPL was APPL/A[20].

Arcadia has been active in object management since its inception. The Arcadia approach has
consistently been to use existing database systems and to augment them with innovative features
necessary to support a process-centered environment. We have taken this approach because
we have found that database research systems provide many, but not all, of the capabilities
needed to support a process-centered environment. Modern database systems are very large
and complicated pieces of software, spending tremendous amounts of effort to furnish reliable,
secure, efficient storage management and concurrency control. Different research database

This material is based upon work sponsored by the Defense Advanced Research Projects Agency under
Grant Number MDA972-91-J-1012. The content of the information does not necessarily reflect the position or
the policy of the Government and no official endorsement should be inferred.

!We will generally use the term object management and object manager rather than terms such as database
management, but the various terms should be considered essentially interchangeable.



systems provide, in addition, such features as schema dynamism, long transactions, and very
large object management. Arcadia has no wish to duplicate these capabilities. Unfortunately, no
single database system provides a combination of these capabilities that is sufficiently complete
to support a process-centered environment. Thus our approach has been to augment existing
systems in order both to provide increasingly satisfactory object management in Arcadia and
to gain clearer understanding of the requirements for object management in a process-centered
environment.

Triton is one of the object managers in use in Arcadia. It is primarily intended to support the
process-related activities within the Arcadia environment?. Triton may be briefly characterized
as a serverized object repository providing persistent storage for typed objects, plus functions
for manipulating those objects.

Triton uses an existing object manager, Exodus, to provide much of its functionality (Basic
type model, buffering, persistence, etc.). Exodus may be considered a persistent programming
language system rather than a true database system. It consists of a storage manager and a
persistent programming language named E [15]. E may be considered as a persistent version of
C++, and like C++ it has the C type system augmented by classes with behaviorally defined
methods. Triton adds value to Exodus by adding features needed in Arcadia, but not directly
provided by Exodus. Some of these additions, such as triggers, are driven by the needs of
process support and some by the nature of persistent programming languages.

In this paper, we will explain the requirements for Triton, and describe its architecture. We
will then show some of its features: heterogeneity, the interface, late binding, process language
support, and triggers. Finally, we will describe our observations, insights, and lessons gained
in the process of constructing and using Triton.

2 Requirements

The initial design of Triton was influenced by four general requirements that we felt were
essential to support any process-centered environment.

o Efficient support for the wide variety of software artifacts used within Arcadia: IRIS
graphs, requirements and design nodes, configuration management graphs, test cases,
documentation, and so on.

e Support for process coding languages—especially APPL/A. This requires a system sup-
porting at least relations and triggers, or some equivalent form of event notification.

e Standard database concurrency and recovery mechanisms.
¢ Some form of behavioral object-orientation.

Obviously, a number of desirable capabilities are missing from this list. But we concluded,
after examining what was available, that no system that was obtainable at the time would
completely satisfy even this minimal set of requirements. We could find systems that had, for
example, transaction management and triggers, but that was only accessible through a fixed
programming language, or had difficulty with dynamic type creation. We decided that our only
recourse was obtain a database manager offering a close match to our needs and to modify it.

2 Arcadia uses several object managers for a variety of purposes. See [25] for information about another object
management activity within the Arcadia project.



As the Triton project progressed, our understanding of the problems of object management
deepened. The general requirements were elaborated and additional requirements were added
to reflect our increased knowledge.

The original and still primary requirement for Triton is to support the process programming
languages used in Arcadia. In practice, this reduces to direct support for the APPL/A process
programming language and its features (see section 7).

Multi-language interoperability is another important requirement for Triton. This require-
ment has become increasingly important as Arcadia has evolved and we now view this require-
ment as a central one. It has been a driving factor in the architecture of Triton.

Multi-language interoperability covers two capabilities. First, we require the object manager
to be accessible from programs written in a variety of programming languages. Currently,
Arcadia has components written using Ada, C, C++, Lisp, and Prolog.

Second, it must be possible for programs written in various languages to share data. There
are two typical ways to achieve this: (1) pair-wise conversion or (2) use of a common data
model. We rejected choice one as being ultimately too time consuming and chose instead to use
the common data model approach, even at the expense of such problems as incomplete model
mappings.

Late binding of schema elements is another requirement for Triton. In many database
systems, this requirement would seem to be automatically provided. Unfortunately, Exodus,
like many persistent programming language systems, did not have this capability, and so it was
an additional problem to be addressed.

A catalog (or meta—database, or data dictionary) is a necessary corollary of dynamic schema
definition. Again, Exodus did not have this feature because of its relatively static nature.

In addition to purely technical requirements, there was a requirement to reuse as much
existing software as possible. If constructed from scratch, Triton would have taken too many
resources to be practical. So from the outset, it was important to avoid re-implementation. As
a consequence, Triton was constructed using as much existing database technology as possible.
It was important to focus the Triton effort onto those features essential to Arcadia and to reuse
those components that were properly the domain of the database community.

3 Triton Architecture

Figure 1 shows the architecture of Triton. It is a client-server architecture in which the client
communicates with the server using a Remote Procedure Call (RPC) protocol. In this case,
we used Q[11], which is a variant of the Sun RPC/XDR protocol that has some adaptions
for multi-language interoperability. The architecture of the client shown in the figure will be
deferred to section 7. Suffice it to say that it communicates using RPC to call the interface
functions provided by the server.

The server has five major components.

1. The server interface handles the details of receiving requests from clients (there may
be more than one), invoking the appropriate local procedure to field the request, and
returning any result back to the client.

2. The catalog component is a meta-database written as a collection of E types. It records
the structure of the schema currently known to the server.



E Source

(Application

Application Program Schema
PP & Code Definitions)
REBUS
E
APPLA Relation Compiler
Bodies
APPLA Relation
(Generic ™ <
~ E Object &(I\F/‘Iethqd
Triton Client Code UI{CUOH
Interface Bodies)
7
/7 N\
s d / N\
Q P 7 / \ Client
y ) S
\ erver
& |4 N\
Application
Server Trigger Objects
Interface Catalog Manager (e.g., APPLA
Relations)

Exodus Storage Manager

Triton Object Manager

Figure 1: Triton Architecture.



3. The trigger manager interacts closely with the catalog and manages the attachment of
triggers to various schema elements and their subsequent invocation.

4. The application objects are instances of the schema elements comprising the data used by
an client application.

5. The Fzodus Storage Manager provides for the persistent storage of objects from the other
components.

The requirement for multi-language interoperability was critical in determining this final
Triton architecture. It soon became clear that we could not count on being able to place any
portion of the code for the object manager (including method code) in the client (see section
9.4 for more on this issue). As a result, we have settled on a client-server architecture with a
Triton server residing in one Unix process and each client residing in a separate Unix process.
This solves many of the multi-language problems by placing the Triton system in one address
space and restricting other language programs to separate address spaces. In principle, any
language that can support RPC can use the Triton server.

Multi-language data sharing is achieved using a common data model. A subset of E, the
Exodus persistent programming language is used as the common data model. A major problem
in using a common data model is data model mapping. For any given type in the client language
there must be a mapping to some equivalent E type(s).

Late binding of schema elements proved to be a difficult problem because of the inherently
static nature of a persistent programming language like E (see section 9.2). In Triton, late
Binding is provided by allowing compiled E code to be dynamically loaded into the Triton
server. Section 6 will discuss this process in some detail. In Figure 1, this is shown by the
column of figures in the upper right.

In order to support dynamic loading, it was essential that Triton have a catalog to record in-
formation about schema elements (e.g., class and method definitions) and for linking to dynam-
ically loaded pieces of E code representing methods and triggers In its intended use, E/Exodus
had no need of a catalog and so it was necessary to construct one as part of the Triton server.

4 Heterogeneous Access to Triton

Triton is designed to operate in a heterogeneous environment. Heterogeneous in this case
refers to differing machine architectures and/or differing client side programming languages.
Minimally, it is assumed that it is possible to have TCP/IP (or UDP) connections between the
client and the Triton server. In order to understand some of the Triton interface, it is necessary
to understand how Triton manages heterogeneity.

A common remote procedure call protocol is used on top of TCP/IP to provide a more
structured access method. Remote procedure call operates by marshalling the inputs to the
procedure on the client side. That data is sent to the server along with some handle specifying
the remote procedure to be invoked. The server unmarshals that data, and calls the appropriate
procedure. It then takes any result, marshals it and returns it to the client.

Triton uses a standard intermediate format for sending data between the client and server.
During marshalling, the input data is traversed and converted into a canonical linear form
suitable for transmission over a thin wire connection. During unmarshalling, the linear form is
processed to create a copy of the original data. The term XDR (eXternal Data Reference) is



used to refer to the canonical linear form. The terms linearize and delinearize are used to refer
to the translations between the XDR format and some local data structure.

In Triton, linear XDR strings are stored in data buffers typically called XDR_buffers and
pointed to by XDR_Handles.

5 The Triton Interface

The Triton server presents a procedural interface to its clients. That is, to a client it “looks” like
a library of procedures for manipulating schema elements and objects. Triton makes significant
use of handles, which are references to objects in the server. The client can only get handles
from server, copy them around, and send them as arguments back to the server. The client has
no knowledge of the internal structure (if any) of the handles.

Manipulating and accessing the Triton catalog represents a significant portion of the oper-
ations provided by the server. The Triton Catalog provides two major capabilities.

Schema Definition: These operations allow a client to dynamically define schema elements
into the catalog, and many return a handle to the defined schema element. The definable
schema elements are classes, methods, functions, and formal arguments to methods and
functions. There are corresponding schema operations to destroy elements, but their
semantics are not well-defined.

Name Space: The space of schema elements in the catalog is almost flat. At the top level are
uniquely named classes and functions. Classes “contain” named methods, and methods
and functions “contain” named formal arguments. The name space operations allow
clients to convert a name of a schema element into a handie for that element.

The primary activity of the interface is to receive requests from clients to invoke methods
or functions defined in the catalog. The operations for doing this are shown in Figure 2. The
normal E operation of invoking a method (roughly speaking, results = Instance.method(inputs))
is mirrored in the arguments to the evaluate_method interface operation:

EPOINTER instance: This is a handle to the instance object.
T_method_p m: This is a handle to the method to be evaluated for the specified instance.

XDR_Handle inputs: This is a pointer to an XDR buffer (see section 4) containing the
linearized inputs, if any.

XDR_Handle results: This is a pointer to an XDR buffer into which any results from the
method evaluation will be inserted.

The evaluate_function operation is similar, but no instance argument is required.

The create_instance operation (Figure 2) is used to create instances of objects. It takes
a handle to a class, an XDR buffer of arguments to the class constructor, and a handle to a
collection object. It returns a handle to the created object. In E, a collection type is a built-in
aggregate type. Instances of collections are automatically persistent. Objects must be created
as a member of some collection object in order to be persistent. Technically, this operation can
also be used to create “non-persistent” objects; they will have a lifetime as long as the server.
But to date, no use has been made of non-persistence.



int evaluate_method(EPOINTER instance, T_method_p m,
XDR_Handle inputs, XDR_Handle results);

int evaluate_function(T_function_p f,
XDR-Handle inputs, XDR_Handle outputs);

EPOINTER create_instance(T_class_p cl,
XDR-Handle inputs, EPOINTER collection);

Figure 2: Method and Instance Manipulation.

6 Late Binding

In E, a method (or function) schema element is defined behaviorally. That is, it is associated
with a piece of code that is executed when the method is invoked via, for example, the eval-
uate_method server interface operation. Methods may be dynamically defined in the catalog
and so Triton must have some method of dynamically defining the code associated with the
method.

Our approach is to dynamically load compiled E code into the Triton server. For this to
work, Triton requires some substantial support from the operating system loader, such as the
standard Berkeley Unix loader, Id. With this loader, it is possible with take a piece of relocatable
binary code, pass it (plus some extra information) through the loader and get in return a piece
of absolute code. This piece of absolute code can then be read into the data space of the Triton
Server and executed as required. Thus, to completely define a method, it is necessary to define
it in the catalog and then to load the corresponding compiled method body into the server and
associate the code with the schema element.

Unfortunately, in Triton there are two definitions of the structure of, for example, a class
type. One is the structure defined in the catalog. The other is the structure implicit in the
compiled method code. It is possible to have inconsistencies between the two definitions, and
this is, of course, deprecated. When and if the server takes more control over the source code
for methods, this inconsistency will no longer be possible.

The process is actually rather more complicated than described. In addition to handling
the code, the server must be prepared to search the symbol tables associated with the code.
Searching these tables allows the server to find the correct entry point for invoking the method
code. In practice, one combines a whole group of methods into one piece of code, loads all of
the code at once, and allows the server to extract out the entry points for all the methods from
that piece of code.

Triton also provides a limited form of code removal. The pieces of loaded code act like a
stack. Loading a piece of code “pushes” the code onto this stack. A client can request the stack
to be “popped”, which will remove the most recently loaded code and cause any methods in
that code to be marked as undefined.

Debugging of dynamically loaded code is quite difficult. Even if the debugger is in control
of the server, it is difficult to get it to recognize the existence of the dynamically loaded code.



If the code is seriously defective, then it can cause the whole server to fail. If it is only “mildly”
incorrect, it can be unloaded from the code stack, corrected, recompiled, reloaded, and retested.
This is often a time consuming and frustrating process.

7 Triton Support for APPL/A

APPL/A [20, 21] is a prototype process programming language. It is defined as an extension
to Ada [24]. Ada provides several general-purpose capabilities to address the special needs
of software process programming. The principal extensions that APPL/A makes to Ada in-
clude programmable persistent relations, triggers on relation operations, optionally-enforcible
predicates on relations, and several transaction-like composite statements.

APPL/A assumes that its relations are persistent and so requires access to some form
of object management systems such as Triton. APPL/A, as the first process programming
language used in Arcadia, has had a significant influence on the structure of Triton. For
example, APPL/A (since it contains Ada as a subset) is obviously is very different from E.
Thus it introduces the problem of heterogeneous access. Additionally, APPL/A has relations
and triggers, and this imposed a requirement on the object manager to support those two
features. Note, however, that Triton does not provide support for the APPL/A transaction
statements®.

This section will discuss some of the details of the Triton support for APPL/A relations.
The discussion of triggers is deferred to section 8. In APPL/A, a relation looks much like a
task in that it defines the structure of the relation tuple and a limited set of operations: insert,
delete, update, and find. This last operation (find) is used to provided a combination of tuple-
at-at-time access and associative retrieval. As with Ada tasks, a relation has two pieces in the
form of a specification and a body. The body is expected to provide implementations for the
interface operations defined in the specification. See [20] for details.

It is fortunate that both Ada and E provide support for generics; the support for relations
heavily uses generic components both on the APPL/A (client) side, and on the E (server) side.
Basically, both the client and server sides define a generic relation unit (“package” in ada,
“dbclass” in E) parameterized by, among other things, the tuple type. In order to define a
relation, one defines the tuple type and instantiates the generic relation using that tuple type.

The generics on both sides (client and server) are matched in that the body of the generic
on the client side “understands” the interface of the generic on the server side. When a client
side entry is invoked, it can in turn invoke appropriate entries on the server side using, for
example, the evaluate_method interface operation. Each generic provides entries matching the
entries of the standard APPL/A relation interface: namely, insert, delete, update, and find.

Additionally, each generic is parameterized by a type representing the structure of the tuple.
It is critical that the tuple types on each side be compatible. This boils down to requiring the
definer of the relation to specify the correspondence between an APPL/A tuple type and an E
tuple type.

The other critical parameter for each generic is an XDR procedure for linearizing and
delinearizing tuples. It is important that the two procedures match in their understanding of
the structure of tuples. Given a tuple on the client side, it uses its procedure to linearize the

3 Unfortunately, no existing Object Manager is capable of supporting these statements as yet.



tuple into a canonical form for sending to the server. The server must then use its procedure
to delinearize the tuple into its local form.

Given this generic, a relation body is created by instantiating this generic with an appro-
priate tuple type and XDR procedure. The relation body entries are then defined to invoke
the corresponding operations in the generic. The body of the generic understands how to
communicate with Triton, and with the corresponding relation located there.

As with the APPL/A side, a Triton relation is created by instantiating the E generic with
an appropriate tuple type. The Triton interface is then used by the client side relation body
(via the APPL/A generic) to access this relation instance. The actual relation contents are
stored on Triton in association with this relation instance.

Referring back to Figure 1, we can now examine the client architecture. The client shown
there reflects the various layers required by an APPL/A program to communicate with the
server. The top level application (called REBUS in the figure) is defined in terms of a collection
of APPL/A relation specifications. These specifications are implemented by relation body code.
These bodies use the APPL/A generic relation interface, which is in turn implemented by a
generic body. This generic body is defined using the Triton client interface library.

8 'Triggers

Triton has augmented the E capabilities with a simple form of trigger. A trigger is a piece of
code that is invoked whenever some event! The key feature of a trigger is that the generator
of the event need not explicitly invoke the trigger. Rather, the underlying system implicitly
invokes the trigger when the event is detected.

In Triton, the events that can invoke triggers are (1) method or function invocation and (2)
method or function completion. There are important restriction on trigger attachment.

e Only methods or functions invoked via the evaluate_method or evaluate_function interface
calls can cause triggering. Thus, an internal call from one function to another will not
cause triggering.

¢ Instance specific triggers are not provided. If a trigger is associated with a method, then
every invocation of that method for all instances will invoke the attached trigger.

These restrictions have limited the utility of triggers. The original intent to support
APPL/A failed because it required trigger code to be rewritten from APPL/A to E and,
more importantly, there was no mechanism for triggers to communicate back to clients asyn-
chronously.

9 Some Lessons from the Triton Experience

Constructing Triton has been an enlightening experience for us. It has done much to make
clear what the actual requirements are for object managers when they are expected to support
a process-centered environment. The following sections describe some of the lessons that we
learned from the Triton effort.

*A state-based approach, as in AP5[4], is also possible in which the trigger is invoked when some defined
system state is reached. Triton does not support this style of trigger.



9.1 Performance

The performance of Triton leaves much to be desired. On a Sun3, using Sun’s RPC/XDR and
UDP, performing an evaluate_function on a function with an empty body and with no input
or output takes about 20 milliseconds for a round trip. The primary costs are in (1) RPC
communication, and (2) access to the catalog (necessary for triggers and to locate the function
code). There are number of known optimizations that can be performed to reduce this number.
With some effort, it appears that a round trip in the range of 1-5 milliseconds is possible. It
is clear that for some applications, this cost is still too high. Achieving substantial additional
speedup will require sacrificing something: the use of RPC, heterogeneous access, or catalog
mediation.

9.2 Using A Persistent Programming Language

We seriously underestimated the amount of effort that it would take to use a persistent pro-
gramming language system as the basis for Triton. In recent years in the database community
(and in the commercial word as well), many new research efforts have assumed a persistent
programming language as their basic architecture[8, 15, 23]. The assumption is implicit in this
approach that all the programs that access stored data will be written in whatever persistent
programming language has been chosen. Even in the cases[8, 23] where multiple languages are,
in theory, supported, there is no obvious provision for sharing data between those language.

This language-specific approach turns out to be completely incorrect for an environment
such as Arcadia. Multiple-languages sharing data is the norm, not the exception. As we have
seen with Triton, converting a language specific system to a more general system has a number
of painful consequences:

1. One is almost compelled to use the persistent programming language as the basis for the
common data model for the system. As with E, the type system of this language may
be much more complicated than is necessary. Additionally, some of the features of the
language (such as generics) have complicated implementations that are difficult to model
in the catalog. One is then forced to subset the language, which is often difficult. In E,
for example, many of the features of the language are interwined, so one may be forced
to remove features that might be better left in the subset.

2. Even with a reasonable language subset, the resulting type model may be inappropriate
for use as a common type model. We have been fortunate that the E subset is not too
bad in this aspect. But if we had been forced to use, for example, Lisp, we might have
found that communication with Ada and C was difficult.

3. Overgeneralizing somewhat, it is typical for language specific systems to assume a rela-
tively static type schema. It is often assumed that all the schema information is compiled
into programs. Converting to a late binding system appears to require some form of
dynamic loading of compiled code. This in turn requires significant support from the
compilers, loaders, and even possibly the operating system. Porting Triton out of a nar-
row range of Berkeley Unix class of systems, for example, would be a daunting task.

10



9.3 Relation Support

Languages such as APPL/A rely heavily on relations as a major structuring element in their type
system. The Triton type model in its pure form (i.e. E) does not directly support relations, and
so the Triton interface was substantially augmented to provide better support for the definition
and manipulation of relations.

Often, this concern for relations is dismissed by proponents of pure object-oriented (O-O)
languages. The claim is usually made that the user can just define relations using the Q-0
type system. Technically this is correct, but practically it is irrelevant. Significant mechanism
is needed to support relations in an O-O model. This is especially true if one wants the users
to have concise and convenient access to the relational structures.

Extrapolating from the APPL/A support provided by Triton, there is a minimal set of
components needed to support relations:

1. A standard interface to relations. This interface must allow for some form of insertion,
deletion, and update of tuples. It must provide some form of navigational access (e.g.,
enumerating the tuples in a relation) and ideally it should allow some form of associative
retrieval based on at least equality tests for tuple field values.

2. A standard interface for tuple types. Depending on the relation interface, this will include
some form of equality test over selected fields of tuples and some form of selective update
for tuple fields.

3. Simple creation of relation types in terms of user-defined tuple types. Typically this
implies a generic definition and instantiation capability in the O-O type model.

4. Convenient support for sets or (preferably) bags of tuples. Set maintenance will typically
be tied to the relation definition mechanism. The set feature should also support the
necessary navigational and associative retrieval features of the relation subsystem.

9.4 Separate Client and Server Address Spaces

In our experience, it is a serious mistake to assume that one can load any component of the
object management system in the same address space as client code. Especially if the client
code is written in a language different from the language used for the object manager. Run-
time systems often make assumptions about their control over such things as signals, memory
allocation, and file descriptors. Our sad conclusion is that mixing run-time language support
systems in the same address space will fail more often than not. Perhaps in some distant future,
there will be standards for run-time systems, but until then, code mixing is fraught with peril.

This dictum also applies to loading behavioral methods into the client address space. It has
been proposed[10] that the server should keep either interpretive versions of method bodies, or
per-language versions of compiled method bodies that can be loaded into the client as needed.
The use of interpretive models might work, although it might require the construction of an
interpreter written in each supported language. We are sceptical about the use of any form of
compiled code in a client. This requires the inclusion of dynamic loading mechanisms into each
client, and we believe that run-time contention will cause this to fail.

The alternative used in Triton keeps the object manager code plus the method body code
in a separate address space. We recognize some of the costs involved in this approach; there

11



are significant performance hits in transporting method inputs to the server and retrieving the
outputs. This may in some cases be offset by the more efficient execution of the methods since
they are closer to the data.

As mentioned, we have chosen the Sun Remote Procedure Call mechanism as our means of
client-server communication. In order to do this, we need to load the RPC libraries into the
client, and this, of course, runs the risk of run-time interference. So far, this has not been a
problem; the Sun code is relatively self-contained, but the potential for problems still exists.
The alternative is to rewrite the RPC libraries into each supported language.

9.5 Common Data Model

Triton achieves multi-language interoperability by using a common data model. Client data is
converted to the common model and stored in the server. On retrieval, the data in common
format is converted back to the client model. In spite of our problems in using the rather ugly
C++ type model, we were pleasantly surprised at how well this approach worked in practice.
We hypothesize that the client-server architecture was the “cause.” That is, inherently when a
client sends data to the server, it must convert the data to a standard linear form the (eXternal
Data Reference standard in our case) in order to ship it over a thin-wire connection to the
server. Adding a little additional complexity to convert to and from the common data model
is not a large burden. Given a shared memory model of client-server communication, the cost
of conversion might seem more onerous.

9.6 Event Management

Event management has become an increasingly important feature of modern software environ-
ments. Control integration via events (as in Field[14] and HP-SoftBench[6]) is rapidly becoming
the norm.

[t is important to note that event systems are distinct from the database notions of triggers
and rules. In an event system, there is a event server, also called a dispatcher, to which programs
send, as messages, postings of events. Other programs may register with the dispatcher to
receive events that match some specified pattern. As events arrive the dispatcher forwards
them to registered programs as appropriate. The key feature here is that the dispatcher has
very little knowledge about the sender and receivers of events and even about the semantics of
the events themselves. This results in a very flexible system in which new kinds of events may
be posted dynamically and senders and receivers of events may come and go quickly.

Databases, on the other hand, often assume that only a fixed set of actions (e.g., object
insertions and modifications) can generate events. Further, it is assumed that the receiver of
the event is known to the database system. With the possible exception of HIPAC[12], database
systems appear ill-prepared to export their events to the outer environment and to register for
externally generated events.

Arcadia already has several dispatcher systems: APPL/A triggers, the Amadeus measure-
ment system[17] and the Chiron user interface system[7]. Many of these systems need to be
aware of changes occurring within Triton. As a result, we needed to add event capabilities to
Triton. As described in section 8, our initial attempt was based on triggers. This has proven
insufficiently flexible and so we are in the process of moving to a more general event mechanism.

12



10 Status and Future of Triton

At the moment, a version of Triton without transaction features is running on Sun 3 and Sparc
machines running Sun OS 4.1.1 or later. We are investigating the possibility of a Mach port.
Triton is used within Arcadia to support our current process programs, such as REBUS[19].
It has been exported to some external groups such as the STARS project.
Triton is undergoing A number of relatively short term enhancements:

o The next version of Exodus provides transaction management facilities and we are cur-
rently re-hosting Triton to use these features.

e We are working to integrate the Triton event dispatcher with other Arcadia dispatchers.
o We are exploring alternative, and simpler, common data models to replace E.

o We are exploring performance enhancements.

11 Related Work

At the time that Triton was first conceived, there were only a limited set of acceptable choices
on which to base the effort. Licensing issues prevented consideration of commercial systems and
so only research vehicles were considered. Of those systems, we chose the Exodus systems [2, 3]
from Wisconsin as the basis for Triton. In retrospect, that decision turned out to be a good
one because Exodus was quite robust and support was reasonable (given the inevitable limits
associated with any research effort).

At the current time, there are a number of systems that, with more or less work, could serve
as replacements for Triton. O2[8] and the Texas Instruments OODB[23] are similar to Exodus
in that they support one or more persistent programming languages. Presumably, with some
work, these systems could be used in Triton in place of Exodus by using one of their languages
as a common model and adapting the dynamic loader to work with that language.

POSTGRES[16, 18] could also be used as a replacement for Triton. It obviously supports
relations well, it has a catalog, and it has a form of trigger, but it is not clear how to convert
its triggers to the more general event mechanism that now seem required.

Two other systems, GemStone[9] and PCTE+[1], seem much more promising as replace-
ments for Triton. GemStone is derived from Smalltalk[5] and its interpretive nature would
seem to make it possible to augment the system with the exact event mechanisms required.
Interpretation would also simplify the dynamic loading mechanism. It is unclear how hard it
would be to add heterogeneous access. Additionally, getting the effect of generic relations might
be a little difficult since Smalltalk does not support that kind of polymorphism.

PCTE+ is very promising. Its data model (objects, links, attributes) is probably adequate
for a process environment. The original PCTE had no notion of a trigger, but PCTE+ extends
PCTE with a concept of notifiers, and it would appear that notifiers can be adapted to the needs
of triggers and events. As with GemStone, heterogeneous access is still untested. Since PCTE+
does not support behavioral methods, dynamic loading becomes impossible. Unfortunately, it
may not be irrelevant and some effort would be needed to overcome this deficiency.

13



12 Summary

Triton is one of the first attempts to provide comprehensive object management support for
process-centered environments. It provides a behavioral object-oriented type model capable
of supporting process programming languages. Triton also provides explicit support for het-
erogeneous interoperability in the form of multi-language access as well as shared data using a
common type model. Implementing Triton has increased our understanding of the requirements
for such object managers and we are now in a better position to determine which new object
managers are appropriate candidates for inclusion in a process-centered environment.

Acknowledgments

We wish to thank the members of the Arcadia Consortium, and especially Lee Osterweil and
Mark Maybee for their help. We also wish to acknowledge the help of the Exodus project in
providing a very useful system. This paper may occasionally seem overly critical of Exodus,
but this is misleading. Exodus has performed well for us. Remember that its goals were not
our goals and so mismatches should not be surprising.

References

(1] G. Boudier, F. Gallo, R. Minot, and I. Thomas. An overview of pcte and pcte+. In Proc.
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

ao 0

Development Environments, pages 248-257, 28-30 November 1989. Boston, Mass.

[2] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, Joel E. Richardson,
FEugene J. Shekita, and M Muralikrishna. The architecture of the EXODUS extensible
DBMS: a preliminary report. Technical Report Computer Sciences Technical Report #644,
University of Wisconsin, Madison, Computer Sciences Department, May 1986.

[3] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita. Storage
management for objects in EXODUS. In Object-Oriented Concepts, Applications, and
Databases, chapter 14. Addison-Wesley, Reading, Massachusetts, 1988.

(4] Don Cohen. AP5 Manual. Univ. of Southern California, Information Sciences Institute,
March 1988.

[5] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

(6] Hewlett-Packard. HP Encapsulator: Integrating Applications into the HP SoftBench Plat-
form, 1989. HP Part No. B1626-90000.

[7] R. K. Keller, M. Cameron, R. N. Taylor, and D. B. Troup. User interface development and
software environments: The chiron-1 system. In Proc. of the 13th International Conference
on Software Engineering, pages 208-218, 13-17 May 1991. Austin, Tx.

[8] C. LeCluse, P. Richard, and F. Velez. 02, an object-oriented data model. In Proceedings
of the SIGMOD International Conference on Management of Data, pages 424-433, 1-3
June 1988.

14



[9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object oriented dbms.
Technical Report TR CS/E-86-005, Oregon Graduate Center, April 1986.

David Maier. Re: Looking for definition of oodb (an oodb manifesto). Message to
comp.object news group, 28 August 1991.

Mark Maybee and Stephen D. Sykes. Q: Towards a multi-lingual interprocess communi-
cations model. Arcadia Document UCI-89-06, Department of Information and Computer
Science, University of California, Irvine, Irvine, February 1989.

Dennis R. McCarthy and Umeshwar Dayal. The architecture of an active data base man-
agement system. In Proc. of the ACM SIGMOD International Conf. on the Management
of Data, pages 215 — 224, 1989.

Leon J. Osterweil. Software processes are software too. In Proc. Ninth International
Conference on Software Engineering, 1987. Monterey, CA, March 30 — April 2, 1987.

Steven P. Reiss. “Connecting Tools Using Message Passing in the Field Environment”.
IEEFE Software, pages 57-67, July 1990.

Joel E. Richardson and Michael J. Carey. Programming constructs for database system
implementation in EXODUS. In Proc. ACM SIGMOD Conf., pages 208-219, 1987.

Lawrence A. Rowe and Michael R. Stonebraker. The POSTGRES data model. In Proc.
of the Thirteenth International Conf. on Very Large Data Bases, pages 83 — 96, 1987.

Richard W. Selby, Greg James, Kent Madsen, Joan Mahoney, Adam Porter, and Doug
Schmidt. Classification tree analysis using the Amadeus measurement and empirical anal-

ysis system. In Proc. Fourteenth Annual Software Engineering Workshop, November 1989.
NASA/Goddard Space Flight Center, Greenbelt, Maryland.

Michael Stonebraker and Lawrence A. Rowe. The design of POSTGRES. In Proc. of the
ACM SIGMOD International Conf. on the Management of Data, pages 340 — 355, 1986.

5. M. Sutton Jr., H. Ziv, D. Heimbigner, M. Maybee, L. J. Osterweil, X. Song, and H. E.
Yessayan. Programming a software requirements specification process. In Proceedings of
the First International Conference on the Software Process, Redondo Beach, CA, October
1991.

Stanley M. Sutton, Jr. APPL/A: A Prototype Language for Software- Process Programming.
PhD thesis, University of Colorado, August 1990.

Stanley M. Sutton, Jr., Dennis Heimbigner, and Leon J. Osterweil. Language constructs for
managing change in process-centered environments. In Proc. of the Fourth ACM SIGSOFT
Symposium on Practical Software Development Environments, pages 206-217, 1990. Irvine,
California.

Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon J. Osterweil, Richard W. Selby,
Jack C. Wileden, Alexander Wolf, and Michal Young. Foundations for the Arcadia environ-
ment architecture. In Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, pages 1 — 13. ACM, November 1988.

15



[23]

Craig Thompson and David Wells. Report on DARPA open OODB workshop I: Pre-
liminary architecture workshop. Technical report, Information Technologies Laboratory,
Computer Science Center, Texas Instruments Incorporated, May 1991.

United States Department of Defense. Reference Manual for the Ada Programming Lan-
guage, 1983. ANSI/MIL-STD-1815A-1983.

Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and Peri L. Tarr. Pgraphite: An
experiment in persistent typed object management. Arcadia Document UM-88-05, Soft-
ware Development Laboratory, Computer and Information Science Department, University
of Massachusetts, Amherst, Massachusetts, 1988.

16



