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Abstract

In this paper, we develop numerical methods based on the weighted Birkhoff average for
studying two-dimensional invariant tori for volume-preserving maps. The methods do not rely
on symmetries, such as time-reversal symmetry, nor on approximating tori by periodic orbits.
The rate of convergence of the average gives a sharp distinction between chaotic and regular
dynamics and allows accurate computation of rotation vectors for regular orbits. Resonant and
rotational tori are distinguished by computing the resonance order of the rotation vector to a
given precision. Critical parameter values, where tori are destroyed, are computed by a sharp
decrease in convergence rate of the Birkhoff average. We apply these methods for a three-
dimensional generalization of Chirikov’s standard map: an angle-action map with two angle
variables. Computations on grids in frequency and perturbation amplitude allow estimates of
the critical set. We also use continuation to follow tori with fixed rotation vectors. We test
three conjectures for cubic fields that have been proposed to give locally robust invariant tori,
but are not able to provide compelling evidence that one of these three fields is more robust
than the other two.

1 Introduction

The dynamics of an integrable Hamiltonian or volume-preserving system consists of quasi-periodic
motion on invariant tori. As such a system is smoothly perturbed, KAM theory implies that some
of these tori persist, but some are replaced by isolated periodic orbits, resonances, and chaotic
regions. Typically, as the perturbation grows, more of the tori are destroyed. For two-dimensional
maps, the robust tori are circles on which the dynamics is conjugate to rigid rotation with a
Diophantine rotation number. It is conjectured from careful numerical study that the most robust
of these invariant circles have rotation numbers that are “noble”—they are in the quadratic field
of the golden mean, or equivalently they have continued fractions with an infinite tail of ones
[Mac83, MS92]. A similar result for higher dimensional tori has not been found even though, as we
discuss below, there has been considerable research and conjecture on a suitable generalization.

Here we investigate the existence of tori for a map f : Td × Rk → Td × Rk of the angle-action
form

x′ = x+Ω(y′)

y′ = y + εF (x).
(1)

We view x ∈ Td = Rd/Zd as angle variables, taken modulo one, and y ∈ Rk as action variables. The
function Ω : Rk → Td is the frequency map and F : Td → Rk is the force. This family of maps is the
composition of two volume-preserving shears, e.g., (x, y) 7→ (x+Ω(y), y) and (x, y) 7→ (x, y+εF (x)),
and hence is always volume-preserving. If k = d, (1) is symplectic if the force and frequency maps
are gradients: F (x) = −∇V (x), Ω(y) = ∇S(y). Two prominent and well-studied examples of
such maps are Chirikov’s standard area-preserving map [Chi79], and Froeschlé’s four-dimensional
symplectic map [FS73].

When ε = 0 the dynamics of (1) is simple: the actions are constant, and every orbit lies on a
“horizontal” d-torus

H(y) = {(x, y) : x ∈ Td}. (2)
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When ε = 0, the dynamics of f |H is simply horizontal translation by ω = Ω(y), i.e., every orbit on
H has rotation vector ω. More generally an orbit {(xt, yt) : t ∈ Z} has rotation vector ω if the limit

ω = lim
T→∞

1

T

T−1∑
t=0

Ω(yt) (3)

exists. Of course, if ε = 0, then this is simply the value of the frequency map on the conserved
action.

We say that a d-dimensional torus T is rotational if it is homotopic to H(0). If, in addition,
the torus is invariant under (1) and f |T is conjugate to rigid translation with a rotation vector ω
we will denote the torus by Tω.

When the force F and frequency map Ω are analytic and a twist condition is satisfied, KAM
theory shows that there are tori with “Diophantine” rotation vectors (see App. A) that persist when
ε is nonzero but small [CS90, Xia92]. A vector ω is defined to be Diophantine, denoted ω ∈ D,
where

D =
⋃
c>0

{
ω : |m · ω − n| > c

∥m∥d∞
, ∀(m,n) ∈ Zd \ {0} × Z

}
. (4)

By contrast, we say that ω is resonant if there exists a nonzero m ∈ Zd such that

m · ω = n ∈ Z. (5)

For area-preserving maps, i.e., (1) with d = k = 1, resonances correspond to periodic orbits
where ω = p/q is rational. Elliptic periodic orbits are typically surrounded by island chains, and
hyperbolic orbits have stable and unstable manifolds that typically intersect transversely, giving
rise to chaotic motion. For d > 1 island chains are replaced by resonant tubes, and these are also
surrounded by chaotic zones. Typically as the parameter ε grows, so do the regions of chaos and
resonance, destroying more of the rotational tori. Our goal in this paper is to use computations of
(3) to investigate this destruction.

Our major tool is the weighted Birkhoff average that was introduced in [DSSY16, DDS+16,
DSSY17]. We will use this to compute the rotation vector (3) efficiently and accurately. The
rigorous convergence results given in [DY18] imply that the same method can be used to distinguish
and remove chaotic orbits, leaving only regular behavior. We previously used this method to
compute rotational circles for the Chirikov standard map and several other 2D maps [SM20].

For two-dimensional maps, a computed rotation number has been used to efficiently find trans-
port barriers [SSC+13] and to find the breakup of circles in Chirikov’s standard map [AC15] and in
nontwist maps [SMS+18]. The gradient of ω was also used as an indicator of stickiness [SMS+19]. A
number of methods have been proposed for computing a scalar rotation number accurately, based
on recurrence [EV01], conjugacy to rigid rotation on a circle [SV06, LV09], or recurrence times
using Slater’s method [May88, ACP06, ZTRK07].

There have been a number of studies of the existence and breakup of tori for angle-action maps.
A major focus of these studies is to attempt to identify the subset of the Diophantine frequency
vectors for which the invariant tori are locally robust ; that is, more resistant to destruction than
nearby vectors. The noble numbers that are robust for the area-preserving case are quadratic
irrationals — in the field Q[ϕ] of the golden mean — and it is known that more generally the class

3



of algebraic numbers (see App. B) contains Diophantine vectors [Cas57]. As a result, it has long
been thought that a robust d-torus would typically have a frequency vector that is formed from a
basis for a degree-d algebraic field.

We will study the case d = 2 and k = 1 where the expected robust rotation vectors are
cubic irrationals. One can classify the cubic fields by the discriminant of the minimal generating
polynomial, see App. B. There are—at least—three natural conjectures about which of these fields
should replace Q[ϕ]. For example, Hu and Mao [HM88] studied a map on T2, the case d = 2 and
k = 0, looking at tori in the cubic field with discriminant D = −44. This field is “natural” from
the point of view of a generalization of the continued fraction, the Jacobi-Perron algorithm (JPA).
Just like the golden-mean has a continued fraction with elements all equal to one, there is a basis
for the D = −44 field with a period-one JPA expansion consisting of “all ones”. The robustness of
tori with frequency vectors in this same field were also studied in [Tom96]. Both of these studies
used periodic orbits to approximate the tori.

A higher dimensional case, d = 2, k = 1, was studied by Artuso et al [ACS92]. They fixed the
frequency map to be Ω = (y, δ) so that only the first component depends upon the action variable.
Given an irrational value for δ, this map is a quasiperiodically forced area-preserving map. In
this paper frequencies from another cubic field, that with D = −23, were studied. This field
corresponds to the so-called spiral mean proposed by [KO86] when they developed a generalization
of the Farey, or Stern-Brocot, tree expansion. The spiral mean is distinguished by its period-
one expansion (that spirals) on this tree. Artuso again used periodic orbits to approximate the
incommensurate frequency vector, and generalized Greene’s residue criterion [Gre79] for this case.
The residue criterion essentially conjectures that a torus exists only if sequences of periodic orbits
that converge to it have linearizations with bounded eigenvalues, as measured by the trace, or a
scaled version of this that Greene called the residue.

Greene’s residue was also used in [FM13] to study a fully three-dimensional case, again looking
for breakup of tori by studying sequences of periodic orbits that approach given incommensurate
vectors on the generalized Farey tree. This map will be the focus of the paper below, see §2. Later,
Fox and Meiss [FM16] computed tori directly from their conjugacy to a rigid rotation, using the
efficient, parameterization method [HCF+16] to compute Fourier series.

Studies of the breakup of tori for four-dimensional, symplectic maps of the form (1) include
[KM89] who computed periodic orbits and the frequency map on the Kim-Oslund tree for the
Froeschlé map. Later [BM93] studied a complex extension of this map and tori in the spiral mean
field as well as several quartic irrational vectors. Attempts to extend Greene’s residue method
to the 4D case include [Tom96, VBK96, ZHS01], though to our knowledge, no one has found a
generalization of the renormalization, or self-similarity property that is observed in the 2D case.

A third cubic field that has been proposed to replace Q[ϕ] corresponds to the cubic D = 49 field
[Loc92]. This field has the smallest discriminant of all the totally real fields, and is conjectured to
have bases with the largest value of the (linear) Diophantine constant (see §5) among all vectors for
d = 2 [Cus74]. Lochak argued that the linear approximation constant is more appropriate, from the
point of view of KAM theory, than the simultaneous constant, as these numbers appear in the small
denominators in the Fourier series expansions for the conjugacy functions of tori. The maximal
Diophantine property, of course, would generalize the similar, proven property of the golden mean
for d = 1.

The rest of this paper proceeds as follows. In §2 we introduce the standard three-dimensional,
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volume-preserving model that we study in this paper. Section 3 describes the weighted Birkhoff
average. In §4 we describe methods for distinguishing regular behavior from chaotic dynamics, and
for distinguishing resonant from rotational tori. In §5 we consider locally robust tori and the critical
surface and in §6 study the continuation of tori with rotation vectors in cubic algebraic fields. We
conclude in §7 and describe some of the many problems that remain open.

2 Standard Volume-Preserving Map

A three-dimensional analog to Chirikov’s area-preserving map and Froeshlé’s four-dimensional sym-
plectic map was obtained in [DM12]. This normal form corresponds to (1) with (x, y) ∈ R2 × R1

and the frequency map and force

Ω(y, δ) = (y + γ,−δ + βy2) ,

F (x) = −a sin(2πx1)− b sin(2πx2)− c sin(2π(x1 − x2)) .
(6)

We will think of five of the parameters as fixed, choosing

γ = 1
2(
√
5− 1) ≈ 0.61803 , β = 2 , a = b = c = 1 . (7)

This leaves two essential parameters, δ and ε, that will vary for our computations. Note that for
each δ, the image Ω(y, δ) is a parabola in R2: only invariant tori with rotation vectors that lie on
this curve exist in the integrable case ε = 0. However, we take δ to be an essential parameter.
Allowing it to vary makes the frequency map Ω : R2 → R2 a diffeomorphism.

More generally, suppose that the initial point (x, y) = (0, y0) lies on a rotational, invariant
two-torus with rotation vector ω. We call such a torus Tω(ε, y0, δ), labeling it with parameters
ε and δ as well as the initial action. Note that Tω(0, y0, δ) = H(y0) and that a Cantor set of
Diophantine tori are preserved when ε ≪ 1, according to the volume-preserving version of KAM
theory [CS90, Xia92].

Previous computational studies of invariant tori for this map include studies of “crossing orbits”
giving parameter thresholds for the “last torus” that divides vertically separated points [Mei12],
a version of Greene’s residue criterion to find critical tori with given rotation vectors—tori at the
threshold of destruction [FM13], and the parameterization method to numerically compute tori
and their breakup thresholds [FM16].

The first three panels of Fig. 1 show examples of orbits for (1) with (6) for three values of ε, and
δ = −0.4 (other values of δ exhibit similar behavior). As predicted by KAM theory, when ε ≪ 1
the typical orbits appear to be dense on (rotational) two-tori Tω that are graphs over the angles
x with y nearly constant. Even in Fig. 1(a), however one can see two resonant tubes. These are
driven by the primary resonances, (5), of the force F , and correspond to the phases x1 and x1−x2
remaining constant mod 1 (the third driven resonance, where x2 is constant is out of range of the
figure). These resonant tubes correspond to the resonances in Table 1 such that (m,n) = (1, 0, 1)
and (1,−1, 0) respectively. As ε grows, more of the orbits become chaotic and other resonances
become visible as tube-like structures, in particular the resonant tubes with (m,n) = (2,−1, 1) and
(2, 1, 2) seen in Fig. 1(b,c). Note that the transport of chaotic trajectories in y can be impeded by
recently destroyed tori, just like in the 2D case, where it is known that the flux through cantori is
small near the break-up threshold [Mei12, Mei15].
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Figure 1: (a-c) Orbits for (1) and (6) for δ = −0.4 and three values of ε. All initial conditions have x1 = 0, x2 = 0.

Each image shows fourteen different orbits with y0 ∈ [−0.4, 0.5]. As ε increases, the number of rotational tori

decreases, and at ε = 0.05, only resonant tori and chaotic orbits are visible in the figure. (d) Values of (y0, δ) for

which there are rotational tori with ω ∈ [0, 1]2 for ε ≥ 0.015. The color represents the largest value of ε with a

corresponding rotational torus.

We restrict our interest to tori with rotation vectors (3), in a fixed range, ω ∈ [0, 1]×[0, 1]. When
ε = 0, (6) implies that ω depends linearly on δ and quadratically on y0. Indeed, each resonance in
(16) defines a parabola (or a vertical line if m2 = 0), m · Ω(y0, δ) = n, in the (y0, δ) plane. When
ε is relatively small, we expect that persisting rotational tori will have rotation vectors that at
least approximate this quadratic relationship. To illustrate this we compute the rotation vector ω
using the methods described in §3 and §4 below. Fig. 1(d) shows the values of (y0, δ) for which
there are rotational tori with ω ∈ [0, 1]2. The color represents the largest ε ∈ [0.015, 0.045] for
which a rotational torus exists for a given (y0, δ). We omitted smaller ε values so that the resonant
gaps in the figure would be clearer. The parabolic relationship between y0 and δ is still clear in
this image—the gaps represent initial conditions for which the corresponding orbits are resonant
or chaotic. Several of the low order resonances are labeled in the figure. As ε grows there are fewer
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(m,n) y (m,n) y

(1,1,1) -0.481 (2,-1,0) -0.317
(1,-1,0) -0.164 (0,2,1) -0.224
(1,1,1) -0.019 (2,0,1) -0.118
(1,0,1) 0.382 (2,-1,1) 0.090

(2,1,2) 0.157
(0,2,1) 0.224
(1,2,2) 0.276
(1,1,2) 0.494

Table 1: Action values for resonances up to order two in the range |y| < 0.5 when ε = 0 and
δ = −0.4.

initial conditions that lie on rotational tori, indicated by the dearth of yellow in Fig. 1(d).
Our primary goal is to study the persistence of rotational tori of (1) with conditions (6) as ε

grows from 0. We observe in §4 that, for ω ∈ [0, 1]2, there are rotational tori only when ε < 0.051.
In §5 we compute the most robust torus in subsets of this ω region; that is, the rotational torus
with the largest maximum ε value in the subset.

In our calculations, we use the ε = 0 approximation to determine appropriate ranges for y0 and
δ, setting (y0, δ) = Ω−1(p1, p2), i.e., inverting the frequency map (6), to obtain

(y0, δ) ∈ P = {(p1 − γ, β(p1 − γ)2 − p2) : −0.05 ≤ p1, p2 ≤ 1.05}. (8)

The added 0.05 in P is a buffer to cover all ω ∈ [0, 1]2 as ε grows. Our calculations indicate this
buffer is sufficient; indeed, we have checked that values of (y0, δ) outside this range do not give such
ω values.

3 Weighted Birkhoff Averages

A finite-time Birkhoff average on an orbit of a map f : M → M beginning at a point z ∈ M for
any function h : M → R is the sum

BT (h)(z) =
1

T

T−1∑
t=0

h ◦ f t(z). (9)

This average need not converge rapidly. Even if the orbit lies on a smooth invariant torus with
irrational rotation vector, the convergence rate of (9) is O(T−1), caused by edge effects for the
finite orbit segment. By contrast, for the chaotic case, the convergence rate of (9) is observed to
be O(T−1/2), in essence as implied by the central limit theorem [LM10].

The convergence of (9) on a quasiperiodic set can be significantly improved by using the method
of weighted Birkhoff averages developed in [DSSY16, DDS+16, DSSY17]. Since the source of error
in the calculation of a time average for a quasiperiodic set is due to the lack of smoothness at the
ends of the orbit, we use a windowing method similar to the methods used in signal processing.
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Let

g(t) ≡
{

e−[t(1−t)]−1
t ∈ (0, 1)

0 t ≤ 0 or t ≥ 1
,

be an exponential bump function that converges to zero with infinite smoothness at 0 and 1, i.e.,
g(k)(0) = g(k)(1) = 0 for all k ∈ N. To estimate the Birkhoff average of a function h : M → R
efficiently and accurately for a length T segment of an orbit, we modify (9) to compute

WBT (h)(z) =

T−1∑
t=0

wt,T h ◦ f t(z) , (10)

where

wt,T =
1

S
g
(
t
T

)
, S =

T−1∑
t=0

g
(
t
T

)
. (11)

That is, the weights w are chosen to be normalized and evenly spaced values along the curve g(t).
For a quasiperiodic orbit, the infinitely smooth convergence of g to zero at the edges of the definition
interval preserves the smoothness of the original orbit. Indeed it was shown in [DY18] that for a
C∞ map f , a quasiperiodic orbit {f t(z)} with Diophantine rotation number, and a C∞ function
h, it follows that (10) is super-convergent: there are constants cn, such that for all n ∈ N∣∣∣∣WBT (h)(z)− lim

N→∞
BN (h)(z)

∣∣∣∣ < cnT
−n. (12)

Several papers [GMS10, LFC92, LV14] include a similar method to compute frequencies with a
sin2(πt) function instead of a bump function, but this function is fourth order smooth rather than
infinitely smooth at the two ends, implying that the method converges asO(T−4), see e.g., [DSSY17,
Fig. 7]. In addition to converging more rapidly, the weighted Birkhoff average (10) is relatively
straightforward to implement.

4 Computing Tori

Using the weighted Birkhoff average (10), we can compute an approximation to a rotation vector ω
as WBT (Ω) for the frequency map (6). To discern whether an orbit lies on a rotational torus Tω we
must first distinguish chaotic from regular orbits, and then distinguish resonances from nonresonant
tori.

By contrast to the case of regular orbits, when an orbit is chaotic (i.e., has positive Lyapunov
exponents), (10) typically converges much more slowly; in general it converges no more rapidly
than the unweighted average of a random signal, i.e., with an error O(T−1/2) [LM10, DSSY17].
We see in §4.1 that this distinction is valid for the map (1) as well. While is is also possible to use
Lyapunov exponents themselves—or the related “fast indicators” such as FLI—for this distinction,
we showed previously for the 2D case that the weighted Birkhoff average gives the same result and
that it can be more efficient [SM20].

Given a regular orbit, in §4.2, we use resulting the high-precision computation ω ≃WBT (Ω) to
define an approximate resonance order. This allows a distinction, up to some precision, between
those orbits that have a commensurate frequency vector and those that appear to be nonresonant.
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4.1 Distinguishing Chaos

To establish the distinction between chaotic and regular orbits, we estimate the number of digits of
accuracy in the weighted Birkhoff average. Following [SM20], we compute (10) for two segments of
an orbit, using iterates {1, . . . , T} and {T +1, . . . , 2T}; these values should be approximately equal
when T is large since the Birkhoff average depends only on the choice of orbit. A comparison of
these gives the error estimate

dig
(T )
h = − log10

∣∣WBT (h)(z)−WBT (h)(f
T (z))

∣∣ , (13)

i.e., the number of consistent digits beyond the decimal point for the two approximations of WB(h).

If, for a modest value of T , dig
(T )
h is relatively large, then the convergence is relatively rapid,

meaning the orbit is regular. On the other hand, if dig
(T )
h is small, then convergence is slow, with

the implication that the orbit is chaotic.
Using h = Ω, (6), the accuracy of the calculation of both components of ω is

dig(T ) = min{dig(T )
Ω1

, dig
(T )
Ω2
}, (14)

In addition to distinguishing chaotic and regular orbits, dig(T ) can be used to estimate the precision
of ω. We will use these precision estimates in §5 when we consider number theoretic properties of
the frequencies of the robust tori.

Fig. 2 shows the behavior of orbits when δ = −0.4 and ε = 0.02 for a set of initial conditions
along the line x1 = x2 = 0. Panel (a) is the slice with |x2| ≤ 0.005 through Fig. 1(b); it clearly
shows a strongly chaotic region for y ≲ −0.41, then narrower chaotic bands for −0.41 ≲ y ≲ −0.07,
followed by a region of tori and resonances up to y ≈ 0.27, and finally a mixed regular/chaotic region
up to y = 0.5. The largest resonant regions shown correspond to m = (1,−1) near y = −0.16, and
m = (1, 0) near y = 0.38; we also saw these in Fig. 1 and Table 1.

Fig. 2(b) shows corresponding values of dig(T ) for three values of T . Even when T = 103

(blue points), the calculations can distinguish between strongly chaotic—where dig(T ) ∼ 2 − 4—
and regular orbits—where dig(T ) ∼ 8. However there is a population of orbits, especially those
near the edges of resonant regions, that have intermediate values of dig(T ), and for these it is
harder to obtain a definitive classification. When T = 3(10)4 (orange points), the values of dig(T )

become better separated—with regular orbits having dig(T ) ∼ 13 − 14 and chaotic orbits still
having dig(T ) ∼ 2− 4 —but there are still a fair number of intermediate values, again especially at
the region edges. However, when T = 106 (red points), regular orbits predominantly achieve full
floating point accuracy, dig(T ) ∼ 14− 16, while chaotic orbits still have dig(T ) ≲ 5.

Fig. 2(c) shows the components of ω computed for T = 106. Each of the flat intervals corre-
sponds to a range of y values in a resonant tube, and these are bounded by chaotic regions where
the computed values of ω vary rapidly with y and the corresponding accuracy is low.

The dichotomy between the values of dig(T ) for chaotic and regular orbits is also reflected in
histograms of dig(T ), shown in Fig. 3. These show the fraction of those orbits with ω ∈ [0, 1]2 that
have a given value of dig(T ) for a range of δ, ε, and initial conditions (0, 0, y0), with y0 and δ chosen
such that (y0, δ) ∈ P, (8). For the smaller T , panel (a), there are clear peaks near dig(T ) = 2 and
14 corresponding to chaotic and regular orbits, respectively, but there is also a broad shoulder with
8 < dig(T ) < 13 that corresponds to orbits for which the distinction is less clear. Note, however,
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Figure 2: Orbits of (1) for δ = −0.4, and ε = 0.02 with initial conditions (0, 0, y) and a grid of 104 initial y values

between −0.7 and 0.5 (a) Slice for |x2| ≤ 0.005 showing the (y, x1) phase space. (b) dig(T ), (14), as a function of

initial y for T = 103 (blue), 3(10)4 (orange), 106 (red). The value of dig(T ) changes significantly more at the edge of

resonant tubes than it does in the middle of the tube, and for small T the accuracy of the computation is low. (c)

The two components of the rotation vector ω using T = 106.

that in panel (b), where T = 106, this middle peak has moved to larger values of dig(T ), leaving
only a smaller tail just below the peak at dig(T ) = 14.

T = 106

dig(T)

(b)

Figure 3: Frequency histograms of dig(T ) for (a) T = 3(10)4 and (b) T = 106 for a 100× 100 grid on the domain

P, (8), for initial conditions (0, 0, y0) and 50 values of ε ∈ [0.005, 0.055].

As we saw in Fig. 1, as ε increases the chaotic region expands. Many of the chaotic orbits leave
the interval −0.7 < y < 0.5; as a consequence, the computed frequencies for these orbits will be
outside [0, 1]2. We think of the orbits that leave the ω range as essentially unbounded, though we
cannot guarantee that there are no rotational tori acting as barriers at larger or smaller action
values. Fig. 4(a) shows the proportion of the 104 orbits in Fig. 3 that are bounded as ε grows.
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Since P includes a buffer, at ε = 0, the proportion is 1/1.1 ≈ 91% (not shown in the figure), but
for ε = 0.055, that proportion has dropped to about 10%. Only the bounded orbits were used in
the histograms in Fig. 3.

Figure 4(b) shows for bounded orbits how the proportions of values of dig(T ) that are small,
intermediate, and large vary with respect to T . As T grows, the fraction of orbits in the intermediate
range, dig(T ) ∈ (5, 11), decreases, and the corresponding fractions in the lower and upper ranges
saturate. In order to choose a measure to provide a good separation between order and chaos, we
set T = 106 for subsequent computations.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
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Figure 4: (a) The proportion of orbits in P with ω ∈ [0, 1]2 as a function of ε. As the tori are destroyed, only a

small fraction of orbits have computed rotation vectors in this range. (b) Log-log plot of the proportion of bounded

orbits with dig(T ) < 5 (blue), between 5 and 11 (red), and > 11 (yellow) as a function of T .

Fixing T = 106, we next need to choose an appropriate cutoff value for dig(10
6) to distinguish

order from chaos. Fig. 5 shows the proportion of orbits with dig(10
6) < 7, 9, 11. Even though varying

the cutoff does give quantitative differences, the proportions have the same qualitative form as ε
varies. In particular, the proportions grow when ε < 0.03, reflecting the increasing fraction of
bounded orbits that are chaotic. Beyond the peak at ε = 0.03, the fraction of unbounded orbits
increases rapidly as the tori, which act as transport barriers [Mei12, Mei15], are destroyed, allowing
the escape of previously trapped, chaotic orbits. Since we want to be conservative in classifying an
orbit as a regular—as well as to guarantee that ω has high accuracy—we use the cutoff

dig(10
6) > 11 (15)

to declare that an orbit is “nonchaotic.”
Fig. 6 shows the set of frequencies for the nonchaotic, bounded orbits as a function of ε as

identified using the criterion (15). Note that this number drops significantly for large values of ε.
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Figure 5: The proportion of bounded orbits that would labeled as “chaotic” in P with ω ∈ [0, 1]2 using the criteria

dig(T ) < 7, 9, 11 respectively with T = 106. In each case the proportion peaks near ε = 0.03. By criterion (15), the

blue (11) curve shows the proportion of chaotic orbits.
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Figure 6: Rotation vectors ω ∈ [0, 1]2 for the 1, 613, 136 nonchaotic, bounded orbits, computed using a 10002 grid

in the domain P, (8), and ε ∈ {0.015, 0.022, 0.029, 0.036, 0.43, 0.05}, determined using the criterion (15). As we see

in §4.2, the straight lines correspond to orbits trapped in low-order resonant tubes.

4.2 Distinguishing Resonances

In this section, we seek a numerical method to distinguish between resonant and incommensurate
vectors. For a given ω ∈ Rd, define the resonant module

L(ω) ≡ {m ∈ Zd : m · ω ∈ Z}. (16)
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We say that ω is incommensurate when L(ω) = {0}. By contrast, ω, is resonant if (16) is nontrivial,
i.e., if there is a nonzero vector m ∈ Zd that satisfies (5). Of course, if m,m′ ∈ L(ω), then so are
m +m′ and km for any k ∈ Z: the set (16) of such vectors is a module. The length, M = ∥m∥1,
of the smallest (nonzero) integer vector m in L(ω) is the order of the resonance.

The rank of a resonant frequency ω is the dimension of L(ω). We say that a frequency is
rational if dim(L(ω)) = d. In this case there is a (p, q) ∈ Zd+1 so that ω = p

q ; i.e., ω ∈ Qd. When
d > 1, every rational frequency is resonant, but the converse need not be not true. For example, the
vector (

√
2, 2 + 3

√
2) is resonant with (m,n) = (−3, 1, 2), but it is not rational. For this example

the resonance order is M = 4.
Since we can compute the frequency vector for an orbit only to finite precision, we can only

evaluate resonance up to some precision. If ω ∈ Rd is (m,n) resonant, then it lies in the codimension-
one plane

Rm,n = {α ∈ Rd : m · α− n = 0}. (17)

The collection of resonant vectors is

R =
⋃

m,n∈Zd+1\{0}

Rm,n. (18)

For the case d = 2 of interest here, the lines up to order M = 8 are shown for a portion of the
ω-plane in Fig. 7. Of course R is dense in Rd, as are the Diophantine vectors (4).

We will say a vector ω is (m,n) resonant to precision ρ if the resonant plane intersects a ball of
radius ρ about ω, i.e., if

Rm,n ∩Bρ(ω) ̸= ∅. (19)

Using the Euclidean norm, the minimum distance between the resonant plane and the point ω is

∆m,n(ω) = min
α∈Rm.n

∥α− ω∥2 =
|m · ω − n|
∥m∥2

. (20)

Thus we say that ω is (m,n) resonant to precision ρ, whenever ∆m,n(ω) ≤ ρ.
Given a vector ω and a precision ρ, what is the smallest order resonance with ∆m,n(ω) ≤ ρ? For

the one-dimensional case (d = 1), the answer to this question can be efficiently computed using the
Stern-Brocot (or Farey) tree. Indeed, as we previously noted [SM20], for any ρ > 0, the rational
p
q with the smallest denominator in the interval [ω − ρ, ω + ρ] is the first such rational on the tree
that falls in that interval. The Stern-Brocot tree is essentially the generalization of the continued
fraction to include “intermediates” as well as convergents of ω.

As far as we know, there is no generalization of this result for d > 1. Since there are finitely
many m ∈ Z with ∥m∥1 ≤ M , a brute force computation is of course possible for modest values
of M . For example, given any ρ > 0, and ignoring issues of floating point arithmetic, Algorithm 1
will return

M(ω, ρ) = min{∥m∥1 : ∆m,n(ω) ≤ ρ}, (21)

which we could call ρ-order of ω.
As an example, consider the so-called spiral [KO86] or plastic [Ste96] mean, the real solution to

σ3 = σ + 1⇒ σ ≈ 1.324717957244746. (22)
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Figure 7: Resonant lines (grey), Rm,n, up to order M = 8. Also shown are those of minimal order for the spiral

mean frequency (σ−1, σ−2), see (22), for five values of ρ, 10−1 to 10−5 from Table 2.

This generates an algebraic field Q[τ ] with integral basis (1, τ, τ2). The sequence of minimal order
resonances for the frequency (σ−1, σ−2) = (σ2− 1, σ− σ2 +1) with tolerances ρ = 10−j for j up to
14 is shown in Table 2. For example, M(ω, 10−9) = 1119. Note that this vector is Diophantine (4)
[Cus72]. The first five optimal resonant lines are shown in Fig. 7.

The resonance orders (21) in Table 2 grow as a power of the inverse of the precision ρ with the
best-fit

M(ω, ρ) ≃ 0.944 ρ−0.336.

Here is the intuition as to why this occurs: by Th. 1 in App. A, for each K > 0, there is an m ∈ Z2

with ∥m∥∞ ≤ K such that for p = 2

∆m,n ≤
1

∥m∥2Kp
. (23)

Furthermore, a result of Laurent, see e.g., [Wal12, p. 693], implies that for almost all ω ∈ R2, it is
not possible to satisfy this equation for any value of p > 2. Therefore, we expect that the typical
value of ∥m∥∞ is close to the maximal value, i.e., that the satisfaction of this bound requires that
∥m∥∞ ∼ K. Then since the norms of m are equivalent, choosing K = ρ−1/3, we get ∆m,n ≲ ρ, for
∥m∥1 ∼ ρ−1/3.
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Algorithm 1 Minimal resonance order (21) to precision ρ for ω ∈ Rd.

procedure ResonanceOrder(ω,ρ)
M = 0, ∆ = 1
while ∆ > ρ do

M ←M + 1
for m2 = −M to M do

m1 = M − |m2|
n = round(m · ω)
∆ = min

(
∆, |m·ω−n|

∥m∥2

)
end for

end while
return M
end procedure

log10(ρ) ∥m∥1 m1 m2 n

-1 2 0 2 1
-2 4 4 0 3
-3 10 7 3 7
-4 25 -10 15 1
-5 49 -9 40 16
-6 96 7 89 56
-7 208 171 -37 108
-8 387 316 71 279
-9 1119 -350 769 174

-10 2064 -176 1888 943
-11 4306 3952 354 3185
-12 10322 6783 3539 7137
-13 24301 10676 -13625 295
-14 48897 -10971 37926 13330

Table 2: Optimal resonances and resonance orders for the frequency ω = (σ−1, σ−2), seen in
Fig. 7, as the precision ρ decreases. Note that without loss of generality, we can assume that n is
nonnegative.
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More generally, for a given ρ, we computed the minimal resonance order (21) for a set of equi-
distributed, random ω ∈ [0, 1]2, see Fig. 8(a). The log of these values have mean ⟨log10M(ω, 10−9)⟩ =
2.92 and standard deviation 0.171, though the distribution differs significantly from a normal with
the same mean and deviation (the red curve in the figure). For the 104 randomly chosen ω we
found that

M(ω, 10−9) ≤ mmax = 3841, (24)

and only six cases had M > 2500. A similar distribution holds for other values of ρ. As shown in
Fig. 8(b), the mean of log(M) depends linearly on log(ρ), with the best fit

⟨log10M(ω, ρ)⟩ = −0.334 log10(ρ)− 0.091, (25)

which is again consistent with (23).

p

Mlog10( )

(a)

M

103 104 105 106 107 108 109 1010

101

102

103

ρ-1

0.811 ρ-0.334

(b)

Figure 8: (a) Probability density of the logarithms of minimal resonance orders (21) for 104 random vectors with

precision ρ = 10−9. The dot (red) on the horizontal axis shows the mean, 2.92, the thick line (green) shows one

standard deviation 0.171, and the curve (red) shows the normal distribution with these parameters. (b) A log-log

plot of the mean and standard deviation of resonance order as a function of precision for a sample of 2000 random

vectors. The line (red) is the least squares fit (25).

The computation of the minimal resonance order is applied to the dynamical frequency vectors
in Fig. 9 using ρ = 10−9. The data corresponds to the nonchaotic orbits on a grid of (y, δ) for
ε = 0.043. The orbits with M < 8 (dark blue), clearly lie on the low-order resonant lines (grey)
shown in the figure. Of the nonchaotic orbits at this value of ε, only 76 have M > 250, and only
79 have M > 200. It is clear that for this value of ε, there are very few rotational tori. A similar
picture is obtained when more values of ε are included in Fig. 10. The left panel shows the frequency
vectors for the nonchaotic orbits of Fig. 6, now projected onto the ω plane. Note that many of the
resonant lines lie in gaps in the figure, with clear clusters of points along the resonances. Indeed, if
we change the color scale to be log10M(ω, ρ) for ρ = 10−9, the resonances again show up as dark
blue lines, see Fig. 10(b).

Since randomly chosen ω will almost always be incommensurate, the dynamically obtained
frequency vectors that are resonant should have values of (21) below the bulk of the distribution
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Figure 9: Frequencies of the 140, 338 nonchaotic orbits on a 10002 grid in (8) of initial conditions for ε = 0.043.

The color scale is log10(M). Only 76 of these orbits have log10(M) > 2.4. Also shown are the resonant lines, Rm,n,

up to order 8.
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Figure 10: (a) The rotation vectors for nonchaotic orbits, using the same data of Fig. 6, now viewed in a two-

dimensional projection. The color scale gives largest ε for which there is a nonchaotic orbit for the given (y0, δ). (b)

The same data, but this time colored using the ρ-order, (21).

shown in Fig. 8. This is confirmed in Fig. 11(a), a histogram of resonance orders for the orbits from
Fig. 6. Note how resonant tubes in the dynamics change the histogram from that of the random
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frequencies in Fig. 8. Indeed about 60% of these orbits have M = 1 or 2 corresponding to the
largest resonances due to the Fourier terms of the force (6), and only 20% have M > 250, i.e., the
bulk of the domain of Fig. 8.

log10(M)

(a)

0

0.2

0.4

0.6

0.8

1

resonant
rotational

ε0.01 0.02 0.03 0.04

(b)

Figure 11: (a) Histogram of log10(M) for the data of Fig. 6. (b) The fractions of nonchaotic orbits with ω ∈ [0, 1]2

that correspond to resonant (blue) and rotational tori (red) as a function of ε using the criterion (26).

For our calculations, we will declare ω to be resonant if log10(M) is more than three standard
deviations below the mean of the random data of Fig. 8. Given that the cutoff (15) gives at least
11-digit accuracy in ω, we will use ρ = 10−9 so that the computation of ∆m,n < ρ from (20) has
significance. In summary we use the cutoff

M(ω, 10−9) > 102.4 = 251 (26)

to declare that an orbit is “nonresonant”. Using this cutoff, Fig. 11(b) shows that the fraction
of nonchaotic trajectories from Fig. 6 that are resonant, i.e., trapped in resonant tubes, grows
monotonically with ε, reaching 100% near ε = 0.043.

Now that we have introduced the full computational method, we give some information about
its computational complexity. The total runtime starting with initial conditions and distinguishing
chaotic from nonchaotic and resonant from rotational orbits in Matlab 2020b using a 14-core Intel
Xeon W processor at 2.5 GHz with 64 GB memory is approximately 2250 orbits per minute. The
computation of M(ω, 10−9) for 2250 frequency vectors takes approximately 32 seconds, i.e., roughly
half the calculation time.

Applying this criterion to the data in Fig. 10, separates the 80% of the orbits that are resonant,
shown in Fig. 12(a), from the remaining 20% of orbits that are not resonant, shown in Fig. 12(b).
We assume that each of these latter orbits lies on a rotational torus, Tω.

5 Critical Sets

In this section we investigate the robustness of invariant tori as a function of the perturbation
strength ε. In particular we are interested in finding critical tori : those on the threshold of
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Figure 12: Frequency vectors for (a) 1, 295, 986 resonant orbits and (b) 317, 150 nonresonant orbits, using the data

of Fig. 6. These are distinguished by the criterion (26). Values are colored by the largest ε for which a torus persists

at the corresponding (y0, δ) ∈ P.

destruction. For smooth, two-dimensional, twist maps, an invariant circle with rotation number
ω ∈ D is critical if has a non-smooth conjugacy to the rigid rotation θ 7→ θ + ω mod 1. This idea
was extended to the three-dimensional case in [FM16]. Since we are not computing the conjugacy,
we instead define εc(ω), following [MS92], to be a value at which a rotational torus Tω(εc, yc, δc)
breaks up; i.e., in any neighborhood N of (yc, δc), there is a ∆ε > 0 such that when εc < ε < εc+∆ε,
there is no torus Tω(ε, y, δ) with the same rotation vector for any y, δ ∈ N .1

When ω ∈ D, and Ω(y, δ) is a bijection and satisfies a twist condition, then KAM theory implies
that for small enough ε > 0 a torus will exist for some point (y0, δ) [CS90, Xia92]. On the other
hand, each resonant torus, Tω(0, y0, δ) for (y0, δ) = Ω−1(R), generically breaks up at ε = 0. Define
the critical set

εc(ω) = {ε : Tω(ε, y0, δ) breaks up for some (y0, δ) ∈ P} . (27)

For the simplest, two-dimensional case, e.g., the one-parameter Chirikov standard map, the crit-
ical set appears to be a graph over ω, and each invariant circle—once destroyed—does not reappear
[MS91]. However critical set can be much more complicated for maps with several parameters, e.g.,
multiharmonic maps [BM94], or for nontwist maps [FWAM06]. For the standard volume-preserving
map, (6), we do not actually know whether the critical set is simple, with only one breakup for
each ω. Nevertheless, we expect that εc(ω) = 0 whenever ω ∈ R and εc(ω) > 0 for ω ∈ D. Since
both of these sets are dense, the critical surface will be nowhere continuous.

5.1 Locally Robust Tori

As an illustration of the critical set, Fig. 13 shows tori that exist for a 100× 100 grid in P, (8), for
50 evenly spaced ε ∈ [0.015, 0.045]. A point (ω, ε) is shown in the figure if the parameters (ε, y0, δ)

1One could also look for parameters at which a torus “re-forms”, so that it does not exist when ε < εc(ω). Since
we start from the integrable case, however, it seems sensible to first look for breakup values.
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give a rotational torus, Tω(ε, y0, δ), using the criteria described in §4. The upper boundary of the
points shown provides a rough approximation of the critical set (27). Of the critical tori, some have
locally maximal values of εc(ω), i.e., there is a neighborhood for which all critical tori have smaller
εc. We will call such tori locally robust.
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Figure 13: Rotation vectors corresponding to rotational tori, using a 1002 grid in the domain P (8), and 50 ε values.

The color scale represents ε and is the same as Fig. 12.

To find approximations for the locally robust tori in Fig. 13, we search for local peaks in sub-
regions of the critical set using a refinement method that does not rely on smoothness. In particular,
for a fixed subset of [0, 1]2, we start at ε = 0.01 with a 100 × 100 grid of corresponding points in
(y, δ), keeping only those (y, δ) that correspond to a rotational torus in the ω region. At each step
we refine the grid for the set of parameters that have tori and increment ε → ε + dε. Both the
increment dε and the number of grid points are adapted depending on the tori at the previous ε.
The grid size remains 100 × 100 until the grid spacing is below 10−12 in the y or the δ direction.
After this point we use a 10× 10 grid. To choose the next dε, if more than twelve tori remain at ε,
then dε→ 1.3 · dε. If between four and twelve tori remain, dε is unchanged, and if fewer than four
tori remain, dε→ dε/2. Finally, if no tori are found, then dε→ dε/2, and instead of increasing ε,
we decrease it such that ε → ε− dε. Our procedure halts once we have determined a single value
that is isolated on a grid of 10 × 10 points such that ymax − ymin and δmax − δmin are both less
than 10−12, and such that there is no torus in the same region for ε + 10−14. Thus these values
should correspond to local peaks up to the corresponding accuracy in δ, y, ε. Dividing [0, 1]2 into
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Quadrant I II III IV
ω-Region [0, 12 ]

2 [12 , 1]× [0, 12 ] [0, 12 ]× [12 , 1] [12 , 1]
2

εc 0.031282089698381 0.051261692234977 0.032740058025373 0.041019021169048
δ -0.133386500670280 -0.334376117328629 -0.743481096516467 -0.884496372446711
y -0.119301311749656 0.123097748168231 -0.162656510381853 -0.046691232395606
ω1 0.476213927381772 0.734410803700126 0.482238008029131 0.641541383714863
ω2 0.175290820661118 0.365412254352543 0.781945554897404 0.890319673258112

dig(T ) 11.35 11.12 11.17 11.26

M(ω, 10−dig(T )
) 5052 345 9898 19083

Table 3: Most robust tori in four ω regions. These were computed by successive refinement of a
grid in P. To compute M we have used ρ = 10−dig(T )

. The value of M is significantly smaller for
ρ = 10−9 of (26) (see Fig. 14).

four regions, the maxima that we computed are listed in Table 3. The last two rows of the table
are the computed dig(T ) and M(ω, ρ) for these tori. Note that in each case, dig(T ) ∼ O(11), below
the mean O(14) of Fig. 3. This drop is expected since, as we will see in §6, the number of correct
digits drops rapidly as a torus nears criticality. Rather than using the standard value of ρ = 10−9

of criterion (26) to determine whether the torus is non-resonant, the table uses ρ = 10−dig(T )
, since

this is the computed accuracy of the rotation vector. In Fig. 14, we show how M(ω, ρ) varies with
respect to ρ−1. On average, M remains near the expected fit from the random vectors in Fig. 8.
However in several cases, M remains constant for an interval below ρ = 10−8 before jumping up
several orders of magnitude near 10−11.

The global maximum, found in quadrant II where ω ∈ [12 , 1] × [0, 12 ], agrees within 0.6% for ε
and ω of the results in [FM13] that were achieved using Greene’s residue method. In that paper,
tori were approximated using periodic orbits chosen on the Kim-Ostlund tree and the most robust
torus was represented by a periodic orbit of period 32, 316. This torus was estimated to breakup at
ε = 0.0512 ± 0.0005. For the initial conditions corresponding to this value, the weighted Birkhoff
method identifies the orbit as chaotic for ε > 0.0512−0.00050005. Thus the identification of regular
orbits using the Greene’s residue method in [FM13] is slightly less restrictive than the identification
of regularity that we are using in the current paper.

We now give a more in depth computation of the critical set, taking slices through Fig. 13 by
choosing a curve in (y0, δ)-space. Such a slice, fixing δ and varying y0, is shown in Fig. 15. Points
here correspond to tori indicated in Fig. 1(d) along the horizontal line at δ = −0.4. Here we plot
the values of ε for which there is a torus Tω(ε, y0,−0.4) as y0 varies. The horizontal axis is taken
to be ω1 since, when ε = 0, ω1 = Ω1(y,−0.4) = y + γ is a bijection. Note that since the rotation
vectors in Fig. 15 are computed on a fixed grid in y0, they are not true peak values, like those we
found by refinement in Table 3.

In this cross section, as well in similar cross sections for five other δ values, there appears to
only be one critical torus at any ω. In particular, the empty holes in the enlargement are sampling
artifacts that go away when computing on a finer grid. As the enlargement shows, for each fixed
y0, the curve in (ε, ω1) begins as a line for small ε, but each bends as ε grows, especially for those
values approaching a visible resonant region. The curve for fixed y0 does not always slope in the
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Figure 14: Resonance order for the four ω in Table 3, plotted as a function of ρ−1. In each case, when ρ−1 small,

M(ω, ρ) stays near the average of the random values in Fig. 8 (dashed line). However, in three cases for larger ρ−1

there are significant intervals where M(ω, ρ) remains flat.

same direction, as we also will see below in Fig. 20. Gaps in these constant y0 curves appear to be
due to crossing such resonances. Unfortunately, since ω depends on (y0, δ, ε), the cross section is
not a simple plane ω2 = constant. Nevertheless, since ε is relatively small, the values of ω(y0,−0.4)
lie almost on a curve, as shown in Fig. 15(b), that is close to the parabola in given by (8). This
thickened curve has gaps due to resonances and has a maximum thickness ∆ω2 ∼ 0.001. The
thickness is largest when 0.5 < ω1 < 0.9 where, as is seen in Fig. 13(a), tori persist for larger ε.

Note that the critical set seen in Fig. 15(a) is visually similar to that for the standard map
[MS92], which is zero on every rational and has local maxima on the noble numbers. In our case
the zeros occur whenever the cross section intersects a resonant line, and the local maxima are
perhaps narrower than in the 2D case.

5.2 Best Approximants

Lochak [Loc92] conjectures that the robust two-tori for a symplectic map of the form (1) with
d = k = 2 will have rotation vectors such that (ω, 1) is an integral basis for the cubic algebraic field
of discriminant 49 generated by

α3 + α2 − 2α− 1⇒ α = 2 cos(2π/7), (28)

(see App. B). The field Q[α] has an integral basis (ω, 1) with

ω = (α2 − 1, α− 1) ≈ (0.554958132087371, 0.246979603717467). (29)

This field has the smallest discriminant amongst all totally real cubic fields. An alternative con-
jecture, probably due to Kim and Ostlund [KO86], is that the spiral field, (22), should give the
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Figure 15: Rotation vectors for rotational tori with fixed δ = −0.4 and for a grid of 1000 y ∈ [−0.05− γ, 1.05− γ]

as in (8) and a grid of 500 ε ∈ [0.0015, .055]. (a) Data projected onto the (ω1, ε)-plane, with an enlargement for a

small ω1 range shown in the red box. (b) A projection of the same data onto the ω-plane.

generalization of the noble numbers for two-dimensional maps. The spiral mean is a Pisot (or PV)
number: its minimal polynomial has only one root outside the unit circle [Cas57]. The spiral field
is complex with discriminant −23, the smallest, in absolute value of all cubic fields; moreover, it is
the smallest Pisot number (see App. B). We will consider the vector

ω = (σ − 1, σ−1) ≈ (0.324717957244746, 0.754877666246693), (30)

which, together with 1 gives an integral basis for Q[σ]. Finally, [Tom96] considers the field with
discriminant −44 and the minimal polynomial

τ3 − τ2 − τ − 1⇒ τ ≈ 1.83928675521416, (31)

and chooses a basis vector for Q[τ ] that is distinguished by having a periodic sequence in its
Jacobi-Perron expansion (see App. B):

ω = (τ − 1, τ−1) = (0.83928675521416, 0.543689012692076). (32)

Here we would like to provide evidence for/against these conjectures.
As a first attempt, we investigate the Diophantine constants for the robust frequency vectors

that we have found. As discussed in App. A the simultaneous Diophantine constant can be com-
puted by finding rational approximations ω ≈ p

q , and computing ∥qω∥Z = ∥qω−p∥∞. The sequence
of periods, qi, (34), defined so that ∥qiω∥Z decreases monotonically, corresponding to a sequence of
best rational approximations ω ≈ pi

qi
. A frequency vector is Diophantine if the sequence

cs(ω, qi) = qi∥qiω∥2Z
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is bounded away from zero as qi →∞ (see (37)-(38) in App. A).
For example, the sequence of Diophantine constants cs(ω, qi) for (29) are shown in Fig. 16(a)

(see the data in Table 5 of App. A). These appear to oscillate quasiperiodically but are bounded
below, giving an estimate cs(ω) ≈ 0.19 for the D = 49 field, at least for qi ≤ 108. It is conjectured
that there is some integral basis in this field with Diophantine constant 2

7 ≈ 0.286, and that this
value is the largest possible for d = 2 [Cus74]. The corresponding Diophantine sequence for (30)
in the D = −23 field and (32) in the D = −44 field, are also shown in the figure—again they are
bounded away from zero as is consistent with the known Diophantine property of cubic fields. The
dependence of cs on qi is less regular for these two vectors than for the first case, and the limit
infimum appears smaller, cs(ω) ≈ 0.1.

We show in Fig. 16(b) the sequence of Diophantine constants computed for the four robust
tori from Table 3. For these vectors, the values cs(ω, qi) appear to be bounded away from zero for
qi ≲ 105, but the values are smaller than the pure cubic vectors. Note however, that the peak in
quadrant I could have cs(ω) ≃ 0.1, though numerical issues cause the value to drop when qi > 105.

0

0.2

0.4

0.6
49
–23
–44

log10(q)

c s
(ω
,q
)

0 2 4 6 8

(a) I
II
III
IV

log10(q)
0 2 4 6
0

0.2

0.4

0.6

c s
(ω
,q
)

(b)

Figure 16: Diophantine constants for best approximants. (a) Frequencies in the cubic field with discriminants

D = 49 (29), D = −23 (30), and D = −44 (32). (b) The peak frequencies in the four quadrants of Table 3.

Figure 17 shows histograms of the Diophantine sequence cs(ω, qi) for three different data sets.
The first correspond to randomly chosen ω ∈ [0, 1]2. Note that this distribution decreases monoton-
ically, perhaps consistent with the expectation that there will be near rational vectors in a random
collection. To construct a second data set, we fix the vector (α, α2, 1), an integral basis for the
D = 49 cubic field. Multiplication of this vector by any matrix A ∈ SL(3,Z) results in another
integral basis. We choose four elementary matrices that generate this group, and randomly draw a
product of 50 of these matrices to give a set of integral bases for this field. The resulting Diophan-
tine constants have the distribution as shown in Fig. 17(b). Note that this distribution is peaked
away from cs = 0.

Finally, in Fig. 17(c), we compute cs(ω, qi) for the local peak data that is obtained as follows.
A discrete approximation to εc(ω) is obtained from a 300 × 300 grid in P and 50 values of ε ∈
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[0.005, 0.045] –a refinement of data set shown in Fig. 13. Then for each bin in ω of size 0.01 (1002

bins) we select εc to be the largest of the ε for tori with ω falling in that bin. This gives 3066
bins that have tori with εc > 0.02. Since the true critical surface is not smooth or continuous,
these values almost certainly do not include the true local maxima for all ω in each bin; indeed
the largest εc on this grid in P is 0.045, below that of the most robust torus in Table 3 that we
found by refinement. Nevertheless, this process gives a set of tori that are more robust than their
computed neighbors, so that these tori are, at least, locally robust, if not true local maxima.

Note that the maximum of the distribution for the peak tori is shifted to cs ∼ 0.1, considerably
above that of the cubic field, indicating that the peak tori are preferentially selected to have larger
Diophantine constants. Indeed, even though all three distributions have similar means and standard
deviations, they are statistically different: a Kolmogorov-Smirnov test applied to these data sets
indicates that these distributions are distinct with p-values that are extremely small.

cs(ω,q)

Random (a)

cs(ω,q)

D = 49 (b) Peak Data

cs(ω,q)

(c)

Figure 17: Histograms of Diophantine constants cs(ω, qi) for the sequence of best periods {qi} for frequency vectors

ω computed to ∥qiω∥Z ≤ ρ = 10−11. (a) 4000 random frequency vectors chosen from a uniform distribution in [0, 1]2

(mean = 0.180, σ = 0.139). (b) 4000 vectors that are integral bases in the cubic field with discriminant D = 49

(mean = 0.186, σ = 0.135) (c) 3066 frequencies of tori that are locally robust on a 1002 grid for ε > 0.02 (mean

= 0.199, σ = 0.134).

The histograms shown Fig. 17 do not distinguish values of cs as a function of the period qi.
To do this, Fig. 18 shows two-dimensional histograms with bins for both cs and log10(q). The
comparison of the randomly generated data, in the left pane, with the data from the computed
peak rotation vectors in the right pane, shows again the that the latter has significantly more values
of cs bounded away from zero.

In conclusion, our compuations give strong evidence that the more robust tori preferentially
have larger values of the simultaneous Diophantine constant, at least up to periods qi ∼ 106.

6 Continuation

In order to further test the conjectures on which classes of frequency vectors correspond to most
robust tori, we study here the breakup of tori Tω for several fixed rotation vectors. In particular we
will find tori for vectors in the three cubic fields that have the smallest discriminants: D = −23,
49, and −44, recall (22), (28) and (31).
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Figure 18: Diophantine constants vs log10(q) for randomly chosen ω equi-distributed in [0, 1]2 (left panel) and

“peak” tori of the volume-preserving map (right panel).

As we noted, each of these fields has properties making it a candidate to generalize of the set
of noble numbers, Q[ϕ]. The field Q[σ] is generated by the smallest Pisot number and has bases
that are periodic sequences in the Kim-Ostlund generalization of the Farey tree. The field Q[α] is
conjectured to have bases with the largest possible simultaneous Diophantine constant. The field
Q[τ ] contains a basis with a period-one Jacobi-Perron sequence, one generalization of the continued
fraction, see App. B.

For each case (29), (30), and (32), give vectors for which (ω, 1) is an integral basis for the
respective cubic field. Additionally, we will consider the permuted vector (ω2, ω1, 1), which gives an
additional integral basis for the same field, so that there is a set of six vectors, ω∗, that we study.

For each frequency vector, we continue the torus with respect to the parameter ε, e.g., finding
Tω∗(ε, y(ε), δ(ε)), fixing ω = ω∗. We find the maximum ε such that the corresponding torus is
nonchaotic— using the dig(T ) criterion (15). The torus is found using a predictor-corrector method
starting with the guess (y, δ) = Ω−1(ω∗) at a small value of ε. Specifically, at each ε, we apply the
Matlab root finder fsolve to find the value of (δ(ε), y(ε)) such that the rotation vector is ω∗ when
computed using WB106 . We look for εc such that dig(T ) > 11, but for which dig(T ) < 11 when
εc < ε < εc + 10−9. Fig. 19 shows an example of the computation for (32). The results for other
ω values appears quite similar. In particular, as seen in Fig. 19(b), dig(T ) drops very quickly near
the critical value.

Results of the continuation method for six frequency vectors are shown in Fig. 20 and Table 4.
None of these frequency vectors correspond to the globally most robust torus, nor to the quadrant
maxima found in Table 3. The first case shown, the spiral frequency (σ− 1, σ−1), was also studied
in [FM13]. They found the stability threshold εc = 0.02590±5(10)−5 extrapolated from a sequence
of periodic orbits up to period 31, 572. Note that our threshold in Table 4, εc ≃ 0.02573 =
0.02590− 1.7(10)−4, is again slightly more conservative than that given by Greene’s residue.
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Figure 19: An example of a rotational torus found using a predictor-corrector continuation method using the

weighted Birkhoff method. (a) The graph (y(ε), δ(ε)) for a torus Tω(ε, y, δ) with ω = (τ−1, τ − 1) in the D = −44

field. (b) Number of correct digits in ω as a function of ε. This number drops precipitously as ε approaches the

critical value 0.028845453269968, see Table 4. In each case, the blue dots are the computed points.

While it is not possible to compute whether these tori are locally most robust on arbitrarily
small neighborhoods, we can quantify the degree to which they fail to be local maxima on a fixed
small interval in ω1, fixing a cross-section δ = δc that passes through the corresponding critical
point. We compute rotational tori for values of y near yc such that the spacing of ω1 values is
approximately 10−4 (i.e., using the ε = 0 approximation for y and δ), and the ε spacing is 4(10)−5

with ε ≤ εc + 0.005. Of these, we consider only tori with |ω1 − ω∗
1| < 0.002, and which are more

robust than ω∗. These tori correspond to the points in Fig. 20 that lie above εc(ω
∗), which is

indicated by the (red) X in each panel.
One measure of local robustness is the distance, ∆ω = |ω1 − ω∗

1|, to the closest, more robust
torus. The first spiral mean vector, (a) in the table and figure, has a distance of ∆ω ∼ 2(10)−3; this
makes it five-times more robust than than (e), the first D = −44 torus, and more than 25-times
more robust than all others. By this measure the frequency (b) in D = −23, is least robust since
there is a more robust torus within ∆ω ∼ 4(10)−6. This measure best matches what is observed
by eye in Fig. 20, where similarly (a) and (e) appear the most locally robust within a single peak
of the each panel.

Another measure of robustness is the distance ∆ε = εc(ω)−εc(ω∗) for the most robust computed
torus in the interval. By this measure, the first vector, (a), is more robust in the sense that for this
torus ∆ε ∼ 3(10)−4, and this value is at least three-times smaller than that for any of the other
tori. Torus (b), the second spiral mean case, is the least robust with ∆ε more than nine-times
larger than the value for (a).

Finally, the last column of Table 4, labeled #M.R., lists the number of more robust tori within
the computed frequency interval. Again by this measure the first spiral mean, (a), is the most
robust since the number is least 14-times smaller than any other number. The second spiral mean,
(b), is the least robust with 180 nearby, more robust tori.
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Figure 20: Tori in the (ω1, ε) plane, near εc(ω
∗) for the six vectors ω∗ in Table 4. Each point represents a torus

at a fixed δ = δc that passes through the corresponding critical point. In each figure, the (red) X marks the location

of the associated critical torus. The frequencies corresponding to nearby tori (blue) are computed on a grid with

spacing 10−4 in ω1 and 4(10)−5 in ε.

From these results, though none of the six vectors considered is locally robust over a large range,
both (a) and (e) could be considered locally robust, and the first spiral mean case, (a), is the most
robust over the range we have considered. This perhaps provides some indication that the spiral
field remains the best candidate to generalize the noble numbers. Nevertheless, since there are a
countably infinite number of vectors in each field, we cannot rule out that another representative
would behave more robustly.

7 Conclusions

In this paper we develop criteria to distinguish orbits that lie on rotational two-tori from those
that are chaotic or resonant, as well as to compute rotation vectors for the rotational two-tori. Our
model is a three-dimensional, volume-preserving map (1) with frequency map and force (6), and
the primary tools are the weighted Birkhoff average (10) and an algorithm for calculating resonance
order, Algorithm 1.

To distinguish chaotic from regular orbits and calculate rotation vectors, we use the weighted
Birkhoff average. Computation of the rotation vector of the tori to at least 11-digit accuracy
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ω∗ εc yc δc #M.R.

(a) (σ − 1, σ−1) 0.025731358271922 −0.300341913511639 −0.581991952776833 3
(b) (σ−1, σ − 1) 0.035042379103690 0.137249321586741 −0.285775646047323 180
(c) (α2 − 1, α− 1) 0.031629688390353 −0.046265357816195 −0.237775229395970 61
(d) (α− 1, α2 − 1) 0.017453913097431 −0.374459102422933 −0.279201189795316 92
(e) (τ − 1, τ−1) 0.029861717573837 −0.444144360895140 0.203236055553548 47
(f) (τ−1, τ − 1) 0.028845453269968 −0.826759694950616 −0.103754031724428 44

Table 4: Critical parameters for tori in cubic fields with discriminants −23, 49 and −44, recall (22),
(29), and (32). The labels (a)-(f) indicate the corresponding panel in Fig. 20. For each field, two
rotation vectors ω∗ are chosen, related by permutation. The torus Tω∗(ε, y, δ) breaks up at εc and
is located at (yc, δc). The final column shows the number of tori that are more robust among the
tori computed in an interval |ω1 − ω∗

1| < 0.002 with ω1 spacing of 10−4 and ε < εc + 0.005 with
spacing of 4(10)−5.

required 2T = 2(10)6 iterates of the map—the second half of the iterates being used to estimate
the error (13). However in most cases as we saw in Fig. 3, many fewer iterates—say 3(10)4—would
be sufficient to obtain this accuracy and to distinguish regular from chaotic dynamics. Moreover,
as we previously showed in [SM20], the weighted Birkhoff average is more efficient than other
techniques, such as Lyapunov methods, for this distinction.

To distinguish tori from resonances, it was important to use “linear approximations” rather
than the often-used simultaneous approximations to the vector ω: we look for the closest resonant
line (5) to the computed rotation number in the sense of Euclidean distance (20). Unlike the case
of a single frequency (where the Stern-Brocot tree is the optimal method [SM20]), there seems to
be no general theory that gives a “fast” method for determining optimal linear approximations.
The general theory of optimal resonance order is not completely understood, though the scaling of
resonance order with tolerance that is seen in Fig. 9 is what would be expected from the theorems
of Dirichlet and Minkowski (see App. A).

To compute resonance order to a precision ρ we use a brute force method, recall Algorithm 1,
and unfortunately, this is a substantial part of the computational cost in our method (about 50%
of the effort). Nevertheless, is important to find such linear approximations to eliminate dynamical
resonances; such orbits lie on regular tori that are not “rotational”, instead these enclose isolated
invariant circles of the map (if they exist [DM12]).

After finding rotational tori, in §5 and §6 we use a variety of methods, including simultaneous
approximations and parameter continuation to study the most robust tori, and to test conjectures
regarding the robustness of tori with rotation vectors in three cubic fields. Since the number of tori
studied here is relatively small (compared to the number tested to find the locally robust rotational
tori), we also use, in §5.2, a brute force method to compute the sequence of best simultaneous
approximations to ω, e.g., the sequence of “periods” (34) of a rotation vector. Note that, by contrast
with linear approximations, there is a fast method for computing the simultaneous approximation
sequence [Cla97].

A key open problem is finding a higher-dimensional generalization of the noble numbers, which
correspond to the robust invariant circles for area-preserving maps. Our results indicate that
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frequencies of robust two-tori are discernibly different from random frequency vectors, see Fig. 17,
but as in [FM13], we have been unable to extract a simple number-theoretic property for the
globally most robust tori and the Diophantine constant sequence does not seem to have a simple
behavior, Fig. 16. There is only weak evidence for local robustness of conjectured, low-discriminant
cubic fields, and in particular while some of the elements in the three conjectured cubic fields may
be locally robust, none of them seem to be associated with the most robust tori in the same way
that the noble numbers are associated with most robust and locally robust invariant circles for 2D
maps.

Our results for computing tori should be compared with previous techniques that used periodic
orbits to approximate the torus and Greene’s residue criterion to estimate their breakup. Greene’s
residue is certainly the optimal method for area-preserving maps with a time-reversal symmetry:
it can easily give highly accurate breakup thresholds for an invariant circle [Mac83]. As was
shown in [FM13], this idea can be generalized to the volume-preserving case studied in the current
paper because it does have a time-reversal symmetry, which permits the computation of sequences
of symmetric periodic orbits. In [FM13], orbits with periods of order 104 were used to obtain
estimates of breakup thresholds with a relative error in εc that was estimated to be 0.002. The
results obtained in the current paper show that these thresholds were slight over-estimates of εc(ω),
and allow us to refine the breakup threshold to a relative error of about 4(10)−8. This relies on
the ad hoc criterion (15), that declares that the orbit has become chaotic when the accuracy of
the weighted Birkhoff average drops below our threshold of 11-digits (of course, there is a similar,
ad hoc threshold for the residue criterion). Note, however that the rapid decrease of dig(T ) over a
narrow parameter range, as seen in Fig. 19, is a clear signal of the torus destruction.

One key reason for studying the most robust tori is to develop a better understanding of the
transport of chaotic orbits when these tori no longer exist. It is known from Aubry-Mather theory
that rotational circles of twist maps are replaced by cantori and that the flux of trajectories through
a (noble) cantorus grows approximately as (ε− εc)

3 [Mei15]. There is some evidence for a similar
power law for the three-dimensional case–even though we do not know if cantori exist: studies of
the crossing time distribution for a similar map show that it diverges as (ε − εc)

−2.6 [Mei12]. It
would be interesting to use the more precise break-up thresholds that we have computed here to
refine this calculation.

Another advantage of the weighted Birkhoff method used here is that it can be applied to
asymmetric maps (as we did for 2D in [SM20]), and does not rely on any sophisticated method
to find periodic orbits that are simultaneous rational approximations to a given incommensurate
frequency vector. Moreover, even though the residue method works very well in 2D and is successful
in 3D, it has not led to accurate methods that can estimate the breakup thresholds for tori in 4D
symplectic maps. One of the problems for the 4D case is that there are multiple “partial traces” of
a symplectic matrix needed to define a stability threshold. Such considerations are irrelevant for
weighted Birkhoff averages.

In the future, we plan to continue the study of two-tori for maps in three and possibly four di-
mensions. The fast convergence for the weighted Birkhoff method makes it well suited for extended
precision computations as noted in [DSSY17]. We have successfully performed test cases for one-
and two-dimensional tori in phase spaces of dimensions one, two, and three. In future work, we
plan to explore such high precision calculations in the hope that extracting more digits will lead to
a better number theoretic understanding of the properties of the rotation vectors for robust tori.
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A Diophantine Constants

There are two common ways in which a vector ω ∈ Rd can be approximated by rationals. The first,
simultaneous approximation, seeks a vector (p, q) ∈ Zd × N that corresponds to a nearby rational,
i.e., ω ≈ p

q . The second, linear approximation, seeks an integer vector (m,n) ∈ Zd \ {0} × Z, that
corresponds to a nearby resonance, i.e., m · ω − n ≈ 0.

Define the pseudo-norm
∥ω∥Z = inf

p∈Zd
∥ω − p∥∞ (33)

that computes the distance to the nearest point on an integer grid. Lochak [Loc92] defines the
periods, qi of ω as the sequence of positive integers so that, q0 = 1, and ∀q < qi+1,

∥qiω∥Z ≤ ∥qω∥Z. (34)

Thus if pi is the integer vector such that ∥qiω∥Z = ∥qiω − pi∥∞, then pi
qi

are (strong) best approxi-
mants of ω.

Similarly we can define a set of nearest resonances to ω as a sequence of nonzero integer vectors
mi so that m0 = (1, ..., 1) and whenever 0 < ∥m∥ ≤ ∥mi+1∥ then

∥mi · ω∥Z ≤ ∥m · ω∥Z, m,mi ∈ Zd \ {0}

The sequence of resonance orders, ∥mi∥1 = Mi thus obtained is unique, even though the resonant
sequence itself may not be.

Theorems of Dirichlet and Minkowski, give a bound on the goodness of these approximations:

Theorem 1 ([Bak84, Cas57, Sch91]). For any ω ∈ Rd and for any K > 0, there exist (m,n) ∈
Zd \ {0} × Z with ∥m∥∞ ≤ K such that

|m · ω − n| < 1

Kd
. (35)

Similarly whenever at least one ωi is irrational, then for any Q > 0, there exist 0 < |q| ≤ Q and
p ∈ Zd such that

∥qω − p∥d∞ <
1

Q
. (36)

In (35) we say that (m,n) is a “near” resonance for ω and, for (36), that the vector p/q is a “good”
rational approximation to ω. Note the complementary placement of the dth power in these two
expressions.

Based on these complementary notions of approximation, there are also two senses in which
ω can be strongly “irrational”, or Diophantine. Defining the linear and simultaneous “closeness”
parameters

cl(ω,m) = ∥m∥d∞∥m · ω∥Z,
cs(ω, q) = q∥qω∥dZ,

(37)

then the associated Diophantine constants are

cl(ω) = lim inf
∥m∥∞→∞

cl(ω,m),

cs(ω) = lim inf
q→∞

cs(ω, q).
(38)
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A vector ω is (linear, simultaneous) Diophantine if cl,s(ω) > 0. A theorem of Dirichlet implies that
if θ is an algebraic irrational of degree d+1, then for ω = (θ, θ2, . . . , θd), cs(ω) > 0; thus the vector
ω is (simultaneous) Diophantine. For example, every quadratic irrational is Diophantine for d = 1.

Note that, by Th. 1, cl, cs ≤ 1. When d = 1 these constants are trivially equal and it is known
that for any ω, cs(ω) ≤ cs(ϕ) = 1√

5
, where ϕ is the golden mean [HW79, Thm. 194]. As noted

in [Loc92], for d = 2 it has been proven by Davenport that the upper bounds on cl and cs over
ω ∈ R2 are the same, and that these upper bounds are at least 2

7 . Furthermore, Adams showed
that there are integral bases for cubic fields for which cs(ω) =

2
7 . It has been conjectured that for

any ω, cs ≤ 2
7 , and that the only numbers for which cs is near 2

7 are integral bases of a real cubic
field [Cus74]. Indeed Cusick conjectures that there is an integral basis for the discriminant 49 field
(28) that achieves this value.

Computation of the sequence of periods (36) can be done efficiently using algorithms developed
by Clarkson [Cla97], and this would be especially important if high precision computations are
required to attempt to estimate the asymptotic Diophantine constant. We simply use the brute
force method of computing ∥qω∥Z for each natural number up to some Q. The resulting sequence of
periods and approximations to the Diophantine constant for the vector (29) are shown in Table 5.
A comparison between several cubic irrationals is shown in Fig. 16(a).

Note that if we know ω to precision ρ, then cs(ω, q) can be computed with precision qρ. Using
the cutoff dig(T ) = 11, this implies that periods must be limited so that q ≪ 1011, e.g., q ≲ 107 so
that cs can be computed with 4 digit accuracy.

B Cubic fields and Jacobi-Perron

An algebraic field is an extension of Q to include some family of algebraic numbers. Consider the
monic polynomial

p(x) = x3 − kx2 − lx−m (39)

for k, l,m ∈ Z and m ̸= 0. If τ is a root of p, but not of a quadratic or linear polynomial with
coeffients in Q, it is an algebraic integer and generates a cubic field Q[τ ] = {a+bτ+cτ2 : a, b, c ∈ Q}.
The integers in such a field correspond to the restriction a, b, c ∈ Z. An integral basis of such a field
is a vector (1, τ, σ) that generates the integers. The fields can be characterized by the discriminant,
D = k2l2−4k3m+4l3−18klm−27m2 of the polynomial (39). When D < 0 there are two complex
roots and when D > 0 all the roots are real.

The cubic field with the smallest |D| is that of the spiral mean, which has D = −23, the minimal
polynomial (39) with (k, l,m) = (0, 1, 1) with real root σ, and integral basis (1, σ, σ2). Siegel showed
this root is the smallest Pisot number (an algebraic number that is the unique root of its minimal
polynomial outside the unit circle) [Sie44]. We have used the fact that the vector (1, σ−1, σ−2)
forms an integral basis for Q[σ]. An alternative polynomial for this field has (k, l,m) = (−1, 0, 1).
The real root in this case is σ−1.

When m = 1, and τ is a Pisot number, Tompaidis noted that there is an integral basis of
the cubic field for which the Jacobi-Perron algorithm (JPA), a generalization of the continued
fraction, is periodic. Given a vector ω ∈ [0, 1]2 the JPA generates a sequence of integer vectors
ri = (pi, qi) ∈ N3 so that pi/qi is a rational approximation to ω and these vectors obey a recursion

rn+1 = kn+1rn + ln+1rn−1 + rn−2.

32



p1 p2 q ∥qω∥Z cs(ω, q)
1 0 1 0.44504186791263 0.19806226419516
2 1 3 0.33512560373789 0.33692751084205
2 1 4 0.21983252834948 0.19330536208211
7 3 13 0.21445571713583 0.59788630995914
9 4 16 0.12066988660206 0.23297954452087
11 5 20 0.09916264174742 0.19666459036656
36 16 65 0.07227858567913 0.33957260660537
45 20 81 0.04839130092293 0.18967915840613

146 65 263 0.04601126102138 0.55678050502442
182 81 328 0.02626732465775 0.22631092905362
227 101 409 0.02212397626518 0.20019336324499
737 328 1328 0.01560058797106 0.32320644221672
919 409 1656 0.01066673668669 0.18841847367561
2984 1328 5377 0.00987623379490 0.52447254758451
3721 1656 6705 0.00572435417616 0.21971098707235
4640 2065 8361 0.00494238251053 0.20423535834513

15066 6705 27148 0.00336990795310 0.30830027891744
18787 8361 33853 0.00235444622306 0.18766129628539
61001 27148 109920 0.00212095615864 0.49447017655387
76067 33853 137068 0.00124895179447 0.21380971201242

Table 5: Best approximants for (29), a vector in the D = 49 cubic field. Extended precision
computations were used to obtain 14 digit accuracy

33



The coefficients (kn, ln) of this recursion are determined by iterating the map

ω 7→
(

1

ω2
,
ω1

ω2

)
− (k, l),

(k, l) =

(⌊
1

ω2

⌋
,

⌊
ω1

ω2

⌋)
.

(40)

The algorithm is initialized with r−2 = (0, 1, 0), r−1 = (1, 0, 0) and r0 = (0, 0, 1). We give the
resulting expansions for several frequency vectors in the first four cubic fields in Table 6. Here
the sequences (kn, ln) are always eventually periodic, with the repeated portion enclosed in [ ]. For
example the first spiral mean case gives a period-two sequence.

D p(x) Root ω Jacobi-Perron

−23 x3 − x− 1 1.324717957244745 (σ − 1, σ−1)

[(
1
0

)
,

(
2
0

)]
(σ−1, σ − 1)

(
3
2

)
,

[(
2
0

)
,

(
4
0

)]
−31 x3 − x2 − 1 1.465571231876768 (κ− 1, κ−1)

[(
1
0

)]
(κ−1, κ− 1)

(
2
1

)
,

[(
2
0

)
,

(
3
0

)]
−44 x3 − x2 − x− 1 1.839286755214161 (τ − 1, τ−1)

[(
1
1

)]
(τ−1, τ − 1)

(
1
0

)2

,

(
3
1

)
,

[(
1
0

)
,

(
2
0

)3

,

(
1
0

)
,

(
4
0

)]
49 x3 + x2 − 2x− 1 1.246979603717467 (α− 1, α−1)

[(
1
0

)
,

(
3
0

)]
(α−1, α− 1)

(
1
0

)
,

(
2
1

)
,

[(
1
0

)
,

(
3
0

)]
(α− 1, α2 − 1)

(
4
2

)
,

[(
4
0

)
,

(
5
0

)]

Table 6: Jacobi-Perron sequences for vectors in the four cubic fields with |D| < 50. The last column
shows the sequence generated by (40). All are eventually periodic, and the periodic portions are
enclosed in brackets.

There are two cases in the table for which the sequences are period-one, analogous to the golden
mean for the ordinary continued fraction. The resulting sequences are then the values (k, l) in the
polynomial (39) with m = 1. In order for this to occur, the root must be a Pisot number, with
k < τ < k+1 and one must choose ω = (τ −k, τ−1). Following Tompaidis, we might think of these
vectors as generalized versions of the golden mean.

More generally it is known there are only finitely many periodic JPA sequences associated with
each unit in an algebraic field [AR11]. When d = 1, every eventually periodic continued fraction
is a quadratic irrational; however, it is apparently not known how to characterize the vectors that
have eventually periodic JPA sequences.

34



References

[AC15] C. V. Abud and I. L. Caldas. On Slater’s criterion for the breakup of invariant curves.
Physica D, 308:34–39, 2015. https://doi.org/10.1016/j.physd.2015.06.005.

[ACP06] E.G. Altmann, G. Cristadoro, and D. Paz. Nontwist non-Hamiltonian systems. Phys.
Rev. E, 73(5):056201, 2006. http://link.aps.org/abstract/PRE/v73/e056201.

[ACS92] R. Artuso, G. Casati, and D.L. Shepelyansky. Break-up of the spiral mean torus in
a volume-preserving map. Chaos, Solitons & Fractals, 2(2):181–190, 1992. https:

//doi.org/10.1016/0960-0779(92)90007-A.

[AR11] B. Adam and G. Rhin. Periodic Jacobi-Perron expansions associated with a unit.
J. Théorie des Nombres de Bordeaux, 23(3):527–539, 2011. http://www.jstor.org/

stable/44011250.

[Bak84] A. Baker. A Concise Introduction to the Theory of Numbers. Cambridge Univ. Press,
Cambridge, 1984.

[BM93] E.M. Bollt and J.D. Meiss. Breakup of invariant tori for the four-dimensional semi-
standard map. Physica D, 66(3&4):282–297, 1993. https://doi.org/10.1016/

0167-2789(93)90070-H.

[BM94] C. Baesens and R.S. MacKay. The one to two-hole transition in cantori. Physica D,
71:372–389, 1994. https://doi.org/10.1016/0167-2789(94)90005-1.

[Cas57] J.W.S Cassels. An Introduction to Diophantine Approximation. Cambridge University
Press, Cambridge, 2nd printing edition, 1957.

[Chi79] B.V. Chirikov. A universal instability of many-dimensional oscillator systems. Phys.
Rep., 52(5):263–379, 1979. https://doi.org/10.1016/0370-1573(79)90023-1.

[Cla97] L.V. Clarkson. Approximation of Linear Forms by Lattice Points with Applications to
Signal Processing. PhD thesis, Australian National University, 1997.

[CS90] C.-Q. Cheng and Y.-S. Sun. Existence of periodically invariant curves in 3-dimensional
measure-preserving mappings. Celestial Mech. and Dyn. Astron., 47:293–303, 1990.
https://doi.org/10.1007/BF00053457.

[Cus72] T.W. Cusick. Formulas for some Diophantine approximation constants. Math. Ann.,
197:182–188, 1972. https://doi.org/10.1007/BF01428224.

[Cus74] T.W. Cusick. The two-dimensional Diophantine approximation constant. Monatshefte
für Mathematik, 78:297–304, 1974. https://doi.org/10.1007/BF01294641.

[DDS+16] S. Das, C.B. Dock, Y. Saiki, M. Salgado-Flores, E. Sander, J. Wu, and J.A. Yorke.
Measuring quasiperiodicity. Euro. Phys. Lett., 114:40005, 2016. https://doi.org/

10.1209/0295-5075/114/40005.

35

https://doi.org/10.1016/j.physd.2015.06.005
http://link.aps.org/abstract/PRE/v73/e056201
https://doi.org/10.1016/0960-0779(92)90007-A
https://doi.org/10.1016/0960-0779(92)90007-A
http://www.jstor.org/stable/44011250
http://www.jstor.org/stable/44011250
https://doi.org/10.1016/0167-2789(93)90070-H
https://doi.org/10.1016/0167-2789(93)90070-H
https://doi.org/10.1016/0167-2789(94)90005-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1007/BF00053457
https://doi.org/10.1007/BF01428224
https://doi.org/10.1007/BF01294641
https://doi.org/10.1209/0295-5075/114/40005
https://doi.org/10.1209/0295-5075/114/40005


[DM12] H.R. Dullin and J.D. Meiss. Resonances and twist in volume-preserving mappings.
SIAM J. Appl. Dyn. Sys., 11:319–349, 2012. https://doi.org/10.1137/110846865.

[DSSY16] S. Das, Y. Saiki, E. Sander, and J.A. Yorke. Quasiperiodicity: Rotation numbers.
In C. Skiadas, editor, The Foundations of Chaos Revisited: From Poincaré to Recent
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[LFC92] J. Laskar, C. Froeschlé, and A. Celletti. The measure of chaos by the numerical analysis
of the fundamental frequencies. Application to the standard mapping. Physica D,
56:253–269, 1992. https://doi.org/10.1016/0167-2789(92)90028-L.
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