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1 INTRODUCTION

1 Introduction

1.1 The Standard Model, the eEDM, and their implications

on physics

The standard model of particle physics is a theory that attempts to combine three of

the four fundamental forces (electromagnetic, weak interaction and strong interac-

tion, not accounting for gravity) into a single frame of reference to explain elementary

particles. [3]

While the model has proven to be successful at giving very accurate experimental

predictions, some of which have given rise to some relevant discoveries in the �elds

of atomic, molecular, and optical physics over the past century or so, it relies on

various assumptions and omissions that simplify the model at the expense of leaving

certain physical phenomena unexplained. This potentially limits the growth of the

�eld and maybe even prevents the discovery of new realms of physics beyond the

standard model. [3]

One such prediction that the electron electric dipole moment (eEDM), which is

essentially the measure of the distance between the center of charge and the center

of mass of the electron times its charge, has a very small value of about 10� 38 e� cm

at most.

Experimentally measured values, however, may indicate a discrepancy in the

upper bound of this prediction, which is why measuring it is a means of testing the

standard model of physics. Moreover, �nding a �nite, non-zero eEDM larger than

10� 38 e � cm is a violation of the standard model which implies a few things. First
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1 INTRODUCTION

of all, it tells us about an otherwise unpredicted charge parity (CP) violation within

the inner structure of the electron, and second it tells us about time (T) violations

as well.

Considering all of the above, if an experimentally measured eEDM is found to

be considerably larger than what the standard model prediction tells us, this would

imply that there is new, beyond the standard model physics, potentially opening up

the way for a new branch of studies within the �eld.

Nowadays, there are multiple collaborations trying to experimentally determine

the most precise measurement of the eEDM, including the JILA eEDM collaboration

led by Eric Cornell and Jun Ye at the University of Colorado - Boulder. During the

�rst two generations of the experiment, colloquially known as the Generation I (2017,

�nal eEDM limit of < 1:3 � 10� 28 e � cm in HfF+ ions [1]) and Generation II (2022,

which is predicted to give a �nal eEDM sensitivity of about 10� 29, also in HfF+

ions), the collaboration has seeked to improve its methodology and experimental

techniques.
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1 INTRODUCTION

Figure 1.1: This image shows the progress in the search for the eEDM. Visible are
the the ACME collaboration's (Harvard/Chicago/Northwestern) generation I (2014)
and generation 2 (2018) results, along with the JILA eEDM collaboration's 2017
Generation I result. Note how both of these numbers are orders of magnitude larger
than the standard model prediction, which is of than 10� 38 e � cm or less. Image
credits: Gerald Gabrielse (ACME)
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1 INTRODUCTION

1.2 The Generation III experiment at JILA

Figure 1.2: An artist's depiction of the Generation III \Bucket Brigade" setup, in
which the tube serving as the conveyor belt can be appreciated carrying the ionized
ThF+ molecules along its axis. Image credits: Noah Schlossberger.

Working upon the legacy of the Generation I and Generation II experiments, the

JILA eEDM collaboration is looking to continue its e�orts to experimentally mea-

sure the best possible measurement of the eEDM. Because of this, the idea of the

generation III experiment was conceived.

As opposed to the generation I and generation II experiments, both which used

HfF+ ions, the generation III experiment will use thorium 
uoride ions (ThF+ ).

This switch was necessary given that the electric �eld between the Th and F atoms

(referred to asEef f ) in ThF + is 1.5 times stronger than that between Hf and F atoms

in HfF+ . A vast amount of research time was spent doing spectroscopy on ThF+

to better understand it, given that it is was previously a relatively novel and not

well-characterized species. Refer to [2] and [4] for more information on ThF+ .
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