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The interplay between spin and motional degrees of freedom in interacting electron systems

has been a long-standing research topic in condensed matter physics. Interactions can modify the

behavior of individual electrons and give rise to emergent collective phenomena such as supercon-

ductivity and colossal magnetoresistance. Theoretical understanding of non-equilibrium dynamics

in interacting fermionic matter is limited, however, and many open questions remain. Ultracold

atomic Fermi gases, with precisely controllable parameters, offer an outstanding opportunity to

investigate the emergence of collective behavior in out-of-equilibrium settings. In this thesis we

will describe how an optical lattice clock operated with neutral Fermionic atoms can be turned

into a quantum simulator of charged particles in a strong magnetic field. We will then discuss

the counterintuitive notion that weak interactions in a Fermi gas can lead to large scale collective

behavior and global correlations. These ideas are being tested experimentally at JILA and the

University of Toronto. We also investigate in detail the so-called spin model approximation which

is used extensively throughout this thesis.
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showing oscillations where spin up is concentrated towards the center of the cloud

and spin down is concentrated towards the edge of the cloud. The rate of these

oscillations is proportional to the interaction strength. The results in (c, d) are what

is known as “spin segregation” and will be discussed in greater detail in Section 5.7. 85
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Chapter 1

Introduction

A spin-1/2 particle, also known as a qubit or a two-state system, is the simplest nontrivial

quantum mechanical object. It is also the most quantum mechanical object, since measurement

of a spin component leads to complete uncertainty in the values of the other spin components.

Interacting spin systems are thus of fundamental importance to the study of quantum many body

physics. Typically, the spins are fixed to a lattice and interact either with their nearest neighbor

spins or via long ranged interactions. Rich physics, both in and out equilibrium, can result from

studying interacting spins on a lattice.

Cold atom experiments have emerged as one of the most fruitful platforms with which to

study quantum many body physics, due to the low temperatures achieved, and the exquisite control

available over various experimental parameters. However, it is often difficult to engineer pure lattice

spin models where the spins do not move, and more convenient or more interesting to prepare cold

atoms in a trapped gas or an optical lattice where the atoms can tunnel between lattice sites. The

question then becomes, what happens when the interacting spins are allowed to move? What new

physics can emerge and how do we study it? These questions are the focus of this thesis.

Most of the topics discussed in this thesis involve gases of fermions with a spin-1/2 degree

of freedom. Due to the Pauli exclusion principle, spin polarized fermions do not experience s-wave

interactions at low temperatures. Interactions arise when the spins are rotated inhomogeneously.

Each of the problems we studied represents a different type of inhomogeneity that can arise in a gas

of spin-1/2 particles, inducing interactions and different types of interesting physics. For instance, in
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an optical lattice clock, the clock laser can rotate spins on different lattice sites by differing amounts.

Within a single well of the optical lattice, the laser can rotate spins in an energy-dependent way,

leading to s-wave interactions which degrade the clock signal. We investigated this problem [1],

and a similar problem in a flat bottom potential [2].

Our methods involve the so-called spin model approximation, which assumes motional modes

are frozen during the dynamics, and has been used to predict density shifts in the clocks [3–5]. For

each of the problems outlined below, we are either using the spin model approximation [2, 6, 7],

investigating its range of validity [1], or both [8]. Through these studies we have come to a much

deeper understanding of why the spin model approximation works so well, and when and how it

breaks down.

1.1 Many Body Physics in Optical Lattice Clocks

In an optical lattice, atoms are trapped in the periodic potential created by a standing wave

of light. This potential mimics the physics of electrons in the periodic potential of their parent

ions in a metal. An optical lattice clock, such as the JILA Sr clock, takes advantage of a deep

lattice potential to freeze the motion of the atoms along the direction of the probing laser which

interrogates their long lived electronic transition. In fact, the sensitivity is so great that even weak

interactions between the atoms at the Hz level can degrade the clock signal. A better understanding

of the theory of atomic collisions can thus help experimenters engineer more precise clocks. An

alternative perspective is that the clock can be used to study fundamental quantum many body

effects in a controlled setting, and spectroscopically resolve them even when interactions are at the

∼Hz level. Thus theory and experiment of optical lattice clocks are evolving hand in hand.

1.1.1 The spin model approximation and beyond

The main approximation used to model interactions in the clock is to assume the occupied

single particle harmonic oscillator modes are frozen during interaction events. Interactions either

leave the spins and modes unchanged (the direct interaction) or exchange spin states between
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modes (the exchange interaction). This model correctly predicted the density shifts seen in the

clocks [3–5].

The justification for this so-called spin model approximation is two-fold. First of all, when

interactions are weak, they cannot overcome the energy barrier required to change the modes of the

atoms after a collision event, with energy splitting determined by the harmonic (~ω). Secondly, the

trapping potential is not exactly harmonic, and the anharmonicity and non-separability of the true

gaussian trapping potential can suppress what would otherwise be resonant exchange processes

that might contribute to the dynamics even for weak interactions. However, there are regimes

when these resonant processes might be important, which motivated us to try to understand these

processes. In Ref. [1] we tested the validity of the spin model approximation by comparing its

predictions to exact analytic expressions for two fermions. We found that at long times compared

to the trapping period the spin model approximation breaks down. Many other frequencies appear

in the dynamics associated with resonant mode changes that can occur in a harmonic potential.

Interestingly, the spin model is much better at predicting the behavior of spin observables than it

is at reproducing the correct state of the system. This is because even when processes occur that

are beyond the scope of the spin model, the system typically ends up in a configuration with very

similar dynamics. This is a common theme that we found throughout our studies and is one of the

reasons why the spin model approximation works so well.

1.1.2 Synthetic spin orbit coupling in an optical lattice clock

The phase of the clock laser naturally varies over the length of the optical lattice. In a deep

lattice, this phase is unimportant for the measurement of any observables since atoms in different

lattice sites never see each other. If the atoms are allowed to tunnel between lattice sites, however,

this phase difference becomes important – it is effectively a spin inhomogeneity that varies in space.

We analyzed this system in a proposal for generating synthetic spin orbit coupling in the clock [6].

We showed that at the single particle level this spin orbit coupling could be implemented and

measured in current optical lattice clocks even at their operating micro-Kelvin temperatures. The
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predicted behavior was observed in a recent experiment[7]. We also made predictions for how the

spin orbit coupling will lead to and be modified by interactions. We are currently working with the

JILA Sr team to verify these predictions.

1.2 Spin dynamics in a magnetic field gradient

The application of a magnetic field gradient is a simple experimental protocol that induces

dynamics in a gas of spin-1/2 atoms. The gradient rotates spins at different rates depending on

their position in the cloud, and the resulting spin inhomogeneities induce interactions. A number

of recent cold atom experiments have utilized this idea to study spin transport and other dynamical

phenomena [9–15].

First, we studied the problem of non-interacting spin dynamics in these systems [16] in detail.

We found the interesting result that a spin-echo sequence cannot remove the effect of the magnetic

field gradient. Next, to model interactions we applied the same spin model formalism previously

used to model atomic clocks. The model worked very well and allowed us to keep the problem

“fully quantum,” rather than resorting to mean field or semi-classical methods. We achieved the

best to date agreement with the spin segregation experiment of Ref. [15]. We predicted long-time

demagnetization that was not captured by the time dependent Hartree-Fock approximation [17],

but was seen in experiment [9]. We are currently collaborating with the Ultracold Atoms Group at

the University of Toronto, with the goal of observing the predicted demagnetization in the weakly

interacting regime.

1.3 Nonequilibrium dynamics in other quantum gases

Two projects, which led to references [18] and [19], also involved the study of nonequilibrium

dynamics in quantum gases but were thematically different enough that they have been omitted

from the body of this thesis. We briefly describe these projects here.
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1.3.1 SU(N) quantum magnets in a flat-bottomed potential

Unlike a harmonic oscillator with equally spaced energy levels, a flat-bottomed potential

(also known as a square well) is anharmonic and there are no degeneracies associated with mode

exchanges between two interacting particles. Thus, the use of the spin model approximation to

model such a system is appropriate. Additionally, all interaction parameters are equal, leading to

fully collective model for interactions. We showed that n thermal fermionic alkaline-earth atoms

in a flat-bottom trap allow one to robustly implement a spin model displaying two symmetries:

the Sn symmetry that permutes atoms occupying different vibrational levels of the trap and the

SU(N) symmetry associated with N nuclear spin states. The symmetries makes the model exactly

solvable, which, in turn, enables the analytic study of dynamical processes such as spin diffusion in

this SU(N) system. We also showed how to use this system to generate entangled states that allow

for Heisenberg-limited metrology. This highly symmetric spin model should be experimentally

realizable even when the vibrational levels are occupied according to a high-temperature thermal

or an arbitrary non-thermal distribution. [19].

1.3.2 Quench dynamics of a strongly interacting Bose gas

Motivated by a recent experiment [20], we studied the dynamics of a Bose gas following a

sudden change (quench) of the interaction strength from weakly interacting to strongly interact-

ing [18]. We studied the problem at the two-body, three-body, and many-body level. We made

quantitative predictions for the behavior of the momentum distribution and Tan’s contact out of

equilibrium that have motivated a great deal of subsequent research [21–25].

1.4 Outline of this thesis

In Chapter 2 we provide background information on several topics that are central to this

thesis: many body physics in cold atom systems, two level atoms and their interaction with light,

Rabi and Ramsey spectroscopy, ultracold Fermi gases, and optical lattices.
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In Chapter 3 we propose the use of optical lattice clocks operated with fermionic alkaline-

earth-atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC

emerges naturally during the clock interrogation when atoms are allowed to tunnel and accumulate

a phase set by the ratio of the “magic” lattice wavelength to the clock transition wavelength. We

demonstrate how standard protocols such as Rabi and Ramsey spectroscopy, that take advantage

of the sub-Hertz resolution of state-of-the-art clock lasers, can perform momentum-resolved band

tomography and determine SOC-induced s-wave collisions in nuclear spin polarized fermions. With

the use of a second counter-propagating clock beam, we propose a method to engineer controlled

atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectro-

scopic probes provide clean and well-resolved signatures at current clock operating temperatures.

We then describe the results of a recent experiment at JILA using fermionic 87Sr to produce SOC.

APK contributed to the theory model used to describe the experiment, but the experiment was

conducted by the Sr team in the June Ye group.

In Chapter 4, motivated by several experimental efforts to understand spin diffusion and

transport in ultracold fermionic gases, we study the spin dynamics of initially spin-polarized en-

sembles of harmonically trapped non-interacting spin-1/2 fermionic atoms, subjected to a mag-

netic field gradient. We obtain simple analytic expressions for spin observables in the presence

of both constant and linear magnetic field gradients, with and without a spin-echo pulse, and at

zero and finite temperatures. The analysis shows the relevance of spin-motional coupling in the

non-interacting regime where the demagnetization decay rate at short times can be faster than the

experimentally measured rates in the strongly interacting regime under similar trapping conditions.

Our calculations also show that particle motion limits the ability of a spin-echo pulse to remove the

effect of magnetic field inhomogeneity, and that a spin-echo pulse can instead lead to an increased

decay of magnetization at times comparable to the trapping period.

In Chapter 5 we develop a framework for studying the dynamics of weakly interacting

fermionic gases following a spin-dependent change of the trapping potential which illuminates the

interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection
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of the state of the system onto a set of lattice spin models defined on the single-particle mode

space. Collective phenomena, including the global spreading of quantum correlations in real space,

arise as a consequence of the long-ranged character of the spin model couplings. This approach

achieves good agreement with prior measurements and suggests a number of directions for future

experiments.

In Chapter 6 we examine the validity of the spin model approximation which is used ex-

tensively throughout this thesis. We calculate the Ramsey dynamics exactly for two interacting

spin-1/2 particles in a harmonic trap. We focus on s-wave-interacting fermions in quasi-one and

two-dimensional geometries. We find that in 1D the spin model assumption works well over a wide

range of experimentally-relevant conditions, but can fail at time scales longer than those set by

the mean interaction energy. Surprisingly, in 2D a modified version of the spin model is exact to

first order in the interaction strength. This analysis is important for a correct interpretation of

Ramsey spectroscopy and has broad applications ranging from precision measurements to quan-

tum information and to fundamental probes of many-body systems. We also examine the validity

of the spin model approximation for the case of more than two particles, and for the problem of

spin-dependent trapping potentials (Chapter 5).

1.5 Summary

In this thesis we study a variety of problems in cold atomic gases in which spin and motional

dynamics are coupled. These systems display rich physics and dynamics which are being investi-

gated by various experimental groups around the world. There remain many open questions, such

as how the spin model approximation can be improved, and how quantum correlations spread in

a gas. These investigations may be important for quantum technologies that utilize cold gases, as

well as for improving our understanding of fundamental quantum many body physics.



Chapter 2

Background

2.1 Motivation: many body physics in cold atoms systems and quantum

simulation

Quantum mechanics is arguably the most successful theory in the history of science. A famous

example is the calculation of the anomalous magnetic moment of the electron, which has now been

calculated to 13 decimal places of accuracy [26]. Another recent triumph of quantum mechanics,

relevant for this thesis, is the engineering of atomic clocks with accuracy and stability at the 10−18

level, meaning they would not lose a second in the lifetime of the universe [27, 28].

As successful as quantum mechanics has been, its predictive power is severely limited in many

body interacting systems. The Hilbert space for such systems grows exponentially with particle

number making exact diagonalization impossible for systems with more than a few particles. So,

the study of many body physics relies on approximations and on experimental results. Interacting

electrons in solid state systems have a few disadvantages: they are extremely complicated, usually

contain defects and disorder, and are not often tunable. Due to the electron mass and densities in

typical systems, dynamics takes place on timescales that are usually too fast to measure. Ultracold

atomic gases, on the other hand, with precisely controllable parameters, offer an outstanding op-

portunity to investigate the interesting behavior that can emerge in interacting quantum systems

both in and out of equilibrium. The ability to load atoms into optical lattices has allowed for

the simulation of systems that obey the same Hamiltonians that describe electrons moving in the

periodic potential of a lattice [29]. The field of quantum simulation has emerged as one of the most



9

promising directions for the future of atomic physics. Experimenters have the ability to engineer

“analog” quantum computers, that simulate a known but intractable Hamiltonian. For instance,

a synthetic gauge field in an optical lattice clock – the subject of Chapter 3 in this thesis – is an

example of a cold atom system whose Hamiltonian mimics that which describes charged particles

in a strong magnetic field (although in this case the Hamiltonian is non interacting).

2.2 Two level atoms probed by light

The electronic structure of atoms is very complicated, but often a laser probe can essentially

isolate two of those levels, allowing us to model the atoms as a simple two level system with a

ground, |g〉, and an excited level, |e〉. While we should keep in mind that the idea of a two level

atom is never exact1 , a great deal of atomic physics can be understood within this approximation.

If the energy separation between the two states is ~ω0 we can write the Hamiltonian for this system

simply as

Ĥ0 = ~ω0|e〉〈e|. (2.1)

From this point on we will set ~ = 1 unless otherwise stated. Since a typical light field such as a

laser contains many coherent photons, we can treat the light classically. Additionally, the electric

field of the light will interact much more strongly with the atom than its magnetic field, so we need

only consider the classical electric field. The classical electric field associated with a plane wave

can be written as

~E(t) = ~E0e
−iωLt + ~E∗0e

iωLt, (2.2)

where ωL is the angular frequency of the light. Under the dipole approximation, the light-matter

interaction can be written as ĤLM = −~d · ~E where ~d is the dipole moment operator of the atom.

The Rabi frequency, which is the coupling between |e〉 and |g〉 due to the laser light is defined as

Ω = 〈g|~d|e〉 · ~E ≡ ~deg · ~E. The Hamiltonian is thus

Ĥ = Ĥ0 +HLM = ω0|e〉〈e| −
1

2

[(
Ωe−iωLt + Ω∗eiωLt

)
|e〉〈g|+ H.c.

]
, (2.3)

1 Famously, “There are no two level atoms.” - Bill Phillips [30].
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Figure 2.1: (a) A Rabi sequence illuminates a two level atom for time t corresponding to pulse area
θ = Ωt. (b) In a Ramsey sequence, two short Rabi pulses are separated by a dark time t during
which the laser is turned off.

where H.c. denotes the Hermitian conjugate. In the rotating frame of the laser, the g − e coupling

contains two terms, one ∝ ei(ωL+ω0) and the other ∝ ei(ωL−ω0). The first term is usually ignored,

since ωL + ω0 is typically much larger than any other frequency scale in the problem. Retaining

only the second term is called the Rotating Wave Approximation, which allows us to write the

Hamiltonian for the two level atom in a much simpler form in the rotating frame of the laser:

Ĥ =
δ

2
(|e〉〈e| − |g〉〈g|)− Ω

2
(|e〉〈g| − Ω∗|g〉〈e|) , (2.4)

where δ = ωL − ω0 is known as the detuning of the laser from the atomic transition [30].

2.2.1 Rabi spectroscopy

A typical goal of spectroscopy is to determine the frequency of the atomic transition ω0.

Comparing this frequency to the laser frequency is equivalent to locating the laser frequency such

that δ = 0.

In Rabi spectroscopy, illustrated in Fig. 2.1(a), atoms are prepared in a well defined spin state

and illuminated with coherent light, usually from a laser, after which the spin state is measured.

If the atoms start in the |g〉 state and are illuminated for a time t, the expectation value for the



11

δ=0
δ=Ω
δ=2Ω

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Ωt

<n
e>

Rabi
Lorentzian

-30 -20 -10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

δ/Ω

<n
e>

a b

Figure 2.2: (a) Dynamics of 〈ne〉 for a Rabi sequence for three different detunings. (b) Rabi
lineshape evaluated at t = π/2Ω and Lorentzian envelope.

number of e atoms, ne, is

〈ne〉 =
Ω2

Ω2 + δ2/4
sin2

(
t
√

Ω2 + δ2/4
)
. (2.5)

The quantity
√

Ω2 + δ2/4 is often called the effective Rabi frequency. In frequency space, this

lineshape is peaked at δ = 0 with a Lorenzian envelope (See Fig. 2.2). Longer probing times

and smaller Rabi frequencies allow for enhanced resolution of the peak and thus more precise

spectroscopy.

2.2.2 Ramsey Spectroscopy

Rabi spectroscopy has the benefit of being a very simple procedure, but for many reasons

Ramsey spectroscopy, illustrated in Fig. 2.1(b), is often the preferred spectroscopic procedure. In

Ramsey spectroscopy, two short Rabi pulses with pulse areas θ1 and θ2 are separated by a “dark

time” t during which the laser is turned off. For a sample initially polarized in the |g〉 state the

resulting dynamics are

〈ne − ng〉/2 = sin θ1 sin θ2 cos δt− cos θ1 cos θ2. (2.6)

Unlike Rabi spectroscopy, the laser is turned off during the dark time so amplitude fluctuations of

the laser are not an issue during the dark time, and longer probe times can be utilized to obtain

more precise measurements. Additionally, as long as the duration of each of the Rabi pulses θ1
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and θ2 is much shorter than the typical time between atomic collisions, the spins can be rotated

independently of interactions. And of course, the fact that the laser is off during the dark time

means the behavior of the atoms during the dark time can be probed directly, independent of

their interaction with the laser light. In optical lattice clocks, which are the subject of Chapter 3,

Ramsey spectroscopy is used to look for an interaction-induced frequency shift which manifests as

a modification to the bare atomic transition frequency.

2.3 Ultracold fermi gases

Here we will give a brief discussion of an ideal Fermi gas in a harmonic potential given by

V =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.7)

where m is the atomic mass and ωi is the trapping frequency in the ith direction. The ideal Fermi

gas is a model system with a number of applications, such as electrons in a metal. Interactions and

other complications will of course modify these results, but often the non-interacting ideal gas can

reveal a surprising amount of information about a system. Here we will consider a two species fermi

gas, where the spin degree of freedom σ =↑, ↓ or g, e as in the previous section. Due to the Pauli

exclusion principle, a spin polarized sample at zero temperature will fill all the harmonic oscillator

modes up to the Fermi energy

EhoF = (6Nσ)1/3ωho, (2.8)

where ωho ≡ (ωxωyωz)
1/3. This is the harmonic trap analog of the well-known Fermi energy in

a box potential. The difference, of course, has to do with the equally-spaced energy levels in a

harmonic trap compared to the anharmonic energies in a box potential ~2k2/2m at momentum k.

The Fermi temperature is defined as TF = EhoF /kB, where kB is Boltzmann’s constant. At a finite

temperature, the Fermi distribution function for each species is

f(r, p) =
1

exp [β (p2/2m+ V (r)− µ) + 1]
, (2.9)
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where β = 1/kB and µ is the chemical potential which obeys

Nσ =

(
1

2π

)3 ∫
drdpf(r, p) =

∫
g(ε)dε

exp [β (ε− µ) + 1]
, (2.10)

and g(ε) is the density of states at energy ε, given by g(ε) = ε2/2ω3
ho [31].

In the limit of high particle number, at zero temperature the gas profile in real space becomes

the so-called Thomas Fermi distribution

nσ(r) =
8Nσ

π2R0
xR

0
yR

0
z

[
1−

(
x

R0
x

)2

−
(
y

R0
y

)2

−
(
z

R0
z

)2
]
, (2.11)

where R0
i = aho(48Nσ)1/6ωho/ωi is the Thomas Fermi radius, and aho =

√
1/mωho is the harmonic

oscillator length. Finite size effects manifest as small “ripples” on top of this ellipsoidal cloud.

For ultracold two-component fermions, the only allowed interactions are through the ↑↓

channel. For the ground state of an interacting Fermi gas, pairing between ↑ and ↓ fermions is

important. There is probably no more famous example than the BCS theory of superconductivity

[31], which involves pairing between spins of opposite momentum. However, cold atom systems are

often probed far from equilibrium, and, for the cases considered in this thesis, pairing is somewhat

unimportant. Consider a typical procedure used in an experiment: the fermions are prepared in a

harmonic trap with their spins initially polarized in the ↓ state. A Rabi pulse rotates the spins with

a pulse area of π/2 such that each spin is in a superposition of ↑ and ↓, and then an inhomogeneity,

such as a magnetic field gradient (the problem considered in Chapters 4 and 5), rotates the spins at

different rates, inducing interactions. Because cold atom systems typically start in a spin polarized

state, each fermion occupies a different harmonic oscillator mode. This state is quite “far” from

the expected ground state, where each mode contains both an ↑ and ↓. Thus, the theoretical

tools needed to analyze the nonequilibrium dynamics of such systems are quite different from those

needed to compute the ground state properties of interacting Fermi gases. The main theoretical

tool that we use, known as the spin model approximation and described in more detail in Chapter

3, is such a tool that is useful for high temperature or far from equilibrium spin-1/2 systems where

pairing is relatively unimportant.
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Figure 2.3: Geometry of optical lattices in one, two, and three dimensions. Image courtesy of
Michael Foss-Feig.

2.4 Optical lattices

Counter propagating laser beams can be interfered to yield a sinusoidal light intensity pattern

known as an optical lattice. Depending on the number of lasers used, the geometry can be controlled

from a one dimensional optical lattice to a three dimensional optical lattice (See Fig. 2.3). Due to

the interaction with the light field, atoms can become trapped in such a periodic potential, and in

recent years optical lattices have become one of the most important tools for studying atomic many

body physics. Although the energy scales are quite different, atoms hopping in an optical lattice

are analogous to electrons moving in the periodic potential of the ionic crystalline background of

a metal. Optical lattices can also be made “deep” enough to suppress tunneling between lattice

sites. The control over the tunneling rate, which will be explored more in Chapter 3, is one of the

advantages of studying atoms in optical lattices.

When the detuning of the laser light is much larger than the Rabi frequency, |δ| � Ω, the

second order energy shift to the atomic transition is given by

∆E(2) = ±|Ω|
2

4δ
, (2.12)

where + is for the |g〉 state and − is for the |e〉 state. This is known as the AC-Stark shift [30].

The sign of the energy shift depends on the sign of the detuning. Since the Rabi frequency is
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proportional to the electric field, it varies sinusoidally in space in an optical lattice: Ω = Ω(~r). For

δ < 0 (red detuned laser) the atoms will be attracted to stronger regions of the light field, and for

δ > 0 (blue detuned laser) the atoms will be repelled by stronger regions of the light field. For

each detuning, the atoms experience a periodic potential due to the light-matter interaction which

traps them in the optical lattice. For a red detuned laser, the potential minima correspond to the

locations of maximum laser intensity, and for a blue detuned laser the potential minima are at the

locations of minimum laser intensity.



Chapter 3

Synthetic Spin Orbit Coupling in an Optical Lattice Clock

3.1 Introduction

The recent implementation of synthetic gauge fields and spin-orbit coupling (SOC) in neutral

atomic gases [32–34, 34] is a groundbreaking step towards using these fully-controllable systems

to synthesize and probe novel topological states of matter. So far optical Raman transitions have

been used to couple different internal (e.g. hyperfine) states while transferring net momentum

to the atoms. However, in alkali atoms Raman-induced spin-flips inevitably suffer from heating

mechanisms associated with spontaneous emission. While this issue has not yet been an impediment

for the investigation of non-interacting processes or mean field effects [32, 33], it could limit the

ability to observe interacting many-body phenomena that manifest at longer timescales. Finding

alternative, more resilient methods for generating synthetic SOC, and probing its interplay with

interactions, is thus highly desirable.

To reduce heating, the use of atoms with richer internal structure such as alkaline-earth-atoms

(AEAs) [35, 36] or lanthanide atoms such as Dy and Er [37] have been suggested. In addition to

long-lived electronic states AEAs also offer accessible electronic state-dependent trapping poten-

tials with applications that range from the generation of synthetic gauge fields [35] and particle

number fractionalization [38, 39] to quantum information processing [40, 41]. So far most of the

existing proposals require complicated experimental set-ups including laser-assisted tunneling and

rectification protocols or have been targeted to study the non-interacting regime [36]. Here, we

demonstrate that SOC emerges naturally in cold AEA optical lattice clocks [42] that use a “magic”
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Figure 3.1: (a) A clock laser along the Z direction of wavelength λ and Rabi frequency Ω interrogates
the 1S0(g)-3P0(e) transition in fermionic alkaline-earth atoms trapped in an optical lattice with
magic wavelength λm. The transverse confinement is provided by Gaussian curvature of the lattice
beams with harmonic frequency hν⊥. Many transverse modes n are populated at current operating
temperatures. (b) The phase difference φ between adjacent sites j and (j + 1) induces SOC when
atoms can tunnel with mode-dependent tunnel-coupling Jn, realizing a synthetic two-leg ladder
with flux φ per plaquette.

(state independent) lattice. This is because the clock laser imprints a phase that varies significantly

from one lattice site to the next as it drives an ultra-narrow optical transition. Our implementation

(1) uses a direct transition to a long-lived electronic clock state with natural lifetime & 102 s [43],

and thus heating from spontaneous emission is negligible; (2) takes advantage of the sub-Hz reso-

lution of clock lasers [44–47]; and (3) accesses the regime where the interaction energy per particle,

U , is weak compared to the characteristic trapping energies [48–53] but comparable to SOC scales

determined by J , the tunneling, and Ω, the clock Rabi frequency. This regime allows us to inves-

tigate the interplay of interactions and SOC, to carry out controllable analytic calculations and

make concrete predictions and to devise feasible interaction sensitive probing protocols accessible

and testable in current experiments.

In the first protocol, we demonstrate that momentum-resolved tomography of chiral band

structures can be performed using Rabi spectroscopy in the parameter regime J ∼ Ω � U . In

the second protocol we show that the modification of collisional properties by SOC [33, 54] is

manifest in standard Ramsey spectroscopy, focusing on the parameter regime J & U . In the final

protocol, controlled and spatially resolved atomic transport [55–62] is induced by an additional

counter-propagating clock beam that exhibits a controllable phase difference with respect to the
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Figure 3.2: (a) SOC band structure for δ = −2J0, Ω0 = J0 (solid lines) and Ωp
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lines). The axial depth is V = 12 recoils, J0/h = 42 Hz and ν⊥ ≈ 900 Hz. Colors correspond to
state character, with g (e) being more blue (red). (b) Chiral Bloch vector angle, θ0q, in the xz
plane extracted from Rabi spectroscopy using the protocol explained in the text. The figure shows
three temperatures for the parameters of (a).

original probe beam. Interaction effects beyond mean field are shown to modify the dynamics in

the parameter regime Ω � J ∼ U . Inelastic collisions in the excited state impose limitations in

the probing time [52, 53, 63, 64], however, they can be dynamically accounted for during clock

interrogation as demonstrated in Refs. [48, 52]. We also show that losses can be used as a resource

for state preparation and readout.

3.2 Implementation

Current OLCs interrogate the 1S0(g)-3P0(e) transition of ensembles of thousands of nuclear

spin polarized fermionic AEAs trapped in a deep 1D optical lattice that splits the gas in arrays

of 2D pancakes [42](see Fig.3.1). The lattice potential uses the magic-wavelength, λm to generate

identical trapping conditions for the two states. At current operating temperatures, T ∼ µK [48]

the population of higher axial bands is negligible (. 5%). On the other hand, along the transverse

directions, where the confinement is provided wholly by the Gaussian curvature of the optical lattice

beams, modes are thermally populated with an average number of mode quanta 〈n〉 ∼ 50. To

generate SOC coherent tunneling between lattice sites is required. Our proposal is to superimpose

a running-wave beam on the lattice potential:

Vext (R) = − exp
(
−2R2

w2
0

) [
Vconst + V cos2

(
2πZ
λm

)]
; (3.1)
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this increases the transverse confinement without significantly affecting the axial motion [65]. Here,

w0 is the beam waist, R the transverse radial coordinate, Z the axial coordinate, V the axial lattice

corrugation, and Vconst the running-wave induced potential. By increasing Vconst as V is lowered,

the transverse confinement frequency ν⊥ ∼
√

1
mπ2w2

0
(Vconst + V ), with m the atom mass, is kept

constant while the tunneling rate along the axial direction increases.

Since Vext (R) is discretely translationally invariant along the axial direction, atoms trapped

in the lowest axial lattice band are governed by the Hamiltonian Ĥ0 =
∑

n Ĥ
0
n

Ĥ0
n =

∑
q,α

Eα,n,qn̂α,n,q −
∑
q

[
Ωn

2
â†+,n,q+φâ−,n,q + H.c.

]
. (3.2)

Throughout, q = q̃a is the dimensionless product of axial quasimomentum q̃ and lattice spacing

a = λm/2, âα,n,q annihilates a fermion in the two-dimensional transverse mode n, quasimomentum

q, state α = ±(for e and g), and n̂α,n,q = â†α,n,qâα,n,q. The energy Eα,n,q (q) = α δ2 + Ēn−2Jn cos(q)

has contributions from the mode dependent tunneling Jn, the average energy of the transverse

mode n, Ēn, and the laser detuning δ. Ωn is the Rabi frequency for mode n. The clock laser with

wavelength λ imprints a phase that varies between adjacent lattice sites by φ = πλm/λ.

If ones views the two internal states as a discrete synthetic dimension [66, 67], as shown in

Fig. 3.1, Ĥ0
n describes the motion of a charged particle on a two-leg ladder in a magnetic field with

flux φ per lattice plaquette. Ĥ0 hence has the interpretation of many copies of those ladders – one

for each transverse mode. By performing a gauge transformation â+,q+φ,n → â+,q,n, Ĥ0
n becomes

diagonal in momentum space with the excited state dispersion shifted by φ, q → q + φ. The latter

can be then conveniently written in terms of spin-1/2 operators acting on the populated modes

Ĥ0 = −
∑
n,q

Bnq · ~̂Snq (3.3)

where Bnq = (Ωn, 0,∆En (q, φ) + δ), ∆En (q, φ) ≡ 2Jn [cos (q)− cos (q + φ)], and Ŝx,y,znq are spin-

1/2 angular momentum operators. The eigenstates are described by Bloch vectors pointing in the

xz plane, with a direction specified by a single angle θnq = arctan
(

Ωn
∆En(q,φ)+δ

)
(Fig. 3.2(a)). The

q dependence of this angle is a manifestation of chiral spin-momentum locking, which is directly
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connected to the topological chiral edge modes of the two-dimensional Harper-Hofstadter model [67,

68].

3.3 Probing the Chiral Band Structure

We first discuss the use of Rabi spectroscopy to probe the non-interacting chiral band struc-

ture of Eq. (3.3). In the regime Ω0 � J0, there exists a finite window of δs where the two dispersions

cross at two special quasimomentum points q?n (Fig. 3.2(a)). The window, whose width is 8Jn| sin φ
2 |,

is signaled in the carrier linewidth, and thus when resolved it can be used to determine φ. At finite

temperature, many transverse modes are populated and hence the dependence of Ωn and Jn on n

could broaden the line and in general prevent an accurate determination of φ. However, a direct

simulation of the Rabi lineshape using the potential Eq. (3.1) demonstrates that the features of the

ideal, zero-temperature lineshape are captured even for a temperature of 3µK.

The ability to resolve the q?n resonances that appear across the entire Brillouin zone (BZ) as

the detuning is varied can be used to perform momentum resolved spectroscopy and to precisely

determine the chiral Bloch vector angle θ0q for given values of Ω0 and δ from Rabi oscillations.

We propose the use of a three spectroscopic sequences. One sequence selectively excites atoms at

q?n from g to e and induces Rabi oscillations. Another filters the dynamics of the excited atoms

from the remaining g atoms and the third is used to “correct” imperfections arising from finite

temperature. As shown in Fig. 3.2(b), this protocol allows us to extract θ0q over the BZ. This

method is not restricted to OLCs, requiring only a stable probe, and complements other techniques

for measuring band structures [69–71] used in degenerate Fermi gases.

3.3.1 Lineshape and extraction of θnq from momentum-resolved Rabi spectroscopy

As described in the previous section, SOC introduces substructure in the Rabi lineshape

within a window of width 8Jn

∣∣∣sin φ
2

∣∣∣ of the carrier frequency. At finite temperature, many trans-

verse modes are populated and hence the dependence of Ωn and Jn on n could broaden the line and

destroy this substructure. However, a direct simulation of the Rabi lineshape using the potential
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Eq. (1) demonstrates that the features of the ideal, zero-temperature lineshape are captured up to

a temperature of 3µK as shown in Fig. 3.3(a). Thanks to the clock’s sub-Hz resolution it will be

possible to resolve the lineshape for a wide range of lattice parameters.

We now turn to the extraction of the chiral Bloch vector angle θnq with Rabi spectroscopy.

The eigenstates of Eq. (3) may be written as

|ψn,q,−〉 = cos
θnq
2
|gqn〉+ sin

θnq
2
|eqn〉

|ψn,q,+〉 = − sin
θnq
2
|gqn〉+ cos

θnq
2
|eqn〉 , (3.4)

with energies

En,q,± =
En (q) + En (q + φ) + δ

2
± |Bnq| , (3.5)

and magnetization

〈ψn,q,±|Ŝzn,q|ψn,q,±〉 =
± cos θnq

2
. (3.6)

Using the above, the expected Rabi dynamics in the ideal case for an arbitrary initial state α|gnq〉+

β|enq〉 is found to be

Sz (α, β, t) =
1

2

(
|β|2 − |α|2

) [
cos2 θnq + cos (2Bnqt) sin2 θnq

]
+R (α?β) cos θnq sin θnq (cos (2Bnqt)− 1)

+ I (α?β) sin θnq sin (2Bnqt) . (3.7)

The protocol extracting the chiral Bloch vector angle θnq involves three sequences (Fig. 3.3(b)).

All sequences start by preparing the atoms in g. In sequence I, a narrow π-pulse about the x axis is

applied at the detuning δ? associated with the q?0 resonance. The Rabi frequency of the pulse, Ωp
0,

should be weak enough to guarantee that only atoms within a narrow window centered around q?0

are transferred to e. Atoms with q 6= q?0 are off-resonant and remain in g. Next the detuning and

Rabi frequency are quenched to the desired values Ω0 and δ, and Rabi oscillations are recorded.

Sequence II is identical, except that the initial pulse is about −x. Sequence III uses no initial

pulse, but is otherwise the same as sequence I. The dynamics in I contains information about θq?0 ,
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but this information will be buried in the signal of the q 6= q?0 atoms. Subtracting the dynamics

of I and III isolates the dynamics of q?0 atoms. Sequence II is required because due to the mode

dependence of Ωn, a π-pulse is not experienced by all atoms populated at the transverse modes

at high temperature. The dynamics of the atoms with q?0 that remain in g is cancelled by taking

the average between sequences I and II, which effectively deals with only the atoms transferred to

e. The dynamics for the sequences I, II, and III given in the main text are Sz
(√

1− f2
n,−ifn, t

)
,

Sz
(√

1− f2
n, ifn, t

)
, and Sz (1, 0, t), respectively, where fn ≈ 1 is the excitation fraction resulting

from the initialization π-pulse. This gives the subtracted signal

Sz
(√

1− f2
n,−ifn, t

)
+ Sz

(√
1− f2

n, ifn, t
)

2
− Sz (1, 0, t) = f2

n

(
cos2 θnq + cos (2|Bnq|t) sin2 θnq

)
.

(3.8)

For a single frequency |Bnq|, and θnq can be inferred from these oscillations as 2 tan2 θnq = (max−

min)/mean. In the multiple-frequency case this is no longer a strict equality, but Fig. 2(b) shows

that determining θnq in this fashion from the thermal average of Eq. (3.8) is nevertheless robust.

In addition, the validity of this approach can be quantitatively estimated by the equality (max +

min)/mean = 2, which employs the same assumptions.
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3.4 Interaction Hamiltonian with the spin model assumption

The Hamiltonian governing fermionic AEAs in an optical lattice clock may be written:

Ĥ = Ĥ0 + ĤI + ĤL ,

Ĥ0 =
∑
α

∫
drψ̂α (r)

[
− ~2

2m
∇2 + Vext (r)

]
ψ̂α (r)− ~δ

∫
drψ̂†e (r) ψ̂e (r) ,

ĤI =
4π~2a−eg
m

∫
drψ̂†e (r) ψ̂e (r) ψ̂†g (r) ψ̂g (r)

+
∑
αβ

3π~2b3αβ
m

∫
drW

[
ψ̂†α(r), ψ̂†β(r)

] (
W
[
ψ̂†α(r), ψ̂†β(r)

])†
,

ĤL = −~Ω

2

∫
dr
[
ψ̂†e (r) ei2πZ/λψ̂g (r) + H.c.

]
, (3.9)

wherem is the atomic mass, ψ̂α (r) is a fermionic field operator for state α ∈ {g, e}, W
[
Â (r) , B̂ (r)

]
=

(∇Â (r))B̂ (r)−Â (r) (∇B̂ (r)) is the Wronskian, and δ = ωl−ω0 is the difference between the clock

laser frequency ωl and atomic frequency ω0 in the rotating frame of the laser. The Hamiltonian Ĥ0

contains the kinetic energy and trapping potential Vext (r), ĤI contains the effects of s-wave inter-

actions with scattering length a−eg and p-wave interactions with interaction volumes b3αβ between

nuclear spin-polarized AEAs, and ĤL describes the coupling of internal levels to the clock laser. We

assume that the optical lattice is deep enough that we can neglect interactions occurring between

different lattice sites, and so consider only interactions between particles occupying the same lattice

site. Further, we enact the spin model approximation [51], which neglects all interactions which

do not preserve the single-particle transverse mode occupations during a two-body collision. The

spin model Hamiltonian hence keeps only direct terms, in which the two colliding particles remain

in their same transverse motional quantum states, and exchange processes where the transverse

quantum numbers of the two colliding particles are exchanged. The spin model Hamiltonian is

valid when interactions are smaller than the spacing between transverse modes, and also when

anharmonicity of the potential prevents collisional exchange of mode energy between transverse

dimensions.

To derive a Hubbard model amenable for direct calculation, we expand the field operators in
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a basis of single-particle eigenfunctions. In order to facilitate thermal averages, we take this set of

functions to be the eigenfunctions of Ĥ0, ψq,n (r), which are indexed in terms of a quasimomentum

q and a transverse mode index n. Enacting this expansion with the approximations of the last

paragraph, we find

ĤI =
1

4L

∑
αβ

∑
{n1,n2}

∑
qq′∆q

[
(2− δn1n2)

(
Uαβ{n1,n2} + V αβ

{n1,n2}

)
â†α,q+∆q,n1

â†β,q′−∆q,n2
âβ,q′,n2 âα,q,n1

+ 2 (1− δn1n2)
(
V αβ
{n1,n2} − U

αβ
{n1,n2}

)
â†β,q′−∆q,n1

â†α,q+∆q,n2
âβ,q′,n2 âα,q,n1

]
. (3.10)

Here, L is the number of lattice sites, the sum over {n1,n2} means the sum over distinct, ordered

pairs of transverse modes, q, q′, and ∆q are quasimomenta in the first Brillouin zone (BZ), greek

letters denote internal electronic states α, β ∈ {g, e}, and the interaction matrix elements may be

written as

Uαβ{n1,n2} = (1− δαβ)
8π~2

m
asSn1n2n2n1 , V αβ

{n1,n2} =
12π~2

m
b3αβPn1n2n2n1 (3.11)

by defining the integrals

Sn′1n′2n2n1
=

∫
drψ?i,n′1

(r)ψ?i,n′2
(r)ψi,n2 (r)ψi,n1 (r) ,

Pn′1n
′
2n2n1

=

∫
drW

[
ψ?i,n′1

(r) , ψ?i,n′2
(r)
]
W [ψi,n1 (r) , ψi,n2 (r)] . (3.12)

In the latter two expressions, the wavefunctions are localized Wannier-type functions obtained from

the quasimomentum-indexed eigensolutions (Bloch functions) of the full 3D potential as ψj,n (r) =

1√
L

∑
q∈BZ e

−iqrjψq,n (r) [65]. We can also define the mode-dependent tunneling and Rabi frequency

in terms of these functions as

Jn = −
∫
drψj,n (r)

[
− ~2

2m
∇2 + Vext (r)

]
ψj+1,n (r) ,

Ωn = Ω

∫
drψj,n (r) ei2πZ/λψj,n (r) . (3.13)

3.5 Probing s-wave Interactions via Ramsey Spectroscopy

To access the interplay between SOC and interactions we propose to use Ramsey spectroscopy

(Fig. 3.4). The first pulse rotates the Bloch vector, initially pointing down, by an angle θ1, set
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Figure 3.4: A clock laser pulse with pulse area θ1 imprints a phase difference φ between atoms in
neighboring sites. Atom tunneling, Jn, allows for s-wave interactions, ∝ U−eg, which are signaled as
a density shift in Ramsey spectroscopy after a second pulse of area θ2 is applied.

by the pulse area, and the second converts the accumulated phase during the dark time τ into a

g − e population difference measured as Ramsey fringes. Interactions induce a density-dependent

frequency shift in the fringes.

Interactions between two nuclear spin polarized atoms depend on the motional and elec-

tronic degrees of freedom [51]. When the atoms collide they experience s-wave interactions,

characterized by the elastic scattering length aeg, when their electronic state is antisymmetric

(|eg〉 − |ge〉)/
√

2. They can also collide via p-wave interactions, described by the corresponding

p-wave elastic scattering volumes b3gg, b
3
ee, and b3eg, in the three possible symmetric electronic con-

figurations |gg〉, |ee〉, (|eg〉 + |ge〉)/
√

2, respectively. In addition to elastic interactions, atoms can

also exhibit inelastic collisions. In 87Sr only the ee type has been observed to give rise to measurable

losses [50] while in 173,171 Yb, both ee and eg losses have been reported [52, 53, 63].

When tunneling is suppressed the differential phase imparted by the laser is irrelevant, and as

long as Ωn is the same for all modes – a condition well-satisfied in current OLCs [48] – the collective

spin of the atoms within each lattice site remains fully symmetric after the pulse and only p-wave

collisions occur during the dark time. Measurements under this condition [48, 49] indeed observed

a frequency shift linearly dependent on the excitation fraction of atoms, (1 − cos θ1)/2 and fully

consistent with a p-wave interacting model [51]. If instead tunneling is allowed during the dark time,

atoms become sensitive to the spatially inhomogeneous spin rotation from the site-dependent laser

phase, which in turn allows for s-wave collisions after a tunneling event (see Fig. 3.4). The s-wave
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collisions in SOC-coupled spin polarized fermions can lead to exotic phases of matter including

topological quantum liquids [72, 73].

In the regime of weak interactions compared to tunneling, we compute the dynamics pertur-

batively, and find that SOC manifests itself in the density shift at short times as

∆ν = ∆ν0

[
1 +

4〈J2〉TRτ2ζ cos θ1 sin2 φ
2

3~2(C − χ cos θ1)

]
, (3.14)

where ∆ν0 = N(C − χ cos θ1) is the density shift in the absence of tunneling [48, 51], N the

mean atom number per pancake, 〈J2〉TR the thermally averaged squared tunneling rate, ζ =

(V eg − U eg) /2, χ = (V ee + V gg − 2V ge)/2, and C = (V ee − V gg)/2, with V αα′ = b3αα′〈P 〉TR
and U eg = aeg〈S〉TR . Here, 〈P 〉TR ∝ (TR)0 and 〈S〉TR ∝ T−1

R correspond to the thermal averages of

the p-wave and s-wave mode overlap coefficients respectively [51], and TR is the radial temperature.

For the JILA 87Sr clock operated at TR ∼ (1 − 5)µK and θ1 � π for τ ∼ 80 ms, ∆ν0 ∼ −5Hz.

Since SOC introduces contributions from s-wave interactions, which can be one order of magnitude

larger than p-wave at TR ∼ 1µK, then from Eq. 3.14 we expect significant modifications of the

density shift. In the JILA 87Sr clock the ratio of elastic to inelastic p-wave collision rates has been

measured to be ∼ 2 under typical conditions [48, 50], and losses have been compensated during

clock operation by dynamically tracking the population decay during the dark time [48, 49]. In

Ramsey interrogated SOC systems with dominant s-wave elastic collisions, inelastic processes are

expected to become even less relevant.

3.5.1 First-order density shift in Ramsey spectroscopy

Here we compute the density shift (Eq. 3.14) to first order in interactions using an interaction

picture perturbation series. In particular, we write the propagator during the dark time evolution

in terms of a truncated Dyson series e−iĤt = e−iĤ0t− i
∫ t

0 dt
′e−iĤ0(t−t′)Ĥ1e

−iĤ0t′ . At the end of the

dark time, a spin-rotation pulse of area θ2 is applied, and then the total Ŝz is measured. These two

operations can be combined as the measurement of the operator Ŝzθ =
∑

nq

[
cos θŜzqn − sin θŜyqn

]
.
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Hence, the first-order result of the Ramsey sequence is

〈Ŝz (τ)〉 = 〈ψ (θ1) |eiĤ0τ Ŝzθ2e
−iĤ0τ |ψ (θ1)〉+ 2I

[
〈ψ (θ1) |eiĤ0τ Ŝzθ2

∫ τ

0
dte−iĤ0(τ−t)ĤIe

−iĤ0t|ψ (θ1)〉
]
,

(3.15)

where |ψ (θ1)〉 is the state resulting from applying the first Ramsey pulse to an initial state |̃i〉.

We will parameterize the initial state in terms of products of single-particle eigenstates |i〉 =∏N
i=1 â

†
gqini |vac.〉, where |vac.〉 is the vacuum, N the number of particles, and {qi,ni} the initial

distinct set of populated quasimomenta and transverse modes, so that

|ψ (θ1)〉 =

N∏
j=1

(
cos

θ1

2
â†g,qj ,nj + i sin

θ1

2
â†e,qj ,nj

)
. (3.16)

From this, we find that the non-interacting dynamics are given as

〈ψ (θ1) |eiĤ0τ Ŝzθ2e
−iĤ0τ |ψ (θ1)〉 =

N∑
i=1

[
−cos θ1 cos θ2

2
+

sin θ1 sin θ2

2
cos (δτ −∆Eni (qi, φ) τ)

]
,

(3.17)

where En (q) is the single-particle dispersion and

∆En (q, φ) ≡ En (q + φ)− En (q) , (3.18)

is the difference in single-particle dispersion of the e and g states.

Writing the non-interacting result as 〈Ŝz (τ)〉 = A (τ) cos (δτ) + B (τ) sin (δτ) + const. we

can extract the density shift as ∆ν = 1
2πτ arctan

(
B(τ)
A(τ)

)
and the normalized contrast decay as

C (τ) =

√
A2(τ)+B2(τ)√
A2(0)+B2(0)

. For a single particle with momentum q and transverse mode n, the density

shift is ∆En (q, φ) /2π. Assuming short times compared to the tunneling bandwidth, the density

shifts for all particles add as ∆ν =
∑N

i=1 ∆Eni (qi, φ) /2πN +O
(
τ2
)
. The contrast decay at short

times is given as C (τ) = 1− 1
2N2

(∑N
i=1 ∆Eni (qi, φ)

)2
τ2 + 1

2N

∑N
i=1 ∆E2

ni (qi, φ) τ2 +O
(
τ4
)
. This

single-particle contribution will dominate over the ∼ U2τ2 decay of the contrast due to interactions

at short times and in the regime of weak interactions compared to the tunneling.
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The contribution to the dynamics at the lowest order in interactions is given as

2I
[
〈ψ (θ1) |eiĤ0τ Ŝzθ2

∫ τ

0
dte−iĤ0(τ−t)ĤIe

−iĤ0t|ψ (θ1)〉
]

=
τ

L

∑
{p1,p2}

{
sin θ1 sin θ2 sin

[(
δ −

∆Enp1
+ ∆Enp2

2

)
τ

]

×
[ (
C{np1np2} − χ{np1np2} cos θ1

)
cos

(
∆Enp1

−∆Enp2

2
τ

)
− cos θ1

2

(
2− δnp1np2

)
ζ{np1np2}

[
cos

(
∆Enp1

−∆Enp2

2
τ

)
− sinc

(
∆Enp1

−∆Enp2

2
τ

)]]}
(3.19)

where the mode-dependent spin model parameters are

C{n1n2} =
Vee12 − Vgg12

2

χ{n1n2} =
Vee12 + Vgg12 − 2Veg12

2

ζ{n1n2} =
Veg12 − Ueg12

2
. (3.20)

Taking a series in the tunneling bandwidth, the zeroth order term for a given pair of particles is

(C − χ cos θ1) sin θ1 sin θ2 sin δτ , which has been obtained in previous works [48]. The thermally

averaged density shift in the high-temperature limit will be given in the next section.

3.6 Probing Beyond Mean Field Interactions via a Sliding Superlattice

The third interrogation protocol we discuss is accomplished by generating a sliding superlat-

tice via a pair of counter-propagating beams close to resonance with the clock transition and with a

global phase difference Υ(t) which can be controlled in time (see Fig. 3.5(a)). The non-interacting

Hamiltonian, written using a Wannier orbital basis along the lattice direction, is

Ĥ0
L = −

∑
n,j,α

(
Jn

[
â†α,n,j âα,n,j+1 + H.c.

]
− δ

2
αn̂αn,j

)
−
∑
n,j

(
Ωn cos(Υ(t)− jφ)

[
â†+,n,j â−,n,j + H.c.

])
. (3.21)

As Υ(t) is changed, the clock laser standing wave “slides” with respect to the optical lattice. This

allows for the minimum realization of a topological pump when Υ(t) is adiabatically varied from
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Figure 3.5: (a) An additional counter-propagating probing beam with a differential phase Υ
generates a sliding superlattice potential, shown for φ = 7π/6, corresponding to an 87Sr OLC.
For weak tunneling J � Ω transport is energetically suppressed except at resonant defect points
(circled). (b) Two-particle interaction sectors classified by the total polarization Mx and spatial
symmetry of the dressed states. An oval (figure-eight) denotes a symmetric (antisymmetric) spatial
wavefunction. (c) Dynamics of a single particle at the tunneling resonance for two temperatures
(red solid and blue dashed) and an off-resonant site (black dotted) for J0/h = 8Hz, Ω0/h = 1kHz,
φ = 7π/6. (d) Normalized differential excitation extracted as explained in the text with the
interaction parameters of Ref. [50]. The Mx = 0 components (solid lines) involve the s-wave sector,
and so display a strong dependence of contrast on temperature, while the M±1 sectors (dashed
lines) experience only weaker single-particle thermal dephasing.
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0 → 2π [55–59]. In the weak tunneling limit the quantized nature of particle transport can be

directly linked to spatially isolated tunneling resonances [59]. We now show how those resonances

can be spectroscopically measured.

Let us first consider the case Jn = δ = 0 and set φ = 7π/6, relevant for the 87Sr system.

We write Υ = (2πs + ∆Υ)/12, with 0 ≤ ∆Υ < 2π and s an integer. Under these conditions,

the localized dressed eigenstates are spin-polarized along ±x alternating between neighboring sites

except for “defects” at jd(r) = 6r + 3 + s (r an integer) when cos(Υ−∆

Upsilon/12− jdφ) = 0 and the ground states at jd(r) and jd(r) + 1 point along the same direction.

Since tunneling preserves polarization, it is suppressed when Jn � Ωn due to the energy offset

∼ Ω between neighboring sites. The one exception is the case ∆Υ = π where the defect pair

jd(r) and jd(r) + 1 is resonantly tunnel-coupled. Quantized transport occurs when ∆Υ is slowly

varied across the resonance. Instead of adiabatic transport we propose to spectroscopically resolve

the resonance using a Ramsey-type protocol. Here, atoms initially prepared in g at |δ| � Ω0 are

adiabatically transferred to the ground dressed state by slowly turning off δ at Υ = (2πs+∆Υp)/12

with ∆Υp 6= π. Then Υ is quenched so resonant tunneling is allowed, s → s + 1 and ∆Υ = π,

and the system evolves for a time τ . Following this evolution tunneling is turned off and the phase

switched back, s + 1 → s and ∆Υ → ∆Υp. Those atoms which have tunneled at the resonant

sites are now in an excited state of the local dressed basis. These excitations can be measured by

adiabatically converting the dressed excitations to “bare” e excitations by adiabatically ramping

on δ � Ω0; this leads to a measurable excited state population ne(t). In Fig. 3.5(c) we show these

tunneling resonances are clearly observable even at finite temperature. Moreover, since resonances

are spatially well-separated (every six sites), they can be resolved with low-resolution imaging.

Interactions modify the transport dynamics in this pumping protocol. The sliding superlattice

simplifies the treatment of interactions by isolating resonant site pairs {jd, jd + 1}. We consider

the case where at most two atoms occupy the resonant sites, a condition which can be achieved

by decreasing the atomic density with a large-volume dipole trap [44]. The two particle states

can be classified in terms of the atoms’ spin polarization along x in four sectors: three symmetric
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ones (triplets) with total x polarization Mx = +1,−1, 0 and a Mx = 0 singlet. Within each

sector, the dressed states’ interaction parameters are given by V+1 = V−1 = (V gg + V ee + 2V eg)/4,

V0 = (V gg + V ee)/2 and U0 = U eg (see Fig. 3.5(b)). Since the p-wave parameters are not SU(2)

symmetric, i.e. bee 6= bgg 6= beg, the triplet sectors are coupled. However, in the weakly interacting

limit V αβ � Ω, the triplets are separated by energy gaps ∼ Ω and coupling between the sectors

can be neglected. The singlet sector is always decoupled from the triplets.

Within each sector interactions modify the dynamics, making it sensitive to temperature and

density. The modifications can be extracted by performing measurements of the atom number-

normalized excitation fraction for different densities and then differentiating the high-density and

low-density results. This procedure removes the single-particle contribution and is particularly

suitable for characterizing the role of interactions in clock experiments [48, 50]. The normalized

differential excitation is shown in Fig. 3.5(d). For the adiabatic dressed state preparation, all four

manifolds, and hence all interaction parameters V±,0, U0, contribute to the dynamics. A filtering

protocol that uses the ee losses can be used to separate the dynamics of the various sectors. For

example, by transferring all atoms to the e state and holding before the adiabatic ground state

preparation, the doubly occupied Mx = ±1 triplet sectors will be removed and only the Mx = 0

singlet and triplet remain and contribute (here the ground dressed states have one atom at jd and

jd + 1). As shown in Fig. 3.5 the dynamics of the V±,0 and U0 sectors can be distinguished by

the different scaling of the p- and s-wave interaction parameters with temperature TR, V±,0 (TR) ∼

const. and U0 (TR) ∼ T−1
R [51] (See Fig.3.5(d)). By comparing these dynamics to that without

the holding time, information about the Mx = ±1 dynamics can be extracted. In general s-

wave interactions, purely elastic for nuclear-spin-polarized Sr, dominate the normalized differential

contrast, with p-wave contributions (including losses) relevant only at hotter temperatures.

3.6.1 Interacting dressed states with a sliding clock superlattice

The results of the previous section were derived by considering the dynamics of two atoms in

neighboring sites jd(r) and jd(r)+1 which are tunnel-coupled for a sliding lattice clock phase ∆Υ =
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π. We will take these two atoms to have different transverse mode indices n and m. Interactions in

the s-wave channel occur between these atoms when they are in an antisymmetric electronic state

|Λ−eg〉 ≡ (|ge〉 − |eg〉) /
√

2 with a symmetric spatial wave function |Ψ+
nm〉 ≡ (|nm〉j + |mn〉j), with

the subscript j denoting the lattice site index. Instead, p-wave interactions occur when the atoms

are in a symmetric electronic state |Λ+
eg〉 ≡ (|ge〉+ |eg〉) /

√
2 and an antisymmetric spatial wave

function |Ψ−nm〉 ≡ (|nm〉j − |mn〉j). For the purposes of describing the system dynamics at ∆

Upsilon = π, where | →〉 = (|g〉+ |e〉) /
√

2 is the single-well electronic ground state and | ←〉 =

(|g〉 − |e〉) /
√

2 the excited state, it is useful to employ the states

t, 1 : |2++, 0〉, |0, 2++〉, | →n,→m〉, | →m,→n〉 ,

t,−1 : |2−−, 0〉, |0, 2−−〉, | ←n,←m〉, | ←m,←n〉

t, 0 : |2±, 0〉, |0, 2±〉, | →n,←m〉 − | →m,←n〉√
2

,
| ←n,→m〉 − | ←m,→n〉√

2

s, 0 : |2∓, 0〉, |0, 2∓〉, | →n,←m〉+ | →m,←n〉√
2

,
| ←n,→m〉+ | ←m,→n〉√

2
, (3.22)

where

|2++〉 = | →→〉|Ψ−nm〉 ,

|2−−〉 = | ←←〉|Ψ−nm〉 ,

|2±〉 =
| →←〉+ | ←→〉√

2
|Ψ−nm〉 ,

|2∓〉 =
| →←〉 − | ←→〉√

2
|Ψ+

nm〉 . (3.23)

In each four-state sector the Hamiltonian may be written as

Ĥµ,Mx = 2MxΩI +



Uµ,Mx 0 J J

0 Uµ,Mx −J −J

J −J 0 0

J −J 0 0


, (3.24)

where µ = t, s, Ut,Mx = VMx , Us,0 = U0, I is the identity operator, and we have set Ωn = Ωm = Ω

and Jn = Jm = J for simplicity. The s, 0 singlet sector is rigorously decoupled from the others,
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but there is mixing between the triplet sectors proportional to the spin model parameters χ and

C. These couplings are neglected due to the large single-particle energy difference ∼ Ω between

coupled manifolds with the assumed separation of energy scales Ω� J, V, U .

The Hamiltonians Eq. (3.24) may be readily diagonalized, leading to the eigenvalues 2MxΩ, 2MxΩ+

U, 2MxΩ+ U
2 ±

√
4J2 + U2

4 . At high temperatures compared to the tunneling, and for the adiabatic

preparation procedure described in the main text, the observed dynamics will be an equal weight

superposition of the dynamics from the initial states |2++, 0〉, |0, 2−−〉, | →n,←m〉, and | →m,←n〉.

The dynamics of the number of excitations following adiabatic conversion back to the “bare” g/e

basis for these states are

|2++, 0〉, |0, 2−−〉 → ne (t) = 1− cos
V1t

2
cos

(
t

√
4J2 +

V 2
1

4

)
−
V1 sin V1t

2 sin
(
t
√

4J2 + V 2
1 /4

)
√

16J2 + V 2
1

,

| →n,←m〉, | →m,←n〉 → ne (t) =

1− 1

2

(
cos

V0t

2
cos

(
t

√
4J2 +

V 2
0

4

)
+ cos

U0t

2
cos

(
t

√
4J2 +

U2
0

4

))

−1

2

V0 sin V0t
2 sin

(
t
√

4J2 + V 2
0 /4

)
√

16J2 + V 2
0

+
U0 sin U0t

2 sin
(
t
√

4J2 + U2
0 /4
)

√
16J2 + U2

0

 . (3.25)

For small interactions compared to tunneling, we can expand the result to lowest order in interac-

tions, and find the thermally averaged dynamics

ne (t) = 2 sin2 (Jt)−
(
U2

0 + V 2
0 + 2V 2

1

)
t (sin (2Jt)− 2Jt cos (2Jt))

64J
. (3.26)

In addition to the above two-particle dynamics, there will be contributions from experimental

realizations in which the resonant double well has only a single particle. Here, the dynamics is

ne (t) = sin2 (Jt). Writing p1 as the probability of a single particle in a given double well and p2 as

the probability of having two particles, the small-interaction dynamics averaged over all realizations

is hence

ne (t) = (p1 + 2p2) sin2 (Jt)− p2

(
U2

0 + V 2
0 + 2V 2

1

)
t (sin (2Jt)− 2Jt cos (2Jt))

64J
. (3.27)

Noting that p1 + 2p2 = N is the average number, we can subtract the measurements of ne (t) /N

for two different densities with single- and double-occupancy probabilities (p1, p2) and (p′1, p
′
2) and
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numbers N and N ′, respectively, to find

∆[ne (t) /N ] = −
(
p2

N
− p′2
N ′

) (
U2

0 + V 2
0 + 2V 2

1

)
t (sin (2Jt)− 2Jt cos (2Jt))

64J
. (3.28)

In this way we separate the single-particle contrast decay due to a thermal spread in Jn from the

contrast decay due to interactions.

3.7 Relative strength of ee losses for Sr.

As shown in Ref. [51], at the mean-field level the time dependence of the coherence between

the e and g states is affected by both elastic and inelastic processes. Here, we have in mind the

Sr system, for which no eg losses have been measured [50]. While s-wave ee losses with associated

scattering length 46a0 (a0 the Bohr radius) have been measured for colliding particles with an

antisymmetric nuclear spin state [50], these play no role for the nuclear-spin-polarized system we

consider in this work. In the nuclear-spin-polarized case, only ee p-wave losses have a measurable

effect, while elastic p-wave interactions occur in all (ee, eg, and gg) channels. The elastic processes

are characterized by the quantity

Beff = N (C − χ cos θ) , (3.29)

where C and χ were defined in Eq. 3.20. Meanwhile, the inelastic processes are associated with

the decay rate ΓeeNe/2. To estimate the relative effect of losses, we use that Γee/V
ee = β3

ee/b
3
ee,

with b and β elastic and inelastic p-wave scattering parameters, measured to be b3eg = −1693a3
0,

b3ee = −1193a3
0, β3

ee = 1253a3
0, and b3gg = 743a3

0 for Sr [50]. Using typical interrogation conditions

of π/2 pulses in which Ne = N/2, we then find |Beff/(ΓeeNe/2)| = 2.14, approximated as 2 in the

main text.

3.8 Experiment

Here we describe the results of a recent experiment at JILA using fermionic 87Sr to produce

SOC. APK contributed to the theory model used to describe the experiment, but the experiment
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was conducted by the Sr team in the June Ye group, and the remainder of this chapter is adapted

from Ref. [7]. The experiment uses clock spectroscopy to prepare lattice band populations, internal

electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long

lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous

emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved

in situ probing of the SOC band structure and eigenstates. The experimenters utilized these

capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the

transition density of states. The results lay the groundwork for the use of OLCs to probe novel

SOC phases of matter.

When tunneling is allowed, spin-orbit coupling emerges naturally in a nuclear spin polarized

87Sr OLC during laser interrogation of the narrow linewidth 1S0(|g〉) − 3P0(|e〉) clock transition

at wavelength λc = 698 nm (Fig. 3.6a). The lattice used to confine the atoms has a wavelength

λL = 813 nm. At this “magic” wavelength, the band structures of the two clock states are identical

with band energies Enz(q), determined by the discrete band index nz and quasimomentum q in

units of ~/a, where the lattice constant a = λL/2 and ~ is the Planck constant divided by 2π.

When an atom is excited from |g〉 to |e〉 using a clock laser with Rabi frequency Ω and frequency

detuning δ from the clock transition, energy and momentum conservation require a change in atomic

momentum by 2π~/λc.

The resulting Hamiltonian can be diagonalized in quasimomentum space by performing a

gauge transformation |e, q〉nz → |e, q + φ〉nz , where φ = πλL/λc ≈ 7π/6. Fig. 3.6b shows the trans-

formed |g〉 and |e〉 bands for nz = 0, the ground state band, under the rotating-wave approximation

when δ = 0. The transformed SOC Hamiltonian is given by[74]

HSOC = −~
∑
q

~Bnz(q,Ω, δ) · ~S, (3.30)

where the components of ~S are ŜX,Y,Z , the spin-1/2 angular momentum operators for the two clock

states. ~Bnz(q,Ω, δ) is an effective, quasimomentum-dependent magnetic field given by
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~Bnz(q,Ω, δ) =
[
BX
nz(Ω), 0, BZ

nz(q, δ)
]

= [Ω, 0, (Enz(q)− Enz(q + φ))/~ + δ] , (3.31)

where in the tight binding limit E0(q) = −2~J cos(q), and J is the tunneling rate between

nearest neighbor lattice sites. The eigenstates of HSOC are described by Bloch vectors in the X̂-Ẑ

plane, pointing along the magnetic field ~Bnz(q,Ω, δ), with their orientation specified by the chiral

Bloch vector angle θB with respect to the Ẑ axis[74], where

θB = arctan(
Ω

(Enz(q)− Enz(q + φ))/~ + δ
). (3.32)

The q dependence of θB is a manifestation of chiral spin-momentum locking[67, 74]. To connect

this system to related works on synthetic gauge fields[34, 36, 75–79], we can treat the internal

clock transition (|g〉 → |e〉) as a synthetic dimension[66], as shown in Fig. 3.6a. In this case, an

atom following a closed trajectory about a single plaquette (|m, g〉 → |m+ 1, g〉 → |m+ 1, e〉 →

|m, e〉 → |m, g〉) accumulates a phase, given by the same φ defined previously, which resembles the

flux experienced by a charged particle in the presence of an external magnetic field. In this picture,

the chiral Bloch vector angle θB is directly connected to the topological nature of chiral edge modes

of the two-dimensional Hofstadter model[67, 76]. Coupling multiple nuclear spin states with our

synthetic gauge fields should enable the realization of topological bands[37, 75] and exotic phases

in higher dimensions[80].

In the experiment, several thousand nuclear-spin polarized fermionic 87Sr atoms are cooled

and loaded into a horizontal one-dimensional optical lattice aligned along the ẑ-axis with ∼ 2 µK

temperatures. The lattice is formed using a high power (P1 ≈ 3 W) incoming beam focused

down to a beam waist w0 ≈ 45 µm and a strongly attenuated retro-reflection with tunable power

(0 ≤ P2 ≤ 50 mW, Fig. 3.6a). This enables the radial trap frequency to effectively remain constant

at νr ≈ 450 Hz, while Uz can be tuned via P2 over a wide range from Uz/Er = 0 to Uz/Er > 200,

where Er =
~2k2

L
2m is the lattice recoil energy, and m is the atomic mass. This corresponds to axial
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Figure 3.6: Spin-orbit coupling (SOC) in a 1D lattice with tunable tunneling. a, Atoms are
trapped in a 1D optical lattice formed by interfering a strong trapping beam (power P1, wavelength
λL = 813 nm) with a counter-propagating, tunably attenuated retro-reflection (variable power P2,
represented by a cartoon knob). The atoms are probed on the narrow clock transition with an
ultra-stable clock laser (λc = 698 nm, Rabi frequency Ω). The resulting SOC Hamiltonian is
equivalent to that of charged fermions on a synthetic 2D ladder, with horizontal tunneling rate
J , vertical tunneling rate Ω, and a synthetic magnetic field flux φ = πλL/λc. b, The clock laser
couples the dispersion curve for |g〉nz=0 (dashed red line) to the quasimomentum-shifted curve for
|e〉0 (dashed blue line), resulting in spin-orbit coupled bands (solid bichromatic lines). c, Clock
spectroscopy (Ω ≈ 2π × 200 Hz, 80 ms pulse duration) at four axial trapping potentials (data and
fits are shifted upward for clarity). When P2 = 0 mW, the sidebands and carrier merge into a
Doppler broadened Gaussian (red diamonds). The solids lines are theoretical calculations using a
model that perturbatively treats the axial and radial coupling. d, Spectroscopy of atoms in |e〉0,
prepared by driving the |g〉0 → |e〉0 transition, then removing any remaining atoms in |g〉.
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trap frequencies νz ≈ 2Er
√
Uz/Er/2π~ up to ∼ 100 kHz. When νz & 40 kHz, site to site tunneling

takes longer than experimentally relevant timescales and the atoms are effectively localized to single

lattice sites, as is standard in OLC operation[44]. However, for smaller νz tunneling between nearest

neighbor lattice sites is important and occurs at a rate Jnr that depends on the radial mode index

nr. In this regime, atomic motion in the axial direction is described by delocalized Bloch states

characterized by nz and q. For a ∼ 2 µK thermal distribution, the atoms are predominantly in

the nz = 0 axial ground band and completely fill the band. The average radial mode occupation is

〈nr〉 ∼100.

The clock laser is locked to an ultra-stable optical cavity[44] with a linewidth of ∼26 mHz.

Because the clock laser is co-linear with the lattice axis, coupling to the radial motional modes is

suppressed, and for the entirety of this work the system will be treated as quasi-one-dimensional,

with relatively minor corrections arising from the thermal average of the Rabi frequency Ωnr and

the tunneling rate Jnr over the radial mode occupation. For the sake of clarity we therefore drop

the radial mode index from Ω and J . Throughout this work the clock laser Rabi frequency Ω is

measured on resonance with the carrier at δ = 0 with a high axial trapping frequency νz > 50 kHz.

The mean particle number per lattice site was kept in the range N ∼ 1−10, which for the operating

conditions results in a density-dependent many-body interaction rate of Nχ/(2π) . 1 Hz, where

χ is the two-body interaction rate[48]. For the experiments presented here Ω� Nχ, and thus the

results are all well described by a single particle model.

Unlike previous studies of SOC in ultra-cold atoms in which time of flight (TOF) measure-

ments are used to determine the momentum distribution[29, 34, 36, 37, 75, 76, 79, 81, 82], all of the

data presented here is measured in situ using clock spectroscopy[44]. Clock spectroscopy provides

precise measurement and control of the atomic spin and motional degrees of freedom, access to

the atomic density of states, and offers the prospect for real-time, non-destructive measurement

of atom dynamics in the lattice. At the end of each experiment the number of atoms in the |e〉

and |g〉 states are counted using a cycling transition, and the normalized population fraction in

each state is extracted. For example, Fig. 3.6c presents spectroscopy of the carrier and motional
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sideband transitions at four different axial trapping potentials, with the atoms initially prepared in

|g〉0. Here each data point was taken with a new sample of 87Sr at a different clock laser detuning.

At Uz/Er = 43.9 (blue squares) the atoms are strongly confined and the data is well described by

a simple model that neglects tunneling between lattice sites[83]. However, as P2 is turned down

and the trapping potential is reduced to Uz/Er = 5.5 (green circles) the carrier transition exhibits

a broad, sharp splitting, which is no longer consistent with atoms localized to single sites. A model

that perturbatively treats the axial and radial coupling[83] fully reproduces the measured lineshapes

(solid lines).

The narrow |g〉0 → |e〉0 carrier transition centered at δ/(2π) = 0 kHz enables the preparation

of atoms in the |e〉0 state, from which spectroscopy can also be performed, as shown in Fig. 3.6d. Due

to the long lifetime of |e〉 we do not observe spin state relaxation to |g〉 for the time scales explored in

this experiment (< 150 ms). In addition to the carrier transition, motional sidebands corresponding

to axial inter-band transitions are also apparent in Fig. 3.6d. The measured lineshape in this case

is also fully captured by the perturbative model (solid lines). At high trapping potential (blue

squares) the prominent blue-detuned sideband at δ/(2π) ≈ 40 kHz corresponds to the |g〉0 → |e〉1
transition. The corresponding red-detuned sideband at δ/(2π) ≈ −40 kHz is suppressed because the

atoms have been prepared predominantly in the nz = 0 ground band. The inter-band transitions

can also be used to selectively prepare the atoms in specific Bloch bands. For example, in order to

prepare atoms exclusively in the nz = 1 band, a clock laser pulse is applied to the |g〉0 → |e〉1 blue

sideband transition. A strong “clearing” pulse is then applied to remove any remaining atoms in

|g〉, leaving atoms in |e〉 unperturbed. The remaining atoms are thus purified in the nz = 1 Bloch

band, and can be used for further experiments or measurements.

Fig. 3.7 demonstrates the use of selective band preparation to probe the impact of SOC on

the |g〉0 → |e〉0 and |e〉1 → |g〉1 carrier transitions. In Fig. 3.7a, the atoms are initially prepared

in |g〉0, and a π-pulse of the clock laser is applied. At Uz/Er = 63.2 (narrow blue diamonds) the

result is a typical Fourier-limited Rabi lineshape of the |g〉0 → |e〉0 transition. However, as Uz is

reduced (in the regime Uz > Er), the transition begins to broaden and split into two peaks, with the
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Figure 3.7: Van Hove singularities and band mapping. a, Excited state fraction following a π-pulse
(Ω = 2π × 100 Hz) at four axial trapping potentials, with the atoms initially prepared in |g〉0.
The curves are offset in both x and y for clarity. The split peaks at Uz/Er ≤ 13.7 are a result of
divergences in the atomic density of states known as Van Hove singularities (VHSs). b, Ground
state fraction following a Rabi pulse for the same potentials shown in a, with the atoms initially
prepared in |e〉1. The duration of the Rabi pulse was varied to improve population contrast. c,
The splitting between the VHS peaks in the |g〉0 → |e〉0 (purple circles) and |g〉1 → |e〉1 (orange
squares) transition lineshapes as a function of trapping potential, extracted using fits as shown in
a and b. Horizontal error bars are 1-σ standard error estimates from spectroscopy of the axial
sidebands, vertical error bars are 1-σ standard error estimates for the extracted VHS splitting.
The no-free parameter predicted VHS splittings for atoms in the ground and first excited bands
of a 1D sinusoidal lattice (purple and orange dashed lines respectively,) and for a model including
the transverse motional modes and finite atomic temperatures (purple and orange solid lines) are
shown for comparison.
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splitting scaling proportionally to the tunneling rate in the lowest Bloch band, which scales[29] as

J ≈ (4/~
√
π)Er(Uz/Er)

3/4 exp[−2
√
Uz/Er]. As shown in Fig. 3.7b, the same behavior is observed

when the atoms are initially prepared in the |e〉1 state, with the |e〉1 → |g〉1 transition exhibiting

much larger splittings compared to the |g〉0 → |e〉0 transition for the same axial potential.

The split lineshapes of the clock carrier transition at low Uz, which have been theoreti-

cally predicted[74, 84], can be understood by considering the band dispersion curves presented in

Fig. 3.6b. Because the |g〉0 and |e〉0 bands are shifted with respect to each other in quasimomen-

tum by φ, the transition frequency is q dependent. In the tight-binding approximation, the largest

momentum-induced detuning from the bare clock transition frequency is given by ∆ = 4J | sin(φ/2)|,

where 4J is the bandwidth of the nz = 0 ground band, and sin(φ/2) = 0.97 ≈ 1, resulting in an

overall broadening of the transition by 2∆ ≈ 8J . The probability of a transition between the two

bands at a specific q is then determined by the joint transition density of states, which diverges at

saddle points in the energy difference between the band dispersion curves. These divergence points

in the density of states of a crystalline lattice are called Van Hove singularities (VHSs), and are

well known from optical absorption spectra in solids and scanning tunneling microscopy[85, 86].

The measured lineshapes are a convolution of the atomic transition density of states with the Rabi

lineshape for a single atom. In Fig. 3.7a and b, two VHS peaks are visible at δ = ±∆ when ∆ > Ω,

while at higher trapping potentials ∆� Ω and the two VHS peaks merge into the standard Rabi

lineshape.

Optical clock spectroscopy also provides a direct, in situ probe of the Bloch bandwidths, and

thus of the tunneling rate J , through the VHS splitting. We demonstrate the power of this technique

by measuring Rabi lineshapes at a range of axial potentials from Uz/Er = 5.5 to Uz/Er = 63.2, and

fitting a convolution of the joint transition density of states for the SOC bands with the measured

Rabi lineshape at high Uz/Er to extract the VHS splitting (with example fits shown in Fig. 3.7a

and b. The extracted splittings for the |g〉0 → |e〉0 (purple circles) and |e〉1 → |g〉1 (orange squares)

transitions are plotted as a function of trapping potential in Fig. 3.7c. Only splittings for which

the two peaks were resolvable are shown. At Uz/Er = 5.5 the VHS splitting of the |e〉1 → |g〉1
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transition overlapped with the inter-band transitions and the splitting could not be unambiguously

extracted. The no-free parameter VHS splitting anticipated for atoms in a 1D lattice (purple and

orange dashed lines respectively for nz = 0 and nz = 1), as well as the splitting predicted by

the perturbative model (solid lines), are shown for comparison. The origin of the slight difference

between the experimental data and the model prediction in the ground band at lower trapping

potentials may be related to inhomogeneities in the axial trapping potential across the populated

lattice sites, or an incomplete theory description of the transverse/longitudinal coupling.

Just as the spectroscopically resolved sidebands enabled band preparation, the quasimomen-

tum dependence of the clock transition frequency enables the selective preparation and subsequent

manipulation of atoms with particular quasimomenta (Fig. 3.8). Following initialization in the |g〉0
state, a clock pulse with Rabi frequency Ω < 2∆ is applied to the carrier transition with a detuning

|δ∗| ≤ ∆. Only atoms with quasimomenta in a window centered around q∗ ≈ arccos (δ∗/∆) with

a width bounded by 2πΩ/∆ will be excited to |e〉0, while atoms with quasimomenta outside this

window will be left in |g〉. A strong “clearing” pulse is applied to remove atoms in |g〉, leaving

only the atoms in |e〉0 with quasimomenta in the window centered around q∗. Following a variable

wait time t, a second π-pulse is used to measure the lineshape. If the lattice is tilted with respect

to gravity, during the wait time the atoms will undergo Bloch oscillations[87], with their quasimo-

menta evolving as q(t) = qo + νBt, where qo is the initial quasimomentum of the atom, and the

value of q(t) is restricted to the first Brillouin zone. The Bloch oscillation frequency νB is given

by νB = (mgλL sin(θL))/(4π~), where g is the acceleration due to gravity, and θL is the angle of

tilt of the lattice. In this in situ observation of Bloch oscillations in a tilted lattice[88], the highly

asymmetric lineshapes oscillate back and forth as the quasimomenta cycles through the Brillouin

zone at a frequency of νB = 14 Hz, corresponding to a lattice tilt of θL = 16 milliradians.

We characterize the q dependence of the chiral Bloch vector angle θB (Eq. 3.32) using the

same quasimomentum selection technique used to observe Bloch oscillations. For these measure-

ments the lattice tilt was adjusted to minimize νB ≤ 3 Hz, with θL ≤ 3.5 milliradians. As shown

in Fig. 3.9a, atoms are prepared in |e〉0 with quasimomenta q∗. In five separate experiments q∗
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Figure 3.8: Bloch oscillations. (Lower right inset,) The split Rabi lines shown in Fig. 2a,b enable
the spectral selection of atoms with a particular quasimomentum q∗. A π-pulse (Ω = 2π× 100 Hz)
tuned to the left Van Hove peak is applied (red arrow) and the remaining ground state atoms are
removed. (Upper left inset,) In a lattice tilted with respect to gravity, the atoms initially prepared
with corresponding q∗ ≈ π (red arrow) undergo Bloch oscillations. (Main figure,) Following a
variable wait time t from the end of the first π-pulse, a second π-pulse is applied, revealing a highly
asymmetric lineshape (first blue curve at 25 ms). The atoms undergo Bloch oscillations, resulting
in periodic oscillations of the lineshape as the waiting time between the first and second pulse is
varied. The curves are offset in both x and y for clarity.
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is varied using a range of detunings δ∗ spanning the two VHS peaks (colored arrows). A strong

Rabi pulse of duration τ is applied with detuning δ corresponding to the right VHS peak (red

star), generating SOC with the corresponding q∗-dependent chiral Bloch vector (pointing along the

direction of the effective magnetic field ~Bnz(Ω, q, δ)) shown in Fig. 3.9b, and with the SOC band

structure shown in Fig. 3.9c. In Fig. 3.9d, the resulting population fraction in |e〉 for each prepared

q∗ (with corresponding color coding) is plotted as a function of the evolution time τ . The dynamics

are entirely captured by the q∗-dependent spin precessions about the chiral Bloch vectors depicted

in Fig. 3.9b. The theoretical calculations involve no free parameters and use only the experimental

values of δ∗, δ, νB, and Ω (colored solid lines in Fig. 3.9c). The dephasing of the spin precession

at longer τ is well described by the known initial distribution of quasimomenta q∗, and could be

mitigated by reducing the Rabi frequency used for the q∗ selection with respect to the VHS splitting

2∆, at the cost of reduced signal to noise ratio due to the smaller number of atoms selected. In

the inset of Fig. 3.9d we plot the corresponding extracted chiral Bloch vector angle |θB| for each

initial pulse detuning as a function of prepared quasimomenta q∗. Because there exists a one-to-

one correspondence between the topological chiral edge modes of the two-dimensional Hofstadter

model[77, 78] and the energy bands and eigenstates of the synthetic ladder[67, 76] shown in Fig. 3.6a,

the q∗ dependence of |θB| that we measure spectroscopically is a direct manifestation of the well-

defined chirality of the edge states of the Hofstadter Hamiltonian. The presence of spin-momentum

locking in the ladder eigenmodes has been previously observed using TOF[34, 36, 37, 66, 75, 76, 80].

3.8.1 Measurement protocol

To load the optical lattice, 87Sr atoms are cooled with two sequential 3D magneto-optical-

traps (MOTs), the first using the strong 1S0 →1P1 transition (461 nm), and the second using the

narrower 1S0 →3P1 transition (689 nm). Following the second MOT, the atoms are sufficiently

cold and dense to be trapped in the optical lattice. Once in the lattice, the atoms are first nuclear

spin-polarized, and then further cooled using axial sideband and radial doppler cooling on the 689
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Figure 3.9: Rabi measurements of the chiral Bloch vector. a, Atoms are selectively prepared in
a quasimomenta window using a π-pulse (Ω = 2π × 10 Hz,) with five different pulse detunings
(colored arrows). An axial potential of Uz/Er = 15.6 is used, resulting in ∆/(2π) ≈ 67 Hz. A
second stronger Rabi pulse (Ω = 2π×100 Hz) tuned to the right Van Hove peak is used to generate
SOC (red star). b, The chiral Bloch vectors corresponding to the detunings in a are shown, along
with the clock state spin precession for each vector. c, The SOC band structure experienced by the
atoms during the second pulse, with each quasimomenta window color coded to match the detunings
in a. The selection windows overlap, with the width of each window only intended to illustrate
their relative values. d, Excited state fraction as a function of duration of the second pulse for the
five initial pulse detunings shown in a (data points), along with the no-free parameters dynamics
predicted by a semi-classical model (colored solid lines). (Inset,) Corresponding extracted chiral
Bloch vector angle for each quasimomenta window centered at q∗.
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nm transition.

At the end of each experiment the population of the |g〉 state is measured by driving the

atoms on the 461 nm cycling transition and counting the emitted photons. After 5 ms all |g〉 atoms

have been heated out of the lattice, at which point the atoms in |e〉 are optically pumped into

the |g〉 state and are counted in the same manner. A 5 ms long 461 nm pulse is also used as the

“clearing” pulse to remove ground state atoms in the protocols used for preparing atoms in specific

bands and with select quasimomenta.

3.8.2 Characterization of the trapping potential

The cylindrically symmetric trapping potential experienced by an atom at position z along

the axis of propagation of the lattice beams and a distance r from the center of the beams is given

by

V (r, z) = −
(
Vconst + Uz cos2 (kLz)

)
e−2r2/w2

0 , (3.33)

where Vconst = α (λL)
(
P1 + P2 − 2

√
P1P2

)
/(πε0cw

2
0), Uz = 4α (λL)

√
P1P2/(πε0cw

2
0), kL = 2π/λL,

ε0 is the permittivity of free space, c the speed of light, and α (λL) is the AC polarizability eval-

uated at λL. Because P1 � P2, to first order the trapping potential in the radial direction is

proportional to Vconst ∝ P1, while the periodic axial trapping potential Uz ∝
√
P1P2. In contrast

to prior experiments that generate synthetic gauge fields by periodically shaking the optical lattice

potential[89–91], here the lattice potential is kept constant, and it is the probing laser itself that

induces the SOC.

3.8.3 Band preparation

In Fig. 3.10, we demonstrate how the inter-band transitions can be used for band preparation.

Fig. 3.10a shows spectroscopy of the carrier and inter-band transitions from the initial |g〉0 state.

In order to prepare atoms exclusively in the nz = 1 band, a clock laser pulse is applied to the

|g〉0 → |e〉1 blue sideband transition, which is at a detuning δ/2π ≈ νz − Er/2π~ = 35 kHz for
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Figure 3.10: Band preparation. (a) Spectroscopy of the carrier and inter-band transitions from the
initial |g〉0 state. In order to prepare atoms exclusively in the nz = 1 band, a clock laser pulse is
applied to the |g〉0 → |e〉1 blue sideband transition, which is at a detuning δ/2π ≈ νz − Er/2π~ =
35 kHz for Uz/Er = 30.5. A strong “clearing” pulse is then applied to remove any remaining
atoms in |g〉, leaving atoms in |e〉 unperturbed. The remaining atoms are thus purified in the
nz = 1 Bloch band, and can be used for further experiments or measurements. (b) Spectroscopy of
the sidebands following this protocol, with the anharmonicity of the band spacing resulting in an
unequal frequency spacing between the |e〉1 → |g〉2 and |e〉1 → |g〉0 sideband transitions about the
|e〉1 → |g〉1 carrier transition.
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Uz/Er = 30.5. A strong “clearing” pulse is then applied to remove any remaining atoms in |g〉,

leaving atoms in |e〉 unperturbed. The remaining atoms are thus purified in the nz = 1 Bloch

band, and can be used for further experiments or measurements. Fig. 3.10b shows spectroscopy of

the sidebands following this protocol, with the anharmonicity of the band spacing resulting in an

unequal frequency spacing between the |e〉1 → |g〉2 and |e〉1 → |g〉0 sideband transitions about the

|e〉1 → |g〉1 carrier transition. The transitions out of |e〉0 from Fig. 1d in the main text are shown

for comparison. In contrast to prior experiments[92, 93] no band relaxation has been observed

out of the |e〉1 state over a waiting time greater than 500 ms, due to the dilute atomic conditions

achieved in the current experiment.

3.8.4 Measurements of axial heating and loss rates

The axial heating rate in our lattice was measured using spectroscopy of the axial motional

sidebands. The atoms were prepared in |e〉0, and the clock laser was applied on resonance with the

carrier transition for a variable wait time of up to 155 ms. The atoms in |g〉 were removed with a

clearing pulse, and spectroscopy of the remaining atoms in |e〉 was performed. The axial sideband

asymmetry was then used to determine the temperature and heating rate. The measurement was

performed in both the strong confinement (Uz/Er ≈ 200) and tunneling allowed (Uz/Er ≈ 10)

regimes. In both cases, the results were consistent with no axial heating over the 155 ms wait

time. This is consistent with previous measurements of the temperature dependence of the clock

transition coherence20.

The loss rates out of |e〉 were measured by preparing the atoms in |e〉0, leaving the atoms in

the dark for a variable wait time of up to 1.5 s, and then counting the number of atoms in the |e〉

and |g〉 states. Loss of atoms due to inelastic p-wave e− e scattering was observed with a density

dependent loss rate consistent with previous measurements[52]. For the atomic densities used in

this work, the measured loss rate corresponded to ∼ 1.5 s−1, and thus did not have an impact on the

measurements presented here due to their shorter timescales. For future many-body experiments

with higher desired densities, the temperature can be lowered by loading the lattice from a Fermi-
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degenerate gas26, and the inelastic p-wave e − e collisions will be significantly suppressed. An

additional one body loss rate of ∼ 0.2 s−1 was observed, consistent with the vacuum limited

lifetime in the chamber. Finally, a |e〉 → |g〉 spin flip rate of ∼ 0.1 s−1 was observed, consistent

with previously measured two-photon Raman scattering from the lattice light via the 3P1 state[94].

While this spin-flip rate is entirely negligible for the measurements presented here, it may set a

limit on future SOC experiments, potentially requiring a different lattice geometry.

3.8.5 Perturbative model

For the current experimental temperatures and loading conditions, to an excellent approxi-

mation, we can treat the coupling between the axial and radial degrees of freedom perturbatively

and expand Eq. (3.33) up to second order in r:

V (r, z) = Vz(z) + Vr(r) + ηVcoupl(r, z) +O
(
r4
)

(3.34)

with Vz(z) = −Uz cos2 (kLz), Vr(r) = mω2
rr

2/2, and Vcoupl(r, z) = −Vr(r) sin2 (kLz). Here,

ωr = 2
√

Uz+Vconst

mw2
0

, m is the atom mass, and η = Uz
Uz+Vconst

is an expansion parameter. To

zeroth order in η the Hamiltonian is separable in the r and z coordinates. In this limit the

radial eigenfunctions are harmonic oscillator functions, 〈r|nr, υ〉 = φnr,υ (r) with eigenenergies

Enr,υ = ~ωr (|υ|+ 2nr + 1) parameterized by the radial quantum number nr = 0, 1, . . . , and

the azimuthal quantum number −nr ≤ υ ≤ nr. The axial eigenfunctions are Bloch functions,

〈z|nz, q〉 = ψnz ,q (z) with a band structure Enz(q). For the cosinusoidal potential in consideration

the latter can be obtained analytically in terms of the even and odd Mathieu functions, ψnz ,q =

MathieuC[a(q, Uz/(4Er)), Uz/(4Er), z] + iMathieuS[a(q, Uz/(4Er)), Uz/(4Er), z] and Enz(q)/Er =

a(q, Uz/(4Er)), where the parameter a is the characteristic Mathieu value and for suitably chosen

nz-dependent ranges of q.

Treating Vcoupl(r, z) using first order perturbation theory in η yields the energies:

Enz ,nr,υ(q) = Enr,υ + Enz(q)−
1

2
ηEnr,υ〈nz, q| sin2 (kLz) |nz, q〉. (3.35)
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This expression generalizes the one obtained by Blatt et al. 20 in the deep lattice limit to include

quasimomentum dependence of the energies and beyond-lowest-order anharmonic effects in the

axial dimension. We note that one can also analytically compute the first order corrections in terms

of the unperturbed band energies using the Feynman-Hellman theorem, 〈nz, q| sin2 (kLz) |nz, q〉 =(
1
2 + ∂Enz (q)

∂Uz

)
. This term has both q−independent and q−dependent components. The former lead

to thermally-dependent shifts of the mean band energies, and the latter gives a renormalization of

the tunneling rate which depends on the radial temperature. We have explicitly checked the validity

of the perturbative energy expression by numerically finding the exact eigenstates of Eq. (3.33) [65].

3.8.5.1 Lineshape evaluation

To evaluate the lineshapes we perform a thermal average using Boltzmann distributions with

radial and axial temperatures Tr and Tz, respectively. The contribution to the lineshape from the

`th axial sideband, assuming atoms are initially populating the `0 band and internal state α = ±

(here + is for g and − is for e), is:

P±` =
∑

nz ,nr,υ,q

qz(`0, nz, q)qr(`0, nr, υ)

Zr(`0)Zz(`0)

∣∣∣∣∣ Ωnz ,`,q

Ω±eff
nz ,`,q,nr,υ

∣∣∣∣∣
2

sin2

[
t

2
Ω±eff
nz ,`,q,nr,υ

]
(3.36)

where Ω±eff
nz ,`,q,nr,υ

≡
√
|Ωnz ,`,q|2 + (±δ − (Enz+`,nr,υ(q + φ)− Enz ,nr,υ(q))/~)2 is the effective Rabi

frequency, Ωnz ,`,q ≈ Ω〈nz + `, q + φ|ei2πz/λc |nz, q〉 the Rabi frequencies and Ω the “bare” Rabi

frequency. Note that in the regime where the tight binding approximation is valid (i.e. not very

shallow lattices) Ωnz ,`,q is a slowly varying function of q. On the other hand, it has a strong

dependence on ` and for |`| > 0 it is suppressed by the Lamb-Dicke parameter ηLD = kL

√
~

2ωzm
,

resulting in an effective Rabi frequency for the first sidebands, ` = ±1, that is approximately an

order of magnitude below that of the carrier.

We have also introduced the Boltzmann factors qz(`0, nz, q) ≡ exp [−βz (Enz+`0,0,0(q)− E`0,0,0(0))]

and qr(`0, nr, υ) ≡ exp
[
−βr

∑
q′ (Enz+`0,nr,υ(q′)− Enz+`0,0,0(q′)) /L

]
with βz,r = 1/kBTz,r and L

the total number of lattice sites. Zr(`0) =
∑

nz ,q
qz(`0, nz, q) and and Zr(`0) =

∑
nr,υ

qr(`0, nr, υ)

are the radial and axial partition functions.
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There are three leading mechanisms that lead to broadening of the lineshape. One arises from

the thermal population of different quasimomentum states combined with the finite momentum

transfer by the probe laser when interrogating the clock states. This type of motion-induced

broadening, which is a direct signature of the spin-orbit coupling mechanism, is the lattice analogue

of Doppler broadening 21, generally discussed in the spectra of free particles. For the lattice

case, instead of plane waves carrying specific momentum, one needs to think about Bloch waves

described by two quantum numbers, the quasi-momentum and band index. The second broadnening

mechanism is power broadening arising for strong Rabi pulses. For our spectroscopic parameters

only the carrier transition is affected by it. The last source of broadening is the coupling between

the radial and axial degrees of freedom, and thus is strongly determined by the trapping frequencies

and radial temperature. At short probing times (less than π pulses), this type of broadening in the

carrier transition can be characterized by using a temperature dependent tunneling rate as we will

explain below. For the sidebands, axial-radial coupling is the leading broadening mechanism20 and

it has been shown that it is well captured by the perturbative approach.

However, the first-order perturbative approach neglects the radial dependence of the Rabi

frequencies and radial sideband transitions induced by the laser. As discussed in detail in Ref. [20],

the omitted higher order terms can lead to a dephasing of the coherent oscillations in P±` at times

long compared to a π-pulse and induce additional broadening of the sideband spectra. Nevertheless,

those effects can be accounted for by using an effective radial temperature, which we used as an

effective fitting parameter, and by performing for the case of long probe times a time-average of

Eq. (3.36), which yields

P̄±` =
1

2

∑
nz ,nr,υ,q

qz(`0, nz, q)qr(`0, nr, υ)

Zr(`0)Zz(`0)

∣∣∣∣∣ Ωnz ,`,q

Ω±eff
nz ,`,q,nr,υ

∣∣∣∣∣
2

. (3.37)

The clock spectroscopy shown in Fig. 1c was taken by applying the clock laser at high power

(Ω = 2π× 200 Hz) and for many Rabi periods (during 80 ms) and thus we used Eq. 3.37 to model

the experiment and treated the radial temperature as a fitting parameter. The radial temperatures

that provided the best fit varied between 7 − 9 µK and thus were higher than the experimentally
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measured radial temperatures through motional spectroscopy of the sidebands, consistent with

previous detailed studies of the sideband lineshapes20.

For the carrier transition the dominant decoherence mechanism arising from radial sideband

transitions manifests at long probing times as dephasing. The perturbative model, Eq. 3.36 with

l = 0, does an excellent job for pulses shorter than a π pulse. However, for the longer pulse

employed (panel e), the perturbative theory captures only the width of the lineshape and not its

amplitude.

3.8.5.2 Theoretical fit function to extract the VHS splittings

The coupling between the radial and axial degrees of freedom can be accounted for in

the carrier lineshape by defining an effective thermally averaged tunneling rate. In the regime

where the tight binding approximation is valid, 〈∆Enz ,nr,υ(q)〉 ≡ 〈Enz ,nr,υ(q + φ)− Enz ,nr,υ(q)〉 ≈

−2~JTrnz (cos(q + φ)− cos(q)), where 〈•〉 denotes radial thermal averaging, and nr and υ the radial

and azimuthal harmonic oscillator mode numbers. Thus one can replace the effective Rabi coupling

Ω±eff
nz ,`,q,υ

for the carrier (` = 0),

Ω±eff
nz ,0,q,nr,υ

→ Ω±eff
nz (q) =

√
Ω2
nz ,0,q

+
(
±δ + 4JTrnz sin(φ/2) sin(φ/2 + q)

)2
, (3.38)

where JTrnz is the thermally averaged tunneling rate, and Ωnz ,`,q is the Rabi coupling for the `th axial

sideband. Even when the tight-binding approximation no longer holds, we can reproduce the VHS

splittings by matching the thermally averaged bandwidth, computed from the analytic expression

for the perturbative energies given above, to the tight-binding expression, maxq〈∆Enz ,nr,υ(q)〉 −

minq〈∆Enz ,nr,υ(q)〉 = 8~JTrnz sin(φ/2). This expression, together with the approximation that all

atoms are initially in the `0 = 0, 1 band and that ~JTr`0 � kBTz, is used to fit the carrier lineshapes

shown in Fig. 2 by convolving the resulting Rabi lineshape with the joint transition density of states

D`0,Tr :

P̄±0 ≈ 1

4π

∫ π

−π
dq

∣∣∣∣∣ Ω`0,0,0

Ω±eff
`0

(q)

∣∣∣∣∣
2

=
1

2

∫ |4JTr`0 sin(φ/2)|

−|4JTr`0 sin(φ/2))|
dεD`0,Tr(ε)

Ω2
`0,0,0

Ω2
`0,0,0

+ (±δ − ε)2 (3.39)
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where

D`0,Tr(ε) =


1√

(4JTr`0
sin(φ/2))2−ε2

−|4JTr`0 sin(φ/2)| ≤ ε ≤ |4JTr`0 sin(φ/2)|

0 otherwise

. (3.40)

When fitting this function to the split line data of the type shown in Fig. 2a,b to extract the

VHS splitting plotted in Fig. 2c, the only free parameters used are a single parameter for the

thermally averaged tunnel coupling J , and an additional parameter for the amplitude of the split

line. The amplitude is only required as a free parameter when a pulse longer than a single π-pulse

is used to increase the excitation fraction. The no free-parameters theory predictions plotted in

Fig. 2c were generated by applying the perturbative model to measured spectra of the motional

sidebands at each axial trapping potential. As mentioned above, the radial temperatures used for

the perturbative model varied between 7− 9 µK.

3.8.5.3 Chiral Bloch vector dynamics

To model the chiral Bloch vector dynamics, the Rabi oscillations measured after preparing

the atoms within a window of quasimomenta centered around q∗ and width ∆q are expressed as,

P̄+
0 (q∗) =

1

∆q

∑
qε∆q

∣∣∣∣∣ Ω0,0,0

Ω+eff
0 (q∗ + ∆q)

∣∣∣∣∣
2

sin2

[
t

2
Ω+eff

0 (q∗ + ∆q)

]
. (3.41)

To model the window, we simulate the atom preparation using a π-pulse (Ω = 2π×10 Hz) with five

different initial pulse detunings δ∗. Because the Rabi frequency and tunneling rates are comparable,

the window is relatively broad, and this results in dephasing of the quasimomenta-dependent Rabi

oscillations shown in Fig. 4d when a second, stronger Rabi pulse is applied. For the theory lines

presented in Fig. 4, we set ∆ = (4JTr`0 sin(φ/2)) = 2π× 67 s−1 and ∆q ∼ L/2.

3.9 Summary

We have described approaches to implement and probe SOC and its interplay with s- and

p- wave interactions in OLCs. These open the unique opportunity of exploring, for the first time,
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a controllable interplay of interactions, spin-orbit coupling, and non-trivial topology in regimes

where a complete theoretical treatment can also be performed. While the described protocols work

at the temperatures achievable in current OLCs, their sensitivity and applicability are expected

to significantly improve when operating the clock in the quantum degenerate regime. Moreover,

if nuclear spins are included, they can open a window for the investigation of SOC with SU(N)-

symmetric collisions [95].

We described the recent experimental implementation and characterized SOC and a synthetic

momentum-dependent magnetic field with fermions in an OLC. The experiment observed clean

experimental signatures of SOC physics at µK temperatures without cooling to Fermi degeneracy,

and observed no decoherence or heating at timescales of hundreds of milliseconds. The recent

realization of a Fermi-degenerate 3D OLC[96] opens a window to the implementation of two and

three-dimensional SOC, tuning of the SOC phase φ, and the lower temperatures required for the

preparation of novel many-body states[37, 75, 97]. While this experiment focused entirely on single

particle physics, many-body correlations and SU(N) symmetry have been previously observed in

Refs. [48, 50], offering exciting prospects for studying the interplay between SOC and interactions

in higher synthetic dimensions



Chapter 4

Single Particle Spin Dynamics in a Magnetic Field Gradient

4.1 Introduction

Understanding spin transport in quantum systems is central to many fields of physics and

can have important applications for the development of quantum technologies. Recently there has

been much experimental progress studying spin diffusion [9–11, 17, 98–102] and spin segregation

dynamics (time-dependent separation of the spatial distributions of the spin components) [13–

15, 103–106] in trapped atomic gases. A typical experimental protocol consists of preparing a

transversely spin-polarized gas and then observing the spin relaxation dynamics under the influence

of a magnetic field gradient. For instance, Ref. [10] measured the demagnetization timescale in a

constant magnetic field gradient and determined the spin diffusion constant. Similarly, Ref. [14]

measured the segregation of the spin populations in a magnetic field gradient with linear spatial

dependence. Although the goal of the experiments is to understand the many-body interacting

spin dynamics, it is important to have a clear understanding of the non-interacting physics and

how the spin-motion coupling alone affects the spin demagnetization. A thorough analysis of the

non-interacting system will help provide the foundation necessary for understanding the complex

spin dynamics induced by the interplay between interactions and motional effects.

In this chapter we provide analytic expressions for the demagnetization exhibited by a har-

monically trapped and non-interacting spin-1/2 Fermi gas at both zero and finite temperatures.

We study the spin dynamics with and without a spin-echo pulse and in the presence of magnetic

field gradients with constant or linear spatial dependence. The spin dynamics is oscillatory, and
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depends on details of the differential motion of the spin components. In the case of a constant gra-

dient (magnetic field that varies linearly with position), the atoms oscillate at the trap frequency

but in opposite directions along the gradient depending on their spin projection. We show that

this periodic motion gives rise to a fast demagnetization but not to a net spin rotation. In the case

of a linear gradient (magnetic field that varies quadratically with position), the spin components

breathe at different rates and with different magnitudes, the dynamics is not periodic with the trap

frequency, and the spin dynamics involves both a demagnetization and a net rotation of the collec-

tive spin. Since the harmonic oscillator Hamiltonian is symmetrical with respect to exchange of x̂

and p̂ in oscillator units, these magnetic field gradients can also be interpreted as a one-dimensional

spin-orbit coupling ∝ σ̂Z p̂ [107, 108]; the results presented in this chapter also hold for quenches of

such a spin-orbit coupling term.

In the non-interacting limit our analysis reveals that the transverse magnetization decays

with a rate that grows with increasing particle number and temperature. The observed fast de-

magnetization rate at short times reflects the fact that samples with a large number of fermions

occupy high harmonic oscillator modes that are widely spread across the trap and experience strong

gradients. We also find that the spin-motion coupling cannot be removed by a spin-echo pulse, and

such a pulse can instead lead to an enhanced decay rate of the magnetization of the gas. In unitary

Fermi gas experiments this fast motion-induced demagnetization is suppressed at short times by

interactions which instead lead to a diffusive decay of the magnetization.

This chapter is organized as follows: In Sec. 4.2 we present and discuss the spectroscopic

protocol under consideration. In Sec. 4.3 and Sec. 4.4 we present the constant and linear gradient

cases, respectively. In each of these sections we derive analytic expressions for the single particle

dynamics and then formulate the spin dynamics of the many-particle system at finite temperature

in terms of these expressions. We derive expressions for the dynamics both in the presence and

absence of a spin-echo pulse and discuss experimental considerations. In Sec.4.5 we discuss how

to implement these results in three dimensions and use them to model experimental data from the

University of Toronto Ultracold Atoms group. Finally, in Sec.4.6, we finish with an outlook and
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conclusions.

4.2 Spectroscopic Protocol

We begin by considering a single spin-1/2 particle of mass m confined in a one-dimensional

harmonic trap with trapping frequency ω – results for ensembles of atoms are later calculated

from sums over single particle dynamics. The spin dynamics is probed using Ramsey spectroscopy:

at t = 0 the particle is prepared in an eigenstate of the harmonic trap and with spin |↓〉. The

spin of the particle is then rotated toward the X-axis by applying a resonant pulse with area θ1.

Next, a position-dependent magnetic field BZ(x) pointing along Z is suddenly turned on, and the

particle then evolves freely in the presence of the magnetic field for a dark time t, after which spin

observables are measured.

Here, we focus on the case of Ramsey spectroscopy with an initial pulse area θ1 = π/2 that

rotates the initial state to point along X (transverse direction). We also assume that the pulse

has zero detuning from the atomic transition (δ = 0). However, the results that follow are easily

generalized to arbitrary θ1 and finite detuning.

During the dark time the particle feels a potential

V̂ (x) = V̂ (x) + V̂ (y, z)

V̂ (x) =
1

2
mω2x2 + ∆µBZ(x)σ̂Z , (4.1)

where ∆µ is the differential magnetic moment between the two spin states and σ̂Z is the usual

Pauli operator. Along the y and z directions the potential is assumed to be spin-independent. The

dark time evolution of the state of the particle can be written as

|Ψ(x, t)〉 = ψ↑(x, t)| ↑〉+ ψ↓(x, t)| ↓〉. (4.2)

Due to the separability and the spin independence of the V̂ (y, z) potential, if the system is prepared

in an eigenstate of y and z, it will remain in that eigenstate and thus the dynamics is effectively

one-dimensional. Because of this, we will restrict our analysis to the x dimension.
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We focus on the collective observable Ŝ+ = ŜX + iŜY , where Ŝα are the spin angular mo-

mentum operators. The expectation value of Ŝ+ takes the form of an integrated density

〈Ŝ+〉 =
1

2

∫
dxψ∗↑(x, t)ψ↓(x, t)

≡ 1

2
|A(t)|ei∆ν(t)t . (4.3)

Here the Ramsey fringe contrast C(t) ≡ |A(t)|/|A(0)|, is related to the overlap of the ψ↑(x, t) and

ψ↓(x, t) wavefunctions. The decay of the contrast is a measure of demagnetization. The frequency

shift ∆ν(t) measures the dynamical phase difference between the spins and gives rise in this case

to a net motionally-induced precession of the total magnetization. Throughout we set ~ = 1.

4.3 Linear Magnetic Field

First we consider the case of a magnetic field with linear spatial dependence BZ(x) = Bx/∆µ

whereB is a constant with units of energy/length. Adding a linear potential to a harmonic potential

results in a new harmonic potential with the same frequency but shifted in opposite directions for

each of the two spin states. The potential is

V̂ (x) =
1

2
mω2(x+ σ̂Zx0)2 − 1

2
mω2x2

0 . (4.4)

Here, aH =
√

1/mω is the oscillator length and x0 =
Ba2

H
ω is the displacement of the oscillator

resulting from the magnetic field.

It is well known that the displaced ground state of a harmonic oscillator evolves with a

probability distribution of constant shape but oscillating centroid, |ψ0(x, t)|2 ∝ e−(x−x0(1−cos(ωt))2

[109]. A similar result can be derived for any eigenstate n. Namely, given a solution φ(x, t) to the

time-dependent Schrödinger equation,

ψ(x, t) := D̂
(
z0e
−iωt)φ(x, t), (4.5)

is also a solution to the time-dependent Schrödinger equation. The displacement operator is given by

D̂(w) ≡ exp
(
wâ† − w∗â

)
and z0 is any complex number, corresponding to an initial displacement in
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the position-momentum phase space [109]1 . This result allows us to calculate dynamics analytically

and write the time evolution of an initial eigenstate as (See Appendix A):

ψn (x, t) = e
−i(n+ 1

2)ωt+i
x2
0

a2
H

( 1
2

cos(ωt) sin(ωt)−sin(ωt))

× e−iσx0 sin(ωt)x/a2
Hφn

(
x+ σx0 (1− cos (ωt))

aH

)
, (4.6)

where σ is the eigenvalue of σ̂Z . In Fig. 4.1(a), we plot the time evolution of the spin density in

the Z-direction, 〈ŜZ(x, t)〉 = 1
2

(
|ψ↑(x, t)|2 − |ψ↓(x, t)|2

)
, for a single particle initially in the ground

state of the harmonic oscillator, calculated using Eq. 4.6. The | ↑〉 and | ↓〉 densities maintain their

same shape but oscillate about their respective equilibrium positions at the trap frequency.

4.3.1 Derivation of generalized coherent-state formula

Consider Ĥ = p̂2

2m + mω2x̂2

2 = ω
(
â†â+ 1

2

)
and suppose that |φ〉 is a solution to the (time-

dependent) Schrödinger equation. We now show that |ψ〉 := D̂
(
z := z0e

−iωt) |φ〉 is also a solution,

where D̂ is the phase-space displacement operator D̂(w) = exp
(
wâ† − w∗â

)
and z0 is any complex

number, corresponding to the initial displacement in phase space.

Observing that [â, D̂(z)] = zD̂(z) and [â†, D̂(z)] = z∗D̂(z), we have

[Ĥ, D̂(z)] = ω
(
zâ†D̂(z) + z∗D̂(z)â

)
= ω

(
zâ† + z∗â− z∗z

)
D̂(z).

(4.7)

Noting also that ż = −iωz, ż∗ = iωz∗, we have from the Baker-Campbell-Hausdorff formula,

∂

∂t
D̂(z) =

∂

∂t

(
ezâ
†
e−z

∗âe−z
∗
0z0/2

)
= −iωzâ†D̂(z) + ezâ

†
(−iωz∗â)e−z

∗âe−z
∗
0z0/2

=
(
−iωzâ† − iωz∗â+ iωz∗z

)
D̂(z),

(4.8)

1 Note that the displacement operator D̂(w) depends on the boson operators â which diagonalize the Hamiltonian
at times t > 0
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(a) (b) 

Figure 4.1: Dynamics of spin observables in a linear magnetic field with x0 = aH . (a) 〈ŜZ(x, t)〉 =
1
2

(
|ψ↑(x, t)|2 − |ψ↓(x, t)|2

)
shows the spin up/down densities oscillating in their traps centered at

x = ∓x0. (b) Magnitude of 〈Ŝ+(x, t)〉, which measures the magnetization at point x. The magne-
tization decays when the spin up/down densities are separated.

since [ezâ
†
, â] = −zezâ† . Thus

i
∂|ψ〉
∂t

= ω
(
zâ† + z∗â− z∗z

)
D̂(z)|φ〉+ D̂(z)

(
i
∂|φ〉
∂t

)
= [Ĥ, D̂(z)]|φ〉+ D̂(z)Ĥ|φ〉

= ĤD̂(z)|φ〉 = Ĥ|ψ〉.

(4.9)

4.3.2 Spin dynamics

We now use the above results to determine the spin dynamics for a single particle. Assuming

that the particle begins in the nth harmonic oscillator mode at time t = 0, we find

〈Ŝ+〉 =
1

2
exp

(
−2

x2
0

a2
H

(1− cos(ωt))

)
×Ln

(
4
x2

0

a2
H

(1− cos(ωt))

)
, (4.10)

where Ln is the nth Laguerre polynomial.

We see that the contrast is suppressed exponentially with increasing x0. This is caused by the

exponential suppression of the overlap integral between the spatial wavefunctions of the ↑ and ↓ spin

states. As they move apart under the influence of their different potentials, the overlap decreases

as a consequence of the wavepackets’ Gaussian spatial localization, see Fig. 4.1(b). The contrast

is periodic in time with period 2π/ω, due to the periodic motion of the two spin wavefunctions in
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the trap. We also see that there is no frequency shift for the case of a linear magnetic field and the

direction of the magnetization remains along Y . The two spin states, while displaced in position,

experience harmonic potentials of the same frequency, so they have the same dynamical phase.

We now consider the dynamics of an ensemble of non-interacting fermions with this same

protocol. An ensemble at zero temperature, initially spin-polarized, forms a Fermi-degenerate gas

with all oscillator modes filled from n = 0 to n = N − 1, with N the number of particles. Here, we

find

〈Ŝ+〉f.d. =
N−1∑
n=0

〈Ŝ+〉n

=
1

2
e
−2

x2
0

a2
H

(1−cos(ωt))
N−1∑
n=0

Ln

(
4
x2

0

a2
H

(1− cos(ωt))

)

=
1

2
e
−2

x2
0

a2
H

(1−cos(ωt))
L1
N−1

(
4
x2

0

a2
H

(1− cos(ωt))

)
, (4.11)

where Lab (x) is the associated Laguerre polynomial and we have used the addition formula for

Laguerre polynomials
∑n

m=0 L
(a)
m (x)L

(b)
n−m (y) = L

(a+b+1)
n (x+ y). The contrast decay per particle

at short times is given by

C (t) /N = 1− EF
x2

0

a2
H

ωt2 +O
(
t4
)
, (4.12)

with EF = kBTF = Nω the Fermi energy of the gas, kB is the Boltzmann constant, and TF

the Fermi temperature. Hence, the decay of the contrast per particle increases extensively as the

number of particles increases.

For an ensemble at non-zero temperature, the associated Fermi-Dirac sums cannot be eval-

uated exactly, but can be approximated by energy integrals with a constant density of states to

yield a formula for the short-time contrast decay per particle:

C (t) /N = 1− 2Ē
x2

0

a2
H

ωt2 +O
(
t4
)

Ē ≈ 1

6Nωβ2

[
π2 + 3 ln(eβNω − 1) + 6Li2

(
1

1− eβNω
)]

,

(4.13)
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where β = 1/kBT , T the temperature and Lis (x) is the polylogarithm of order s.

In the limit of high temperature, T/TF � 1, we can approximate the distribution function of

the fermions with a Maxwell-Boltzmann distribution. For this ensemble the spin dynamics is given

by

〈Ŝ+〉M.B. =
∞∑
n=0

e−βω(n+1/2)〈Ŝ+〉n/Z

=
1

2
exp

[
−2

x2
0 (1− cos(ωt))

a2
H tanh(βω/2)

]
, (4.14)

where Z =
∑

n e
−βω(n+1/2) is the partition function. At short times, we find the contrast per

particle decays as C (t) /N = 1 − x2
0

a2
H

1
tanh(βω/2)ω

2t2 + O
(
t4
)
, which agrees with Eq. (4.13) when

we identify the mean energy 1
2 tanh−1(βω/2) = Ē/ω. At T/TF � 1, where this analysis is valid,

Ē ≈ kBT , and so the contrast decay rate increases linearly with temperature.

4.3.3 Dynamics for a spin-echo sequence

The spin-echo consists of an additional collective π rotation about X added at time t/2.

This pulse swaps the states of the spin up and spin down components, with the goal of removing

spin-dependent single-particle inhomogeneities. It is natural to wonder whether a spin-echo pulse

will remove the effects of a magnetic field gradient, which is effectively a spatially-inhomogeneous

detuning, when the particles themselves move in the trap. In the presence of a spin-echo pulse the

evolution is given by:

〈S+〉SE =
1

2
exp

(
−16

x2
0

a2
H

sin4

(
ωt

4

))
×Ln

(
32
x2

0

a2
H

sin4

(
ωt

4

))
. (4.15)

The spin dynamics with a spin-echo pulse is periodic with period 4π/ω, twice the period of a

Ramsey sequence without a spin-echo pulse. The short-time expansion of the contrast decay is

CSE (t) = 1− 1

8

(
n+

1

2

)
x2

0

a2
H

(ωt)4 +O
(
t6
)
. (4.16)
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Note that the spin-echo removes the dominant O
(
t2
)

contribution to the contrast decay at times

much shorter than the motional period. This is consistent with the expectation that spin-echo

removes the effect of inhomogeneities when motional effects can be neglected [110]. Beyond the

short time limit the spin-echo pulse is not beneficial.

The behavior of the spin-echo signal at times comparable to the trap period can be visualized

in phase space. To illustrate the dynamics, we rescale the phase space coordinates to x/x0 and

p/p0, where p0 = 1/a0, see Fig. (4.2). In this coordinate system, the expectation values 〈x〉 and

〈p〉 for the | ↑〉 state and | ↓〉 states initially move along circular trajectories centered at ∓x0,

reflecting their initial displacement from the center of their respective harmonic traps due to the

magnetic field. The spin-echo π pulse switches the | ↑〉 and | ↓〉 states and while doing so it generally

enhances the net displacement of the spin states from their motional centers. After the pulse the

dynamics corresponds to circular trajectories with a new phase-space radius. For example, as shown

in Fig. 4.2, if the echo is applied at π/ω (dark time t = 2π/ω), the displacements following the

spin-echo pulse are twice the displacements before the pulse.

For dark times less than half the motional period, the spin-echo improves the contrast, con-

sistent with the short-time analysis. In the phase space picture this means that the displacement

between | ↑〉 and | ↓〉 with spin-echo is smaller than without spin-echo. At a dark time of exactly

half the motional period, the contrast decay with and without spin-echo is identical – this is illus-

trated in Fig. 4.3. In this case the phase space displacement without spin-echo is purely along x

and the displacement with spin-echo is purely along p. For longer dark times, spin-echo increases

dephasing, since it produces larger phase space displacements. The dephasing is maximal at dark

times which are odd-integer multiples of the motional period. When the spin-echo pulse is applied

at an integer multiple of the motional period, i.e. dark times of integer multiples of twice the

motional period t = 4πk/ω (k an integer), both spin states have returned to the phase-space origin

and the motional dynamics is unaffected by the spin-echo pulse. This explains the periodicity of

the spin-echo signal with twice the motional period. We stress that the ability to decouple the

spin-echo effect from motion is due to the two spin states sharing a common motional frequency.
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Figure 4.2: Phase space plots of 〈x〉 and 〈p〉 for the | ↑〉 state (blue, solid) and | ↓〉 state (red,
dashed) for a spin-echo sequence in a linear magnetic field. Here p0 = 1/a0, and the total time
is 2π/ω. The two spin states evolve along circular trajectories centered at ∓x0. (a) At half the
total dark time, π/ω, the spin-echo π pulse swaps the spin states. The spin wavefunctions are thus
displaced by 2x0 from the centers of their respective harmonic traps. For the second half of the
dark time they evolve in circular trajectories twice as large, centered at ∓2x0, resulting in a final
configuration shown in (b). The spin-echo pulse leads to greater dephasing of the spin observables
due to larger final phase-space displacement.

Although spin-echo is typically used to eliminate dephasing due to single particle inhomogeneities,

in the presence of spin-motional coupling the particle motion during the dark time can worsen the

resulting dephasing when a spin-echo pulse is applied.

We can calculate the dynamics of thermal ensembles with a spin-echo pulse. At zero temper-

ature, the exact result is

〈Ŝ+〉f.d.SE =
1

2
exp

(
−16

x2
0

a2
H

sin4

(
ωt

4

))
×L1

N−1

(
32
x2

0

a2
H

sin4

(
ωt

4

))
. (4.17)

For an ensemble at arbitrary temperature the short time contrast decay is given by

CSE (t) /N = 1− 32Ē
x2

0

a2
H

ω3t4 +O
(
t6
)

Ē ≈ 1

6Nωβ2

[
π2 + 3 ln(eβNω − 1) + 6Li2

(
1

1− eβNω
)]

,

(4.18)

and at high temperature we can approximate the ensemble by a Maxwell-Boltzmann distribution

to obtain

〈Ŝ+〉M.B.
SE =

1

2
exp

[
−16

x2
0 sin4

(
ωt
4

)
a2
H tanh(βω/2)

]
. (4.19)
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The contrast at zero temperature and high temperature (T � TF ) are shown with and without

spin-echo as a function of dark time in Fig. 4.3.

4.3.4 General Considerations

In general terms the contrast dynamics in the non-interacting regime is characterize by oscil-

latory behavior at the trap period arising from spin-motion coupling. At short times the contrast

decays as C(t) ≈ 1−
(
t
τ

)2
and in the presence of an echo-pulse as CSE(t) ≈ 1−

(
t
τSE

)4
, where we

identify τ and τSE as the demagnetization timescales without and with spin echo. Using Eqs. 4.13

and 4.18, the demagnetization timescales are given by:

τlin =
a

x0

(
2ωĒ

)−1/2

τSE
lin =

(
32ω3 x

2
0

a2
H

Ē

)−1/4

Ē ≈ 1

6Nωβ2

[
π2 + 3 ln(eβNω − 1) + 6Li2

(
1

1− eβNω
)]

(4.20)

The short time demagnetization rate can be significantly faster than demagnetization rates mea-

sured in recent experiments performed at unitarity [9–11], where the magnetization decay is manly

diffusive with a short time scaling given by CU(t) ≈ 1 −
(
t
τU

)3
. The different time dependence

translates into a different dependence on the magnetic field gradient: while in the non-interacting

regime the demagnetization rate scales as 1/τ ∼ B and 1/τSE ∼
√
B, in the interaction dominated

regime it scales as 1/τ ∼ B2/3 [9–11].

The demagnetization rate in the non-interacting system increases with temperature at fixed

particle number with and without echo. The increasing decay rate in the non-interacting limit

simply reflects the increase in the mean energy per particle as the gas gets hotter. This behavior

persists in the presence of interactions as observed in current experiments given that both the

typical velocity and the mean free path (parameters that determine the spin diffusivity) increase

with temperature. Fig. (4.4) (a-b) shows the demagnetization timescales. We use an effective one-

dimensional number of particles, which scales like N1/3, where N is the total number of particles in

a three dimensional trap. The fact that the demagnetization rate due to the motion of the atoms
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Figure 4.3: Contrast decay for the case of a linear magnetic field at times comparable to the trap
period, for zero temperature and high temperature (T � TF ), with and without spin-echo (SE).
The quantum degenerate case uses N = 19 and all cases use x0 = 0.24aH , consistent with Ref. [10].
T = 10TF in the high temperature case. Higher temperature leads to faster contrast decay since
the particles have a larger average energy. The spin-echo removes the second-order contribution to
the contrast decay, resulting in slower decay at short times. However, at long times the contrast
decay is larger when a spin-echo pulse is applied. The period of the dynamics is also 4π/ω with a
spin-echo pulse instead of 2π/ω.
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(a) 

(b) 

Figure 4.4: Linear magnetic field: (a) demagnetization time vs. magnetic field gradient. (b)
Demagnetization time vs. temperature where the Fermi temperature TF = Nω. Using parameters
from Ref. [10], these timescales are faster than those obtained in the experiment, suggesting that
strong interactions suppress the role of single particle dynamics.
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in the trap can be comparable or to faster than the spin diffusion decay rate makes it clear that

one relevant role of strong interactions is to suppress the effects of single-particle motion.

4.4 Quadratic Magnetic Field

We now consider the case when the applied inhomogeneous magnetic field varies quadratically

with position: Bz(x) = mBx2/∆µ. Here B is a constant with units of frequency2. The total

potential experienced by the atoms is

V̂ (x) =
1

2
m
(
ω2 + σ̂ZB

)
x2 . (4.21)

Thus, each spin state sees a new trap frequency ωσ =
√
ω2 + σB, with σ the eigenvalue of σ̂Z .

We can find the time dynamics of a harmonic oscillator eigenstate subjected to a sudden

quench in the oscillator frequency by making the following ansatz, analogous to Eq. (4.6) for the

linear case:

ψn (x, t) =
e−i(n+ 1

2)φσ(t)√
aHασ (t)

ψn

(
x

aHασ (t)

)
e
iβσ(t) x2

2a2
H , (4.22)

where ασ (t), βσ (t), and φσ (t) real functions which are independent of n. It can be shown that

this ansatz represents a solution to the time-dependent Schrödinger equation if the functions ασ (t),

βσ (t), and φσ (t) satisfy

α′′σ (t) +
(
ω2 + σB

)
ασ (t) =

ω2

α3
σ (t)

,

βσ (t) =
α′σ (t)

ασ (t)
,

φ′σ (t) =
1

α2
σ (t)

. (4.23)

Equation (4.23) is a special case of the Ermakov equation, a well-studied nonlinear ordinary dif-

ferential equation [111]. Defining B̃ = B/ω2 as a dimensionless parameter, the solutions for our
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Figure 4.5: Dynamics of spin observables in a quadratic magnetic field with B = 0.65ω2. (a)
〈ŜZ(x, t)〉 shows the spin up/down densities breathing in their traps centered at x = 0. The rates
of their breathing, ω± =

√
ω2 ±B, are incommensurate. The standard deviations of the densities

are a± = 1/
√
ω±, hence spin up (down) becomes more concentrated at the center (edge) of the

trap. (b) Magnitude of 〈Ŝ+(x, t)〉 (contrast), which measures the magnetization at position x. The
magnetization decays when the spin up/down densities are separated. Note that decays/revivals
of the magnetization are aperiodic.

particular case are

ασ (t) =

√√√√√2 + B̃σ
(

1 + cos
(

2ωt
√

1 + B̃σ
))

2
(

1 + B̃σ
) ,

βσ (t) = −
B̃
√

1 + B̃σ sin
(

2ωt
√

1 + B̃σ
)

2 + B̃σ
(

1 + cos
(

2ωt
√

1 + B̃σ
)) ,

φσ (t) = bωt
√

1 + B̃σ

π
cπ+

+
π

2
− arctan

[√
1 + B̃σ cot

(
ωt
√

1 + B̃σ
)]

, (4.24)

where b.c is the floor function. The solutions ψn (x, t) are wavefunctions whose probability densities

maintain their original shape, up to periodic rescaling by α(t). The frequency associated with the

“breathing” of the probability density is 2ω
√

1 + B̃σ, and hence the periods of oscillation are

generally incommensurate for the spin up and spin down particles, see Fig. (4.5). These modes are

the breathing analogs of the well-known coherent states of a harmonic oscillator.

Figure (4.5) also shows

〈ŜZ(x, t)〉 =
1

2

(
|ψ↑(x, t)|2 − |ψ↓(x, t)|2

)
, (4.25)
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that reflects the breathing of the spin up/down densities around the trap centers at x = 0. The

different standard deviations of the densities, a± = 1/
√
ω±, also lead to a spin segregation, or

spatial separation of the spin up/down densities: while the former becomes more localized towards

the center, the latter becomes more concentrated at the edge of the trap.

4.4.1 Spin Dynamics

To calculate 〈Ŝ+〉 = 1
2

∫
dxψ∗↑(x, t)ψ↓(x, t) we use Eq. (4.22) and write

〈Ŝ+〉 =
1

2

exp [i(φ↑(t)− φ↓(t))]√
α↑(t)α↓(t)

In, (4.26)

where

In ≡
1

2nn!
√
π

∫
dxe−ax

2
Hn (bx)Hn (cx)

a =
α↑(t)

2 + α↓(t)
2

2α↑(t)2α↓(t)2
+

1

2
(β↑(t)− β↓(t))

b =
1

α↑(t)
, c =

1

α↓(t)
, (4.27)

and Hn(x) is a Hermite polynomial. Due to the difference in breathing frequencies, the spin up and

spin down particles accumulate a different dynamical phase, unlike the case of a linear magnetic

field. Because of this dynamical phase difference, there is a net frequency shift.

Using the generating function for the Hermite polynomials [112], we can find a generating

function for the integrals In as

gI (z) ≡ 1√
a− 2bcz + (b2 + c2 − a) z2

=
∞∑
n=0

Inz
n , (4.28)

which leads to the following closed form for 〈Ŝ+〉:

〈Ŝ+〉 =
1

2

ei(φ↑(t)−φ↓(t))√
aα↑(t)α↓(t)

(g1g2)n ×

×2F1

[
1− n

2
,
−n
2
, 1,

(g2
1 − 1)(g2

2 − 1)

g2
1g

2
2

]
. (4.29)

Here, g1 = b/
√
a, g2 = c/

√
a, and 2F1 [.] is the hypergeometric function. To illuminate this result
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we can expand 〈Ŝ+〉 to second order in ωt:

〈Ŝ+〉 ≈ 1

2

[
1 +

iB

ω2
(ωt) (n+

1

2
) +

−3

4

(
B

ω2

)2

(ωt)2

(
n2 + n+

1

2

)
+O

(
(ωt)3

) ]
. (4.30)

We see that at short times the signal acquires a frequency shift ∆ν = (B/ω)(n + 1
2) and thus the

collective spin exhibits a net precession in the X-Y plane. The frequency shift is a consequence of

the additional frequency scale in the problem, namely, ω↑ − ω↓ =
√
ω2 +B −

√
ω2 −B ≈ B/ω for

B � ω2. Additionally, the contrast decays quadratically in Bt/ω, and depends on the mean of the

squared energy. From the generating function, we can also find the Maxwell-Boltzmann thermal

average exactly as gI
(
e−βω

)
/Z, which gives

〈Ŝ+〉M.B. =
1 exp [i(φ↑(t)− φ↓(t))] sinh (βω/2)√

(α2
↓(t) + α2

↑(t)) cosh(βω) + α↓(t)α↑(t)(iα↓(t)α↑(t)(β↑(t)− β↓(t)) sinh(βω)− 2)
.

(4.31)

4.4.2 Spin-echo sequence for quadratic magnetic field

To find the spin dynamics we solve Ermakov equation with the conditions of a spin-echo

sequence. The result, expanded at short times, is

〈Ŝ+〉 ≈ 1

2

[
1− i

8

(
B

ω2

)
(ωt)3 (n+

1

2
) +

− 1

16

(
B

ω2

)2

(ωt)4 (n2 + n+ 1
)

+O
(

(ωt)5
) ]
. (4.32)

As was the case for the linear magnetic field, the spin-echo removes the leading order contrast

decay, and also removes the leading order frequency shift. We again interpret this result as due

to the fact that the particles do not move to first order in time, and so the spin-echo can remove

the effectively-static dephasing at lowest order. For longer times, there is an essential difference

in the present case compared to the magnetic field with linear position dependence: here, 〈Ŝ+〉 is

not a periodic function of time, as the two frequencies
√
ω2 +B and

√
ω2 −B are incommensurate
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for general B. In the case of a linear magnetic field, the residual effects of the spin-echo pulse on

motion can be removed by applying the spin-echo pulse after a single motional period, as both

spin states oscillate at the trap frequency. In the quadratic case, the two spin states have different

motional periods, and so a spin-echo pulse cannot remove motional effects from both spin states at

long times.

4.4.3 General Considerations

For the quadratic magnetic field the contrast decay due to motional effects, expressed as a

demagnetization rate, also exhibits a quadratic and quartic scaling with time with and without a

spin-echo pulse, respectively. However, unlike the linear magnetic field case, there are generally

no full revivals of the magnetization, due to the incommensurate breathing frequencies of the spin

up and spin down densities. Using the approximation of a continuum of energies and a constant

density of states, the corresponding demagnetization timescales are given by:

τquad =
2√
3

(
ω2

B

)(
Ē2 − ω2/2

)−1/2

τSE
quad = 2

√
ω2

B

[
ω2
(
Ē2 − 3ω2/4

)]−1/4

Ē2 ≈
π2 ln(eβNω − 1) + ln(eβNω − 1)3 − 6Li3

(
1

1−eβNω

)
3β3ω(N + 1)

(4.33)

where the last line gives the mean squared energy. In comparison to the case of a constant gra-

dient, the rate is proportional to the mean squared energy rather than the mean energy, so the

demagnetization rates increase more quickly with particle number and temperature than the linear

case. In Fig. 4.6 we plot the demagnetization time and contrast decay for the quadratic magnetic

field case with and without spin-echo, using experimental parameters from Ref. [14], but with

the proper rescaling of particle number to account for the different dimensionality, as was done

for the linear magnetic field case. Under these conditions a spin-echo pulse again leads to faster

demagnetization. We find that the demagnetization timescales are on the order of or faster than

the spin segregation timescales observed in an experiment in which interactions were non-negligible
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(a) 

(b) 

Figure 4.6: Quadratic magnetic field: (a) demagnetization time with and without spin-echo vs.
temperature, where the Fermi temperature TF = Nω, and (b) contrast decay vs. time, using
parameters from Ref. [14]. The timescales are on the order of or faster than the timescale of spin
segregation in the experiment (∼ 100ms). Additionally, application of a spin-echo pulse leads to
faster demagnetization.
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(∼ 100ms). There, the segregation timescales were dictated by the mean interaction energy of the

gas. The faster short-time decay exhibited by the non-interacting system reveals once more the

suppression of motional effects from interactions.

4.5 Dynamics in three dimensions

In the same way that we computed results in one dimension, we now consider a single spin-

1/2 particle of mass ma confined in a three-dimensional harmonic trap with trapping frequencies

{ωx, ωy, ωz} with a gradient applied along the x and z directions – results for ensembles of atoms

are later calculated from sums over single particle dynamics. At t = 0 the particle is prepared in

spin state |↓〉, in an eigenstate of the gradient-free potential, after which the gradient is quenched

on yielding a potential

V (x, y, z) =
1

2
ma

(
ωxx

2 + ωyy
2 + ω2

zz
2
)

+ σ (Bxx+Byy +Bzz)

=
1

2
ma

(
ωx(x+ σx0)2 + ωy(y + y0)2 + ωz(z + σz0)2z2

)
+ const. (4.34)

where σ = 1(−1) for the ↑ (↓) spin states, x0 = Bx/(mω
2
x), and z0 = Bz/(mω

2
z). The single particle

eigenstates are shifted by x0, y0, and z0. We can label the eigenstates as

Φ↓~n={nx,ny ,nz} = φnx (x− x0)φny (y − y0)φnz (z − z0) ,

Φ↑~n={nx,ny ,nz} = φnx (x+ x0)φny (y + y0)φnz (z + z0) , (4.35)

where φni(x) are the one dimensional wavefunctions for harmonic oscillators with frequencies ωi.

Since the potential is separable in our problem, the overlap integral in three dimensions is

just the product of the corresponding one dimensional overlap integrals. This implies:

〈Ŝ+〉3D =
1

2
exp

(
−2

x2
0

a2
x

(
1− eiωxt

)
− 2

y2
0

a2
y

(
1− eiωyt

)
− 2

z2
0

a2
z

(
1− eiωzt

))
×Lnx

(
4
x2

0

a2
x

(1− cos(ωxt))

)
Lny

(
4
y2

0

a2
y

(1− cos(ωyt))

)
Lnz

(
4
z2

0

a2
z

(1− cos(ωzt))

)
, (4.36)

where ai = 1/
√
maωi is the harmonic oscillator length in the i direction.
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An ensemble at zero temperature, initially spin-polarized, forms a Fermi-degenerate (F.d.)

gas with all oscillator modes filled from ~n = {0, 0, 0} to

~n = {Nx − 1, Ny − 1, Nz − 1}, where the total number of particles is NT = NxNyNz. Here, we find

〈Ŝ+〉F.d. =

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

〈Ŝ+〉3D

=
1

2
exp

(
−2

x2
0

a2
x

(
1− eiωxt

)
− 2

y2
0

a2
y

(
1− eiωyt

)
− 2

z2
0

a2
z

(
1− eiωzt

))

×
Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

Lnx

(
4
x2

0

a2
x

(1− cos(ωxt))

)
Lny

(
4
y2

0

a2
y

(1− cos(ωyt))

)
Lnz

(
4
z2

0

a2
z

(1− cos(ωzt))

)
,

=
1

2
exp

(
−2

x2
0

a2
x

(
1− eiωxt

)
− 2

y2
0

a2
y

(
1− eiωyt

)
− 2

z2
0

a2
z

(
1− eiωzt

))
×L1

Nx−1

(
4
x2

0

a2
x

(1− cos(ωxt))

)
L1
Ny−1

(
4
y2

0

a2
y

(1− cos(ωyt))

)
L1
Nz−1

(
4
z2

0

a2
z

(1− cos(ωzt))

)
, (4.37)

The contrast decay and frequency shift per particle at short times are given by

C (t) /NT = 1−Nx
x2

0

a2
x

ω2
xt

2 −Ny
y2

0

a2
y

ω2
yt

2 −Nz
z2

0

a2
z

ω2
z t

2 +O
(
t4
)

+O
(
x4

0

a4
x

)
,

∆ν/NT = 2

(
x2

0

a2
x

ωx +
y2

0

a2
y

ωy +
z2

0

a2
z

ωz

)
. (4.38)

The decay of the contrast per particle increases extensively as the number of particles increases,

but the frequency shift per particle is independent of NT . From this expression we can define the

single particle demagnetization time τ spM , where the short time contrast decay per particle is given

by C (t) /NT = 1− (t/τ spM )2:

τ spM =

(
a2
x

x2
0Nx

+
a2
y

y2
0Ny

+
a2
z

z2
0Nz

)− 1
2

. (4.39)

This express gives the timescale of the initial short-time collapse of the magnetization due to single

particle motion.

4.5.1 Comparison with experiment

We will compare our expressions for single particle dynamics with measurements taken by

the University of Toronto ultracold atoms group on October 17, 2016 and November 4, 2016. The
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Figure 4.7: Comparison of the data with the formula for single particle spin dynamics (Eq. 4.37).
The single particle formulas work better at short times before other effects, likely from interactions
and magnetic field curvature, become important.

10/17 data is for 30800± 408 40K atoms close to quantum degeneracy (T = 0.19± 0.04TF , where

TF is the Fermi temperature) in a three dimensional harmonic trap with frequencies

{ωx, ωy, ωz} = {181.9± 0.4, 665± 30, 665± 30} × 2π Hz. The 11/4 data has similar parameters of

N = 29162 ± 541 and T/TF = 0.24.2 The sample is close enough to quantum degeneracy that

we will assume T = 0. Using these numbers, a Monte Carlo sampling determines that the lowest

energy configuration is {Nx, Ny, Nz} = {73, 20, 20}. These parameters are very close to those used

in the experiment of Ref. [10].

A magnetic field gradient is applied which has components {Bx, By, Bz} = {1.85, 0, 0} G/cm

with overall uncertainty of 20 %. A static magnetic field of 209 G is applied which is close to the

zero crossing of the scattering length resonance. In Ref. [9] the differential magnetic moment of 40K

at 209.15 G was measured as ∆µ = 152× 2π kHz/G and we assume an uncertainty of 10% based

on a comparison with the numerical values given in Ref. [10]. Using these numbers, the applied

gradients correspond to the lengths (and uncertainties)

x0 =
~∆µBx
maω2

x

= 1.17× 10−6 m = 0.182ax. (4.40)

Using the given parameters, we get a good fit to the data with Eq. 4.37. The data and fit are shown

2 On 11/4 an atom loss of about 15% was observed along with an increase in temperature of about 50% after the
experimental runs. These measurements were not taken on 10/17.
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in Fig. 4.7.

4.6 Summary and Outlook

We have demonstrated that the motion of non-interacting fermions in a trap can lead to

demagnetization on timescales faster than those caused by interactions in recent experiments.

Additionally, a spin-echo sequence can have the counterintuitive effect of enhancing the rate of

demagnetization at times comparable to or longer than the motional period. The analysis present

here, which exactly characterizes all the relevant timescales and parameters that determine the

non-interacting spin dynamics of a finite temperature fermionic gas, can serve as a platform for

a better understanding of the interplay between motional-induced and interaction-induced spin

dynamics.

A logical direction for future work is to characterize the crossover from non-interacting to

interacting dynamics. A promising avenue along these lines is to treat the occupation of single-

particle energy states as fixed and consider the effect of interactions on these occupied single-particle

states. This will be explored in detail in the next chapter.



Chapter 5

Interacting Spin Dynamics in a Two Component Fermi Gas

The interplay between spin and motional degrees of freedom in interacting electron systems

has been a long-standing research topic in condensed matter physics. Interactions can modify the

behavior of individual electrons and give rise to emergent collective phenomena such as super-

conductivity and colossal magnetoresistance [113]. Theoretical understanding of non-equilibrium

dynamics in interacting fermionic matter is limited, however, and many open questions remain.

Ultracold atomic Fermi gases, with precisely controllable parameters, offer an outstanding oppor-

tunity to investigate the emergence of collective behavior in out-of-equilibrium settings.

Progress in this direction has been made in recent experiments with ultracold spin-1/2

fermionic vapors, where initially spin-polarized gases were subjected to a spin-dependent trapping

potential (Fig. 5.1) implemented by a magnetic field gradient [9–11], or a spin-dependent harmonic

trapping frequency [12–15] – equivalent to a spatially-varying gradient. Even in the weakly interact-

ing regime, drastic modifications of the single-particle dynamics were reported. Moreover, despite

the local character of the interactions, collective phenomena were observed, including demagnetiza-

tion and transverse spin-waves in the former, and a time-dependent separation (segregation) of the

spin densities and spin self-rephasing in the latter. Although mean-field and kinetic theory formu-

lations have explained some of these phenomena [15, 17, 98–102, 104–106, 114], a theory capable

of describing all the time scales and the interplay between spin, motion, and interactions has not

been developed.

In this chapter, we present a framework that accounts for the coupling of spin and motion
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in weakly interacting Fermi gases. We qualitatively reproduce and explain all phenomena of the

aforementioned experiments and obtain quantitative agreement with the results of Ref. [14]. In this

formulation the state of the system is represented as a superposition of spin configurations which live

on lattices whose sites correspond to modes of the underlying single-particle system. Within each

configuration, the dynamics is described by a spin model with long-ranged couplings which generates

collective quantum correlations and entanglement. Each sector evolves independently and the

accumulated phase differences between sectors capture the interplay of spin and motion (Fig. 5.1 b).

Using this formulation, we gain a great deal of insight about the dynamics, and can extract analytic

solutions for spin observables and correlations in several limits. Although spin models in energy

space [1, 3, 4, 19, 103, 115, 116] have been used before and agreed well with experiments [12, 116–

121], their use was limited to pure spin dynamics (no motion). Our formulation allows us to track

motional degrees of freedom, compute local observables, and determine how correlations spread in

real space. This opens a route for investigations of generic interacting spin-motion coupled systems

beyond current capabilities. Our predictions also suggest directions for future experiments in the

weakly interacting regime, which might, for instance, investigate the collective rise of quantum

correlations. In contrast to strongly coupled ultracold gases, where motion is quickly suppressed

and features of the dynamics tend to be universal [9, 20, 122], in the weakly-interacting regime spin,

motion, and interactions are all important and must be treated on the same level. At the end of

this chapter we also present some preliminary results for another class of experiments involving the

collision of a spin-up and spin-down spin cloud in a one dimensional harmonic trap using a similar

formalism. We focus on the weakly-interacting regime in one dimension where fully-quantum

treatments of the interactions are tractable. This work is meant to model the experiments in

Refs. [122, 123] in the weakly-interacting, quantum degenerate regime.

Numerical simulations of non-equilibrium fermionic matter are notoriously difficult, and for

many situations no efficient algorithms presently exist. In contrast, a wide variety of powerful

analytical and numerical tools have been developed for lattice quantum spin models [124–131],

making a spin model description of fermionic systems potentially very useful. To demonstrate
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the capabilities of this approach, we use time-dependent matrix product state methods which

are efficient in one-dimension, which were performed using extensions of the open source MPS

library [132, 133]. We simulate systems of N = 10 − 20 particles; due to the coupling of spin and

motion, the complexity of these simulations is similar to that of long-ranged and inhomogenous pure

spin systems with N ∼ 100 spins. We emphasize, however, that the mapping to a spin model, the

corresponding analytic solutions, and the physical interpretations are valid in arbitrary dimensions.

Thus the method described here will be useful for more generic cases as numerical techniques able

to handle larger spin systems continue to improve.

5.1 Setup

This chapter is a continuation of the results of the previous chapter to the interacting case.

For ease of exposition some of the quantities will be redefined, and we will re-describe the setup.

We consider N identical fermionic atoms of mass ma with a spin-1/2 degree of freedom α ∈ {↑, ↓}

trapped in a one dimensional harmonic oscillator of frequency ω, V 0(x) = 1
2maω

2x2. The gas begins

spin-polarized in the ↓ state and atoms populate distinct trap modes. The initial Hamiltonian is

Ĥ = Ĥsp
0 + Ĥ int where

Ĥsp
0 =

∑
α

∫
dxψ̂†α(x)

(
− 1

2ma

∂2

∂x2
+ V 0(x)

)
ψ̂α(x),

Ĥ int =
2as
maa2

⊥

∫
dxρ̂↑(x)ρ̂↓(x). (5.1)

ψ̂α(x) is the fermionic field operator for spin α at point x, as is the s-wave scattering length,

ρ̂α(x) = ψ̂†α(x)ψ̂α(x), ~ = 1, and we have integrated over two transverse directions with small

confinement length a⊥ � aH , with aH = (maω)−
1
2 . Note that the initial spin-polarized sample will

not experience interactions. A resonant π/2 pulse collectively rotates the spin to the X-axis, and

a magnetic field gradient is suddenly turned on. This introduces a sudden change (quench) in the

single-particle Hamiltonian Ĥsp
0 , which becomes spin-dependent, Ĥsp, where

Ĥsp =
∑
α

∫
dxψ̂†α(x)

(
− 1

2ma

∂2

∂x2
+ V α(x)

)
ψ̂α(x). (5.2)
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Figure 5.1: (a) Atoms spin-polarized along X occupy single-particle eigenstates, labeled by mode
number n. The potential is quenched to a spin-dependent form, and dynamics result from a spin
model with long ranged interactions (green wavy lines) in energy space. (b) The state |ψ〉 is a
coherent superposition of spins in many mode configurations (unoccupied modes are represented
by open circles). In each configuration particles are localized in mode space, with spin model
Hamiltonian Ĥsm

i . Coherences between the configurations capture motional effects.

This quench protocol is illustrated in Fig. 5.1(a). The spin-dependence of the trapping potential

V α=↑,↓(x) creates an inhomogeneity between the spin species, allowing contact s-wave collisions to

occur. Expanding the field operators in the basis of single-particle eigenstates φαn(x) with associated

creation operator ĉ†nα and defining the interaction parameter u↑↓ = 2as/(maaHa
2
⊥), Ĥ int becomes

u↑↓
∑

nmpq Anmpq ĉ
†
n↑ĉm↑ĉ

†
p↓ĉq↓, where Anmpq = aH

∫
dxφ↑n(x)φ↑m(x)φ↓p(x)φ↓q(x).

To model two classes of experiments [9–11] and [12–15], we consider spin-dependent potentials

of the form V α=↑,↓(x) = V 0(x) + ∆V α(x), with ∆V α(x) generated by a magnetic field with a

constant gradient, ∆V α(x) = ±Bx, or a linear gradient, ∆V α(x) = ±maω
2
Bx

2/2. In both cases

Ĥsp can be written as:

Ĥsp =
∑
n

[
ω̄(n+ 1/2)N̂n + ∆ω (n+ 1/2) σ̂Zn

]
, (5.3)

with N̂n = ĉ†n↑ĉn↑ + ĉ†n↓ĉn↓, and {σ̂Xn , σ̂Yn , σ̂Zn } ≡
∑

α,β ĉ
†
nα~σαβ ĉnβ where ~σ is a vector of Pauli

matrices. The constant gradient shifts the trap for spin up (down) by x0 (−x0), with x0 = B
maω2 ,

but does not change the frequency; ω̄ = ω and ∆ω = 0. In a noninteracting gas the ↓ and ↑ densities

and the magnetization oscillate at frequency ω due to this motion [16, 17]. A linear gradient adds

an additional harmonic potential term resulting in different trap frequencies for the two spins:

ω̄ = (ω↑ + ω↓)/2 and ∆ω = (ω↑ − ω↓)/2. The non-interacting spin densities undergo a breathing
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motion in their respective traps, leading to oscillations in the total magnetization [16]. A finite ∆ω

causes dephasing through rotations of the magnetization in the XY plane with mode-dependent

rates.

5.2 The generalized spin model approximation

The quench of the trapping potential to a spin-dependent form projects the initially polarized

state, which we take to be the ground state in this work, onto the eigenmode basis of Ĥsp1 . The

resulting state |ψ〉t=0 is a coherent superposition of many product states, each characterized by a

set of populated modes ni = {ni1,ni2, . . . ,niN}: |ψ〉t=0 =
∑

i di
∏N
j=1 ĉ

†
nijσj
|0〉. The coefficients di are

determined by the change of basis associated with the eigenstates of V 0(x) and V α=↑,↓(x).

Our key approximation is that single particle modes either remain the same or are exchanged

between two colliding atoms. Exact numerical calculations confirm the validity of this approxima-

tion in the weakly interacting regime. For each set ni the resulting total Hamiltonian takes the

form of an XXZ spin model,

Ĥsm
ni

= Ĥsp
ni
− u↑↓

4

∑
n6=m∈ni

∑
ν=X,Y,Z J

ν
nmσ̂

ν
nσ̂

ν
m , (5.4)

plus additional small density-σ̂Z couplings which will be discussed in Section 5.6. Here, the Ising,

JZnm ≡ Annmm, and exchange, JXnm = JYnm = J⊥nm ≡ Anmmn, couplings result from the overlap be-

tween the ↑ and ↓ single-particle eigenstates and are long-ranged (∼ 1/
√
|n−m|) in each direction

(x, y, z). In this approximation, each sector ni evolves independently, but with ni-dependent pa-

rameters, under Eq. 5.40. When computing observables, we account for both the interaction-driven

spin dynamics within each ni sector, as well as the single particle dynamics determined from the

coherences between sectors.

1 The initial 2N spin-independent populated modes (0, ..., N − 1 for both spin-up and spin-down) are projected
onto 2Ñ modes, where the Ñ modes for spin up are different than the Ñ for spin down, and Ñ is chosen such that
the initial state is reproduced to an error of 10−16 in the norm
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5.3 Spin observables

The local and collective magnetizations are given by ~̂S(x) = 1
2

∑
nm,α,β φ

α
n(x)φβm(x)

(
ĉ†αn ~σαβ ĉ

β
m

)
and ~̂S =

∫
dx ~̂S(x). Fig. 5.2 summarizes the results for a constant gradient with N = 10.2 At

short times the collective magnetization 〈ŜX〉 ((a) and (e)) exhibits characteristic single-particle

oscillations at frequency ω; these quickly dephase and are modulated by a global envelope with

a longer time scale. Similar behavior is observed for the local magnetizations 〈ŜX,Y,Z(x)〉 (b-d,

f-h). Although the total 〈ŜY,Z〉 magnetizations are zero at all times, the local quantities 〈ŜY,Z(x)〉

evolve due to coherences between mode configurations. Their dynamics, however, are damped by

interactions.

The dynamics can be understood as follows. For spin independent potentials, JZnm = J⊥nm and

∆ω = 0. The Hamiltonian Ĥsm
ni

is SU(2) symmetric and commutes with ~̂S2, where ~̂S ≡ 1
2

∑
n ~̂σn,

and so its eigenstates can be labelled by the total spin S. When a gradient is applied, the SU(2)

symmetry is broken by terms ∆nm = JZnm − J⊥nm (∆ω = 0 for a constant gradient), and the

Hamiltonian can be rewritten as ĤS
ni

+ Ĥδ
ni

, where

ĤS
ni = Eni −

u↑↓
4

∑
n6=m∈ni

[
J⊥nm~σn · ~σm + ∆̄σ̂Zn σ̂

Z
m

]
,

Ĥδ
ni = −u↑↓

4

∑
n6=m∈ni

δnmσ̂
Z
n σ̂

Z
m, (5.5)

Eni = ω̄
∑

n∈ni(n + 1/2) is a constant, ∆̄ is the average value of ∆nm, and δnm = ∆nm − ∆̄.

ĤS
ni

commutes with ~̂S2 so only Ĥδ
ni

induces transitions between manifolds of different S. For a

sufficiently weak gradient, and δnm � J⊥nm, a large energy gap G, which we call the Dicke gap,

opens between the S = N/2 “Dicke” manifold and the S = (N/2− 1) “spin-wave” manifold. The

state of the system begins in the Dicke manifold, and it remains there when terms in Ĥδ
ni

are small

compared to this gap [134]. Dynamics resulting from the collective Ising term in ĤS
ni

is given by

〈ŜX〉ni = N
2 cosN−1

(
u↑↓∆̄t

)
, and 〈ŜY,Z〉ni = 0. Since the interaction parameters JZnm and J⊥nm

vary slowly with parameter index, the dynamics of 〈ŜX〉ni is approximately the same for all i,

2 All simulations are for N = 10 unless stated otherwise.
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Figure 5.2: Magnetization dynamics for a constant gradient. Collective 〈ŜX〉 for a x0 = 0.1aH
(a) (and x0 = 0.3aH (e)) displays global interaction-induced demagnetization, which damps single-
particle oscillations. Collective (generic) Ising solutions, black lines, give the demagnetization
envelopes. Local magnetizations 〈ŜX,Y,Z(x)〉 with x0 = 0.1aH (b-d) (and x0 = 0.3aH f-h) reflect
similar behavior, both shown with u↑↓ = 0.35ω.

and a single configuration n0 ≡ {0, 1, · · ·N − 1} well reproduces the demagnetization envelope

(Fig. 5.2(a)).

For strong gradients, exchange processes are suppressed and the effective interaction Hamilto-

nian becomes a generic Ising model ĤIsing
ni

= −u↑↓
4

∑
n6=m∈ni J

Z
nmσ̂

Z
n σ̂

Z
m, which also admits a simple

expression for the spin magnetization dynamics [128–131] 〈ŜX〉ni =
∑

n∈ni
∏
m 6=n∈ni cos

(
u↑↓J

Z
nmt
)
.

In this limit the demagnetization envelope can be captured by the n0 realization of the generic Ising

solution (Fig. 5.2(e)).

Short time dynamics of an XXZ Hamiltonian [135] is given by 〈ŜX〉 = 〈ŜX〉t=0

(
1− (t/τM )2

)
+

O(t3), where we define τM as the demagnetization time. By analyzing the scaling of the in-

teraction parameters we find that τM ∼
(
Nu↑↓x

2
0

)−1
, which agrees well the numerical scaling

∼ u−1
↑↓ x

−2
0 N−0.823. Similar behavior was reported in Ref. [9] in the weakly-interacting regime3 .



85

 0
 20

 40
 60

 80

 0.05
 0.15

 0.25
 0.35

 0.45

 0

 1

 2

 3

 4

 5

c

 0.05
 0.15

 0.25
 0.35

 0.45

 0
 20

 40
 60

 80
 100

-1

 0

 1

 2

 3

 4

 5

!t u"#/!

a

<Sx>
<Sy>

0 20 40 60 80 100
-4
-2
0
2
4

ωt
u"#/!!t

b

d

u"# = 0.05! u"# = 0.35!!t
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Figure 5.3: Dynamics for a linear gradient. (a) Spin self-rephasing for ωB = 0.1ω: as interactions

increase, demagnetization is suppressed and 〈 ~̂S〉 precesses collectively in the XY plane (inset). (b)
Dynamics in a strong linear gradient show damping of large single particle oscillations, where the
damping envelopes are given by the generic Ising solutions. (c, d) Dynamics of the spin population
difference 〈ŜZ(x)〉 in real space, showing oscillations where spin up is concentrated towards the
center of the cloud and spin down is concentrated towards the edge of the cloud. The rate of these
oscillations is proportional to the interaction strength. The results in (c, d) are what is known as
“spin segregation” and will be discussed in greater detail in Section 5.7.
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5.4 Dynamics in a linear gradient

Fig. 5.3 (a) shows the numerically-obtained total magnetization vs. interactions for a weak

linear gradient. The magnetization remains nearly constant for sufficiently strong interactions, and

the collective spin dynamics is a global precession in the XY plane (inset). This self-rephasing effect

was experimentally reported in Ref. [12], and the spin model provides a simple interpretation. For a

system in a weak gradient, the single-particle term ∝ ∆ω is the largest inhomogeneity. In this limit

the Hamiltonian simplifies to −u↑↓
4

∑
n6=m J

⊥
nm~σn · ~σm +

∑
n ∆ω(n+ 1

2)σ̂Zn . When ∆ωNave
ni
� G,

where G is the Dicke gap and Nave
ni

is the average mode occupation, most of the population remains

in the Dicke manifold. After projecting Ĥsp onto the Dicke states, the dynamics is a collective

precession in the XY plane of the generalized Bloch vector, i.e 〈Ŝ±(t)〉 = 〈Ŝ±(0)〉e±2it(Nave
ni

+ 1
2

)∆ω
,

with Ŝ± = ŜX ± iŜY . Demagnetization is suppressed when interactions (∝ G) dominate over the

dephasing introduced by ∆ω. Under this condition, a large fraction of the population stays in the

Dicke manifold.

For strong linear gradients exchange is suppressed and the demagnetization envelope is given

by the generic Ising solutions. These simulations and predictions are shown in Fig. 5.3(b). Real

space dynamics, some of which are shown in Fig. 5.3(c,d) in a linear gradient will be discussed in

Section 5.7.

5.5 Correlations

Our approach can be used to compute higher-order correlations, such as the G++(x, x′) =

〈Ŝ+(x)Ŝ+(x′)〉 − 〈Ŝ+(x)〉〈Ŝ+(x′)〉 correlator shown in Fig. 5.4. Although the system is initially

non-interacting, G++(t = 0) shows finite anti-bunching correlations near x ∼ x′ arising from Fermi

statistics (mode entanglement) [136, 137]. At later times, correlations behave collectively, a distinct

consequence of the long-range character of the spin coupling parameters [138–142].

For a weak constant gradient, the collective Ising model provides a good characterization of

3 We note that the spin echo pulse applied in Refs. [9, 10] modifies the single-particle physics [16], but does not
affect the interaction-induced collective demagnetization
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the correlation dynamics. For each spin configuration G++
ni

(x, x′; t) = f i1(x, x′) cosN−2
(
2u↑↓∆̄t

)
−

f i2(x, x′) cos2N−2
(
u↑↓∆̄t

)
, where the functions f i1,2(x, x′) depend on the set of populated modes.

G++ peaks at the time when the system has completely demagnetized (Fig. 5.4(a)). For a pure

spin system with a collective Ising Hamiltonian, the state at this time is a Schrödinger-cat state

[143, 144]. For the linear gradient in the self-rephasing regime, we observe collective precession of

G++ (Fig. 5.4(b)). As interactions decrease or the inhomogeneity increases, correlations are strongly

affected by the interplay between single-particle dynamics and interactions. Mode entanglement

tends to cause an almost linear spreading of the correlations with time [145–147], while interactions

tend to globally distribute and damp those correlations (Fig. 5.4(c,d)). Current experiments are in

position to confirm these predictions.

The collective Ising solution gives the connected correlation function

G++
ni

(x, x′; t) = f i1(x, x′) cosN−2
(
2u↑↓∆̄t

)
− f i2(x, x′) cos2N−2

(
u↑↓∆̄t

)
, (5.6)

where the functions f i1,2(x, x′) are given by

f i1(x, x′) =
1

4

∑
nm∈ni

(
φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′)− φ↑n(x)φ↓n(x′)φ↑m(x′)φ↓m(x)

)
,

f i2(x, x′) =
1

4

∑
nm∈ni

φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′). (5.7)

In Fig. 5.5(b) we show the connected correlator G++(x, x′) evaluated at x = 0, x′ = 0.5aH , along

with the analytic solution for the n0 mode configuration. The spin model approximation and

analytic solution do an excellent job of reproducing the dynamics of the correlation function. For

stronger gradients where the generic Ising model is a better description of the dynamics,

G++
ni

(x, x′; t) =

1

4

∑
n,m∈ni

(
φ↑n(x)φ↓n(x)φ↑m(x′)φ↓m(x′)− φ↑n(x)φ↓n(x′)φ↑m(x′)φ↓m(x)

) ∏
p 6=n,m∈ni

cos
(
JZnpt+ JZmpt

)

−1

4

∑
n∈ni

(
φ↑n(x)φ↓n(x)

) ∏
p 6=n∈ni

cos
(
JZnpt

)∑
n∈ni

(
φ↑n(x′)φ↓n(x′)

) ∏
p 6=n∈ni

cos
(
JZnpt

) . (5.8)

For the linear gradient in the self-rephasing regime, we observe collective precession of the

correlation function G++, seen in Fig. 5.4(b). As interactions decrease or the inhomogeneity in-
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Figure 5.4: (Color online) (a) Real part of the connected correlation function Re [G++(x, 0; t)] for
a weak gradient (x0 = 0.1aH , u↑,↓ = 0.35ω). Correlations grow collectively due to the long-ranged
nature of the interactions in energy space, and peak when the gas is demagnetized. (b) For a
linear gradient in the self-rephasing regime (ωB = 0.1ω, u↑↓ = 0.45ω), the connected correlator
Re [G++(x, 0; t)] rotates collectively in the XY plane. For weak interactions or strong gradients (c,
d), interactions collectively damp the correlations arising from quantum statistics (upper panels
are non-interacting).
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creases, mode entanglement tends to cause an almost linear spreading of the correlations with

time [145–147]. Interactions tend to globally distribute and damp those correlations, as seen in

Fig. 5.4(c, d).

5.6 The generalized spin model approximation: validity and discussion

The spin model approximation ignores interaction-induced changes of the single-particle mo-

tional quantum states and is thus only valid when interactions are weak compared to the harmonic

oscillator energy spacing, u↑↓ � ω. The range of validity of this approximation is essentially when

the system is “collisionless,” although the exact crossover to the collisional regime depends not only

on the interaction energy but also on the strength of the gradient for the quenches discussed in this

work [17]. When interactions are weak compared to the oscillator spacing, collisional processes that

do not conserve single particle energy can safely be ignored. However, processes that do conserve

single particle energy, but at the same time change the populated single particle modes, i.e. “reso-

nant” mode changes, can be important for a harmonic trap [1]. While there are a large number of

such terms in a harmonic trap due to the equal spacing of energy levels, realistic optical traps in cold

atom experiments include anharmonicity which breaks these degeneracies. In higher dimensions,

the non-separability of the trapping potential suppresses the redistribution of energy modes in the

transverse directions. When the energy differences due to anharmonicity and non-separability of

the trapping potential are larger than the interaction strength, these terms will be suppressed. This

was shown to be the case for example in Refs. [116, 119, 120] where a pure spin model accurately

described the experimental observations. Additionally, at very low temperatures, Pauli blocking

can partially prevent mode changing collisions for a spin-polarized sample, as recently observed in

Ref. [148]. However, even in a spin-polarized gas, spin- and mode-changing processes may occur,

resulting in a doubly occupied mode.

We compare exact diagonalization of the full Hamiltonian, including all interaction-induced

mode changes, to the spin model prediction for a small number of particles to test its validity. The

results are shown in Fig. 5.5. Panel (a) shows the dynamics of 〈ŜX〉 for five particles following
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a quench of a constant gradient with x0 = 0.1a and u↑↓ = 0.35ω. The quench induces single-

particle dynamics which we observe as fast oscillations at the trapping period. In the spin model

approximation, these oscillations are modified due to interactions and become damped at long

times. The long time demagnetization and damping of single particle oscillations are well captured

by the spin model approximation. Also plotted is the analytic solution for the collective Ising model

which captures the demagnetization envelope. Fig. 5.5(c) shows the dynamics for a different initial

mode configuration – {0, 3, 4, 5, 6} – where Pauli blocking would not prevent several resonant mode

changing processes. For instance, the process (n = 0,m = 3) → (n = 1,m = 2) is resonant. The

spin model approximation works well even in this case.

The initial state after a quench is a superposition of many different product states of spins,

in different mode configurations labeled ni. Because the interaction parameters vary slowly with

parameter index, each ni has similar interaction parameters and similar dynamics. Fig. 5.5(d)

shows the dynamics for 5 spins evolved under a pure XXZ Hamiltonian, with the same conditions

as the dynamics in Fig. 5.5(a). Each curve represents a different “one-hole” mode configuration of

five spins that differs from n0 ≡ {0, 1, 2, 3, 4} by exactly one mode (n0 dynamics is also shown). For

instance, the initially occupied modes are {0, 1, 2, 3, 5} or {0, 1, 2, 4, 5}, etc. All these configurations

contribute to the dynamics after a quench. Since they all have similar dynamics, however, we

only need to consider the n0 configuration to reproduce the demagnetization envelope. The slow

variation of the interaction parameters is illustrated in Fig. 5.5(e,f) where we plot the value of all

the parameters JZnm and J⊥nm for modes n,m = 0 through n,m = 15, sorted by value and labeled

by a parameter index. In Fig. 5.5(g,h) we show that the interaction parameters also vary slowly for

a stronger gradient, x0 = 0.3aH . The slow variation of interaction parameters also helps explain

why mode changes are relatively unimportant: a mode change simply evolves the system to another

mode configuration where the dynamics are nearly the same.

For a linear gradient, the direct interaction integrals are not symmetrical under mode ex-
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Figure 5.5: Spin model approximation vs. full Hamiltonian for 5 particles with x0 = 0.1a and u↑↓ =

0.35ω. (a) 〈ŜX〉 quench dynamics for initial modes {0,1,2,3,4}, representing a zero temperature
gas, along with (b) the connected correlator G++(x = 0, x′ = 0.5aH). Single-particle oscillations
are damped by interactions, and the long time dynamics is well-reproduced by the spin model
approximation with decay envelope given by the collective Ising solutions. (c) Dynamics for initial
modes {0,3,4,5,6} representing a more dilute gas. (d) Dynamics of a pure XXZ spin Hamiltonian
with the same parameters, for each of the lowest “one-hole” mode configurations. The dynamics
of each configuration is very similar, explaining why the dynamics of a quench – involving many
configurations – can be approximated by a single configuration. The interaction parameters vary
slowly with parameter index, as shown in (e,f) for x0 = 0.1aH and (g,h) for x0 = 0.3aH .
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Figure 5.6: (a) Magnitude of of the total field Bnσ̂
Z
n , which contains both single particle (Bspσ̂Zn )

and interaction (B
u↑↓
n σ̂Zn ) terms, for a linear gradient with ∆ω = 0.08ω. Even for strong interactions

(u↑↓ = 0.5ω), the Hamiltonian is not significantly modified by the interaction-induced terms B
u↑↓
n

which appear when JZnm 6= JZmn. (b) For u↑↓ = 0.5ω the B
u↑↓
n terms do not grow with particle

number.

change: JZnm 6= JZmn. The spin model Hamiltonian includes terms

Ĥas =
u↑↓
8

∑
n6=m

(
JZnm − JZmn

) (
σ̂Zn N̂m − σ̂ZmN̂n

)
, (5.9)

where N̂n = N̂↑n + N̂↓n and N̂α
n = ĉ†nαĉnα. These terms, when summed over the index m, represent

an inhomogeneous magnetic field:
∑

m Ĥ
as =

∑
nB

u↑↓
n σ̂Zn . This combines with the single particle

field Bsp
n = ∆ω(n+ 1/2) to yield a total σ̂Zn field Bnσ̂

Z
n , where Bn = Bsp

n +B
u↑↓
n . We find that even

for relatively strong interactions (u↑↓ = 0.5ω) B
u↑↓
n � Bsp

n for all n, as illustrated in Fig. 5.6, so

these additional terms can be neglected. Additionally, B
u↑↓
n does not grow with particle number.

Although these terms are not essential for the large-scale features of the dynamics, for completeness

we include them in numerical simulations.

5.7 Spin segregation

Spin segregation in fermionic gases – a clear, spatial separation of the spin densities, first

reported in Ref. [14] – occurs at timescales set by the mean interaction energy, and reverses sign

when interactions are switched from attractive to repulsive. When ∆ωN � G, this effect can be

understood as the result of off-resonant Rabi oscillations between the S = N/2 Dicke states and the

S = (N/2−1) spin-wave states, which are coupled by the gradient and whose energies are separated

by the Dicke gap G. If the gradient is weak, one can ignore coherences developed between mode

sectors, and approximate φ↑n(x) ≈ φ↓n(x) = φn(x). In this limit the dynamics of the population
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difference ∆n = n↑(x)− n↓(x) is approximately

〈∆n〉 =
2∆ω

G

∑
n∈ni

φn(x)2
(
n−Nave

ni

)
(cos (Gt)− 1) . (5.10)

The spin density changes sign when n > Nave
ni

. Spin segregation occurs as a result since high energy

modes on average occupy positions further from the origin than low energy modes.

To understand this result in a many body system we have to consider the coupling of the Dicke

states |N/2,mz〉 to sectors with different total S. To first order, local spin operators σ̂αn couple the

Dicke states to the spin wave states |N/2 − 1,mz, k〉 [117]. We will examine the dynamics within

this subspace, assuming the population in the spin wave sector is much smaller than that of the

Dicke sector, suppressed by the small parameter ∆ω/u↑↓. We also assume that the interactions are

fully collective for simplicity. The state of the system can be written as

|ψ〉 =
∑
m

cm|m〉+
∑
m,k

dmk|mk〉, (5.11)

where |m〉 are the Dicke states, labeled by their magnetization m = −N/2, · · ·N/2−1, N/2, N is the

total number of particles, and |mk〉 are the spin wave states |N/2−1,mz, k〉 where k = 1, · · · , N−1.

It is useful to define the matrix elements [117]

〈m|σ̂Zn |m′〉 =
2m

N
δmm′

Mn
mm′k = 〈m|σ̂Zn |m′k〉 = 2e2πikn/N

√
(N/2)2 −m2

N2(N − 1)
δm,m′ ∼

1√
N
,

Mn
mk ≡Mn

mmk,

Pnmkm′k′ = 〈mk|σ̂Zn |m′k′〉 =
(
−2e2πi(k′−k)n/N +Nδk,k′

) 2m

N(N − 2)
δmm′ ∼

1

N
. (5.12)

(Note that “n” on the matrix elements is a superscript and not a power.) The M and P matrix

elements scale differently with N such that the M elements will dominate in the thermodynamic

limit.

We take the Heisenberg (weak gradient) limit of the interaction Hamiltonian combined with

the single particle Hamiltonian which contains inhomogeneous terms n∆ωσ̂Zn which induce transi-
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tions outside of the Dicke Manifold:

Ĥ = −u↑↓
4

∑
n6=m

J⊥nm~σn · ~σm +
∑
n

[
ω̄(n+ 1/2)N̂n + ∆ω (n+ 1/2) σ̂Zn

]
, (5.13)

We assume all the spin wave states have zero energy and the Dicke manifold is offset by the Dicke

gap G. In the basis of Dicke and spin wave states the Hamiltonian is

Ĥ =

E0
n̄ −G

∑
m

|m〉〈m|+
∑
n

∆ω (n+ 1/2)
∑

m,m′,k,k′

(
Mn
mk|m〉〈mk|+ Pnmkm′k′ |mk〉〈m′k′|+ H.c.

)
.

(5.14)

Where E0
n̄ = Nω̄ (n̄+ 1/2), which depends on the set of occupied modes and will contribute an

additional dynamical phase to |ψ〉 which will not contribute to the dynamics. We can use the fact

that Mn
mk � Pnmkm′k′ for N � 1 and drop the Pnmkm′k′ terms. The Schrodinger equation implies

iċm = −Gcm +
∑
n

∆ω (n+ 1/2)Mn
mkdmk

iḋmk =
∑
n

∆ω (n+ 1/2)Mn∗
mkcm. (5.15)

Assuming the population stays mostly in the Dicke manifold implies cm � dmk. Using this and

∆ω � 1 the equation of motion for cm can thus be approximated as iċm = −Gcm. With this

additional approximation,

cm(t) = cm(0)eiGt

dmk(t) =
∑
n

∆ω (n+ 1/2)
cm(0)Mn∗

mk

G

(
1− eiGt

)
, (5.16)

where for a spin polarized sample initially pointing in the X-direction, the Dicke state coefficients

are

cm(0) =

√
1

2N

(
N

N
2 +m

)
. (5.17)

The expectation of a generic spin operator is

〈Ŝα〉 =
∑
m,m′

c∗mcm′〈m|Ŝα|m′〉+
∑

m,k,m′

d∗mkcm′〈mk|Ŝα|m′〉+

+
∑

m,m′,k′

c∗mdm′k′〈m|Ŝα|m′k′〉+
∑

m,k,m′,k′

d∗mkdm′k′〈mk|Ŝα|m′k′〉. (5.18)
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Note that d∗mkdm′k′ � c∗mdm′k′ so we ignore those terms. In our case we have

〈σ̂Zn′〉 =
4∆ω

2NN2(N − 1)G

∑
n,m,k

(n+ 1/2)

(
N

N
2 +m

)(
(N/2)2 −m2

)
e2πik(n−n′)/N (eiGt − 1

)
+ H.c.

=
2∆ω

G

(
n′ −Nave

ni

)
(cos (Gt)− 1) . (5.19)

where Nave
ni

is the average mode number of the set of occupied modes ni. (In the above derivation

the spin label n was arbitrary and the results hold for any configuration ni of N total spins.) Notice

that the dynamics of σZn′ depends linearly on n′ and changes sign when n′ > Nave
ni

: high energy

modes evolve differently from low energy modes, which is the origin of spin segregation.

We now proceed to use the spin model framework to model the segregation observed in

Ref. [14]. Although the measurements were done in the high temperature regime, we first determine

the role of single particle motion by modeling a simpler 1D case at zero temperature with the same

effective parameters. This case can be exactly solved with t-DMRG and Figs. 5.3(b,c) show the

dynamics of (n↑(x)−n↓(x))/n0, where n0 = (n↑(0) +n↓(0))/2. Single particle motion is negligible,

and the dynamics is closely approximated by Eq. 5.10. This information allows us to model the

actual experiment with a pure spin model. At the high temperature of the experiment, the Dicke

gap significantly decreases, however, Eqn. 5.10 remains valid at short times when the majority

of the population is in the Dicke manifold. The segregation obtained from a thermal average of

Eqn. 5.10 well reproduces the experiment as shown in Fig. 3d. For this calculation the only free

parameter is the asymptotic value of the density imbalance 4 . The population difference saturates

due to dephasing associated with the thermal spread of the G values.

We are interested in the 〈σ̂Z(x)〉 density defined as

〈σ̂Z(x)〉 =
∑
n∈ni

φn(x)2〈σ̂Zn 〉 =
2∆ω

G
(cos (Gt)− 1)

∑
n∈ni

(
n−Nave

ni

)
φn(x)2. (5.20)

In Fig. 5.7 this formula is compared to a numerical DMRG simulation at zero temperature, with

parameters taken from [Du2008]. Up to long times (t = 100/ω ≈ π/G) Eq. 5.20 differs from the

numerics by at most 10%.

4 The asymptotic value of the spin density imbalance is chosen to be 0.4, which matches the experimental values
from 500-1000ms. Relaxation due to other decoherence mechanisms occurs at ∼2s.



96

cba

Figure 5.7: Spin segregation dynamics at zero temperature with parameters taken from [Du 2008].
(a) DMRG simulation of the time evolution of the spin densities nα(x), α =↑↓, at the center
of the trap (x = 0) normalized by n0 = (n↑(0) + n↓(0))/2. (b) Simulated time evolution of
(n↑(0)−n↓(0))/n0 compared with the analytic formula in Eq. 5.20. The formula accurately predicts
the timescale of the oscillation over many periods, and accurately captures the amplitude for about
one oscillation period, whose timescale is set by the gap G. The damping seen in the numerics
comes from leakage of population outside of the Dicke/spin-wave manifolds. (b) Difference in cloud
profiles (n↑(x)−n↓(x))/n0 at t = 50/ω and t = 100/ω: Eq. 5.20 predicts the cloud shape to within
about 10%.

5.7.1 Zero temperature spin density profile

At zero temperature the fermions occupy modes 0, · · · , N − 1 and the density profile is given

by

PN (x) ≡
N−1∑
n=0

φn(x)2 =
e−x

2

√
π

1

N !2N
[
(N + 1)H2

n (x)−NHN−1 (x)HN+1 (x)
]
. (5.21)

In the limit of a large number of particles, this profile is approximately equal to the Thomas-Fermi

distribution FN (x):

PN (x) ≈ FN (x) =
RTFN
π

√
1−

(
x

RTFN

)2

, N � 1, (5.22)

where RTFN =
√

2N is the Thomas-Fermi radius. Defining f(t) = 2∆ω
G (cos (Gt)− 1) and applying

Eq. 5.20 yields

〈σ̂Z(x)〉T=0 = f(t)
N−1∑
n=0

(
n− N − 1

2

)
φn(x)2 = f(t)

[
N−1∑
n=0

nφn(x)2 −
(
N − 1

2

)N−1∑
n=0

φn(x)2

]

= f(t)

[
QN (x)−

(
N − 1

2

)
PN (x)

]
, (5.23)
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where QN (x) is defined as

QN (x) ≡
N−1∑
n=0

nφn(x)2 =

N−1∑
n=1

φn(x)2 +

N−1∑
n=2

φn(x)2 +

N−1∑
n=3

φn(x)2 + · · ·

=

(
N

N−1∑
n=0

φn(x)2

)
− φ0(x)2 −

1∑
n=0

φn(x)2 −
2∑

n=0

φn(x)2 −
3∑

n=0

φn(x)2 − · · ·

= NPN (x)−
N−1∑
k=1

Pk(x), (5.24)

so

〈σ̂Z(x)〉T=0 = f(t)

[
NPN (x)−

N−1∑
k=1

Pk(x)−
(
N − 1

2

)
PN (x)

]

=
2∆ω

G
(cos (Gt)− 1)

[(
N + 1

2

)
PN (x)−

N−1∑
k=1

Pk(x)

]
. (5.25)

We can now approximately evaluate the sum
∑N−1

k=1 Pk(x) using the Thomas-Fermi profiles:

N−1∑
k=1

Pk(x) ≈

N−1∑
k=1

RTFk
π

√
1−

(
x

RTFk

)2

=
1

π

N−1∑
k=1

√
2k − x2 =

√
2

π
Re

[
ζ

(
−1

2
, 1− x2

)
− ζ

(
−1

2
, N − x2

)]
(5.26)

where ζ (s, a) ≡ ∑∞k=0 (k + a)−s is a generalization of the Riemann zeta function known as the

Hurwitz zeta function. Thus we obtain the following approximate analytic solution for the zero-

temperature density:

〈σ̂Z(x)〉T=0 ≈
2
√

2∆ω

πG
(cos (Gt)− 1)

{(√
N (N + 1)

2

)√
1− x2

2N
− Re

[
ζ

(
−1

2
, 1− x2

)
− ζ

(
−1

2
, N − x2

)]}
.

(5.27)
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Figure 5.8: Comparison of the cloud profiles (n↑(x) − n↓(x))/n0 at t = 50/ω between the DMRG
simulation, Eq. 5.20 which sums over every oscillator mode, and the approximate analytic expression
in Eq. 5.27 which is valid for N � 1. The three cloud shapes have almost perfect agreement at
this time.

5.7.2 High temperature spin density profile

At high temperatures such as those in [Du2009] where T ≈ 4TF we can approximate the

cloud shape using Maxwell-Boltzmann statistics. The overall density of the cloud is

n (x) = N

∞∑
n=0

e−βω(n+1/2)φn(x)2/Z,

Z =
∞∑
n=0

e−βω(n+1/2) =
1

2 sinh
(
βω
2

) (5.28)

This sum is a special case of the Mehler Kernel

∞∑
n=0

Hn(x)Hn(y)wn

n!
=

1√
1− 4w2

exp

[
2w
(
2w(x2 + y2)− 2xy

)
4w2 − 1

]
, |w| < 1

2
,

→
∑
n

ψ2
n (x) zn ≡M (x, z) =

1√
π (1− z2)

exp

(
z − 1

z + 1
x2

)
(5.29)

This results in the density profile:

n (x) = Ne−βω/2M
(
x, e−βω

)
/Z =

2Ne−
βω
2 sinh

(
βω
2

)
e− tanh(βω2 )x2√

π (1− e−2βω)
. (5.30)

Thermal averaging will damp the Rabi oscillations seen at zero temperature. Inspired by Eq. 5.19,

we assume that each 〈σ̂Zn 〉 evolves as

〈σ̂Zn 〉 =
2∆ω

G
(〈n〉 − n)F (t) , (5.31)
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where F (t) accounts for dephasing and is no longer a pure oscillation. Assuming that F (t) is

independent of n, we can calculate the 〈σ̂Z (x)〉 density profile:

〈σ̂Z (x)〉 = N
∞∑
n=0

e−βω(n+1/2)φn(x)2〈σ̂Zn 〉/Z,

=
2N∆ωF (t)

G

∞∑
n=0

e−βω(n+1/2)φn(x)2 (〈n〉 − n) /Z,

=
2N∆ωF (t)

G

∞∑
n=0

e−βω(n+1/2)φn(x)2

[(
eβω − 1

)−1
− n

]
/Z,

=
2N∆ωF (t)

G

[(
eβω − 1

)−1
∞∑
n=0

e−βω(n+1/2)φn(x)2/Z −
∞∑
n=0

e−βω(n+1/2)nφn(x)2/Z
]
,

=
2N∆ωF (t)

G

[(
eβω − 1

)−1
n (x)

N
−
∞∑
n=0

e−βω(n+1/2)nφn(x)2/Z
]
,

=
2N∆ωF (t)

G

[(
eβω − 1

)−1
n (x)

N
− e−βω2 z ∂

∂z
M (x, z) /Z

∣∣∣∣
z=e−βω

]
,

=
∆ωF (t)

(
coth

(
βω
2

)
− 2x2

)
n(x)

G (cosh (βω) + 1)
. (5.32)

In the zero temperature case, F (t) = 1 − cos (Gt), so we expect the long time behavior of the

thermal F (t)→ 1. Thus we can predict the steady state cloud shape to be

[
n↑(x)− n↓(x)

(n↑(0) + n↓(0)) /2

]
t→∞

=
2〈σ̂Z (x)〉
n(0)

∣∣∣∣
F(t)→1

=
2∆ω

(
coth

(
βω
2

)
− 2x2

)
n(x)

G (cosh (βω) + 1)n(0)
,

=
2∆ω

(
coth

(
βω
2

)
− 2x2

)
e− tanh(βω2 )x2

G (cosh (βω) + 1)
. (5.33)

This high temperature is only valid when ∆ω/G. For a thermal cloud the Dicke gap will be

significantly smaller than at quantum degeneracy since the density is lower. However, since the

system starts in the Dicke manifold, the results are still valid at short times when |〈σ̂Zn 〉 � 1. A

comparison with the thermal cloud taken from [15] is shown in Fig. 5.9. Unfortunatlely this cloud

image was taken at the “long time” of 200ms, but the thermal result still qualitatively predicts the

cloud shape at this time.
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Figure 5.9: (a) Analytic results for the spin segregated cloud shape at both zero temperature and
T = 4TF taken at 200ms. The thermal cloud is shown at a late time, past its time of validity, but
nevertheless qualitatively reproduces many of the features seen in the cloud image from [14] shown
in (b).
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5.7.3 Comparison with experiment in Ref. [14]

To make a comparison with experiment we first benchmarked the system with a one di-

mensional DMRG simulation of the dynamics to determine the role of single particle motion in

the experiment. In this regime DMRG is fully reliable. The experiment in Ref. [14] was con-

ducted with 2 × 105 atoms in a cigar-shaped geometry with trapping frequencies {ωx, ωy, ωz} =

{145 × 2π Hz, 4360 × 2π Hz, 4360 × 2π Hz}. A zero temperature version of this gas would fill

up the harmonic oscillator modes in the lowest energy configuration, resulting in about 560 par-

ticles in the x-direction (occupying modes nx = 0 through nx = 559) and 19-particles in each of

the transverse directions. Our simulation used N = 560, with nx = ny = 0 for all the particles,

and the results are shown in Fig. 3(b,c) of the main text. From this simulation we concluded

that coherences between mode sectors are unimportant since single particle motion is negligible.

The lack of single particle motion is due to the very small inhomogeneity along the x-direction:

∆ω =
(
ω↑ − ω↓

)
/2ωx = 8.62× 10−6.

ba

Figure 5.10: (a) Spin wave energies vs. particle number for a 3D system with parameters taken
from [14], based on Monte Carlo sampling of harmonic oscillator mode configurations. Extrapolated
to N = 2 × 105 particles, at T = 4TF the average energy is ≈ 2.12 × 2π Hz and the Dicke gap
(minimum energy) is ≈ 0.34 × 2π Hz, both much smaller than the single particle inhomogeneity
of 4.85 × 2π Hz. For N = 2 × 105 particles at T = 0 the Dicke gap is ≈ 39.53 × 2π Hz. (b) Spin
wave energies vs. particle number for a 1D system at T = 0 with parameters taken from [14]. At
N = 560 the Dicke gap is 3.92× 2π Hz, much larger than the inhomogeneity of 0.70× 2π Hz.

The experiment was conducted at a high temperature of 27µK ≈ 4TF , where TF is the

Fermi temperature. The average harmonic oscillator mode occupations were: N̄i ≈ ~ωi/kBT :
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Figure 5.11: Dynamics of the cloud center taken from [14]. The dynamics can be reproduced using
a high temperature average.
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{N̄x, N̄y, N̄z} = {3878, 129, 129}. We performed a Monte Carlo sampling of the energy separation

of the spin-wave and Dicke states, where mode configurations were sampled from a thermal distri-

bution and the spin wave energies were computed and plotted in Fig. 5.10(a). The mean, standard

deviation, and minimum (Dicke gap) of the spin wave energies increases linearly with particle num-

ber, allowing us to extrapolate to higher particle number. For 2 × 105 particles at T = 4TF the

Dicke gap is ≈ 0.34 × 2π Hz, the average energy of the spin wave states is ≈ 2.12 × 2π Hz, and

the standard deviation of the energies is ≈ 1.13× 2π Hz. A typical magnitude of the coupling via

the inhomogeneity is N̄x∆ω = 4.85 × 2π Hz, much larger than all of these energies. The typical

thermal energy per particle is also much higher than all of these energies.

In such a high temperature system the protection from the Dicke gap is significantly sup-

pressed and the long time dynamics are potentially difficult to analyze. However in Ref. [14] the

spin density at the cloud center, (n↑(x = 0)− n↓(x = 0))/n0, exhibited a damped oscillation that

quickly reached an asymptotic value of (n↑(x = 0)− n↓(x = 0))/n0|t→∞ ≡ ∆n. Since initially all

the atoms were prepared in the Dicke manifold, the initial transfer of population from the Dicke

manifold to the spin wave manifold that happens at short times should be captured by our ana-

lytic expressions. To match the short time to the long time dynamics we use the asymptotic value

of the population, ∆n as a fitting parameter. We compute the thermal average by sampling our

analytic expression over a Gaussian distribution of Dicke gaps. The mean, G0, and the standard

deviation, ∆G, were extracted by a Monte-Carlo sampling of the gaps evaluated from matrices

constructed accordingly to Eq. 8.1. In the limit of a sum of many such oscillations, the dynamics

can be approximated as an integral:

(n↑(0)− n↓(0))/n0 ≈ ∆n

∫
dG (1− cos(Gt))

e−
(G−G0)2

2∆G2

√
2π∆G

= ∆n (1− cos(G0t)) e
− (∆Gt)2

2 . (5.34)

The thermal average of the population imbalance extracted from Eq. 5.34 agrees well with the data

from [14] and is shown in Fig. 5.11.
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5.8 Scaling of dynamical quantities

The short time dynamics of a generic XXZ Hamiltonian for a state initially polarized along

the X direction is [135]

〈ŜX〉 =
N

2
− (u↑↓t)

2

16

∑
n 6=m

∆2
nm +O(t3) ≈ 〈ŜX〉t=0

(
1− (t/τM )2

)
, τM =

1

u↑↓

√√√√√ 2N∑
n6=m

∆2
nm

, (5.35)

where ∆nm ≡ JZnm − J⊥nm and τM is defined as the demagnetization time. For a linear gradient we

expand the parameters in x0/aH , set aH = 1, and find ∆nm = JZnm − J⊥nm ≈ 2x2
0Λnm, where

∆nm ≈ nJ0
n−1,m − 2

√
nmJ0

n−1,n,m−1,m − 2
√
n(n+ 1)J0

n−1,n+1,m,m +

−2
√
m(m+ 1)J0

n,n,m−1,m+1 + (1 +m)J0
n,m+1 +mJ0

n,m−1 − 2
√

(m+ 1)(n+ 1)J0
n,n+1,m,m+1 +

+(1 + n)J0
n+1,m + 2

√
n(m+ 1)J0

n−1,n,m,m+1 + 2
√
m(n+ 1)J0

n,n+1,m−1,m, (5.36)

J0
nmpq =

∫∞
−∞ dxφn(x)φm(x)φp(x)φq(x), and J0

nm ≡ J0
nnmm. The formula Λnm ≈ nJ0

nm ∼
√
N

works well, where Xnm ≡
∑

n,m∈ni Xnm/(N(N − 1)) is the arithmetic average and we have used

J0
nm ∼ 1/

√
N . We find that for x0 � aH , ∆nm ∼ x2

0

√
N . Further assuming ∆2

nm ≈ (∆nm)2, this

implies τM ∼
(
Nu↑↓x

2
0

)−1
. Fig. 5.12(a) shows the scaling of τN vs. N . Fitting the dynamics to a

Gaussian decay function A exp(−t2/τ2
M ) we find that τM ∼ N−.823, close to the prediction of N−1.

In Fig. 5.12(b) we show the scaling of τM vs. x0, which agrees well with the x−2
0 prediction.

In Fig. 5.12(c,d) we show how 〈ŜX〉 depends on N and ωB, respectively. We use a cosine

fitting function A cos(ωrott) to extract the collective Bloch vector precession frequency ωrot and

compare with the prediction N∆ω. In Fig. 5.12(c) we use ωB = 0.1ω and a relatively large

interaction strength u↑↓ = 0.35ω � ∆ω. This is the self-rephasing regime so the prediction works

well. In Fig. 5.12(d) we fix N = 10 and u↑↓ = 0.35ω, and vary ωB. We see deviations from the

prediction for large ωB, because interactions are not strong enough to protect against population

leakage outside of the Dicke manifold.

We can quantify spin segregation by the second moment of the spin density

µ2z = 2

∫ ∞
−∞

dxx2〈ŜZ(x)〉. (5.37)
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Figure 5.12: Scaling. (a) Dynamics vs. N for a constant gradient x0 = 0.1aH , from which τM
is extracted and found to scale like τM ∼ N−.823, close to the N−1 prediction. (b) Dynamics and
scaling of τM vs. x0 which agrees well with the prediction x−2

0 , for N = 10. (c) 〈ŜX〉/N vs. N ,
when ωB = 0.1ω, from which ωrot is extracted and agrees well with the prediction ωrot = N∆ω.
(d) 〈ŜX〉 vs. ωB for N = 10. Predictions fail when ωB ∼ u↑↓. (All cases are u↑↓ = 0.35ω.) (e) µ2z,
vs. u↑↓; oscillations become more pronounced for stronger interactions. ωseg scales linearly with
u↑↓. 〈µ2z〉 ∼ u−.887

↑↓ , close to the prediction of u−1
↑↓ .
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For a homogeneous spin distribution, µ2z = 0. When the ↑ (↓) spins are concentrated more towards

the edges of the trap, the sign of µ2z is positive (negative). In Fig. 5.12(e) we plot µ2z dynamics

for various interaction strengths, fixing N = 10 and ωB = 0.1ω. For larger interactions the

oscillations become smaller, faster, and less damped, confirming the “Rabi oscillation” behavior

of spin segregation. We fit µ2z to an offset cosine function A + B cos(ωsegt + φ) to extract the

scaling of the segregation frequency ωseg, and the average value of the segregation, 〈µ2z〉 = A. A

linear fit of ωseg vs. u↑↓ with slope of 0.86 confirms linear scaling with interaction energy. We find

〈µ2z〉 ∼ u−0.887
↑↓ , close to the prediction of u−1

↑↓ .

5.9 Spin collisions in a one dimensional harmonic trap

We now use the spin model approximation to investigate the collision of two ultracold

fermionic atomic clouds that are initially prepared in different well-defined spin states. The fermions

interact via s-wave interactions through the ↑, ↓ channel (but not the ↑, ↑ or ↓, ↓ channels). We

are interested in the dynamics of the spin clouds in space and the propagation of correlations. We

focus on the weakly-interacting regime in one dimension where fully-quantum treatments of the

interactions are tractable. This work is meant to model the experiments in Refs. [122, 123] in the

weakly-interacting, quantum degenerate regime.

Similar to the problems considered earlier in this chapter, we consider s-wave interactions of

the form

ĤFull = u↑↓aH

∫
dxρ̂↑(x)ρ̂↓(x) (5.38)

where the interaction strength u↑↓ has units of energy and is proportional to the s-wave scattering

length as
5 , ρ̂α(x) = ψ̂†α(x)ψ̂α(x), and ψ̂α(x) is the fermionic field operator for spin α at point x.

We can expand the field operators in the basis of single particle eigenstates: ψ̂α(x) =
∑
n

ĉnαφn(x).

5 u↑↓ is calculated by integrating the s-wave pseudopotential 4π~2as
m

δ(r) ∂
∂r
r over two tightly-confined directions

of a three dimensional harmonic trap.
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The interaction Hamiltonian becomes

ĤFull = u↑↓
∑
nmpq

Anmpq ĉ
†
n↑ĉm↑ĉ

†
p↓ĉq↓ (5.39)

where Anmpq = aH
∫
dxφn(x)φm(x)φp(x)φq(x). We can invoke the spin model approximation by

requiring that the single-particle modes before and after an interaction event either remain the

same or are swapped between the two particles. This leaves only parameters Jnm ≡ Annmm =∫
dxφ↑n(x)2φ↓m(x)2. We define spin operators ~σn ≡

∑
α,β

ĉ†nα~σαβ ĉnβ, where α, β =↑, ↓, and ~σ is the

usual Pauli vector {σ̂X , σ̂Y , σ̂Z}. The resulting spin Hamiltonian is a fully-connected Heisenberg

model,

Ĥsm = −u↑↓
4

∑
n6=m

Jnm~σn · ~σm. (5.40)

Note that since there is no magnetic field gradient in this problem there is no difference between

direct and exchange terms in the Hamiltonian.

For our system, the initial state is contains many coherences due to its preparation via a

quench. The state of the system is a superposition of many configurations of spins, each evolving

under a realization of the spin model, and observables measure the coherences between these real-

izations. We test the spin model approximation with numerical simulations of four particles, shown

in Fig. 5.14. Plotted is the center of mass position of the spin-↑ cloud as a function of time. In all

cases the spin model does not correctly predict the amplitude of center of mass oscillations but it

captures the timescales of the growth and decay of those oscillations.

5.9.1 Protocol 1: coherent spin domain wall

In Ref. [123] a spin domain wall was imprinted on a gas of fermions by a spatially-varying

Rabi pulse. The gas was prepared entirely in the ↓ spin state, and then partially illuminated by a

“masked laser” π-pulse, which flipped the spins on the right side of the trap to the ↑ spin state.

The intensity was completely dark on the left side, and partially illuminated in the center. The net

result twas a smoothly-varying spin twist over the extent of the (coherent) domain wall.
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Figure 5.13: Testing the spin model approximation with simulations of four particles for an initial
state with a domain wall. Plotted are the center of mass position of the spin-↑ cloud as a function
of time for two different domain wall sizes (x0 = {1.0aH , 0.5aH}) and three different interaction
strengths (u↑,↓ = {0.1ω, 0.2ω, 0.4ω}). We see that the spin model captures the timescales of the
decay and growth of those oscillations, but does not accurately capture the amplitude after the
initial collapse.
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The initial state is prepared as follows: 1) N fermions are prepared in their ↓ spin state and

loaded into a harmonic trap at zero temperature. They occupy the lowest N modes of the trap

V (x) = 1
2maωx

2, where ma is the atomic mass and ω is the trapping frequency. 2) A Rabi pulse

with spatial dependence Ω(x) = Ω0
2 (1 + tanh(x/xdw)) is applied, where xdw is the extent of the

domain wall, for time T such that Ω0T = π. This function is chosen to imprint the correct spin

twist on the sample – spins on the left remain down, spins on the right are flipped up, spins in the

middle twist smoothly from down to up.

5.9.2 Protocol 2: coherent displaced initial state

Another way to prepare the system is as follows: 1) N fermions are prepared in their ↓

spin state and loaded into a harmonic trap at zero temperature. The total spin is then rotated to

point along the X-direction, so every atom is in a superposition of both spin states. The trapping

potential is then adiabatically changed in a spin-dependent fashion to V ↑↓(x) = 1
2maω(x∓x0)2, so

that the up and down spin densities are shifted by x0 to the right and left, respectively. This can

be accomplished by slowly ramping on a magnetic field gradient. At this point the centers of the

clouds are each a distance x0 from the origin and 2x0 from each other. The trap is then quenched

back to its initial form V (x) where ↑ and ↓ see the same potential.

The quench induces oscillations of the two spin clouds in opposite directions. The single

particle dynamics can be computed analytically. A harmonic oscillator eigenstate displaced by

distance x0 has dynamics

ψn (x0, x, t) = e
−i(n+ 1

2)ωt+i
x2
0

a2
H

( 1
2

cos(ωt) sin(ωt)−sin(ωt))+ix0 sin(ωt)x/a2
H
φn

(
x− x0 cos (ωt)

aH

)
, (5.41)

where aH is the harmonic oscillator length. It is clear that the center of mass of each cloud moves as

xcm(t) = xcm(0) cos (ωt). The magnitude and direction of the transverse magnetization is captured

by the observable Ŝ+ = ŜX + iŜY . For a single particle

〈Ŝ+〉n =
i

2

∫
dxψ↑n(x, t)∗ψ↓n(x, t) =

i

2

∫
dxψn (x0, x, t)

∗ ψn (−x0, x, t) . (5.42)
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Figure 5.14: Testing the spin model approximation with simulations of four particles for a coherent
displaced initial state. Plotted are the center of mass position of the spin-↑ cloud as a function of
time for two different initial displacements (x0 = {0.1aH , 0.5aH}) and three different interaction
strengths (u↑,↓ = {0.1ω, 0.2ω, 0.4ω}). We see that the spin model captures the timescales of the
growth and decay of those oscillations, but does not accurately capture the amplitude of those
oscillations.
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5.10 Outlook

We have discussed an approach to model the interplay of motional and spin degrees of freedom

in weakly interacting fermionic systems in spin-dependent potentials. Simulations reproduce several

collective dynamical phenomena that were recently observed in cold gas experiments, and we can

understand the physics behind these effects with simple considerations. For larger systems and

in higher dimensions, methods such as the discrete truncated Wigner approximation could be

utilized [125–127, 149]. Our formulation may also be useful for modeling other spin transport

experiments [122, 123].

Fig. 5.4(a) shows the counterintuitive result that in a weakly interacting Fermi gas, the

correlations spread globally rather than linearly. Not much is understood about the crossover

between the weakly interacting regime and the strongly interacting regime, where a linear spreading

is expected. The behavior of the spreading of correlations in a gas is somewhat of a research frontier.

Some studies have already appeared in the literature [25, 150, 151], but not from the perspective that

there may be a qualitative change as the interaction strength is increased from weak to strong. One

of the challenges is that there are not very many techniques that are trustworthy for studying this

problem. Some promising strategies are to use short-time perturbation theory, exact diagonalization

for small systems, and density matrix renormalization group methods. There are then a number

of additional questions that can be explored: What if the interactions are long-ranged? Do the

correlations spread in a similar fashion for both Bose and Fermi gases? Does the spin degree of

freedom play a role, and if so, would gases with larger spin (> 1/2) behave differently? What about

gases with anisotropic interactions, such as dipolar gases? An understanding of these phenomena

could be potentially useful for future quantum technologies that utilize quantum gases.



Chapter 6

Beyond the Spin Model Approximation

6.1 Introduction

In this chapter we examine in detail effects that occur beyond the spin model approximation

which was used throughout this thesis to study interactions in atomic clocks and Fermi gases. We

begin with a careful study of the validity of the spin model for two fermionic atoms in an atomic

clock. The atoms experience an inhomogeneous rotation due to misalignment of the clock laser and

are probed with Ramsey spectroscopy. The inhomogeneous rotation leads to s-wave interactions.

We compare the predictions of the spin model to analytic expressions for the dynamics and find

that the spin model can fail at times much longer than the trap period. This failure is related to

the redistribution of modes in the harmonic trap due to the evenly spaced energy levels. We then

discuss how for N > 2 resonant mode changes can occur even in a Fermi-degenerate population since

interactions can induce spin flips, after which resonant mode changes are no longer blocked by the

Pauli exclusion principle. Finally, we re-examine the problem of a Fermi gas with spin-dependent

traps and discuss corrections to the spin model approximation.

6.2 The spin model approximation for two atoms in an atomic clock

Ramsey spectroscopy, a technique initially designed to interrogate microwave atomic clocks,

has become an important modern tool for probing dynamics of interacting many-body systems

with internal (pseudospin) degrees of freedom. Ramsey spectroscopy applies (see Fig. 6.1 (a)) two

strong resonant pulses to a system initially prepared in a well-defined pseudospin state, separated
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Figure 6.1: (a) Ramsey spectroscopy of two interacting spin-1/2 particles. (b) In a harmonic
trap the spectrum degeneracy allows near-resonant mode-changing collisions coupled to the spin
dynamics.

by a dark time of free evolution. The first pulse initializes the pseudospin dynamics by preparing

the system in a nontrivial superposition of eigenstates, i.e. it introduces a quantum quench [152].

The second pulse reads the coherence or correlations developed during the dark time. Recently,

Ramsey spectroscopy has been proposed for extracting real-space and time correlations [153–157],

characterizing topological order [70, 158], measuring spin diffusion dynamics in bosonic [12, 13,

118, 120, 159, 160] and fermionic systems [9, 14, 98, 101], and as a means to probe many-body

interactions in atomic, molecular, and trapped ion systems [3, 4, 115, 116, 119, 121, 161–163].

Generally speaking, Ramsey spectroscopy measures the collective pseudospin and traces out

other external degrees of freedom involved during the free evolution. In most atomic setups the

latter are associated with motional degrees of freedom in the harmonic trapping potential and/or

lattice potential confining the atoms. The external degrees of freedom can affect the spin dynamics

in a non-trivial way, however. A great simplification could be gained if it were possible to decouple

the motional and spin degrees of freedom, and reduce the many-body dynamics down to those

extracted from a pure interacting spin model. Evidence that this scenario is possible, even far from

quantum degeneracy, has been reported in recent experiments [12, 116–121], where the observed

spin dynamics corresponded to those of a pure spin Hamiltonian. These observations are opening a

path for the investigation of quantum magnetism in atomic systems without the need for ultra-low

temperatures. It is thus important to determine the parameter regime in which a pure interacting-

spins picture is valid.

In this section we provide insight on the validity of a pure spin model description of Ramsey
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spectroscopy by performing exact calculations for fermions with s-wave interactions and an internal

pseudospin-1/2 degree of freedom, confined in quasi-1D and quasi-2D harmonic traps. We show that

the large degeneracy of the harmonic oscillator spectrum can limit the validity of the spin model to

time scales less than the inverse interaction strength, due to resonant collisionally-induced excitation

of spatial modes (see Fig. 6.1 (b)). Cold atom experiments are protected from this problem if

the temperature is high enough that atoms probe the actual Gaussian shape of the potential

which breaks the harmonic spectrum degeneracy. This was shown to be the case for example in

Refs. [116, 119, 120] where a pure spin model well described the experimental observations. At very

low temperatures, Pauli blocking can also prevent mode changing collisions, as recently observed

in Ref. [148]. However, the degeneracy is a concern for intermediate temperatures at which the

set of populated levels are effectively harmonic. Here we show that surprisingly, in two dimensions

and to first order in the interaction strength, the full two-particle dynamics can be described in

terms of an effective spin model with appropriate parameters. Our two-body calculations are not

only a first step towards understanding the interplay between spin and particle motion in generic

many-body ensembles, but are also directly applicable to optical clocks that interrogate an array

of 1D tube-shaped traps, each with fewer than three atoms [49, 117, 164].

6.2.1 Setup

Consider two fermions with internal degrees of freedom {↑, ↓} corresponding, for instance,

to the 1S0-3P0 electronic levels in alkaline-earth-based optical lattice clocks, and assume their

interactions are primarily described by an s-wave pseudo-potential. The atoms are also illuminated

by a laser beam detuned by δ = ωL−ω0 from the atomic transition ω0, with wavevector ~k and bare

Rabi frequency Ω. The two-particle Hamiltonian is then given by Ĥ(~x1, ~x2) =
∑

i=1,2 ĤL(~xi) +

ĤD(~x1, ~x2):

ĤL(~xi) = −~Ω

2
e−i(ωLt−

~k·~xi)σ̂+
i + H.c.

ĤD(~x1, ~x2) = Hsp(~x1) +Hsp(~x2) + gP̂sδ (~r)
∂

∂r
r. (6.1)



115

Here ĤL(~xi) describes the atom-laser interaction: σ̂+
i is the spin raising operator acting on atom

i, and H.c. is the Hermitian conjugate. Hsp(~xi) = −~2/(2M)∇2
i + V (~xi) + (~ω0/2)σ̂zi is the single

particle Hamiltonian with an external potential, V , assumed for simplicity to be independent of

the internal state and separable. Hsp(~xi) has eigenfunctions φn(~xi) and eigenenergies En with

n = {nx, ny, nz}. M is the particle’s mass and σ̂z the Pauli matrix. ~r = ~x1 − ~x2 is the relative

coordinate, g = 4π~2a↑↓s /M and a↑↓s the 3D s-wave scattering length. P̂s = |s〉〈s| is the projector

into the singlet state, |s〉 = 1√
2

(|↑↓〉 − |↓↑〉). Only fermions in the singlet state can interact, while

spin triplet states, |t↓↓〉 = | ↓↓〉, |t↓↑〉 = 1√
2

(|↑↓〉+ |↓↑〉), and |t↑↑〉 = | ↑↑〉 cannot experience s-wave

interactions.

6.2.2 The spin model.

The assumptions of the spin model are: if there are no degeneracies in the two-atom non-

interacting spectrum, i.e. (Em + En) = (Em′ + En′) occurs only for (m,n) = (m′,n′) or (m,n) =

(n′,m′), and interactions are treated as a perturbation, scattering processes that change the single-

particle modes become off-resonant and atoms remain frozen during the dynamics. In this case

interactions are diagonal in the single-particle basis and for particles in modes (m,n) they are fully

characterized by the interaction energy

~Unm
↑↓ = g

∫
d3~x|φn(~x)|2|φm(~x)|2. (6.2)

6.2.3 Fermions with s-wave interactions in one dimension

We begin with the case of two atoms tightly confined transversally in their ground state

and with dynamics only along the z−direction, where they experience a 1D harmonic trapping

potential with angular trapping frequency ωz. The two atoms are initially prepared in the state

1√
2

(|n1, n2〉 − |n2, n1〉) |t↓↓〉.

The atoms are assumed to be in the Lamb-Dicke regime, with Lamb-Dicke parameter η =

kzaho/
√

2� 1. aho =
√
~/Mωz is the harmonic oscillator length, and kz the projection of the probe

laser wavevector along z. Mode changes during the laser interrogation can be suppressed if the laser
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detuning from the atomic transition, δ, and the bare Rabi frequency, Ω, satisfy δ, ηΩ� ωz. In this

regime the mode-dependence of the Rabi frequencies is Ωn = Ωe−
η2

2 L0
n

(
η2
)

[165]. The Hamiltonian

in the rotating frame of the laser [3, 4, 115, 116] under the spin model approximation can be written

as Ĥn1,n2
sm = Ĥn1,n2

L + Ĥn1,n2

D , where

Ĥn1,n2

L = ~∆Ωn1,n2
(σ̂x1 − σ̂x2 )

2
− ~Ω̄n1,n2 ŝx,

Ĥn1,n2

D = 2~un1,n2

↑↓ P̂s − ~δŝz. (6.3)

Ĥn1,n2

L acts only during the two laser pulses, and Ĥn1,n2

D acts only during the dark time. Here

ŝx,y,z = (σ̂x,y,z1 + σ̂x,y,z2 )/2 are collective spin operators and Ω̄n1,n2 = (Ωn1 + Ωn2)/2 is the mean

Rabi frequency. ∆Ωn1,n2 = (Ωn1−Ωn2)/2 arises from the excitation inhomogeneity and can transfer

some of the initial triplet population to the singlet, allowing interactions. The interaction energy

~un1,n2

↑↓ = ~Unm
↑↓ in Eq. (6.2) with n = {0, 0, n1} and m = {0, 0, n2}. We can ignore the detuning

and interactions during the laser pulses if the pulses are short compared to the timescales set by

those energies. We also ignore single-particle energies which are constants and do not contribute

to the dynamics.

The spin model assumptions break down in a harmonic trap due to the degeneracy of the

non-interacting two-atom spectrum: even weak interactions can transfer atoms initially in modes

{n1, n2} to the various degenerate configurations {n1+k, n2−k} (for integer k) during the dynamics.

To account for these mode changes, we take advantage of the exact eigenfunctions and eigenvalues

of ĤD(~x1, ~x2) in Eq. (6.1) for two atoms with s-wave interactions in a harmonic trap [166]. These

solutions exploit the separability of the Hamiltonian in the center-of-mass coordinate R and relative

coordinate r. There is no degeneracy in the relative coordinate degree of freedom.

6.2.4 Ramsey dynamics in the spin model approximation

Denoting τ the Ramsey dark time, the population difference between the two spin states

measured after the second pulse takes the generic form

〈ŝz〉 (τ) = A(τ) cos(δτ) +B(τ) sin(δτ) + C(τ). (6.4)
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A(τ), B(τ), and C(τ) have the form A(τ) = I1(τ)f1 + f2, B(τ) = I2(τ)f3, C(τ) = I3(τ)f4 + f5,

where Ii(τ) depend on the dark time physics, and fi are independent of the dark time physics and

depend only on the laser pulse quantities {∆θn1,n2
j=1,2, θ̄

n1,n2
j=1,2}:

f1 = sin(∆θn1,n2
1 ) sin(∆θn1,n2

2 ) cos(θ̄n1,n2
1 ) cos(θ̄n1,n2

2 )

f2 = cos(∆θn1,n2
1 ) cos(∆θn1,n2

2 ) sin(θ̄n1,n2
1 ) sin(θ̄n1,n2

2 )

f3 = cos(∆θn1,n2
1 ) cos(θ̄n1,n2

2 ) sin(∆θn1,n2
1 ) sin(∆θn1,n2

2 )

f4 = − sin(∆θn1,n2
1 ) sin(∆θn1,n2

2 ) sin(θ̄n1,n2
1 ) sin(θ̄n1,n2

2 )

f5 = − cos(∆θn1,n2
1 ) cos(∆θn1,n2

2 ) cos(θ̄n1,n2
1 ) cos(θ̄n1,n2

2 ), (6.5)

∆θn1,n2
j = ∆Ωn1,n2tj and θ̄n1,n2

j = Ω̄n1,n2tj , with t1,2 the pulse durations. In the spin model approx-

imation, the dark time functions depend simply on interactions: Ism
1 = Ism

3 = cos(un1,n2

↑↓ τ), Ism
2 =

sin(un1,n2

↑↓ τ).

6.2.5 Ramsey dynamics in the weakly interacting regime (u1,0
↑↓ � ωz)

For weakly interacting atoms (u1,0
↑↓ � ωz), we are able to write the dynamics (beyond the

spin model approximation) in a closed analytic form. These expressions for the dynamics are exact

for times τ � ωz/(u
1,0
↑↓ )2:

Iexact
1 = Iexact

3 = 2

n1+n2∑
nr=0,even

|dn1,n2
nr |2 cos

[
∆Es(nr)

~
τ

]
,

Iexact
2 = 2

n1+n2∑
nr=0,even

|dn1,n2
nr |2 sin

[
∆Es(nr)

~
τ

]
. (6.6)

Here dn1,n2
nr are the change of basis coefficients defined later in this section. Comparing Eq. (6.6)

to the spin model solution, we see the single frequency un1,n2

↑↓ in the spin-model dynamics gets

replaced by a sum over many frequencies ∆Es(nr)/~ in the exact dynamics. These frequencies are

associated with the first order correction of the eigenenergies due to interactions [166]: ∆Es(nr) =

~u1,0
↑↓

Γ(nr/2+1/2)√
πΓ(nr/2+1)

(
1 + O(u1,0

↑↓ /ωz)
)

. The many frequencies that appear come from the resonant

mode-changing processes. States with odd nr do not experience s-wave interactions and do not

contribute.
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Figure 6.2: Ramsey dynamics [see Eq. (6.4)] with δ = 0: (a) 1D spin model, exact solution,
and projection of population onto initial mode (here n1 = 10 and n2 = 0), with u1,0

↑↓ ≈ 0.2ωz.
Dephasing of the exact dynamics results from mode changes. (b) Thermal averages in 2D: spin
model vs. effective spin model, at different temperatures, with u1,0

↑↓ ≈ 0.04ω⊥. For both figures:
θ1 = θ2 = π/3, with thermally-averaged inhomogeneity 〈∆Ω〉/〈Ω〉 = 0.3. θi = Ωti are bare pulse
areas.
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The formula in Eq. 6.6 is derived as follows: we begin with two particles in the state

1√
2

(|n1, n2〉 − |n2, n1〉) |t↓↓〉, where n1 and n2 are quantum numbers for two different (non-interacting)

harmonic oscillator modes. A laser pulse is applied, whose action is characterized by ĤL in Eq. (6.3).

The first pulse has effective pulse area θ̄n1,n2
1 and inhomogeneity ∆θn1,n2

1 . After the first pulse,

the state 1√
2

(|n1, n2〉+ |n2, n1〉) |s〉 becomes populated. We expand its spatial wave-function into

center-of-mass and relative coordinates. To capture the Ramsey dynamics to first order in in-

teraction strength g, it is sufficient to leave the wavefunctions unchanged during the dark time.

(When we calculate dynamics for strong interactions, we modify these wavefunctions according to

Ref. [166].) During the Ramsey dark time, the even relative coordinate modes acquire energies

given by ∆Es(nr) = ~u1,0
↑↓

Γ(nr/2+1/2)√
πΓ(nr/2+1)

(
1 +O(u1,0

↑↓ /ωz)
)

.

After the dark time, we expand the singlet back into individual-particle coordinates which

is the convenient basis to calculate the action of a second laser pulse, with effective pulse area

θ̄n1,n2
2 and inhomogeneity ∆θn1,n2

2 . The observable 〈ŝz〉 is calculated as the population difference

between the |t↑↑〉 and |t↓↓〉 spin states, summed over each spatial mode. However, only the triplet

contributes to the 〈ŝz〉 dynamics, and the triplet only contains the original spatial modes |n1, n2〉

and |n2, n1〉, so a major simplification can be made by only summing over these two modes. This

simplification is what allows us to calculate the analytic form of Eq. (6.6).

The exact solutions rely on a change of basis between the individual-particle coordinate basis

with wavefunctions ψn1(z1)ψn2(z2) and the center of mass-relative coordinate basis with wavefunc-

tions ΨnR(R)Ψnr(r). To convert between these bases we introduce raising operators acting on the

vacuum state |0, 0〉, which is the same in both bases: |n1 = 0, n2 = 0〉 = |nR = 0, nr = 0〉. We use

the usual form of a raising operator â† = (x̂− ip̂)/
√

2 to define

â†R =
1√
2

(â†z1 + â†z2), â†r =
1√
2

(â†z1 − â†z2) (6.7)

We can create a particular state out of the vacuum to convert between the two bases:

|nR, nr〉 =
(â†R)nR(â†r)nr√

nR!nr!
|0, 0〉, |n1, n2〉 =

(â†z1)n1(â†z2)n2

√
n1!n2!

|0, 0〉 (6.8)
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These binomials need to be expanded and re-grouped in the form

〈R, r|nR, nr〉 =

nR+nr∑
i=0

cnR,nri ψi(x)ψnR+nr−i(y), 〈x, y|n1, n2〉 =

n1+n2∑
i=0

dn1,n2
i Ψi(R)Ψn1+n2−i(r)

(6.9)

Grouping the terms, we find

cnR,nri =

√
i!(nR + nr − i)!
2nR2nrnR!nr!

min[nr,nR+nr−i]∑
j=max[0,nr−i]

(−1)j

 nR

nR + nr − i− j


 nr

j



dn1,n2
i =

√
i!(nx + ny − i)!
2nx2nxnx!ny!

min[ny ,nx+ny−i]∑
j=max[0,ny−i]

(−1)j

 nx

nx + ny − i− j


 ny

j

 (6.10)

When we compare the exact dynamics to those predicted by the spin model we find that

they agree for short times, τu1,0
↑↓ � 1. The spin model fails at longer times, however, when leakage

of population to other modes in the individual-particle coordinate basis becomes significant (See

Fig. 6.2 (a)). This is reflected in the behavior of the angular frequency shift ∆ω(τ) – an important

quantity for atomic clock experiments – defined as ∆ω(τ)τ = − arctan [B(τ)/A(τ)], which is the

observed change in the atomic transition due to interactions [see Fig. 6.3 (a)]. The failure of the

spin model at times longer than the inverse interaction strength limits its applicability to model

the new generation of atomic clocks that use ultra coherent lasers [167, 168], allowing interrogation

times exceeding a few seconds. A spin model treatment will be insufficient when conditions are

such that the atoms see an almost purely harmonic potential.

6.2.6 Ramsey dynamics in the strongly-interacting regime (u1,0
↑↓ & ωz)

The spin model fails when u1,0
↑↓ & ωz. To maintain the separation between interaction-induced

effects and laser-induced effects, we imagine interactions set to be weak during the laser pulses and

suddenly increased after the first pulse using for example a Feshbach resonance [116, 169, 170]

1 . For this situation, we can solve for the dynamics, given an initial pair of modes, although

1 During the pulses we require u1,0
↑↓ � Ω to ignore interactions, ηΩ � ωz to ignore laser induced mode changes,

and η2Ω � u1,0
↑↓ to populate all of the interacting modes in the singlet. These three conditions cannot simultaneously

be satisfied unless u1,0
↑↓ � ωz.
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there is no closed form solution (the dark time functions Ii(τ) are more complicated, but the laser

dependence through fj remains the same as in the previous cases). We find that, in the limit of

strong interactions (u1,0
↑↓ � ωz), the population imbalance exhibits periodic oscillations at the axial

trapping frequency ωz, in contrast with the spin model prediction of much faster oscillations at the

interaction frequency. The frequency shift (proportional to this oscillation frequency), saturates to

a value on the order of ωz, instead of increasing without bound. These results reflect the fact that

for strong interactions (unitarity), the fermions maximally-repel each other, and the trap energy

becomes the only relevant energy scale in the system. This behavior, expected to be a universal

result, should apply even in the many-body case as seen in Refs. [161, 162]. Fig. 6.4 confirms

numerically that for three particles in the strongly interacting regime, the dynamics oscillates at

the trap frequency rather than the interaction frequency.

Fig. (6.4) shows the Ramsey dynamics predicted by both the spin model and exact calculation

for the case of strong interactions. For two fermions with strong interactions, the relative coordinate

wavefunction of the ↑↓ channel develops a node and the interaction energy is no longer a relevant

energy scale. The only remaining energy scale in the problem is the trap frequency, and the Ramsey

dynamics oscillate at the trap frequency. The spin model predicts oscillations at the interaction

frequency, which are much faster than the true dynamics which oscillate at the trapping frequency.

Refs. [4, 116] showed that s-wave frequency shifts can be cancelled by setting the second

pulse area to θ̄n1,n2
2 = π/2. This result, obtained using the spin model, survives the inclusion of

resonant mode-changes even for strong interactions during the dark time, since the dependence

of the dynamics on the functions fi, and thus θ̄n1,n2
2 , remains the same even when interactions

are strong. Interactions induce mode changes and introduce new frequencies only to the singlet.

The triplet is what determines the dynamics, however, where only the original modes |n1, n2〉 and

|n2, n1〉 are present. The second pulse area affects these modes in exactly the same manner as in

the spin model treatment of Refs. [3, 4, 115, 116].
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Figure 6.4: (a) Ramsey dynamics [see Eq. (6.4)] with δ = 0 predicted by the 1D spin model
(solid) and the exact solution (dashed) for an initial (n1 = 6, n2 = 3) mode configuration. Strong
interactions (u1,0

↑↓ = 100ωz) are assumed during the dark time. In the limit of strong interactions
the two particles develop a node in their relative coordinate and the period of the Ramsey dynamics
becomes the trap period since it is the only energy scale left in the problem. (b) Numerical results
for the (n1 = 0, n2 = 1) mode configuration with initial conditions and parameters described in
Section 6.3 and u = 10ω, confirming the result that Ramsey dynamics takes place at the trap
period for strong interactions. (c) Numerical results for the (n1 = 2, n2 = 1, n2 = 0) mode
configuration with initial conditions and parameters described in Section 6.3 and u = 10ω, again
showing oscillations at the trap frequency rather than the interaction frequency.
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6.2.7 Fermions with s-wave interactions in two dimensions

For an anisotropic 2D harmonic potential with no accidental degeneracies, the treatment

will be similar to the 1D case. An isotropic 2D harmonic potential, however, is more difficult to

treat, due to the large degeneracy. In 2D the spin model remains the same as Eq. (6.3), with

populated modes now ni = {nxi, nyi, 0}, and interaction energy ~u~n1,~n2

↑↓ = ~Un1n2
↑↓ in Eq. (6.2). To

go beyond the spin model we use polar relative coordinates to eliminate much of the degeneracy.

For non-interacting particles, the eigenfunctions can be parameterized by quantum numbers n and

m, with energy E = ~ω⊥(2n + |m| + 1) and angular momentum component Lz = ~m, where

ω⊥ is the 2D oscillator frequency. S-wave interactions only affect states with m = 0, and this

subset of states contains no degeneracy (other than the center-of-mass degeneracy). To first order

in perturbation theory the interaction energy shift is independent of the radial quantum number

n: ∆E = g

2
√

2π3/2aza2
⊥

(
1 + O(u1,0

↑↓ /ω⊥)
)

, where az and a⊥ are the oscillator lengths along the

tightly-confined z-direction and the weakly-confined x and y-directions, respectively, and in 2D

u1,0
↑↓ ≡ u

~n1,~n2

↑↓ with ~n1 = (1, 0, 0), ~n2 = (0, 0, 0). This result is striking: despite the large degeneracy

in 2D, each interacting state with m = 0 receives the same energy shift to first order in perturbation

theory, and accumulates the same phase during the dark time. An effective spin model, with

diagonal matrix element 2~u~n1,~n2

↑↓ replaced by ∆E, will be exact for the m = 0 states, to first order

in the interaction strength. We can replace Ĥn1,n2

D in Eq. (6.3) with:

Ĥ~n1,~n2

D,esm = ∆EP̂m=0 − ~δŝz, (6.11)

where P̂m=0 projects onto interacting states with m = 0. For a properly symmetrized initial

state Ψn1,n2(~x1, ~x2) in modes (n1,n2), we denote the fraction of the population with m = 0 in the

relative coordinate by Pm=0
n1,n2

,which can be calculated as Pm=0
n1,n2

=
∫
d3~x1d

3~x2|Ψn1,n2(~x1, ~x2)|2δ(~x1−

~x2) = 4
√

2π3/2

g ~u~n1,~n2

↑↓ , where u~n1,~n2

↑↓ is the 2D interaction energy calculated from Eq. (6.2). The

dark time dynamics of this effective spin model are simple: Iesm
1 = Iesm

3 = (1 − Pm=0
n1,n2) +

Pm=0
n1,n2

cos(∆Eτ/~), Iesm
2 = Pm=0

n1,n2
sin(∆Eτ/~).

In the original spin model, ~u~n1,~n2

↑↓ is used as the interaction energy. We see that this param-
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eter appears in the effective spin model to quantify the population of interacting modes (Pm=0
n1,n2

),

instead of their energy. This dramatic result is seen in Fig. 6.2 (b), comparing thermal averages

of the previously-implemented spin model with the new effective spin model. Oscillations during

the dynamics remain at the same frequency ∆E at higher temperatures, but the amplitude of the

oscillations, proportional to Pm=0
n1,n2

, decreases. The previously-implemented spin model, on the

other hand, predicts smaller interaction energies (slower oscillations) at higher temperatures. The

frequency shift predicted by the original spin model is only valid at short times (see Fig. 6.3 (b)).

6.3 Validity of the spin model for N > 2

In this section we investigate the validity of the spin model approximation beyond the two

particle case. We will first investigate the problem of Ramsey spectroscopy of N spins where

the inhomogeneity in the Rabi frequencies is “exaggerated” and large enough such that a Rabi

pulse imprints a spin-spiral initial state on the spins, with equally spaced spin rotations between

neighboring spins. We will choose this angle between adjacent spins to be π/6. The Ramsey

sequence we are investigating starts with all spins in the down spin state followed by:

Rabi pulse (spiral) → dark time t (interactions) → Rabi pulse (spiral) → measure ŜZ .

This sequence mimics the case of inhomogeneous Rabi frequencies which arise in atomic

clocks and were investigated earlier in this chapter. Figure 6.5 shows the results of such a sequence

for N = 2 and N = 3 at both u = 0.1ω and u = 0.3ω interaction strengths2 . We choose the

initial mode configuration to be the Fermi degenerate configuration. Two particles in this initial

state cannot experience resonant mode changes, so the failure of the spin model is due to either

changes in the wavefunctions which modify the interactions, or from non-resonant mode changes.

In Fig. 6.5 (a, b) the deviations from the spin model predictions manifest as a small interaction

strength-dependent phase shift. For three particles, on the other hand, resonant mode changes are

possible after interactions flip two of the spins. We can see in Fig. 6.5 (c, d) that the spin model

2 Here the interaction strength u is the bare interaction strength, not including the numerical factors that arise
from integrating the harmonic oscillator wavefunctions.
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breaks down at long times due to these mode changes, similar to the results for two particles with

a non-Fermi-degenerate initial state.

6.3.1 Many Body Spin Echo

A many body spin echo sequence is a Ramsey sequence where a π pulse is applied halfway

through the dark time evolution (a normal spin echo), and the interaction Hamiltonian is reversed

for the second half of the dark time. The many body echo seeks to “undo” the spin-spin interactions

in the system. The question is, for a system where spin and motion are coupled, what is the effect

of the many body spin echo?

Fig. 6.6 shows the Ramsey dynamics for two particles with inhomogeneous Rabi frequencies,

with and without a normal spin echo sequence, and with a many body spin echo sequence. A

spin echo sequence does not change the Ramsey dynamics under the spin model approximation

but does modify the dynamics under the full Hamiltonian, due to the coupling of spin and motion

via mode changes. Similarly, the many body spin echo completely removes the dynamics under

the spin model approximation but does not remove all the effects of the full Hamiltonian. Thus

the many body spin echo sequence might be used as a way of detecting processes beyond the spin

model approximation in real systems.

6.4 Validation of the spin model for spin-dependent traps and importance

of corrections

In this section we continue the discussion from Ch. 5 of the validity of the spin model for

the problem of a two component Fermi gas in a spin-dependent trapping potential and discuss the

effect of corrections to the spin model Hamiltonian. This section is adapted from an unfinished

manuscript by Michael L. Wall.

The spin model is, at face value, a rather severe approximation. In particular, taking the

expectation of the spin model Hamiltonian for a non-interacting state is equivalent to first-order

perturbation theory in the interaction Hamiltonian. However, since our approximation is made
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Figure 6.5: Dynamics of a Ramsey sequence in a one dimensional harmonic trap with inhomo-
geneous Rabi frequencies. For two particles in a Fermi-degenerate initial condition (a, b), the
predictions of the spin model closely match those of the full Hamiltonian up to a phase shift that
depends on the interaction strength u. For two particles in this initial configuration, no resonant
mode changes are possible, so this phase shift results from either changes in the wavefunctions or
from non-resonant mode changes. For three particles in a Fermi degenerate initial condition (c, d),
the spin model does not work as well at long times since after two of the spins are flipped, Pauli
blocking no longer prevents resonant mode changes.
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Figure 6.6: Effect of a spin echo and many body spin echo sequence. (a) Ramsey dynamics with
inhomogeneous Rabi frequencies, comparing the spin model and Full Hamiltonian. (b) A spin echo
sequence does not change the Ramsey dynamics under the spin model approximation but does
modify the dynamics under the full Hamiltonian, due to the coupling of spin and motion via mode
changes. (c) Similarly, the many body spin echo completely removes the dynamics under the spin
model approximation but does not remove all the effects of the full Hamiltonian. Parts (d - f) show
similar results for three particles.
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at the operator level rather than the expectation value level, dynamics obtained with the spin

model Hamiltonian includes contributions to all orders in perturbation theory for certain terms

in the interaction Hamiltonian, while completely neglecting the effects of other terms. That is

to say, the spin model is not equivalent to perturbation theory in the interaction Hamiltonian

for dynamics. In spite of its seeming severity, the spin model performs extraordinarily well in

predicting some quantities, such as the decay of the contrast in Ramsey spectroscopy following

a sudden spin-dependent quench of the trapping parameters [? ]. The purpose of this section

is to numerically benchmark the spin model against solutions of the full Hamiltonian for small

systems where computing the full dynamics is possible. In addition, we consider what the dominant

corrections to the spin model are for weak to moderate interactions compared to the trapping

frequency, and how the importance of these corrections is modified by adding realistic anharmonicity

to the trap.

In what follows, we will consider a system with N = 5 spin-1/2 fermions experiencing only

s-wave interactions. Our initial state is the motional ground state in a spin-independent harmonic

trap with all spins pointing along the x direction. As all of the particles are prepared identically,

they do not experience the s-wave interactions. We then suddenly quench on a spin-dependent

potential in the form of a spin-dependent displacement of the traps. This change in the trapping

potential results in spin-dependent motion in the trap, which in turn leads to s-wave collisions.

This is the same problem that was studied in Ch. 5.

One of the most striking consequences of s-wave collisions is coherent demagnetization of

the system, evinced by decay of 〈Sx〉 to zero. Examples of this demagnetization behavior for an

interaction strength U = ω/
√

8 and trap displacements of x0 = 0.1aH and x0 = 0.3aH are shown

in Fig. 6.7, with the solutions of the full model corresponding to solid red lines and the spin model

prediction as dashed blue lines. On a coarse scale, we see that the spin model does an excellent job

of capturing the overall envelope and timescale of the collapse of magnetization. However, a closer

analysis (insets) shows that there are small oscillations on top of this envelope which correspond

to spin-dependent motion in the trap which arises from both single-particle and interaction effects.
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The spin model only captures the single-particle component of this motion, and ignores interaction

effects, and so only reproduces the exact result at short times.

The full model, which fully incorporates the effects of interactions on motion in the trap,

contains in principle O
(
N4

modes

)
parameters for a fixed set of Nmodes single-particle modes. In

contrast, the spin model contains only O
(
N2

modes

)
parameters. Clearly, not all of the neglected

parameters contribute equally, and so a natural question is which of these parameters are most

important for capturing interaction effects on motion. Motivated by perturbation theory, we expect

that the parameters In′1,n′2;n2,n1
which preserve single-particle energy, i.e. n′1 + n′2 = n1 + n2, will

be the most relevant, followed by those parameters which change the single-particle energy by

±1 quantum, ±2 quanta, etc. Further, within the set of parameters which do not change the

single-particle energy, those which involve modes n′1 and n′2 which are closest to n1 and n2 (up

to exchange) will have a larger matrix element. Hence, we can classify Hamiltonians including

corrections beyond the spin model with two numbers (n, d), where n = max(n′1 + n′2 − (n1 + n2))

is the difference in the single-particle energy of the initial and final configurations and d is the

maximum “mode distance”

M
(
n′1, n

′
2;n1, n2

)
= min(|n′1 − n1|+ |n′2 − n2|,

|n′1 − n2|+ |n′2 − n1|) (6.12)

which accounts for exchange. In terms of this notation, the spin model is the Hamiltonian (0, 0),

involving no difference in single-particle energy and also no “mode separation” between the initial

and final configurations.

As a strict measure of how well the spin model and corrections to it perform, we will consider

the fidelity of the state evolved under such an approximate Hamiltonian with evolution under the

full Hamiltonian, F = |〈ψexact|ψapprox.〉|. An example for x0 = 0.1aH is shown in Fig. 6.8, which

compares the infidelities (1−F ) of the spin model (0, 0) as well as the spin models with corrections

(0,∞), (1,∞), (2,∞) at U = 0.1ω for two different spin-dependent trap displacements. Allowing

all resonant mode changes (0,∞) enhances the fidelity approximately 100−fold. The inclusion
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of non-resonant terms, (1,∞), for instance, enhances the fidelity but by a smaller margin. This

demonstrates the expected result that the most important corrections to the spin model come from

resonant terms that conserve single particle energy. Convergence with range for resonant processes

is shown in Fig. 6.9. Most of the convergence of the fidelity of the state is accomplished by the

inclusion of the first non-resonant term (0, 1).

As shown in the above analysis, dominant corrections come from resonant terms. In a har-

monic potential, there are a large number of such resonances due to the linear spacing of energy

levels. In an anharmonic potential these resonances are no longer exact, and the only exactly

resonant collisions are the direct and exchange kept by the spin model. To better understand the

effects of anharmonicity on the fidelity of the spin model approach, we consider a Gaussian poten-

tial −V exp
(
−2x2/`2

)
. The best harmonic approximation to this potential, given by matching the

local curvature near x = 0, yields the harmonic frequency ~ω =
√

8E`V with El = ~2/(2m`2) and

the harmonic length aH = `/(2V/E`)
1/4. Converting the Schrödinger equation to harmonic units

as x̃ = x/aH , Ẽ = E/(~ω), we find[
−1

2

d2

dx̃2
+

√
V̄

8
exp

(
−
√

2

V̄
x2

)]
ψ = Ẽψ , (6.13)

where V̄ = V/E`. Treating the quartic-order term in first-order perturbation theory, we find the

energies

En ≈ −
√
V̄

8
+ ~ω

(
n+

1

2

)
+

3

2

~ω√
8V̄

(
n2 + n+

1

2

)
. (6.14)

Hence, if we consider an interaction of modes n and m scattering into (n + d) and (m − d), that

would be energy conserving in a harmonic trap, this process is off-resonant by an amount

∆En,m,d ≈
3~ω√

8V̄
d [d− (m− n)] , (6.15)

= 3E`d [d− (m− n)] . (6.16)

As expected, this energy difference vanishes for d = 0 or d = (m−n), corresponding to no change in

the modes or a mode swap. The terms which are resonant in a harmonic trap are now off-resonant
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by an anharmonic energy shift which is perturbatively equal to −E`[3 + 6n(n + 1)]/4 for the nth

harmonic oscillator state. Fig. 6.10 confirms that the spin model approximation performs better in

a gaussian potential than in a perfectly harmonic potential.

6.5 Summary and Outlook.

In this chapter we test the validity of a spin model treatment for Ramsey spectroscopy

with exact calculations for two pseudospin-1/2 fermions in a harmonic trap. In 1D the spin model

treatment breaks down for dark times on the order of the inverse interaction strength, and for strong

interactions. In 2D we find an effective spin model which is exact to first order in perturbation

theory, and whose dynamics can be quite different from those predicted by a spin model treatment.

We then discussed the validity of the spin model for N > 2 and the importance of corrections to the

spin model for the problem of spin-dependent traps. Future theoretical treatments of interacting

systems probed by Ramsey spectroscopy must take these effects into account to correctly describe

dynamics outside of the short-time and weakly-interacting regimes.
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Appendix A: High-temperature thermal average of density shift

Here, we derive the high-temperature (compared to the tunneling bandwidth) thermal average

from Ch. 3 of the first-order many-body dynamics. First, we expand the result of Eq. 3.19 to third

order in time, finding

〈Ŝz (τ)〉 =
1

2

N∑
i=1

(cos (δτ) sin θ1 sin θ2 − cos θ1 cos θ2)

+
∑
{p1,p2}

sin θ1 sin θ2

L
τ
(
C{np1 ,np2} − χ{np1 ,np2} cos θ1

)
sin δτ

+
1

2

N∑
i=1

∆Eni (qi, φ) sin (δτ) sin θ1 sin θ2τ

−
∑
{p1,p2}

sin θ1 sin θ2

L

τ2

2

(
C{np1 ,np2} − χ{np1 ,np2} cos θ1

) (
∆Enp1

+ ∆Enp2

)
cos δτ

− 1

4

N∑
i=1

∆Eni (qi, φ)2 cos (δτ) sin θ1 sin θ2τ
2

−
∑
{p1,p2}

sin θ1 sin θ2

L

τ3

24

[
6
(
C{np1 ,np2} − χ{np1 ,np2} cos θ1

)(
∆E2

np1
+ ∆E2

np2

)
−
(
2− δnp1np2

)
ζ{np1 ,np2}

(
∆Enp1

−∆Enp2

)2
cos θ1 sin δτ

]
− 1

12

N∑
i=1

∆Eni (qi, φ)3 sin (δτ) sin θ1 sin θ2τ
3
}
. (7.1)
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To perform thermal averages, we now enact the tight-binding approximation, in which En (q) =

Ēn − 2Jn cos (q), and compute the partition function as

Z =
∑
nq

e−βEn(q) ≈
∑
n

e−βĒn

∫ 1

−1
dqe2βJn cos(πq)

= 2
∑
n

e−βĒnI0 (2βJn) = 2
∑
n

e−βĒn
[
1 +O

(
β2J2

n

)]
, (7.2)

where Iν (x) is the modified Bessel function of order ν and β the inverse radial temperature. Hence,

for temperatures sufficiently high compared to the bandwidth Jn, the partition function is just a

constant times the partition function of the transverse modes. Now,

〈∆En (q, φ)〉TR =
1

Z

∑
n

e−βĒn4Jn (1− cosφ) I1 (2βJn)

=
1

Zn

∑
n

e−βĒn2βJn (1− cosφ) +O
(
β2J2

n

)
, (7.3)

where Zn =
∑

n e
−βĒn is the partition function of the transverse modes. This result gives that

terms which are linear in ∆En (q, φ) for a specific q, including terms like dE11dE22, vanish at least

as fast as O (β) at high temperatures. In contrast, we find

〈∆E2
n (q, φ)〉TR =

1

Z

∑
n

e−βĒn16J2
n

[ 1

βJn
I1 (2βJn) + I2 (2βJn) (1− cosφ)

]
sin2 φ

2

=
1

Zn

∑
n

e−βĒn4J2
n (1− cosφ) +O

(
β2J2

n

)
, (7.4)

and so the thermal average of ∆E2
n (q, φ) is a constant to lowest order in a high-temperature

expansion.

Using these results, we find that the leading order approximation in a high-temperature series

expansion is

〈〈Ŝzθ2〉〉TR =

N

2
(sin θ1 sin θ2 cos (δτ)− cos θ1 cos θ2) +

τN (N − 1)

2L
sin θ1 sin θ2 sin (δτ) (〈C〉TR − 〈χ〉TR cos θ1)

− 2N〈J2〉TR sin θ1 sin θ2 cos (δτ) sin2 φ

2
τ2

− 〈J
2〉TRτ3N (N − 1)

6
sin2 φ

2
[6 (〈C〉TR − 〈χ〉TR cos θ1)− 2〈ζ〉TR cos θ1] , (7.5)
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where we have neglected interactions between pairs of particles with the same transverse mode

for simplicity, 〈•〉TR denotes a thermal average with respect to the transverse modes, and we have

assumed that, e.g. 〈J2C〉TR ≈ 〈J2〉TR 〈C〉TR , which is valid when the tunneling is only weakly

temperature dependent. From this, we find the density shift

∆ν = ∆ν0

[
1 +

4

3
〈J2〉TRτ2 sin2 φ

2

〈ζ〉TR cos θ1

〈C〉TR − 〈χ〉TR cos θ1

]
, (7.6)

where ∆ν0 is the density shift in the absence of tunneling.
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Appendix B: Behavior of the Dicke Gap G

Here we will now discuss the behavior of the gap between the spin-N/2 (“Dicke states”) and

spin-(N/2−1) (“spin wave states”), referred to as the Dicke gap G, for a general Heisenberg model

of the form Ĥ = −1
4

∑
q 6=q′ Jqq′~̂σq · ~̂σq′ . The only condition we impose is that the coupling matrix J

is real, for compactness of the resulting formulas, and because all couplings considered in this work

are real. Noting that the diagonal terms of J only contribute an overall constant to the energy and

hence do not affect the Dicke gap, they can be ignored. By direct calculation, the energy of the

(degenerate) Dicke states, defined as |N/2,mz〉 =

√( N
N
2

+mz

)−1
(∑N

i=1 Ŝ
+
i

)N
2

+mz | ↓ . . . ↓〉, with mz

the magnetization, is EDicke = 〈N/2,mz|− 1
4

∑
q 6=q′ Jqq′~̂σq · ~̂σq′ |N/2,mz〉 = −∑q 6=q′ Jq,q′/4. Because

of the SU(2) spin-rotation symmetry of Ĥ, the Dicke states are guaranteed to be eigenstates.

The spin-wave states, which span the total spin-(N/2 − 1) manifold, can be defined in terms of

the Dicke states as |N/2 − 1,mz, k〉 =

√
(N−1)

(N2 −mz+1)(N2 −mz)

∑N
n=1 e

2πikn/N Ŝ+
n |N/2,mz − 1〉 , where

k = 1, . . . , N − 1. In the case of a translationally invariant Heisenberg coupling Jq,q′ = J|q−q′| with

|q − q′| the chordal distance, the spin wave states as stated are eigenstates of Ĥ, but when the

interactions are not translationally invariant (as is the case for the spin models discussed in this

work), the spin wave states only form a basis for the spin-(N/2 − 1) subspace. Straightforward

calculations lead to the matrix elements of the Hamiltonian in this subspace:

〈N
2
− 1,mz, k| −

1

4

∑
q 6=q′

Jq,q′~̂σq · ~̂σq′ |
N

2
− 1,mz, k

′〉 =

δk,k′EDicke +
1

N

∑
q 6=q′

Jq,q′
[
e

2πi
N

(k′−k)q − e 2πi
N

(k′q′−kq)
]
. (8.1)
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The Dicke gap is then defined as the difference between the smallest eigenvalue of this matrix and the

energy of the Dicke states. As two concrete examples, in the all-to-all case, Jq,q′ = J
(
1− δq,q′

)
, the

Dicke gap is G = JN , and in the nearest-neighbor case Jq,q′ = δ|q−q′|,1J , G = 2 (1− cos (2π/N)) ∼
4π2

N2 +O
(
1/N3

)
. These examples illustrate the general observation that long-range, near-collective

interactions cause the Dicke gap to grow with particle number, while the Dicke gap decreases with

N for sufficiently short-range interactions.

In Fig. 8.1 we show the Dicke gap G for a Heisenberg model with Jq,q′ = J⊥q,q′ , where J⊥

corresponds to different realizations of the energy-lattice spin model. The leftmost panel shows the

scaling of the gaps at fixed gradient strength with particle number. The gaps are always larger for

smaller gradient strength, showing that smaller gradients always lead to a more collective, near-

Heisenberg behavior. The rightmost panels show the behavior of the gaps at fixed particle number

as a function of gradient strength. For any fixed number of particles, there is a finite critical

gradient strength where the Dicke gap closes. This critical gradient decreases with increasing

particle number. However, at small enough gradient strengths, the Dicke gap is larger for increasing

particle number. This demonstrates that increasing the particle number can either increase or

decrease the Dicke gap.
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Appendix C: Matrix product state simulations

The variational matrix product state (MPS) studies of the main text were performed using

extensions of the open source MPS library [132, 133]. We use an MPS ansatz which explicitly con-

serves total particle number, but does not conserve the total magnetization. While the dynamics

preserve the total magnetization, the initial collective rotation of spins along the x direction involves

a sum over many different magnetization sectors, and so leaving the magnetization unconstrained is

convenient. Following this collective rotation, the next step is to enact the sudden quench of trap-

ping parameters, which amounts to applying a spin-dependent displacement (ψ (x) → ψ (x+ λ),

constant gradient) or spin-dependent dilation (ψ (x) →
√
λψ (λx), linear gradient) to the single-

particle states. Since we assume harmonic traps, the displacement and dilation operators are known

analytically as

Ûdisplacement = e(â−â
†)λ/(

√
2aH) ,

Ûdilation = elnλ(â2−(â†)2)/2 , (9.1)

where â and â† are the ladder operators of the original (no gradient) harmonic oscillator. Writing

these ladder operators in second quantized form on the energy lattice, the basis transformations

above take the form of time evolution under a hopping model with spin-dependent and inhomo-

geneous hopping amplitudes. Here, time evolution refers to the fact that the operation consists

of applying the exponential of an anti-Hermitian many-body operator. In the constant gradient

case, the hopping model contains only nearest-neighbor hopping, while the linear gradient case
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is a model with only next-nearest neighbor hopping. We enact this effective time evolution by

decomposing it into a product of few-site unitaries using a Trotter decomposition with the error

controlled by a small “step size” ∆λ, and then applying these few-site unitaries to the MPS via

standard techniques [124].

Next, we wish to perform time evolution under the long-range spin model

Ĥ =

u↑↓
4

∑
n 6=m

[
JZnm

(
N̂nN̂m − σ̂Zn σ̂Zm

)
− J⊥nm

(
σ̂Xn σ̂

X
m + σ̂Yn σ̂

Y
m

)
+

1

2

(
JZnm − JZmn

) (
σZn N̂m − σZmN̂n

)]
+u↑↓

∑
n

JnnN̂
↑
nN̂
↓
n +

∑
n

[
ω̄(n+ 1/2)N̂n + ∆ω (n+ 1/2) σ̂Zn

]
, (9.2)

where Jnn ≡ Annnn. We perform time evolution using the second-order method of Zaletel et

al. [171]. In this method, an explicit matrix product operator (MPO) approximation to the prop-

agator Û is formed from the MPO form of the Hamiltonian, which is then applied to the state at

time t, |ψ (t)〉 by variational minimization of the functional
∣∣∣|φ〉 − Û |ψ (t)〉

∣∣∣2 over all MPSs |φ〉 with

fixed resources. For the variational minimization, we perform four sweeps per timestep and impose

an upper limit on the discarded weight per bond of 10−9. The maximum bond dimension used in

the simulations of this work is roughly 2000.

In order to apply the method of Zaletel et al., we must construct an MPO representa-

tion of the Hamiltonian Eq. (9.2). For long-range interactions which are translationally invariant,

Ĥ =
∑

i<j f (j − i) ÂiB̂j , a well-established procedure exists for converting this interaction into an

MPO [172, 173]. In this procedure, the function f (r) is fitted to a sum of nexp exponentials via the

ansatz f̃ (r) =
∑nexp

n=1 Jnλ
r
n, and then a known MPO construction of exponentially decaying interac-

tions is used. Interactions on the single-particle mode space lattice are not translationally invariant,

and so this procedure does not apply. However, we have devised a related procedure, in which an

inhomogeneous interaction Ĥ =
∑

i<j f (i, j) ÂiB̂j is modeled by a sum of exponentials with site-

dependent weights and exponential decay parameters via the ansatz f̃ (i, j) =
∑nexp

n=1 Ji,n
∏j−1
k=i λk,n.

These parameters are variationally optimized using an alternating least squares algorithm. Impos-

ing the condition that the residual
∑

i<j

∣∣∣f (i, j)− f̃ (i, j)
∣∣∣2 < 10−7 leads to approximations with
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nexp ∼ 7 exponentials.
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