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Abstract 

Feeney, Daniel Francis (Ph.D., Integrative Physiology) 

The coordination of muscle force from motor units to multijoint synergies 

Thesis directed by Professor Roger M. Enoka 

  

This dissertation comprises computational and experimental studies that examined the 

neuromuscular factors underlying differences in manual dexterity and mobility in health and 

disease. 

 The first two studies developed models of motor unit force production. The first model 

used a Proportional-Integral-Derivative (PID) control algorithm to activate a pool of motor units 

to simulate the force trajectory during force-matching tasks. The second model comprised a 

probabilistic state-space model to estimate the common synaptic input to motor neurons based on 

the discharge times of action potentials by activated motor units. The state-space model 

demonstrated superior sensitivity compared with previous models.  

 The next three studies examined manual dexterity and begin with the use of the state-

space model to quantify variability in common synaptic input for young and older adults during 

isometric contractions, and how this variability related to performance on a pegboard test of 

manual dexterity. Variability in common synaptic input was significantly associated with the 

coefficient of variation for force during steady contractions (force steadiness) and with pegboard 

times in older adults. The source of the force fluctuations was evaluated by comparing force 

steadiness during voluntary and electrically evoked contractions. Force steadiness was worse for 

old adults than young adults during voluntary contractions, but there was no difference between 

age groups during the electrically evoked contractions. Thus, differences in force steadiness must 

arise from signal transduction in the central nervous system and not the periphery. The plasticity 

of pegboard performance was examined by comparing peg-manipulation characteristics of 

persons with multiple sclerosis to healthy controls. Grooved pegboard time for individuals with 

MS was most associated with the time to select a peg, whereas times for healthy controls were 

most related to peg transportation and selection.  
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 The last two studies examine the influence of an orthopedic problem (sacroiliac joint 

dysfunction) on movement patterns. These individuals exhibited a compromised muscle synergy 

when walking and greater movement asymmetries during a sit-to-stand task.  

 This dissertation explored how common synaptic input influences force steadiness and 

manual dexterity, how multiple sclerosis alters manual dexterity, and how individuals with 

sacroiliac joint dysfunction differ from healthy controls during walking and sit-to-stand tasks.   
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Introduction 
 

Movement is the result of coordinated interactions between the nervous system and 

muscles pulling on the skeleton. Muscles are excited by electrical signals known as action 

potentials that pass from the central nervous system to muscle fibers, thereby enabling a muscle 

contraction. The force produced by each muscle is controlled by hundreds of motor neurons, 

each of which innervate varying numbers of muscle fibers. Furthermore, each motor neuron 

receives many inputs—both excitatory and inhibitory—from descending centers as well as 

afferent receptors. The ability to produce force is the result of the cumulative output of these 

motor neurons and the response of the activated muscle fibers. This relatively simple framework 

is complicated by the abundant degrees of freedom available to perform any movement. 

Bernstein (1938) first hypothesized that the infinite degrees of freedom to perform a task pose a 

challenge to controlling movement and that, “The co-ordination of a movement is the process of 

mastering redundant degrees of freedom of the moving organ, in other words its conversion to a 

controllable system.” 

While it may seem to impose a burden on the nervous system to choose a single 

combination of activation signals for a given task, the physiological properties of the 

neuromuscular system determine a convenient pattern of activation predicted by physical laws. 

Recent evidence indicates that a common signal to all motor neurons innervating a muscle—and 

possibly synergistic muscles—may be used to simplify the control of voluntary actions. The 

mathematical and physiological nature of this common signal is still a matter of debate, but 

eventually could provide the basis for advanced rehabilitation techniques, such as human- 

computer interfaces to control various devices.  

Motor units are the basic force-producing element of the nervous system; as such, they 
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are critical in controlling voluntary actions. To understand movement, it is necessary to know 

how the nervous system controls motor unit activity and coordinates the infinite degrees of 

freedom involved with any task. The goals of this introduction are to describe how motor units 

are controlled, and in turn how the muscles acting about adjacent joints are coordinated to 

accomplish activities of daily living, such as hand movements and walking.   

1. Motor Units 

1.1 Properties of Motor Neurons  

A motor unit comprises the dendritic projections of a motor neuron in the spinal cord, its 

axon projecting to the muscle, and the muscle fibers that it innervates (Liddell and Sherrington, 

1925; Duchateau and Enoka, 2011; Heckman and Enoka, 2012). Because motor neurons 

integrate many synaptic inputs received by its dendrites and send a final signal to the muscle, the 

motor unit is known as the “final common pathway” in the production of muscle force (Liddell 

and Sherrington, 1925; Duchateau and Enoka, 2011). The force generated by a muscle is 

modulated by the number of motor units that are recruited and the rates at which they discharge 

action potentials (Adrian and Bronk, 1929; Bigland and Lippold, 1954; Monster and Chan, 1977; 

Heckman and Enoka, 2012).  

The nervous system controls muscle force by providing inhibitory and excitatory inputs 

to motor neuron pools. Motor neurons receive thousands of synaptic inputs on their dendrites 

that are conducted and integrated at the trigger zone, which is located near the soma. The net 

synaptic current is the sum of excitatory and inhibitory currents received by the neuron and 

ultimately determines when it discharges an action potential. Once voltage threshold is exceeded, 

an action potential is generated at the axon hillock (distal to the soma) and propagates along the 

axon to the neuromuscular junction where it engages the processes involved in excitation-
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contraction coupling and elicits a subsequent muscle contraction.  

Morphological features common to all motor units allow for the effective transmission of 

the activation signal from the nervous system to the muscle. The nucleus of a motor neuron is 

surrounded by a lipid bilayer that is well suited for storing a potential difference, which 

establishes the resting membrane potential. The input conductance of the neuron (gin) quantifies 

the ability of a neuron to conduct current, and is a function of both the density of ion channels 

and the size of the neuron (Heckman and Enoka, 2012). Ohm’s Law describes the relation 

between potential difference (Vm) across a capacitor (the membrane), synaptic current (I), and 

the input conductance of a neuron: 

                                                                    V = #
$%&

                                                            (1) 

Because input conductance varies as a function of neuron size, smaller neurons experience a 

greater change in membrane potential in response to a given synaptic current.  

The motor neurons within a given motor nucleus exhibit a wide range of physiological 

features. Burke and colleagues characterized the physiological properties of alpha motor neurons 

innervating hindlimb muscles in anesthetized cats. A laminectomy was performed on the cats, 

and an intracellular electrode was used to stimulate single ventral root filaments. Using 

intracellular stimulation electrodes and strain gauges on the appropriate tendons, they found 

larger diameter neurons have faster axonal conduction velocities, longer afterhyperpolarization 

durations, and greater input conductance when compared with small neurons (Burke, 1967; 

Burke and Tsairis, 1973). Burke and colleagues also classified motor units into three distinct 

types based on fatigability and sag. Units were first classified by the shape of their unfused 

tetanus; if the force output of the unit did not increase monotonically to stimuli delivered at 1.25 
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x the contraction time of the motor unit, the unit was said to exhibit “sag,” and was classified as 

a fast-twitch unit. Units that did not exhibit sag were classified as slow twitch. The fast-twitch 

units were further differentiated with a fatigability protocol, where units were stimulated for 6 

min at 40 Hz for 330 ms. Units with a greater decline in force (below 25% initial force) were 

classified as fast-to-fatigue (type FF) and units with a lesser decline were classified as fatigue 

resistant (type FR) (Burke, 1967; Burke et al., 1973; Burke et al., 1974). Contrary to this 

classification scheme, the analysis of motor unit force as a function of twitch contraction time 

(Burke and Tsairis, 1974) and the distributions of twitch torque within a motor nuclei (Van 

Cutsem et al., 1997) indicate that motor units have a continuous distribution of twitch 

characteristics that does not allow for classification into distinct fast, slow, or fatigable units 

(Macefield et al., 1996; Heckman and Enoka, 2012). Rather, the more precise approach is to 

characterize motor units based on recruitment threshold and twitch force.  

The synaptic current required for motor neurons to begin and sustain discharging action 

potentials depends on the physiological characteristics of the neurons. Individual motor neurons 

will begin discharging action potentials at irregular intervals once a minimal current specific to 

the neuron—known as rheobase—is reached (Gustafsson and Pinter, 1984). The rheobase of a 

neuron increases with neuron size and is inversely proportional to afterhyperpolarization 

duration, indicating that smaller neurons are recruited at lower currents and initially discharge 

action potentials at lower rates (Gustafsson and Pinter, 1984). As the current increases, motor 

neurons discharge action potentials at an increasing and less variable rate (Person and Kudina, 

1972). Kernell and Monster (1981) found that the current required to maintain repetitive 

discharge for individual motor units is greater for larger neurons that innervate the medial 

gastrocnemius muscle of cats. These physiological properties indicate that the activation of 
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motor neurons in response to synaptic currents varies as a function of neuron size.  

1.2 Properties of Motor Nuclei 

The motor nucleus consists of all motor neurons innervating a single muscle and the 

cumulative activity of these neurons ultimately determines the force output. The neurons in a 

motor nucleus are found within a relatively limited region in the ventral horn of the spinal cord 

and are topographically close to motor nuclei of synergistic muscles (Dasen et al., 2003; 

Demireva et al., 2011). The contractile properties of the motor units associated with a motor 

nucleus range from slow contracting and weak to fast contracting and strong (Van Cutsem et al., 

1997; Heckman and Enoka, 2012). Whereas a motor nucleus refers to the group of motor 

neurons within the spinal cord innervating a single muscle, a motor unit pool also includes the 

muscle fibers associated with the motor nucleus. 

The locations of motor neurons within the spinal cord is linked to the position of its 

synaptic target (Dasen et al., 2003; Demireva et al., 2011). Animal models demonstrate that the 

motor neurons for muscles that produce specific biomechanical functions cluster within the same 

transverse location of the spinal cord and their axons are contained within 2-3 adjacent dorsal 

roots. The motor nuclei for trunk muscles cluster medially within the ventral horn of the spinal 

cord, whereas those of the extremities are located more laterally. Genetic disruption of the beta- 

and gamma-catenin proteins scramble the spinal location of the neurons in a mouse model and 

causes motor impairments in rats (Demireva et al., 2011). This finding indicates that catenin 

proteins act as surface adhesion receptors for functionally linked motor neurons, and the motor 

nucleus is clustered within a close region of the spinal cord. 

Motor nuclei contain from 90 to 4,150 motor neurons that innervate the constitutive 

fibers of a muscle (Feinstein et al., 1955; Jenny and Inukai, 1983). The innervation number for 
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motor units varies exponentially within a muscle, with the majority of units innervating few 

muscle fibers. The specific number of muscle fibers innervated by the ith motor unit can be 

estimated by the exponential function: 

																																																													IN* 	= a ∗ e
.& /
& ∗*	                                                          (2) 

where INi is the innervation number of the ith motor unit, a is the innervation number for the 

smallest motor unit, R is ratio of innervation numbers for largest to the smallest unit, and n is the 

total number of motor units. Equation 2 indicates that most motor units exert lower torques due 

to smaller innervation numbers, and relatively few motor units produce large torques 

(McPhedran et al., 1965; Milner-Brown et al., 1973; Monster and Chan, 1977).  

Muscle force gradation is modulated by increasing or decreasing the amount of net 

synaptic current sent to the motor nucleus, which recruits more motor units and increases the rate 

at which they discharge action potentials with greater synaptic current. When individuals 

repeated isometric contractions, Pennybacker and Denny-Brown (1938) found the recruitment 

order of two motor units was relatively invariant and hypothesized that motor units are recruited 

in a fixed order. Subsequently, Henneman (1957) examined the recruitment order of motor axons 

when stimulating the ventral roots of spinal nerves in cats to evoke reflexes that were observed in 

the dorsal roots. He analyzed the current required to excite individual motor axons and found that 

neurons were recruited in order of increasing action-potential amplitude. In subsequent 

experiments, Henneman and colleagues (1965) found that motor neurons innervating hind limb 

muscles in cats all exhibited a fixed recruitment order. This observation is known as the Size 

Principle, indicating that motor neurons are recruited in order of increasing size (Henneman and 

Olson, 1965; Henneman et al., 1965). The Size Principle implies that low levels of synaptic 

current selectively activates motor neurons with small innervation numbers, which produce less 
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force. As the required force increases, so must the net synaptic current in order to recruit motor 

units with greater force-generating capabilities. This physical principle provides a 

physiologically feasible method for activating motor units in a controlled order that does not 

have to be specified by descending signals.  

Discharge rate characteristics within a motor nucleus in response to various synaptic 

inputs remain a matter of debate. Multiple investigators report a direct relation between 

recruitment threshold and maximal discharge rate; later recruited motor units achieve greater 

peak discharge rates and earlier recruited units reach a plateau in discharge rates despite an 

increase in synaptic input (Gydikov and Kosarov, 1972; Monster and Chan, 1977; Van Cutsem et 

al., 1997; Moritz et al., 2005). The saturation of discharge rate may come from intrinsic cellular 

factors, such as the progressive loss of driving potential at excitatory synapses on the dendrites or 

a gradual reduction in membrane resistance, but is unlikely due to extrinsic changes in excitatory 

drive (Fuglevand et al., 2015). Other studies, however, report an ‘onion skin’ phenomenon (De 

Luca et al., 1982; Kline and De Luca, 2015) in which low-threshold motor units always 

discharge action potentials at greater rates than high-threshold motor units. Some differences 

between the two sets of observations can be reconciled by considering the different measurement 

techniques used to record motor unit activity and the tasks that were performed. 

1.3 Properties of Motor Units  

Similar to the physiological characteristics of motor neurons, the contractile properties of 

motor units within a given muscle exhibit a range of values. Commonly measured characteristics 

include twitch force, twitch contraction time, and recruitment threshold. Twitch force is 

quantified as the transient force output elicited by a single action potential (Stein et al., 1972) and 

primarily depends on the innervation number of the motor unit (Kanda et al., 1992). Twitch 
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contraction time is the time from force onset until peak twitch force and depends on the rate of 

release of Ca+2 from the sarcoplasmic reticulum (Lee et al., 1991). Recruitment threshold 

corresponds to the muscle force at which a neuron begins discharging action potentials 

repetitively (Burke, 1967; Stein et al., 1972; Desmedt and Godaux, 1977b; Duchateau and Enoka 

2011).  

Twitch contraction time and twitch force may be experimentally determined using spike-

triggered averaging (Stein et al., 1972). Spike-triggered averaging is a two-step process. First, the 

waveform of an individual motor unit action potential triggers an averaging algorithm. Next, the 

averaging algorithm extracts the force produced by a single motor unit from the net muscle force. 

In such an experiment, an individual performs a slow ramp contraction while investigators 

monitor the discharge of action potentials by a single motor unit. After averaging the force 

associated with several hundred action potentials, the resulting force profile is analyzed for the 

characteristics of interest.  

The nervous system controls the force a motor unit produces by varying the rate at which 

it discharges action potentials (Bigland and Lippold, 1954; Duchateau and Enoka, 2011). When 

the synaptic currents barely exceed voltage threshold, a motor neuron will discharge action 

potential at rates between 5-15 pps with large standard deviations in the time between successive 

action potentials (interspike interval). As the synaptic currents increase, discharge rate increases 

up to a maximal value between 20-70 pps during ramp contractions (Person and Kudina, 1972; 

De Luca et al. 1982; Van Cutsem et al., 1997), but up to 120 pps during ballistic contractions 

(Desmedt and Godaux, 1977a). Furthermore, increases in discharge rate are accompanied by a 

decrease in the standard deviation of the interspike intervals and the temporal summation of 

twitch responses.  The relation between discharge rate (or stimulus frequency) and motor unit 
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force is sigmoidal, as first reported for motor units in the triceps surae muscle of cats (Kernell et 

al., 1981), indicating a crucial non-linearity in the input-output characteristics of motor units.  

A sigmoidal relation between stimulus frequency and force has also been found for 

human motor units. Macefield et al. (1996) stimulated individual motor axons in human toe 

extensors at different frequencies. The investigators used low-voltage pulses at varying 

frequencies (1-100 Hz) to activate individual motor axons and recorded the evoked forces. 

Similar to the findings on experimental animals, there was a sigmoidal relation between stimulus 

frequency and motor unit force. Stimulus frequencies between 5-15 Hz produced the steepest rise 

in motor unit force with little increase in force above 30 Hz.  

1.4 Techniques used to measure motor unit properties 

Various techniques are available to study the mechanical and electrical properties of 

motor units. Intramuscular, subcutaneous, and grid electrodes measure the potential differences 

between two or more bipolar recording sites. It is possible to record motor neuron output at the 

neuromuscular junction because the signal is highly preserved from the spinal motor neurons to 

muscle fibers (Heckman and Enoka, 2012). Adrian and Bronk (1929) were the first to record 

motor unit action potentials in humans. They did this using bipolar needle electrodes inserted 

into the triceps brachii muscle. Subsequently, Bigland and Lippold (1954) used a fine wire 

electrode that was inserted into the belly of the adductor pollicis and abductor digiti minimi 

muscles. Gydikov and colleagues (1967) modified the fine wire electrode by changing the 

location of the recording sites and inserted it under the skin, but not into the muscle 

(subcutaneous electrode). Subcutaneous electrodes detect the activity of superficial motor units, 

in contrast to intramuscular electrodes, but can be displaced more easily to improve the signal-to-

noise ratio.   
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Although the intramuscular and subcutaneous electrodes can detect the discharge times of 

action potentials for single motor units, the signal is typically too noisy to identify more than two 

concurrently active motor units. Beginning with the work of Gydikov et al. (1967), it is now 

possible to record the activity of many concurrently active motor units with electrodes that 

contain multiple recording sites (Merletti et al., 2001; Merletti et al., 2009). Such electrodes are 

known as high-density electrodes and can be placed on the skin over a muscle (surface electrode) 

or inserted into a muscle (intramuscular electrode) (Negro et al., 2016a). High-density surface 

electrodes are also known as grid or array electrodes. The signals recorded with high-density 

electrodes can be analyzed with various algorithms to identify the action potentials associated 

with different motor units.  One such decomposition algorithm uses a semi-automated 

convolution kernel compensation framework and a blind-source separation algorithm to quantify 

the times at which the identified motor units discharge action potentials (Holobar and Zazula, 

2004; Negro et al., 2016a). Concurrent recordings from up to 20 motor units have been 

decomposed during a low-force isometric contraction (Farina et al., 2015; Negro et al., 2016a). 

Nonetheless, grid electrodes can only detect the activity of superficial motor units (Negro et al., 

2016b) and some results from high-density recordings contrast (De Luca et al., 1996; Adam and 

De Luca, 2005) with those obtained using intramuscular electrodes (Carpentier et al., 2001; Erim 

and De Luca, 1996; Mottram et al., 2005).   

1.5 Computational models of motor unit activity  

The role of computational models in motor unit physiology is vital, given the inability to 

study dynamic physiology of motor unit populations in vivo. In 1993, Fuglevand and colleagues 

published a seminal computational model that captures the relations between motor unit 

discharge characteristics, surface EMG recordings, and muscle force. The model predicts the 
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recruitment and discharge times of 120 motor units in response to varying amounts of excitatory 

drive and derives the net force produced by the activated motor units. The Fuglevand model has 

three main components: a motor neuron model, motor unit force model, and a model of surface 

EMG to predict the force output in the first dorsal interosseus. The model was used to examine 

various hypotheses about the influence of the recruitment and discharge characteristics of motor 

units and the experimentally observed relations between EMG amplitude and net muscle force. 

When applying a broad range of recruitment forces (motor units recruited up to 57% MVC 

force), the simulated EMG-force relation was relatively linear and displayed signal-dependent 

noise characteristic of experimentally derived EMG-force relations (Heckman and Enoka, 2012).   

In the motor neuron model, the level of excitation required to reach the recruitment 

threshold of individual motor neurons within a pool was based on experimental findings (Kernell 

and Monster 1981; Gustafsson and Pinter 1984) and resulted in many neurons exhibiting a low 

threshold current to discharge action potentials and relatively few requiring a high threshold 

current. Furthermore, the innervation number of these 120 motor units varied exponentially 

according to equation (2) above. The discharge rate of each neuron was related to its recruitment 

threshold and a gain that was characterized as a sigmoidal relation between excitatory drive and 

discharge rate.  

The isometric force model linked the motor neuron discharges to motor unit force. As 

experimental results indicated, motor unit force was expressed as an exponential function in 

which many motor units produce low forces and few produce high forces (Van Cutsem et al., 

1997). An increase in excitatory drive to the population of motor neurons increases the rate at 

which individual motor neurons discharge action potentials and recruits additional motor 

neurons. Lastly, the action potentials discharged by a motor neuron were transformed to motor 
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unit force by modeling each unit as a second-order system with nearly critical dampening 

(Milner- Brown et al., 1973). The Fuglevand model, therefore, is able to derive the force 

produced by an entire motor pool in response to given excitatory input.  

The surface EMG component of the Fuglevand model is based on the discharge times of 

the activated motor units. Surface EMG is modeled as the temporal summation of motor unit 

action potentials. It was necessary to include parameters to model motor unit territory size, 

location, and propagation velocity of action potentials along muscle fibers that influence the 

EMG output. Motor unit territories were simulated as random (x,y) Cartesian coordinates with 

the origin in the middle of the muscle cross section and no fibers laying outside of the cross 

sectional area of the muscle. As a result, motor unit territories were interdigitated within the 

muscle. A uniform fiber density was assumed for each motor unit. Each muscle fiber action 

potential was represented as a dipole and the entire motor unit’s action potential was the sum of 

the constituent dipoles. Furthermore, the conduction velocity of the muscle fiber action potential 

was estimated from an inverse relation with the motor unit twitch contraction time and ranged 

from 2.5 to 5 m/s. Because the distance from the recording electrode will influence the amplitude 

of the signal, the muscle was divided into many isopotential layers where any fiber within a 

given layer caused a similar potential, but the timing would depend on the conduction velocity of 

the muscle fiber. The muscle fiber action potentials within each layer were summed creating an 

element potential, and the output signal was the temporal sum of element potentials. Lastly, the 

signal was high-pass filtered at 5 Hz to represent the A-C coupling of bioamplifiers (Fuglevand 

et al., 1993).   

Subsequent computational models have extended the Fuglevand model. A computational 

model by Keenan and colleagues (2005), for example, used the Fuglevand model to examine the 
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phenomenon of EMG cancellation (Day and Hulliger, 2001). Because motor unit action 

potentials comprise waveforms with positive and negative phases, some of the information is lost 

(canceled) when overlapping motor unit action potentials are summed. Keenan et al. (2006) 

simulated bipolar surface EMG recordings and compared the difference in signal amplitude in 

EMG when it was summed before and after rectification. Results indicated that EMG amplitude 

cancellation may reach 62% at maximal contraction intensities (Keenan et al., 2005). Results 

from this study demonstrate limitations in interpreting surface EMG as an index of muscle 

activation as well as explain the non-linearity in the EMG-force relation.  

In adapting the Fuglevand model to characterize the adjustments in motor unit 

recruitment and rate coding during fatiguing contractions, Dideriksen and colleagues (2010) 

added time-varying parameters for twitch force, recruitment, discharge rate, and discharge 

variability. Key features of the expanded model included a metabolite model, which encodes the 

build up of metabolites seen in long-duration contractions. The accumulation of metabolites was 

used as feedback into a proportional-integral-derivative (PID) control algorithm, which adjusted 

the excitatory drive to match the target force. Metabolite build up impairs the ability of motor 

neurons to discharge action potentials, requiring the control algorithm to increase the excitatory 

drive delivered to the muscle to maintain the target force (Dideriksen et al., 2010). The output of 

this model replicated a number of experimental findings, including time to task failure for a 

force-matching task with an isometric contraction, the changes in motor unit discharge rates 

during such a task, and the skewness and kurtosis of interspike interval durations. The findings 

provided a much more comprehensive analysis of the adjustments in motor unit activity during 

fatiguing contractions than can be achieved during experimental studies.  

Computational models are crucial to physiological research because they allow for 
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reverse engineering of the physiological results and the comparison with experimental data. 

These models allow us to extrapolate the recordings from relatively few motor units to the 

behavior of the entire motor pool. Critically, computational models can identify key gaps in 

knowledge that require experimental investigation.   

2. Common modulation of motor unit discharge rate  

Coordinating the large number of motor neurons in a motor nucleus is a demanding task 

for the nervous system. A common input signal may simplify the challenge. In the first motor 

unit study on humans, Adrian and Bronk (1929) speculated that a common presynaptic signal 

could synchronize motor unit discharges and control force output. Since then, others argue that a 

common input does not cause synchronization of motor unit discharge times (Kline and De Luca, 

2015). However, a low-frequency common input to motor neurons may cause fluctuations in the 

discharge rates of all the units in a pool (De Luca and Erim, 1994; Negro et al., 2009). Central to 

this debate is the lack of a clear definition of common input (Boonstra et al., 2016). Furthering 

the understanding of the physiology and mathematical structure of a common signal will provide 

critical information for future rehabilitation interventions including human-computer interfaces.  

Following early speculation of a common presynaptic input to motor neurons (Adrian and 

Bronk, 1929), the topic was not explicitly tested for almost 50 years. Since the 1970s, most 

studies have quantified common input as the degree of correlation or coherence in discharge 

times between two motor units. In a key early study, Sears and Stagg (1976) compared the 

discharge times for pairs of motor units in intercostal muscles of anaesthetized cats by recording 

pre- and post-stimulus time histograms. They hypothesized that the joint occurrence of excitatory 

post-synaptic potentials in pairs of motor neurons can be attributed to input from “common 

presynaptic fibers.” Pre- and post-stimulus time histograms were constructed using the discharge 
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time of one neuron as a ‘stimulus’ and the discharge time of another neuron as the ‘response’. 

The histograms of paired discharges revealed narrow peaks at a time lag of zero, indicating an 

instantaneous correlation (Sears and Stagg, 1976).   

A limitation of this work is the comparison of the discharge times of motor units with 

similar recruitment thresholds. To broaden the comparison, De Luca and colleagues (1982) used 

cross-correlation analysis between motor unit discharge rates in the deltoid and in the first dorsal 

interosseus muscles of humans. Within a given muscle, cross-correlations of discharge rates were 

greatest at a time lag of zero indicating synchronization of the discharge rates. This is a critical 

distinction because a common signal to all motor units would modulate their discharge rates 

based on physiological properties, such as afterhyperpolarization duration, and not necessarily 

their discharge times (De Luca et al., 1982). Subsequently, De Luca and Erim (1994) speculated 

that a low-frequency (< 4 Hz) common drive to motor unit discharges could “relieve the CNS 

from the burden of monitoring and regulating each motor unit separately”. Cross-correlation 

analysis was also used by Bremner et al. (1991) to examine trains of motor unit discharge times 

in pairs of motor units in finger muscles, and again a narrow peak with a zero lag was found, 

suggesting synchronization due to common synaptic inputs. Farmer et al. (1993) found 

synchronization in the frequency domain by calculating coherence between the discharges of 

action potentials in pairs of motor units, and again found synchronization in the frequency 

domain of intrinsic hand muscles (Farmer et al., 1993).  

The practicality of a common input signal was limited until methods were developed to 

quantify it. In order to quantify the strength of the common input signal, Nordstrom and 

colleagues (1992) defined common input strength (CIS) as the “frequency of synchronous action 

potentials in the motor unit pair in excess of those expected due to chance” (Nordstrom et al., 
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1992). In this framework, a narrow region of a cross correlation histogram was chosen based on 

the peak cross correlation time. Within this region, the number of synchronous discharges was 

divided by the average number of discharges at all other times, which created an index of 

common input strength (Nordstrom et al., 1992). This work was a critical step in quantifying the 

common input signal, but its reliance on pairs of motor units limits its ability to quantify the 

common input to a motor nucleus. 

A common input could cause low-frequency oscillations of discharge times for the entire 

motor nucleus, but many early studies were limited by studying the activity of pairs of motor 

units. The pairwise correlations used in early investigations to assess common input have 

resulted in a low-to-moderate quantification of the common input to motor neurons (Nordstrom 

et al., 1992; Farina and Negro, 2015). Farina and colleagues (2009-present) have developed a 

more rigorous analytical model that quantifies the common input to a pool of motor neurons. In 

this model, the discharge times of each unit are summed at each instant to create a cumulative 

spike train. The modulation of the discharge times of the cumulative discharge train of action 

potentials is assumed to be due to only the common input signal (Farina et al., 2014; Farina and 

Negro, 2015). Studies utilizing grid electrodes, which allow for the concurrent tracking of 5-20 

motor units, indicate that much of the variability in discharge times of the cumulative spike train 

can be attributed to a common input signal (Negro et al., 2009; Farina et al., 2014; Negro et al., 

2016b). Furthermore, pairwise correlations in motor unit discharge times from the same 

recordings have high variability (Negro and Farina, 2012), which explains why some studies find 

low-to-moderate correlation values. Furthermore, a common input signal would affect the entire 

population of motor units; hence, inferring its existence from pairs of units is inappropriate 

(Farina and Negro, 2015; Negro et al., 2016ab).  
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The recent advances in recording motor unit techniques allow for novel investigation of 

the common input to motor nuclei (Merletti et al., 2009). Farina and colleagues provide a 

promising step to quantify the proportion of common input to motor pools by defining it as: 

                                                  Vi(t) = µ + aisc(t) + hi(t),                                                (3) 

where Vi(t) represents the synaptic current to the i-th motor neuron, µ denotes a constant offset, 

sc(t) corresponds to a time-varying input that is common to all motor neurons, ai, indicates a 

scaling factor, and hi(t) characterizes independent white noise. The combination of µ + aisc(t) 

represents the common input received by all motor units. The scaling factor governs how the i-th 

motor unit responds to a given synaptic input.  

According to this hypothesis, each motor neuron receives three inputs: a common signal, 

common synaptic noise, and independent synaptic noise. Due to the non-linear input-output 

properties of motor neurons, the response of a pool of motor neurons receiving a shared common 

input and independent synaptic noise will preferentially contain the common input signal while 

the independent noise is cancelled out (Farina et al., 2014; Farina and Negro, 2015). In such a 

model, independent synaptic noise is filtered by the motor neurons, and the signal sent to the 

muscle corresponds to the effective neural drive (Farina et al., 2014). In theoretical derivations 

and computational simulations, the common input strength is quantified as the square root of the 

ratio of coherence between the input signal provided to the pool of neurons and the cumulative 

discharge train (Negro et al., 2016). This biophysical model was validated with experimental 

data from abductor digiti minimi, vastus medialis, and tibialis anterior muscles, and revealed that 

the much of the signal sent to motor neurons within a muscle could be attributed to a common 

input (Negro et al., 2009; Farina and Negro, 2012; Farina and Negro, 2015; Negro et al., 2016).  
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The common modulation of motor unit discharge rates or the times of the cumulative 

spike train is related to the force produced by the muscle (Negro et al., 2009; Farina and Negro, 

2015; Negro et al., 2016b). When subjects attempt to maintain a steady submaximal force, for 

example, most of the variance in the force can be explained by the oscillations of motor unit 

discharge rates (Negro et al., 2009). When tracking a sufficient number of motor units, over 70% 

of the variance in force fluctuations is explained by changes in the common input signal. In this 

way, the pool of motor neurons acts as an effective linear filter of the independent noise resulting 

from noisy ion channels or random synaptic fluctuations (Katz and Miledi, 1970). High-density 

surface EMG recordings from tibialis anterior at three target forces (20, 50, and 75% maximal 

voluntary contraction) revealed an increase in the proportion of common synaptic input to motor 

neurons with an increase in target force (Castronovo et al., 2015). Critically, pairwise 

correlations of motor units with differing recruitment thresholds from the same set of data did 

not display a high coherence. Consistent with the common input signal being the only signal 

important in modulating the cumulative discharge train, Negro and colleagues (2016) conclude 

that motor neurons perform fast averaging of the synaptic inputs and the independent synaptic 

noise does not influence the accuracy of the output force (Negro et al., 2016). While these 

studies provide a promising step in quantify common input strength, it risks tautology (Boonstra 

et al., 2016) as, by definition, the only signal reaching the muscles is a common signal with an 

additive noise term. It is difficult to use this framework to explain differences between 

individuals as increased force fluctuations would be the result of the common input signal.    

The practicality of a common input signal has been the subject of debate. Some groups 

argue that only the effective neural drive is important in force control (De Luca and Erim, 1994; 

Negro et al., 2009; Farina and Negro, 2015), and that the nervous system could not control motor 
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neurons without a common signal (Negro et al., 2016). Moreover, synergistic muscles, such as 

those that comprise quadriceps femoris, share most of their synaptic input (Laine et al., 2015). 

Alternatively, some groups argue that common input provides no explanation for motor neuron 

synchronization and would not simply force control (Kline and De Luca, 2015).  

Boonstra et al. (2016) suggest that the field needs to agree on a uniform definition of 

common input that includes the physiological properties of motor pools. They propose the 

following biophysical model to describe the discharge characteristics of a pool of neurons: 

                                   C012
03

 = -gi(Vi-Ei) + vi(t) + aSjcijF(t,ti) + hi(t)                                    (4) 

where Vi is the membrane potential for the i-th motor neuron with conductance g, the total 

synaptic current is represented by vi(t), E represents the Nernst potential, C corresponds to a 

coupling matrix, F indicates a low-pass filter function for the dendritic filtering of motor 

neurons, cij represents the influence of presynaptic neurons (j) on postsynaptic motor neurons (i), 

a denotes a scaling factor for the total sum of all synaptic currents from the dendrites into the 

soma, and hi(t) represents the individual noise that each neuron receives. This biophysical model 

includes key physiological properties of the motor neurons that would modulate the discharge 

rates. If the summed inward synaptic current exceeds the leak current, the membrane will 

depolarize and discharge an action potential.  

There are limitations to studying a higher dimensional common input to pools of neurons 

using second-order statistics. Pairwise correlations (Sears and Stagg, 1976; De Luca et al.,1982, 

2016) and principal component analysis (Farina et al., 2009-2016) cannot reveal the specific 

higher dimensional structure of a common signal. Novel research on the statistical structure of 

discharge characteristics in neural circuits in the brain reveals a more complex structure that 
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cannot be expressed with second-order statistics. Macke and colleagues have developed several 

statistical models that characterize discharge characteristics in neural networks. One such model 

that appears superior to previous generalized linear models is a Poisson linear dynamical systems 

(PLDS) model (Macke et al., 2011; Buesing et al., 2012; Archer et al., 2014). The PLDS model 

effectively replicates the interconnectivity of neurons in the primary visual cortex of cats and 

macaque monkeys. This group investigated the mathematical structure of the underlying 

common input to neurons and developed the following model: the discharge times [y(t)] of n- 

neurons [i = 1…N] is parameterized as a Poisson point process achieved by using the discharge 

rate, l, as the time-varying intensity of the process. 

                                                   li(t) = e4(6)                                                                      (5) 

                                             z(t) = Cx(t) + D y(t-1) + µ                                                     (6) 

where x(t) is a d-dimensional vector (with d < n) that represents the latent common input. C 

denotes a d x n matrix that encodes the effects of the latent input on each individual neuron. This 

matrix models the relevant physiological properties, such as input conductance and 

afterhyperpolarization duration. D corresponds to an n x n matrix that models the effects of 

coupling between neurons and µ is the logarithm of the average discharge time.  

                                          x(t) = A x(t–1) + u S(t) + e(t)                                                   (7)            

where A is a d x d matrix that indicates how the latent state progresses through the trial, uS(t) 

encodes a time-varying component such as force level of stimulus intensity, and e(t) is a zero- 

mean Gaussian noise vector that models synaptic fluctuations (Macke et al., 2011; Buesing et al., 

2012; Archer et al., 2014).  

Macke and colleagues validated this novel method of neuron connectivity using animal 
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models (Archer et al., 2014). A 96-electrode array was placed over the motor cortex of a 

behaving monkey and the discharge characteristics of cortical neurons was recorded during a 

reaching task. Using a Poisson linear dynamical system (PLDS) model and a 5-dimensional 

latent state, they were able to effectively capture the underlying inputs. All trials revealed a zero 

peak in the correlation between the real data and the PLDS model.  

This linear dynamical systems model may be adapted to motor neurons by eliminating 

the D y(t-1) term and utilizing uS(t) to encode the effects of the target force on the discharge rate 

of the neurons. With the development of high-density electrodes, the shared variability in 

discharge rates is dominated by a central peak with zero lag, which indicates the level of 

synchrony in discharge rates. Such a correlation is natural for a dynamical system and allows for 

modeling of physiological parameters (Boonstra et al., 2016).  The method required to solve and 

optimize an underdetermined set of equations is referred to as Expectation Maximization (EM) 

algorithms. Critically, this framework explicitly delineates the common input signal as well as 

the signal-to-noise ratio, and could provide an explanation for individual differences in the 

strength of the common input signal.  

Few actions of daily living require the activation of only one muscle, and it may be 

possible to control synergist muscles with the same control signal. Laine et al. (2015) quantified 

the common input to synergist quadriceps muscles by finding the pooled coherence of detected 

motor units. Similar to previous findings, there was a peak with virtually no lag indicating that 

synergistic muscles may share a common signal. This is critical in the control of movement on a 

larger scale. A knee-extension task involves all the quadriceps muscles as well as synergist 

muscles, so it is feasible that the control of a multiple muscles is accomplished with a common 

signal. Moreover, the proximity of the motor neurons innervating synergistic muscles within the 
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spinal cord facilitates the distribution of such a control signal (Demireva et al., 2011).  

Coordinating the discharge rates of motor pools is an important control problem to 

understand and has direct physiological relevance. Farina and colleagues have found that 

variations in the common control signal are directly related to the low-frequency force 

oscillations when an individual is asked to produce a steady force during an isometric contraction 

(Negro et al., 2009; Farina and Negro, 2015; Negro et al., 2016b). The amplitude of these force 

oscillations during steady contractions is predictive of the time to complete a test of manual 

dexterity (Marmon et al., 2011a, Almuklass et al., 2016a). It follows that the common 

modulation of discharge rates may be crucial for performing activities of daily living.  

3. Coordination and variability in manual dexterity and walking 

The NIH Toolbox is a validated set of tests that quantify neurological health and function 

across the lifespan in four domains: motor, cognitive, emotional, and sensation (Gershon et al., 

2010; Reuben et al., 2013). Motor function is quantified with tests of dexterity, strength, balance, 

locomotion, and endurance. Manual dexterity is essential for accomplishing activities of daily 

living, such as eating, writing, and interacting with an increasingly digital environment. The NIH 

Toolbox quantifies manual dexterity as time to complete a 9-hole pegboard test (Gershon et al., 

2010). Walking is also integral to maintaining a high quality of life and independence, and is 

quantified with the 4-m walk test (locomotion) and the 2-min walk test (endurance). Both 

dexterity and walking ability decline with healthy aging as well as in disease or injury states. The 

ability to coordinate motor pools and the larger scale coordination of limbs is central in the 

performance of these tasks as well as maintaining a high quality of life.  

3.1 The relation between dexterity, force steadiness, and common input 



	
24	

The NIH Toolbox defines dexterity as “the coordination of small muscle movements 

which occur in body parts, such as the ability to coordinate fingers to manipulate objects quickly 

and accurately.” Such actions require the coordination of the motor units responsible for the 

requisite muscle contractions. The primary measure of dexterity in the NIH Toolbox is the time 

to complete a 9-hole pegboard test (Gershon et al., 2010). A more sensitive measure is the 

Lafayette grooved pegboard test, which requires the insertion of 25 key-shaped pegs into 

randomly oriented key shaped holes (Wang et al., 2003). Performance on the Lafayette grooved 

pegboard test improves from age 3 yrs until approximately 30 yrs, after which it gradually 

declines with a sharp drop after 75 yrs (Ruff and Parker, 1993; Wang et al., 2011). Moreover, a 

longitudinal study of 128 elderly women revealed that pegboard test performance explained 51% 

of the variance in the women’s residential living situation (i.e., nursing home, retirement home, 

or living in the community) (Ostwald et al., 1989), which underscores the importance of 

dexterity tests as a measure of health status. Lawrence et al. (2015) used principal component 

analysis (PCA) to decompose the results of 6 tests of manual dexterity to identify subdomains of 

dexterity. Older adults who were healthy (n = 66) or had osteoarthritis (n = 33) performed each 

of the tests. Three identified latent domains explained 90% of the covariance in the tests of 

dexterity (Lawrence et al., 2015). Consistent with multiple-regression studies on hand function, 

the latent domains were made up of indices of muscle strength (Marmon et al., 2011), force 

steadiness (Marmon et al., 2011; Almuklass et al., 2016), and pegboard performance (Ruff and 

Parker, 1993; Wang et al., 2003), indicating these are key markers of health and function. 

Manual dexterity and the ability to maintain a steady, submaximal force during an 

isometric contraction are closely linked (Marmon et al., 2011a; Almuklass et al., 2016). Force 

steadiness is defined as the oscillations about a submaximal target force during an isometric 
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contraction, and is quantified as either the standard deviation or the coefficient of variation of 

these oscillations with respect to the mean force. Multiple-regression models indicate that an 

index of force steadiness is a key predictor of pegboard performance for young and old adults 

(Marmon et al., 2011, Almuklass et al., 2016). Galganski and colleagues (1993) found that young 

adults have superior force steadiness (lower fluctuations) compared with older adults, at least for 

the first dorsal interosseus muscle. Force steadiness is directly correlated with grooved pegboard 

times in old adults, which indicates force steadiness is crucial in the ability to finely manipulate 

objects (Marmon et al., 2011a). In contrast, young adults who exhibit superior force steadiness 

perform more slowly on the pegboard test, which may indicate a decision-making strategy of 

placing greater emphasis on accuracy than speed (Almuklass et al., 2016).  

There is a direct link between indices of force steadiness and of the common input signal 

to the motor pool (Negro et al., 2009; Farina and Negro, 2015). Negro and colleagues showed 

that the force fluctuations during a steady contraction are primarily determined by a common 

input signal to the motor pool (Negro et al, 2009; Farina and Negro, 2015). Due to the 

association between force steadiness and dexterity, it is likely that changes in the common input 

signal to motor neurons may influence dexterity. In a seminal demonstration of the importance of 

common modulation of motor unit discharge in force production, Negro et al. (2016a) 

decomposed (Holobar and Zazula, 2007) the discharge times of ~200 motor units using kernel 

decomposition of recordings obtained with high-density grid electrodes. The discharge times of 

the motor units were combined into a cumulative spike train and smoothed with a 400-ms 

Hanning window. A principal component analysis performed on the cumulative spike train found 

that the first principal component explained 70% of the force fluctuations during a steady 

isometric contraction (Negro et al., 2009). As a result, force steadiness may be analyzed as a 
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proxy for the fluctuations within the common input signal. Furthermore, the relation between 

dexterity and force steadiness suggests that increases in the common input signal may contribute 

to declines in dexterity. 

Multiple sclerosis (MS) is a neurological disorder that degrades the myelin sheath 

surrounding the axons of neurons, resulting in impairments in both sensory and motor signal 

transduction. As a result, 77% of individuals with MS experience problems with manual 

dexterity (Johansson et al., 2007). Recent work in our lab demonstrated that 78% of the variance 

in grooved pegboard times for persons with MS could be explained by the time it took to select a 

peg from the well during the test. This peg-manipulation phase requires tactile discrimination 

and the ability to exert a steady, low-level force. Given the effects of the disease and the declines 

in dexterity, it is likely that individuals with MS exhibit greater variability in common synaptic 

input to motor neurons, however this hypothesis has yet to be tested.  

Electrical stimulation can be exploited to probe the source of force fluctuations during 

isometric force tasks. Jones and colleagues (2002) investigated how the integration of synaptic 

inputs by motor neurons contributes to the modulation of force steadiness. To do so, they 

compared the standard deviation of the force fluctuations at a range of target forces during 

voluntary contractions and those evoked by neuromuscular electrical stimulation (NMES) (Jones 

et al., 2002). When participants voluntarily matched a force target, the standard deviation for 

force increased with force level. In contrast, the standard deviation for force remained relatively 

constant across target forces when the contractions were evoked by eliciting action potential in 

intramuscular axons with NMES. This demonstrates two key findings; first, force fluctuations 

remain similar regardless of stimulation intensity when elicited over the muscle due to different 

distances the current must travel resulting in asynchronous action potentials. Second, a large 
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portion of force fluctuations observed during voluntary contractions may be attributable to the 

synaptic inputs received by motor neurons.  

The application of NMES over muscles creates a current field that primarily elicits action 

potentials in intramuscular axons causing muscular contractions. The specific intramuscular 

axons engaged by electrical stimulation vary based on the intensity of the applied current as well 

as the pulse duration and frequency of the stimulus trains (Amiridis et al., 2015; Chipchase et al., 

2011; Collins, 2007). NMES is often applied under a relatively low current (< 100 mA), with 

frequency ranges of 40-80 Hz, and pulse durations of 0.2 to 0.5 ms (Colson et al., 2009; Jones et 

al., 2002; Vanderthommen and Duchateau, 2007). Longer duration pulses— such as 1 ms— 

likely engage a broader range of sensory fibers in addition to motor fibers, which could result in 

key differences in force output when only evoked by wide-pulse NMES. The differences in the 

coefficient of variation for force during contractions evoked by NMES compared with voluntary 

contractions provides insight into the relative role of common synaptic input. The magnitude of 

this change may differ between age groups or in certain disease states such a Multiple Sclerosis.  

3.2 Motor variability in walking 

The decline in walking performance observed with healthy aging and with injury or 

disease may be the result of changes in the common input signal sent from descending centers to 

the motor unit pool or in the coordination of the musculoskeletal multi-joint system (Clark et al., 

2010). There are many degrees of freedom available to the neuromuscular system to control 

motor tasks, such as walking (Bernstein, 1967). The classic problem of excessive degrees of 

freedom concerns how the central nervous selects a particular solution to accomplish a desired 

movement task.  
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Muscle synergies are quantified using latent variable analysis to discover underlying 

patterns in EMG activity (Cappellini et al., 2006; Clark et al., 2010). Clark and colleagues (2010) 

used non- negative matrix factorization and principal component analysis to decompose the 

EMG signals during walking from 8 leg muscles of healthy controls and individuals post-stroke. 

Results indicated fewer factors were needed to explain 90% of the covariance in all EMG signals 

during a stride in the stroke patients, indicating the use of fewer synergies by these individuals. 

Furthermore, functional measures of walking performance, such as preferred walking speed, 

were inversely correlated with the number of observed synergies for individuals (Clark et al., 

2010).  

A degree of variability is likely beneficial in biological systems to prevent rigidity and 

injury (Hamill et al., 2012). Individuals with greater motor variability demonstrate faster learning 

(Wu et al., 2014) and more stability in response to perturbations (Latash et al., 2007); however, 

too much variability is associated with low accuracy and greater end-point variability (Christou, 

2013). Future work should focus on finding the functional relevance of muscle synergies in 

clinical populations. Studies such as these would not only provide more information in how the 

nervous system controls movement, but also broaden the clinical scope of variability analyses. If 

musculoskeletal disorders are associated with disrupted muscle synergies or joint kinematics, it 

could be possible to treat these conditions by establishing the activation patterns observed in 

healthy adults.  

Conclusion 

Successful performance of voluntary actions requires the nervous system to send 

appropriately scaled motor commands to control the discharge characteristics of motor nuclei 

that produce the requisite limb kinematics. The nervous system controls the discharge rates of 
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motor nuclei through a common input signal to motor neurons, which produce variable kinematic 

outputs. The common input modulates motor unit discharge rates based on their physiological 

properties, and is responsible for the much of the variance in force during steady submaximal 

contractions. Relatively simple measurements of force steadiness can explain much of the 

variance in tasks that involve many degrees of freedom.  

Some theories suggest there may be an optimal amount of variability in movement to 

ensure that the end goal is achieved, but allow for responses to perturbations. Perhaps declines in 

motor performance with healthy aging or a result of an injury or disease could be due to limited 

variability in movement patterns. While more work is required to verify this concept, it appears 

that motor neurons are controlled with a common input signal and the total motor output may be 

controlled through synergies formed to provide an optimal degree of flexibility and stability. 
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Chapter II 

 

 

CONTROL OF FORCE DURING RAPID VISUOMOTOR FORCE-MATCHING TASKS 

CAN BE DESCRIBED BY DISCRETE TIME PID CONTROL ALGORITHMS 
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Abstract 

To enable precise movements, the nervous system adjusts the neural commands to the muscles to 

minimize movement error.  We hypothesized that the variability in force trajectories during rapid 

force-matching tasks can be explained by discrete time proportional, integral, derivative (PID) 

control algorithms with varying parameters.  To this end, we analyzed the pinch force trajectories 

of 24 subjects performing two rapid force-matching tasks with visual feedback.  Both tasks 

involved isometric contractions to a target force of 10% maximal voluntary contraction (MVC).  

One task involved a single action (pinch) and the other required a double action (concurrent 

pinch and wrist extension).  50,000 force trajectories were simulated with a computational 

neuromuscular model whose input was determined by PID controller with different PID gains 

and frequencies at which the controller adjusted muscle commands.  The goal was to find the 

best match between each experimental force trajectory and all simulated trajectories.  It was 

possible to identify one realization of the PID controller that matched the experimental force 

produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect 

similarity).  The similarities for both tasks were significantly greater than what would be 

expected by chance (single action: p = 0.01; double action: p = 0.04).  Furthermore, the 

identified control frequencies in the simulated PID controller with greatest similarities decreased 

as task difficulty increased (single-action: 4.0 ± 1.8 Hz; double-action: 3.1 ± 1.3 Hz).  Overall, 

the results indicate that discrete time PID controllers are realistic models for the neural control of 

force in rapid force-matching tasks involving isometric contractions.  
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Introduction 

The nervous system enables accurate movements by sending appropriately scaled motor 

commands to the relevant muscles.  To determine the magnitude and timing of these commands, 

an estimate of the current state of the limbs involved in the task is formed through integration of 

sensory information and prior experience (Diedrichsen et al. 2010).  From this estimate, the 

difference between the planned movement and the current state (error signal) can be derived to 

determine the appropriate changes to the motor command required to continue or complete the 

task (Bays and Wolpert 2007).  These voluntary adjustments in the activation signal occur 

intermittently (Loram et al. 2014) and, in the case of solution redundancy, the set of muscle 

commands that minimizes the overall effort is selected (O’Sullivan et al. 2009).  Exactly how the 

nervous system determines appropriate adjustments in the motor commands based on the 

dynamics of the error is uncertain.  

An attractive experimental setup for studying this control process is rapid force-matching tasks.  

In such tasks, the subject receives real-time visual feedback to gauge force errors, thereby 

making the perceived error highly reliable.  Assuming that the level of muscle coactivation is 

low, which is usually the case in such tasks (Maluf et al. 2005; Rudroff et al. 2010), the target 

force can only be achieved by one muscle activation pattern with little or no redundancy.  This 

implies that no training is required to learn how to perform the task in the way that minimizes the 

total effort.  The performance in rapid force-matching tasks with visual feedback, therefore, 

likely reflects the ability of the central nervous system to adjust the motor commands based on 

the error with minimal bias from differences in the ability to estimate limb state or accommodate 

cost functions across subjects.   
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Despite of the simplicity of visually guided force-matching tasks, there is remarkable variability 

in how such tasks are executed across subjects.  One commonly studied feature of these tasks is 

the ability to maintain a constant force during an isometric contraction.  This ability, however, 

varies substantially even within uniform groups of subjects (Moritz et al. 2005; Tracy et al. 2005; 

Sosnoff et al. 2006; Almuklass et al. 2016).  Because force variability is determined by the 

common synaptic input to the motor neuron population (Negro et al. 2009; Dideriksen et al. 

2012), differences in the coefficient of variation for force directly reflect variations in the ability 

of the nervous system to maintain stable motor commands.  Therefore, any model of the control 

process must be sufficiently flexible to account for the variability between subjects during force-

matching isometric contractions.  

We have previously shown that control of force in visuomotor tasks involving isometric 

contractions can be emulated in a computational model using a discrete time proportional-

integral-derivative (PID) control algorithm (Dideriksen et al. 2010; Dideriksen et al. 2012).  This 

algorithm samples the instantaneous difference between the simulated muscle force and the 

target force (force error) at a fixed frequency in order to scale the output (supraspinal neural 

drive) to minimize the force error.  With this approach, the neural drive to the muscle is 

represented as a linear combination of the error itself (proportional term), the integrated error, 

and the first derivative of the error.  The gains of each of these three terms (PID gains) determine 

the characteristics of the simulated force.  For example, high gains of the proportional or integral 

terms imply rapid responses at the expense of overshooting the target and the risk of high steady 

state variability, whereas high derivative gain minimizes the time it takes for the output to settle 

to a stable level (Ang et al. 2005).  We have shown previously that appropriate selection of PID 

gains and frequency at which the force error is sampled enable accurate simulations of the 
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average differences in force variability observed at different target forces (i.e., signal-dependent 

noise (Jones et al. 2002)) (Dideriksen et al. 2012).  It remains unclear, however, if PID control 

can capture the variability observed in force trajectories across individual subjects.   

The goal of the current study was to evaluate the capacity of PID control algorithms with 

different model parameters to account for the variability observed in the characteristics of 

experimental force trajectories of different subjects.  We reanalyzed experimental force 

trajectories during two types of force-matching tasks recorded in a previous study (Almuklass et 

al. 2016) and examined the degree to which they could be replicated by simulations relying on 

PID controllers.  With this approach, we were able to investigate if it is possible to identify one 

set of model parameters that could provide a simulated force trajectory similar to that of an 

observed experimental trial.  Furthermore, the level of similarity was compared with that 

expected due to chance.  A statistically significant difference between the average similarity 

index for the PID simulations and the observed experimental recordings with the mean of the 

probability distribution of similarity indices due to chance would suggest that a PID controller is 

a realistic representation of force control during rapid force-matching isometric contractions 

Methods 

The methods used to obtain the experimental measurements included in the current study have 

been reported in detail elsewhere (Almuklass et al. 2016) and are only briefly described in the 

following section.  In contrast, more information is provided on the analytical approach used to 

characterize the experimental findings.   

Experiment 
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Thirty healthy young adults (24.2 ± 4.0 yrs) with no history of neurological disease or injury to 

the upper extremity participated in a protocol that was approved by the Institutional Review 

Board at the University of Colorado Boulder (Protocol # 14-0356).   

The force-matching tasks required the subjects to perform isometric contractions and produce a 

force that matched a target displayed in real-time on a monitor.  The target forces were 5% and 

10% of the maximal voluntary contraction (MVC).  The target was located at the center of the 

monitor.  In the current study, we analyzed the trials with targets of 10% MVC force to capture 

the common motor neuron input (output of the PID control algorithm; see Simulations for 

details) rather than the random, independent variability in the motor unit discharge rates 

(Dideriksen et al. 2012).  The subjects performed two types of force-matching tasks: a single-

action task and a double-action task.  The single-action task required the subject to generate a 

wrist extension force, index finger abduction force, or pinch force that was shown as a circle on a 

horizontal axis and move it to a target location.  The double-action task was similar, but required 

the subject to perform two of these tasks concurrently.  The second target force during the 

double-action task was displayed o a vertical axis and the task was to move the circle to the 

intersection of the two axes (see Figure 1 in (Almuklass et al. 2016)).   

In the current study, we analyzed pinch forces during the single- and double-action tasks.  The 

double-action task involved the pinch force with concurrent wrist extension, which has high 

predictive ability for the variance in the time it takes to complete a test of manual dexterity 

(Almuklass et al. 2016).  Due to the anatomical and functional links between grip actions and 

wrist movement (Werremeyer and Cole 1997; Ambike et al. 2013), it was assumed that it would 

be more challenging to match the pinch force in the double-action task.  After a brief 

introduction to the tasks, the participants were instructed to reach the displayed target as quickly 
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as possible after hearing a “Go” signal from one of the investigators and to keep the force at the 

target for the next 10 s as steady as possible.  Subsequently, the task was repeated twice, but at a 

self-selected steady pace.  The first trial was analyzed in the current study because the PID 

control algorithm requires an explicit target force at all times to calculate the instantaneous force 

error (see Simulations for details).  In the second and third trials, the 10% MVC force cannot be 

assumed to have been the explicit target force during the first few seconds (before 10% MVC 

was reached).  For example, the subjects may have envisioned a steadily increasing ramp force 

from 0% to 10% MVC rather than a step increase to the target force.  

The force signals were low-pass filtered at 50 Hz (V75-48 High Performance Bandpass Filter, 

Coulbourn Instruments, White Hall, PA, USA) and sampled at 2 kHz with an analog- to-digital 

converter (Power 1401, Cambridge Electronic Design, Cambridge, UK).  The data were obtained 

with Spike2 data acquisition software (Version 5.20, Cambridge Electronic Design, UK) and 

stored offline for analysis in MATLAB 2014b (Mathworks, MA, USA). 

 

Figure 1 Model structure.  The task was to maintain a steady force at 10% MVC.  The force error was 
calculated as the difference between the instantaneous force and the target force, which was provided by 
visual input during the experiment.  The force error provided an input signal to the PID control algorithm, 
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which estimated the activation signal (representing the supraspinal drive) that was required to minimize 
the force error (given the gains of the proportional, derivative, and integral error) and match the target 
force.  The activation signal was sent to the model of the motor neuron population to generate motor unit 
spike trains that were transformed into muscle force.   

Simulations 

The approach adopted a previously published computational model that established the 

recruitment and rate coding characteristics in a population of motor neurons, and the isometric 

force generated from the motor neuron activation (Fuglevand et al. 1993; Barry et al. 2007).  The 

motor neuron population in the model comprised 180 motor units.  The sizes of these motor units 

followed an exponential distribution in which most were small (low-threshold, low-amplitude, 

slow contracting) and few were large (high-threshold, high-amplitude, fast contracting).  In 

addition, a PID control algorithm was implemented to emulate the supraspinal control of force 

during a visually guided, force-matching task involving an isometric contraction, as previously 

described (Dideriksen et al. 2010).  The “Task” component of the model (Figure 1) indicates the 

desired target of 10% MVC force.  The difference between the target force and the instantaneous 

simulated force (force error) provided the input to the PID control algorithm, as indicated by Eq. 

1.    

8 9 + ;1< = => ∙ @A 9 + =B ∙ @A C DC +3
EFG =0 ∙

0HI 3
03

 (1) 

where A denotes the activation signal (input to the Motor neuron population model; Fig. 1),	FE 

the force error, and Kp, Ki, and Kd the gains of the proportional, integral, and derivative terms, 

respectively.  ;1< represents the visuomotor delay, which corresponds to the delay between a 

visual stimulus and subsequent reaction and was set to 135 ms (Carlton 1981).  The algorithm 

was implemented as an intermittent controller, indicating that the value A was adjusted with a 

discrete time interval (t), which was varied in the range 167-667 ms depending on controller 

frequency (see details below).  The activation signal to the motor neurons was constant within 
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the intervals t (simulation frequency was 1 kHz).  Random Gaussian noise was added to the input 

received by individual motor neurons to achieve realistic discharge rate variability (Dideriksen et 

al. 2010).  The values assigned to the three gains determined the characteristics of the relation 

between force error and activation signal.  The activation signal determined the motor unit spike 

trains (Motor neuron population model; Fig. 1), from which the muscle force was simulated 

(Isometric force model; Fig. 1).  The model was implemented in MATLAB 2014b (Mathworks, 

MA, USA).  

The approach involved a series of 8-s simulations with the target force set at 10% MVC.  Across 

the simulations, the values of the three gains (Kp, Ki, and Kd) were varied systematically.  In each 

simulation, the gain of the three terms was assigned one of 10 evenly spaced values within 

predefined ranges (Kp: 0-55; Ki: 5-65; Kd: 0-25) that were determined in pilot simulations.  

Simulations with PID gains at the limits of the selected ranges yielded either an inability to reach 

the target force in less than 8 s (low values of Ki) or large force fluctuations (coefficient of 

variation for force > 15%; high values for all three gains).  The frequency at which the controller 

sampled the error and adjusted the activation signal to the motor neurons was varied between 1.5 

Hz and 6 Hz (Slifkin et al. 2000; Sosnoff and Newell 2006; Loram et al. 2014) in intervals of 0.5 

Hz.  All combinations of these gain values were simulated (1,000 iterations) for each controller 

frequency.  Each combination was repeated five times to accommodate variability in the 

simulated force due to the stochastic elements in the model (Dideriksen et al. 2010).  A total of 

50,000 simulations were performed.  

The resolution for each of the four trajectory measures was estimated for all simulations 

conducted at the same controller frequency (n = 5,000).  The resolution characterized the 

distribution of the simulated trajectory measures across the range of experimentally observed 
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values for that measure.  If, for example, the simulated values for one trajectory measure were 

distributed evenly in this range with small differences between consecutive values, the resolution 

would be high.  Conversely, if there were large gaps between trajectory measures obtained in 

simulations with different model parameters, the resolution would be low.  A low resolution 

could imply that PID controllers are fundamentally unable to simulate all values of that trajectory 

measure, or that too few combinations of different values of the model parameters were tested.  

To this end, the values for each simulated trajectory measure were ordered according to size and 

values outside the experimentally observed range were excluded.  These values were 

differentiated to obtain the difference between the size-ordered values (nearest, non-identical 

value) of each measure.  All zero-values (indicating simulations with the same value for the 

parameter) were removed, because large numbers of simulations with the same value of the 

measure would bias the average difference towards lower values and present a risk of 

overestimating the resolution.  Finally, the average value was obtained.  With this approach, one 

value per simulated controller frequency was obtained for each of the four trajectory measures, 

indicating the degree to which the simulated measures covered the experimentally observed 

range for that measure.  
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Figure 2. Parameterization of force.  A. The following parameters were calculated from the force trace: 
initial force error, rise time, stabilization time, and coefficient of variation (CoV) for force once the target 
force was achieved (see text for definition of parameters).  B-E.  The distributions of the four parameters 
across the 5,000 simulations (black lines) relative to the values for the 24 subjects (grey vertical lines).  
The rise time in most simulations were 300-400 ms, but were >500 ms in 989 simulations and >1,000 ms 
in 263 simulations. 

Data analysis 

Four trajectory measures were extracted from the experimental and simulated forces, as 

illustrated in Figure 2A.  1) Rise time – the duration between the time at which the force 

exceeded 0.5% MVC force and the first turn in the force trajectory.  Turns were identified as the 

instant when the sign of the first derivative of the smoothed force (moving average filter, 250 ms 

Hamming window) changed from positive to negative.  2) Overshoot – difference between the 

force at the first turn and the target force, which meant that a turn in the force below the target 

force was denoted as a negative value.  3) Stabilization time – the duration from the end of the 

rise time until the force became steady based on a standard-deviation criterion.  The standard 

deviation of force was estimated with moving 1-s windows (overlapping by 999 ms).  The 

criterion was defined as the mean plus three times the standard deviation during the preceding 3 

s.  The first point in time after force onset at which the standard deviation (estimated in the 

moving 1-s window) was below the criterion was defined as the end of the stabilization period 
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and the beginning of the steady force trajectory.  4) The coefficient of variation (CoV) for force – 

calculated from the end of the stabilization period until the task was terminated.  

The values for these four trajectory measures in the experimental force trajectories were verified 

by visual inspection and unusual adjustments were noted.  It was evident from the force 

trajectories that 6 of the initial 30 participants failed to perform the double-action task as 

instructed.  For example, some subjects maintained the pinch force steadily either several 

percentages of MVC force below or above the target for up to 5 s before making any 

adjustments.  We assumed these subjects did not understand the instructions for the rapid force-

matching task and the data from these subjects for both tasks were not included in the current 

study.   

The simulated forces were compared with the experimental recordings, and the simulated force 

(equivalent to one set of PID-gains) most similar to the force trajectory for each subject was 

identified.  This was accomplished with the Gaussian functions shown in Figure 2B-E.  The 

similarity (Sm) of each trajectory measure (rise time, overshoot, stabilization time, CoV for force) 

depended on the difference between the experimental and simulated value for that measure (Δm).  

In this way, the similarity was assigned the value of 1 when the difference was 0 and declined 

with an increase in the difference between the simulated and experimental forces.  The standard 

deviation of the Gaussian function for each trajectory measure (σm) was set to the standard 

deviation of the experimentally obtained values for that measure across both tasks and across the 

24 subjects.  This implied that if one trajectory measure derived from one experimental force 

trajectory deviated by one standard deviation from the value of that measure in a given 

simulation, the similarity for that measure, Sm, would be 0.59.  The simulated values were the 
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median of the values obtained from the five simulations performed with the same PID-gains and 

the same controller frequency.   

The similarity for each of the four trajectory measures (m) was determined from the match 

between the forces simulated with each combination of PID gains and controller frequency (F) 

and the value derived from the force for each subject:  

JK(=>, =B, =0, @) = MN
∆P(QR,Q2,QS,T)

U

UVP	U  (2) 

The similarity index (SI) quantified the strength of the association between the simulated and 

experimental force trajectories across the four trajectory measures for each subject:  

JW(=>, =B, =0, @) = JX(=>, =B, =0, @) ∙ JY(=>, =B, =0, @) ∙ JZ(=>, =B, =0, @) ∙ J[Y1(=>, =B, =0, @) (3) 

where r denotes rise time, o overshoot, s stabilization time, and CoV the coefficient of variation 

for force.  The greatest value for SI across all simulated forces indicated the extent to which the 

force control used by each subject during each task could be characterized by a PID-like 

feedback controller as well as the most likely model parameters.  The result was a distribution of 

SI values (one per subject) for each task.  

The hypothesis was evaluated by comparing the probability distribution of similarity indices with 

those that could be obtained by chance.  The experimental data comprised 48 combinations of 

the four trajectory measures (one per force trajectory), which determined the SI values.  In 

principle, however, different realistic values of the four trajectory measures can be combined in 

infinitely many ways.  It can be assumed that some of these combinations can be replicated well 

by simulations with SI values near 1, whereas others cannot be simulated as precisely.  A 

distribution of SI values obtained by combining trajectory measures in all possible ways would 

represent the SI values that can be expected to be obtained by chance.  Such a “chance 

distribution” indicates the ability of the PID control algorithm to simulate any force trajectory by 
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appropriate tuning of the model parameters.  If, for example, this distribution primarily contained 

SI values near 1, it would indicate that this algorithm is sufficiently flexible to simulate most 

combinations of the four trajectory measures with high accuracy.  In order for the SI values 

obtained from the two tasks to be statistically significant, they had to be greater than the chance 

distribution.  To approximate the chance distribution, the trajectory measures obtained from all 

experimental trials were randomly combined to generate new sets of these measures; for 

example, one set of measures compiling the rise time from the single action task of subject #1, 

the overshoot from the double action task of subject #8, and so on.  Importantly, this procedure 

ensured that the chance distribution comprised random combinations of trajectory measures with 

realistic values.  The result was 48 new force trajectories for which the greatest SI value for each 

trajectory was calculated (Eq. 3).  This process was repeated 10 times with different random 

combinations to provide a total of 480 SI values.  These represented the chance distribution of SI 

values that characterized the ability of the PID controller to simulate any random force trace.   

Wilcoxon signed rank test was used to analyze the difference between the experimentally 

obtained SI values and the chance distribution as well as the difference in the identified model 

parameters (PID-gains and controller frequency) for each subject across the two pinch tasks.  

The difference in SI across the two tasks for each subject was compared using a paired t-test.  

Linear regression analysis was applied to the SI values and each of the four trajectory measures 

(rise time, rectified overshoot, stabilization time, and CoV for force) to investigate if the absence 

of matches between experimental and simulated forces was related to particular characteristics of 

the force trajectories.  The distributions of the four Sm (Eq. 2) at the setting with highest SI (Eq. 

3) were compared across all subjects for each task using Kruskal-Wallis test.  Statistical 

significance was set at p < 0.05.  
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Figure 3.  Calculation of the similarity between simulated and experimental forces.  Gaussian functions 
were used to determine the similarity (S) for each parameter (r, rise time; fe, force error; S, stabilization 
time; CoV, coefficient of variation for force) based on the difference (Δ) between the simulated and 
experimental forces. 

Results 

Figure 3 summarizes the experimental values for the four trajectory measures from the 24 

subjects in both tasks (single and double actions).  Across all subjects there was considerable 

variability in the trajectory measures for the two tasks.  The force overshoot was significantly 

greater (p = 0.04) and the CoV for force in the steady period was significantly less (p = 0.01) in 

the single-action task compared with the double-action task.  The range of the trajectory 

measures across all simulations encompassed the entire range of experimentally observed values 

with one exception.  In the single-action task, one subject presented a CoV for force of 0.8 %, 

whereas the lowest simulated CoV was 1.4%.  Across all simulated control frequencies, the 

average resolutions of the four parameters were relatively high.  Specifically, the average 
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differences between the nearest, non-identical values of each trajectory measure were: rise time = 

1.9 ± 0.2 ms; overshoot = 0.007 ± 0.001 % MVC; stabilization time = 2.4 ± 0.4 ms; CoV for 

force = 0.003 ± 0.002 %.  This indicates that the average difference between two consecutive 

(nearest, non-identical value) simulated rise times, for example, was approximately 2 ms within 

the range of experimentally recorded rise times (range: 0.15-1.58 s).  These results demonstrate 

that PID controllers can be tuned to simulate practically all realistic values of each for the four 

trajectory measures individually; however, this does not imply that all possible combinations of 

the trajectory measures can be simulated to create any force trajectory.  Furthermore, the low 

magnitude of the resolutions indicates that the analysis is robust enough to show an inability of 

the PID controller to simulate the experimental force trajectories only if such an inability actually 

exists (i.e., avoid false-negative results).   
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Figure 4. Examples of experimental (A, D, G, J) and most similar simulated forces (B, E, H, K) for four 
representative subjects.  The similarity index for each subject is indicated in the right column (C, F, I, L). 

Figure 4 depicts the experimental force trajectory for three representative subjects along with the 

simulated forces with greatest SI values.  This example demonstrates that control of the 

experimental forces varied substantially across the two tasks and across subjects, which was also 

indicated in the average results for all subjects (Fig. 3).  Furthermore, the figure illustrates the 

ability of the PID controller to simulate a wide range of forces; some of which were quite similar 

to the experimental trajectories.  Specifically, the SI values for the best set of simulations for 
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subject #4 (Fig. 4C) were ≥ 0.89, indicating that the forces produced in both tasks by this subject 

were highly similar to forces simulated using PID control.  In comparison, the forces of subject 

#5 were less well matched by any of the simulations (SI ≤ 0.70 for both tasks; Fig. 4I).  Overall, 

the average values for the greatest SI across all subjects were 0.88 ± 0.12 and 0.86 ± 0.12 for the 

single- and double-action tasks, respectively (Fig. 5) (no significant difference between tasks; p 

= 0.69).  According to Eq. 3, an SI of 0.86 could be achieved, for example, if the similarity (S; 

Eq. 2) for the four trajectory measures was 0.96.  This result suggests that PID controllers with 

different model parameters were able to replicate most experimental force trajectories.  In 

comparison, the average SI of the chance distribution was 0.79 ± 0.19 (Fig. 5), which was 

significantly lower than the SI values from the single action task (p = 0.009) and the double 

action task (p = 0.039).  Across 16 subjects, the difference in the greatest SI value across the two 

tasks was < 0.1 (average difference: 0.11 ± 0.12), indicating that most subjects used PID-like 

control in both tasks.   

There was no relation between the SI values and overshoot (r2 = 0.01), stabilization time (r2 =-

0.02), or CoV for force (r2 = 0.06), but SI was inversely related to rise time (r2 = 0.25; p = 

0.0002).  This implies that trials with forces compatible with PID control (i.e., high SI values) 

tended to be those where the first turn in force was reached most rapidly (i.e., short rise time).  

Across all subjects, there was no significant difference in the similarities between each of the 

four trajectory measures (S< Eq. 2) in the experimental and the simulated force trajectories with 

greatest SI.  The median Sm for all trajectory measures was >0.96, which indicates that failure to 

achieve SI = 1 was not due to a consistent difference between simulated and experimental forces 

in one of the four measures.   
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Figure 5. Histograms representing the distribution of values of the similarity index (SI) across all subjects 
in the single (A) and double (B) action tasks (grey bars).  The circles represents the values of SI of the 
reference distributions.  These distributions were obtained by randomly combining four parameters from 
each trial.  In this way, 24 new artificial force traces were created, representing the ability of the PID 
control algorithm to simulate force traces with any characteristics.  For each task, 10 sets of these 
artificial forces were created.  The circles and error-bars represent the mean and standard deviation of the 
histograms for the 10 sets. 
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Figure 6. The best control frequency corresponds to the simulated frequency at which the PID-control 
algorithm sampled the force error and adjusted the activation signal to produce the greatest SI values 
across all subjects in the single (A) and double (B) action tasks.  Panel C shows the p-value (Wilcoxon 
signed rank test) indicating the conditions in which a statistically significant difference between the best 
control frequencies for the two tasks was found.  The p-value is calculated for a series of subgroups of 
subjects determined by the SI value, each indicated by a circle. The left-most circle indicates the p-value 
when considering all subjects.  In the next subgroup (circle at SI = 0.73), the subject with the lowest SI 
value was excluded (n = 23) and so forth for the next subgroups (n=22, 21, 20…).  In this way, the value 
on the x-axis represents the lowest average SI value in the subgroup and a decreasing number of subjects 
(indicated by n) were included in the analysis when the lower limit for SI value was increased.  Note that 
the y-axis is truncated, and that the p-value for subgroups with less than 6 subjects (SI > 0.94) was >0.2. 

The distributions of the frequencies at which the PID controller produced the greatest SI value in 

each task for each subject are depicted in Figure 6.  The average control frequency for all 

subjects (grey bars) was 4.0 ± 1.8 Hz for the single-action task and 3.1 ± 1.3 Hz for the double-
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action task; however, the difference in control frequency across the two tasks was not 

statistically significant (p = 0.077).  Because low SI values suggest partial or complete failure of 

the PID model to replicate the experimental force, the estimated control frequency of subjects 

with low SI values may not reflect the actual frequency at which that subject adjusted the 

activation signal to the muscles.  For this reason, the estimated control frequencies from subjects 

with high values of SI are likely to be more reliable than for those with lower SI values.  Based 

on this rationale, the statistical test was repeated excluding subjects with low average SI values 

from the population.  Once the four subjects with the lowest values of SI was excluded (SI ≤ 

0.77), the difference in control frequency across the two tasks was statistically significant 

(should we include the p value here?) (Fig. 6C).  When the best control frequency identified for 

one of the two tasks was imposed on the other task, the peak SI decreased by an average of 0.14 

± 0.12.  This comparison indicates that there were substantial differences in the degree to which 

the experimental data could be replicated by simulations depending on the simulated control 

frequency.  Furthermore, the comparison underscores the observation that control frequencies 

tended to be lower during the double-action task.  
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Figure 7. The distributions of PID-gains across all subjects in the single (A, B, C) and double (D, E, F) 
action tasks. 

Figure 7 shows the distribution of PID gains for the simulations with greatest SI value in each 

task for each subject.  The average gains for the single- and double-action tasks, respectively, 

were: Kp = 19.6 ± 10.0 and 14.0 ± 3.4 (p = 0.03); Ki = 23.9 ± 7.5 and 34.2 ± 5.5 (p = 0.002); and 

Kd = 7.6 ± 7.5 and 10.6 ± 3.7 (p = 0.15).  This comparison indicates that subjects tended to 

change the control strategy, not only in terms of control frequency (Fig. 6), but also in terms of 

PID gains across the two tasks.  According to general control theory, decreasing Kp minimizes 

force overshoot and steady-state variability (CoV for force), at the expense of longer rise times.  

Conversely, increasing Ki increases the overshoot.  The observed decrease in the overshoot 

during the double-action task in combination with an increase in the CoV for force (Fig. 3) likely 
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reflects these changes in the gains.  As indicated by the smaller standard deviations of the gains 

in the double action task, the control strategies adopted in the single-action tasks across all 

subjects were more diverse than those for the double-action tasks.   

A possible limitation of the analysis underlying these results, however, is that it focuses only on 

the single set of model parameters (PID gains and control frequency) yielding the greatest SI 

values.  However, it is possible that another set of model parameters would provide SI values 

nearly as great in both tasks, making it unnecessary for the subjects to change the motor strategy 

(i.e., model parameters) across the two tasks, as Figure 7 seems to indicate.  To address this 

possibility, the single set of model parameters providing the greatest average SI values across the 

two tasks were identified for each subject.  It was found that this set of parameters involved an 

average decrease in SI of 0.30 ± 0.19 with respect to the greatest values for each task across 

subjects.  This indicates that the force trajectories observed across the two tasks for each subject 

could not be explained by a single set of model parameters for the PID control algorithm.  

 

Discussion 

The goal of the study was to examine the sensorimotor control used by individuals when rapidly 

matching pinch forces at 10 % MVC using visual feedback of force error.  The approach 

evaluated the capacity of PID-control algorithms with different model parameters to match 

experimental force trajectories produced by subjects during single- and double-action isometric 

contractions.  There was substantial variability in the characteristics of the force trajectories (Fig. 

3) across the 24 subjects and the two experimental tasks (Almuklass et al. 2016).  The results, 

however, indicated that PID control algorithms with different PID gains and control frequencies 
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(model parameters) were able to capture this variability to a greater degree than expected due to 

chance (Fig. 5).   

The applied control strategies as identified by the model parameters providing the greatest SI 

values varied substantially across subjects and across tasks (Fig. 6 and 7).  One consistent task-

related difference was that the frequency of the PID control decreased when the subject was 

asked to perform an additional force-matching task (double-action task) during the pinch task 

(single-action task) (Fig. 6).  An intuitive interpretation of this finding is that the nervous system 

increased the interval between adjustments in the activation signal to generate pinch force in 

order to accommodate the additional computational demands related to performing another 

concurrent task.  Similarly, other studies have demonstrated that the control frequency decreases 

when the complexity of the task is increased (Loram et al. 2009; Loram et al. 2014).  For 

example, van de Kamp et al. (2013) showed that the refractory duration (the period between 

adjustments in the activation signal) was 250 ms for zero-order systems (equivalent to 4 Hz), but 

550 ms for second-order systems (equivalent to approximately 2 Hz).  This suggests that the 

nervous system requires more time to plan the appropriate response when the complexity of the 

task increases.  

These results suggest that the PID-control architecture represents an appropriate mathematical 

description of the neural control of pinch force during force-matching tasks involving isometric 

contractions.  Further validation of this hypothesis, however, is made difficult by the highly 

adaptable nature of human motor control.  For example, an alternative experimental design could 

be to analyze and compare multiple repetitions of the same task under the assumption that the 

same model parameters are used across the trials.  However, such comparisons are difficult 

because humans can adapt the strategy in new simple motor tasks rapidly in order to optimize the 
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outcome (Burge et al. 2008).  Furthermore, repeated training of the same task enables the 

development of some level of feed-forward control for the task (Körding and Wolpert 2004) that 

would confound the identification of the characteristics of the feedback processing.  For 

example, it is likely that multiple repetitions of the force-matching task would enable the subject 

to reach a contraction level near the target force rapidly without using visual feedback.  As a 

result, the characteristics of the rising phase of the force trajectory should not be used to identify 

model parameters for a PID controller.  Consequently, failure to identify identical PID model 

parameters across multiple repetitions of the same task cannot falsify the hypothesis and 

invalidate the PID control architecture as a descriptor of the underlying neural processes.  

Instead, the current study investigated the performance of two different tasks (one trial per task), 

and evaluated the degree to which the force trajectories could be replicated by simulations across 

both tasks.  

Although the experimental force trajectories from most trials were compatible with PID control, 

a subset of the trials exhibited a lower degree of similarity with PID control (Fig. 5).  Several 

reasons may explain these exceptions.  One possible explanation is that these subjects relied on a 

fundamentally different control strategy.  An alternative explanation, however, is that a low SI 

value was attributable to an inconsistent use of PID-like control.  For example, it is possible that 

the subjects adjusted the model parameters between different phases of the task (e.g., rising 

phase and stable period; Fig. 2), which could make it impossible to identify one set of PID gains 

representative for the entire task and result in a low SI value.  Furthermore, it is likely that 

adjusting gains during the task is potentially a more effective strategy, such as to minimize the 

overshoot and obtain a low CoV for force (Ang et al. 2005).  Trials with low SI values, however, 
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tended to have lower rise times and did not stabilize faster or reach a more stable CoV for force 

compared to trials with high SI values.  

Although the results indicate that the PID control algorithm is capable of replicating 

experimental force trajectories, it remains an open question if it also reflects actual underlying 

neural processes for motor control.  However, there are at least four reasons why the approach 

seems reasonable.  First, proportional, integral, and derivative error terms are evident in other 

motor control systems.  For example, muscle spindles, whose output contributes to 

proprioception and elicits changes in the synaptic input to motor neurons (Proske and Gandevia 

2009), encode changes in muscle length (proportional) and the lengthening velocity (derivative) 

(Mileusnic et al. 2006).  Furthermore, muscle spindle sensitivity is adjusted by gamma motor 

neuron activity (Mileusnic et al. 2006), which usually co-varies with the level of alpha motor 

neuron activation (Bessou et al. 1990).  The output of muscle spindles, therefore, reflects the 

error between the intended and the actual muscle length, similar to the output of a PID controller.  

Furthermore, by integrating the information provided by muscle spindles with other sensory 

systems, neural pathways can estimate spatial location with respect to the starting point 

(McNaughton et al. 2006).  It seems plausible that a similar integration of the visually perceived 

force error can occur during force-matching tasks to represent the integral term of the controller.   

Second, the PID control algorithm was implemented as an intermittent controller, sampling the 

force error at a regular interval and adjusting the activation signal once per sample (also known 

as serial ballistic control).  Intermittency in human motor control was first proposed by Craik 

(1947) and has since been established as a theoretically plausible model (Neilson et al. 1988; 

Gawthrop et al. 2011; Gawthrop et al. 2014) that explains a range of experimentally observed 

motor behaviors (Miall et al. 1986; Miall et al. 1993; Loram et al. 2011; Loram et al. 2014).  
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Importantly, the intermittent control model applies only to voluntary adjustments in the 

activation signal, whereas feed-forward commands and spinal and supraspinal reflexes 

generating involuntary adjustments operate as continuous control systems (Loram et al. 2014).  

The tracking tasks analyzed in this study, however, are unlikely to involve substantial reflexive 

control, which suggests that intermittent control based on visual input is a plausible control 

strategy for the computational model.  

Third, the PID-control algorithm represents pure feedback control, whereas human sensorimotor 

control typically depends on both intermittent feedback as well as continuous feed-forward 

processes (Diedrichsen et al. 2010; Loram et al. 2014).  For example, visually guided reaching 

does not require vision of the hand during the movement, which reflects the ability of the 

nervous system to predict the sensory consequence of the motor command issued to the muscles 

(Goodale et al. 1986).  Consequently, reaching movements can be performed using only feed-

forward control.  The ability to execute such actions, however, requires at least some experience 

with the task (Wolpert et al. 2011), which is not difficult for the reaching movements included in 

activities of daily living.  In contrast, the rapid force-matching task used in the current study was 

unfamiliar to the subjects and it seems reasonable to assume that the subjects did not have 

sufficient experience to build the internal forward models required to predict the sensory output 

the recorded trial.  Instead, it is more likely that they relied primarily on visual feedback during 

the task to alter the force trajectory.   

Fourth, a potential difference between the simulated and the actual control process is that the PID 

algorithm reflects control of one functional unit (in the model, one muscle), whereas pinch force 

reflects the interplay between several muscles.  Synergistic muscles, however, receive large 

amounts of common synaptic input in the bandwidth of force control (De Luca and Erim 2002; 
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Laine et al. 2015), indicating that they are largely controlled as one functional unit by the central 

nervous system.  To summarize, these considerations support the notion that an intermittent PID 

control algorithm with a single output is a realistic model for the neural control for force-

matching tasks involving isometric contractions.   

It is feasible that a relatively simple control system, such as the PID algorithm, is desirable as it 

enables rapid changes in motor commands.  As indicated by the results, the subjects tended to 

change the motor strategy across the two tasks (Figs. 6 and 7).  In the more general case, a motor 

control system needs to be flexible to compensate for acute changes in the transfer function from 

activation signal to muscle force, such as during fatiguing contractions, changes in loading 

conditions, or the emergence of a new task requirement.  A linear system with four model 

parameters (PID gains and control frequency) appears simple enough to produce robust 

adaptations, but remains sufficiently flexible to enable simulations across a wide range of force 

profiles (Fig. 4).  In addition, computational models successfully simulate the cerebellar control 

of posture using PID controllers (Peterka 2002; Peterka and Loughlin 2004) or extended control 

algorithms relying on the same basic principle (Jo and Massaquoi 2004; Welch and Ting 2008).  

Similar to posture, grip forces are coordinated primarily by the cerebellum (Manto et al. 2012), 

which supports the notion that the PID control algorithm may not only successfully emulate the 

motor output, but also characterizes the actual control processes in the nervous system during 

fine motor control of hand and arm muscles.   

Irrespective of the validity of a PID controller to represent the neural processes underlying force 

control in the force-matching task, this approach is useful in understanding the variability of the 

control process across subjects and tasks.  Specifically, the approach presented in this study can 

be used to decompose any isometric force task into three PID gains and the control frequency.  
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This enables comparison of the control strategies used across different tasks, including tasks with 

time-varying target forces, where simple measures such as the root mean square error would not 

be comparable.  In similar ways, much has been learned from the application of techniques such 

as Bayesian estimation theory as a computational model for sensory integration in motor control 

(Scott 2012) and muscle synergy analysis for supraspinal control of muscle groups (Tresch and 

Jarc 2009), even though these approaches may not directly reflect actual neural processes.  

Conclusion 

The current study compared force trajectories of young, healthy subjects performing two force-

matching tasks with simulated forces in which a discrete time PID control algorithm manipulated 

the activation signal based on the force error.  Overall, the results indicated that this algorithm 

generated force trajectories similar to those observed experimentally during the two pinch tasks, 

and that different model parameters explained the large differences observed in the force 

trajectories across the subjects and tasks.  In conclusion, the results demonstrate that a discrete 

time PID control algorithm can describe mathematically the control of the activation signal sent 

to muscles during rapid force-matching tasks involving isometric contractions.  
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Chapter III 
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Abstract 

Motor neurons appear to be activated with a common input signal that modulates the discharge 

activity of all neurons in the motor nucleus.  It has proven difficult for neurophysiologists to 

quantify the variability in a common input signal, but characterization of this signal may improve 

our understanding of how the activation signal varies across motor tasks.  Contemporary 

methods of quantifying the common input to motor neurons relies on compiling discrete action 

potentials into continuous signals, assuming the motor pool acts as a linear filter, and requiring 

signals to be of sufficient duration.  We introduce a space-state model in which the discharge 

activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method 

to quantify a latent trajectory that represents the common input received by motor neurons.  The 

approach also approximates the synaptic noise in the common input signal.  The model is 

validated with four datasets: a simulation of 120 motor units, a pair of integrate-and-fire neurons 

with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire 

neurons, and the discharge times of concurrently active motor units during an isometric 

voluntary contraction.  The simulations revealed that a latent state-space model can quantify the 

trajectory and variability of the common input signal across all four conditions.  When compared 

with the cumulative spike train method, the state-space approach was more sensitive and was 

less influenced by the duration of the signal.  The state-space approach appears capable of 

detecting rather modest changes in common input signals across conditions.   

New and noteworthy: We propose a state-space model that explicitly delineates a common input 

signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission.  

This is the first application of a deterministic state-space model to represent the discharge 

characteristics of motor units during voluntary contractions.  
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Introduction 

When Adrian and Bronk (1929) first recorded motor unit action potentials in humans, they 

hypothesized that a common presynaptic signal could underlie the control of motor neuron 

discharge characteristics.  Initial attempts to characterize the common input signal focused on 

quantifying the correlated activity between pairs of motor units (Sears and Stagg, 1976).  

However, the magnitude of the pairwise correlations has generally been found to be weak and 

variable (Bremner et al., 1991; De Luca et al., 1982, 1994; Farmer et al., 1993; Nordstrom et al., 

1992), suggesting that such comparisons cannot be used to quantify common input (Farina and 

Negro, 2015).  An alternative approach is to record the discharge times of ≥5 concurrently active 

motor units and to assume that the motor unit pool acts as a linear filter of the independent 

synaptic noise delivered to motor neurons, which produces an output that corresponds to the 

neural drive to the muscle (Farina et al., 2014; Farina and Negro 2015; Negro et al., 2009; Negro 

et al., 2016a).  As an extension of this approach, Boonstra and colleagues (2016) proposed an 

explicit biophysical model to represent the effect of the common synaptic input onto the motor 

neurons.  Each neuron was represented as an integrate-and-fire neuron that filtered the weighted 

synaptic inputs to allow more realistic connection topology and enable a structural definition of 

common input.   

However, these approaches have mathematical and methodological limitations.  One principal 

objection is that action potentials are discrete events and should be represented as point processes 

rather than continuous-time stochastic processes (Buesing et al., 2012; Macke et al., 2011).  The 

computation of second-order statistics, such as coherence (e.g., Sears and Stagg, 1976; De Luca 

et al., 1982, 1994) or principal component analysis (Negro et al., 2009), is not adapted to point 

processes (Kuhn et al., 2003).  Additionally, contemporary approaches rely on the motor unit 
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pool acting as a linear filter of the synaptic input, whereas some properties of the motor pool, 

such as persistent inward currents, make the motor unit pool highly nonlinear (Powers and 

Heckman, 2017).  Moreover, failure to account for distinct sources of input to the motor neuron 

pool (Boonstra et al, 2016) means that the same second-order statistics could be produced by 

quite different physiological mechanisms.  

In contrast, state-space models explicitly describe the interactions between neurons and the 

influence of common input.  Such probabilistic models are uniquely characterized by a few 

parameters that can be estimated from the discharge times of activated neurons.  The models are 

able to decode neuronal connectivity, the common input, and their associated statistical 

significances.  These models have been used successfully to analyze spike trains of neuronal data 

recorded in the central nervous system (Dempster et al., 1977; Ahmadian et al., 2010; Trucollo, 

2010, Paninski et al., 2010; Pnevmatikakis et al., 2016).  Moreover, current approaches require a 

sufficiently long signal to create a cumulative spike train that is amenable to frequency analysis.  

A state-space model, in contrast, can be used to examine relatively brief isometric contractions.  

The current study analyzes, for the first time, the activity within an entire motor unit population 

with a state-space model.  The proposed model expresses the common modulatory input as an 

unobserved (latent) state vector that varies in time to generate a net muscle force that matches a 

target force.  The latent common input is perturbed by random synaptic noise.  The temporal 

variation exhibited by the latent state, which encodes the synaptic input common to the motor 

neuron pool, can be interpreted as an abstract trajectory. 

State-space models seek to explain the activity of many outputs through an n-dimensional vector 

referred to as the latent state of the system.  The latent state changes over time with an abstract 

magnitude, where the absolute value at any one time need not be physiologically meaningful, but 



	
63	

the trajectory of the latent state provides insight on the overall dynamics of the common input 

received by the motor neurons.  Additionally, the variance in the latent-state trajectory may 

approximate the synaptic noise that is common to all motor units.  More generally, the common 

input estimated by the state-space model could be used to assess the influence of other 

confounding factors, such as adjustments during fatiguing contractions or age-related 

differences.   

The key idea of the current study is to represent the discharge activity of each motor neuron 

using an individual Poisson process (Berg et al., 2008; Perkel et al., 1967; Person, 1974; Person 

and Kudina, 1971; Powers et al., 2005; Townsend et al., 2006); the parameters of the proposed 

model are relatively insensitive to the distribution characteristics of the motor unit interspike 

intervals.  The rate (intensity) of the Poisson process is modulated by the latent common input, 

and the activity of the other neurons in the pool.  The discharge times of each motor unit are 

represented as a Poisson point process that can be sampled at a high rate and evaluated with fast 

algorithms that have already been developed (Macke et al., 2011; Buesing et al., 2012).  The 

parameters of the model and the common input can be estimated from the discharge times of the 

motor neurons (Mangio et al., 2011; Smith and Brown, 2003).  

The dimensionality of the latent common input can also be estimated using a goodness-of-fit 

criterion (Macke et al., 2011).  Once the parameters have been estimated, the model allows for 

explicit quantification of the trajectory of the common input signal and— separately—a synaptic 

noise term.  Macke and colleagues (Macke et al., 2011) note that dynamical state-space models 

provide a good fit for discharge times for two reasons: first, they can accommodate data for 

many neurons at fine time scales, which reduces the likelihood that shared variability is 

coincidental.  Second, this class of models naturally captures the almost instantaneous (time lag 
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~ 0) peak in cross correlation of motor unit discharge rates (De Luca et al., 1982, 1994) through 

a latent state trajectory (Macke et al., 2011).  

The purpose of the current study was to estimate the synaptic input and its associated variance 

that is common to a pool of motor neurons.  The model was derived from state-space models that 

have been used to decode the influence of sensory pathways on activity exhibited by cortical 

neurons (Macke et al, 2011) and spinal cord neurons (Buesing et al., 2012).  The approach is 

validated with four different datasets: the replication of experimentally observed motor unit 

discharge characteristics; the discharge times for a pair of integrate-and-fire neurons with a 

Renshaw cell providing negative feedback; the discharge activity of ten integrate-and-fire 

neurons, which is compared with the contemporary approach to assess common input; and 

quantification of the common input to motor neurons derived from an experimental recording of 

motor unit discharge rates.  

Methods 

The mathematical model comprises a low-dimensional common input to a pool of motor neurons 

to represent a common input signal and a synaptic noise term explicitly.  This work advances 

previous models of motor unit recruitment (Fuglevand et al., 1993; Dideriksen et al., 2010; 

Moritz et al., 2005) and is based on work performed on the statistical structure of neuronal 

discharge times in the motor cortex (Macke et al., 2011) and sensory pathways (Archer et al., 

2014).  Although some previous models of motor unit recruitment model the presynaptic input to 

a motor unit pool (Williams and Baker, 2009; Watanabe et al., 2013), most do not (Fuglevand et 

al., 1993; Moritz et al., 2005).  The present work provides a model based on a dynamical system, 

which can be fit to experimental recordings of motor units for the purpose of quantifying the 

common input to the motor neuron pool.  
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Figure 1. The state-space model represents the processes that are engaged to enable a population 
of motor units to produce a force that matches a desired target force.  The trajectory of the latent 
state, X(t), must evolve to provide sufficient activation to the pool of motor neurons for them to 
discharge action potentials.  The changes in the latent state over time are captured by the matrix, 
A, which represents a linear approximation of the latent-state dynamics.  All neurons receive two 
inputs, a common input (the latent state) that excites the motor neurons and zero mean Gaussian 
synaptic noise.  The physiological properties of each neuron are modeled with the C matrix, 
which encodes the effects of the input signal on discharge rate.  The output is instantaneous 
discharge rates of each motor neuron, which evolve as the latent state changes.  The forces 
generated by the activated motor units are summed to create the net muscle force. 
 
 
An overview of the proposed model is shown in Figure 1.  This model utilizes the discharge rate 

\B 9  to represent the nonlinearity between an input current and the discharge times of a neuron i.  

The discharge times ]B 9  of each motor unit (i = 1…n) are parameterized as a Poisson point 

process where the time-varying intensity (discharge rate), \B 9 , of the ith motor neuron takes the 

following form, 

\B 9 = 	 exp z* t .												 
 

Target 
force (t)

Common input 
signal to all 
motor units

A: Linear 
dynamics

C: Pool of motor 
units loading matrix

0 mean 
synaptic noise

Output 
force (t). . .

λi: Discharge rate

X(t)

(1) 
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The exponential relation ensures the rates are positive and explicitly encodes the influence of a 

latent, low-dimensional common input through the c-dimensional vector d t = ze(t), . . , zf(t)   

in the following linear model: 

d t = g	h t + i	j t + k,											  
 
where h t  is a D-dimensional vector that represents the unobserved common input; g is a 

c×D matrix that encodes the physiological effects of the latent common input on the motor 

discharge rates; i is an c×c	matrix that models the coupling between the c	motor units; s may 

be defined to model the interconnectivity of motor neurons; and	k is the logarithm of the average 

discharge rate, which provides a baseline discharge rate.  Additionally, s(t) may be conditioned 

by the previous discharge activity of the motor units (Buesing et al., 2012; Macke et al., 2011; 

2015), which allows for feedback to be modeled from a motor neuron to itself as well as the 

other neurons in the network.  For example, an inhibitory input between neurons could be 

modeled with a value between 0 and 1 on the corresponding entry in s(t) between the neurons, 

whereas an excitatory input would be modeled with an entry greater than 1.  With this approach, 

s(t) allows for modulation of discharge rate by excitatory and inhibitory inputs.  

The common input is expected to vary as a function of time and target force.  The dynamics of 

the common input is described as follows: 

h t = m	h t − 1 + pf t + 	r t 							  
 
where m	is an c×c	matrix that provides a linear approximation to the dynamics of the c motor 

units; the c-dimensional vector p weights the influence of the force target, f t , on each 

coordinate of h t ; and the Gaussian vector r(t) zero mean Gaussian noise vector that models 

the synaptic noise inherent in signal transmission, such as the opening and closing of ion 

channels (Katz & Miledi, 1970).  

(3) 

(2) 
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In this model, s 9  represents the low-dimensional approximation to the latent state that activates 

a pool of motor neurons, which is often described as the common input.  Following Macke et al. 

(2011), we assume the common input evolves according to linear Gaussian dynamics, which 

depends on the intended target force tu(9) according to the following probability distributions, 

he	~	w hY, xY , 

h3|h3Ne	~	w(mh3Ne +	pf3, x), 

where hG and xG represent the initial state and covariance matrix of the latent input h3, 

respectively.  x is a covariance matrix of the latent state h3, and represents the physiological 

random fluctuations in the common input signal.  We further assume that x remains constant 

over time.  

Motor unit model 

The first experiment demonstrated the ability of the model to recover the parameters of a 

synthetic dataset generated by modeling ramp contractions of a pool of 120 motor units in the 

first dorsal interosseus muscle (Feinstein et al., 1955).  The model was based on the original 

Fuglevand model (Fuglevand et al., 1993).  Simulations were performed 10 times at each target 

force (from 5- 30% MVC).  Each trial involved an excitatory drive function that comprised a 

linear 1-s ramp from 0 N to the target force (percentage of maximal voluntary contraction 

[MVC]) that was maintained for 4 s.  Each motor neuron received a common input signal and a 

noise signal inversely proportional to the difference between its recruitment threshold force and 

the target force.  The recruitment threshold excitation (RTE) for the ith motor unit was set to:  

RTE(i) = Mz∗B 

where ‘a’ establishes an exponential range of threshold values based on the upper limit of motor 

unit recruitment: { = 	 (ln 60)/120, where 60 refers to 60% MVC force and represents the upper 

(5) 

(4) 
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limit of motor unit recruitment (Dideriksen et al., 2010; Moritz et al., 2005) and c = 120 

denotes the number of motor units in the model.  Motor units were recruited during the ramp 

contraction once the level of excitation exceeded RTE.  The resulting discharge rate was 

determined by the evolution of the latent state and the physiological parameters of the motor unit 

pool.  In these simulations, the common input was approximated with a one-dimensional latent 

input that activates the pool of motor neurons to reach the target force in 1 s and maintain it for 4 

s.  

The matrix g was modeled as a 1×c matrix where c represented the number of active units.  

Each row of g represented the response of a motor neuron to the latent input.  The 120 units were 

assigned to respond to the latent input so the minimal discharge rate for the first recruited motor 

unit was between 6-8 pps.  The column in g was derived to represent the range of physiological 

parameters within a motor pool that would influence discharge rate, such as the 5-fold range in 

afterhyperpolarization duration and 10-fold range in input conductance (Heckman and Enoka, 

2012).  The magnitude of each row was estimated to produce realistic discharge rates and 

thereby demonstrate the feasibility of the algorithm.  The following linear function determined 

the values of g, 

Ci = 2 + 	0.0054 ∗ Ñ, 

The evolution of the latent state during the 5-s simulations was modeled by equation (3).  After 

the target force was reached (1-s ramp), the force term, pf(t), was held constant.  The synaptic 

noise r t 	received by each motor neuron was modeled by a zero-mean white Gaussian noise, 

and was added to the signal using awgn in MATLAB.  This noise was proportional to the 

difference between RTE for the ith unit and the current level of excitation.  The plateau in 

(6) 
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discharge rate (saturation) observed in low-threshold motor units (Bigland and Lippold, 1954; 

Fuglevand et al., 2015; Monster and Chan, 1977; Moritz et al., 2005, Barry et al., 2007), 

captured by the vector p in equation (3), was modeled using a hyperbolic tangent function, 

bB = 	
e
Ü
tanh ARTE Ñ + 1 , 

where ARTE was the difference between RTE for the ith motor unit and the force (% MVC) at 

any time t, which represented the current level of excitation being received by the motor neurons.  

Based on this relation, the difference between the level of excitation and the recruitment 

threshold force influenced motor unit discharge rate through p.  The discharge rate \B 9 	of each 

neuron i was updated every 10 ms according to the following equation 

exp g mh 9 + pu 9 + 	r B . 

Force model 

The force produced by each motor unit in response to an action potential was modeled as a 

critically damped second-order system (Fuglevand et al., 1993; Milner-Brown et al., 1973).  As 

defined in the Fuglevand model, the twitch force, fi(t), for the ith motor unit was determined as:  

fi(t) = 	å2	∗	6
ç2

 * MeN(
é
è2) 

where P represents the twitch force and T denotes the twitch contraction time for each of the n 

motor units.  Peak twitch force for the 120 motor units was assigned with an exponential 

function that established a 100-fold range of twitch forces (Fuglevand et al., 1993): 

P(i) = Mê∗B = M
.& ëíí
ëUí ∗B. 

The twitch contraction times varied with peak twitch force so that units with the greatest peak 

twitch forces also had the fastest twitch contraction times (Fuglevand et al., 1993). Twitch 

contraction times were scaled to exhibit a 3-fold range: 

(7) 

(9) 

(10) 

(11) 

(8) 



	
70	

T(i) = 90 * ( e
åB
)e/ì.Ü. 

The nonlinearity between stimulus frequency and motor unit force (Fuglevand et al., 1993; 

Kernell, 1981; Milner-Brown et al., 1973) was modeled with a sigmoid gain that augmented 

force for brief adjacent interspike intervals.  Specifically, the normalized discharge rate for the ith 

unit with an interspike interval (ISI) at time t, (Ti/ISIt) summed twitch forces with the following 

gain:  

S( ç2
îïî

) = 1 - MNÜ(
è2
ñóñ)

ò
 

Normalized discharge rate was defined as the contraction time for the ith motor unit divided by 

the interspike interval between t and t-1.  The gain was defined with a piecewise function for 

each unit at time t.  The sigmoidal gain was expressed as the ratio of the gain divided by the 

instantaneous normalized discharge rate for rates ≥	0.4.  At normalized discharge rates below 

0.4, motor unit forces were not scaled with a gain.  Overall, the gain was defined by  

ö{Ñc = 		 	
ï è2
ñóñ
õ%
úùú

	Ñu ç2
îïî
≥ 0.4		

0		û9ℎM†°Ñ¢M
    

The net force produced by the motor unit pool was calculated as the instantaneous sum of the ith 

motor unit force at time j updated at a rate of 10 Hz: 

f*,£§
*Fe  = f(t − t*,£)  

The force model was developed in MATLAB (MathWorks, Natick, MA, Version 2015a) and run 

10 times at 4 target forces: 5, 10, 20, and 30 % MVC.  The outputs of the model were 

instantaneous discharge rates for the pool of motor units.  Random realizations of an 

inhomogeneous Poisson process were generated using the intensity, \B 9 , (using the MATLAB 

function exprnd).  The variables of interest were the average discharge rates for the motor units 

(12) 

(13) 

(14) 
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during the steady portion of the contraction, the variability in discharge times (interspike 

intervals), the mean force and its variability, and the spectral content of the force signal.  

Integrate-and-fire neuron models 

The model was used to simulate the discharge times of action potentials for a pair of integrate-

and-fire neurons with a Renshaw cell providing negative feedback from one neuron to the other 

one (Kirkwood et al., 1981; Windhorst, 1989).  The purpose of the simulation was to 

demonstrate that the state-space model is able to quantify neural pathways with inhibitory and 

excitatory feedback loops.  Additionally, the simulation provided an intuitive understanding of 

the characteristics of a latent-state trajectory in that there was a change in the magnitude of the 

latent state when the neurons discharged action potentials.  Both neurons were simulated with a 

capacitance of 1 nF, a resistance of 40 mW, a resting membrane potential of -65 mV, and a 

voltage threshold of -55 mV.  A sinusoidal input current (1 nA) was delivered to both neurons at 

3 Hz.  A recurrent collateral from neuron A projected to a Renshaw cell (C), which synapsed 

onto neuron B and elicited an inhibitory post-synaptic potential of 1 mV decaying to 0 mV over 

10 ms after each action potential discharged by neuron B.  The currents received on the soma of 

the neurons were integrated using Euler’s method updating every 1 ms.  Figure 2 provides an 

overview of the model for a pair of integrate-and-fire neurons. 
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Figure 2. Schematic for a pair of motor neurons with a collateral from neuron A projecting to a 
Renshaw cell (C) that then elicited inhibitory postsynaptic potentials in the second motor neuron 
(B).  The solid arrow projecting to neuron B indicates an inhibitory projection.  A. Schematic 
overview of the leaky integrate-and-fire neurons (A and B) with an interposed Renshaw.  Motor 
neurons (A and B) received three inputs: control signal, common noise, and independent noise.  
B: Raster plot of the discharge times for action potentials from motor neurons A and B. 

  

Each neuron received three inputs concurrently: a sinusoidal common input, zero mean Gaussian 

common noise, and zero mean Gaussian independent noise.  When the potential difference 

across the membrane reached voltage threshold (-55 mV), the neuron discharged an action 

potential with an overshoot that reached +10 mV, followed by an afterhyperpolarization phase 
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50 ms.  The discharge times of the two motor neurons (A and B) were summed at each instant to 

form a cumulative spike train (CST), which was subsequently low-pass filtered (6th order 

Butterworth filter, cutoff frequency 10 Hz) (Castronovo et al., 2016; Farina et al., 2014; Negro et 

al., 2016a).  The filtered CST represents one method to represent the common input to the motor 

neurons.  The coherence between the filtered CST and the input current was calculated with 

Welch’s periodogram method in MATLAB using the function mscohere with a 90% overlap and 

a 0.25s Hanning window. Additionally, the latent vector, x(t), and its corresponding covariance 

matrix were optimally estimated using an Expectation Maximization (EM) algorithm (Buesing et 

al., 2012; Macke et al., 2011; Demptster et al., 1977).  The integrate-and-fire neurons were 

simulated for two durations (1 s and 10 s) to demonstrate the capacity of a state-space model to 

estimate common input for relatively brief signals for which frequency analysis is less robust.  

A set of 10 integrate-and-fire neurons were simulated for two input frequencies (3 Hz and 4 Hz) 

and three current amplitudes (0.1, 0.5, and 1 nA).  The neurons were simulated with a range of 

input resistances linearly spaced from 35-80 mW and capacitance from 0.9-1.8 nF.  All neurons 

received two inputs: the control input (either 3 or 4 Hz) and a common noise using the awgn 

function in MATLAB with a signal-to-noise ratio of 25.  All simulations were performed for 10 

s.  Cumulative spike trains (CSTs) were constructed (Castronovo et al., 2016; Farina et al., 2014; 

Negro et al., 2016a) and low-pass filtered.  The spectral content of the CST was calculated with a 

Fast Fourier transform (fft in MATLAB).  Additionally, the discharge times from the 10 

integrate-and-fire neurons were used to estimate the parameters of the state-space model using 

PLDSexample (Macke et al., 2015).  The number of neurons included in the simulations was set 

at 10 to match the number of concurrently active motor units that can be discriminated from 

high-density surface EMG recordings during submaximal voluntary contractions.  
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The code for these simulations is available at github.com/dfeeney31 within the neural models 

repository. 

Experimental procedures 

The IRB at the University of Colorado Boulder approved this study (approval number: 16-0782).  

A single subject performed isometric contractions at 10% MVC force with the elbow flexor 

muscles.  High-density grid electrodes (64 mm, 4 mm interelectrode distance) (Bioelettronica, 

Torino, Italy) were placed over the long head of the biceps brachii muscle.  The EMG signals 

from the grid electrodes were recorded at 2048 Hz and decomposed using a semi-automated 

convolution kernel algorithm implemented in MATLAB (Holobar and Zazula, 2004; Negro et 

al., 2016b).  The discharge times for seven motor units were identified during the trial.  The 

motor unit discharge times were arranged into an c•¶ binary discharge matrix with each row 

representing a motor unit at T time samples during the last 20 s of the isometric contraction.  The 

matrix of motor unit discharge times was down sampled to bin widths of 10 ms for purposes of 

estimating the parameters of the state-space model.  The parameters of the state-space model 

(specifically s(9) and ß) were estimated using an EM algorithm (Buesing et al., 2012; Macke et 

al., 2011).  Coherence was calculated between the trajectory of single dimensional latent state 

and the net elbow flexor force.  The trajectory and variance of the latent state estimate of the 

common input received by the motor neurons were estimated during the last 20 seconds of the 

contraction.  Welch’s averaged modified periodogram was used to calculate the coherence 

between the input current (or the force signal) and the trajectory of the latent state using the 

function ‘mscohere’ in MATLAB with a 90% overlapping window and a Hanning window of 

0.5 s as suggested in Castronovo, 2016.  The 95% confidence intervals of the coherence were 

determined using the function cmtm in MATLAB. 
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Estimating model parameters 

An open-source expectation maximization (EM) algorithm (PLDSExampleWithExternalInput 

from the pop_spike_dyn directory on Atlassian BitBucket, authors: Macke, Buesing, and Gao) 

was used to estimate the parameters of the proposed state-space model for the simulations and 

experimental data.  A Poisson subspace identification method was used for all estimations, which 

has been shown to be the most accurate for neural data and is described in detail by Buesing and 

colleagues (2012).  Briefly, the input to the algorithm was a matrix of the motor unit discharge 

times that were used to estimate the trajectory of the latent state and to quantify the variability in 

its trajectory (Buesing et al., 2012; Macke et al., 2015).  The parameters of the model were 

initialized using a Poisson subspace initialization (Buesing et al., 2012).  Subsequently, a Ho-

Kalman filter state space identification algorithm (Ho and Kalman, 1966) was used to estimate 

the parameters of the state-space model iteratively.  The maximal log likelihood of the posterior 

distribution of the latent vector (x(t)) was used to determine the goodness-of-fit of the model.  

The EM algorithm iteratively refined the initial estimation until a local maximum of the log-

likelihood function had been reached.  The EM algorithm was stopped when either a maximum 

number of iterations (100) was reached or when the relative error in log-likelihood became 

smaller than 10-3.  

In principle, the estimation of the latent space model can be performed for a latent-space vector 

of varying complexity by changing the dimension of that vector.  To prevent over-fitting, 

however, the dimensionality of the latent state was chosen to be the lowest dimension after 

which the log-likelihood no longer increased (Macke et al., 2011).  Additionally, any dimension 

for which the estimated variance was numerically negligible was removed.  Consequently, the 

dimension of the latent space was the lowest dimension that resulted in the maximum of the 
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estimated log-likelihood, while keeping the variance of all coordinates greater than a threshold 

chosen to be 10-4.   

State-space models assume the variance in the input signal is constant (stationary) during a 

particular task.  However, non-stationary input to motor neurons, such as during long-lasting 

isometric contractions, can be examined by dividing the recording into segments in which the 

estimated parameters are relatively stationary.  With this approach, it is possible to estimate how 

the latent input changes during long-lasting isometric contractions.  

Results 

The results comprise predicted discharge rates of the motor neuron pool and the force 

fluctuations during a ramp-and-hold contraction.  The discharge characteristics and force 

fluctuations of the model were compared with experimental findings for the first dorsal 

interosseus muscle.  

Table 1: Motor unit discharge characteristics obtained from the state-space model activating 120 
simulated motor units.  Minimal discharge rates were calculated by setting the target force equal 
to the recruitment threshold of each motor unit.  Subsequently, the force was set to 100% MVC 
and the maximal discharge rates for each motor unit was determined.  Recruitment threshold was 
calculated by solving equation (5), RTEi = ea*i where a = ln(60)/120 for each motor unit. 

 

Motor Unit # Min DR Max DR 
Recruitment threshold 

(% MVC) 

10 7.5 13.2 1.4 

20 7.8 14.5 2 

30 8.3 15.4 2.8 

40 9 16.8 3.9 

50 9.8 17.5 5.5 

60 10.8 18.3 7.7 
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70 12 20.1 10.9 

80 13.3 21.2 15.3 

90 14.8 23.2 21.6 

100 16.5 24.5 30.3 

110 16.8 26.9 42.7 

120 17.3 30.2 60 
 

Motor neuron discharge characteristics 

Table 1 lists the recruitment thresholds and the minimal and maximal discharge rates for every 

10th motor unit in the simulated pool of units.  As specified by equation (2), minimal and 

maximal discharge rates increased with recruitment threshold force.  Minimal discharge rates 

ranged from 7.5 to 17.3 pps and maximal discharge rates ranged from 13.2 to 30.2 pps.  The data 

are similar to minimal (7 - 12 pps) and maximal (30 pps) discharge rates reported by Moritz et al. 

(2005) during steady isometric contractions with the first dorsal interosseus muscle.  Coefficient 

of variation for the interspike interval for motor units ranged from 12.4 to 19.8% during the last 

2 s of each contraction, which is slightly less than the 15 to 35% reported by Moritz et al (2005).  
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Figure 3. A: The number of motor units recruited and their discharge rates during simulated 
isometric contractions to match four target forces (5, 10, 20, and 30% MVC).  Average discharge 
rate was calculated from the last 2 s of each simulated contraction.  B: Raster plot of the motor 
unit discharge times for the 67 motor units that were recruited during the first two seconds of a 
simulated 5-s contraction to a target force of 10% MVC.  The task comprised a 1-s ramp and 
then a 4-s hold.  The latent state activated the motor neurons to discharge action potentials as 
specified by the prescribed physiological properties.  Each bin represents 10 ms. 

 

Figure 3 depicts the number of motor units recruited and their discharge rates during simulated 

contractions to target forces of 5-30% MVC.  Data are similar to those reported by Moritz et al. 

(2005).  The hyperbolic tangent function also modeled the saturation of discharge rates seen 
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when low-threshold motor units are tracked during ramp contractions (Fuglevand et al., 2015; 

Moritz et al., 2005; Monster and Chan, 1977).  At the 5% target force, for example, the first 

motor unit discharged action potentials at a rate of 8.5 pps and the 47th motor unit at 7.3 pps.  At 

the 30% target force, the first motor unit had reached its peak discharge rate of 13.2 pps and the 

47th motor unit discharged action potentials at 16.4 pps.  These discharge rates compare well 

with those for Moritz et al. (2005) where an early recruited unit (motor unit 2 in table 1 of Moritz 

et al. 2005) exhibited an initial discharge rate of 6.8 pps and a peak discharge rate of 13.8 pps.  

Similarly, the motor unit recruited at 9.2% MVC force (motor unit 14 in table 1 of Moritz et al. 

2005) displayed an initial discharge rate of 6.8 pps and a peak discharge rate of 19.2 pps.  

 

Figure 4. Simulated muscle forces during isometric contractions at four target forces.  A. Forces 
produced by the state-space model.  The force fluctuations were quantified as the coefficient of 
variation for force during the last 2 s of each contraction.  B. Comparison of the simulated results 
obtained in the current study with experimental findings for the first dorsal interosseus muscle 
(Galganski et al., 1992; Moritz et al., 2005).  Error bars represent the standard deviation.  
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Force model 

The discharge times of motor neurons were converted to motor unit forces as described in 

equation (15).  The simulated muscle force at each target force is shown in Figure 4A.  The 

coefficient of variation of force during the hold phase (2-4 s) was greatest (5.9 ± 0.5%) for the 

simulated contraction at 5% MVC and least (2.1 ± 0.2%) for the simulated contraction at 30% 

MVC.  The simulated values are compared in Figure 4B with experimental measurements for 

first dorsal interosseus (Galganski et al., 1993; Moritz et al., 2005).  Due to the low-pass filtering 

characteristics of muscle (Partridge, 1965), 99% of the power in the force signal was in the low 

frequency (0-10 Hz) spectrum, which contains most of the spectral content important in force 

production during human movement (De Luca and Erim, 1994; Farina and Negro, 2015).  

 

Figure 5. Estimated trajectory of the latent input from the state-space model at 5% (A), 10% (B), 20% 
(C), and 30% (D) MVC.  
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After the instantaneous discharge rates of motor neurons were converted into discharge times 

(see methods for explanation), the parameters of the state-space model at each target force were 

estimated using the EM algorithm described in the Methods section.  The discharge times of all 

motor neurons were arranged into a c•¶matrix, where c is the number of active neurons during 

the trial and ¶	is the number of time samples, using a resolution of 10 ms.  Figure 6A-D shows 

the estimated latent-state trajectory in a single dimension during the 5-s trials at the four target 

forces (5, 10, 20, and 30% MVC).  Both the ramp and steady portion of the trials were identified 

using the EM algorithm.  Additionally, the variance in the single dimension of latent-state 

trajectory decreased with target force (0.0024 at 5% MVC) compared with 0.0010 at 30% 

MVC).  This decline in variance for the common input is consistent with the results reported by 

Castronovo and colleagues (2015) wherein the proportion of common input (relative to synaptic 

noise) was demonstrated to increase with net excitatory input.  

 

Figure 6. Estimation of the state-space model from a pair of integrate-and-fire neurons (Figure 2) 
simulated for 1 s (A and B) and 10 s (C and D).  Both neurons discharged action potentials in response to 
a 0.1 nA sinusoidal current with an input frequency of 3 Hz as well as receiving independent and common 
Gaussian noise.  Additionally, neuron B received an inhibitory current from neuron C (a Renshaw cell) in 
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response to input from neuron A, which reduced the discharge rate of neuron B.  The trajectory of the 
single-dimension approximation of the latent state for the pair of neurons as solved with the EM 
algorithm is shown as a black solid line (Macke et al., 2011; Buesing et al., 2012), the injected current 
with common noise superimposed is drawn as a dashed line, and the low-pass filtered (10 Hz) cumulative 
spike train (CST) is indicated as a grey line.  There was a strong temporal relation between peaks in the 
injected current and changes in the latent state for both simulations (1 s and 10 s), whereas the association 
between injected current and modulation of CST was only observed for the longer simulation (C).  There 
was moderate coherence (0.58) between the injected current and latent state at ~ 2.5 Hz (data not shown).  
B and D.  The coherence between the low-pass filtered CST and the input current.  The coherence was 
moderate for all low frequency (<10 Hz) values due to the inhibitory input from the Renshaw Cell (C) 
onto neuron B as well as the brief length of the trial.  However, coherence between the two signals was 
much stronger for the 10-s simulation (D).   

Integrate-and-fire neurons  

The discharge of action potentials by the integrate-and-fire neurons was simulated for 1 s when 

they were provided with three currents: common input, common noise, and independent noise 

(Figure 2A).  The discharge times of the two motor neurons are displayed in Figure 2B.  Motor 

neuron A discharged action potentials at 13 pps and, due to the negative feedback from the 

Renshaw cell (C), the second motor neuron (B) discharged action potentials at 9 pps, which 

represented a 30% decline in its discharge rate.  The space-state vector was estimated from the 

discharge times of the two motor neurons with an EM algorithm (see Methods).  Critically, the 

latent-state trajectory aligned with the peaks in injected current to the pair of integrate-and-fire 

neurons (Figure 6A), which demonstrates the feasibility of this model to identify the space-state 

parameters for groups of neurons with negative feedback from Renshaw cells.  In contrast, the 

CST approach was unable to detect any difference in coherence below 10 Hz between the 

common input signal (at 3 Hz) and the low-pass filtered CST when the simulation only lasted 1 s 

(Figure 6B).   

When the duration of the simulation was increased to 10 s (Figure 6C and D), however, the CST 

approach could decode the common input current more clearly and there was strong coherence 

between the common input signal and low-pass filtered CST at 2-4 Hz.  In contrast, signal 
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duration did not influence the association between the injected current and the state-space 

trajectory.  

 

Figure 7. Ten integrate-and-fire neurons were simulated when receiving input currents at two frequencies 
and three amplitudes for 10 s.  A, D, G. The common input current at 3 Hz (grey) and 4 Hz (black) with 
superimposed Gaussian noise (awgn with a signal to noise ratio of 25 in MATLAB) used to activate the 
10 neurons.  B, E, H.  Spectral content of the low-pass filtered CST derived with the fft function in 
MATLAB.  C, F, I.  Estimation of the latent-state trajectory from the discharge activity of the 10 
integrate-and-fire neurons at the two frequencies and three input-current amplitudes. 

The discharge activity of 10 integrate-and-fire neurons was simulated for 10 s with input currents 

at two frequencies (3 and 4 Hz) and three amplitudes (0.1, 0.5, and 1 nA) (Figure 14A, D, and 

G).  The spectral content of the CSTs for the 10 neurons was compared to the input current with 

a Fast Fourier Transform (fft) in MATLAB (Figure 7B, E, and H).  The CST approach produced 

peaks at the two input frequencies (3 and 4 Hz), but the spectral power at these frequencies 

increased with input current amplitude (Figure 7H), as previously demonstrated by Farina and 

colleagues (Farina et al., 2014; Negro et al., 2016a).  However, the smallest input current (Figure 
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7A) resulted in the CST approach detecting higher frequency oscillations as the dominant input 

(Figure 7B).  At the intermediate input currents (0.5), the CST method also detected spectral 

peaks at twice the input frequency (Figures 7E) with the largest peaks at the input frequency for 

an input current of 1.0 nA (Figure 7H).  In contrast, the state-space model estimated a trajectory 

of the latent state with a higher frequency content at 4 Hz compared with 3 Hz for all three 

current amplitudes (Figure 7C, F, and I), which indicates greater sensitivity for the state-space 

model to the details of the input currents.  

 

Figure 8. A. The force exerted by a subject during a ramp-and-hold task to a target force of 10% 
MVC with the elbow flexors.  B. Raster of discharge times for seven motor units in the long head 
of biceps brachii.  The motor unit activity was decomposed from high-density surface EMG 
recordings by a semi-automated blind source kernel compensation algorithm (Holobar and 
Zazula, 2004; Negro et al., 2016b) during the hold phase of the task.  The motor unit discharge 
times are shown from the last 20 s of the 30-s contraction.  
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Figure 9. A. Estimation of the single dimension latent-state trajectory from the EM algorithm 
during the hold phase of the ramp-and-hold task (Buesing et al., 2012; Macke et al., 2011).  The 
latent-state trajectory began after the participant had reached a relatively stable force due to the 
difficulty in discriminating motor unit discharge times (which are necessary to estimate the 
model parameters) during the ramp phase.  B. Coherence between force during the hold phase 
and the estimated latent-state trajectory, which reached a peak of 0.53 at ~3 Hz.  

 

Experimental results  

The experimental recordings comprised the discharge times of seven motor units in the long head 

of biceps brachii (Figure 8B) during the last 20 s of an isometric voluntary contraction with the 

elbow flexors (Figure 8A).  The coefficient of variation of force during the hold phase of the task 

was 2.4%.  The algorithm estimated that a one-dimensional latent-space variable resulted in the 

sparsest model capable of maximizing the log-likelihood of the posterior distribution of the latent 

state.  The coherence between the estimated one-dimensional latent state and the force output 

was computed, and it reached its maximum (0.54) at 3 Hz.  Figure 9 shows the graph of the 

latent state •(9)	during the last 20-s of the 30-s ramp-and-hold trial.  Furthermore, the variability 

in the latent state was estimated to be 0.0032, which could be used as an index of the noise 

associated with the common input signal.  Interestingly, the magnitude of •(9) gradually 
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increased throughout the contraction, which is consistent with the hypothesis that a gradual 

increase in neural drive is needed to sustain an isometric contraction, as confirmed by the 

recruitment of a motor unit (number 1 in figure 8B) relatively late in the task.  The finding that a 

one-dimensional latent state provided the optimal estimate of the common input to the 7 motor 

units is also consistent with the concept that a single common input signal is critical for force 

generation during voluntary contractions (Farina et al., 2014; Farina and Negro, 2015; Negro et 

al., 2009).  

Discussion 

The goal of the study was to demonstrate that a state-space model is able to estimate the synaptic 

input and its associated variance that is common to a pool of motor units.  The study involved 

four different datasets, each chosen to evaluate the adequacy of the model to capture a 

physiologically relevant feature of a pool of motor neurons.  First, a pool of motor units was 

modeled as a Poisson linear dynamical system excited by a one-dimensional common input.  

This dataset created realistic motor unit discharge times and force characteristics observed during 

experimental studies.  Second, the discharge characteristics of a pair of leaky integrate-and-fire 

neurons connected to an inhibitory interneuron was examined.  This model captured the 

influence of the interposed Renshaw cell on the discharge rate of the receiving motor neuron and 

provides an intuitive understanding of how a state-space trajectory may activate such a pathway.  

Moreover, the state-space trajectory was not influenced by the duration of the simulation.  Third, 

the spectral content of the CSTs for 10 integrate-and-fire neurons at two input current 

frequencies yielded similar high-frequency spectral content values for the lowest input current 

(0.1 nA).  In contrast, the latent state-space model produced a state-space trajectory for the 10 

neurons that differed for the two frequencies of input current at all amplitudes of input current.  
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Lastly, the common input observed in experimentally recorded discharge times of motor units in 

biceps brachii during a submaximal isometric contraction can be represented by a one-

dimensional latent state.  

State-space models have been used successfully to model unobserved neural activity that 

modulates neurons in cortical circuits (Cunningham and Yu, 2014; Macke et al. 2015).  These 

models combine a description of the coherent dynamics of an unobserved latent state, which is 

interpreted as the common input to the motor neuron pool in the current study, with the random 

nature of neural discharge activity (modeled as a Poisson process).  The ability to quantify the 

common input distributed to motor neurons has been a matter of debate since the seminal work 

of Sears and Stagg (1976).  Contemporary methods of quantifying neural drive have resulted in a 

renewed interest in the area (Farina and Negro, 2012; Farina et al., 2017).   

A key feature of current approaches to assess common input is the combination of the discharge 

times of many motor units into a cumulative spike train (Farina et al., 2014; Farina and Negro, 

2015) and examination of the coherence between fluctuations in the cumulative spike train and 

force during steady isometric contractions.  The approach relies on approximating the motor unit 

pool as a linear filter excited by a common input and independent noise sources.  As a result, the 

neural drive to the muscle comprises the common input signal and the common noise.  This 

methodology has advanced the approach used to quantify the neural drive to muscle (Farina et 

al., 2014; Farina and Negro, 2015), and the astounding ability to provide intuitive control of 

human-machine interfaces during reaching movements (Farina and Negro, 2012; Farina et al., 

2017).   
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Negro and colleagues (2016a) have proposed a method that quantifies the proportion of common 

input driving a pool of motor neurons (Negro et al., 2016a), but the approach cannot distinguish 

between a common input signal and synaptic noise.  Other contemporary techniques also rely on 

assumptions that are mathematically convenient but difficult to justify in terms of physiology, 

such as the linearity of the motor unit pool, the approximation of the neural discharges by 

continuous signals, and Gaussian distributions of noise sources.  Although the cumulative spike 

train method (Farina and Negro, 2015; Farina et al., 2014; Negro et al., 2016a) provides a 

reasonable estimate of the common input to motor neurons, a latent state-space model appears 

capable of detecting smaller differences in input current.  Moreover, the frequency analysis used 

in the CST approach is sensitive to the duration of the signal, whereas the state-space approach is 

more versatile.  As such, a state-space model provides a more sensitive method for 

approximating the common input—and separately—the synaptic noise (both shared and 

independent) received by a pool of motor neurons. 

The EM algorithm provided reproducible estimates of the common input that activated the 

neurons in all simulations and during the experimental measurement of motor unit activity 

during a voluntary contraction.  The time series of the latent state exhibited moderate coherence 

(0.53 at 3 Hz) with the applied force in the functional bandwidth of force production (De Luca 

and Erim, 1994; Negro et al., 2016a), lending support to the concept that the fluctuations in the 

common input to motor neurons are directly observed in the force output (Castronovo et al., 

2015; Farina et al., 2014; Farina and Negro, 2015).  The moderate coherence between the 

estimated latent state and the net force is remarkable because the discharge times from only 

seven motor units were observed during the experiment; it has been demonstrated that the ability 
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to characterize the neural drive to muscle improves with an increase in the number of identified 

motor units (Farina et al., 2014; Farina and Negro, 2015).  

Although previous studies have demonstrated a link between force fluctuations during 

submaximal isometric contractions and oscillations in the neural drive to muscle (Castronovo et 

al., 2015; Negro et al., 2009), no study has differentiated between the control signal and the 

noise.  In contrast, the covariance matrix, Q, in the state-space approach can be used to estimate 

the noise in the common input.  The covariance could be used to examine the association 

between neural drive and force steadiness, even during long-lasting isometric contractions when 

the covariance in the input signal might change.  This could be accomplished by separating the 

data (force and discharge times) into multiple segments in which the covariance is more 

stationary.  Additionally, as suggested by Boonstra and colleagues (2016), the state-space model 

includes relevant physiological properties within the C matrix to encode the differential effects 

of the common input on motor units.  The proposed model does not estimate specific 

physiological properties, but it does allow for entries in the C matrix to represent all key 

properties that influence the discharge of action potentials, such as input conductance and 

afterhyperpolarization duration (Gustaffson and Pinter, 1984; Heckman and Enoka, 2012; 

Henneman et al., 1965).   

Although the state-space trajectory for the integrate-and-fire simulations contained frequency 

content that was greater than the injected current, its interpretation is intended to provide a 

qualitative approximation of the common input to the pool of motor neurons rather than quantify 

the frequency of the input.  For example, the changes in the latent-state trajectory were more 

frequent for the 4-Hz current than the 3-Hz current (Figure 7C, F, and I).  Moreover, the state-

space trajectory for the experimental recordings of motor unit activity from a human subject did 
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not include an input current with high spectral content.  The higher frequency oscillations seen in 

the integrate-and-fire simulations could be due to overfitting of the parameters due to the 

relatively stable statistical structure of the simulated discharge times.  These higher frequency 

oscillations were absent in the state-space trajectory for the experimental recording and the 120 

simulated units.   

The results from the simulations using relatively few parameters compared well with 

experimental data.  For example, the variance in the estimated latent input signal decreased with 

an increase in target force for the 120 motor units simulated as a Poisson linear dynamical 

system, which has been demonstrated experimentally (Castronovo et al., 2015).  Specifically, the 

coherence between cumulative spike trains of motor units increased with greater target forces (up 

to 75%) and at the end of submaximal isometric contractions sustained until failure.  These 

results suggest that the proportion of common input increases with net synaptic input.  

Additionally, the variability in force from the 120 motor units simulated as a Poisson linear 

dynamical system was within the experimentally reported range of values during steady 

isometric contractions for the first dorsal interosseus (Galganski et al., 1992; Moritz et al., 2005).  

The force variability of the simulated contractions—when expressed as the coefficient of 

variation for force—was greatest at low force outputs (5.9 ± 0.5 % at 5% MVC) and decreased at 

greater target forces (2.1 ± 0.2% at 30% MVC).   

Moreover, the current study demonstrated that the discharge times for a motor neuron receiving 

inhibitory input, such as is provided by Renshaw cells (Pratt and Jordan, 1987), can be simulated 

with the state-space model.  The parameters of the state-space model estimated from the 

discharge times of the pair of integrate-and-fire motor neurons with negative feedback were 

solved using the interconnectivity term within the model, and produced a moderate peak in 
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coherence (0.58) near the input frequency.  Additionally, Figure 6 demonstrates how latent-state 

trajectory fluctuates when the injected current (control signal + common noise) is greatest.  

These results indicate that a state-space model can identify the input to a system of neurons with 

a negative feedback pathway.  

Similar to the simulations, the estimated parameters from the motor unit activity during a 

voluntary contraction provided an intuitively accurate representation of the common input.  The 

magnitude of the common input gradually increased over the course of the 20-s contraction.  

Experimental studies demonstrate the recruitment of additional motor units during the later 

stages of fatiguing contractions (Carpentier et al., 2001; Enoka et al., 1988; Person and Kudina, 

1972), which was seen in the current study (Figure 8B, motor unit 1), and expressed in the model 

as an increase in the magnitude of the common input.  

The current study proposes a method to analyze motor unit discharge times and quantify the 

trajectory and variance of the common input underlying the discharge activity of a pool of motor 

units.  The physiologically plausible model represents the discharge times of motor neurons as a 

discrete process and does not require modeling neuron activity as a continuous time signal, or 

approximating the motor neuron pool with a linear filter.  The feasibility of an EM algorithm to 

estimate a latent input was demonstrated with two computational simulations and the discharge 

times of 7 motor units during a ramp-and-hold voluntary contraction.  Importantly, the coherence 

between the one-dimension latent input and the applied force showed a relatively high coherence 

in the critical bandwidth for force control.  The current study demonstrates that a state-space 

model can be used to estimate an unobserved latent input signal that modulates the discharge 

times of the motor units even from relatively brief signals.  Furthermore, the approach yields an 

independent estimate of the variance of the input, which may provide an index of the synaptic 
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noise within the input signal.  The approach could be used to quantify changes in the common 

input and the variability in the synaptic inputs across a range of conditions.    

Conclusion: A Poisson linear dynamical system can replicate the motor unit discharge times and 

muscle force characteristics observed experimentally during low-force steady contractions.  The 

parameters of the model quantify a common input signal and the synaptic noise inherent in signal 

transmission to motor neurons.  The approach can be used to quantify the common input 

received by pools of motor neurons, on a trial-by-trial basis, during brief and long-lasting 

voluntary isometric contractions.  
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Chapter IV 

 

 

VARIANCE IN THE COMMON SYNAPTIC INPUT ACTIVATING MOTOR 

NEURONS MODULATES FORCE STEADINESS AND MANUAL DEXTERITY 
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ABSTRACT 

We investigated the associations between grooved pegboard times, force steadiness (coefficient 

of variation for force), and variability in an estimate of the common synaptic input to motor 

neurons innervating the wrist extensor muscles during steady contractions performed by young 

and older adults. The discharge times of motor units were derived from recordings obtained with 

high-density surface electrodes while participants performed steady isometric contractions at 

10% and 20% of maximal voluntary contraction (MVC) force. The steady contractions were 

performed with a pinch grip and wrist extension, both independently (single action) and 

concurrently (double action). The variance in common synaptic input to motor neurons was 

estimated with a state-space model. There was a statistically significant association between the 

coefficient of variation for force during the steady contractions and the estimated variance in 

common synaptic input in young (r2 = 0.31) and older (r2 = 0.39) adults, but not between either 

the mean or the coefficient of variation for interspike interval of single motor units with the 

coefficient of variation for force. Moreover, the estimated variance in common synaptic input 

during the double-action task with the wrist extensors at the 20% target was significantly 

associated with grooved pegboard time (r2 = 0.47) for older adults, but not young adults. These 

findings indicate that longer pegboard times of older adults were associated with worse force 

steadiness and greater fluctuations in the estimated common synaptic input to motor neurons 

during steady contractions.    

  

  

INTRODUCTION 
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Manual dexterity is defined as the ability to coordinate small movements of the hands and 

fingers quickly and accurately (Gershon et al., 2010). One measure of manual dexterity is the 

time it takes to complete the Lafayette grooved pegboard test (Wang et al., 2011), which 

increases with advancing age (Ruff and Parker, 1993; Wang et al., 2011). Some of the age-

associated variance in pegboard times can be explained by the magnitude of the force 

fluctuations—force steadiness (Galganski et al., 1993)—during steady, submaximal isometric 

contractions with hand and arm muscles (Almuklass et al., 2016; Hamilton et al., 2017; Marmon 

et al., 2011a). For example, Marmon et al. (2011a) found that 36% of the variance in pegboard 

times for 75 adults (18-89 yrs) was explained by the coefficient of variation for force, a measure 

of force steadiness, during index finger abduction (partial r = 0.57) and grip strength (partial r = -

0.34). Moreover, a 28% decrease in grooved pegboard times after older adults practiced the task 

on five occasions was accompanied by significant reductions in the coefficient of variation for 

force during isometric contractions with the index finger abductors (Marmon et al., 2011b).  

To examine the influence of force steadiness on pegboard times in more detail, subsequent 

studies included double-action tasks in which subjects were required to match target forces with 

steady contractions while performing two actions concurrently, such as a pinch grip and wrist 

extension, as occurs during tests of manual dexterity (Ambike et al., 2013; Werremeyer et al. 

1997; Yu et al., 2010). With this approach, Almuklass et al. (2016) found that selected features 

of these double-action tasks could explain 70% of the variance in the pegboard times of young 

adults (Almuklass et al., 2016). Moreover, the coefficient of variation for force was greater 

during double-action tasks than single-action tasks, despite similar target forces during both 

actions (Almuklass et al., 2016; Hamilton et al., 2017), which indicates a difference in the 

control strategy used for each task (Dideriksen et al., 2017).  
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The greater coefficients of variation for force often exhibited by older adults during steady 

contractions were initially attributed to differences in the discharge characteristics of motor units 

(Galganski et al., 1993; Moritz et al., 2005). Subsequent studies, however, demonstrated that the 

greater coefficients of variation for force of older adults could not be explained by differences in 

either the mean or the coefficient of variation for interspike interval (ISI) of single motor units 

during steady isometric contractions (Barry et al., 2007). Rather, age-associated differences in 

the coefficients of variation for force depend more on the cumulative activity of the recruited 

motor units. In a seminal study, Negro et al. (2009) showed that 74% of the variance in force 

during steady isometric contractions with a hand muscle could be explained by the first principal 

component of the instantaneous motor unit discharge rates, which was attributed to the common 

synaptic inputs received by the motor neurons (Farina et al., 2014; 2016, Negro et al., 2016a).    

Given the associations between pegboard times and the coefficient of variation for force 

(Almuklass et al., 2016; Hamilton et al., 2017; Marmon et al., 2011a), and between low-

frequency oscillations in force and common synaptic input to motor neurons (Farina and Negro, 

2015; Negro et al., 2009), the purpose of our study was to examine the associations between 

pegboard times, force steadiness (coefficients of variation for force), and variability in an 

estimate of the common synaptic input to motor neurons during steady contractions in young and 

older adults. We hypothesized that (1) variability in common synaptic input would be positively 

correlated with the coefficient of variation for force during steady contractions for both groups of 

subjects, (2) the coefficient of variation for force and variability in common synaptic input would 

be greater during double-action than single-action tasks, and (3) the pegboard times of older 

adults, but not young adults, would be associated with greater coefficients of variation for force 
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and greater variability in common synaptic input during steady isometric contractions with hand 

and arm muscles.  

METHODS 

Thirteen young [25 (4) yrs] and 12 older adults [78 (5) yrs] with no history of neurological 

disease or injury to the upper extremity consented to participate in a protocol that was approved 

by the Institutional Review Board at the University of Colorado Boulder (Protocol # 16-0782). 

All participants were right handed with a mean Edinburgh Handedness of 0.9 (0.1) (Table 1).  

Table 1. Subject characteristics. Data are presented as mean (SD).  

 Young  Older  

Men/women 

Age (yrs) 

5/8 

25 (4) 

7/5 

78 (5) 

Height (cm) 175 (8) 175 (7) 

Mass (kg) 63 (13) 73 (7) 

Handedness (1 = right) 0.8 (0.2) 0.9 (0.2) 

Grooved pegboard test (s) 51 (5) 73 (19) 

MVC force (N)   

     Wrist extension 105 (27) 117 (46) 

     Pinch 42 (14) 32 (10) 

Experimental protocol. Each subject participated in a single experimental session lasting 

approximately 60 min. The primary outcome variables were time to complete the grooved 

pegboard test, coefficient of variation for force during steady isometric contractions with the 

wrist extensors and thumb-index finger pinch at two target forces (10% and 20% maximal 

voluntary contraction force), and motor unit recordings from the wrist extensors during steady 
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isometric conditions. As in some of our recent studies (Almuklass et al., 2016; Hamilton et al., 

2017), the coefficient of variation for force was measured for each task independently (single-

action tasks) and when the two tasks were performed concurrently (double-action task). In 

addition, we measured the root mean square of the electromyographic (EMG) activity for the 

wrist extensors during the force-steadiness tasks.  

Grooved pegboard test. The grooved pegboard test requires individuals to place key-

shaped pegs into a 5x5 grid of key-shaped holes with varying orientations. Individuals used only 

their right hand and completed the grooved pegboard from left to right, top to bottom, and as 

quickly as possible. Each participant was familiarized with the test by inserting pegs into a single 

row immediately preceding the timed trial.  Pegboard time corresponded to the duration from a 

verbal cue to being the test through to the insertion of the final peg. 

Maximal voluntary contraction. The maximal voluntary contraction (MVC) force was 

measured for the wrist extension and pinch grip tasks. Each MVC required individuals to 

gradually increase force over 3 s and to maintain the maximal force for approximately 3 s. 

Vigorous verbal encouragement was provided during the task, which was repeated until the peak 

force for two trials was within 5% of each other. The average of those peak forces was deemed 

the MVC force. The force applied by the back of the hand during wrist extension was measured 

with a JR-3 force transducer (0.0056 V/N, Model 45E15A-U760-A; JR3, Woodland, CA), 

whereas the pinch force was quantified with a hand-held transducer (0.049 V/N, Model LLB130; 

Futek, Irvine, CA).   

The force signals from both force transducers were low-pass filtered at 50 Hz (V75-48 

High Performance Bandpass Filter, Coulbourn Instruments, White Hall, PA, USA) and sampled 

at 2 kHz with an analog-to-digital converter (Power 1401, Cambridge Electronic Design, 
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Cambridge, UK).  The data were obtained with Spike2 data acquisition software (Version 5.20, 

Cambridge Electronic Design, UK) and stored offline for analysis in MATLAB 2017a 

(Mathworks, MA, USA). 

Force steadiness tasks. The steadiness tasks required participants to match a target force 

displayed on a monitor approximately 1.5 m in front of them (Figure 1A and B). The single-

action tasks comprised two trials at each target force (10 and 20% MVC) for wrist extension and 

pinch force, separately (Figure 1C). The double-action tasks comprised 2 trials at both 10 and 

20% MVC during which both the pinch and wrist extension forces were matched to the same 

target force (10 or 20%) concurrently for 30 s (Figure 1D). The steadiness tasks were performed 

with low-gain visual feedback to minimize online corrections (Christou, 2013); the vertical axis 

of the monitor represented 100% MVC force, which created a visual angle of 0.75 degrees. All 

participants were familiarized with the steadiness tasks and then performed two 30-s trials of 

each task (two actions and two target forces).  In each trial, subjects were asked to reach the 

target force displayed on the monitor and to maintain a steady force until told to stop.  
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Figure 1. Experimental setup. A. Seated participant facing the monitor.  B. Location of the 
transducers to measure the wrist extension and pinch forces. C. Force for the single-action task.  
D. Forces for the double-action task.  E. The 4 x 8 grid electrode (OTB Bioelettronica) that was 
placed over the wrist extensor muscles. F. Monopolar EMG recordings from the grid electrode. 

Prior to the steadiness tasks, the skin over the extensor digitorum communis was shaved, 

cleaned, and abraded with a 70% ethanol solution. Subsequently, high-density EMG (OT 

Bioelettronica, Torino, Italy) signals were recorded from extensor digitorum communis using a 4 

x 8 grid electrode with 10 mm interelectrode spacing (Figure 1E). The electrode was attached 

directly over the extensor digitorum communis muscle as determined by palpation. The 

electrodes were placed lengthwise from proximal to distal and a reference electrode was fixed 

over the olecranon process. Monopolar signals (Figure 1F) were recorded at 2 kHz (3 dB 

bandwidth, 10-500 Hz, multi-channel amplifier OT Biolettronica, Torino, Italy).  

Data analysis. The force signals were low-pass filtered (4th order bidirectional Butterworth, 

cutoff 20 Hz) and representative data are shown in Figure 2. Force steadiness was quantified as 

the coefficient of variation for force during the steadiest 10 s of each 30-s trial (Figure 2A and 

B). Each force signal was visually inspected after a semi-automated analysis in which a 10-s 
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moving average started from the end of the trial and moved backward to find the 10-s region 

with the lowest coefficient of variation for force. The trial with the lower coefficient of variation 

for force was used for further analysis.  

	

Figure 2. Representative force traces during the 30-s contraction for a young (A) and older (B) 
adult. The analysis windows indicate the steadiest 10 s of each trial. Raster plot of motor unit 
discharge times for the young (C) and older (D) adult during the 10-s window. Estimated state-
space trajectory for the young (E) and older (F) adults during the 10-s window. 

EMG amplitude (mV) was quantified as the root mean square of the rectified and averaged 

single differential signals from all adjacent pairs of recording sites on the high-density electrode. 
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In addition, the high-density EMG signals were decomposed into motor unit discharge times 

(Figure 2C and D) using a semi-automated convolution kernel algorithm (Holobar and Zazula, 

2004; Negro et al., 2016b) from OT Bioelettronica. This algorithm has been validated previously 

(Del Veccio et al., 2017; Negro et al., 2016b) and was initially implemented using an SIL of 0.8. 

The motor unit discharge characteristics were then inspected and only motor units that met four 

criteria were included in the analysis: (1) a mean ISI between 20 and 200 ms; (2) coefficient of 

variation for ISI ≤50%; (3) a skewness for the ISI distribution of less than 2; and (4) an 

observable waveform in bipolar differential recordings.  

The motor unit discharge times were used to fit the parameters of a state-space model 

(Feeney et al., 2017) to estimate the common synaptic input signal to motor neurons during the 

force steadiness tasks. In this model, discharge rate (®) of the ith recorded motor unit is 

parameterized as a Poisson process and is represented by equations 1 and 2: 

	®B(t) = 	exp[™( 9)] 

™ 9 = 	¨s 9 + 	≠¢ 9 + 	Æ 

X(t) represents the latent common input driving the pool of motor neurons, whereas C 

corresponds to the physiological parameters that encode how the discharge rate of each neuron 

will be influenced by x(t). Ds(t) denotes the potential coupling between motor neurons, such as 

from persistent inward currents (Heckman et al., 2008; Johnson et al., 2017) or Renshaw cell 

inhibition (Kirkwood et al., 1981; Windhorst, 1989), and Æ	is the logarithm of the average 

discharge rate. The dynamics of the common input are modeled as follows: 

s 9 = 	Ø• 9 − 1 + tu 9 + 	∞(±) 

A is a linear approximation of the dynamics of the common input signal, bf(t) allows for 

modeling the influence of the target force (or other external factors) on discharge rate, and E(t) is 

(1)	

(2)	

(3)	
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a Gaussian noise vector that models the synaptic noise in signal transmission within the 

neuromuscular system (Katz and Miledi, 1970).  The parameters of the model evolve according 

to Poisson linear dynamics with the following distributions:  

s≤

	

~	w(•Y, ßY) 

xt | xt 1 ~ w (Axt 1 bft, Q) 

Where xO and Qo represent the initial state and covariance matrix, which evolves over the trial. Q 

is an estimate of the physiological fluctuations in the common input signal. The estimate of the 

common input, x(t), may be visualized as the trajectory of a vector over the trial (Figure 2E and 

F), whereas the variability in the common synaptic input (Q) may be estimated. We assume Q 

remains constant during brief, steady, isometric contractions.  

We used an existing open source Expectation-Maximization (EM) algorithm (Macke et al., 

2011; Buesing et al., 2012) to estimate the parameters of the state-space model to quantify 

common input—and its variance—to the motor neurons. The motor unit discharge times were 

down-sampled to 10-ms bins and arranged into an n x T binary matrix where 1 represented the 

occurrence of an action potential. The EM algorithm was initialized with a Poisson subspace 

estimate of the single-dimension, state-space trajectory and iteratively refined until a local 

maximum of the log-likelihood function of the posterior distribution of trajectories had been 

reached. The EM algorithm was terminated when either a maximum number of iterations (100) 

was reached or when the relative error in log-likelihood became less than 10-3 (Feeney et al., 

2017). The variance in the state-space trajectory represents the variability in synaptic input to 

motor neurons and is represented by model parameter Q.  

Statistics. All data were tested for normality with a Shapiro-Wilk test. A 3-way ANOVA 

(age x force level x action) was used to compare the influence of age and task on force steadiness 

(4)	



	
104	

and variability in common input. Within each age group, 2 x 2 repeated-measures ANOVAs 

examined the influence of action (single versus double) and target force (10% versus 20% MVC 

force) on the coefficient of variation for force and the estimate of variance in common input (Q). 

Paired t-tests with Bonferroni corrections were applied post-hoc to examine differences in the 

coefficient of variation for force and Q between actions and target forces. Effect size for 

ANOVA was estimated with partial eta squared and Cohen’s d was used for post-hoc pairwise 

comparisons. To estimate the relation between variance in the common input with the coefficient 

of variation for force, a linear regression model was created across all tasks (two actions and two 

target forces) for both age groups.   

To examine relations between grooved pegboard times with the coefficient of variation for 

force and variance in synaptic input, a backward stepwise multiple regression model was created 

for all subjects and, separately, for young and older adults. Subsequently, q-q plots were created 

to ensure normality of the residuals for each multiple-regression model. All statistics were 

performed in R version 3.4.1.  

 

RESULTS 

Force and high-density surface EMG signals were recorded during four force steadiness 

tasks for the wrist extensors and pinch grip: two target forces (10% and 20% MVC force) and 

two actions (single and double action). In addition to a single trial of the grooved pegboard test, 

each participant completed two trials of each steadiness task.  
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Figure 3.	Coefficient of variation (CV) for force from the steadiest 10 s during the steadiness 
tasks in young (A and C) and older (B and D) adults during wrist extension (A and B) and pinch 
(C and D). Boxes display the median with hinges representing the 25% and 75% quartile and the 
whiskers extending to the minimum and maximum value. There was a significant effect of task 
(action and target force) on force steadiness for both groups of subjects during wrist extension 
and pinch. A pairwise t-test with a Bonferroni post-hoc correction was applied between all tasks 
and adjusted P-values (P < 0.05) and effect size (Cohen’s d) is denoted.  	

Force steadiness. A 3-way (2 ages x 2 target forces x 2 actions) ANOVA for all subjects 

detected a main effect for action, which indicated that young and older adults were less steady 

(greater coefficients of variation for force) during the double-action tasks compared with the 

single-action tasks (P = 0.0007, F = 12.4, η2 = 0.19). Similarly, a main effect for age indicated 

that older adults were less steady than young adults (P = 0.03, F = 4.6, η2 = 0.08).  There was no 

main effect for target force on force steadiness (P = 0.91, F = 0.011, η2 = 0.001). All subjects 

completed each condition, so subsequent analyses were performed within each age group to 

optimize the statistical power with a repeated-measures design.  
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Within age groups, young adults exhibited a main effect for task (target force and type of 

action) on the coefficient of variation for force during both wrist extension (P = 3.4 x 10-4, F = 

7.9, η2 = 0.19) and pinch (P = 2.5 x 10-7, F = 18.3, η2 = 0.45).  Similarly, older adults displayed a 

main effect for task on the coefficient of variation for force for both wrist extension (P = 0.013, 

F = 4.16, η2 = 0.15) and pinch (P = 0. 003, F = 5.9, η2 = 0.21). Post-hoc analyses indicated that 

the coefficient of variation for force exhibited by the young adults (Figure 3A and C) was greater 

during the double-action tasks than the single-action tasks at both target forces for wrist 

extension (10%: P = 0.04, Cohen’s d = 0.18; 20%: P = 0.002, Cohen’s d = 0.23) and pinch 

(10%: P = 0.004, Cohen’s d = 0.48; 20%: P = 0.001, Cohen’s d = 0.41). In older adults (Figure 

3B and D), the coefficient of variation for force was greater during the double-action task 

compared with the single-action task for wrist extension at both target forces (10%: P = 0.004, 

Cohen’s d = 0.45; 20%: P = 0.002, Cohen’s d = 0.44) and for the pinch at the lower target force 

only (P = 0.03, Cohen’s d = 0.42).  
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Table 2. Discharge characteristics of motor units in the wrist extensors for the two groups of participants during the four force 
steadiness tasks. Data are presented as mean (SD) 

 
Young Older 

Action Single Double Single Double 

Number of motor 
units 141 134 149 156 

Target force 10% 20% 10% 20% 10% 20% 10% 20% 

EMG amplitude 
(mV) 4.3 (1.5) 5.8 

(1.7)* 4.6 (1.3) 6.8 (2.0)* 3.8 (1.3) 5.1 (1.6)* 5.0 (1.8) 6.4 
(2.3)*† 

Mean ISI (ms) 72.7 (8.2) 71.6 
(9.3) 74.9 (11.2) 62.8 (11.1) 72.1 (9.0) 70.2 (11.6) 65.9 (12.6) 67.7 

(19.9) 

CV for ISI (%) 33.5 (6.0) 33.3 
(7.9) 31.3 (4.8) 38.8 (7.6) 31.7 (5.4) 33.8 (7.6) 32.7 (9.7) 34.7 (5.0) 

EMG and motor unit discharge characteristics. Root mean square EMG amplitude during the steady isometric contractions 

differed between target forces for young and older adults 
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(Table 2). A repeated-measures ANOVA revealed a main effect for target force on EMG 

amplitude for both young (P = 6.2 x 10-8, F = 20.6, η2 = 0.29) and older adults (P = 2.8 x 10-7, F 

= 18.7, η2 = 0.25). EMG amplitude was greater for the 20% target forces for single-action wrist 

extension and pinch (P = 0.002, Cohen’s d = 0.85). Similarly, EMG amplitude was greater 

during double-action tasks at 20% compared with double-action tasks at 10% target force (P = 

0.001, Cohen’s d = 1.1). 

In contrast to the differences in EMG amplitude for the two target forces, there were no 

statistically significant differences in discharge characteristics for the 275 motor units in young 

adults and 305 motor units in older adults recorded in the wrist extensors across actions and 

target forces (Table 2). We accepted an average of 5.5 ± 2.6 motor units in young and 6.2 ± 2.5 

in older adults across the steadiness tasks. There were no significant effects for age on either 

mean ISI (P = 0.31) or coefficient of variation for ISI (p = 0.13) across actions and target forces. 

Additionally, there were no significant effects of action or target force on either mean ISI for 

young (P = 0.54) or older (P = 0.49) adults or the coefficient of variation for ISI for young (P = 

0.72) or older adults (P = 0.49). 
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Figure 4.	Estimated variability in the common synaptic input to motor neurons (Q). The 
estimate was derived from the discharge times of motor units in the wrist extensors during 
the force steadiness tasks in young (A) and older (B) adults. Boxes display the median with 
hinges representing the 25% and 75% quartile and the whiskers extending to the minimum 
and maximum value. There was a significant effect of task on Q for the wrist extensors in 
young adults (P = 3.5 x 10-4, F = 7.9, η2 = 0.25), but not older adults. A pairwise t-test with a 
Bonferroni post-hoc correction was applied between all tasks and significant P-values (< 
0.05) and effect sizes (Cohen’s d) are indicated. 

 

Variance in common input. A 3-way (age x force level x action) ANOVA indicated a main 

effect for action with young and older adults having greater values for the estimated variance in 

common synaptic input during double-action tasks than single-action tasks (P = 0.002, F = 5.5, 
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η2 = 0.15) (Figure 4). In contrast, there was no significant main effect for age on Q (P = 0.15, F 

= 1.7, η2 = 0.02) or target force (P = 0.02, F = 0.11, η2 = 0.01).  

Within age groups, there was a significant effect of task (type of action and target force) on 

Q in young adults (P = 3.5 x 10-4, F = 7.9, η2 = 0.25). Q was greater in the double-action task 

than the single-action task for young adults (Figure 4A) at both target forces (10%: P = 0.023, 

Cohen’s d = 0.23, 20%: P = 0.0022, Cohen’s D = 1.1). Additionally, Q was greater during the 

10% double-action task than the 20% single-action task for young adults (P = 0.009, Cohen’s d = 

1.2). There was no significant effect of task on Q for the older adults (P = 0.32, F = 1.2, η2 = 

0.06) (Figure 4B).  

	

Figure 5. Relation between Q and the coefficient of variation (CV) for force in all tasks for 
young (A) and older (B) adults. Significant relations were found for young (r2 = 0.31, F = 
16.1, P = 0.003) and older (r2 = 0.39, F = 33.2, P = 4.5 x 10-7) adults. The shaded area 
represents the standard error of the regression for each group. 
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There was a significant association between the estimated variance in common input and 

the coefficient of variation for force collapsed across type of action and target force for both 

young (Figure 5A) and older (Figure 5B) adults. A linear regression model revealed a significant 

correlation between Q and the coefficient of variation for force for young (r2 = 0.31, F = 16.1, P 

= 0.003) and older adults (r2 = 0.39, F = 33.2, P = 4.5 x 10-7). Each 0.01-unit increase in Q was 

associated with estimated increases of 1.1% and 1.3% in the coefficient of variation for force for 

young and older adults, respectively. There were no statistically significant relations between 

coefficient of variation for force and mean ISI (r2 = 0.006, P = 0.4) or coefficient of variation for 

ISI (r2 = 0.008, P = 0.4).  
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Figure 6. A. Multiple regression model for grooved pegboard time for both young (filled circles) 
and older (filled triangles) adults (R2 = 0.58, F = 15.22, P = 6.5 x 10-5). The explanatory 
variables were age (partial r = 0.67, estimate = 2.3) and the coefficient of variation for force 
during the double-action pinch at the 20% target (partial r = 0.55, estimate = 0.35). B. The 
regression model for the pegboard times of young adults (r2 = 0.47, 10.06, P = 0.009). The single 
explanatory variable was the coefficient of variation for force during the single-action wrist 
extension task at the 10% target. C. The regression model for the pegboard times of older adults 
(r2 = 0.45, F = 7.37, P = 0.02). The sole explanatory variable in this model was Q derived from 
motor unit discharge times during the double-action task at the 20% target. The grey areas 
represent the standard error for the regression models. 
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Associations with grooved pegboard test. Older adults took longer than young adults to 

complete the grooved pegboard test (P = 3.5 x 10-15, Cohen’s d = 1.2, Table 2). To examine the 

relation between pegboard times, coefficient of variation for force, and estimated variance in the 

common input signal, we created multiple-regression models for both groups of subjects 

combined and the two groups separately (Figure 6A-C). A multiple-regression model for all 

subjects explained 58% of the variance in grooved pegboard times and comprised two 

explanatory variables: age (partial r = 0.67, intercept = 0.36) and the coefficient of variation for 

force at the 20% target during the double-action pinch task (partial r = 0.55, intercept = 2.3).  

Within this model, a one-year increase in age while holding all other variables constant predicted 

an increase of 0.36 s in grooved pegboard time. Additionally, a 1% increase in the coefficient of 

variation for force during the double-action pinch task at the 20% target, while holding age 

constant, was associated with a 2.3 s increase in grooved pegboard time. The regression model 

for young adults explained 47% of the variance in grooved pegboard performance with one 

variable: coefficient of variation for force during wrist extension at the 10% target (r2 = 0.47, F = 

10.1, P = 0.009). The regression model for older adults explained 45% of the variance in grooved 

pegboard time with one variable: Q during wrist extension at the 20% target (r2 = 0.45, F = 7.4, 

P = 0.02).  

 

DISCUSSION 

We investigated the associations between grooved pegboard time, the coefficient of 

variation for force, and the estimated variability in common synaptic input to motor neurons 

during steady isometric contractions in young and older adults. The main findings were that the 

estimated variance in common synaptic input—Q in the state-space model—was significantly 
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related to the coefficient of variation for force during steady, submaximal contractions for both 

age groups, and that variability in the common input was directly correlated with grooved 

pegboard times for older adults. Moreover, despite a consistent and significant increase in EMG 

amplitude at the greater target force for both young and older adults, there were no statistically 

significant differences in either the mean or the coefficient of variation for motor unit ISI during 

the four steadiness tasks (two actions and two target forces). Nonetheless, the estimated variance 

in common synaptic input was greater during the double-action tasks, but only for the young 

adults.  

Force steadiness tasks. Consistent with previous studies, the coefficient of variation for 

force was significantly greater for older adults (Galganski et al., 1993; Laidlaw et al., 2000; 

Tracy, 2007), and it was greater during the double-action tasks than the single-action tasks 

(Almuklass et al., 2016; Hamilton et al., 2017). Also, as found in other studies that used high-

density electrodes to quantify EMG activity (Vila-Cha et al., 2010; Martinez-Valdez et al., 

2017), the root mean square EMG amplitude was significantly greater at 20% MVC force for 

both young and older adults. Despite the increases in EMG amplitude, differences in the 

coefficient of variation for force were not associated with either the mean or the coefficient of 

variation for ISI. However, the high-density EMG signals were decomposed to identify the 

discharge times of many concurrently active motor units (Merletti et al., 2001; Holobar and 

Zazula, 2007; Negro et al., 2016b) and to derive meaningful estimates of the population 

dynamics of the motor units involved in each task, such as estimates of the variability in 

common synaptic input received by motor neurons (Farina & Negro, 2015; Farina et al., 2016; 

Feeney et al., 2017). 
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Our results are consistent with previous reports that single motor unit characteristics do not 

explain differences in force steadiness (Barry et al., 2007). This is likely due to the nonlinear 

input-output relation of individual motor neurons (Farina and Negro, 2015; Powers and 

Heckman, 2017), the relatively small amount of force contributed by a single motor unit to the 

cumulative sum of the motor output (Fuglevand et al., 1993), and the low-pass filtering effect of 

muscles (Partridge, 1965; Baldissera, 1998) and motor neurons themselves (Farina et al., 2014). 

Force fluctuations, however, are strongly associated with the common, low-frequency 

components in motor unit discharge rates when many units are recorded concurrently (Negro et 

al., 2009). As it is not possible to infer the population dynamics of a motor pool from single 

motor units, contemporary methods, such as state-space models (Feeney et al., 2017) and the 

cumulative spike train approach (Farina and Negro, 2015; Farina et al., 2014), estimate the 

common synaptic input to all motor neurons from the discharge times of multiple concurrently 

active units. In this way, the estimate of variance in common input provides information that is 

obscured when analyzing single motor unit characteristics, such as the mean or coefficient of 

variation for ISI.  

The variability in common synaptic input—not individual motor unit discharge 

characteristics—is responsible for a significant portion of the force fluctuations observed during 

steady isometric contractions. Variability in common synaptic input was significantly greater 

during double- than single-action tasks for young adults in our study, which was associated with 

differences in the coefficient of variation for force between the two actions. Although differences 

in common synaptic input in older adults did not reach statistical significance between actions, 

the coefficient of variation for force in both age groups was significantly related to the estimated 

variability in common synaptic input. Our results are consistent with the hypothesis of Farina 
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and Negro (2015) that only the low-frequency oscillations in common synaptic input influence 

the net force (Farina and Negro, 2015; Farina et al., 2014; Negro et al., 2016a). Although we did 

not find a main effect of target force on the variability in common synaptic input, we only tested 

two target forces (10 or 20%) whereas Castronovo et al. (2015) found that the proportion of 

common synaptic input relative to common noise decreased with greater target forces (up to 70% 

MVC).  

A critical feature of our study is the use of a state-space model to estimate common 

synaptic input, which does not assume linearity of the motor unit pool (Boonstra et al., 2016; 

Powers and Heckman, 2017) and does not apply principal component analysis to point processes, 

such as instantaneous discharge rates (Kuhn et al., 2003). Therefore, we extend the work of 

Farina, Negro, and colleagues (Farina et al., 2014; Farina and Negro, 2015; Negro et al., 2016a) 

with a robust mathematical model of common synaptic input to the motor pool (Feeney et al., 

2017).  

In addition, we found that the estimated variance in common synaptic input to motor 

neurons innervating the wrist extensor muscles was greater during the double-action task relative 

to the single action task, but only for young adults. Although the wrist-extension target force was 

the same for both actions and there were no differences in the mean and coefficient of variation 

for ISI across actions, the estimated variance in common synaptic input was greater at the 20% 

target force relative to the 10% target force, consistent with a difference in the control strategy 

for the two actions (Dideriksen et al., 2017). The absence of an effect for the older adults was 

presumably due to the greater difficulty they had with these novel tasks, as indicated by their 

more variable force trajectories, especially during the double-action tasks. Although additional 

practice of the double-action tasks may have lessened the variability, we were concerned that the 



	
117	

adjustments would compromise our evaluation of the relation between the coefficient of 

variation for force during the double-action tasks and pegboard times as measured in a single 

trial. Alternatively, our study may not be sufficiently powered to detect the changes in common 

synaptic input to older adults during these tasks.  

Grooved pegboard test. Significant amounts of the variance in the time to complete the 

grooved pegboard test was be explained by an expanded set of steadiness tasks (Almuklass et al., 

2016; Hamilton et al., 2017) and the variability in common synaptic input (Feeney et al., 2017) 

during these tasks. A multiple-regression model explained 57% of the variance in pegboard times 

for all participants, which included age and the coefficient of variation for force during the 

double-action pinch at the 20% target force as the primary explanatory variables. These predictor 

variables are similar to those found by Marmon et al. (2011a) in which 36% of the variance in 

pegboard times of the participants (18-89 yrs) was explained by the coefficient of variation for 

force during index finger abduction at a 5% target force and handgrip strength.  

A subsequent multiple-regression model for the data obtained from older adults (n = 25) by 

Marmon et al. (2011a), however, explained 59% of the variance in pegboard times with three 

predictor variables: age (partial r = 0.66), the coefficient of variation for force during index 

finger abduction at a 5% target force (partial r = -0.31), and pinch-grip strength (partial r = 0.20). 

In our study, 45% of the variance in pegboard times of older adults was explained by the 

estimated variance in common synaptic input derived from the discharge times of motor units in 

the wrist extensor muscles during the double-action task at the 20% target force. Moreover, there 

was a strong association between the estimated variance in common synaptic input (Q) and the 

coefficient of variation for force during wrist extension at 20% MVC (r2 = 0.6). Our results are 

consistent with Marmon et al. (2011a) who demonstrated that the ability to exert a steady 
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submaximal force during an isometric contraction involves a control strategy that is critical to the 

time it takes to complete the grooved pegboard test, but we provide a mechanism (variability in 

common synaptic input) responsible for the differences in force steadiness.  

Our results for young adults indicated that 47% of the variance in grooved pegboard time 

could be explained by a single variable: coefficient of variation for force during single-action 

wrist extension at the 10% target force. Similarly, Almuklass et al. (2016) found that one of the 

predictor variables in a multiple-regression model (R2 = 0.70) for the pegboard times of young 

adults (n = 30) was also the coefficient of variation for force during single-action wrist extension 

at 10% target force. However, the directionality of this relation differed between the two studies; 

it was positive in our study (r = 0.69) and negative (partial r = -0.48) in Almuklass et al. (2016). 

Thus, young adults in our study with faster pegboard times had lower values for the coefficient 

of variation for force during the wrist-extension task, whereas the converse relation was reported 

by Almuklass et al. (2016).  

A major difference between the two studies was the instructions given to the subject for the 

steady contractions. In our study, subjects were asked to match the target line displayed on the 

monitor and to maintain a steady contraction. Although Almuklass et al. (2016) used a similar 

instruction, their subjects were also required to reach the target force as quickly as possible. In 

their regression model, time to match the target force was the stronger of the two predictor 

variables (partial r = 0.78), which indicates that the rapid force-matching task explains more of 

the variance in pegboard times for young adults. Consistent with our hypothesis, Q did not 

emerge as a significant predictor of pegboard times in young adults (r2 = 0.09 for Q during 10% 

wrist extension) likely due to their pegboard times depending more on decision-making 
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strategies than rather than being constrained by neuromuscular capabilities (Almuklass et al., 

2016).  
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Chapter V 

 

ELECTRICAL NERVE STIMULATION MODULATES FORCE STEADINESS OF THE 
WRIST EXTENSOR MUSCLES IN OLDER ADULTS, BUT NOT YOUNG ADULTS 
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ABSTRACT 

The purpose of our study was to compare force steadiness during voluntary and electrically 

evoked contractions performed with hand and forearm muscles by young and older adults.  

Thirteen young (25 ± 4 yrs) and 12 older (78 ± 5 yrs) adults participated in a protocol that 

involved five types of isometric contractions to match a target of 10% of the maximal voluntary 

contraction force.  The voluntary contractions involved wrist extension and pinch grip performed 

independently (single action) and concurrently (double action).  The evoked contractions 

comprised wide-pulse, high-frequency (1 ms pulses at 100 Hz) neuromuscular electrical 

stimulation (NMES), narrow-pulse, low-frequency (0.2 ms pulses at 50 Hz) NMES, and a 

voluntary contraction with superimposed transcutaneous electrical nerve stimulation (TENS).  

The coefficient of variation for force was less for young adults (1.82 ± 0.43%) than older adults 

(2.80 ± 1.08%) during single-action wrist extension (P = 0.03) and was greater during the 

double-action tasks for both young and older adults.  The coefficient of variation for force did 

not differ between the two groups during the three types of electrical nerve stimulation, but was 

only significantly reduced relative to single-action wrist extension for older adults.  Moreover, 

older adults exhibited significant correlations between the coefficient of variation for force 

during single-action wrist extension and its decrease with each type of electrical nerve 

stimulation.  This association was only significant in young adults for wide-pulse, high-

frequency NMES.  Modulation of force steadiness across conditions was greatest for the older 

adults who were least steady during the voluntary contraction. 

INTRODUCTION 

When an individual performs a submaximal isometric contraction to match a constant target 

force, the applied force typically fluctuates about the target.  The magnitude of the force 



	
122	

fluctuations can be quantified as either the standard deviation (SD) or the coefficient of variation 

for force and is used as a measure of force steadiness (Galganski et al. 1993; Laidlaw et al. 2000; 

Salonikidis et al. 2009).  Despite the simplicity of the measurement, force steadiness during 

isometric contractions is strongly associated with the time it takes young, middle-aged, and older 

adults to perform a pegboard test of manual dexterity (Almuklass et al. 2016, Hamilton et al. 

2017, Marmon et al. 2011ab), chair-rise and stair-climbing times in older women (Seynnes et al. 

2005), training-induced changes in stair-climbing ability and balance in older adults (Kobayashi 

et al. 2014), walking speed and balance in persons who have had a stroke (Hyngstrom et al. 

2014), and declines in walking performance exhibited by persons with multiple sclerosis (Arpin 

et al. 2016).   

The fluctuations in force during steady isometric contractions are strongly associated with the 

common modulation of discharge rate for concurrently active motor units (Farina et al. 2016; 

Farina and Negro 2015; Negro et al. 2009).  The critical role of the integration of synaptic inputs 

by motor neurons in contributing to the modulation of force steadiness was demonstrated by 

Jones et al. (2002) when they compared the standard deviation of the force fluctuations at a range 

of target forces during voluntary contractions and those evoked by neuromuscular electrical 

stimulation (NMES).  Although the standard deviation of the force fluctuations increased with 

target force during voluntary contractions, it remained relatively constant across target forces 

when the contractions were evoked by eliciting action potential in intramuscular axons with 

NMES.  This finding underscored the importance of the synaptic inputs received by motor 

neurons in modulating force steadiness during voluntary contractions. 

The specific intramuscular axons engaged by electrical stimulation depend on the intensity of the 

applied current and the pulse duration and frequency of the stimulus trains (Amiridis et al. 2015; 
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Chipchase et al. 2011; Collins 2007; Maffiuletti 2010; Martin et al. 2016).  Conventional NMES 

protocols evoke contractions by activating motor axons with currents of less than 100 mA, 

frequencies in the range of 40 to 80 Hz, and pulse durations of 0.2 to 0.5 ms (Colson et al. 2009; 

Jones et al. 2002; Vanderthommen and Duchateau 2007).  In contrast, longer pulse durations and 

greater frequencies, such as 1 ms and 100 Hz, can elicit action potentials in both motor and 

sensory axons and thereby involve a central contribution to the evoked force (Bergquist et al. 

2011; Clair-Auger et al. 2012; Lagerquist et al. 2009; Wegrzyk et al. 2015).  Moreover, 

transcutaneous electrical nerve stimulation (TENS) involves the application of weaker currents 

that activate sensory axons exclusively without evoking a muscle contraction (Sluka and Walsh, 

2003).  Although both conventional NMES (Jones et al. 2002) and TENS (Kouzaki et al. 2012) 

can reduce the coefficient of variation for force during steady isometric contractions, the 

influence of wide-pulse, high-frequency NMES on force fluctuations is unknown.  

The purpose of our study was to compare force steadiness during voluntary and electrically 

evoked contractions performed with hand and forearm muscles by young and older adults.  The 

protocol involved two types of voluntary contractions and three forms of electrical nerve 

stimulation, during which force steadiness was quantified as the coefficient of variation for force.  

The voluntary contractions involved wrist extension and index finger-thumb (precision) pinch, 

both independently (single-action task) and concurrently (double-action task) (Almuklass et al. 

2016; Hamilton et al. 2017).  The three types of electrical nerve stimulation manipulated the 

amount of sensory feedback that contributed to the force applied by the wrist extensors.  We 

hypothesized that the coefficient of variation for force for both groups of participants would be 

greater during the double-action task and less during the two types of NMES-evoked 
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contractions than during voluntary contractions, but that it would be less during the application 

of TENS for older adults only. 

METHODS 

Thirteen young (25 ± 4 yrs; 8 women) and 12 older (78 ± 5 yrs; 7 men) adults met the inclusion 

criteria and provided informed consent to participate in our study.  The experimental procedures 

were approved by the Institutional Review Board at the University of Colorado Boulder 

(Protocol #17-0064) and were in accordance with the Declaration of Helsinki.  All participants 

were free of neuromuscular disease, reported no orthopedic problems that impacted the arms, 

hands, or fingers, and were not taking medications known to influence neuromuscular or 

cognitive function.  All subjects participated in one experimental session that lasted 

approximately 1 hr.   

Grooved pegboard test.  The protocol began with one trial of the grooved pegboard test in which 

25 keyhole-shaped pegs were inserted into similarly shaped holes on a rectangular board 

(Lafayette Instruments; Lafayette, IN).  Prior to performing the timed trial of the test, 

participants familiarized themselves with the task by inserting pegs into the first row (5 holes) of 

the 5x5 grid.  Pegboard performance was quantified as the time from a verbal command to start 

the test until the insertion of the final peg.  Participants were encouraged to perform the grooved 

pegboard test as quickly as possible.  

Muscle strength.  The strength of the muscles that contributed to wrist extension and to a thumb-

index finger pinch was quantified as the peak force reached during a maximal voluntary 

contraction (MVC).  Subjects were seated comfortably with the right arm abducted by ~0.79 rad 

from the trunk, the elbow flexed to 1.57 rad with the pronated forearm resting on a metal stand, 
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and the wrist secured on a padded brace (Figure 1A).  Each MVC trial involved an increase in 

force from rest to maximum over 3 s and then sustaining it for 3 s.  In addition to verbal 

encouragement during each MVC, visual feedback of the force was provided on a monitor (43.2 

cm) located at eye level ~60 cm in front of the subject.  The average peak force from two trials 

that were within 5% of each other was designated as the MVC force, and this value was used to 

calculate the target forces for the subsequent tasks.  Participants also performed an MVC at the 

end of the protocol to provide a measure of performance fatigability. 

	

Figure 1. A. Position of the subject and location of the electrodes through which a current was 
applied to the wrist extensor muscles. B. Position of the transducer to measure force during the 
pinch and the location of the contact between the back of the hand and the rigid bar during the 
wrist-extension task.  

The force exerted during wrist extension (both the voluntary and evoked contractions) was 

measured with a JR3 multi-axis force transducer that was attached to a rigid restraint (900 N 

range, 176 N/V; Woodland, CA).  The subject was positioned so that the back of the hand, just 

proximal to the knuckles, could push up against a rigid restraint that was attached to the JR3 
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transducer during the wrist extension MVC.  The precision pinch force was measured by placing 

a Sealed Super Mini load cell (2,000 N range, 250 N/V, Temecula, CA) between the index finger 

and thumb (Figure 1B).  The force signals were digitized with a Power 1401 (Cambridge 

Electronic Design, CED; Cambridge, UK) at 1,000 samples/s and stored on a computer. 

Force steadiness. Participants performed submaximal isometric contractions with the wrist-

extensor and pinch-grip muscles to match the target force (10% MVC force) displayed on the 

monitor.  The visual display was normalized to provide low-gain feedback with a visual angle of 

0.75 degrees (Baweja et al. 2010; Baweja et al. 2012; Park et al. 2017).  The steadiness tasks 

required participants to perform each action (wrist extension and precision pinch) independently 

(single-action task) and concurrently (double-action task) and to maintain a steady contraction 

for 30 s.  The subjects practiced each task before performing the steadiness trial.  The force 

exerted by the subject was displayed as a horizontal line in real-time over the course of a trial, 

which subjects were asked to match to the horizontal target line.  The double-action task required 

subjects to move the horizontal line for each action concurrently to its target line.   

In addition to the applied force, electromyographic (EMG) signals were recorded from the wrist 

extensors and flexors during the steadiness tasks with high-density grid electrodes 

(Sessantaquattro, OT Bioelettronica; Torino, IT) that comprised 32 recording sites (10 mm apart) 

arranged in 4 columns and 8 rows.  To minimize stimulus artifacts, a 1.5 cm-wide stainless steel, 

braided cable was attached to a ground source and held by the participant.  To ensure optimal 

contact between the skin and the electrode, the electrode grids were held in place with adhesive 

foam and conductive paste (Ten20, Weaver, Aurora, CO).  A reference electrode (2 x 3.5 cm, 

conductive hydrogel, Kendall, Covidien, Mansfield, MA) was placed over either the olecranon 

process or ulnar head. 
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Electrical nerve stimulation.  After completing the steadiness tasks with voluntary contractions, 

the high-density grid electrodes were removed and replaced with conductive stimulating 

electrode pads (PALS Platinum Neurostimulation Electrodes, 5 cm²; model 895220, Axelgaard 

Manufacturing Co., Ltd.; Lystrup, Denmark) through which currents were applied to the wrist 

extensor muscles.  A constant-current stimulator (DS7A 129, Digitimer; Welwyn Garden City, 

UK) was used to provide an NMES current with monophasic, rectangular pulses.  The cathode 

was placed near the proximal end of the wrist extensors with the anode located distal to the 

cathode (Figure 1).  Two combinations of pulse width and frequency were investigated: wide-

pulse NMES (1 ms) at 100 Hz and narrow-pulse NMES (0.2 ms) at 40 Hz.  The currents were set 

to evoke contractions that matched the 10% MVC target force.  Subjects were asked to relax and 

allow the stimulation to evoke a contraction for 30 s during which no visual feedback was 

provided.  Participants completed a single trial of each NMES protocol in a randomized order.  

Subsequently, participants performed a voluntary contraction with the wrist extensors to match a 

10% target force while concurrently receiving a TENS current (LG-TEC Elite, LGMedSupply, 

LLC; Cherry Hill, NJ).  The current was set at 1 mA less than the intensity required to evoke a 

consistent visible contraction in a forearm muscle, but which produced a tingling sensation.  The 

stimulus parameters for TENS was 50 Hz with 0.2 ms pulses.  The task was to match the 10% 

MVC force target and maintain a steady contraction for 30 s. 

Data analysis.  The magnitude of the force fluctuations about the target force was quantified as 

the coefficient of variation for force (ratio of standard deviation relative to the mean) to provide a 

measure of force steadiness (Galganski et al. 1993).  A moving 10-s window (100-ms 

increments) was used to find the steadiest 10 s (lowest coefficient of variation for force) of each 
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30-s trial.  The force recorded during the NMES trials was detrended prior to quantifying the 

force fluctuations.  

EMG amplitude (mV) was quantified as the root mean square of the rectified and averaged 

single differential signals from all adjacent pairs of recording sites on the high-density electrode.  

The signals were averaged for the wrist extensors and flexors over the middle 10-s of the steady, 

voluntary contractions.  Coactivation was quantified as the ratio (%) of the EMG amplitude of 

the wrist flexors relative to the average amplitude of the wrist extensors and wrist flexors 

(Falconer and Winter 1985).  

Statistical analysis.  After confirming the normality of the data with the Shapiro-Wilk test, a 2 x 

5 (age by condition) analysis of variance (ANOVA) was implemented to compare the influence 

of condition (voluntary single-action task, voluntary double-action task, two types of NMES, and 

augmented sensory stimulation on force steadiness).  Two-tailed paired t-tests with Bonferroni 

corrections to the P-values were applied post-hoc to compare the coefficient of variation for 

force between groups.  A repeated-measures ANOVA was used to compare the influence of 

condition within age groups.  Effect sizes for ANOVA was estimated with Ƞ² and Cohen’s d was 

used for post-hoc pairwise comparisons.  An alpha level of P < 0.05 was used to identify 

significant differences and statistical analyses were performed using R (CRAN, R version 3.4.1).  

Data are presented in the text as mean ± SD. 

RESULTS 

The report comprises the results on force steadiness—coefficient of variation for force—during 

voluntary and evoked contractions and global EMG recordings obtained with the high-density 

grid electrodes during the voluntary contractions performed by 25 individuals (13 young and 12 
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older adults).  All participants were right-handed, as verified by the laterality quotient (0.9 ± 0.2) 

of the Edinburgh Handedness Inventory (Oldfield 1971).  There were no statistically significant 

differences between young and older adults for any of the descriptive characteristics, except that 

the time to complete the grooved pegboard test was longer for older adults (Table 1). 

Table 1. Subject characteristics.  

 Young Older 

Men/Women 5/8 7/5 

Age (yrs) 25 ± 4 78 ± 5 

Height (cm) 175 ± 8 175 ± 7 

Mass (kg) 63 ± 13 73 ± 7 

Handedness (1 = right) 0.8 ± 0.2 0.9 ± 0.2 

Grooved pegboard test (s) 51 ± 6 73 ± 19* 

Wrist extensor MVC force (N) 106 ± 27 118 ± 46 

Pinch MVC force (N) 42 ± 14 32 ± 10 

Values are mean ± SD. MVC = maximal voluntary contraction. NMES = neuromuscular 

electrical stimulation. TENS = transcutaneous electrical nerve stimulation. *P < 0.05 relative to 

young adults. 
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Figure 2. Representative force and high-density EMG recordings during the 30-s wrist-extension 
tasks.  The target force was 10% MVC for all conditions.  A. Wrist-extension force, EMG 
recording for the wrist extensors, and EMG recording for the wrist flexors during a voluntary 
contraction.  B.  Wrist-extension force during wide-pulse, high-frequency NMES.  C.  Wrist-
extension force during augmented sensory stimulation (TENS). 

As a foundation for interpreting the influence of electrical nerve stimulation on force steadiness, 

we measured the coefficient of variation for force when the two groups of participants performed 

single- and double-action tasks involving wrist extension and precision pinch.  The target force 

for all tasks was 10% MVC.  Representative records for a single participant are shown in Figure 

2.  An ANOVA between the two age groups and five contraction conditions revealed significant 

effects of age (P = 0.037, Ƞ² = 0.05) and contraction condition (P = 2.8x10-9, Ƞ² = 0.37).  There 

was a significant effect of contraction condition within the young group (P = 2.75x10-4, Ƞ² = 

0.25) and the older group (P = 2.3x10-7, Ƞ² = 0.44). 

Both age groups had significantly greater coefficients of variation for force during the double-

action tasks (young: P = 0.004, Cohen’s d = 0.8; older: P = 0.004, Cohen’s d = 1.1).  Notably, 

there was greater variability across both groups of subjects, as indicated by the SD values, in the 

coefficient of variation for force during the double-action tasks relative to the single-action tasks, 
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10% MVC

6 mV

8 mV

10% MVC

10% MVC
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and for the older adults during single-action wrist extension, but not precision pinch, compared 

with young adults.  Despite these differences in the coefficient of variation for force and its 

variability between groups and actions, there were no statistically significant differences in EMG 

amplitude for either the wrist extensors or flexors across conditions (Table 2).  There was a main 

effect for muscle group, which indicated that EMG amplitude for the wrist extensors was greater 

than that for the wrist flexors (young: P = 0.004; older: P = 0.04).  However, there was no 

statistically significant difference in the coactivation ratio between age groups (P = 0.62), but 

there was less coactivation during the double-action task than the single-action task for both 

young (P = 0.008, Cohen’s d 0.52) and older (P = 0.013, Cohen’s d = 0.32) adults.  

Table 2. Coefficient of variation (CV) for force and EMG amplitudes of young and older adults 

during submaximal isometric contractions when performing single- and double-action steady 

contractions 

 Young Older 

 Single Double Single Double 

Wrist extensor CV for force (%) 1.8 ± 0.3 3.3 ± 1.7† 2.8 ± 1.1* 4.3 ± 1.8† 

Pinch CV for force (%) 2.5 ± 0.7 4.0 ± 2.1† 2.7 ± 1.6 5.3 ± 2.5† 

Extensor EMG (mV) 4.3 ± 1.5 4.6 ± 1.3 3.8 ± 1.3 5.0 ± 1.8 

Flexor EMG (mV) 3.3 ± 1.7 2.9 ± 1.4 2.7 ± 1.2 3.2 ± 1.4 

Coactivation ratio (%) 42 ± 8 38 ± 8† 40 ± 9 38 ± 7† 

Values are means ± SD.  *P < 0.05 relative to young adults. †P < 0.05 relative to single action. 

 

The current required to evoke a contraction in the wrist extensors to match the target force with 

wide-pulse, high-frequency NMES was not statistically different (P = 0.24) between young (6.3 

± 4.7 mA) and older adults (8.5 ± 4.2 mA).  Similarly, the required current for narrow-pulse, 
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low-frequency NMES was not statistically different (P = 0.06) between young (19.0 ± 6.9 mA) 

and older adults (25.0 ± 6.7 mA).  However, the current applied to augment sensory stimulation 

(TENS) was significantly less (P = 0.04, Ƞ² = 0.20) for young (9.8 ± 1.4 mA) than older adults 

(11.0 ± 1.3 mA).   

Table 3. Coefficient of variation for force (%) for young and older adults during the three types 

of electrical nerve stimulation.   

 Young Older 

Evoked contractions   

Wide-pulse NMES (%) 1.93 ± 0.68 2.01 ± 0.67† 

     %Δ voluntary 12 ± 47 -19 ± 33 

     r (P value) -0.57 (0.04) -0.53 (0.03) 

Narrow-pulse NMES (%) 1.83 ± 0.59 1.69 ± 0.62† 

     %∆ voluntary 2 ± 33* -30 ± 30 

     r (P value) -0.30 (0.32) -0.60 (0.04) 

Augmented sensory stimulation   

TENS (%) 2.41 ± 1.02† 2.29 ± 0.76 

     %∆ voluntary 
     r (P value) 

33 ± 45* 
-0.07 (0.81) 

-6 ± 38 
-0.62 (0.03) 

Values are mean ± SD.  NMES = neuromuscular electrical stimulation.  TENS = transcutaneous 

electrical nerve stimulation.  %∆ voluntary = difference in the coefficient of variation for force 

during the electrical nerve stimulation condition from that for the voluntary contraction at the 

10% MVC target force.  The correlation coefficient (r) indicates the association between the 

coefficient of variation for force during the voluntary contraction and the change produced by 

electrical nerve stimulation. *P < 0.05 relative to older adults. †P < 0.05 relative to single-action 

wrist-extension task.   
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The three types of electrical nerve stimulation elicited mixed effects in the two groups of 

participants (Table 3).  The coefficient of variation for force for the young adults was not 

statistically different during either wide-pulse, high-frequency NMES (1.93 ± 0.68%) or narrow-

pulse, low-frequency NMES (1.83 ± 0.59%) compared with the single-action voluntary 

contraction with the wrist extensors (1.8 ± 0.3%).  In contrast, the coefficient of variation for 

force was reduced in older adults by both wide-pulse, high-frequency NMES (2.01 ± 0.67%) and 

narrow-pulse, low-frequency NMES (1.69 ± 0.62%) relative to the value during single-action 

wrist extension (2.8 ± 1.1%).  The application of TENS to augment sensory feedback had the 

converse effect in that it increased the coefficient of variation for force in young adults (2.41 ± 

1.02%), but had no statistically significant effect in older adults (2.29 ± 0.76%).  
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Figure 3. Percent change in the three electrical nerve stimulation conditions relative to the value 
during single-action wrist extension for young (A-C) and older (D-F) adults.  Participants are 
listed in order of increasing coefficient of variation for force during single-action wrist extension.  
A, D.  Percent change between voluntary wrist extension and wide-pulse, high-frequency NMES.  
B, E.  Percent change between voluntary wrist extension and narrow-pulse, low-frequency 
NMES.  C, F.  Percent change between voluntary wrist extension and augmented sensory 
stimulation condition.  
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As indicated in Figure 3, however, there was considerable variability across subjects in the 

influence of electrical nerve stimulation on the coefficient of variation for force relative the value 

observed in the reference voluntary contraction (single-action wrist extension).  Nonetheless, 

there were statistically significant effects within each group for some conditions when the 

relative change was compared with the reference value.  For all three types of electrical nerve 

stimulation, there statistically significant correlations (P < 0.05) for older adults between the 

change in the coefficient of variation for force and the value observed during single-action wrist 

extension (Table 3).  The negative correlations indicate that greater values for the coefficient of 

variation for force during the voluntary contraction were associated with greater changes during 

electrical nerve stimulation.  In contrast, only one of the conditions exhibited a statistically 

significant association for young adults and that was for wide-pulse, high-frequency NMES.  

MVC force during wrist extension at the end of the protocol was 97 ± 27 N for young adults and 

114 ± 47 N for older adults, neither of which was statistically different (young: P = 0.43; older: P 

= 0.61) from that measured at the beginning of the experiment (Table 1).   

DISCUSSION 

The main findings of our study were that older adults exhibited worse force steadiness than 

young adults during only one of the four voluntary contractions and that the influence of 

electrical nerve stimulation on force steadiness differed for the two groups of participants.  Both 

types of NMES reduced the coefficient of variation for the evoked force in older adults 

compared with the value observed during single-action wrist extension, whereas superimposed 

TENS during a voluntary contraction increased the coefficient of variation for force in young 

adults but not older adults.  Critically, all three types of electrical nerve stimulation improved 
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force steadiness—reduced the coefficient of variation for force—in older adults, but the effect 

was significantly and negatively correlated with the value observed during single-action wrist 

extension.  A similar association was observed for young adults, but only during wide-pulse, 

high-frequency NMES.  

Voluntary contractions.  Since the original observation that older adults are less steady than 

young adults during submaximal isometric contractions (Galganski et al. 1993), several studies 

have confirmed that force steadiness is usually worse in older adults during low-force isometric 

contractions (Barry et al. 2007; Carville et al. 2006; Laidlaw et al. 2000; Tracy and Enoka 2002).  

In our current study, however, we found that the coefficient of variation for force during single-

action wrist extension at 10% MVC force was greater for the older adults than the young adults, 

but the difference between groups during single-action precision pinch was not statistically 

significant.  In contrast, Hamilton et al. (2017) reported greater coefficients of variation for force 

during both single-action tasks, also at 10% MVC force, for older adults (74 ± 7 yrs) compared 

with middle-aged adults (51 ± 7 yrs).  Older adults appear to be consistently less steady than 

young adults during low-force isometric contractions for some actions (e.g., index finger 

abduction, wrist extension), but the relation is more variable for other actions (e.g., precision 

pinch).  

Although the single- and double-action tasks involved the same target force (10% MVC force), 

the coefficient of variation for force was greater during double-action wrist extension and 

precision pinch for both groups of participants.  Similar findings have been reported previously 

(Almuklass et al. 2016; Hamilton et al. 2017).  Despite the greater force fluctuations during the 

double-action, wrist-extension task, the difference in absolute EMG amplitude for the wrist 

extensors was not statistically significant between the single- and double-action tasks for either 
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group of subjects.  This result is consistent with the evidence that the magnitude of the force 

fluctuations during steady isometric contractions is strongly associated with the variability in the 

common modulation of motor unit discharge rate (Farina and Negro, 2015; Negro et al. 2009) 

and not the cumulative amount of motor unit activity (Barry et al. 2007).   

The decline in the coactivation ratio between the wrist extensors and flexors during the double-

action task for both groups of subjects likely reduced the influence of the wrist flexors on the 

stability of the joint, leading to a greater coefficient of variation for force.  Previous studies have 

demonstrated that increases in the coactivation of antagonistic muscles augments joint stability 

and reduces force fluctuations (Dideriksen et al. 2015).  For example, Arellano et al. (2016) 

found that an increase in coactivation after a fatiguing contraction with the wrist extensors was 

accompanied by no change in coefficient of variation for force during steady contractions.  This 

finding suggests that the older adults used coactivation to maintain force steadiness.  Our study 

revealed that older adults reduced coactivation during double-action tasks, which led to greater 

coefficients of variations for force.  The decrease in coactivation during the double-action task 

by both young and older adults was likely due to need to focus the wrist flexor activity on 

producing the precision pinch, which reduced the level of coactivation.  

Electrical nerve stimulation.  Part of the motivation for our study was the report by Jones et al. 

(2002) that the standard deviation for force during voluntary contractions scales linearly with 

target force (20-70% MVC) for young adults, whereas the standard deviation for force is 

constant during contractions evoked by NMES.  Jones and colleagues used an NMES protocol 

(pulse width: 300 µs; frequency: 25-30 Hz) that was similar to our narrow-pulse, low-frequency 

condition.  Their results indicate that most of the force fluctuations during voluntary isometric 

contractions are attributable to differences in central factors that influence motor unit activity, 
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whereas there are constant, low-level force fluctuations associated with the peripheral signal 

transduction.  The application of NMES generates a current field that elicits action potentials in 

intramuscular motor axons, but, largely due to varying distances from the stimulating electrodes 

to the motor axons, that activation of muscle fibers is asynchronous and results in an irregular 

evoked force (Baldwin et al. 2006; Bergquist et al. 2011) that does not appear to change with the 

intensity of the NMES current (Jones et al. 2002).  

We found that the coefficient of variation for force during the NMES-evoked contractions was 

not significantly less than that during voluntary contractions in young adults, whereas it was 

significantly reduced for older adults.  This finding indicates that the force fluctuations exhibited 

by young adults during voluntary contractions were equivalent in amplitude to those produced by 

the asynchronous activation of intramuscular motor axons by NMES.  In contrast, the force 

fluctuations caused by the common modulation of motor unit discharge rates during voluntary 

contractions was greater than those produced by the asynchronous activation of motor axons for 

older adults.  Moreover, the coefficient of variation for force during the NMES contractions was 

similar for young and older adults, indicating a comparable effect of the asynchronous activation 

of motor axons in the two groups.  

The relative difference in force fluctuations between the NMES-evoked and voluntary 

contractions varied across older adults during both NMES conditions and for young adults 

during wide-pulse, low-frequency NMES.  There was a significant negative correlation between 

the magnitude of the decrease in the coefficient of variation for force during the NMES 

contractions and the coefficient of variation for force during voluntary contractions.  This finding 

indicates variability across participants in the extent to which the influence of the common 

modulation of motor unit discharge rates on force fluctuations exceeded that of asynchronous 
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activation of motor axons.  However, there was no such relation for young adults during narrow-

pulse, low-frequency NMES, even though there was no statistically significant difference in the 

coefficient of variation for force between the two NMES conditions for young adults.  Given that 

there was a moderate correlation (r = 0.57) between the reduction in the coefficient of variation 

for force during the two NMES conditions, it is not clear why the young adults did not exhibit a 

significant negative correlation for the percent change during the narrow-pulse, low-frequency 

condition.  

In contrast to the influence of NMES on force steadiness, the concurrent application of TENS 

during the voluntary contraction (single-action, wrist extension) significantly increased the 

coefficient of variation for force in young adults, but not in older adults. The current applied 

during TENS was just below motor threshold, which elicits action potentials in a wide range of 

sensory axons (Gomes-Osman et al. 2017; Moran et al. 2011; Walker et al. 2014).  The increase 

in the coefficient of variation for force exhibited by young adults suggests that the additional 

sensory feedback during the voluntary contraction increased the variability in the common 

modulation of motor unit discharge rates by increasing the afferent synaptic input onto motor 

neurons.  This finding differs methodologically from that of Jones et al. (2002) when they found 

that the superimposition of NMES on a voluntary contraction increased the standard deviation 

for force; the resulting force fluctuations were due to the combined effects of common 

modulation of motor unit discharge rates and the asynchronous activation of intramuscular motor 

axons.   

The absence of a main effect for concurrent TENS during a voluntary contraction on the 

coefficient of variation for force in older adults suggests that the central effects of sensory 

feedback were saturated in this group.  The mechanisms responsible for the decrease in 
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responsiveness of the older adults could include a reduction in the numbers of sensory receptors, 

a decline in the responsiveness of the receptors, or an increase in the level of presynaptic 

inhibition (Baudry 2016).  This result is consistent with the findings of others that older adults 

tend not to rely on sensory feedback when managing conditions that challenge stability (Baudry 

et al. 2010; Baudry et al. 2014).  Despite the lack of a main effect in older adults, however, there 

was a negative correlation between the reduction in the coefficient of variation for force during 

TENS and the value observed during the voluntary contraction.  Those older adults with worse 

force steadiness—greater force fluctuations—presumably experienced a reduction in the 

common modulation of motor unit discharge rates due to the additional sensory feedback, which 

was opposite to the effect observed in young adults.  The concurrent application of TENS, 

therefore, attenuated at least one major source of the common input to motor neurons, but only in 

these older adults who were least steady during the submaximal, isometric contraction with the 

wrist extensors. 

The force fluctuations exhibited by young adults during a steady, voluntary contraction with the 

wrist extensors were equivalent in amplitude to those observed during NMES-evoked 

contractions.  In contrast, the force fluctuations of older adults were greater during the voluntary 

contraction than during the evoked contractions.  The superimposition of TENS during a 

voluntary contraction, which provided additional sensory feedback, increased the force 

fluctuations in young adults, but had no main effect in older adults.  Nonetheless, the effects 

elicited by the three types of electrical nerve stimulation in older adults were negatively 

correlated with the amplitude of the force fluctuations (coefficient of variation for force) during 

the voluntary contraction.  The differences between the two groups of participants were 
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interpreted in terms of the relative influence of the common modulation of motor unit discharge 

rates and the asynchronous activation of intramuscular motor axons. 
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Chapter VI 

 

 

PEG MANIPULATION CAPABILITIES DURING A TEST OF MANUAL DEXTERITY 

DIFFER FOR PERSONS WITH MULTIPLE SCLEROSIS AND HEALTHY 

INDIVIDUALS 

  



	
143	

Abstract 
Manual dexterity declines with advancing age and the development of neurological disorders.  

Changes in manual dexterity are frequently quantified as the time it takes to complete the 

grooved pegboard test, which requires individuals to manipulate 25 pegs.  The manipulation of 

each peg involves four phases: selection, transport, insertion, and return.  The purpose of the 

study was to compare the times to complete the four phases of manipulating each peg and the 

forces applied to the pegboard during peg selection and insertion in persons with multiple 

sclerosis (MS) and age- and sex-matched healthy adults.  Multiple-regression models that could 

explain the variance in pegboard times for each group of participants were compared to assess 

the relative significance of the peg-manipulation attributes.  The performance of 17 persons with 

MS (52.2 ± 8.3 yrs) was compared with 17 control subjects (52.2 ± 11.5 yrs).  The grooved 

pegboard test was performed on a force plate.  Pegboard times for the MS group (104 ± 40 s) 

were longer than those for the Control group (61 ± 15 s).  Regression analysis indicated that the 

pegboard times for the MS group could be predicted by the time for the peg-selection phase (R2 

= 0.78), whereas the predictors for Control group (R2 = 0.77) were the times for the peg-transport 

(partial r = 0.80) and selection (partial r = 0.58) phases.  The variance in the time it took the MS 

participants to complete the grooved pegboard test was strongly related to the time required to 

select each peg, whereas the pegboard times for the Control subjects depended mostly on the 

duration of the transport phase but also on the time to select each peg.  

Introduction 
Manual dexterity is the ability to manipulate objects through coordination of the hands 

and fingers, and is a key indicator of motor function (Gershon et al. 2010; Wang et al. 2011).   It 

combines elements of cognitive acuity, tactile sensation, muscle strength, and force control.  
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Manual dexterity can be quantified as the time to complete a pegboard test, such as the grooved 

pegboard test or the nine-hole peg test.   

Tests of manual dexterity are more sensitive to changes in upper extremity function than 

other methods used to quantify disability in persons with multiple sclerosis (MS), such as the 

Expanded Disability Status Scale (EDSS) (Goodkin et al. 1988; van Winsen et al. 2010).  The 

most frequently administered pegboard test for persons with MS is the nine-hole test (Alusi et al. 

2000; Fischer et al. 1999; Kragt et al. 2006), which requires subjects to insert and then remove 

nine cylindrical pegs as quickly as possible from nine holes arranged in 3 rows by 3 columns on 

a board.  Average time to complete the nine-hole test is slower for persons with MS (25.2 ± 10.0 

s) than for healthy age- and sex-matched healthy subjects (18.0 ±1.4 s) (Yozbatiran et al. 2006).  

Moreover, time to complete the nine-hole peg test is strongly correlated with disease-related 

costs over a six-month period (Koch et al. 2014) and a 20% increase in the time to complete the 

nine-hole test is associated with a worsening of disability (Kragt et al. 2006).  Nonetheless, the 

greater discriminative capabilities of the grooved pegboard test might provide more insight into 

the functional significance of the declines in upper extremity strength and hand sensation 

associated with the progression of MS (Guclu-Gunduz et al. 2012).  

The grooved pegboard test requires greater tactile acuity and visuomotor coordination 

than the nine-hole pegboard test and provides greater discrimination of dexterity among healthy 

adults (Wang et al. 2011; Bowden et al. 2013; Bryden and Roy 2005; Thompson-Butel et al. 

2014).  A study of 75 healthy adults demonstrated that the time to complete the grooved 

pegboard test is fastest for young adults (mean ± SD: 59 ± 6 s), slowest for old adults (89 ± 16 s), 

and intermediate for middle-aged adults (66 ± 9 s) (Marmon et al. 2011a).  Measures of muscle 

strength, force steadiness during submaximal isometric contractions, and decision-making 
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strategies explain much of the variance among healthy adults in time to complete the grooved 

pegboard test (Marmon et al. 2011a; Almuklass et al. 2016; Hamilton et al. 2017).  In contrast, 

essentially nothing is known about which aspects of the pegboard task contribute to differences 

in pegboard times between healthy individuals and those who are burdened with a neurological 

disorder.  

The purpose of the current study was to compare the times to complete the four phases of 

manipulating each peg and the forces applied to the pegboard during peg selection and insertion 

by persons with MS and age- and sex-matched healthy adults.  Peg-manipulation capabilities 

were quantified in terms of the times and forces of the four phases associated with inserting 

individual pegs into the 25-hole pegboard.  The four phases comprised: (1) select a peg; (2) 

transport it to the specified hole; (3) insert it into the hole; and (4) move the hand back to the 

well to obtain another peg.  The four phases corresponded to the behavioral tasks that are need to 

be completed with each peg in the pegboard test.  Due to declines in cutaneous sensation 

exhibited by person with MS (Cuypers et al. 2010; Guclu-Gunduz et al. 2012; Kalron et al. 

2013), the hypothesis was that significant amounts of the variance in time to complete the 

grooved pegboard test for the MS and Control subjects would be explained by different phases of 

peg manipulation.  It was not possible to predict a priori which phases would emerge as the 

explanatory variables due to the potential pervasive influence of cutaneous sensation on at least 

three of the peg-manipulation phases (selection, transport, and insertion).  

Methods 

Seventeen persons with MS (52.2 ± 8.3 yrs; 10 women; Patient Determined Disease Steps score 

3.6 ± 1.0) and 17 age- and sex-matched healthy adults (52.2 ± 11.5 yrs) met the inclusion criteria 

and participated in the study after informed consent was obtained (Table 1).  All procedures were 
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approved by the Institutional Review Board (Protocol #13-0720 for the persons with MS; 

Protocol #15-0719 for the healthy individuals) and conducted in accordance with the Declaration 

of Helsinki.  

Table 1. Descriptive statistics for the two groups of participants. 

 Number Age (yrs) GPT (s) 

Multiple sclerosis 17 52 ± 8 

(31-60) 

104 ± 40 

(56-202) 

Control 17 52 ± 12 

(31-69) 

61 ± 15 

(42-100) 

Mean ± SD (range).  GPT= grooved pegboard test. 

All participants performed the tests with the dominant hand, which was determined by 

self-report for the persons with MS and by the Edinburgh Handedness Inventory – Short Form 

for the healthy participants (Veale 2014).  

Grooved pegboard test. The pegboard was secured to a plate and placed on top of a force 

transducer (0.0056 V/N, Model 45E15A-U760-A; JR3, Woodland, CA) (Fig. 1A).  Force was 

sampled at 5 kHz, low-pass filtered (second-order bidirectional Butterworth filter, cutoff 12 Hz), 

and stored on a computer for offline analysis.  The force signal was used to determine the time 

taken for the four phases of each peg-manipulation cycle and forces applied to the board when 

inserting a peg (Fig. 1B).  Each subject performed the grooved pegboard test three times with the 

dominant hand.   
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Figure 1. Measurement of the times and force applied to the grooved pegboard during a single 
peg-manipulation phase. A: Pegboard on a force plate. B: An example of the force-time 
trajectory showing the four peg-manipulation phases: (1) selecting the peg, (2) transporting it to 
the hole, (3) inserting it into the hole, and (4) moving the hand back to the well.  Subjects were 
instructed to fill the board one row at a time, from left to right (right-handers) or right to left 
(left-handers) and from top to bottom.   

In addition to the grooved pegboard test, the MS participants performed tests of walking 

endurance and maximal walking speed.  Walking endurance was quantified as the distance 

walked in 6 min when walking around a 160-m track while being encouraged to walk as briskly 

as possible.  Maximal walking speed was measured with two trials of 25-ft walk test in which 

participants were encouraged to walk as fast as possible.  Maximal walking speed is reported as 

the average of the two trials.   

Data analysis. A custom MATLAB script (Version 2015a, Mathworks, Natik, MA) was used to 

analyze the force (mean ± SD) applied to the board during peg selection and insertion and the 

Figure 1 

 

 

 

 

A 
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times for the four phases (Fig. 1B).  The analysis was based on a synchronized event marker that 

denoted the moment the participant began to retrieve a peg from the well.  The peg selection and 

insertion phases were identified when three criteria were met: the first force record prior to the 

event mark with a value of zero, the derivative of a 100-ms overlapping window (by 99 ms) was 

less than -0.01 V/s, and the standard deviation of the subsequent window was greater than the 

preceding one.  The transportation and return phases were defined as the intervals of zero force 

between the force deflections associated with the selection and insertion phases.  Subsequently, 

all phases were visually inspected by the same investigator to ensure that the force profiles were 

similar to the one shown in Figure 1.  Any traces with additional force deflections, such as due to 

dropping a peg, were discarded and replaced with the data for the next or a previous peg.   

The SD of force during peg insertion was measured as an index of force steadiness.  Previous 

studies have found that the normalized measure of force steadiness (coefficient of variation for 

force) during submaximal isometric contractions can explain significant amount of the variance 

in pegboard times for young, middle-aged, and older adults (Almuklass et al. 2016; Hamilton et 

al. 2017; Marmon et al. 2011a).   

To assess the potential influence of fatigability on pegboard performance, the data were averaged 

across three sets of pegs (each set comprised 3 pegs; pegs 2-4, 12-14, and 22-24) for each trial of 

the grooved pegboard test.  Due to the absence of statistically significant differences in timing 

characteristics between the three sets of pegs, the times for the phases and the applied forces 

were averaged across nine pegs for each trial.  As each subject performed 3 trials of the pegboard 

test, the data comprised 51 sets of peg-manipulation measurements for each group of 

participants.  



	
149	

The Shapiro-Wilk test was used to assess normality.  The data obtained for the MS 

participants and the Control group were not normally distributed and were examined with 

nonparametric tests.  Friedman’s test was used to assess differences in the timing of the phases 

within each group and the Mann-Whitney U test used to compare the two groups.  The effect size 

between the four phases was quantified as φ for non-parametric data, which was obtained 

from	 	 "
#

	$ .  The effect size when comparing two values was obtained from	( &
'()'*). 

Spearman (non-parametric data) correlations were used to examine the associations 

between the time to complete the grooved pegboard test with the phase times and the force 

applied to the board during peg insertion.  Based on the correlation results, a stepwise multiple-

regression analysis was used to construct a model that explained significant amounts of the 

variance in the times to complete the grooved pegboard test for each group.  Multicollinearity 

was estimated with the variance inflation factor.  Normality tests were performed on the 

residuals and outliers were removed based on Cook’s Distance criterion (Cook 1977).  All 

statistical procedures were performed with SPSS (version 22.0; SPSS, Chicago, IL) and R 

(version 3.3.2) with	α set to 0.05.  Within-group post-hoc comparisons with the Wilcoxon Signed 

Rank test were made between the 4 phases involved 6 statistical comparisons with an adjusted 

significance set at 0.0083. 

Results 

Results were obtained for 34 individuals who were assigned to one of two groups (Table 

1).  The data obtained for the MS group and the Control group were not normally distributed and 

were examined with nonparametric tests.  

Grooved pegboard test. Pegboard times for persons with MS (104 ± 40) were slower (P < 

0.0001, effect size = 0.68) than those for age- and sex-matched healthy subjects (61 ± 15 s).   
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Phase times. Persons with MS were slower than the Control group (P < 0.0001, effect sizes 

range 0.47-0.66) across all phases of peg manipulation (Table 2, Fig. 2).  Within-group analysis 

indicated statistically significant differences between the times for the phases for each group (P < 

0.0001, effect sizes = 0.82 for MS, 0.88 for control), except between the select and transport 

phases for age- and sex-matched Control group (P = 0.014) (Table 2).  Although the MS group 

took longer to complete each peg-manipulation phase (% increase ± SD), there was considerable 

variability among these participants in the time for each phase: select, 87 ± 90 %; transport, 99 ± 

96%; insert, 63 ± 72 %; return, 84 ± 97% (Fig. 2). 

Table 2. Times for the grooved pegboard test (GPT), the four phases of peg manipulation, and 

force (mean ± SD) applied to the board during peg insertion for the two groups of participants. 

 

GPT Select (s)  Transport (s)  Insert (s)  Return (s)  Force (N)  

Multiple 

sclerosis 

104.2 ± 40.3 0.86 ± 0.39 1.04 ± 0.38 1.26 ± 0.4 0.69 ± 0.4 1.9 ± 0.9 

Control 

61.2 ± 14.8* 0.51 ± 

0.21* 

0.57 ± 0.19* 0.84 ± 

0.3* 

0.40 ± 0.2* 2.00 ± 0.9 

Effect size 0.68 0.54 0.66 0.56 0.47 0.05 

Mean ± SD. * P < 0.05 relative to MS group.  Within-group analysis found statistically 

significant differences between the times for the phases for each group (effect sizes in last 

column), except between the select and transport phases for the Control group (P = 0.014). 
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Force during peg insertion. There were no statistically significant differences between the two 

groups in the mean force applied to the board during peg insertion (P = 0.58, effect size 0.05).  

However, the standard deviation (SD) of force was less for persons with MS (0.73 ± 0.31 N) than 

for the Control group (0.92 ± 0.46 N) (P = 0.02, effect size = 0.23) (Table 2).   

Regression models.  There were significant correlations between the time for the grooved 

pegboard test and the timing of the phases for each group.  There were no statistically significant 

correlations between grooved pegboard time and either mean or SD of force applied to the board 

during the peg-insertion phase (Table 3).    

Figure 2. 
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 Figure	2.	Mean ± SE for the times of each phase for individuals with Multiple 
Sclerosis (MS) relative to the average values for healthy control.  		
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Table 3. Spearman correlation coefficients between time to complete the grooved pegboard test 

with the times for the four phases of peg manipulation and the force (mean ± SD) applied during 

peg insertion. 

n = number of trials.  Bold font indicates statistically significant correlations (P < 0.05).  Data in 

brackets denote partial r values for significant predictor variables from the regression models. 

The variables that were significantly correlated with the pegboard times were entered into 

a stepwise, multiple-regression analysis for each group.  Regression analysis revealed a 

significant model for each group with at least one dependent variable, and the residuals for each 

model were calculated.  Normality tests were then performed on the residuals and outliers were 

removed when the Cook's distance was greater than 4/n, where n is the number of trials for the 

group (Cook 1977).  Based on this criterion, four trials were removed from the analysis for each 

group.  Collinearity was assessed using the variance inflation factor (VIF).  

A regression model for individuals with MS explained 78% of the variance in the 

grooved pegboard time with only one predictor variable: peg-selection time (partial r = 0.88; 

VIF = 1.00; P < 0.001) (Fig. 3A).  Regression analysis for the Control group produced a model 

with two predictor variables that explained 77% of the variance in the grooved pegboard time: 

 

Select (s)  

Transport 

(s)  Insert (s)  Return (s)  Force (N)  

SD force 

(N) 

Multiple sclerosis 

(n = 51) 

0.79 

[0.88] 

0.68 0.69 0.77 0.08 0.01 

Control 

(n = 51) 

0.56 

[0.58] 

0.56 

[0.80] 

0.32 0.65 -0.23 -0.21 
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transport time (partial r = 0.80; VIF = 1.16; P < 0.001) and peg-selection time (partial r = 0.58; 

VIF = 1.16; P < 0.001) (Fig. 3B).   

	

Figure 3. Association between observed and predicted times to complete the grooved pegboard 
test. A: MS individuals.  The predictor variables were identified with a stepwise, multiple 
regression analysis and comprised only one predictor variable; selection phase (partial r = 0.88; 
VIF = 1.00; P < 0.001). B: Healthy Control.  The predictor variables were identified with a 
stepwise, multiple regression analysis and comprised peg-selection time (partial r = 0.58; VIF = 
1.16; P < 0.001) and transport time (partial r = 0.0.80; VIF = 1.16; P < 0.001).   

To further assess the functional significance of the regression model for the MS group, 

correlations were calculated for the pegboard time and the four peg-manipulation phases with 

two tests of walking performance (6-min walk and 25-ft walk).  As indicated in Table 4, time to 
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complete the grooved pegboard test was negatively correlated with the distance walked in 6 min 

(361 ± 140 m) and positively correlated with the time taken to walk 25-ft (8.6 ± 10.6 s).  

Moreover, the only peg-manipulation phase to be significantly correlated with the two walking 

tests was peg-selection time, which emerged from the regression analysis as the strongest 

predictor of the variance in pegboard time for the MS group. 

Table 4. Spearman correlation coefficients between walking performance tests with time to 

complete the grooved pegboard test and the times for the four phases of peg manipulation. 

 GPT (s) Select (s) Transport 

(s) 

Insert (s) Return (s) 

6-min walk 

(m) 

-0.49 -0.55 -0.21 -0.32 -0.26 

25-ft walk (s) 0.55 0.65 0.15 0.30 0.24 

Bold font indicates P < 0.05.	
 
Discussion 

The main finding of the study was that differences in the time to complete a test of 

manual dexterity—the grooved pegboard test—for the two groups of individuals depended on 

the timing of only one or two of the four peg-manipulation phases.  The critical phases 

overlapped for persons with MS (peg selection) and the age- and sex-matched Control group 

(peg selection and transport).  The proportion of the variance in grooved pegboard time 

explained by the predictor variables was similar for the two groups (R2=0.77 and 0.78; Control 

and MS groups respectively).  The results were consistent with the hypothesis in that the time it 

took the two groups of participants to complete the grooved pegboard test was strongly 

associated with different aspects of peg manipulation. 
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The average pegboard time for the MS group was longer than those for the healthy adults.  

Others have similarly reported that pegboard times are slower for persons with MS than for 

healthy individuals (van Winsen et al. 2010; Yozbatiran et al. 2006; Bertoni et al. 2015; 

Kierkegaard et al. 2012).   

Times to complete all four peg-manipulation phases were strongly correlated with 

grooved pegboard times for persons with MS (Table 3).  Nonetheless, the regression analysis 

identified a single predictor variable, time to select each peg from the well (partial r = 0.88), to 

explain most of the variance in the grooved pegboard times.  Peg selection requires the 

participant to pick up one of many pegs from the well, which challenges tactile acuity in 

individuals with reductions in cutaneous sensation.  Persons with MS have impaired light touch-

pressure, reduced two-point discrimination, and impaired vibration sensations of the hand 

compared with healthy controls (Guclu-Gunduz et al. 2012; Cuypers et al. 2010).  Furthermore, 

individuals with MS take longer to complete the Action Research Arm Test, which measures the 

ability to handle and transport small and large objects.  Compared with control subjects, persons 

with MS exhibited less smooth movements, especially during the manipulation components of 

the test.  The strong correlations between the times of the four peg-manipulation phases and time 

to complete the pegboard test (Table 3) suggest that the deficits in manipulation responsible for 

the prolonged peg-selection phase also influenced the times for the other three phases.   

The associations between the grooved pegboard time and walking performance tests for 

persons with MS, suggest that pegboard tests provide a systemic indication of disability status, 

consistent with prior reports of associations between manual dexterity and both activities of daily 

living (Paltamaa et al. 2007; Kierkegaard et al. 2012; Poole et al. 2010) and measures of walking 

performance (Kieseier & Pozzilli 2012).  The current study showed the peg-selection phase is the 
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only phase out of four phases that was associated with walking performance in persons with MS.  

Although there was no a priori prediction of which phase might have the greatest influence on 

pegboard time, it is somewhat surprising that the transport phase—during which the peg is 

oriented to the hole—did not emerge as a predictor variable for the MS group. 

The two predictors for the grooved pegboard times for the Control group were the peg-

selection and transport phases.  The transport phase, which includes the time from the end of peg 

selection to the beginning of peg insertion, was the stronger of the two predictor variables 

(partial r = 0.80).  The transport phase is used to detect and align the orientation of the peg held 

in a pinch between the index finger and thumb to the orientation of the target hole.  This task has 

been reported to require greater tactile acuity and visuomotor coordination than inserting 

cylindrical pegs for the 9-hole pegboard test (Wang et al. 2011; Thompson-Butel et al. 2014).  

However, deteriorations in cutaneous sensation and tactile acuity observed in healthy aging do 

not appear to explain much of the variance in measures of manual dexterity (Bowden et al. 2013; 

Hamilton et al. 2017; Cole et al. 1998; Voelcker-Rehage et al. 2010).  Instead, manipulation of 

the peg during the transport phase likely relies on various aspects of cognitive function.  For 

example, Ashendorf et al. (2009) reported that the time it took old adults (55-74 yrs) to complete 

the grooved pegboard test was significantly correlated with scores on tests of psychomotor 

function, memory, attention, visuospatial ability, and executive function.  An independent 

component analysis by Hamilton et al. (2017) found the grooved pegboard times of old adults 

(65-89 yrs) to be significantly correlated with age and scores on a test of working memory, but 

no test of motor function such as those found for middle-aged adults.  Consequently, the 

emergence of time to select a peg as the second predictor variable (partial r = 0.58) for the 
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pegboard times for the Control group may be related to a decline in working memory (Hamilton 

et al. 2017).   

There was no significant difference in the force applied to the plate between the two 

groups.  However, the Control group had significantly greater SD of the force when inserting a 

peg.  The SD of force exhibited by the Control group during the insertion phase was significantly 

correlated with the times for the transport phase (r = -0.32, P = 0.02) and the insertion phase (r = 

-0.33, P = 0.017).  The negative correlations indicate that those participants with faster times for 

these two phases produced greater force SD during peg insertion.  In contrast, there were no 

significant associations between SD of force and any of the phases in persons with MS.  The 

significant correlations for the Control group are partially consistent with a previous report in 

which healthy participants with faster pegboard times exhibited worse force steadiness during the 

force-matching task (Almuklass et al. 2016).  This association suggests that decision-making 

strategies related to the speed-accuracy tradeoff may account for some of the differences in 

grooved pegboard times of healthy individuals. 

In conclusion, times to complete the four phases involved in manipulating each peg during the 

performance of the grooved pegboard test were all significantly correlated with the time to 

complete the pegboard test for both groups of participants.  Moreover, most of the variance in 

grooved pegboard times for each group of participants was explained by the timing of one or two 

of the peg-manipulation phases: peg selection for both groups and peg transport for the Control 

group.  These findings indicate that the most consistently challenging aspect of the grooved 

pegboard test for the MS participants was selecting a peg, whereas it was transporting the peg for 

the Control group. 
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ABSTRACT   

Sacroiliac (SI) joint dysfunction is a debilitating condition that involves pain in the lower back.  

In healthy individuals, the combined actions of gluteus maximus and contralateral latissimus 

dorsi likely stabilize the joint and minimize displacement of the involved joint surfaces.  The 

purpose of our study was to compare the contributions of individual muscles to identified 

synergies between individuals with SI joint dysfunction and control subjects during walking.  We 

hypothesized that individuals with SI joint dysfunction would exhibit significantly less 

involvement of gluteus maximus and contralateral latissimus dorsi. Electromyographic (EMG) 

signals were recorded from 16 muscles when individuals with SI joint dysfunction and control 

subjects walked at 1 m/s on a force-measuring treadmill.  Non-negative matrix factorization 

(NMF) was used to identify patterns of EMG activity (muscle synergies).  The output from the 

NMF analysis comprised information about the timing of each synergy and the relative 

contribution (weight) of each muscle. Individuals with SI joint dysfunction lacked a muscle 

synergy between gluteus maximus on the affected side and contralateral latissimus dorsi, which 

was present in control subjects.  Moreover, the timing of this muscle synergy was more variable 

for individuals with SI joint dysfunction than healthy controls. The results are consistent with the 

hypothesis that individuals with SI joint dysfunction fail to coactivate gluteus maximus and 

contralateral latissimus dorsi to help stabilize the sacrum and ilium during walking. 

INTRODUCTION 

Sacroiliac (SI) joint dysfunction is the etiology for 15-30% of lower back pain (Bernard 

et al., 1987; Sembrano and Polly, 2009) and causes debilitating pain that impairs mobility (Cher 

et al., 2014).  Symptoms of SI joint dysfunction often include pain in the low back and hip, in 
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addition to pain at the actual joint, all of which can alter gait patterns and muscle activation 

strategies.  

The SI joint assists in load transfer from the spine to the lower extremities (Sturesson et 

al., 1988).  As such, it must provide the necessary stability for this force transfer while 

maintaining a degree of mobility for activities of daily living.  The joint experiences up to 4800 

N of shear force, translates 1.6 mm in the anterior-posterior plane, and may rotate up to 4 degrees 

while ambulating4.  Moreover, when laying supine and performing a straight leg raise, the ilium 

of the rested leg rotates 0.8 degrees backwards and 0.3 degrees inward (Kibsgård et al., 2017).  

The function of this joint has been described by Vleeming and colleagues (Vleeming et 

al., 1992; 2012) with the principles of form and force closure.  Form closure refers to the 

alignment of the concave surface of the sacrum with the convex surface of the ilium, whereas 

force closure is provided by surrounding muscles, ligaments, and fasciae.  The most notable 

component of force closure is the gluteus maximus and its connection through the thoracolumbar 

fascia to the contralateral latissimus dorsi.  Although the etiology of SI joint dysfunction is 

unknown, one potential cause of the disorder is the absence of coactivation between these 

muscles to support force closure of the joint (Kibsgård et al., 2017; Vleeming et al., 1992; 2012; 

Barker et al., 2014).  

Our study is the first to apply a muscle synergy analysis to the electromyographic (EMG) 

signals during walking to quantify the relative activities of the gluteus maximus and latissimus 

dorsi muscles in individuals with SI joint dysfunction.  A muscle synergy comprises a group of 

muscles that perform complimentary actions and can be activated with simple control strategies 

(Lee, 1984; Olree and Vaughan, 1995; Tresch and Jarc, 2009; Clark et al., 2010).  Muscle 

synergies can be quantified by applying a factorization analysis, such as non-negative matrix 
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factorization (NMF) (Lee and Seung, 1999; 2001), to EMG data recorded during a cyclic task 

and identifying muscles with similar activation patterns (Tresch and Jarc, 2009; Clark et al., 

2010, Cappellini et al., 2006; Ting et al., 2005). The NMF algorithm factors the original EMG 

signals into two vectors: a timing vector and muscle weighting vector.  Muscles that are activated 

with similar spatiotemporal patterns are grouped into a synergy with the relative contribution of 

each muscle indicated by its weight.  

Locomotion studies have found that three to five muscle synergies can account for 90% 

of the variance in EMG signals from many limb and trunk muscles during walking and running 

(Olree and Vaughan, 1995; Cappellini et al., 2006).  For example, Olree and Vaughan (1995) 

characterized the muscle synergies required to reconstruct the original EMG signals as 

contributing to either a propulsion or loading function during walking.  The propulsion synergy, 

which occurred in late stance, involved the gastrocnemius, adductor magnus, and hamstring 

muscles.  The loading synergy, which appeared in early stance, involved gluteus maximus, 

gluteus minimus, and erector spinae muscles.  Although multiple studies suggest pain in the low 

back region alters muscle activation patterns (Falla and Hodges, 2017; van Dieen et al., 2017; 

van den Hoorn et al., 2015; Hanada et al., 2011), no studies to date have examined muscle 

activation strategies of individuals with SI joint dysfunction during gait.  This information could 

provide clinicians with insight into how patients with SI joint dysfunction adapt to the pain, and 

could lead to improved treatment plans.  

The purpose of our study was to compare the muscle weights of identified synergies 

between individuals with SI joint dysfunction and control subjects when they walked at the same 

speed.  We hypothesized that individuals with SI joint dysfunction would lack a significant 
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muscle synergy that included gluteus maximus on the affected side and contralateral latissimus 

dorsi when walking and that the timing of this muscle synergy would be more variable.  

METHODS 

Participants 

 Six women (age = 37.2 ± 5.9 yrs, BMI = 29.5 ± 5.0) who were diagnosed with unilateral 

SI joint dysfunction, free of neurological disorders, without surgery to the lower limbs or back, 

and otherwise in good health were compared with six healthy sex- and age-matched control 

subjects (age: 38.8 ± 7.0 yrs, BMI = 21.3 ± 5.9).  Inclusion criteria for the SI joint cohort 

included a positive result on at least three of five physical examination maneuvers, relief on 

injection, and pain for at least six months.  All individuals were diagnosed by a single physician 

to ensure diagnostic consistency.  The protocol was approved by the IRB at the University of 

Colorado Boulder (approval number 15-0586).  Written informed consent was obtained from all 

participants.  

Experimental procedure 

 Participants walked at 1 m/s for 30 s on a dual-belt, force-measuring treadmill (Bertec 

Corp, Columbus, OH).  Muscle activity was recorded with bipolar wireless (Noraxon, USA) 

electrodes from the following muscles, bilaterally: tibialis anterior (TA), medial gastrocnemius 

(MG), vastus lateralis (VL), biceps femoris (BF), gluteus maximus (GM), erector spinae (ES), 

and latissimus dorsi (LD).  Electrodes were attached to the skin using SENIAM guidelines.  

Force and muscle activation signals were recorded synchronously at 1 kHz.  The positions of 32 

reflective markers were recorded at 100 Hz using a 3D 10-camera system (VICON, Centennial, 

CO).  All data were collected in Vicon (Centennial, CO) and exported to MATLAB for 
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processing (Mathworks version 2015a, Natik, MA).  Statistical analyses were performed using R 

(version 2.14.0).  

Data analysis 

 EMG signals were recorded during 15 strides (left heel strike to left heel strike) for each 

subject.  Left heel strike was defined as the index (i) with a local minimum for the position of the 

left heel marker, vertical ground reaction force equal to 0 N, and the vertical ground reaction 

force at the index (i + 10) being at least 5 N greater than the force at index i.  The EMG activity 

from each muscle was then resampled to 0.1% of stride duration to obtain 1000 samples for each 

stride.  EMG signals were band-pass filtered (10-490 Hz) and rectified.  A linear envelope was 

created by low-pass filtering (Butterworth, 4th order, cutoff frequency 10 Hz) and normalizing 

the signal to the peak value during the stride for each subject12.  Data were averaged across the 

15 strides for each muscle to produce the original EMG (EMGo) matrix, an m x t matrix (16 

muscles by 1000 samples) for each subject.  
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Figure 1. Schematic diagram of the NMF procedure.  The rectified and filtered EMG signals 
(left panel) averaged across 15 strides were concatenated and a non-negative matrix factorization 
was performed for each subject with 1-8 factors (muscle synergies).  Each factor comprised a 
weighting vector and a timing vector for the 16 muscles (middle panel).  The criterion for the 
number of synergies required for each subject was the value when ≥ 90% of the variance in the 
original EMG signals was explained and no additional synergies accounted for > 5% of the 
unexplained variance.  The cross product of the total weighting and timing matrices approximate 
the original 16 EMG signals (right panel). 

Non- negative matrix factorization 

 Figure 1 depicts the NMF approach used to decompose the EMG signals (left panel) into 

timing and weighting matrices for each muscle synergy (middle panel), and the subsequent 

estimation of the original EMG signals by cross multiplication of the two vectors (right panel).  

The filtered, rectified, and normalized EMG signals were entered into a 16 x 1000 matrix (16 

muscles at 1000 time points) as shown in the left panel of Figure 1.  An iterative NMF algorithm 

(Lee and Seung, 1999; 2001) was then applied with a progressive increase in the number of 

factors until a criterion was met.  The NMF algorithm decomposed the original m x t EMG 

matrix into an m x n matrix encoding the weights of each muscle on a factor (synergy) and an n 
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x t matrix encoding the activation timing of that factor during the stride.  The product of the 

timing and weighting matrices should approximate the original signals (Clark et al., 2010; Lee 

and Seung, 1999; Ting et al., 2005).  

-./0	»		1	2	3 

An NMF may be performed with the number of factors ranging from 1 to the number of 

input signals (16 in our study).  The number of factors was deemed sufficient when three criteria 

were met (Tresch et al., 2006): first, the variability accounted for (VAF) in the reconstructed 

EMG signals (EMGr) exceeded 90% of the original EMG recordings (EMGo); second, the plot of 

the VAF as a function of number of synergies (scree plot, bottom of middle panel in Figure 1) 

was concave down for the number of factors accepted; and third, subsequent synergies did not 

explain more than 5% of the variance in the original EMG signals.   

456 = 1 −	(-./0 − -./:)
*

-./0*
 

The weights of each muscle in the m x n matrix were normalized to the maximal weight within 

that factor (synergy) so each muscle received a weight between 0 and 1.  NMF requires this 

normalization procedure so that weights across different factors can be compared (Clark et al., 

2010; Lee and Seung, 2001; Lawrence et al., 2015).  

Once the number of factors had been determined, they were organized into functional 

groups23.  This was accomplished by aligning the timing matrix of each factor with a functionally 

relevant event in the gait cycle, such as heel strike and toe off.  The approach used in our study 

was to identify the factors with a peak in their timing vectors closest to heel strike and toe off 

bilaterally for each individual, and then ordering the factors from left heel strike to right toe off.  

Subsequently, the synergies for each participant were compared by finding the peak correlation 

in the timing vectors.   
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Statistics 

 Data were tested for normality using the Shapiro-Wilk test.  Because the number of 

factors was not normally distributed, the Mann-Whitney U test was used to compare the number 

of factors required to reconstruct the EMGo signals between groups with alpha = 0.05.  Similarly, 

the muscle weights within each muscle synergy were non-normally distributed.  Due to non-

normality and our a priori hypothesis of a difference in the muscle weights of gluteus maximus 

and latissimus dorsi, a Mann-Whitney U test was used to evaluate differences in muscle weights 

for gluteus maximus and contralateral latissimus dorsi during the synergies for a loading 

response (early stance).  Effect size was calculated as Z/ ;.  The time series of the muscle 

synergies were compared within each group using Pearson correlation coefficients for each 

participant.  Differences between groups were examined with correlation coefficients for the all 

synergies with a Mann-Whitney U test and the effect size was calculated with Hedge’s g.  
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Figure 2. Rectified and filtered EMG signals recorded with bipolar surface electrodes from 
control subjects (A) and individuals with SI joint dysfunction (B).  Black lines represent the 
average across 15 strides for each subject with grey lines denoting the standard deviation.  The 
EMG amplitudes for each muscle were normalized to maximal amplitude during a gait cycle.  

RESULTS 

Figure 2 shows ensemble averaged EMG data for the six participants in each group, with 

the values for each person representing the average for 15 strides.  The grey bars represent the 

standard deviation.  The averaged EMG from each participant was decomposed using the NMF 

approach (Lee and Seung, 1999;2001). 

 

Number of synergies  

The number of muscle synergies required to reconstruct the original EMG signals with 

the stated criteria (Tresch and Jarc, 2009) ranged from 3-5.  There was no significant difference 

in the number of synergies required to reconstruct the EMG patterns between control subjects 

and individuals with SI joint dysfunction (p = 0.64, r = 0.008).  A scree plot was calculated for 

each participant and then averages were calculated for each group.  Figure 3 depicts scree plots 

of the average variance accounted for by each synergy for individuals with SI joint dysfunction 

(Figure 3A) and control subjects (Figure 3B).  The average number of synergies was 4.2 ± 0.4 

for control subjects and 4.0 ± 0.7 for individuals with SI joint dysfunction. 
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Figure 3. Scree plots for control subjects (A) and individuals with SI joint dysfunction (B) with 
the variance explained by the reconstructed EMG (from multiplying the W and T matrices) on 
the y-axis and the number of synergies on the x-axis. 

Muscle activation timing 

Figure 4 shows the average (dark lines) and individual (grey lines) timing data for each 

muscle synergy in control subjects and individuals with SI joint dysfunction. The correlation 

coefficient for the timing of the third muscle synergy was significantly less (p = 0.002, Hedge’s g 

= 1.7) for individuals with SI joint dysfunction (r = 0.54 ± 0.09) than healthy control subjects (r 

= 0.83 ± 0.05).  These results indicate that the timing of this synergy was more variable for 

individuals with SI joint dysfunction. 
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Figure 4. Averaged timing vectors for controls (A) and SI joint dysfunction (B).  Black lines 
represent the average and grey lines are individual subject data. The synergies are most 
associated with relevant portions of the gait cycle (starting with heel-strike) as denoted on each 
figure.   
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Figure 5 displays the muscles that contributed to each synergy for the two groups of 

participants.  Each muscle synergy comprises muscles that are activated at similar times.  The 

muscles shown in the plots had confidence intervals that did not contain 0 after 1000 bootstraps 

of the NMF procedure (Sawyers et al., 2017), which indicates these muscles were significantly 

active for a given synergy.  The muscles involved in the synergies were functionally related; for 

example, Synergies 2 and 4 for control subjects (Figure 4) were activated from late stance to toe 

off and included gastrocnemius and biceps femoris of the stance leg as well as the contralateral 

tibialis anterior.  Synergies 1 and 3 comprised muscles involved with trunk and hip stabilization 

(erector spinae, latissimus dorsi) as well as hip extension (gluteus maximus).  These synergies 

are consistent with the two synergies for propulsion and two for the loading response described 

by Olree and Vaughan10.  

Table 1 shows mean ± SD muscle weights for the muscle synergies 1 and 3 (loading 

response) for the two groups of participants.  The muscle weights for gluteus maximus on the 

affected side (p = 0.014, effect size = 0.70) and contralateral latissimus dorsi (p = 0.009, effect 

size = 0.74) in the loading response were significantly less than those for control subjects.  There 

was no difference between muscle weights (gluteus maximus, p = 0.82; latissimus dorsi, p = 

0.76) for the loading on the other side; that is, the unaffected side for individuals with SI joint 

dysfunction.  
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Figure 5. Mean ± SD normalized muscle weights for each muscle synergy for control subjects 
(A) and individuals with SI joint dysfunction (B). LBF: left biceps femoris, LES = left erector 
spinae, LGM = left gluteus maximus, LIO = left internal oblique, LLD = left latissimus dorsi, 
LMG = left medial gastrocnemius, LRF = left rectus femoris, LTA = left tibialis anterior, RBF = 
right biceps femoris, RES = right erector spinae, RGM = right gluteus maximus, RIO = right 
internal oblique, RLD = right latissimus dorsi, RMG = right medial gastrocnemius, RRF = right 
rectus femoris, RTA = right tibialis anterior) 

Table 1. Mean ± SD Pearson correlation coefficients between the time series for each muscle 
synergy for control subjects and persons with SI joint dysfunction.  Synergies are ordered from 
left heel strike (Synergy 1) to right toe off (Synergy 4). * P < 0.05 between the two groups. 

 

 

DISCUSSION 

Individuals with SI joint dysfunction exhibit significantly reduced muscle weights 

between gluteus maximus on the affected side with contralateral latissimus dorsi in a synergy 

during walking (Figures 4 and 5).  This muscle synergy was present on both sides (1st and 3rd) in 

control subjects during the loading response, similar to the findings of Olree and Vaughan 

(1995).  Moreover, the timing of this synergy was more variable in individuals with SI joint 

dysfunction than control subjects, which could indicate less stability in the timing of this synergy 

across subjects and steps.  Nonetheless, there were no differences in the number of muscle 

synergies needed to account for 90% of the original EMG data between SI joint subjects and 

controls (Figure 3) using established criteria (Tresch and Jarc, 2009).  

Synergy Control SI

1 0.93 ± 0.01 0.90 ± 0.04

2 0.94 ± 0.02 0.69 ± 0.11

3 0.87 ± 0.05 0.58 ± 0.09†

4 0.84 ± 0.04 0.76 ± 0.12
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The absence of a synergy involving gluteus maximus on the affected side and 

contralateral latissimus dorsi may compromise pelvic stability and contribute to SI joint 

dysfunction by not providing force closure of the joint (Vleeming et al., 1992;2012).  For 

example, Kibsgård and colleagues (2017) used surgically implanted markers to measure small 

backward rotation of the ilium relative to the sacrum during straight leg raises.  When in a supine 

position, the SI joint exhibits a backward rotation of up to 0.8 degrees and inward rotation of 0.3 

degrees of the innominate bone relative to the sacrum.  Additionally, Kibsgård and colleagues 

(2014) found a rotation of 0.5 degrees between the ilium and sacrum during single leg stance of 

individuals with SI joint dysfunction.  Presumably, the actions of gluteus maximus and 

latissimus dorsi can provide stability across the SI joint (Vleeming et al., 1992; 2012; Barker et 

al., 2014).  The lack of synergist activity on the affected side of individuals with SI joint 

dysfunction likely enables slight displacements between the two joint surfaces and contributes to 

the pain associated with the disorder.  

Pain in the lower back or SI joint alters muscle activation patterns during gait (Falla and 

Hodges, 2017; van Dieen et al., 2017; Hanada et al., 2011; Arendt-Nelson et al., 1995).  

Consistent with the result of our study, Hanada and colleagues (2011) found significant 

differences in trunk EMG activity during gait in individuals with chronic low back pain and 

suggested the muscles were activated in subphases, which indicate different muscle synergies.  

Moreover, Arendt-Nelson and colleagues (1995) demonstrated that when injected with a 

hypertonic saline injection, individuals with chronic low back pain had significantly different 

EMG activity during gait when compared with healthy controls and suggested that noxious 

stimuli may alter reflex pathways causing different muscle activation patterns.  Additionally, van 

dem Hoom and colleagues (2015) demonstrated differences in trunk—but not calf— muscle 



	
175	

synergies during gait after a hypertonic saline injection.  This has led to the conclusion that 

muscle synergies involved in propulsion may be relatively stable in the presence of pain, 

whereas secondary synergies may be altered (Falla and Hodges, 2017).  Taken together with the 

results of our study and a recent review by van Dieën and colleageus (2017), it appears that pain 

can modulate EMG activity during gait.     

Consistent with previous studies that have examined muscle synergies during walking, 

our study found three to five muscle synergies were needed to recreate the original EMG 

waveforms (Olree and Vaughan, 1995; Clark et al., 2012; Cappellini et al., 2006).  Additionally, 

the muscle synergies were associated with key events the gait cycle, as determined by functional 

sorting (Kristiansen et al., 2016).  Based on the approach developed by Olree and Vaughan 

(1995), the identified muscle synergies contributed to either propulsion (gastrocnemius, tibialis 

anterior, biceps femoris) or the loading response (gluteus maximus, erector spinae, latissimus 

dorsi).  These results provide evidence that a preprogrammed motor plan may be used for 

walking (Lee, 1984; Cappellini et al., 2006), and this motor plan may differ between individuals 

with SI joint dysfunction and healthy controls.  

Although individuals with SI joint dysfunction exhibit the same number of synergies as 

healthy control subjects when walking at the same speed, the results of our study are consistent 

with the hypothesis that the synergy between gluteus maximus on the affected side and the 

contralateral latissimus dorsi is compromised in individuals with SI joint dysfunction.  This 

information provides clinicians with evidence that SI joint dysfunction presents with altered 

patterns of EMG activity and may provide the basis for future rehabilitation approaches.  
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Chapter VIII 

 

 

SACROILIAC JOINT DYSFUNCTION PATIENTS EXHIBIT ALTERED MOVEMENT 

STRATEGIES WHEN PERFORMING A SIT-TO-STAND TASK 
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ABSTRACT 

Summary of background data: The ability to rise from a chair is a basic functional task that is 

frequently compromised in individuals diagnosed with orthopedic disorders in the low back and 

hip. There is no published literature that describes how this task is altered by SIJD. The purpose 

of this study is compare lower extremity biomechanics and muscle activity onset during rising 

from a chair in individuals with SIJD and healthy persons. Six women with unilateral sacroiliac 

joint dysfunction (SIJD) and six age-matched healthy controls performed a sit-to-stand task 

while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred 

speed from a seated position on an armless and backless adjustable piano stool. We measured 

movement using a 10-camera motion capture system, ground reaction forces for each leg with 

force plates, and muscle activity with surface electromyography. Joint angles and torques were 

calculated using inverse dynamics. Leg loading rate was quantified as the average slope of 

vertical ground reaction force during the 500-ms window preceding maximal knee extension. 

Between-leg differences in loading rates and peak vertical ground reaction forces were 

significantly greater for the SIJD than the control group. Maximal hip angles were significantly 

less for the SIJD group (p = 0.001). Peak hip moment in the SIJD group was significantly greater 

in the unaffected leg (0.75 ± 0.22 N•m/kg) than the affected leg (0.47 ± 0.29 N•m/kg, p = 0.005). 

There were no between-leg or between-group differences for peak knee or ankle moments. The 

onset of activity in the latissimus dorsi muscle on the affected side in the SIJD group was 

delayed and the erector spinae muscles were activated earlier than in Controls. Individuals with 

SIJD have a greater vertical ground reaction force on the unaffected leg, generate a greater peak 

hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected 

leg, and delay the onset of a key muscle on the affected side when rising from a seated position. 
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INTRODUCTION 

Sacroiliac (SI) joint dysfunction (SIJD) is a significant cause of low back pain, accounting for up 

to 40% of nonspecific low back pain cases (Bernard et al., 1987; Sembrano and Polly, 2009). 

The impact of SIJD on quality of life is comparable to that observed with other debilitating 

orthopedic conditions, such as hip osteoarthritis and spinal stenosis, and is higher than many 

cardiovascular-related medical conditions (Cher et al., 2014). Indirect health care expenditures 

associated with low back pain range from $7 - $28 billion per year and individuals lose an 

estimated 5.2 hours of work time per week (Koenig et al., 2016; Stewart et al., 2003). In a recent 

clinical trial on SI joint fusion, 19% of subjects were not working due to back pain (Sembrano 

and Polly, 2009). 

 

The SI joint assists in transferring load from the spine to the lower extremities, and as such, it 

must provide the necessary stability to support this force transfer, as well as the enable mobility 

required to facilitate bipedal locomotion, postural changes, and expansion during parturition 

(Sturesson et al., 1988). The anatomical capabilities of the SI joint that enable these movements 

were characterized by Vleeming and colleagues with the principles of form and force closure 

(Vleeming etl al 1990). Form closure refers to the stability provided by the complimentary 

convex and concave surfaces of the iliac and sacral joint surfaces. In women, the joint surface is 

somewhat smaller, less curved, and more backward tilted than in men, possibly contributing to 

the greater incidence of SIJD in women (Vleeming et al., 2012). Force closure describes the 

function of ligaments and muscles acting across the joint to provide joint mobility and stability. 

The primary muscles responsible for force closure are the gluteus maximus and latissimus dorsi 
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as tension is transmitted from one side to the other through their connection into the superficial 

layer of the thoracolumbar fascia (Carvalhais et al., 2013; Pool-Goudzwaard et al., 1998).  

 

Diagnosing SIJD can be challenging as associated symptoms include pain at the low back and 

hip, in addition to pain at the joint itself (Polly et al., 2016). The etiology of SIJD is unknown, 

but one hypothesis is that it results from inadequate force closure needed to stabilize the joint 

during movement. Possible explanatory mechanisms include inadequate muscle coordination, 

reduced muscle strength, and alterations in ligamentous tension (Pool-Goudzwaard et al., 1998). 

 

Joint and muscle pain are known to alter muscle activation, muscle coordination, normative gait 

patterns, and basic function (Falla and Hodges, 2017; Graven-Nielsen et al., 1997). Joint loading, 

the control of joint movements through coordinated muscular contractions, and joint integrity 

and stability are critical factors that influence degenerative responses (Herzog et al., 2003). Load 

transfer through the pelvis with an unstable SI joint can produce excessive loads on surrounding 

tissues, resulting in pain (Pool-Goudzwaard et al., 1998). Changes in muscle activation may be 

an individual’s attempt to splint the painful area or avoid movements that exacerbate pain 

(Hodges et al., 2015). The consequence of these changes may result in abnormal joint loading, 

which influences the control of muscle forces and limb coordination, and is associated with joint 

degeneration (or worsening thereof) (Herzog et al., 2003; McCrory et al., 2001). Moreover, leg-

loading asymmetry, as a result of pain or injury on one side, has been linked to the pathogenesis 

of osteoarthritis in the knee or hip of the healthy leg (McCrory et al., 2001). 
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The ability to rise from a chair is a basic functional task that requires approximately 60% of the 

available lumbar flexion range of motion (Hsieh et al., 1994). Torque at the hip joint during this 

movement may exceed that occurring during walking or climbing stairs and therefore may 

exacerbate symptoms in individuals suffering from SI joint pain (Gross et al., 1998).  

 

Patients with SIJD present similarly to individuals with hip and spine disorders. While studies 

investigating sit-to-stand mechanics have been performed on individuals with end stage hip 

osteoarthritis and low back pain, there are no published studies that have investigated this daily 

functional task in individuals with SIJD (Al-Obaidi et al., 2003; Arendt-Nielsen et al., 1996; 

Abujaber et al., 2015; Shum et al., 2005). The purpose of our study was to compare lower 

extremity biomechanics and muscle activity onset during rising from a chair in individuals with 

SIJD and healthy persons. We hypothesized that the unilateral discomfort experienced by this 

patient population would result in asymmetrical leg loading and altered muscle onset timing 

compared with healthy controls.   

METHODS 

Twelve women volunteered to participate in the study. Six individuals were diagnosed with 

unilateral SIJD by an orthopedic surgeon who completed a spine fellowship and is an expert in 

diagnosing and treating the disorder. Diagnostic criteria included a positive result on at least 

three out of five physical provocative testing maneuvers designed to target the SI joint and pain 

relief after localized steroid injections (Szadek et al., 2009). These criteria were used in a recent 

randomized controlled trial of SI joint fusion (Whang et al., 2015). Six healthy, age-matched (±5 

yrs) women without back, SI joint, or hip pain, served as the control group (Control). Study 

exclusion criteria included: bilateral symptoms (SIJD group), severe back or hip pain from other 
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causes, prior spinal fusion at any level, major lower extremity surgery, difficulty walking due to 

conditions other than SIJD, severe arthritis, neurological disorders, vestibular or visual 

disturbance affecting balance, fibromyalgia, chronic rheumatologic condition, drug or alcohol 

abuse, or uncontrolled psychiatric disease. All study participants were asked to rate pain severity 

on a visual analog scale (VAS), measured from 0 to 10 cm, and complete the Oswestry Disability 

Index (ODI) to assess overall disability (Fairbank et al., 2000).  

The study was approved by the Institutional Review Board (protocol #15-0586). Written 

informed consent was obtained from all participants before beginning study-related procedures.  

 

Procedures 

Sit-to-stand task 

An armless, backless piano stool was placed on a dual-belt, force-measuring treadmill (Bertec 

Corp., Columbus, OH) with each foot on a separate force plate. The piano stool was adjusted so 

that the top of the stool was even with the back of the participant’s knee joint line (popliteal 

fossa) (Abujaber et al., 2015). With arms placed across the chest, the participant stood up until 

fully upright, and then sat back down. This task, performed at a self-selected speed, was repeated 

three times. We simultaneously collected kinematic data at 100 Hz, and kinetic and 

electromyography data at 1000 Hz.  

 

Motion analysis 

Kinematic data were obtained with a 10-camera motion capture system (VICON, Centennial, 

CO). The data were recorded at 100 Hz and low-pass filtered (2nd order bidirectional 

Butterworth, 10-Hz cutoff). Spherical reflective markers were placed on the sternal notch, C7 
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spinous process, and bilaterally on the acromioclavicular joint, scapula, fifth lumbar vertebrae, 

iliac crest, anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), greater 

trochanter, medial femoral condyle, lateral femoral condyle, medial malleolus, lateral malleolus, 

head of the first metatarsal, head of the fifth metatarsal, and posterior heel. A rigid thermoplastic 

shell with four reflective markers was placed bilaterally on the thighs and shanks to track the 

motion of these segments.  

 

Ground reaction forces were measured for each leg at 1000 Hz and then low-pass filtered 

(Bidirectional 2nd order Butterworth, 30-Hz cutoff). 

 

Wireless surface EMG signals (Noraxon USA, Scottsdale, AZ), sampled at 100 Hz, were used to 

monitor activity in seven muscles bilaterally. Electrodes were placed according to SENIAM 

guidelines over the following muscles: latissimus dorsi, erector spinae,  gluteus maximus, biceps 

femoris,  medial gastrocnemius, rectus femoris, and tibialis anterior (Hermens et al., 2000).  

 

Data Analysis 

Joint angles and moments were calculated using inverse dynamics with Visual 3D (C-Motion, 

Germantown, MD). Leg loading rate was calculated by taking the average slope of vertical force 

during the 500-ms window preceding peak knee extension. Initiation of the sit-to-stand task 

(movement onset) was defined as the time at which the total vertical ground reaction force first 

exceeded 105% of body weight.  
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EMG signals were band-pass filtered (10-490 Hz) and full-wave rectified. Independently, two 

investigators determined muscle onset using visual inspection (Jesunathadas et al., 2012).  

Muscle onset is reported as the percentage of time from movement onset to peak knee extension. 

 

All data were processed and analyzed using a custom Matlab script (MathWorks, Inc., Natick, 

MA). Data were assessed for normality using the Shapiro-Wilk test. Normally distributed data 

were compared by group using an independent groups two-tailed Student’s t-test. Within-subject 

data were compared using paired t-test. Group-by-leg interaction for muscle onset was assessed 

using a two-way ANOVA. Significance was set at a = 0.05. Effect size was calculated using 

Hedge’s g with small, medium, and large effect sizes are defined as 0.2, 0.5 and 0.8, 

respectively. Statistics were performed in R and the results are reported as mean ± SD [30]. 

RESULTS 

Mean (± SD) participant age was 39 ± 7 yrs for the SIJD group and 37 ± 8 yrs for Controls. 

There were no statistically significant differences in height (168 ± 14 cm, 162 ± 6 cm, p > 0.05) 

or body mass (72 ± 14 kg, 59 ± 6 kg, p = 0.07), but BMI was greater for the SIJD group (27.7 ± 

5.0) than for Controls (21.2 ± 2.0) (p=0.02). SIJD symptom duration was 24 ± 11 months and 

ODI score was 41 ± 18% (Table 1). The VAS pain scores for the SIJD group were: low back, 6.3 

± 1.5 cm; affected leg, 6.7 ± 1.9 cm; unaffected leg, 2.7 ± 2.3 cm. Control subjects reported 0 cm 

on VAS and 0% on ODI.  

Table 1: Oswestry Disability Index (ODI) and pain scores measured on a visual analog scale 
(VAS)  

Subject ODI score (%) VAS: Low Back VAS: Affected leg VAS: unaffected 
leg 

1 44 7 5 3 
2 16 3 4 0 
3 54 7 7 3 
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4 52 8 8 6 
5 58 8 7 4 
6 22 7 7 0 
VAS, 0 – 10 cm: 0 = no pain, 10 = maximal pain. ODI score: 0 - 20% minimal, 21 - 40% 
moderate, 41 - 60% severe 
 

 

	
Figure 1.Vertical ground reaction forces (VGRF) for each side (above) and knee angle (dashed 
line below) for a subject in the SIJD group (a) and a control subject (b). The solid trace indicates 
the affected leg (A) and the right leg (B). The vertical line indicates movement onset when the 
summed VGRFs first exceeded 105% of body weight. Average loading rates for each leg were 
calculated from the 500-ms window preceeding peak knee extension (shaded area). 
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Average leg loading rate was symmetrical for the Control group (13 ± 11 N/s difference between 

sides), but was significantly different between legs for the SIJD group (112 ± 48 N/s difference) 

(p = 0.008, Hedge’s g = 1.07) (Table 2, Figure 1). Although the difference in peak vertical 

ground reaction force between legs was negligible for the Control group (3 N), there was a 

significant difference (103 N) between legs for the SIJD cohort (p < 0.000, Hedge’s g = 1.17).  

Table 2: Results for the difference between legs in loading rate, peak vertical ground reaction 
force, and minimal and maximal hip flexion angles.  

 Difference between sides Hip angle 

 Leg loading rate (N/s) Peak VGRF (N) Minimal 
angle (°) 

Maximal angle 
(°) 

SIJD 
 

112 ± 48* 103 ± 31* -5.8 ± 7.5 59.9 ± 9.9* 
 

Control 
 

13 ± 11 3 ± 2 -3.2 ± 6.1 85.2 ± 9.9 

* p < 0.05 between groups. VGRF = vertical ground reaction force. Maximal hip angle occurred 
during the seated position, whereas minimal hip angle corresponded to full extension when 
standing. 
 
Table 3: Normalized peak hip moment (torque) and peak vertical ground reaction force (VGRF) 
results by side and group. 

 Control SIJD 
 Left Right Unaffected Affected 

Peak Hip Moment      

     Normalized to body mass  

     (N•m/kg) 

0.83 ± 0.24 0.87 ± 0.19 0.75 ± 0.22 0.47 ± 0.29* 

     Normalized to body mass  

     and height (N•m/kg•m) 

0.49 ± 0.13 0.52 ± 0.10 0.47 ± 0.13 0.29 ± 0.18* 

Peak VGRF (N/BW) 0.65 ±0.02 0.65 ± 0.05 0.65 ± 0.3 0.58 ± 0.02* 

* p < 0.05 between legs. BW = body weight 
 

Minimal and maximal hip angles were symmetric between legs for both groups, with no 

significant between-group differences for minimal hip angle (Table 2). However, maximal hip 
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angle was significantly less in the SIJD group (59.9 ± 9.9°) than the Controls (85.2 ± 9.9°; p = 

0.001).  

 

Peak hip-flexion moment in the sagittal plane was not statistically different between legs for 

Controls (p = 0.4) (Table 3), but was significantly greater on the affected side (0.47 ±0.29 

N•m/kg) than the unaffected side (0.75 ± 0.22 N•m/kg) in the SIJD group (p = 0.005). The 

difference in peak hip moment between legs was significantly different between groups (p = 

0.005, Hedges g = 0.87). There were no between-legs or between-group differences for peak 

knee or ankle moments. 

Table 4: Muscle onset timing as a percentage of the time from movement onset to peak knee 
extension.  

 
Control (%) SIJD (%) 

Muscle Left leg Right leg Unaffected leg Affected leg 
Latissimus dorsi 12 ± 2 13 ±2 9 ± 3 12 ± 6 
Erector spine 12 ± 3 11 ± 2 9 ± 3 8 ± 4 
Gluteus maximus 18 ± 3 17 ± 5 14 ± 4 15± 5 
Biceps femoris 21 ± 5 21 ± 6 18 ± 6 18 ± 3 

Medial gastrocnemius 14 ± 4 14 ± 4 15 ± 9 15 ± 7 
Rectus femoris 18 ± 7 19 ± 5 15 ±3 14 ± 2 

Tibialis anterior 3 ± 6 2 ± 6 3 ± 5 2 ± 4 
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Figure 2. Representative EMG recordings for an SIJD subject for the right side. Solid vertical 
line indicates movement onset when the summed VGRFs first exceeded 105% of body weight. 
Dashed vertical line indicates time of peak knee extension. 

Average onset times for the recorded muscles occurred after the VGRF first exceeded 105% of 

body weight, which indicates that other muscles contributed to the initial vertical acceleration of 

the center of mass (Figure 2). The onset of EMG activity for all muscles was symmetrical 

between sides for the Control group (Table 4). Latissimus dorsi was activated at the same time in 

both legs for the Control group, but the onset was delayed on the affected side (12 ± 6 %) 

relative to the unaffected side (9 ± 3 %) in the SIJD group. Additionally, SIJD subjects activated 

erector spinae earlier (unaffected: 9 ± 3%; affected: 8 ± 4%) than Controls (right: 12 ± 3%; left: 

11 ± 2%). Two-way ANOVA revealed no interaction by group or by leg. 

DISCUSSION 
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This is the first study to evaluate sit-to-stand kinematics, kinetics, and muscle activity onset in 

individuals with SIJD. Concordant with our hypothesis, individuals with SIJD preferentially 

loaded the unaffected leg when rising from a chair and when fully erect thereby reducing the 

load on the affected leg. Furthermore, they used a smaller range of motion at the hip joint of the 

affected leg and produced a greater peak hip moment on the unaffected side. These findings are 

similar to those reported for individuals with low back pain and with end-stage hip 

osteoarthritis(McCrory et al., 2001; Abujaber et al., 2015; Shum et al., 2005). Additionally, 

individuals with SIJD activated the erector spinae muscles (bilaterally) earlier than Controls, and 

had a delayed onset of the latissimus dorsi muscle on the affected side, indicating a potential 

disruption in the force closure mechanism between sides. 

 

Our results illustrate that the compensatory movement patterns adopted by persons with SIJD are 

similar to those observed in individuals suffering from low back pain and end-stage hip 

osteoarthritis. Shum (2005) evaluated hip flexion in 60 individuals with low back pain during a 

sit-to-stand task and found values similar to those for our SIJD cohort: 64 ± 11° for LBP; 60 ± 

10° for SIJD. In a study evaluating sit-to-stand performance in individuals with end-stage hip 

osteoarthritis, Abujaber et al. reported differences in peak hip moments (normalized to body 

mass and height) between the unaffected (0.48 N•m/kg•m) and affected sides (0.36 N•m/kg•m) 

(Abujaber et al., 2015). Our results were more asymmetric (unaffected: 0.47 N•m/kg•m; 

affected: 0.29 N•m/kg•m,) indicating a greater adjustment in our SIJD group. Similarly, peak 

vertical ground reaction forces were greater in the unaffected side in both our study and one on 

individuals prior to total hip arthroplasty (McCrory et al., 2001). As abnormal joint loading has 

been shown to result in joint degeneration on the healthy limb, it is possible that individuals with 
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SI joint dysfunction may develop early osteoarthritis in the hip of the unaffected side if left 

untreated (McCrory et al., 2001).  

 

Muscle onset timing was variable between individuals and between our two groups. SIJD 

subjects activated their erector spinae muscles earlier than the Control subjects. This is consistent  

with our finding that SIJD individuals have smaller hip flexion angles and thus extend at hip 

earlier than Controls. However, variability within each group was high. In the presence of pain, 

individuals may adopt different motor strategies to accomplish the same task (Hug and Tucker, 

2017; van Dieen et al., 2017). The delay in activation of the latissimus dorsi on the affected side 

of SIJD participants suggests a possible disturbance of the force-closure mechanism. Previous 

research has shown that individuals with low back pain exhibit decreased anticipatory responses 

in preparation for an impending perturbation (Hodges and Richardson, 2017; Nelson-Wong et 

al., 2013). Latissimus dorsi provides an essential component of the force-closure mechanism for 

the SI joint, important for stability during weight-bearing. These findings imply deficient 

movement preparation for rising from a chair in the SIJD group. Further studies, with larger 

sample sizes, to explore muscle activation differences in people with SIJD, are needed. 

 

Our study has limitations. Subject recruitment was difficult due to rigorous inclusion criteria. 

However, this was necessary to ensure the study population had SIJD and not other back- or hip-

related conditions. Although our sample size was small, the effect sizes are large. Additionally, 

our Control group values for peak hip flexion moment and maximal hip flexion angle are similar 

to those reported in the literature with larger sample sizes. Abujaber (2015) reported peak hip 

flexion moments of 0.48 and 0.47 N•m/kg•m, compared with our values of 0.49 and 0.52 
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N•m/kg•m. Maximal hip flexion values for Controls in our study (85 ± 10°) are similar to those 

reported by Shum (2005)  87 ± 11°. Participants were allowed to move at a self-selected speed 

which increased variability, but provided insights for natural movement patterns.  

 

The data from our study represents the first step in understanding the kinematics and kinetics in 

individuals with SIJD. Many cases of SIJD are misdiagnosed as low back pain, perhaps due to 

poor diagnostic criteria or lack of understanding of the disease presentation (Sembrano et al., 

2009; Bernard et al., 1987). More importantly, misdiagnosis of SIJD may lead to unnecessary 

lumbar spinal surgery (Cher et al., 2016).  Katz et al. found that SIJD was the etiology of low 

back pain in 32% of patients treated with lumbar fusion surgery (Katz et al., 2003). Thus, it is 

imperative that we seek to further understand this disease and how to differentiate it from other 

lumbopelvic disorders. 

 

We found that individuals diagnosed with SIJD adopt similar movement patterns to individuals 

with low back pain and end stage hip osteoarthritis when rising from a chair.  They preferentially 

loaded the unaffected leg, maintained this asymmetry when fully upright, and experienced a 

larger peak hip moment on the affected side. Furthermore, muscle onset timing was disrupted in 

key muscles providing force closure of the joint.  

 

 

  



	
191	

References 

Abujaber SB, Marmon AR, Pozzi F, Rubano JJ, Zeni JA. Sit-To-Stand Biomechanics Before 
and After Total Hip Arthroplasty. J Arthroplasty 10: 23-24, 2015. 
 
Adam A, De Luca CJ. Firing rates of motor units in human vastus lateralis muscle during 
fatiguing isometric contractions. J Neurophysiol 99: 268-280, 2005.  
 
Adrian ED, Bronk DW. The discharge of impulses in motor nerve fibres Part II. The frequency 
of discharge in reflex and voluntary contractions. J Physiol 67: 119-151, 1929.  
 
Ahmadian Y, Pillow JW, Paninski L. Efficient Markov chain Monte Carlo 
methods for decoding neural spike trains. Neural Comput 23: 46–96, 2011. 
 
Al-Obaidi SM, Al-Zoabi B, Al-Shuwaie N, Al-Zaabie N, Nelson RM. The influence of pain 
and pain-related fear and disability beliefs on walking velocity in chronic low back pain. Int J 
Rehabil Res Int Z Für Rehabil Rev Int Rech Réadapt 26:101–8, 2003. 
 
Almuklass A, Price RC, Gould JR, Enoka RM. Force steadiness as a predictor of time to 
complete a pegboard test of dexterity in young men and women. J Appl Physiol. 120: 1410-1417, 
2016 
 
Alusi SH, Worthington J, Glickman S, Findley LJ, Bain PG. Evaluation of three different 
ways of assessing tremor in multiple sclerosis. J Neurol Neurosurg Psychiatry 68(6):756–60, 
2000. 
 
Ambike SS, Paclet F, Latash ML, Zatsiorsky VM. Grip-force modulation in multi-finger 
prehension during wrist flexion and extension. Exp Brain Res 227:509–522, 2013. 
 
Amiridis IG, Mani D, Almuklass A, Matkowski B, Gould JR, Enoka RM. Modulation of 
motor unit activity in biceps brachii by neuromuscular electrical stimulation applied to the 
contralateral arm. J Appl Physiol 118: 1544-1552, 2015. 
 
Ang KH, Chong G, Li Y. PID control system analysis, design, and technology. IEEE Trans 
Control Syst Technol 13:559–576, 2005. 
 
Archer E, Koster U, Pillow J, Macke JH. Low- dimensional models of neural population 
activity in sensory cortical circuits. Advances in Neural Information Processing Systems 27: 28th 
Conference on Neural Information Processing Systems, 2014.  
 
Arendt-Nielson L, Graven-Nielsen T, Svarre H, Svensson P. The influence of low back pain 
on muscle activity and coordination during gait: a clinical and experimental study. Pain 1995; 
64: 231-240. 

Arellano CJ, Caha D, Hennessey JE, Amiridis IG, Baudry S, Enoka RM. Fatigue-induced 
adjustment in antagonist coactivation by old adults during a steadiness task. J Appl Physiol 120: 



	
192	

1039-1046, 2016. 

Arpin DJ, Davies BL, Kurz MJ. Multiple sclerosis influences the precision of the ankle 
plantarflexion muscular force production. Gait Posture 45: 170-174, 2016. 

Ashendorf L, Vanderslice-Barr JL, Mccaffrey RJ. Motor tests and cognition in healthy older 
adults. Appl Neuropsychol 16(3):171–6, 2009. 

Baldissera F, Cavallari P, Cerri G. Motoneuronal pre-compensation for the low-pass filter 
characteristics of muscle. A quantitative appraisal in cat muscle units. J Physiol 511:611–627, 
1998. 
 
Baldwin ERL, Klakowicz PM, Collins DF. Wide-pulse width, high-frequency neuromuscular 
electrical stimulation: implications for functional electrical stimulation. J Appl Physiol 101: 228-
240, 2006. 
 
Barker PJ, Hapuarachchi KS, Ross JA, Sambaiew E, Ranger TA, Briggs CA. Anatomy and 
biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint. Clin Anat 
27: 234-240, 2014 

Barry BK, Pascoe MA, Jesunathadas M, Enoka RM. Rate coding is compressed but 
variability is unaltered for motor units in a hand muscle of old adults. J Neurophysiol 97:3206–
3218, 2007. 
 
Baudry S. Aging changes the contribution of spinal and corticospinal pathways to control 
balance. Exer Sport Sci Rev 44: 104-109, 2016. 
 
Baudry S, Maerz AH, Enoka RM. Presynaptic modulation of Ia afferents in young and old 
adults when performing force and position control. J Neurophysiol 103: 623-631, 2010.  
 
Baudry S, Penzer F, Duchateau J. Input-output characteristics of soleus homonymous Ia 
afferents and corticospinal pathways during upright standing differ between young and elderly 
adults. Acta Physiol 210: 667-677, 2014. 
 
Baweja HS, Kennedy DM, Vu J, Vaillancourt DE, Christou EA. Greater amount of visual 
feedback decreases force variability by reducing force oscillations from 0-1 and 3-7 Hz. Eur J 
Appl Physiol 108: 935-943, 2010. 
 
Baweja HS, Kwon M, Christou EA. Magnified visual feedback exacerbates positional 
variability in older adults due to altered modulation of the primary agonist muscle. Exp Brain 
Res 222: 355-364, 2012. 
 
Bays PM, Wolpert DM. Computational principles of sensorimotor control that minimize 
uncertainty and variability. J Physiol 578:387–96, 2007. 
 
Bellumori M, Uygur M, Knight CA. High-speed cycling intervention improves rate-dependent 
mobility in older adults. Med Sci Sports Exerc 2017. 



	
193	

 
Berg RW, Ditlevsen S, Hounsgaard J. Intense synaptic activity enhances temporal resolution 
in spinal motoneurons. PLoS One 3: e3218, 2008. 
 
Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular 
electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol 
111: 2409-2226, 2011. 
 
Bernard TN Jr, Kirkaldy-Willis WH. Recognizing specific characteristics of nonspecific low 
back pain. Clin Orthop Relat Res 217: 266-280, 1987. 
 
Bernstein N. The problem of the interrelation of co-ordination and localization. Arch Biol Sci 
38, 1935. 

Bernstein N. The coordination and regulation of movements. Oxford: Pergamon, 1967 

Bertoni R, Lamers I, Chen CC, Feys P, Cattaneo D. Unilateral and bilateral upper limb 
dysfunction at body functions, activity and participation levels in people with multiple sclerosis. 
Mult Scler J 21(12):1566–74, 2015. 

Bessou P, Joffroy M, Montoya R, Pages B. Evidence of the co-activation of alpha-
motoneurones and static gamma-motoneurones of the sartorius medialis muscle during 
locomotion in the thalamic cat. Exp Brain Res 82:191–198, 1990 
 
Bigland B, Lippold OC. Motor unit activity in the voluntary contraction of human muscle. J 
Physiol 125: 322-335, 1954.  
 
Boonstra TW, Farmer S, Breakspear M. Using computational neuroscience to define common 
input to spinal motor neurons. Front Hum Neurosci 10: 313, 2016.  
 
Bourbonnais D, Vanden Noven S, Carey KM, Rymer WZ. Abnormal spatial patterns of 
elbow muscle activation in hemiparetic human subjects. Brain 112: 85-102, 1989. 
 
Bowden JL, McNulty PA. The magnitude and rate of reduction in strength, dexterity and 
sensation in the human hand vary with ageing. Exp Gerontol 48(8):756–65, 2013. 
 
Bremner FD, Baker JR, Stephens JA. Variation in the degree of synchronization exhibited by 
motor units lying in different finger muscles in man. J Physiol 432: 381-399, 1991.  
 
Buesing L, Macke JH, Sahani, M. Spectral learning of linear dynamics from generalised-linear 
observations with application to neural population data. NIPS 00: 1691–1699, 2012. 
 
Burge J, Ernst MO, Banks MS. The statistical determinants of adaptation rate in human 
reaching. J Vis 8:20.1-19, 2008. 
 
Burke RE. Motor unit types of cat triceps surae muscle. J Physiol 193: 141-160, 1967. 



	
194	

 
Burke RE, Levine DN, Tsairis P, Zajac FE. Physiological types and histochemical profiles in 
motor units of the cat gastrocnemius. J. Physiol 234: 723–748, 1973. 
 
Burke RE, Tsairis P. Anatomy and innervation ratios in motor units of cat gastrocnemius. J 
Physiol 234: 749-765, 1973.  
 
Burke RE, Tsairis P. The correlation of physiological properties with histochemical 
characteristics in single muscle units. Ana NY Acad Sci 228: 145-159, 1974.  
 
Bryden P, Roy E. A new method of administering the Grooved Pegboard Test: Performance as 
a function of handedness and sex. Brain Cogn 58(3):258–68, 2005. 
 
Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and 
running. J Neurophysiol 95: 3426-3437, 2006. 
 
Carpentier A, Duchateau J, Hainaut K. Motor unit behaviour and contractile changes during 
fatigue in the human first dorsal interosseus. J Physiol 534: 903-912, 2001.  
 
Carlton LG. Processing visual feedback information for movement control. J Exp Psychol Hum 
Percept Perform 7:1019, 1981. 
 
Carvalhais VO do C, Ocarino J de M, Araújo VL, Souza TR, Silva PLP, Fonseca ST. 
Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: an in 
vivo experiment. J Biomech 46: 1003–7, 2013. 
 
Carville SF, Perry MC, Rutherford OM, Smith IC, Newham DJ. Steadiness of quadriceps 
contractions in young and older adults with and without a history of falling. Eur J Appl Physiol 
100(5): 527-533, 2006. 
  
Castronovo AM, Negro F, Conforto S, Farina D. The proportion of common synaptic input to 
motor neurons increases with an increase in net excitatory input. J Appl Physiol 119: 1337-1346, 
2015.  
 
Cher D, Polly D, Berven S. Sacroiliac joint pain: burden of disease. Med Devices Auckl NZ 7: 
73–81, 2014. 

Chipchase LS, Schabrun SM, Hodges PW. Corticospinal excitability is dependent on the 
parameters of peripheral electric stimulation: a preliminary study. Arch Phys Med Rehabil 92: 
1423-1430, 2011.  

Christou E. Aging and variability of voluntary contractions. Exerc Sport Sci Rev 39: 77-84, 
2013.  
 
Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical 
stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin 
Neurophysiol 123: 2247-2255, 2012. 



	
195	

 
Clark DL, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules 
predicts reduced locomotor performance and muscle coordination complexity post-stroke. J 
Neurophysiol, 103:844-857, 2010. 
 
Cole KJ, Rotella DL, Harper JG. Tactile impairments cannot explain the effect of age on a 
grasp and lift task. Exp Brain Res 121(3):263–9, 1998. 
 
Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical 
stimulation. Exercise Sport Sci Rev 35: 102-109, 2007. 
 
Colson SS, Martin A, Van Hoecke J. Effects of electromyostimulation versus voluntary 
isometric training on elbow flexor muscle strength. J Electromyogr Kinesiol 19: e311-e319, 
2009. 
 
Cook RD. Detection of influential observation in linear regression. Technometrics 19(1):15–8, 
1977. 
 
Craik KJW. Theory of the human operator in control systems. I. the operator as an engineering 
system. Br J Psychol 38:56–61, 1947.  
 
Cunningham JP, Yu BM. Dimensionality reduction for large-scale neural recordings. Nat 
Neurosci 17: 1500–1509, 2014 
 
Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RLJ. Long-term tens treatment improves 
tactile sensitivity in MS patients. Neurorehabil Neural Repair 24(5):420–7, 2010. 
 
Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of 
Hox-c activity. Nature 425: 926-933, 2003.  

Day SJ, Hulliger M. Experimental simulation of cat electromyogram: evidence for algebraic 
summation of motor-unit action-potential trains. J Neurophysiol 86: 2144-2158, 2001. 

De Luca CJ, LeFever RS, McCue MP, Xenakis AP. Control scheme governing concurrently 
active human motor units during voluntary contractions. J Physiol 329: 129-42, 1982. 
 
De Luca CJ, Erim Z. Common drive of motor units in regulation of muscle force. Trends 
Neurosci 17: 299-305, 1994.  
 
De Luca CJ, Erim Z. Common drive in motor units of a synergistic muscle pair. J Neurophysiol 
87:2200–2204, 2002. 
 
De Luca CJ, Foley PJ, Erim Z. Motor unit control properties in constant-force isometric 
contractions. J Neurophysiol 76: 1503-1516, 1996.  
 
Del Veccio A, Negro F, Felici F, Farina D. Association between motor unit action potential 
parameters and surface EMG features. J Appl Physiol 123: 835-843, 2017.  



	
196	

 
de Vries Ingmar EJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity 
in the neuromuscular system underlying bimanual coordination. J Neurophysiol 116: 2576-2585, 
2016. 
 
Demireva EY, Shapiro LS, Jessell TM, Zampieri N. Motor neuron position and topographic 
order imposed by <- and =- catenin activities. Cell 147: 641-652, 2011.   
 
Denny-Brown D, Pennybacker, JB. Fibrillation and fasciculation in voluntary muscle. Brain 
61: 311-334, 1938. 
 
Desmedt JE, Godaux E. Ballistic contractions in man: characteristic recruitment pattern of 
single motor units of the tibialis anterior muscle. J Physiol 264: 673-693, 1977a.  
 
Desmedt JE, Godaux E. Fast motor units are not preferentially activated in rapid voluntary 
contractions in man. Nature 267: 717-719, 1977b.  

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM 
algorithm. J Royal Stat Soc 39: 1–38, 1977.  

Dideriksen JL, Farina D, Baekgaard M, Enoka RM. An integrative model of motor unit 
activity during sustained submaximal contractions. J Appl Physiol 108: 1550-62, 2010.  
 
Dideriksen JL, Negro F, Enoka RM, Farina D. Motor unit recruitment strategies and muscle 
properties determine the influence of synaptic noise on force steadiness. J Neurophysiol 
107:3357–3369, 2012. 
 
Dideriksen JL, Negro F, Farina D. The optimal neural strategy for a stable motor task requires 
a compromise between level of muscle cocontraction and synaptic gain of afferent feedback. J 
Neurophysiol 114: 1895-1911, 2015. 
 
Dideriksen JL, Feeney DF, Almuklass AW & Enoka RM. Control of force during rapid 
visuomotor force-matching tasks can be described by discrete time PID control algorithms. Exp 
Brain Res 235, 2561-2573, 2017. 
 
Diedrichsen J, Shadmehr R, Ivry RB. The coordination of movement: optimal feedback 
control and beyond. Trends Cogn. Sci. 14:31–39, 2010. 
 
Duchateau J., Enoka RM. Human motor unit recordings: Origins and insight into the integrated 
motor system. Brain Res 1409: 42-61, 2011.  
 
Enoka, RM, Robinson GA, Kossev AR. A stable, selective electrode for recording single 
motor-unit potentials in humans. Exp. Neurol 99: 761-764, 1988.  
 
Erim Z, De Luca CJ, Mineo K, Aoki T. Rank-ordered regulation of motor units. Muscle Nerve 
19: 563-573, 1996. 
 



	
197	

Falla D, Hodges PW. Individualized exercise interventions for spinal pain. Exerc Sport Sci Rev 
45 105-115, 2017. 
 
Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine 25:2940–2952, 2000. 
 
Falconer K, Winter DA. Quantitative assessment of co-contraction at the ankle joint in walking. 
Electromyogr Clin Neurophysiol 25: 135-149, 1985. 
 
Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, Stephens JA. The frequency content 
of common synaptic inputs to motoneurones studied during voluntary isometric contraction in 
man. J Physiol 470: 127-55, 1993. 
 
Farina D, Negro F. Accessing the neural drive to muscle and translation to neurorehabilitation 
technologies. IEEE Rev Biomed Eng 5: 3-14, 2012.  
 
Farina D, Negro F, Dideriksen JL. The effective neural drive to muscles is the common 
synaptic input to motor neurons. J Physiol 49:1–37, 2014. 
 
Farina D, Negro F. Common synaptic input to motor neurons, motor unit synchronization, and 
force control. Exerc Sport Sci Rev 43: 23-33, 2015.  
 
Farina D, Negro F, Muceli S, Enoka RM. Principles of motor unit physiology evolve with 
advances in technology. Physiology 31: 83-94, 2016. 
 
Farina D, Vujaklija I, Sartori M, Kapelner T, Negro F, Jiang N, Bergmeister K, Andalib A, 
Principe J, Aszmann OC. Man/machine interface based on the discharge timings of spinal 
motor neurons after targeted muscle reinnervation. Nat Biomed Eng 1: 1–12, 2017. 
 
Feeney DF, Meyer FG, Noone N, Enoka RM. A latent low-dimensional common input drives a 
pool of motor neurons: a probabilistic latent state-space model. J Neurophysiol 118: 2238-2250, 
2017. 
Feinstein B, Lindegard B, Nyman E, Wohlfart G. Morphologic studies of motor units in 
normal human muscles. Acta Anat Basel 23:127-42, 1955.  
 
Fischer J, Rudick R, Cutter G, Reingold S. The Multiple Sclerosis Functional Composite 
measure (MSFC): an integrated approach to MS clinical outcome assessment. Mult Scler J 
5(4):244–50, 1999. 
 
Fuglevand AJ, Winter DA, Patla AE. Models of recruitment and rate coding organization in 
motor- unit pools. J Neurophysiol 70: 2470-2486, 1993.  
 
Fuglevand AJ, Lester RA, Johns RK. Distinguishing intrinsic from extrinsic factors underlying 
firind rate saturation in human motor units. J Neurophysiol 113: 1310-1322, 2015.  
 
Galganski ME, Fuglevand AJ, Enoka RM. Reduced control of motor output in a human hand 
muscle of elderly subjects during submaximal contractions. J Neurophysiol 69:2108–2115, 1993 



	
198	

 
Gawel M, Kostera-Pruszczyka. Effect of age and gender on the number of motor units in 
healthy subjects estimated by the multipoint incremental MUNE method. J Clin Neurophysiol 
31:272-278, 2014.  
 
Gawthrop P, Gollee H, Loram I. Intermittent Control in Man and Machine, 2014. 
 
Gawthrop P, Loram I, Lakie M, Gollee H. Intermittent control: A computational theory of 
human control. Biol Cybern 104:31–51, 2011 
 
Gazzoni M, Botter A, Vieira T. Surface EMG and muscle fatigue: multichannel approaches to 
the study of myoelectric manifestations of muscle fatigue. Physiol Measurements 38, 5, 2017.  
 
Gershon RC, Cella D, Fox NA, Havlik RJ, Hendrie HJ, Wagster MV. Assessment of 
neurological and behavioural function: the NIH Toolbox. Lancet 9: 138-139, 2010.  
 
Gomes-Osman J, Tibbett JA, Poe BP, Field-Fote EC. Priming for improved hand strength in 
persons with chronic tetraplegia: a comparison of priming-augmented functional task practicem, 
priming alone, and conventional exercise training. Front Neurol 242: 1-13, 2017. 
 
Goodale M a, Pelisson D, Prablanc C. Large adjustments in visually guided reaching do not 
depend on vision of the hand or perception of target displacement. Nature 320:748–750, 1986. 
 
Goodkin DE, Hertsgaard D, Seminary J. Upper extremity function in multiple sclerosis: 
improving assessment sensitivity with box-and-block and nine-hole peg tests. Arch Phys Med 
Rehabil 69(10):850–854, 1988. 
 
Guclu-Gunduz A, Citaker S, Nazliel B, Irkec C. Upper extremity function and its relation with 
hand sensation and upper extremity strength in patients with multiple sclerosis. 
Neurorehabilitation 30(4):369-374, 2012. 
 
Gustafsson B, Pinter MJ. An investigation of threshold properties among cat spinal alpha- 
motorneurones. J Physiol 357: 453-483, 1984.  
 
Graven-Nielsen T, Svensson P, Arendt-Nielsen L. Effects of experimental muscle pain on 
muscle activity and co-ordination during static and dynamic motor function. Electroencephalogr 
Clin Neurophysiol 105:156–64, 1997. 
 
Gross M, Stevenson P, Charette S, Pyka G, Marcus R. Effect of muscle strength and 
movement speed on the biomechanics of rising from a chair in healthy elderly and young 
women. Gait Posture 8:175–85, 1998. 
 
Gydikov A, Kosarov D. Extraterritorial potential field of impulses from separate motor units in 
human muscles. Electromyography 12: 127-147, 1972 
 



	
199	

Gydikov A, Kosarov D, Kossev A, Kostov K, Trayanova N, Radicheva N. 1986 Motor unit 
potentials at high muscle activity recorded by selective electrodes. Biomed. Biochem Acta 45: 
S63–S68, 1967. 
 
Gydikov A, Kossev A, Trayanova N, Radicheva N. Selective recording of motor unit 
potentials. Electromyogr Clin Neurophysiol 26: 273-281, 1986. 
 
Hamill J, Palmer C, Van Emmerick REA. Coordinative variability and overuse injury. Sports 
med arth rehab therapy tech 4: 45:54, 2012.  
 
Hamilton LD, Thomas E, Almuklass AM, Enoka RM. A framework for identifying the 
adaptations responsible for differences in pegboard times between middle-aged and older adults. 
Exp Gerontol 97:9-16, 2017.  
Hanada EY, Johnson M, Hubley-Kozey C. A comparison of trunk muscle activation 
amplitudes during gait in older adults with and without chronic low back pain. Phys Med and 
Rehab 3: 920-928, 2011 

Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal 
motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14:264–
275, 2008.  

Heckman CJ, Enoka RM. Motor Unit. Comp Physiol 2: 2629-2682, 2012.  
 
Henneman E. Relation between size of neurons and their susceptibility to discharge. Science 
126: 1345–1347, 1957. 
 
Henneman E, Olson CB. Relations between structure and function in the design of skeletal 
muscles. J Neurophysiol 28: 581–598, 1965 
 
Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal 
motoneurons. J Neurophysiol 28: 560–580, 1965. 
 
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for 
SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol Off J Int Soc 
Electrophysiol Kinesiol 10:361–74, 2000. 
 
Herzog W, Longino D, Clark A. The role of muscles in joint adaptation and degeneration. 
Langenbecks Arch Surg 388:305–15, 2003. 
 
Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated 
with low back pain. A motor control evaluation of transversus abdominis. Spine 21:2640–50, 
1996. 
 
Hodges PW, Smeets RJ. Interaction Between Pain, Movement, and Physical Activity: Short-
term Benefits, Long-term Consequences, and Targets for Treatment. Clin J Pain 31:97–107, 
2015. 
 



	
200	

Holobar A, Zazula D. Correlation-based decomposition of surface electromyograms at low 
contraction forces. Med Biol Eng Comput 42: 487-95, 2004.  
 
Hug F, Tucker K. Muscle Coordination and the Development of Musculoskeletal Disorders: 
Exerc Sport Sci Rev, in press. 
 
Hsieh CY, Pringle RK. Range of motion of the lumbar spine required for four activities of daily 
living. J Manipulative Physiol Ther 17:353–8, 1994. 
 
Hyngstrom AS, Kuhnen HR, Kirking KM, Hunter SK. Functional implications of impaired 
control of submaximal hip flexion following stroke. Muscle Nerve 49(2) 225-232, 2014. 
 
Jesunathadas M, Aidoor SS, Keenan KG, Farina D, Enoka RM. Influence of amplitude 
cancellation on the accuracy of determining the onset of muscle activity from the surface 
electromyogram. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol 22:494–500, 
2012. 
 
Jo S, Massaquoi SG. A model of cerebellum stabilized and scheduled hybrid long-loop control 
of upright balance. Biol Cybern 91:188–202, 2004. 
 
Johansson S, Ytterberg C, Classon IM, Lindberg J, Hillert J, Andersson M, Widen 
Holmqvist L, von Koch L. High concurrent presence of disability in multiple sclerosis. J 
Neurology. 254: 767-773, 2007.  
 
Johnson MD, Thompson CK, Tysseling VM, Powers RK, Heckman CJ. The potential for 
understanding the synaptic organization of human motor commands via the firing patterns of 
motoneurons. J Neurophysiol 118:520-531, 2017.  
 
Jones KE, Hamilton AF, Wolpert DM. Sources of signal-dependent noise during isometric 
force production. J Neurophysiol 88:1533–1544, 2002. 
 
Kalron A, Greenberg-Abrahami M, Gelav S, Achiron A. Effects of a new sensory re-
education on hand sensibility and manual dexterity in people with multiple sclerosis. 
NeuroRehabil 32: 943-948, 2013. 
 
Katz B, Miledi R. Membrane noise produced by acetylcholine. Nature 226: 962-3, 1970.  
 
Katz V, Schofferman J, Reynolds J. The sacroiliac joint: a potential cause of pain after lumbar 
fusion to the sacrum. J Spinal Disord Tech 16:96–9, 2003. 
 
Kanda K, Hashizume K. Factors causing difference in force output among motor units in the 
rat medial gastrocnemius muscle. J Physiol 448: 677-695, 1992. 

Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence of amplitude cancellation 
on the simulated surface electromyogram. J Appl Physiol 98: 120-131, 2005.   
 



	
201	

Kernell, D. The limits of firing frequency in cat lumbosacral motoneurones possessing different 
time course of after hyperpolarization. Acta Physiol Scand 65: 87–100, 1965. 
 
Kernell D, Monster AW. Threshold current for repetitive impulse firing in motoneurones 
innervating muscle fibres of different fatigue sensitivity in the cat. Brain Research 229: 193-196, 
1981.  
 
Kibsgård TJ, Røise O, Sturesson B, Röhrl S, Stuge, B. Radiosteriometric analysis of 
movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic 
girdle pain. Clin Biomech 29: 406–411, 2014. 
 
Kibsgård TJ, Röhrl SM, Røise O, Sturesson B, Stuge B. Movement of the sacroiliac joint 
during the active straight leg raise test in patients with long lasting severe sacroiliac joint pain. 
Clin Biomech 47: 40-45, 2017 
 
Kierkegaard M, Einarsson U, Gottberg K, Koch LV, Holmqvist LW. The relationship 
between walking, manual dexterity, cognition and activity/participation in persons with multiple 
sclerosis. Mult Scler J 18(5):639–46, 2012. 
 
Kieseier BC, Pozzilli C. Assessing walking disability in multiple sclerosis. Mult Scler 
18(7):914-924, 2012. 
 
Kirkwood PA, Sears TA, Westgaard RH. Recurrent inhibition of intercostal motoneurones in 
the cat. J Physiol 319:111–130, 1981.  

Koch MW, Murray TJ, Fisk J, Greenfield J, Bhan V, Jacobs P, Brown M, Metz LM. Hand 
dexterity and direct disease related cost in multiple sclerosis. J Neurol Sci 341(1-2):51–4, 2014. 

Koenig L, Saavoss J, Cher D. Productivity benefits of minimally invasive surgery in patients 
with chronic sacroiliac joint dysfunction. Clin Outcomes Res 77, 2016. 

Kobayashi H, Koyama Y, Enoka RM, Suzuki S. A unique form of light-load training 
improves steadiness and performance on some functional tasks in older adults. Scand J Med Sci 
Sports 24: 98-110, 2014. 
Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature 427:244–
247, 2004. 
 
Kouzaki M, Kimura T, Yoshitake Y, Hayashi T, Moritani T. Subthreshold electrical 
stimulation reduces motor unit discharge variability and decreases the force fluctuations of 
plantar flexion. Neurosci Lett 513: 146-150, 2012. 
 
Kornatz KW, Christou EA, Enoka RM. Practice reduces motor unit discharge variability in a 
hand muscle and improves manual dexterity in older adults. J Appl Physiol 98: 2072-2080, 2005.  
 
Kline JC, De Luca CJ. Synchronization of motor unit firings: an epiphenomenon of firing rate 
characteristics not common inputs. J Neurophysiol 115: 178-92, 2015.  
 
Kragt JJ, Linden FAVD, Nielsen JM, Uitdehaag BM, Polman CH. Clinical impact of 20% 



	
202	

worsening on Timed 25-foot Walk and 9-hole Peg Test in multiple sclerosis. Mult Scler J 
12(5):594–8, 2006. 
 
Kuhn A, Aertsen A, Rotter S. Higher-order statistics of input ensembles and 
the response of simple model neurons. Neural Comput 15: 67–101, 2003. 
 
Kristiansen M, Samani A, Madeleine P, Hansen EA. Effects of 5-weeks of bench press 
training on muscle synergies: a randomized controlled study. J Str Cond Res 30: 1948-1959, 
2016. 

Lagerquist O, Walsh LD, Blouin JS, Collins DF, Gandevia SC. Effect of a peripheral nerve 
block on torque produced by repetitive electrical stimulation. J Appl Physiol 107: 161-167, 2009. 

Laidlaw DH, Bilodeau M, Enoka RM. Steadiness is reduced and motor unit discharge is more 
variable in old adults. Muscle and Nerve 23:600–612, 2000. 
 
Laine CM, Martinez-Valdes E, Falla D, Mayer F, Farina D. Motor neuron pools of 
synergistic thigh muscles share most of their synaptic input. J Neurosci 35: 12207-16, 2015. 
 
Latash ML. Motor synergies and the equilibrium-point hypothesis. Motor Control 14: 294-322, 
2007.  
 
Lawrence EL, Dayanidhi S, Fassola I, Requejo P, Leclercq C, Winstein CJ, Valero-Cuevas, 
FJ. Outcome measures for hand function naturally reveal three latent domains in older adults: 
strength, coordinated upper extremity function, and sensorimotor processing. Frontiers in Aging 
Neuroscience, 7, 108, 2015. 
 
Lee WA. Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16: 
135-170, 1984. 
 
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 
401: 788–791, 1999. 
 
Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Adv Neural Inform Proc 
Syst 13: 556–562, 2001. 
 
Loram ID, Gollee H, Lakie M, Gawthrop PJ.  Human control of an inverted pendulum: is 
continuous control necessary? Is intermittent control effective? Is intermittent control 
physiological? J Physiol 589:307–324, 2011. 
 
Loram ID, Lakie M, Gawthrop PJ. Visual control of stable and unstable loads: what is the 
feedback delay and extent of linear time-invariant control? J Physiol 587:1343–65, 2009. 
 
Loram ID, Van De Kamp C, Lakie M. Does the motor system need intermittent control? Exerc 
Sport Sci Rev 42:117–125, 2014. 
 



	
203	

Jenny AB, Inukai J. Principles of motor organization of the monkey cervical spinal cord. J 
Neurosci 3: 567-575, 1983.  

Liddell EGT, Sherrington CS. Recruitment and some other factors of reflex inhibition. Proc R 
Soc Lond Ser B 97:488-518, 1925. 
 
Macefield VG, Fuglevand AJ, Bigland- Ritchie B. Contractile properties of single motor units 
in human toe extensors assessed by intraneural motor axon stimulation. J Neurophysiol 75: 2509-
2519, 1996.   
 
Macke JH, Buesing L, Cunningham JP, Byron MY, Shenoy KV, Sahani M. Empirical 
models of spiking in neural populations. NIPS, pages 1350–1358, 2011. 
 
Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular 
electrical stimulation. Eur J Appl Physiol 110: 223-234, 2010. 
 
Maluf KS, Shinohara M, Stephenson JL, Enoka RM. Muscle activation and time to task 
failure differ with load type and contraction intensity for a human hand muscle. Exp Brain Res 
167:165–177, 2005. 
 
Mangion AZ, Yuan K, Kadirkamanathan V, Niranjan M, Sanguinetti G. Online variational 
inference for state-space models with point-process observations. Neural Comput 23: 1967–
1999, 2011. 
 
Manto M, Bower JM, Conforto AB.  Consensus paper: Roles of the cerebellum in motor 
control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 457–487, 
2012. 
 
Marmon AR, Pascoe MA, Schwartz RS, Enoka RM. Associations among strength, steadiness, 
and hand function across the adult life span. Med Sci Sports Ex 43(4):560-567, 2011a.  
 
Marmon AR, Gould JR, Enoka RM. Practicing a functional task improves steadiness with 
hand muscles in older adults. Med Sci Sports Exerc 43: 1531-1537, 2011b. 
 
Martin A, Grospretre S, Vilmen C, Guye M, Mattei AP, Le Fur Y, Bendahan D, Gondin J. 
The etiology of muscle fatigue differs between two electrical stimulation protocols. Med Sci 
Sports Exerc 48: 1474-1484, 2016. 
 
Martinez-Valdez E, Negro F, Laine CM, Falla D, Mayer F, Farina D. Tracking motor units 
longitudinally across experimental sessions with high-density surface electromyography. J 
Physiol 595:1479-1496, 2017.  
 
McCrory JL, White SC, Lifeso RM. Vertical ground reaction forces: objective measures of 
gait following hip arthroplasty. Gait Posture 14:104–9, 2001. 
 
McPhedran AM, Wuerker RB, Henneman E. Properties of motor units in a homogeneous red 
muscle (soleus) of the cat. J Neurophysiol 28: 71–84, 1965. 



	
204	

 
McNaughton BL, Battaglia FP, Jensen O.  Path integration and the neural basis of the 
“cognitive map.” Nat Rev Neurosci 7:663–78, 2006. 
 
Merletti R, Rainoldi A, Farina D. Surface electromyography for noninvasive characterization 
of muscle. Exer Sport Sci Rev 29: 20-25, 2001. 
 
Merletti R, Botter A, Troiano A, Merlo E, Minetto MA. Technology and instrumentation for 
detection and conditioning of the surface electromyographic signal: state of the art. Clinical 
Biomechanics 24: 122-134, 2009.  
 
Miall RC, Weir DJ, Stein JF. Manual tracking of visual targets by trained monkeys. Behav 
Brain Res 20:185–201, 1986. 
 
Miall RC, Weir DJ, Stein JF. Intermittency in human manual tracking tasks. J Mot Behav 
25:53–63, 1993. 
 
Milner- Brown HS, Stein RB, Yemm R. The contractile properties of human motor units 
during voluntary isometric contractions. J Physiol 228: 285-306, 1973.  
 
Mileusnic MP, Brown IE, Lan N, Loeb GE. Mathematical models of proprioceptors. I. Control 
and transduction in the muscle spindle. J Neurophysiol 96:1772–1788, 2006. 
 
Monster AW, Chan H. Isometric force production by motor units of extensor digitorum 
communis muscle in man. J Neurophysiol 40: 1432-1440, 1977.  
 
Moran F, Leonard T, Hawthrone S, Hughes CM, McCrum-Gardner E, Johnson MI, Rakel 
BA, Sluka KA, Walsh DM. Hypoalgesia in response to transcutaenous electrical nerve 
stimulation (TENS) depends on stimulation intensity. J Pain 12(8): 929-935, 2011. 
 
Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the 
variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93: 
2449-2459, 2005.  

Mottram CJ, Jakobi JM, Semmler JG, Enoka RM. Motor-unit activity differs with load type 
during a fatiguing contraction. J Neurophysiol 93: 1381–1392, 2005. 

Negro F, Holobar A, Farina D. Fluctuations in isometric muscle force can be described by one 
linear projection of low-frequency components of motor unit discharge rates. J Physiol 527: 
5925- 5938, 2009.  

Negro F, Muceli S, Castronovo AM, Holobar A, Farina D. Multi-channel intramuscular and 
surface EMG decomposition by convolutive blind source separation. J Neural Eng 13:1741-
1758, 2016a.  
 
Negro F, Yavuz US, Farina D. The human motor neuron pools receive a dominant slow-
varying common synaptic input. J Physiol in press, 2016b.   



	
205	

 
Neilson PD, Neilson MD, O’Dwyer NJ. Internal models and intermittency: A theoretical 
account of human tracking behavior. Biol Cybern 58:101–112, 1988. 
 
Nelson-Wong E, Bourgeois G, DeGrandis C, Hamilton N, Kirven I, Pieratt Kl. Lumbopelvic 
control and hip muscle activation in low back pain cases vs controls, Omaha, NE: 2013. 
 
Nordstrom MA, Fuglevand AJ, Enoka RM. Estimating the strength of common input to 
human motoneurons from the cross-correlogram. J Physiol 453: 547-574, 1992.  
 
O’Sullivan I, Burdet E, Diedrichsen J. Dissociating Variability and Effort as Determinants of 
Coordination. PLoS Comput Biol 5:e1000345, 2009. 
 
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. 
Neuropsychologia 9: 97-113, 1971. 
 
Oliveira AS, Gizzi L, Farina D, Kersting WG. Motor modules of human locomotion: 
influence of MG averaging, concatenation, and number of step cycles. Front Hum Neurosci 8, 
2014. 
 
Olree KS, Vaughan CL. Fundamental patterns of bilateral muscle activity in human 
locomotion. Biol Cybern 73L: 409-414, 1995. 
 
Ostwald SK, Snowdon DA, Rysavy SDM, Keenan NL, Kane RL. Manual dexterity as a 
correlate of dependency in the elderly. J Am Geriat Soc. 37: 963-969.  
 
Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rahnama Rad K, 
Vidne M, Vogelstein J, Wu W. A new look at state-space models for 
neural data. J Comput Neurosci 29: 107–126, 2010. 
 
Paltamaa J, Sarasoja T, Leskinen E, Wikstrom J, Malkia E. Measures of physical 
functioning predict self-reported performance in self-care, mobility, and domestic life in 
ambulatory persons with multiple sclerosis. Arch Phys Med Rehabil 88(12):1649–1657, 2007. 
 
Park SH, Kwon M, Christou EA. Motor output oscillations with magnification of visual 
feedback in older adults. Neurosci Lett 24: 647-648, 2017. 
 
Partridge LD. Modification of neural output signals by muscles: a frequency response study. J 
Appl Physiol 20, 150-156, 1965. 
 
Perkel DH, Gerstein GL, Moore GP. Neuronal spike trains and stochastic point processes. I. 
The single spike train. Biophys J 7: 391–418, 1967. 
 
Person RS. Rhythmic activity of a group of human motoneurones during voluntary contraction 
of a muscle. Electroencephalogr Clin Neurophysiol 36: 585–595, 1974 
 



	
206	

Person RS, Kudina LP. Discharge frequency and discharge pattern of human motor units 
during voluntary contraction of muscle. Electroencephalogr Clin Neurophysiol 32:471–483, 
1972. 
 
Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol 88:1097–118, 
2005. 
 
Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural 
control. J Neurophysiol 91:410–423, 2004. 
 
Poole JL, Nakamoto T, McNulty T, Montoya JR, Weill D, Dieruf K, Skipper B. Dexterity, 
visual perception, and activities of daily living in persons with multiple sclerosis. Occup Ther 
Health Care 24(2):159-170, 2010. 
 
Pool-Goudzwaard AL, Vleeming A, Stoeckart R, Snijders CJ, Mens JMA. Insufficient 
lumbopelvic stability: a clinical, anatomical and biomechanical approach to “a-specific” low 
back pain. Man Ther 3:12–20, 1998. 
 
Powers RK, Binder MD. Summation of motor unit tensions in the tibialis posterior muscle of 
the cat under isometric and nonisometric conditions. J Neurophysiol 66; 1838-1846, 1991. 
 
Powers RK, Heckman CJ. Synaptic control of the shape of the motoneuron 
pool input-output function. J Neurophysiol 117: 1171–1184, 2017. 
 
Powers RK, Dai Y, Bell BM, Percival DB, Binder MD. Contributions of the input signal and 
prior activation history to the discharge behaviour of rat motoneurones. J Physiol 562: 707–724, 
2005. 
 
Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, 
Lacefield C, Yang W, Ahrens M, Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L. 
Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89: 285–
299, 2016. 
 
Proske U, Gandevia SC. The kinaesthetic senses. J Physiol 587:4139–4146, 2009. 
 
Radebold A, Cholewicki J, Panjabi MM, Patel TC. Muscle response pattern to sudden trunk 
loading in healthy individuals and in patients with chronic low back pain. Spine 25:947–54, 
2000. 
 
Reuben DB, Magasi, S, McCreath, HE, Bohannon, RW, Wang, YC, Bubela, DJ, Rymer 
WZ, Beaumont J, Rine RM, Gershon, RC. Motor assessment using the NIH Toolbox. 
Neurology, 80(11 Suppl 3), S65–S75, 2013. 
 
Rudroff T, Justice JN, Matthews S, Enoka RM. Muscle activity differs with load compliance 
during fatiguing contractions with the knee extensor muscles. Exp Brain Res 203:307–316, 2010. 
 



	
207	

Ruff RM, Parker SB. Gender- and age-specific changes in motor speed and eye-hand 
coordination in adults: normative values for the Finger Tapping and Grooved Pegboard Tests. 
Percept. Mot. Skills 76, 1219–1230, 1993. 
 
Salonikidis K, Amiridis IG, Oxyzoglou N, de Villareal ES, Zafeiridis A, Kellis E. Force 
variability during isometric wrist flexion in highly skilled and sedentary individuals. Eur J Appl 
Physiol 107: 715-722, 2009. 
 
Sawyers A, Pai Y-C, Bhatt T, Ting LH. Neuromuscular responses differ between slip-induced 
falls and recoveries in older adults, J Neurophysiol 117: 509-522, 2017. 
 
Scott SH. The computational and neural basis of voluntary motor control and planning. Trends 
Cogn. Sci. 16:541–549, 2012. 
 
Sears TA, Stagg D. Short-term synchronization of intercostal motoneurone activity. J Physiol 
263:357-81, 1976. 
 
Sembrano JN, Polly DW. How often is low back pain not coming from the back? Spine 34: 
E27-32, 2009. 
 
Seynnes O, Hue OA, Garrandes F, Colson SS, Bernard PL, Legros P, Fiatarone Singh MA. 
Force steadiness in the lower extremities as an independent predictor of functional performance 
in older women. J Aging Phys Activity 13(4): 395-408, 2005. 
 
Shum GLK, Crosbie J, Lee RYW. Effect of low back pain on the kinematics and joint 
coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine 30:1998–
2004, 2005. 
 
Slifkin AB, Vaillancourt DE, Newell KM. Intermittency in the control of continuous force 
production. J Neurophysiol 84:1708–1718, 2000. 
 
Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and 
clinical effectiveness. J Pain 4: 109-121, 2003. 
 
Smith AC, Brown EN. Estimating a state-space model from point process observations. Neural 
Comput 15: 965–991, 2003. 
 
Sosnoff JJ, Newell KM. Aging, visual intermittency, and variability in isometric force output. J 
Gerontol B Psychol Sci Soc Sci 61B:P117–P124, 2006. 
 
Sosnoff JJ, Valantine AD, Newell KM. Independence between the amount and structure of 
variability at low force levels. Neurosci Lett 392:165–169, 2006. 
 
Stein RB, French AS, Mannard A, Yemm R. New methods for analyzing motor function in 
man and animals. Brain Research 40:187-192, 1972. 
 



	
208	

Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due 
to common pain conditions in the US workforce. JAMA 290:2443–54, 2003. 
 
Sturesson B, Selvik G, Uden A. Movements of the sacroiliac joints. A 
roentgenstereophotogrammetric analysis. Acta Orthop Scand Suppl 59: 89, 1988. 
 
Szadek KM, van der Wurff P, van Tulder MW, Zuurmond WW, Perez RSGM. Diagnostic 
validity of criteria for sacroiliac joint pain: a systematic review. J Pain 10:354–68, 2009. 
 
Thompson-Butel AG, Lin GG, Shiner CT, Mcnulty PA. Two common tests of dexterity can 
stratify upper limb motor function after stroke. Neurorehabil Neural Repair 28(8):788–96, 2014. 
 
Ting LH. and Macpherson JM. A limited set of muscle synergies for force control during a 
postural task. J Neurophysiol 93: 609–613, 2009.  
 
Townsend BR, Paninski L, Lemon RN. Linear encoding of muscle activity in primary motor 
cortex and cerebellum. J Neurophysiol 96: 2578–2592, 2006. 
 
Tracy BL, Enoka RM. Older adults are less steady during submaximal isometric contractions 
with the knee extensor muscles. J Appl Physiol 92: 1004-1012, 2002. 
 
Tracy BL, Maluf KS, Stephenson JL, Enoka RM. Variability of motor unit discharge and 
force fluctuations across a range of muscle forces in older adults. Muscle and Nerve 32:533–540, 
2005. 
 
Tresch MC, Jarc A. The case for and against muscle synergies. Curr. Opin. Neurobiol. 19:601–
607, 2009. 
 
Truccolo W. Stochastic models for multivariate neural point processes: collective dynamics and 
neural decoding. Analysis of Parallel Spike Trains. New York: Springer, p. 321–341, 2010.  
 
Van Cutsem M, Feiereisen P, Duchateau J, Hainaut K. Mechanical properties and behaviour 
of motor units in the tibialis anterior during voluntary contractions. Can J Appl Physiol 
22(6):585-597, 1997.  
 
van Dieën J, Herta F, Hodges PW. Low-back pain patients learn to adapt motor behavior with 
adverse secondary consequences. Med Sci Sports Ex 45: In Press, 2017. 
 
van den Hoorn W, Hodges PW, van Dieen JH, Hug F. Effect of acute noxious stimulation to 
the leg or back on muscle synergies during walking. J. Neurophysiol 113: 244–54, 2014 
 
van de Kamp C, Gawthrop PJ, Gollee H, Loram ID. Refractoriness in Sustained Visuo-
Manual Control: Is the Refractory Duration Intrinsic or Does It Depend on External System 
Properties? PLoS Comput Biol 9:e1002843, 2013. 
 



	
209	

van Winsen LM, Kragt JJ, Hoogervorst EL, Polman CU, Uitdehaag BM. Outcome 
measurement in multiple sclerosis: detection of clinically relevant improvement. Mult Scler J 
16(5):604–10, 2010. 
 
Vanderthommen M, Duchateau J. Electrical stimulation as a modality to improve performance 
of the neuromuscular system. Exerc Sport Sci Rev 35: 180-185, 2007. 
 
Veale JF. Edinburgh Handedness Inventory – Short Form: A revised version based on 
confirmatory factor analysis. Laterality 19(2):164–77, 2014. 
 
Vila-Cha C, Falla D, Farina D. Motor unit behavior during submaximal contractions following 
six weeks of either endurance or strength training. J Appl Physiol 109, 1455-1466, 2010. 
 
Vleeming A, Stoeckart R, Volkers AC, Snijders CJ. Relation between form and function in 
the sacroiliac joint. Part I: Clinical anatomical aspects. Spine 15:130–2, 1990. 
 
Vleeming A, Buyruk HM, Stoeckart R, Karamursel S, Snijders CJ. An integrated therapy for 
peripartum pelvic instability: a study of the biomechanical effects of pelvic belts. Am J Obstet 
Gynecol 166: 1243–1247, 1992. 

Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. The 
posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine 
20:753–8, 1995. 

Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH. The sacroiliac 
joint: an overview of its anatomy, function and potential clinical implications. J Anat 221: 537–
567, 2012. 

Voelcker-Rehage C, Godde B. High frequency sensory stimulation improves tactile but not 
motor performance in older adults. Motor Control 14(4):460–77, 2010. 

Walker ER, Hyngstrom AS, Schmit BD. Sensory electrical stimulation improves foot 
placement during targeted stepping post-stroke. Exp Brain Res 232(4): 1137-1143, 2014. 

Wang YC, Magasi SR, Bohannon RW, Reuben DB, McCreath HE, Bubela DJ, Gershon 
RC, Rymer, ZW. Assessing Dexterity Function: A Comparison of Two Alternatives for the NIH 
Toolbox. J. Hand Ther. 24:313–321, 2011. 
 
Watanabe RN, Magalhães FH, Elias LA, Chaud VM, Mello EM, Kohn AF. Influences of 
premotoneuronal command statistics on the scaling of motor output variability during isometric 
plantar flexion. J Neurophysiol 110: 2592-2606, 2013.  
 
Wegrzyk J, Fouré A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, Place N, Bendahan 
D, Gondin J. Extra forces induced by wide-pulse, high-frequency electrical stimulation: 
occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol 126: 1400-
1412, 2015. 
 



	
210	

Welch TDJ, Ting LH. A feedback model reproduces muscle activity during human postural 
responses to support-surface translations. J Neurophysiol 99:1032–8, 2008. 
 
Werremeyer MM, Cole KJ. Wrist action affects precision grip force. J Neurophysiol 78:271–
280, 1997. 
 
Whang PG, Cher D, Polly D, Frank C, Lockstadt H, Glaser J.  Sacroiliac Joint Fusion Using 
Triangular Titanium Implants vs. Non-Surgical Management: Six-Month Outcomes from a 
Prospective Randomized Controlled Trial. Int J Spine Surg 9: Article 6, 2015.  
 
Williams ER, Baker SN. Circuits generating corticomuscular coherence investigated using a 
biophysically based computational model. I. Descending systems. J Neurophysiol 101: 31–41, 
200 
 
Windhorst U. Do Renshaw cells tell spinal neurones how to interpret muscle spindle signals? 
Prog Brain Res 80:283–294, 1989. 
 
Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev 
Neurosci 12:739–751, 2011. 
 
Wu HG, Miyamoto YR, Gonzalez- Castro LN, Ölveczky BP, Smith MA. Temporal structure 
of motor variability is dynamically regulated and predicts motor learning ability. Nature 
Neuroscience 17: 312-321, 2014.  
 
Yozbatıran N, Baskurt F, Baskurt Z, Ozakbas S, Idiman E. Motor assessment of upper 
extremity function and its relation with fatigue, cognitive function and quality of life in multiple 
sclerosis patients. J Neurol Sci 246(1-2):117–22, 2006. 
 
Yu WS, van Duinen H,  Gandevia SC. Limits to the control of human thumb and fingers in 
flexion and extension. J Neurophysiol 103, 278-289, 2010.  
	
	
 


