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The Community Earth System Model (CESMTM) is a global climate model whose simulations

have significant impact on social policy. The CESM is large and complex, consisting of about

1.5 million lines of code and several coupled component models. Quality assurance is necessary

for the continued development and improvement of the CESM. To address this need, the CESM

Ensemble Consistency Test (CESM-ECT) was developed as a statistical test for consistency between

experimental outputs and an accepted ensemble. The CESM-ECT provides rapid feedback to model

developers, scientists, and end users without expert knowledge of climate science. In this work, we

investigate the properties and composition of the CESM-ECT ensemble, resulting in an improved

test. We expand the CESM-ECT by creating an “ultra-fast” test at the ninth CESM time step

and demonstrate that the test can detect statistical inconsistency in multiple CESM component

models. Equipped with refined tests, we focus on locating sources of statistical inconsistency.

Our approach uses graph analysis to find relevant segments of CESM code, and we propose an

iterative instrumentation method for converging on the sources of inconsistency. We discuss the

modification and performance optimization of a central atmospheric microphysics package with the

assistance of our newly developed tools. We conclude by advancing a strategy to realize our iterative

instrumentation process, which will identify specific code lines leading to statistical inconsistency.

The framework created in this thesis will enable full-featured quality assurance for the CESM

through consistency testing and error source identification.
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Chapter 1

Introduction

Earth System Models (ESMs) simulate the global environment through the mathematical

modeling of its component ecosystems (e.g., the oceans, atmosphere, land, sea ice, river systems)

and their interactions. Improving the accuracy of ESM predictions through better understanding

of physical earth systems and their interactions in turn promotes deeper insight into the physical

systems themselves. Advancing this positive feedback is increasingly important as global climate

change accelerates. Understanding anthropogenic forcings (e.g. deforestation and CO2 emissions)

and their impacts on natural processes through simulation will become more essential to assess

and prepare for future climate scenarios. Indeed, such simulations already form an integral part

of international evaluations of climate change, such as the Intergovernmental Panel on Climate

Change (IPCC, 2013). Given the relevance of ESMs to society and their influence on policy, it is

of utmost importance to ensure confidence in the integrity of their output.

ESMs present a difficult task for typical verification and validation strategies due to their

complex and lengthy code and the varied machine environments where they are run (e.g., Clune

et al., 2011, Easterbrook et al., 2009). Quantifying difference in output is a deceptively hard

task. A standard, straightforward test is bit-for-bit (BFB) equivalence; however, a BFB test places

excessive constraints on ESM software development. For example, cost saving modifications such

as code optimization and algorithmic improvement often change floating-point values, yielding

non-BFB results. Furthermore, different compilers (or the same compiler with different options)

transform identical source code into different instructions. Changes that result in non-BFB output
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can represent the same climate state and allow the same scientific conclusions to be drawn. Baker

et al., 2015 replace BFB equivalence by statistical distinguishability from an ensemble for the

Community Earth System Model (CESMTM; Hurrell et al., 2013), an open source ESM developed

principally at the National Center for Atmospheric Research (NCAR). The test developed in Baker

et al., 2015 is known as the CESM Ensemble Consistency Test (CESM-ECT), which partly through

the efforts described in this work has been expanded into a suite of testing tools.

CESM-ECT was quickly incorporated into the CESM software development cycle and em-

ployed by software engineers and end users. The early success of the test justified research into

its improvement, as some limitations were encountered. The first version of the CESM-ECT en-

semble was generated from a single source of variability in the form of perturbations to the initial

atmospheric temperature field and used a size of 151 ensemble members of 12-month simulations.

Investigating the impact of including other forms of variability (such as that introduced by different

compilers) into the ensemble, as well as studying the relationship between its size and classification

power were clear research opportunities. Although Baker et al., 2015 studied the test’s ability to

classify many experimental modifications (such as different compilers and parameter changes) with

known or expected outcomes, source code optimizations and other minor code modifications that

were expected to be consistent were not studied. In addition, the first version of CESM-ECT was

met with skepticism due to its use of relatively short, 12-month simulations (as compared to the

multi-century runs that were standard at the time). By proving itself useful, the test based on an

ensemble of 12-month runs dispelled doubt. However, considerable cost could be saved by testing

consistency even earlier in the model runtime. These limitations provided natural opportunities for

study that influenced the beginnings of this work. Finally, the most significant opportunity afforded

by the creation of the CESM-ECT is the extension of statistical consistency testing to error source

identification, where the causes of inconsistency can be traced back to their roots in the model code

or execution environment. In other words, the CESM-ECT indicates the existence of an issue with

the CESM simulation and then presents a probable cause. Indeed, the overarching goal of this work

is to expand CESM-ECT into a full spectrum test and analysis framework for climate scientists and
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software engineers. In this introductory chapter, we provide relevant background information for

this thesis including details of the CESM, early climate model verification and validation methods,

and specifics of the CESM-ECT. We conclude this chapter with a brief overview of the following

chapters.

1.1 The CESM

The Community Earth System Model (CESM) was created with the goal of simulating the

evolution of the Earth’s climate. While there is no single definition of an Earth System Model

(ESM); at a minimum, the model must have the “ability of terrestrial ecosystems and the ocean to

remove carbon dioxide from the atmosphere” (Hurrell et al., 2013), which amounts to necessitating

a carbon cycle component (Flato, 2011). In fact, the CESM contains many physical modeling

capabilities: “interactive carbon-nitrogen cycling, global dynamic vegetation and land use change

due to human activity, a marine ecosystem-biogeochemical module, and new chemical and physical

processes to study both the direct and indirect effects of aerosols on climate,” as well as capability

to model the atmosphere up to the thermosphere (Hurrell et al., 2013). As a modeling application,

the CESM connects its various component models (whole atmosphere, atmospheric chemistry, land,

sea ice, ocean, biogeochemistry, river, wave, and land ice) in a hub-and-spoke architecture via a

central coupler (Craig et al., 2012). The encapsulation of components allows each submodel to use

a different grid resolution and enables a vast number of possible configurations. The CESM offers

hundreds of standard component sets with common experimental configurations, and permits com-

ponent set configuration customization. Moreover, parameters and initial condition perturbations

can be set per model, and different dynamical core solvers (finite volume and spectral element) can

be chosen. The coupling frequency can be tuned, and subcycling (e.g., ratio of physics to dynamics

time steps) can be used. Data output frequencies as well as output formats (instantaneous and

time-averaged values) can be specified per model.

The CESM is one of many ESMs participating in the Coupled Model Intercomparison Project

(CMIP phase 6), which informs the Intergovernmental Panel on Climate Change (IPCC) assess-
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ments (Eyring et al., 2016). CESM is one of the most expansive and encompassing ESMs contribut-

ing to the IPCC, and contains over one and a half million lines of Fortran source code. A code base

of this size presents a substantial challenge for verification and Quality Assurance (QA) strategies.

Furthermore, the CESM is a very popular ESM and is used by scientists around the world. The

community aspect of the model enhances its popularity, and allows distributed model development

through numerous contributors. While community development can certainly be a positive, it intro-

duces complexity in the form of different coding practices, base software packages (e.g., compilers

and numerical libraries) and runtime environments. Providing QA for a model of such flexibility

and disparate uses presents a unique challenge that has not been addressed comprehensively by

previous methods.

1.2 Legacy Verification Methods for ESMs

Easterbrook et al., 2009 provide a detailed overview of identifying incorrect implementations

of physical phenomena and algorithms in ESMs via “Verification and Validation” strategies, focus-

ing on the BFB test. BFB tests performed over short simulation time spans can be indicators of

reproducibility over longer time intervals and signal errors in formula implementation (Easterbrook

et al., 2009). Clune et al., 2011 describe the challenges of assessing the software quality of ESMs,

highlighting the extraordinary difficulty of the undertaking. Even a CESM code base that correctly

represents the evolution of the global climate inherits the model’s high cyclomatic complexity (the

number of independent paths through a subprogram; McCabe, 1976) which translates to a very

high risk of containing bugs (Méndez et al., 2014). Many elements of the time evolution of a cli-

mate are highly nonlinear, and changing or substituting modules that represent different physical

processes can cause an otherwise identical set of simulations to diverge from or converge to a valid

true climate. Any change in CESM code, hardware, compiler version, or the supporting software

stack can alter the simulation output at least to the magnitude of truncation or round-off errors.

The challenge is to distinguish non-BFB results that are consistent and a consequence of a valid

change from non-BFB outputs that result from error.
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PerGro was a highly successful model validation test developed in Rosinski et al., 1997 for

the Community Climate Model version 2 (CCM2; a predecessor of CESM) that did not presuppose

BFB results. The intention of PerGro was to compare the time evolution of the Root Mean Square

(RMS) atmospheric temperature difference between a perturbed and unperturbed simulation on

one machine (control) to the difference between the time evolution after porting CCM2 to another

system and one control run. The differences were examined for a model time interval of two days

to include important phases of the simulation (such as dynamics and parameterizations). Rosin-

ski et al., 1997 note that port validation based on initial model behavior is challenging because:

“[v]alidation of these ports after a few time steps can be difficult because of the growth of dif-

ferences that are introduced at the magnitude of machine rounding [. . .] [t]hese include, but are

not limited to, a different computational order as parsed by compilers; differences in the intrinsic

library functions (e.g., sin, sqrt, alog); and differences in the internal floating point representation

of the respective machines.” Further, the RMS temperature difference grows extremely rapidly in

the first few time steps, which is driven by “dynamical processes and physical parameterizations”

(Rosinski et al., 1997).

PerGro was used successfully for validating ports, environment changes, and model changes to

several descendants of CCM2. However, when the atmospheric model component, the Community

Atmosphere Model (CAM), was upgraded from CAM4 to CAM5, new parameterizations in CAM5

introduced such rapid growth of temperature perturbations that PerGro was unable to distinguish

between perturbation growth and differences resulting from the change to be validated. Due in part

to the inclusion of CAM5 in CESM, porting and validation became a costly process that involved

running a simulation of 400 model years. The output data were then compared to an identical

400 year run on a trusted machine, and the results were run through a diagnostics package and

given to a senior scientist for approval, which was a time-consuming and largely subjective process.

To address the need for greater objectivity in model quality assurance at a reduced cost, Baker

et al., 2015 developed an ensemble-based test that considers the behavior of all CAM variables (not

merely temperature) and relationships between them after a single model year.
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1.3 Ensemble-Based Consistency Testing

The CESM-Ensemble Consistency Test (ECT) is a suite of tools that determines statistical

consistency by analyzing 12-month output from two different component models within CESM:

CAM, and the Parallel Ocean Program (POP), with ensemble consistency testing tools referred

to as CAM-ECT (created in Baker et al., 2015) and POP-ECT (created in Baker et al., 2016),

respectively. While both tests employ ensemble methods, the underlying algorithms are different

which reflects the varied requirements for characterizing variability in the respective component

models. We focus on CAM-ECT as it is central to the investigations in this work.

Statistical consistency in the context of CESM-ECT signifies that experimental runs are

statistically indistinguishable from the ensemble. Ensemble methods are common in climate science,

but they are typically used for prediction. Conceptually, the CESM-ECT ensemble embodies

the internal variability of the climate model, and the test determines whether a set of new runs

falls within the quantified climate variability. Ensuring that the ensemble represents the right

amount of variability is essential, as this in turn sets a threshold for the acceptable variability of

the experimental runs. The test provides an objective measure of difference without resorting to

excessively strict metrics like BFB results. Moreover, the output of the test does not require expert

knowledge of climate science and returns a user-friendly Pass or Fail. The test’s rapid feedback and

ease of use significantly accelerate the software development cycle. In addition, the CESM-ECT

software suite is modular and written in Python, so it is easy to extend and portable.

The CAM-ECT ensemble consists of 151 one-year (annually averaged) simulation outputs

which differ by O(10−14)K perturbations to the initial atmospheric temperature field. From a cost

(and time) perspective, this is a tremendous improvement over the previous method of running a

single 400 year simulation. Each single year simulation can be run independently, and the ease of

use allows the ensembles to be generated by software engineers. The area-weighted global means of

CAM variables are standardized by subtracting the mean and scaling by the standard deviation, and

projected into a lower dimensional space by principal component analysis (PCA). Since many CAM
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variables are linearly dependent, PCA is used to characterize ensemble variability as it decorrelates

linearly dependent variables. As an additional benefit, PCA allows the test to pick up changes in

relationships between variables, since the Principal Components (PCs) are linear combinations of

variables. After being subject to some modification, a set of experimental outputs (three by default)

is standardized by the means and standard deviations of the ensemble variables, and projected into

the PC space. The PC scores of the experimental set are compared to those of the ensemble and

marked as failures if they exceed a desired threshold (see Baker et al., 2015 for default confidence

intervals and other parameters). If more than a specified number of experimental PCs fail, the

experimental set is considered statistically inconsistent with the ensemble.

POP-ECT was developed to determine statistical consistency for the POP component model

of CESM (Baker et al., 2016). In POP output data, the spatial variation and temporal scales are

much different than in CAM outputs, and there are many fewer variables. Hence the test does

not involve PCA or spatial averages, and performs comparisons at each grid location. We focus

on CAM-ECT rather than POP-ECT because the rapid propagation of perturbations in the model

atmosphere allows for quick detection of changes.

1.4 Thesis Overview

The overarching goal of this work is to provide climate scientists with the means and tools to

ensure consistent simulation output in modern computing environments when BFB equivalence is

impractical (or even impossible). Our particular focus is on extending the robustness and utility of

the test for statistical distinguishability, or consistency, introduced in Baker et al., 2015. Because

the CESM-ECT evaluates whether a set of experimental outputs is consistent with a collection of

trusted runs (the ensemble), the ensemble composition is crucial as the variability of the ensemble

defines the permissible spread. Therefore, in Chapter 2, we study ensemble size and sources of

variability to improve the test’s ability to correctly classify experimental outputs expected to be

indistinguishable from the ensemble. Further, to accelerate QA testing and improve the detection

of localized inconsistencies, we develop an addition to the CESM-ECT suite in Chapter 3, which
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evaluates consistency based on only nine model time steps. The “ultra-fast” ECT is significantly

faster than the original test, and reduces the CPU time by a factor of over 70. The substantial cost

savings allow us to pursue our goal of identifying the reason why a given set of outputs is found to

be statistically inconsistent, in order to provide useful feedback to CESM developers. In particular,

we aim to trace differences in CESM output variables back to causative code sections; we describe

our progress toward this goal in Chapter 4. In Chapter 5 we describe an application of our tools

to assist in re-engineering a large CAM microphysics kernel to run in single precision. We discuss

future work and make concluding remarks Chapter 6.



Chapter 2

Analyzing Ensemble Composition for Consistency Testing

The content of this chapter is contained in the refereed conference proceedings of ICCS

(Milroy et al., 2016). The included text is verbatim with the exception of hyperlinked references

to sections, which have different enumeration by necessity. All figures appear here unaltered.

2.1 Introduction

Modeling the Earth’s climate is a formidable task. Earth System Models (ESMs) can be

millions of lines of code and represent decades of software development time and climate research.

The complexity of ESMs challenges standard verification and validation strategies (e.g., Clune et

al., 2011, Easterbrook et al., 2009). Ensuring software quality is difficult due to the variety of

platforms on which ESMs run, the vast number of parameters and configurations, and the ongoing

state of development (e.g., Pipitone et al., 2012). Therefore, while achieving bit-for-bit (BFB)

identical results may be desirable in general (e.g., Stodden et al., 2013) and may facilitate error

detection, achieving BFB climate simulation results is difficult (if not impossible) and impedes

efforts to improve performance. In particular, a change in ESM code, hardware, compiler version,

or the supporting software stack can alter the simulation output at least as much as round-off

errors. Further, small perturbations to initial conditions can produce non-BFB results, despite

being representations of the same climate. A method to determine whether the same mean climate

is represented by non-BFB results allows for the use of more aggressive code optimizations and

heterogeneous execution environments.
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We focus on output data from the Community Earth System Model (CESM) Hurrell et

al., 2013, an open source ESM that is well used by the global climate research community and

principally developed at the National Center for Atmospheric Research (NCAR). Motivated by the

need for a simple and objective tool for CESM users and developers to determine whether non-BFB

CESM outputs represented the same climate state, Baker, Hammerling, et al. recently developed

the CESM ensemble consistency test (CESM-ECT) Baker et al., 2015. The idea behind CESM-

ECT is to determine objective statistical consistency by comparing a new non-BFB CESM output

(e.g. from a new machine) to an ensemble of simulation outputs from the original or “accepted”

configuration (e.g. a trusted machine, software stack, etc.). CESM-ECT issues a pass for the newly

generated output only if it is statistically indistinguishable from the ensemble’s distribution. The

selection of a representative or “accepted” ensemble (and the variability it characterizes) is critical

to CESM-ECT’s determination of whether new simulations pass. In Baker et al., 2015, ensemble

variability is created by roundoff-level perturbations to the initial temperature field. However, as

the goal in Baker et al., 2015 is the introduction of the ensemble consistency testing methodology,

the important question of the ensemble composition is not addressed.

Our goal in this chapter is to ensure that the CESM-ECT ensemble composition is adequate

for characterizing the variability of a consistent climate. Specifically, we investigate whether the

ensemble variability induced by initial temperature perturbations is sufficient to capture legitimate

minimal code modifications, such as mathematically equivalent reformulations or an alternative

CESM-supported compiler. Note that while initial temperature perturbations are a typical way

for climate scientists to gauge model variability, the effects of more general code or compiler mod-

ifications (i.e. not climate-specific) have hardly been studied. Perhaps the most relevant work is

in He et al., 2001, where global summation orders are modified with noticeable impact on climate

simulation results. However, the aim in He et al., 2001 is to improve or even achieve reproducibility

(via alternative algorithms or increased precision). In this study, we improve upon the work in

Baker et al., 2015 and make three principal contributions: we demonstrate the measurable effect

of minimal code changes on CESM simulation output; we demonstrate that the variability induced
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by perturbations to initial temperature conditions in CESM does not sufficiently capture that in-

duced by minimal code alterations and compiler changes; and we propose an alternative ensemble

composition for CAM-ECT that improves the tool’s accuracy and broadens its applicability.

This chapter is organized as follows. In Sect. 2.2, we provide background information on

CAM-ECT and describe our experimental setup and tools. In Sect. 2.3, we present a series of

code modifications that represent plausible, mathematically identical and stable alternatives to the

original. Experimental results are given in Sect. 2.4, and an alternative composition is proposed

in Sect. 2.5. We demonstrate the utility of the new ensemble composition in Sect. 2.6.

2.2 Preliminaries

The first CESM-ECT component (CAM-ECT) developed in Baker et al., 2015 focuses on data

from CAM due to its relatively short time scales for propagation of perturbations. CAM output

data containing annual averages at each grid point for the atmosphere variables are written in time

slices to NetCDF history files in single-precision floating point format. The CAM-ECT ensemble

consists of CAM output data for 151 simulations of 1-year in length created on a trusted machine

with a trusted version of the CESM software stack. We generate the CESM results in this chapter

on a 1◦ global grid using the CAM5 model version described in Kay et al., 2015. Simulations are

run with 900 MPI tasks and two OpenMP threads per task on the Yellowstone machine at NCAR.

The iDataPlex cluster is composed of 4,536 dx360 M4 compute nodes, featuring two Xeon E5-2670

Sandy Bridge CPUs and 32 GB memory per node, and FDR InfiniBand interconnects. The default

compiler on Yellowstone for our CESM version is Intel 13.1.2 with -O2 optimization; GNU 4.8.0

and PGI 13.0 are also CESM-supported compilers for this version and are used throughout this

study.

To thoroughly assess the appropriateness of the ensemble composition, we perform more

exhaustive testing than was done in Baker et al., 2015, where most case studies involved the

minimum Ntest = 3 simulations runs for pyCECT (yielding a single pass or fail result). For our

experiments we run at least 30 total simulations (Ntot = 30) and obtain pyCECT results equal to
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the number of ways Ntest simulations can be chosen from all Ntot simulations (i.e., the binomial

coefficient:
(
Ntot

Ntest

)
). For example, Ntot = 30 and Ntest = 3 yields 4060 possible combinations

(and 4060 pyCECT results), which allows us to make a comprehensive comparison between CAM-

ECT’s false positive rate and the number of failures out of 4060. If an experiment’s failure rate is

approximately equal to the false positive rate then we say the experiment is statistically consistent

with the ensemble. Testing all combinations in this manner would be prohibitively expensive with

pyCECT, which was designed for a single test. Thus we developed a computationally efficient script

(Ensemble Exhaustive Test: EET) to perform all
(
Ntot

3

)
tests, rendering exhaustive testing both

feasible and fast. Indeed, computing all 4060 results for Ntot = 30 takes less than one second, and

562,475 results for Ntot = 151 takes less than two seconds.

2.3 Code modifications

In this section we define the “minimal” code changes that should produce the same climate

when evaluated by CAM-ECT. These minimal changes affect few lines of code and are mathemati-

cally equivalent and stable. Code changes potentially have a large impact because of the nonlinear

chaotic climate model, but provided we have avoided numerically unstable code and catastrophic

cancellation (such as described in Bailey, 2008) they should still produce the same climate. The

five Fortran 90 code change experiments presented here all result in a difference in single precision

output. They are illustrative of the complete set of CAM code modifications we performed, which is

not shown in its entirety for the sake of brevity. For each experiment we ran 30 simulations, differing

by a perturbation to the initial CAM temperature field. We examine two categories of modifica-

tions: those representing different coding styles and those with minor changes for optimization.

Note that these code modifications were all done manually (not compiler-induced).

2.3.1 Modifications representing different coding styles

The following code modifications are mathematically equivalent formulations which could

arise from two software engineers solving the same problem in different ways. These examples are
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from subroutines in the semi-implicit primitive equation module (prim si mod.F90 ) in CAM.

Combine (C) is a single line code change to the preq omega ps subroutine:

Original :

ckk = 0.5d0/p(i,j,1)

term = divdp(i,j,1)

omega_p(i,j,1) = vgrad_p(i,j,1)/p(i,j,1)

omega_p(i,j,1) = omega_p(i,j,1) - ckk*term

Modified :

ckk = 0.5d0/p(i,j,1)

term = divdp(i,j,1)

omega_p(i,j,1) = (vgrad_p(i,j,1) - 0.5d0*divdp(i,j,1))/p(i,j,1)

Note that the difference in single and double precision output is not due to a catastrophic can-

cellation of vgrad p(i,j,1) and 0.5d0*divdp(i,j,1); this difference is not present in the

original code block.

Expand (E) is a modification to the preq hydrostatic subroutine. We expand the calculation of

the variable phi:

Original :

phi(i,j,1) = phis(i,j) + phii(i,j,2) + Rgas*T_v(i,j,1)*hkk

Modified :

tt_real = Rgas*T_v(i,j,1)

phi(i,j,1) = tt_real*hkk + phis(i,j) + phii(i,j,2)

2.3.2 Modifications representing optimization strategies

The code changes in this subsection target improving the performance of existing code via

rearranging the mathematical expressions.
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Division-to-multiplication (DM): The original version of the euler step subroutine of the prim-

itive trace advection module (prim advection mod.F90 ) includes an operation that divides by a

spherical mass matrix spheremp. The modification to this kernel consists of declaring a tempo-

rary variable (tmpsphere) defined as the inverse of spheremp, and substituting a multiplication

for the more expensive division operation.

Original :

do k = 1 , nlev

. . .

do q = 1 , qsize

qtens_biharmonic(:,:,k,q,ie) = &

-rhs_viss*dt*nu_q*dp0*Qtens_biharmonic(:,:,k,q,ie) / elem(ie)%spheremp

(:,:)

Modified :

tmpsphere(:,:) = 1.D0/elem(ie)%spheremp(:,:)

do k = 1 , nlev

. . .

do q = 1 , qsize

qtens_biharmonic(:,:,k,q,ie) = &

-rhs_viss*dt*nu_q*dp0*Qtens_biharmonic(:,:,k,q,ie) * tmpsphere(:,:)

Unpack-order (UO) changes the order that an MPI receive buffer is unpacked in the edgeVun-

pack subroutine of edge mod.F90. Changing the order of buffer unpacking has implications for

performance, as traversing the buffer sub-optimally can prevent cache prefetching.

Original :

do k=1,vlyr

do i=1,np

v(i,1,k) = v(i,1,k)+edge%buf(kptr+k,is+i) !South

v(np,i,k) = v(np,i,k)+edge%buf(kptr+k,ie+i) !East
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v(i,np,k) = v(i,np,k)+edge%buf(kptr+k,in+i) !North

v(1,i,k) = v(1,i,k)+edge%buf(kptr+k,iw+i) !West

end do

end do

Modified :

do k=1,vlyr

do i=1,np !South

v(i,1,k) = v(i,1,k)+edge%buf(kptr+k,is+i)

end do

do i=1,np !West

v(1,i,k) = v(1,i k)+edge%buf(kptr+k,iw+i)

end do

do i=1,np !East

v(np,i,k) = v(np,i,k)+edge%buf(kptr+k,ie+i)

end do

do i=1,np !North

v(i ,np,k) = v(i,np,k)+edge%buf(kptr+k,in+i)

end do

end do

Precision (P) is a performance-oriented modification to the water vapor saturation module

(wv sat methods.F90 ) which tests whether recasting a subroutine to perform single-precision floating-

point arithmetic results in a consistent climate. From a performance perspective this could be ex-

tremely advantageous and could present an opportunity for co-processor acceleration due to superior

single-precision computation speed. We modify the elemental function that computes saturation

vapor pressure by substituting r4 for r8 and casting to single-precision in the original:

Modified :

elemental function GoffGratch_svp_water_r4(t) result(es)

real(r8), intent(in) :: t ! Temperature in Kelvin
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real(r4) :: es, t4, tboil4 ! SVP in Pa

t4 = real(t)

tboil4 = real(tboil)

es = 10._r4**(-7.90298_r4*(tboil4/t4-1._r4)+ &

5.02808_r4*log10(tboil4/t4)- &

1.3816e-7_r4*(10._r4**(11.344_r4*(1._r4-t4/tboil4))-1._r4)+ &

8.1328e-3_r4*(10._r4**(-3.49149_r4*(tboil4/t4-1._r4))-1._r4)+ &

log10(1013.246_r4))*100._r4

2.4 Ensemble consistency testing results

In this section we test whether the ensemble distribution suggested in Baker et al., 2015

contains enough variability to capture our code modifications and optimizations. We do not address

the causes of test result differences between changes at this time. We also examine the response of

CAM-ECT to inter-compiler testing, thus testing the equivalence of code modifications to compilers

as sources of variability. We begin with three size 151 ensembles generated by perturbing the initial

temperature field on Yellowstone with the CESM-supported compilers Intel, GNU, and PGI (e.g.

Sect. 4.4 of Baker et al., 2015). Note that the Intel ensemble is the 151 member set generated on

Yellowstone and the suggested default for CAM-ECT in Baker et al., 2015.

2.4.1 Code modification results

Recall that we ran 30 simulations for each code modification and the failure rates were

determined with the exhaustive-testing tool EET. If these ensembles possessed enough variability,

we would expect the failure rates to be nearly 0.5%, as the modification experiments should not

be climate-changing. Fig. 2.1 shows that the code modification experiments’ EET failure rates

against the Intel, GNU, and PGI compiler CAM-ECT ensembles are about an order of magnitude

higher than the selected 0.5% false positive rate. Furthermore, their failure rates vary across the

code changes and between the three ensembles; this instability is an indication of the deficiency of
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Figure 2.1: Exhaustive failure percentages for code modifications from Sect. 2.3 against original
size 151 ensembles from Baker et al., 2015.

variability in each of the ensembles. Ideally the failure rates would be equal across compilers and

test cases, and should achieve the 0.5% false-positive rate. Note that DM, UO, and P exhibit a

similar failure pattern, possibly suggesting that the Intel, PGI, and GNU compiler ensembles contain

increasing variability, respectively. It is also possible that these three experiments’ variability more

closely match that of the GNU ensemble than that of Intel or PGI, thus explaining the lower failure

rates against the GNU ensemble.

2.4.2 Compiler effects

We expect compiler effects to be akin to code modifications, as they occur across the code at

each time step (as opposed to an initial perturbation). Therefore, as a first step to understanding

the compiler effects on Yellowstone, we perform exhaustive consistency testing on the simulations

composing each ensemble, which is essentially a “self-test” that is intended as a first-order as-
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sessment of CAM-ECT. Tests performed on members against ensembles generated from the same

members (i.e. Intel simulations tested against the Intel ensemble) should pass with error rates

approximately equal to our false positive rate (0.5%). Empowered by EET, we test the Intel, GNU,

and PGI simulations used in Fig. 2.1 against the ensembles composed of them– a total of 562,475

pyCECT evaluations. The results are presented in Fig. 2.2a. Because the Intel, GNU, and PGI

compilers on Yellowstone are all CESM-supported configurations, they should pass. Although the

failure rates for the self-tests are low, the cross-compiler tests exhibit failure rates well above the

specified false positive rate. This issue is not observed in Baker et al., 2015, as only one random

selection of three runs from each of the PGI and GNU sets is tested against the Intel ensemble,

and with the single sample both tests pass.

The limitation of this self-testing is that the files used to generate the ensembles (and thus

principal components) are used in the test itself. Therefore, for a more rigorous test, we perform

experiments where the ensemble members and experimental sets are disjoint by randomly excluding

30 simulations from the 181 simulations for each Yellowstone compiler (Intel, GNU, and PGI). We

randomly select three sets of 30 simulations per compiler to exclude from the 181, and we run

these excluded simulations against the nine ensembles formed by excluding the three sets from

each compiler, resulting in 81 tests. Fig. 2.2b depicts the tests composed of disjoint ensemble and

experimental sets averaged by compiler and designated Intel-rand, GNU-rand, and PGI-rand. For

example, the Intel-rand experiment tested against the Intel-rand ensemble (leftmost bar in Fig.

2.2b) represents the average of nine EET tests for the three experimental Intel sets (30 simulation

experimental sets: Intel-rand1, Intel-rand2, and Intel-rand3) against the three Intel ensembles (151

simulation ensembles: Intel-rand1, Intel-rand2, and Intel-rand3). Note that the suffix on each

experiment and ensemble (e.g. “rand1”) designates the simulations randomly excluded from the

ensemble. Concretely, this means that the union of the Intel-rand1 experimental set with the Intel-

rand1 ensemble set yields the full 181 member Intel simulation set. The high failure rates present

in Fig. 2.2b are evidence that 151 member ensembles with a single compiler are variationally

deficient. Notice that experiments in both plots of Fig. 2.2 manifest failure rates comparable to
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Figure 2.2: EET failure percentage grouped by experiment. Colors and hatching indicate ensemble
used in comparison. 2a (left) shows the so-called “self-tests” of the designated ensembles against
themselves; “Ys” abbreviates Yellowstone. 2b (right) depicts disjoint experiments, e.g. the GNU-
rand experiment tested against the Intel-rand ensemble is the average of nine EET tests of the
three experimental GNU sets against the three Intel-rand ensembles.

those of the code modification experiments in Fig. 2.1. Now we examine the effect of pooling the

compiler ensembles together in an effort to increase the ensemble’s variability. Our goal is to align

the failure rates of non-climate changing experiments like the Intel experimental set and the code

modifications with the specified CAM-ECT false positive rate.

2.5 CAM-ECT ensemble composition

Results from the previous section indicate that the default size 151 Intel, GNU, and PGI

single-compiler ensembles do not contain sufficient variability. We now increase ensemble variabil-

ity by using results from multiple compilers in a single ensemble and exhaustively test the code

modification experiments against the new combined-compiler ensembles.

We create three new ensembles from subsets of the size 151 “rand” ensembles from Sect. 2.4.2.
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Figure 2.3: EET failure percentage grouped by code modification experiment Sect. 2.3. Colors and
hatching indicate ensemble used in comparison. For example, sz300-r1 is 100 Intel-r1, 100 GNU-r1,
and 100 PGI-r1 combined. The failure rates of these experiments against the sz453 ensembles are
close to 0.5%.

First we create combined-compiler ensembles of size 150 by making three random selections of 50

simulations from each ensemble such that the corresponding CAM initial temperature perturbations

form a disjoint cover of the 150 (zero perturbation was excluded) perturbations. The three new

ensembles are labeled sz150-r1, sz150-r2, and sz150-r3 to designate the randomly excluded set. We

also look at the effect of larger aggregate ensembles and construct three size 453 ensembles by

combining the 151 rand ensembles (from Sect. 2.3) from each compiler. Three size 300 ensembles

are similarly constructed. Fig. 2.3 shows the results of EET testing of the code modifications

against the nine new aggregate ensembles. The “-r*” suffix designates the random set used to

construct the ensemble (e.g. sz453-r3 is 151 Intel-r3, 151 GNU-r3, and 151 PGI-r3 together).

Since the failure rates for the size 453 ensembles are consistent and approximately equal to

our 0.5% false positive rate, this suggests that these ensembles provide adequate variability. Note
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that the size 150 aggregate ensembles clearly contain insufficient variability and classification power,

but the size 300 ensembles perform nearly as well as the size 453. Further refining the constituents

and recommended ensemble size for CAM-ECT is a subject of current study.

2.6 Applying the new ensemble

The results from CESM-supported machine testing in Baker et al., 2015 with CAM-ECT

show that Argonne National Laboratory’s Mira (49,152 node Blue Gene/Q cluster with PowerPC

A2 CPUs running at 1.6GHz) and the National Center for Supercomputing Applications’ Blue

Waters (26,868 node Cray XE/XK hybrid with AMD 6276 Interlagos CPUs) machines fail more

than expected as compared to other CESM-supported machines. We now re-examine the Mira and

Blue Waters results in the context of the new compiler-aggregate ensembles with CAM-ECT to

determine whether there is truly a machine issue or whether the initial CAM-ECT ensemble did

not contain sufficient variability. For comparison we also include results from the NERSC Edison

machine (Cray XC30: 5576 compute nodes with 12-core Xeon E5-2695v2 Ivy Bridge CPUs), which

is representative of most CESM-supported machines in Baker et al., 2015 that pass CAM-ECT. We

ran EET on sets of 30 experiments from Mira, Blue Waters, and Edison against the new size 453

aggregate ensembles, and the failure rates averaged 11.9%, 25.4%, and 0.7% respectively. Since Mira

and Blue Waters exhibit high failure rates, the question is whether the failures indicate that the

the ensemble distribution is still too narrow or whether the failures are evidence of an error in the

supercomputers’ software or hardware. In particular, because of an upcoming CESM experiment

on Mira, an investigation into the validity of its high failure rate was of utmost importance.

CESM-ECT is a coarse-grained testing method, and pyCECT simply returns sets of failing

principal components. To relate failing principal components in CESM-ECT to sections of code

and perhaps hardware, we first needed to understand which CAM variables were problematic. We

performed a systematic elimination of variables, which consisted of removing a CAM variable, up-

dating the PCA and determining a new distribution, and running EET to establish the failure rate.

Based on the new failure rates, we concluded that six CAM variables merited further inspection.
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We repeated pyCECT testing on the Mira experiment with these six variables removed, and ob-

served nearly five times lower failure rates. With input from climate scientists, we found that four of

the six variables were featured prominently in the Morrison-Gettelman microphysics kernel (MG1).

Next, the open-source KGEN tool Kim et al., 2016 was used to extract the MG1 kernel from

CAM and build it as a stand-alone executable. A subset of MG1 variables with larger normalized

Root Mean Square (RMS) errors was found on Mira, and these variables’ values were output and

compared with those executed on Yellowstone. Given the code lines that compute these variables,

we hypothesized that Fused Multiply-Add (FMA) instructions caused the RMS error values, and

the instructions were disabled via compiler switch (-qfloat=nomaf). A repeat of the KGEN RMS

error testing confirmed that the values were then consistent with those produced on Yellowstone.

Disabling FMA for the entire CESM code yielded a 0.7% EET failure rate, which is on par with our

false positive rate. This investigative process took significant effort, requiring the cooperation of

many climate scientists and software engineers for several months. This demonstrates the necessity

and utility of coupling CESM-ECT’s coarse-grained testing capability with automatic fine-grained

error identification, and adding such capability is work in progress.

2.7 Conclusions

In this paper, we introduce minimal and legitimate code modifications into CESM to test

whether the CAM-ECT ensembles from Baker et al., 2015 possess sufficient variability to classify

these code modifications as passes. We conclude that the ensembles do not, as evidenced by the

high failure rates in comparison with the CAM-ECT’s false positive rate of 0.5%. To address the

limited variability, we propose a new ensemble size (453) and composition that includes simulations

from multiple compilers. Finally, equipped with this improved ensemble, we are able to identify the

source of Mira’s high CAM-ECT failure rates and correct it by disabling FMA. The improved CAM-

ECT ensemble facilitates optimization and utilization of new hardware and software technologies.

This supports the CESM development cycle, whereby new modules and optimization strategies

are tested for integration into the model. Future areas of research include a more thorough study
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of ensemble size and its effects, including a more comprehensive test of random samples to anti-

alias sample size and variability, and the addition of automated fine-grained error identification to

CESM-ECT.



Chapter 3

Early time step statistical consistency testing

The content of this chapter is contained in the refereed journal GMD (Milroy et al., 2018).

The included text is verbatim with the exception of hyperlinked references to sections, which have

different enumeration by necessity. All figures appear here unaltered.

3.1 Introduction

Requiring bit-for-bit (BFB) identical output for quality assurance of climate codes is restric-

tive. The codes are complex and constantly evolving, necessitating an objective method for assuring

quality without BFB equivalence. Once the BFB requirement is relaxed, evaluating the possible

ways data sets can be distinct while still representing similar states is nontrivial. Baker et al., 2015

address this challenge by considering statistical distinguishability from an ensemble for the Com-

munity Earth System Model (CESM; Hurrell et al., 2013), an open source Earth System Model

(ESM) developed principally at the National Center for Atmospheric Research (NCAR). Baker

et al., 2015 developed the CESM ensemble consistency test (CESM-ECT) to address the need for

a simple method of determining whether non-BFB CESM outputs are statistically consistent with

the expected output. Substituting statistical indistinguishability for BFB equivalence allows for

more aggressive code optimizations, implementation of more efficient algorithms, and execution on

heterogeneous computational environments.

CESM-ECT is a suite of tools which measures statistical consistency by focusing on 12-month

output from two different component models within CESM: the Community Atmospheric Model
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(CAM), and the Parallel Ocean Program (POP), with ensemble consistency testing tools referred

to as CAM-ECT and POP-ECT, respectively. The key idea of CESM-ECT is to compare new

non-BFB CESM outputs (e.g., from a recently built machine or modified code) to an ensemble

of simulation outputs from an “accepted” configuration (e.g., a trusted machine and software and

hardware configuration), quantifying their differences by an objective statistical metric. CESM-

ECT returns a pass for the new output if it is statistically indistinguishable from the distribution

of the ensemble, and a fail if the results are distinct. The selection of an “accepted” ensemble

is integral to CESM-ECT’s pass or fail determination for test simulations. The question of the

ensemble composition and size for CAM-ECT is addressed in Milroy et al., 2016, which concludes

that ensembles created by aggregating sources of variability from different compilers improve the

classification power and accuracy of the test. At this time, CESM-ECT is used by CESM software

engineers and scientists for both port verification and quality assurance for code modification and

updates. In light of the success of CAM-ECT, the question arose as to whether the test could also

be performed using a time period shorter than 1 year, and in particular, just a small number of

time steps.

The effects of rounding, truncation and initial condition perturbation on chaotic dynamical

systems is a well-studied area of research with foundations in climate science. The growth of initial

condition perturbations on CAM has been investigated since Rosinski et al., 1997, whose work

resulted in the PerGro test. This test examined the rate of divergence of CAM variables at initial

time steps between simulations with different initial conditions. The rates were used to compare the

behavior of CAM under modification to that of an established version of the model in the context

of the growth of machine roundoff error. With the advent of CAM5, PerGro became less useful

for classifying model behavior, as the new parameterizations in the model resulted in much more

rapid spread. Accordingly, it was commonly held that using a small number of time steps was an

untenable strategy due to the belief that the model’s initial variability (that far exceeded machine

roundoff) was too great to measure statistical difference effectively. Indeed, even the prospect of

using runs of 1 simulation year for CESM-ECT was met with initial skepticism. Note that prior
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to the CESM-ECT approach, CESM verification was a subjective process predicated on climate

scientists’ expertise in analyzing multi-century simulation output. The success of CAM-ECT’s

technique of using properties of yearly CAM means (Baker et al., 2015) translated to significant

cost savings for verifying the model.

Motivated by the success and cost improvement of CAM-ECT, we were curious as to whether

its general technique could be applied after a few initial time steps, in analogy with Rosinski et

al., 1997. This strategy would represent potential further cost savings by reducing the length of

the ensemble and test simulations. We were not dissuaded by the fact that the rapid growth of

roundoff order perturbations in CAM5 negatively impacted PerGro’s ability to detect changes due

to its comparison with machine epsilon. In fact, we show that examination of ensemble variability

after several time steps permits accurate pass and fail determinations and complements CAM-ECT

in terms of identifying potential problems. In this paper we present an ensemble-based consistency

test that evaluates statistical distinguishability at nine time steps, hereafter designated the Ultra-

Fast CAM Ensemble Consistency Test (UF-CAM-ECT).

A notable difference between CAM-ECT and UF-CAM-ECT is the type of data considered.

CAM-ECT spatially averages the yearly mean output to make the ensemble more robust (effectively

a double average). Therefore, a limitation of CAM-ECT is that if a bug only produces a small-scale

effect, then the overall climate may not be altered in an average sense at 12-months, and the change

may go undetected. In this case a longer simulation time may be needed for the bug to impact

the average climate. An example of this issue is the modification of the dynamics hyperviscosity

parameter (NU) in Baker et al., 2015, which was not detected by CAM-ECT. In contrast, UF-

CAM-ECT takes the spatial means of instantaneous values very early in the model run, which can

facilitate the detection of smaller-scale modifications. In terms of simulation length for UF-CAM-

ECT, we were aware that we would need to satisfy two constraints in choosing an adequate number

of initial time steps: some variables can suffer excessive spread while others remain relatively

constant, complicating pass/fail determinations. Balancing the run time and ensemble variability

(hence test classification power) also alters the types of statistical differences the test can detect;
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exploring the complementarity between CAM-ECT and UF-CAM-ECT is a focus of our work.

In particular, we make four contributions in this chapter: we demonstrate that adequate

ensemble variability can be achieved at the ninth CESM time step in spite of the heterogeneous

spread among the variables considered; we evaluate UF-CAM-ECT with experiments from Baker

et al., 2015, code modifications from Sect. 2.3 and several new CAM tests; we propose an effective

ensemble size; and we demonstrate that changes to the Community Land Model (CLM) can be

detected by both UF-CAM-ECT and CAM-ECT.

In Sect. 3.2, we quantify CESM divergence by time step. In Sect. 3.3, we detail the UF-

CAM-ECT method. We demonstrate the results of our investigation into the appropriate ensemble

size in Sect. 3.4. We present experimental results in Sect. 3.5, provide guidance for the tools’ usage

in Sect. 3.6, and conclude our discussion of UF-CAM-ECT with Sect. 3.7.

3.2 Motivation: CAM divergence in initial time steps

Applying an ensemble consistency test at nine time steps is sensible only if there is an

adequate amount of ensemble variability to correctly evaluate new runs as has been shown for

the 1-year runs. This issue is key: with too much spread a bug cannot be detected, and without

enough spread the test can be too restrictive in its pass and fail determinations. Many studies

consider the effects of initial condition perturbations to ensemble members on the predictability of

an ESM, and the references in Kay et al., 2015 contain several examples. In particular, Deser et al.,

2012 study uncertainty arising from climate model internal variability using an ensemble method,

and an earlier work (Branstator et al., 2010) considers the predictability and forecast range of a

climate model by examining the separate effects and timescales of initial conditions and forcings.

Branstator et al., 2010 also study ensemble global means and spread, as well as undertaking an

entropy analysis of leading Empirical Orthogonal Functions (comparable to PCA). These studies

are primarily concerned with model variability and predictability at the timescale of several years

or more. However, we note that concurrent to our work, a new method that considers 1 s time

steps has been developed in Wan et al., 2017. Their focus is on comparing the numerical error in
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time integration between a new run and control runs.

As mentioned previously, we were curious about the behavior of CESM in its initial time

steps in terms of whether we would be able to determine statistical distinguishability. Fig. 3.1

represents our initial inquiry into this behavior. To generate the data, we ran two simulations of 11

time steps each: one with no initial condition perturbation and one with a perturbation of O(10−14)

to the initial atmospheric temperature. The vertical axis labels designate CAM variables, while

the horizontal axis specifies the CESM time step. The color of each step represents the number of

significant figures in common between the perturbed and unperturbed simulations’ area weighted

global means: a small number of figures in common (darker red) indicates a large difference. Black

tiles specify time steps where the variable’s value is not computed due to model sub-cycling (Hurrell

et al., 2013). White tiles indicate between 10 and 17 significant figures in common (i.e., a small

magnitude of difference). Most CAM variables exhibit a difference from the unperturbed simulation

at the initial time step (0), and nearly all have diverged to only a few figures in common by step

10. Fig. 3.1 demonstrates sensitive dependence on initial conditions in CAM and suggests that

choosing a small number of time steps may provide sufficient variability to determine statistical

distinguishability resulting from significant changes. We further examine the ninth time step as it is

the last step on the plot where sub-cycled variables are calculated. Of the total 134 CAM variables

output by default in our version of CESM (see Sect. 3.3), 117 are utilized by CAM-ECT, as 17 are

either redundant or have zero variance. In all following analyses, the first nine sub-cycled variables

distinguished by red labels (AODDUST1, AODDUST3, AODVIS, BURDENBC, BURDENDUST,

BURDENPOM, BURDENSEASALT, BURDENSO4, and BURDENSOA) are discarded, as they

take constant values through time step 45. Thus we use 108 variables from Fig. 3.1 in the UF-

CAM-ECT ensemble.
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Next we examine the time series of each CAM variable by looking at the first 45 CESM

time steps (t0 through t45) for 30 simulations to select a time step when all variables experience

sufficient divergence from the values of the reference unperturbed simulation. To illustrate ensemble

variability at initial time steps, Fig. 3.2 depicts the time evolution of three representative CAM

variables from t0 to t45. Most CAM variables’ behavior is analogous to one of the rows in this

figure. The data set was generated by running 31 simulations: one with no initial atmospheric

temperature perturbation, and 30 with different O(10−14)K perturbations. The vertical axis labels

the difference between the unperturbed simulation and the perturbed simulations’ area weighted

global means, divided by the unperturbed simulation’s area weighted global mean value for the

indicated variable at each time step. The right column visualizes the distributions of the data in

the left column. Each box plot represents the values in the left column at nine time step intervals

from 9 to 45 (inclusive). In most cases, the variables attain measurable but well-contained spread

in approximately the first nine time steps. From the standpoint of CAM-ECT, Fig. 3.2 suggests

that an ensemble created at the ninth time step will likely contain sufficient variability to categorize

experimental sets correctly. Using additional time steps is unlikely to be beneficial in terms of UF-

CAM-ECT sensitivity or classification accuracy, and choosing a smaller number of time steps is

advantageous from the standpoint of capturing the state of test cases before feedback mechanisms

take place (e.g. Sect. 3.5.3.3). Note that we do not claim that 9 time steps is optimal in terms

of computational cost, but the difference in run time between 9 and 45 time steps is negligible

in comparison to the cost of CAM-ECT 12-month simulations (and the majority of time for such

short runs is initialization and I/O). We further discuss ensemble generation and size in Sect. 3.4

with an investigation of the properties of ensembles created from the ninth time step and compare

their pass/fail determinations of experimental simulations with that of CAM-ECT in Sect. 3.5.

3.3 UF-CAM-ECT approach

UF-CAM-ECT employs the same essential test method as CAM-ECT described in Baker

et al., 2015, but with a CESM simulation length of nine time steps (which is approximately 5
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Figure 3.1: Representation of effects of initial CAM temperature perturbation over 11 time steps
(including t = 0). CAM variables are listed on the vertical axis, and the horizontal axis records
the simulation time step. The color bar designates equality of the corresponding variables between
the unperturbed and perturbed simulations’ area weighted global means after being rounded to n
significant digits (n is the color) at each time step. Time steps where the corresponding variable
was not computed (subcycled variables) are colored black. White indicates equality of greater than
nine significant digits (i.e. 10-17). Red variable names are not used by UF-CAM-ECT.
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Figure 3.2: The vertical axis labels the difference between the unperturbed simulation and the
perturbed simulations’ area weighted global means, divided by the unperturbed simulation’s area
weighted global mean for the indicated variable at each time step. The horizontal axis is the CESM
time step with intervals chosen as multiples of nine. The left column plots are time series repre-
sentations of the values three CAM variables chosen as representatives of the entire set. (Variables
behave similarly to one of these three.) The right column plots are statistical representations of
the 30 values plotted at each vertical grid line of the corresponding left column. More directly,
each box plot depicts the distribution of values of each variable for each time step from 9 to 45 in
multiples of 9.
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simulation hours) using the default CAM time step of 1800 seconds (30 minutes). By considering

a specific time step, we are using instantaneous values in contrast to CAM-ECT, which uses yearly

average values. UF-CAM-ECT inputs are spatially averaged, so averaged once, whereas CAM-ECT

inputs are averaged across the 12 simulation months and spatially averaged, so averaged twice. As a

consequence of using instantaneous values, UF-CAM-ECT is more sensitive to localized phenomena

(see Sect. 3.5.3.3). By virtue of the small number of modifications required to transform CAM-

ECT into UF-CAM-ECT, we consider the ECT framework to have surprisingly broad applicability.

Substituting instantaneous values for yearly averages permits the discernment of different features

and modifications- see Sects. 3.5 and 3.5.2 for evidence of this assertion.

As in Baker et al., 2015 and Chapter 2, we run CESM simulations on a 1◦ global grid

using the CAM5 model version described in Kay et al., 2015, and despite the rapid growth in

perturbations in CAM5 with the default time step of 1800 seconds, we can still characterize its

variability. We run simulations with 900 MPI processes and two OpenMP threads per MPI process

(unless otherwise noted) on the Yellowstone machine at NCAR. Yellowstone is composed of 4,536

compute nodes, with two Xeon Sandy Bridge CPUs and 32 GB memory per node. The default

compiler on Yellowstone for our CESM version is Intel 13.1.2 with -O2 optimization. We also use

the CESM-supported compilers GNU 4.8.0 and PGI 13.0 in this study. With 900 MPI processes

and two OpenMP threads per process, a simulation of nine time steps on Yellowstone is a factor

of approximately 70 cheaper in terms of CPU time than a 12-month CESM simulation.

Either single- or double-precision output is suitable for UF-CAM-ECT. While CAM can be

instructed to write its history files in single- or double-precision floating-point form, its default is

single-precision which was used for CAM-ECT in Baker et al., 2015 and Sect. 2. Similarly, UF-

CAM-ECT takes single-precision output by default. However, we chose to generate double-precision

output to facilitate the study represented by Fig. 3.1; it would have been impossible to perform a

significance test of up to 17 digits otherwise. In the case of new runs written in double-precision,

both CAM-ECT and UF-CAM-ECT compare ensemble values promoted to double-precision with

the unmodified new outputs. We determined that the effects of using double- or single-precision
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outputs for ensemble generation and the evaluation of new runs did not impact statistical distin-

guishability.

3.4 UF-CAM-ECT ensemble size

In this section we consider the properties of the UF-CAM-ECT ensemble, particularly focus-

ing on ensemble size. Given the use of instantaneous values at nine time steps in UF-CAM-ECT, our

expectation was that the size of the ensemble would differ from that of CAM-ECT. We considered

it plausible that a larger number would be required to make proper pass and fail determinations.

The ensemble should contain enough variability that UF-CAM-ECT classifies experiments expected

to be statistically indistinguishable as consistent with the ensemble. Furthermore, for experiments

that significantly alter the climate, UF-CAM-ECT should classify them as statistically distinct from

the ensemble. Accordingly, the ensemble itself is key, and examining its size allows us to quantify

the variability it contains as the number of ensemble members increases.

Our sets of experimental simulations (new runs) typically consist of 30 members, but by

default pyCECT was written to do a single test on three runs. Performing the full set of possible

CAM-ECT tests from a given set of experimental simulations allows us to make robust failure

determinations as opposed to a single binary pass/fail test. In this work we utilize the Ensemble

Exhaustive Test (EET) tool described in Sect. 2.2 to calculate an overall failure rate for sets of

new runs larger than the pyCECT default. A failure rate provides more detail on the statistical

difference between the ensemble and experimental set. To calculate the failure rate, EET efficiently

performs all possible tests which are equal in number to the ways Ntest simulations can be chosen

from all Ntot simulations (i.e., the binomial coefficient:
(
Ntot

Ntest

)
). For this work most experiments

consist of 30 simulations, so Ntot = 30 and Ntest = 3 yields 4,060 possible combinations. With

this tool we can make a comparison between the exhaustive test failure rate and the single-test

CAM-ECT false positive rate calibrated to be 0.5%.

To determine a desirable UF-CAM-ECT ensemble size, we gauge whether ensembles of vary-

ing sizes contain sufficient variability by excluding sets of ensemble simulations and performing
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exhaustive testing against ensembles formed from the remaining elements. Since the test sets and

ensemble members are generated by the same type of initial condition perturbation, the test sets

should pass should pass. We begin with a set of 801 CESM simulations of nine time steps, dif-

fering by unique perturbations to the initial atmospheric temperature field in {
[
−9.99× 10−14, 0

)
,(

0, 9.99× 10−14
]
} K. The motivation for generating a large number of outputs was our expectation

that ensembles created from instantaneous values would contain less variability. Moreover, since

the runs are comparatively cheap, it was easy to run many simulations for testing purposes. In

the following description, all draws are made without replacement. We first randomly select a

subset from the 801 simulations and compute the PC loadings. From the remaining simulations,

we choose 30 at random and run EET against this experimental set. For each ensemble size, we

make 100 random draws to form an ensemble, and for each ensemble we make 100 random draws of

experimental sets. This results in 10,000 EET results per ensemble size. For example, to test the

variability of the size 350 ensemble, we choose 350 simulations at random from our set of 801 to

form an ensemble. From the remaining 451 simulations, we randomly choose 30 and exhaustively

test them against the generated ensemble with EET (4,060 individual tests). This is repeated 99

times for the ensemble. Then 99 more ensembles are created in the same way, yielding 10,000 tests

for size 350. As such, we tested sizes from 100 through 750, and include a plot of the results in

Fig. 3.3. Since all 801 simulations are created by the same type of perturbation, we expect EET to

issue a pass for each experimental set against each ensemble. This study is essentially a resampling

method without replacement used jointly with cross validation to ascertain the minimum ensem-

ble size for stable PC calculations and pass/fail determinations. With greater ensemble size the

distribution of EET failure rates should narrow, reflecting the increased stability of calculated PC

loadings that accompanies larger sample sizes. The EET failure rates will never be uniformly zero

due to the statistical nature of the test. The chosen false positive rate of 0.5% is reflected by the

red horizontal line in Fig. 3.3. We define an adequate ensemble size as one whose median is less

than 0.5% and whose interquartile range (IQR) is narrow. The IQR is defined as the difference

between the upper and lower quartiles of a distribution. For the remainder of this work we use the
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size 350 ensemble shown in Fig. 3.3, as it is the smallest ensemble that meets our criteria of median

below 0.5% and narrow IQR. The larger ensembles represent diminishing returns at greater com-

putational expense. Note that the relationship between model time step number and the ensemble

size necessary to optimize test accuracy is complex. In Sect. 2.5 we conclude that ensembles of

size 300 or 453 are necessary for accurate CAM-ECT test results, which bounds the 350 chosen for

UF-CAM-ECT above and below. Minimizing the cost of ensemble generation and test evaluation

is not a main consideration of this study, as UF-CAM-ECT is already a sizable improvement over

CAM-ECT.

3.5 Results

The UF-CAM-ECT must have properties comparable or complementary to CAM-ECT in-

cluding high classification accuracy. In particular, its response to modifications known to produce

statistically distinguishable output should be a fail, and to changes not expected to result in sta-

tistically distinguishable output, a pass. We verify its effectiveness by performing the same tests

as before with CAM-ECT: CAM namelist alterations and compiler changes from Baker et al., 2015

as well as code modifications from 2.3. We further explore UF-CAM-ECT properties with exper-

iments from CLM and several new CAM experiments. In the following sections, UF-CAM-ECT

experiments consist of 30 runs due to their low cost, allowing us to do exhaustive testing. For

CAM-ECT, we only run EET (which is far more expensive due to the need for more than three

12-month runs) in Sect. 3.5.3, where the expected experiment outcomes are less certain. The UF-

CAM-ECT ensemble selected for testing is size 350 (see Fig. 3.3), and the CAM-ECT ensemble is

size 300, comprised of 100 simulations built by Intel, GNU, and PGI compilers (the smallest size

recommended in Sect. 2.5).

3.5.1 Matching expectation and result: where UF and CAM-ECT agree

UF-CAM-ECT should return a pass when run against experiments expected to be statistically

indistinguishable from the ensemble. A comparison between the EET failures of UF-CAM-ECT
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Figure 3.3: Box plot of EET failure rate distributions as a function of ensemble size. The distribu-
tions are generated by randomly selecting a number of simulations (ensemble size) from a set of 801
simulations to compute PC loadings. From the remaining set, 30 simulations are chosen at random.
These simulations are projected into the PC space of the ensemble and evaluated via EET. For
each ensemble size, 100 ensembles are created and 100 experimental sets are selected and evaluated.
Thus each distribution contains 10,000 EET results (40,600,000 total tests per distribution). The
red horizontal line indicates the chosen false positive rate of 0.5%.
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and the single-test CAM-ECT for several types of experiments that should all pass is presented in

the upper section of Table 3.1. The first type of examples for this “should pass” category includes

building CESM with a different compiler or a different value-safe optimization order (e.g., with

no optimization: -O0), or running CESM without OpenMP threading. These tests are labeled

INTEL-15, PGI, GNU, NO-OPT, and NO-THRD (see Appendix A for further details).

A second type of should pass examples includes the important category of port verification to

other (i.e., not Yellowstone) CESM-supported machines. In Sect. 2.6 we determined that running

CESM with fused multiply–add (FMA) CPU instructions enabled resulted in statistically distin-

guishable output on the Argonne National Laboratory Mira supercomputer. With the instructions

disabled, the machine passed CAM-ECT. We list results from the machines in Table 3.1 with FMA

enabled and disabled on SUMMIT (note that the SUMMIT results can also be found in Anderson

et al., 2017), and with xCORE-AVX2 (a set of optimizations that activates FMA) enabled and

disabled on CHEYENNE.

• EDISON Cray XC30 with Xeon Ivy Bridge CPUs at the National Energy Research Sci-

entific Computing Center (NERSC; Intel compiler, no FMA capability)

• CHEYENNE SGI ICE XA cluster with Xeon Broadwell CPUs at NCAR (Intel compiler,

FMA capable)

• SUMMIT Dell C6320 cluster with Xeon Haswell CPUs at the University of Colorado,

Boulder for the Rocky Mountain Advanced Computing Consortium (RMACC; Intel com-

piler, FMA capable)

Finally, a third type of should pass experiments is the minimal code modifications from

Sect. 2.3 that were developed to test the variability and classification power of CESM-ECT. These

code modifications that should pass UF-CAM-ECT include the following: Combine (C), Expand

(E), Division-to-Multiplication (DM), Unpack-Order (UO), and Precision (P; see Sect. 2.3 for full

descriptions). Note that all EET failure rates for the types of experiments that should pass (in the
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upper section of Table 3.1) are close to zero for UF-CAM-ECT, indicating full agreement between

CAM-ECT and UF-CAM-ECT.

Next we further exercise UF-CAM-ECT by performing tests that are expected to fail, which

are presented in the lower section of Table 3.1. We perform the following CAM namelist experiments

from Baker et al., 2015: DUST, FACTB, FACTIC, RH-MIN-LOW, RH-MIN-HIGH, CLDFRC-DP,

UW-SH, CONV-LND, CONV-OCN, and NU-P (see Appendix A for descriptions). For UF-CAM-

ECT each “expected to fail” result in Table 3.1 (lower portion) is identically a 100% EET failure:

a clear indication of statistical distinctness from the size 350 UF-CAM-ECT ensemble. Therefore,

the CAM-ECT and UF-CAM-ECT tests are in agreement for the entire list of examples presented

in Table 3.1, which is a testament to the utility of UF-CAM-ECT.

3.5.2 CLM modifications

The CLM, the land model component of CESM, was initially developed to study land surface

processes and land–atmosphere interactions, and was a product of a merging of a community land

model with the NCAR Land Surface Model (Oleson et al., 2010). More recent versions benefit from

the integration of far more sophisticated physical processes than in the original code. Specifically,

CLM 4.0 integrates models of vegetation phenology, surface albedos, radiative fluxes, soil and snow

temperatures, hydrology, photosynthesis, river transport, urban areas, carbon–nitrogen cycles, and

dynamic global vegetation, among many others (Oleson et al., 2010). Moreover, the CLM receives

state variables from CAM and updates hydrology calculations, outputting the fields back to CAM

(Oleson et al., 2010). It is sensible to assume that since information propagates between the land

and atmosphere models, in particular between CLM and CAM, CAM-ECT and UF-CAM-ECT

should be capable of detecting changes to CLM.

For our tests we use CLM version 4.0, which is the default for our CESM version (see Sect.

3.3) and the same version used in all experiments in this work. Our CLM experiments are described

as follows:
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Table 3.1: CAM-ECT and UF-CAM-ECT return the same result (pass or fail) for the experiments
listed. The CAM-ECT column is the result of a single test on three runs. The UF-CAM-ECT
column represents EET results from 30 runs. Descriptions of the porting experiments (EDISON,
CHEYENNE, and SUMMIT) are listed in Sect 3.5.1. The remaining experiments are described in
Appendices A and 2.3.

Experiment CAM-ECT UF-CAM-ECT
Result Result EET failure %

INTEL-15 Pass Pass 0.1%
PGI Pass Pass 0.1%
GNU Pass Pass 0.0%
NO-OPT Pass Pass 0.0%
NO-THRD Pass Pass 0.0%
EDISON Pass Pass 0.1%
CHEYENNE (AVX2 disabled) Pass Pass 2.1%
SUMMIT (FMA disabled) Pass Pass 0.0%
C Pass Pass 0.7%
E Pass Pass 0.0%
DM Pass Pass 0.0%
UO Pass Pass 0.0%
P Pass Pass 0.0%

CHEYENNE (AVX2 enabled) Fail Fail 92.2%
SUMMIT (FMA enabled) Fail Fail 77.2%
DUST Fail Fail 100.0%
FACTB Fail Fail 100.0%
FACTIC Fail Fail 100.0%
RH-MIN-LOW Fail Fail 100.0%
RH-MIN-HIGH Fail Fail 100.0%
CLDFRC-DP Fail Fail 100.0%
UW-SH Fail Fail 100.0%
CONV-LND Fail Fail 100.0%
CONV-OCN Fail Fail 100.0%
NU-P Fail Fail 100.0%
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• CLM INIT changes from using the default land initial condition file to using a cold

restart.

• CO2 PPMV 280 reduces the CO2 type and concentration from CLM CO2 TYPE =

‘diagnostic’ to CLM CO2 TYPE = ‘constant’ and CCSM CO2 PPMV = 280.0.

• CLM VEG activates CN mode (carbon–nitrogen cycle coupling).

• CLM URBAN disables urban air conditioning/heating and the waste heat associated

with these processes so that the internal building temperature floats freely.

See Table 3.2 for the test results of the experiments. The pass and fail results in this table

reflect our high confidence in the expected outcome: all test determinations are in agreement, the

UF-CAM-ECT passes represent EET failure rates < 1%, and failing UF-CAM-ECT tests are all

100% EET failures. We expected failures for CLM INIT because the CLM and CAM coupling

period is 30 simulation minutes, and such a substantial change to the initial conditions should be

detected immediately and persist through 12-months. CLM CO2 PPMV 280 is also a tremendous

change as it effectively resets the atmospheric CO2 concentration to a preindustrial value, and

changes which CO2 value the model uses. In particular, for CLM CO2 TYPE = ‘diagnostic’ CLM

uses the value from the atmosphere (367.0 ppmv), while CLM CO2 TYPE = ‘constant’ instructs

CLM to use the value specified by CCSM CO2 PPMV. Therefore both tests detect the large reduc-

tion in CO2 concentration, generating failures at the ninth time step and in the 12-month average.

CLM VEG was also expected to fail immediately, given how quickly the CN coupling is expressed.

Finally, the passing results of both CAM-ECT and UF-CAM-ECT for CLM URBAN is unsurpris-

ing as the urban fraction is less than 1% of the land surface, and heating and air conditioning only

occur over a fraction of this 1% as well.

Our experiments thus far indicate that both CAM-ECT and UF-CAM-ECT will detect errors

in CLM, and that a separate CESM-ECT module for CLM (required for POP) is most likely not

needed. While this finding may be unsurprising given how tightly CAM and CLM are coupled, it
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Table 3.2: These CLM experiments show agreement between CAM-ECT and UF-CAM-ECT as
well as with the expected outcome. The CAM-ECT column is the result of a single ECT test on
three runs. The UF-CAM-ECT column represents EET failure rates from 30 runs.

Experiment CAM-ECT UF-CAM-ECT
Result Result EET failure %

CLM INIT Fail Fail 100.0%
CLM CO2 PPMV 280 Fail Fail 100.0%
CLM VEG Fail Fail 100.0%
CLM URBAN Pass Pass 0.1%

represents a significant broadening of the tools’ applicability and utility. Note that while we have

not generated CAM-ECT or UF-CAM-ECT ensembles with CN mode activated in CLM (which is a

common configuration for land modeling), we have no reason to believe that statistical consistency

testing of CN-related CLM code changes would not be equally successful. Consistency testing of

active CN mode code changes bears further investigation and will be a subject of future work.

3.5.3 UF-CAM-ECT and CAM-ECT disagreement

In this section we test experiments that result in contradictory determinations by UF-CAM-

ECT and CAM-ECT. Due to the disagreement, all tests’ EET failure percentages are reported for

30 run experimental sets for both UF-CAM-ECT and CAM-ECT. We present the results in Table

3.3. The modifications are described in the following list (note that NU and RAND-MT can

also be found in Baker et al., 2015 and Milroy, 2015, respectively):

• RAND-MT substitutes the Mersenne Twister pseudo-random number generator (PRNG)

for the default PRNG in radiation modules.

• TSTEP TYPE changes the time-stepping method for the spectral element dynamical

core from 4 (Kinnmark & Gray Runge–Kutta 4 stage) to 5 (Kinnmark & Gray Runge–

Kutta 5 stage).

• QSPLIT alters how often tracer advection is done in terms of dynamics time steps, the
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Table 3.3: These experiments represent disagreement between UF-CAM-ECT and fail CAM-ECT.
Shown are the EET failure rates from 30 runs.

Experiment CAM-ECT UF-CAM-ECT
EET failure % EET failure %

RAND-MT 4.7% 99.4%
TSTEP TYPE 2.5% 100%
QSPLIT 1.8% 100%

CPL BUG 41.6% 0.1%
CLM HYDRO BASEFLOW 30.7% 0.1%

NU 33.0% 100%
CLM ALBICE 00 12.8% 96.3%

default is one, and we increase it to nine.

• CPL BUG sets albedos to zero above 57 degrees N latitude in the coupler.

• CLM HYDRO BASEFLOW increases the soil hydrology baseflow rate coefficient in

CLM from 5.5× 10−3 to 55.

• NU changes the dynamics hyperviscosity (horizontal diffusion) from 1× 1015 to 9× 1014.

• CLM ALBICE 00 changes the albedo of bare ice on glaciers (visible and near-infrared

albedos for glacier ice) from 0.80,0.55 to 0.00,0.00.

3.5.3.1 Minor setting changes: RAND-MT, TSTEP TYPE, and QSPLIT

RAND-MT is a test of the response to substituting the CAM default PRNG in the radiation

module for a different CESM-supported PRNG (Milroy, 2015). Since the PRNG affects radiation

modules which compute cloud properties, it is reasonable to conclude that the change alters the

distributions of cloud-related CAM variables (such as cloud covers). Both CAM and its PRNG

are deterministic; the variability at nine time steps exhibits different characteristics depending

on the PRNG. However, we would not expect (nor would we want) a change to the PRNG to
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induce statistically distinguishable results over a longer period such as a simulation year, and this

expectation is confirmed by CAM-ECT.

TSTEP TYPE and QSPLIT are changes to attributes of the model dynamics: TSTEP TYPE

alters the time-stepping method in the dynamical core, and QSPLIT modifies the frequency of tracer

advection computation relative to the dynamics time step. It is well known that CAM is generally

much more sensitive to the physics time step than to the dynamics time step. Time-stepping

errors in CAM dynamics do not affect large-scale well-resolved waves in the atmosphere but they

do affect small-scale fast waves. While short-term weather should be affected, the model climate

is not expected to be affected by time-stepping method or dynamics time-step. However, like the

RAND-MT example, UF-CAM-ECT registers the less “smoothed” instantaneous global means as

failures for both tests, while CAM-ECT finds the yearly averaged global means to be statistically

indistinguishable. Small grid-scale waves are affected by choice of TSTEP TYPE in short runs,

however, the long-term climate is not affected by time-stepping method. The results of these

experiments are shown in the top section of Table 3.3, and for experiments of this type, CAM-ECT

yields anticipated results. This group of experiments exemplifies the categories of experiments

to which UF-CAM-ECT may be sensitive: small-scale or minor changes to initial conditions or

settings which are irrelevant in the long term. Therefore, while the UF-CAM-ECT results can be

misleading in particular in these cases, they may indicate a larger problem as will be seen in the

examples in Sect. 3.5.3.3.

3.5.3.2 Contrived experiments: CPL BUG and CLM HYDRO BASEFLOW

Motivated by experiments which bifurcate the tests’ findings, we seek the reverse of the

previous three experiments in Sect. 3.5.3.1: examples of a parameter change or code modification

that are distinguishable in the yearly global means, but are undetectable in the first time steps. We

consulted with climate scientists and CESM software engineers, testing a large number of possible

modifications to find some that would pass UF-CAM-ECT and fail CAM-ECT. The results in the

center section of Table 3.3 represent a small fraction of the tests performed, as examples that met
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the condition of UF-CAM-ECT pass and CAM-ECT fail were exceedingly difficult to find. In fact,

CPL BUG and CLM HYDRO BASEFLOW were devised specifically for that purpose. That their

failure rates are far from 100% is an indication of the challenge of finding an error that is not

present at nine time steps, but manifests clearly in the annual average.

CPL BUG is devised to demonstrate that it is possible to construct an example that does

not yield substantial differences in output at nine time steps, but does impact the yearly average.

Selectively setting the albedos to zero above 57 degrees N latitude has little effect at nine time

steps since this region experiences almost zero solar radiation during the first 5 h of January 1.

The nonzero CAM-ECT result is a consequence of using annual averages since for the Northern

Hemisphere summer months this region is exposed to nearly constant solar irradiance.

CLM HYDRO BASEFLOW is another manufactured example of a change designed to be

undetectable at the ninth time step. It is an increase in the exponent of the soil hydrology baseflow

rate coefficient, which controls the amount of water drained from the soil. This substantial change

(4 orders of magnitude) cannot be detected by UF-CAM-ECT since the differences at nine time

steps are confined to deep layers of the soil. However, through the year they propagate to and

eventually influence the atmosphere through changes in surface fluxes, which is corroborated by

the much higher CAM-ECT failure rate.

3.5.3.3 Small but consequential changes: NU and CLM ALBICE 00

CAM-ECT results in Baker et al., 2015 for the NU experiment are of particular interest as

climate scientists expected this experiment to fail. NU is an extraordinary case, as Baker et al.,

2015 acknowledge: “[b]ecause CESM-ECT [currently CAM-ECT] looks at variable annual global

means, the ‘pass’ result [for NU] is not entirely surprising as errors in small-scale behavior are

unlikely to be detected in a yearly global mean.” The change to NU should be evident only where

there are strong field gradients and small-scale precipitation. We applied EET for CAM-ECT with

30 runs and determined the failure rate to be 33.0% against the reference ensemble. In terms of

CAM-ECT this experiment was borderline, as the probability that CAM-ECT will classify three
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NU runs a “pass” is not much greater than a “fail” outcome. In contrast UF-CAM-ECT is able to

detect this difference much more definitively in the instantaneous data at the ninth time step. We

would also expect this experiment to fail more definitively for simulations longer than 12-months,

once the small but nevertheless consequential change in NU had time to manifest.

CLM ALBICE 00 affects a very small percent of the land area. Furthermore, of that land

area, only regions where the fractional snow cover is < 1 and incoming solar radiation is present

will be affected by the modification to the bare ice albedo. Therefore, it was expected to pass

both CAM-ECT and UF-CAM-ECT, yet the EET failure rate for UF-CAM-ECT was 96.3%. We

consider the CLM ALBICE 00 experiment in greater detail to better understand the differences

between UF-CAM-ECT and CAM-ECT. Since the change is small and localized, we need to discover

the reason why UF-CAM-ECT detects a statistical difference, particularly given that many northern

regions with glaciation receive little or no solar radiation at time step 9 (January 1). To explain

this unanticipated result, we created box plots of all 108 CAM variables tested by UF-CAM-ECT

to compare the distributions (at nine time steps and at 1 year) of the ensemble versus the 30

CLM ALBICE 00 simulations. Each plot was generated by subtracting the unperturbed ensemble

value from each value, and then rescaling by the unperturbed ensemble value. After analyzing

the plots, we isolated four variables (FSDSC: clear-sky downwelling solar flux at surface; FSNSC:

clear-sky net solar flux at surface; FSNTC: clear-sky net solar flux at top of model; and FSNTOAC:

clear-sky net solar flux at top of atmosphere) that exhibited markedly different behaviors between

the ensemble and experimental outputs. Fig. 3.4 displays the results. The left column represents

distributions from the ninth time step which demonstrate the distinction between the ensemble

and experiment: the top three variables’ distributions have no overlap. For the 12-month runs, the

ensemble and experiments are much less distinct. It is sensible that the global mean net fluxes are

increased by the albedo change, as the incident solar radiation should be a constant, while the zero

albedo forces all radiation impinging on exposed ice to be absorbed. The absorption reduces the

negative radiation flux, making the net flux more positive. The yearly mean distributions are not

altered enough for CAM-ECT to robustly detect a fail (12.8% EET failure rate), which is due to
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feedback mechanisms having taken hold and leading to spatially heterogeneous effects, which are

seen as such in the spatial and temporal 12-month average.

The percentage of grid cells affected by the CLM ALBICE 00 modification is 0.36% (calcu-

lated by counting the number of cells with nonzero FSNS, fractional snow cover (FSNO in CLM)

∈ (1, 0), and PCT GLACIER greater than zero in the surface data set). Remarkably, despite such

a small area being affected by the CLM ALBICE 00 change, UF-CAM-ECT flags these simulations

as statistically distinguishable. The results of CLM ALBICE 00 taken together with NU indicate

that UF-CAM-ECT demonstrates the ability to detect small-scale events, fulfilling the desired

capability of CAM-ECT mentioned as future work in Baker et al., 2015.

3.6 Implications and ECT guidelines

In this section we summarize the lessons learned in Sect. 3.5 to provide both clarification

and guidance on the use of the complementary tools UF-CAM-ECT and CAM-ECT in practice.

Our extensive experiments, a representative subset of which are presented in Sect. 3.5, indicate

that UF-CAM-ECT and CAM-ECT typically return the same determination. Indeed, finding

counterexamples was non-trivial. Certainly the types of modifications that occur frequently in

the CESM development cycle (e.g., compiler upgrades, new CESM-supported platforms, minor

code rearrangements for optimization, and initial state changes) are all equally well classified by

both UF-CAM-ECT and CAM-ECT. Therefore, in practice we recommend the use of the cheaper

UF-CAM-ECT as a first step for port verification, code optimization and compiler flag changes,

as well as other frequent CESM quality assurance procedures. Moreover, the low cost of ensemble

generation provides researchers and software engineers with the ability to generate ensembles rapidly

for evaluation of new physics, chemistry, or other modifications which could affect the climate.

CAM-ECT is used as a second step only when needed for complementary information as fol-

lows. First, our experimentation indicates that if UF-CAM-ECT issues a pass, it is very likely that

CAM-ECT will also issue a pass. While devising examples where UF-CAM-ECT issues a pass and

CAM-ECT issues a fail is conceptually straightforward (e.g. a seasonal or slow-propagating effect),
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Figure 3.4: Each box plot represents the statistical distribution of the difference between the global
mean of each variable and the unperturbed, ensemble global mean, then scaled by the unperturbed,
ensemble global mean for both the 30 ensemble members and 30 CLM ALBICE 00 members. The
plots on the left are generated from nine time step simulations, while those on the right are from
one simulation year.
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in practice none of the changes suggested by climate scientists and software engineers resulted in

a discrepancy between CAM-ECT and UF-CAM-ECT. Hence, we constructed the two examples

presented in Sect. 3.5.3.2, using changes which were formulated specifically to be undetectable

by UF-CAM-ECT, but flagged as statistically distinguishable by CAM-ECT. It appears that if a

change propagates so slowly as not to be detected at the ninth time step, its later effects can be

smoothed by the annual averaging which includes the initial behavior. Accordingly, the change

may go undetected by CAM-ECT when used without EET (e.g., failure rates for CAM-ECT in the

lower third of Table 3.3 are well below 100%). A user may choose to run both tests, but in prac-

tice applying CAM-ECT as a second step should only be considered when UF-CAM-ECT issues

a fail. In particular, because we have shown that UF-CAM-ECT is quite sensitive to small-scale

errors or alterations (see CLM ALBICE 00 in Sect. 3.5.3.3 which impacted less than 1% of land

area), by running CAM-ECT when UF-CAM-ECT fails, we can further determine whether the

change also impacted statistical consistency during the first year. If CAM-ECT also fails then the

UF-CAM-ECT result is confirmed. On the other hand, if CAM-ECT passes, the situation is more

nuanced. Either a small-scale change has occurred that is unimportant in the long term for the

mean climate (e.g., RAND-MT), or a small-scale change has occurred that will require a longer

time scale than 12-months to manifest decisively (e.g., NU). In either case, the user must have an

understanding of the characteristics of the modification being tested to reconcile the results at this

point. Future work will include investigation of ensembles at longer time scales, which will aid in

the overall determination of the relevance of the error.

3.7 Conclusions

We developed a new Ultra-Fast CAM Ensemble Consistency test from output at the ninth

time step of the CESM. Conceived largely out of curiosity, it proved to possess surprisingly wide

applicability in part due to its use of instantaneous values rather than annual means. The short

simulation time translated to a cost savings of a factor of approximately 70 over a simulation of 12

months, considerably reducing the expense of ensemble and test run creation. Through methodical
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testing, we selected a UF-CAM-ECT ensemble size (350) that balances the variability contained

in the ensemble (hence its ability to classify new runs) with the cost of generation. We performed

extensive experimentation to test which modifications known to produce statistically distinguishable

and indistinguishable results would be classified as such by UF-CAM-ECT. These experiments

yielded clear pass/fail results that were in agreement between the two tests, allowing us to more

confidently prescribe use cases for UF-CAM-ECT. Due to the established feedback mechanisms

between the CLM component of CESM and CAM, we extended CESM-ECT testing to CLM.

Our determination that both CAM-ECT and UF-CAM-ECT are capable of identifying statistical

distinguishability resulting from alterations to CLM indicates that a separate ECT module for

CLM is likely unnecessary. By studying experiments where CAM-ECT and UF-CAM-ECT arrived

at different findings we concluded that UF-CAM-ECT is capable of detecting small-scale changes,

a feature that facilitates root cause analysis for test failures in conjunction with CAM-ECT.

UF-CAM-ECT will be an asset to CESM model developers, software engineers, and climate

scientists. The ultra-fast test is cheap and quick, and further testing is not required when a passing

result indicating statistical consistency is issued. Ultimately the two tests can be used in concert to

provide richer feedback to software engineers, hardware experts, and climate scientists: combining

the results from the ninth time step and 12 months enhances understanding of the time scales

on which changes become operative and influential. We intend to refine our understanding of

both UF-CAM-ECT and CAM-ECT via an upcoming study on decadal simulations. We hope to

determine whether the tests are capable of identifying statistical consistency (or lack thereof) of

modifications that may take many years to manifest fully. Another potential application of the tests

is the detection of hardware or software issues during the initial evaluation and routine operation

of a supercomputer.



Chapter 4

Identifying the Root Causes of Statistical Inconsistency in the CESM

The content of this chapter is from D. J. Milroy et al., arXiv preprint, 2018. The included

text is verbatim with the exception of hyperlinked references to sections, which have different

enumeration by necessity, and citation format differences. All figures appear here unaltered.

4.1 Introduction

This work is prompted by an investigation into output discrepancies between two large super-

computers running the Community Earth System Model (CESMTM). Determining the reason for

the statistically distinct model output in more than a million lines of code required equal measures

of data analysis, climate science knowledge, experience with the code base, and intuition. The

process took the combined expertise of many scientists and engineers and lasted months (Milroy

et al., 2016). In this work we make significant progress toward automating root cause analysis for

sources of error and discrepancy in CESM.

The CESM is a commonly used application for simulating the Earth system, and its influence

extends from science to policy. The model’s Fortran code base is modular, which facilitates its

evolutionary and community development. The CESM has grown to approximately 1.5 million

lines of code, which contain expressions of modern coding techniques together with code written

in its earliest versions (decades ago). CESM’s size, complexity, and continuous development make

finding errors difficult. Furthermore, there are few tools designed for debugging large models written

in Fortran. We focus on the CESM in this work, though our debugging methods may be applicable
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to other large Fortran models or with a different parser, models written in other languages.

The first step to finding sources of inconsistency is to identify abnormal output. A simple

test like bit-for-bit equivalence is not useful because legitimate changes or optimizations to the

model can result in bitwise differences between outputs. The works Baker et al., 2015; Baker et al.,

2016 establish statistical testing for consistency with an ensemble of “accepted” output from the

Community Atmospheric Model (CAM) and Parallel Ocean Program (POP) component models of

CESM. These Ensemble Consistency Tests (ECTs) quantify the natural climate model variability

present in an ensemble of the respective component models’ outputs. The ECT can then evaluate

new, experimental outputs in the context of the ensemble to determine whether the new outputs are

statistically consistent. While this test has been shown to work very well for correctly classifying

new outputs, in the case of a failure it provides no information as to the causes. In this work we

attempt to develop a path to providing this crucial information on root causes of errors.

This work is organized as follows: in Section 4.2, we overview our strategy and contribu-

tions and discuss related work. Section 4.3 describes identifying output variables most affected by

inconsistencies. In Section 4.4, we detail transforming approximately 660,000 lines of code into a

directed graph (digraph). In Section 4.5 we define our method of iterative convergence to locate

sources of discrepancy, and in Section 4.6 we present examples of our method.

4.2 Overview and related work

In this section we provide a summary of the methods we develop and describe our principal

contributions. We summarize related work on program slicing and runtime sampling.

4.2.1 Method and contributions

Each step of our method is motivated by reducing the search space of possible causes of

discrepancy. We wish to identify differences between the ensemble and experimental outputs as

early as possible, so we examine the model in its first time steps and run consistency testing at time

step nine using UF-CAM-ECT (Milroy et al., 2018). Using an early time step is an advantage for
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Figure 4.1: Example of process flow for our methods.

several reasons: bugs or discrepancies may not propagate changes through the entire model, climate

feedback mechanisms may not yet take effect, and less of the source code is executed. Since CESM

can be compiled in numerous configurations we begin by eliminating modules not built into the

final executable. We use an existing code coverage tool to discard modules not yet executed by the

second time step, and remove subprograms that are unused. Next, we focus on variables written to

file that are most affected by the discrepancy, allowing us to disregard locations that compute other

variables. These initial steps reduce the potential lines to search from about 1.5 million to 660,000,

which is still substantial. From this reduced code base, we construct a digraph of variable depen-

dencies expressed through assignment statements. We then extract from this graph a subgraph

that computes the variables identified as affected by the discrepancy. To facilitate parallelism and

runtime sampling (among other benefits), we use clustering to partition the subgraph. For each

cluster, we rank nodes based on their centrality to determine which code variables to sample at run-

time. We plan to further narrow the search space based on value differences between an ensemble

and an experimental run, followed by clustering and sampling by centrality to converge iteratively

on the sources of discrepancy (currently performed in simulation). Figure 4.1 is a schematic of our

process.

We make the following contributions in this work: we create a pipeline to convert the CESM
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source code into a digraph with extensive metadata that represents variable assignment paths. We

develop a hybrid static program slicing approach that efficiently returns large slices. We devise an

iterative refinement procedure based on community detection, centrality, and runtime sampling to

contract the slice to a useful size. We perform experiments based on CESM output that demonstrate

finding the causes of model discrepancy. Finally, we provide evidence that our methods accurately

characterize information flow at runtime.

4.2.2 Related work

Program slicing is a common technique in debugging and in software development and main-

tenance that extracts sections of a program that can affect a particular region of code (Weiser,

1981; Weiser, 1984). In a broad sense, program slicing can be divided into two methods: static

slicing, which considers all possible executions of a program, and dynamic slicing, which accounts

for only one execution given a set of criteria (e.g., Tip, 1994; Silva, 2012). Static slicing is generally

less expensive but can return slices that contain too many extraneous statements to be useful (Bent

et al., 2001). Dynamic slicing can be far more precise but correspondingly expensive due to the

inclusion of algorithms needed to evaluate the satisfiability of sections of the slice (such as SAT

or Satisfiability Modulo Theory solvers: Harris et al., 2010). So-called backward slicing considers

subsets of code that affect a target location by backward traversal; it can be performed via static

or dynamic slicing (Jaffar et al., 2012). We are not aware of any dynamic slicing methods that

scale to models consisting of over a million lines of code. We adopt the strategy of hybrid slicing

(R. Gupta et al., 1995), which uses dynamic information about program execution to refine static

slices. In our case, the dynamic information is provided by a code coverage tool.

Program sampling or instrumentation provides detailed analysis of program states by moni-

toring variable values at runtime. This type of monitoring can be used to detect divergent values

of individual variables but can be extremely expensive (both in space and time) depending on the

sampling frequency and the number of variables monitored. Many debuggers and profiling toolkits

can perform sampling of large, distributed-memory applications (Allinea MAP and DDT: ARM,
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2018, TotalView: RogueWave Software, 2018, and Tau: Shende et al., 2006, to name a few), and

tools such as FLiT (Sawaya et al., 2017) and KGen (Kim et al., 2016; Kim et al., 2017) can detect

divergent values at runtime. We seek to reduce the search space of CESM to the point that such

tools (or those of future design) can identify specific variables that cause model divergence.

4.3 Identifying affected output variables

After UF-CAM-ECT returns a failure, we identify CAM output variables that are affected

(or most affected) by the cause of the failure. Doing so allows us to make a connection between the

model outputs and the code itself. Ideally, we perform a normalized comparison of floating point

values at the first model time step, selecting only those variables that exhibit a difference between a

single ensemble member and a single experimental run. This approach is the most direct measure of

difference, and we recommend using it first due to its simplicity. However, comparing floating point

values is seldom useful for narrowing down the number of variables, since in most cases all CAM

output variables are different at the model time step zero. For these cases, we instead examine

properties of the variables’ distributions with two variable selection methods to identify those most

affected by the discrepancy.

The first method measures distances between the distribution medians of the ensemble and

experimental runs for each variable. To make meaningful distance comparisons across variables,

we standardize each variable’s distribution by its ensemble mean and standard deviation. Then we

identify variables whose interquartile ranges (IQRs) of ensemble and experimental distributions do

not overlap. We then rank these variables by descending order of distance between their medians.

Although this provides a straightforward ordering of variables, the disadvantage of this approach

is that often many variables are identified. Our second method employs logistic regression with

regularization via a penalized L1-norm (known as the lasso). We generate a set of experimental

runs and use this in conjunction with our ensemble set to identify the variables that best classify

the members of each set. We tune the regularization parameter to select about five variables as

that yields a subset of CESM and CAM that, in our experiments, contains the known source of
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statistical inconsistency while still being small. The variables selected by the lasso (and their order)

mostly coincide with the order produced by computing the distance between standardized medians.

Variable selection for smaller or simpler models may present less of a challenge.

4.4 From source code to digraph

Finding lines of code that modify a particular CAM output variable seems a straightforward

task: use a text-based search to select code that modifies the variable in question. However, many

internal variables may alter values that eventually propagate to the affected output values, and

the data dependencies are likely to be complicated. To describe the relationships between CESM

variables accurately, we convert each source code file into an Abstract Syntax Tree (AST), which

represents code syntax as structural elements of a tree. From the ASTs we create a digraph which

represents variable dependencies. Figure 4.2 provides a simple example of the transformation of

source code assignments to a digraph.

4.4.1 Generating the AST

To construct the AST for CESM, we need to parse the source code. We use the same CESM

version as in Kay et al., 2015, and our experimental setup (FC5) consists of a subset of all available

component models. Before parsing, we do several preprocessing steps to exclude code that is not

executed. Unfortunately, the CESM build system obfuscates which components’ Fortran modules

are compiled into the specified model. Therefore, we employ KGen (Kim et al., 2016; Kim et

al., 2017), a tool to extract and run code kernels as standalone executables, to identify the files

compiled into the executable model, reducing the number of modules from approximately 2400 to

the nearly 820 used by our experimental setup. KGen also replaces preprocessor directives with

their compile-time values, enabling conversion of Fortran code to a Python AST via fparser (based

on F2PY: Peterson, 2009). Fparser is the only tool we are aware of to parse Fortran into Python

data structures.

We further limit the scope of code considered by examining coverage, which identifies code
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lines, subprograms, and modules executed in a given application. Since our objective is to identify

critical code sections as early as possible in the CESM runtime, we can ignore many subsections

of code which are not yet run. To find such code, Intel provides a code coverage tool (Intel, 2017)

that writes profiling files that indicate coverage down to individual lines. In our experience, the

tool returns accurate evaluations to the level of subprograms, but its behavior at the line-level is

inconsistent. Nevertheless, finding entire unused modules and uncalled subprograms is useful and

reduces the number of modules and subprograms to be parsed by about 30% and 60%, respectively.

We develop software to parse the codecov HTML output, using the output to remove unnecessary

modules and comment out unused subprograms.

4.4.2 From AST to digraph

After converting each Fortran module file into an AST, we extract data dependencies to form

a digraph. See Figure 4.3 for a visual overview. We need to resolve all assignments, as directed

paths of assignments define dependencies between variables. Tracing dependencies between sub-

programs (similar to interprocedural program slicing: Weiser, 1984) requires processing subroutine

and function calls, interfaces, use statements, etc. Assignments without functions or arrays are

processed immediately. To allow correct mappings between call and subprogram arguments, pars-

ing statements with calls must be done after all source files are read. Furthermore, Fortran syntax

does not always distinguish function calls from arrays, so correct associations must be made after

creating a hash table of function names.

Transforming the source code into a digraph presents several challenges. Fparser sometimes

fails to convert a Fortran file into an AST due to bugs and statements that exceed fparser’s capabili-

ties (e.g., one CESM statement consists of over 3500 characters). In fact, CESM contains thousands

of expressions that are highly complex, with deep function and subroutine calls. Because existing

Fortran parsing tools are inadequate for CESM, we employ three different parsers for each assign-

ment (some are subjected to multiple passes of these parsers): fparser, KGen helper functions, and

our custom string parsing tool based on regular expressions and Python string manipulations.
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Processing the ASTs results in a metagraph Python class that contains a digraph of internal

variables, subprograms, and methods to analyze these structures. CESM internal variables are

nodes with metadata, such as location (module, subprogram and line) and “canonical name” (the

variable name before being entered into the digraph - which requires unique node names). The

digraph component of the metagraph is a NetworkX digraph (Hagberg et al., 2008). NetworkX is a

Python graph library that provides an extensive collection of easy to implement graph algorithms

and analysis tools.

With static analysis it is not always possible to determine which function a Fortran interface

call truly executes at runtime. We adopt the conservative approach of mapping all possible connec-

tions. We map the target of use statements to their local names to establish correct local symbols

for remote procedures, resolving Fortran renames. If the use statement does not specify an “only

list,” we map all public variables in the source module to their target module variables. We do

not consider chained use statements (i.e., where module A uses B, which uses C), since accurate

dependency paths can be created by connecting the statements independently. With these asso-

ciations defined, we iterate through statements containing subroutine calls and possible functions

or arrays. We process subroutine and function calls by treating each argument as a tree, and we

successively map outputs of lower levels to corresponding inputs above. Each output gets an edge

to the above layer’s input, which injects the call’s graph structure into the CESM digraph. The top

level argument output is connected to the subroutine’s corresponding argument in its definition.

Discerning functions from arrays is addressed by hash table lookups in the metagraph. Ultimately,

the expression’s right-hand-side variables and arrays and function (or subroutine argument) outputs

are given edges to the left-hand-side.

We adopt a conservative approach for handling composite and complex Fortran data struc-

tures. Arrays are considered atomic in that we ignore indices. Pointers are treated as normal

variables. Fortran derived types are challenging, as they can be chained into deep composite data

structures. We define the indexed element of the derived type as the metagraph canonical name,

e.g., elem(ie) %derived %omega p has a canonical name of “omega p.” In effect, we are com-
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Figure 4.2: Example statement in three forms: a.) source code, b.) source code converted to an
AST, and c.) AST assignment statements into a digraph.
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Figure 4.3: Converting Fortran files into a metagraph.

piling the CESM Fortran source code into node relationships in a digraph. Note that our parsing is

able to handle all but 10 assignment statements of the 660,000 lines of code in the coverage-filtered

source.

4.5 Analyzing the CESM graph

We have transformed the CESM code into a digraph that is composed of nodes, which are

variables present in assignment expressions, and directed edges that indicate the directionality

of the effect of one variable upon another. Now we narrow the scope of our search for bugs by

analyzing the graph, usually accomplished by program slicing. Static slicing often produces slices

that are too large to locate error sources, and dynamic slicing, while more precise, is too expensive

to apply to the CESM graph (about 100,000 nodes and 170,000 edges). Therefore, to make locating

internal CESM variables or nodes that influence the values of the affected output variables more

tractable, we examine static data dependency paths that terminate on these variables. We mitigate

the imprecision of static backward slicing by integrating graph analysis algorithms to refine our

slices. In this section, we discuss these methods and propose an iterative subgraph refinement

procedure that involves runtime sampling of CESM graph nodes.

4.5.1 Tracing affected internal variables in the graph

Since variable relationships in assignment statements are represented as directed edges in

the graph, we are interested in directed paths through CESM. These paths ignore control flow
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such as “if” statements or “do loops,” so this approach is akin to backward static slicing. A key

difference between our approach and typical program slicing is that nodes in the graph are single

variables rather than expressions of multiple variables. Slicing criteria are thus single variables.

When used in conjunction with runtime information in the form of code coverage, our method can

be considered hybrid slicing (e.g., R. Gupta et al., 1995).

In NetworkX, the fastest way to determine dependencies is by computing shortest paths. In

particular, we seek the shortest paths that terminate on output variables. Finding such output

variables is a challenge in its own right. Ideally, we would find the locations where I/O calls are

made with the output variables as arguments, and find all shortest paths in the graph that end on

those calls. Considering these paths does not work well in practice because CESM subprograms

that write derived types, e.g., state%omega usually take the base derived type (state) as an

argument, rather than the derived type element (omega). This means that there are few paths

that terminate on state%omega at the call location. We address this problem by searching for

paths that terminate on nodes with the canonical name (see Section 4.4) of omega. This approach

increases the size of our static slice, but with the attendant advantage that the bug source will very

likely be contained in the slice.

CESM I/O statements use temporary variables extensively and include character type vari-

ables in the output name argument, so uncovering the exact variable output for a given I/O call

must be done with custom instrumentation. Of the nearly 1200 CAM I/O calls which write output

variables, many include variables to label the output. To resolve these variables, we instrument the

code to print the corresponding string label, permitting a mapping between internal variable names

and names written to file. For example, we do not search for paths that end on CAM output flds,

but on variables whose canonical names are the internal name flwds.

So given a set of output variables that are affected by a certain change, we compute the

shortest directed paths that terminate on these variables with Breadth First Search (BFS). After

finding these paths, we form the union of the node sets of all such paths. We are interested in the

union rather than the intersection as multiple disjoint code sections can be involved in the compu-
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tation of an affected variable. Such a scenario can arise when conditionals dictate whether I/O calls

are executed. Using the union of all shortest paths terminating on the internal canonical names of

affected output variables, we induce a subgraph on CESM, which yields the graph containing the

causes of discrepancy.

4.5.2 Community structure and node centrality

Since CESM and its component models are modular, it is reasonable to conclude that its graph

should exhibit clusters corresponding to the modules or related processes. Induced subgraphs of

CESM may contain cluster or community structure that can be exploited to improve our search

for bug sources, which ends with sampling affected variables. Since sampling can be an expensive

process, only a limited number of nodes in the subgraph should be instrumented. By partitioning

the subgraph through community detection, we can choose a small number of highly connected

nodes in each community to sample and perform the instrumentation of these nodes independently

(in parallel). This process can be performed iteratively to reduce the search space.

CAM contains two main processes: physics (sub-grid scale) and dynamics, which taken to-

gether feature a set of highly connected modules (the “core”). These CAM modules are involved in

the computation of many of the output variables, and bugs are likely to affect multiple output vari-

ables. An examination of node connectivity in the core reveals clustering of highly connected nodes

in different communities. Although sampling the whole core’s most connected nodes may detect

floating point differences between ensemble and experimental runs, instrumenting highly connected

nodes in each community instead can reduce the distance between instrumented variables and bug

locations (reducing the number of iterations needed to refine the search space).

Centrality is a fundamental way to distinguish nodes in a graph. Two simple examples of

centrality are degree centrality, which counts the number of edges connected to a given node, and

betweenness centrality, which counts the number of BFS or Dijkstra shortest paths (for weighted

graphs) that traverse a node (or edge). Graph analysis via centralities proves useful in many

diverse areas of research, e.g., Freeman, 1978; Salathé et al., 2010; Shah et al., 2010; Clauset et al.,



62

2015. A study of the relationship between brain regions’ centralities and physical and cognitive

function (Heuvel et al., 2013) is particularly relevant to our work. They conclude that such analysis

consistently identifies structural hubs (high centrality regions) in the cerebral cortex, and that “high

centrality makes hubs susceptible to disconnection and dysfunction.”

The Girvan-Newman algorithm (G-N) (Girvan et al., 2002; Newman et al., 2004) is a pop-

ular method for identifying communities in undirected graphs. The algorithm is based on edge

betweenness centrality, which ranks edges by the number of shortest paths (computed via BFS)

that traverse them. The algorithm successively removes the edge with highest centrality in each

connected component, which breaks the graph into ever smaller communities. G-N identifies com-

munities via the following steps (Girvan et al., 2002): 1. calculate the betweenness for all edges

in the network; 2. remove the edge with the highest betweenness; 3. recalculate betweenness for

all edges affected by the removal; 4. repeat from step 2 until no edges remain. In practice each

iteration involves removing the edge with the highest betweenness until the number of communi-

ties increases (Newman et al., 2004). Note that G-N was formulated to identify communities in

undirected graphs. In our case, we convert the directed subgraph into an undirected subgraph for

purposes of community detection. This conversion is desirable for our work, as it is equivalent to

forming the weakly connected graph of the directed subgraph. Weakly connected graphs are di-

graphs where any node can be reached from any other node by traversing edges in either direction.

Bug locations may be anywhere in the subgraph, so we cannot impose assumptions about whether

instrumented nodes are reachable via bug sources in the digraph (even between communities) in

either direction. However, in our experiments we know where the bug locations are, so we can

simulate how our sampling procedure detects floating point differences between the ensemble and

experiment. Given our knowledge of directed paths’ connectivity from known bug sources to cen-

tral nodes, we can deduce whether a difference can be detected. For our method to be useful in

situations where bug locations are unknown, we cannot assume such knowledge when we identify

communities.
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4.5.3 Finding important nodes with centrality

Given a modification that alters the values of a set of output variables, we seek locations in

CESM that influence their computation. The CESM digraph lacks any information about the nature

of connections between variables, so, for example, linear and exponential relationships are expressed

identically in the graph. Indeed, the connectivity of the CESM graph is the only information we

have to identify important locations in the code for sampling.
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Figure 4.4: Degree distribution of nodes in the CESM digraph.

We use centrality to select nodes whose values are likely to be affected by the causes of

statistical distinguishability. We can then sample the variables’ runtime values to detect differences

between an experimental and a control (or ensemble) run. Eigenvector centrality is a promising

choice, as it considers not only the degree of each node, but the degrees of its neighbors and their

neighbors, and is related to information flow in a graph. In fact, eigenvector centrality is related to

PageRank, which is used to rank web pages in search results (Page et al., 1999). In this work we

focus on in-centrality, as we seek nodes which are likely to be affected by the bug sources. From
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the perspective of sampling, we are looking for information sinks rather than sources. Eigenvector

centrality has the disadvantage of favoring hubs (highly connected nodes), which “causes most of

the weight of the centrality to concentrate on a small number of nodes in the network” for power

law graphs (Martin et al., 2014). The degree distribution of the total CESM graph approximately

follows a power law, as can be seen in Figure 4.4. Induced subgraphs of the CESM graph are also

plausibly scale-free. A natural question is whether the concentration of centrality on graph hubs

has undesirable effects on the ranking of nodes. We found that the application of non-backtracking

centrality (based on the Hashimoto matrix: Hashimoto et al., 1989) provides no advantage over

standard eigenvector centrality for the CESM graph, its subgraphs, or communities. However, it

may prove beneficial for models with graphs that follow a power law that produce more pronounced

localization (Martin et al., 2014).

4.5.4 Iterative refinement procedure

Once communities are detected in the subgraph, we compute each community’s eigenvector

in-centralities and choose the top nodes to sample. The number of nodes to sample is dictated

by computational resources. Based on whether a value difference can be found between the nodes

sampled in the ensemble run and the experimental run, we can iteratively reduce the size of the

subgraph to converge on the sources of statistical inconsistency. This iterative approach is similar

to a k-ary search, which is a generalization of binary search. In binary search, the search space is

halved and a single determination is made at each iteration, however for k-ary search the space is

partitioned into k sections and k evaluations are made at each iteration. In our case k varies by

iteration depending on the number of communities identified. The following algorithm summarizes

our overall approach:

Algorithm 4.5.4

(1) Perform variable selection detailed in Section 4.3

(2) Map the set of affected CAM output variables in step 1 to their internal CAM variables
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{Vi}

(3) For each affected internal variable Vi, use BFS to find the set of nodes {nij} in all shortest

paths that terminate on variables with canonical names equal to Vi in the CESM digraph

(4) Form the induced subgraph G via the union of nodes in the paths in step 3

(5) Use G-N to identify the communities {Ck} of undirected G (omitting communities smaller

than 3 nodes)

(6) Compute the eigenvector in-centrality for each Ck and select m nodes with largest centrality

{nkl}

(7) Instrument {nkl} for all k in parallel for an ensemble run and an experimental run, noting

the set of nodes which take different values {dkl} ({dkl} ⊆ {nkl})

(8) (a) If {dkl} = ∅ (i.e., no different values are detected), form the induced subgraph on all

nodes in G that are not in BFS shortest paths that terminate on {nkl}

(b) Else, form the induced subgraph of G generated by nodes in G that belong to BFS

shortest paths that terminate on {dkl}

(9) Repeat steps 5-8 until the subgraph is small enough for manual analysis or the bug locations

are instrumented

There are three issues involved in the process above that merit discussion. First, it is possible

that steps 5-8b in algorithm 4.5.4 do not refine the subgraph of the previous iteration i.e., if the

subgraph connectivity is such that all nodes are connected to all central nodes that take different

values between the ensemble and experimental runs. In this case, we can select a subset of the

most central nodes “most affected” by the bugs. The second issue is that it is possible that the bug

sources are not contained in any community i.e., if a bug is in an output variable that has only one

neighbor. In this case, no different values will be detected in step 7, and the new induced subgraph

will still meet the condition in step 8a. The next iterations will not detect differences, and the
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successive subgraphs will become increasingly disconnected. Eventually G-N will not identify any

communities, and the resulting nodes will need to be analyzed. The third issue is an artifact of

static slicing: since the paths do not take into account, e.g., conditional branches, some of the paths

may not be traversed. We need to develop a method to track edge traversal and remove invalid

paths; algorithm 4.5.4 must only remove nodes that actually can influence {nkl} in step 8a.

Unless otherwise noted, we perform only one iteration of G-N in algorithm 4.5.4 step 5. We

could use a larger number to further subdivide the induced subgraph in each iteration (possibly

enabling more parallelism), but we adopt a conservative approach to avoid clustering the subgraphs

far beyond the natural structure present in the code. Note that excessive G-N iterations would not

prevent algorithm 4.5.4 from locating bug sources, but it may slow the process.

4.6 Experiments

We apply the overall method discussed in Section 4.5.4 to several experiments. For all but

one experiment, we introduce a bug into the source code so that the correct location is known. We

then verify that our method can be used to identify the bug location in CESM by demonstrating

how it would converge on the location given instrumentation. First, we show that our method can

correctly identify straightforward single-line bugs before proceeding to more complicated sources of

output discrepancy, such as the identification of variables most affected by certain CPU instructions.

We make the following choices and assumptions in our experiments (unless otherwise noted): we

restrict our subgraphs to nodes in CAM modules, perform a single G-N iteration, choose the top

10 nodes by in-centrality to sample, and assume all paths are traversed at runtime. Our method

can iteratively locate bug sources if our restriction to variables in CAM modules is lifted, but the

resulting search may require more iterations than restricting variables to CAM. In the figures that

follow, subfigures a are the outputs of algorithm 4.5.4 step 4, 8a, or 8b, depending on the iteration

or whether simulated sampling detects differences. Subfigures b color members of each community

discovered by step 5, and subfigures c represent the output of step 7 for the community containing

the discrepancy sources. Note that we use vector graphics for plots to encourage electronic copy
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readers to zoom in on features in each figure. Each following subsection describes a different

experiment.

4.6.1 WSUBBUG

We begin our testing with a bug in an isolated CAM output variable: wsub. By isolated

we mean disconnected from the CAM core (see Section 4.5.2) and highly localized. Such a bug

has minimal effect and scope which is a good sanity check for our method. The bug consists of a

plausible typo (transposing 0.20 to 2.00) in one assignment of wsub in microp aero.F90. The

variable is written to file in the next line, so this bug affects only the single output variable. This

small change produces a UF-CAM-ECT failure. In this case the median-distance method clearly

indicates that the wsub variable is distinct; the distance between the experimental and ensemble

medians for this variable is more than 1,000 times greater than for the variable ranked second. The

induced subgraph contains only 14 internal variables, all of which are related to wsub, with one

being the bug itself.

4.6.2 RAND-MT

This example, RAND-MT, involves replacing the CESM default pseudo random number

generator (PRNG) with the Mersenne Twister. This experiment appears in Milroy et al., 2018

as an example that results in a UF-CAM-ECT failure. The random number generator is used to

calculate distributions of cloud-related CAM variables, and this experiment is interesting because

it is not a bug and not localized to a single line. We identify the variables immediately influenced

or defined by the numbers returned from the PRNG, and consider them to be the bug locations.

The lasso variable selection method identifies the five output variables most affected by the PRNG

substitution. From these variables, we extract a subgraph of 5,121 nodes and 9,755 edges. Given

the size of this induced subgraph, we must use our iterative technique on subgraph communities

to reduce the scope of our search. G-N identifies two main communities (blue and green in Fig.

4.5b), in the CAM core. The smaller, green community contains the nodes computed using output
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from the PRNG. Instrumenting the top 10 most central variables in this community would not

detect a difference, as there are no paths from the variables in the bug location to these nodes

(see Fig. 4.5c). Creating the induced subgraph of all nodes not in shortest paths terminating

on the most central nodes (algorithm 4.5.4 step 8a) admits a dramatic reduction in the search

space (Figure 4.6a), which includes disconnected nodes and those with a single neighbor along the

perimeter. Instrumenting the most central, orange nodes in Figure 4.6c would indicate a difference

as there are multiple paths from the discrepancy sources. This subgraph is small, and the sources

are sufficiently near the sampling sites that the cause could be found at this stage.

It is noteworthy that the induced subgraph does not contain all the source locations of the

statistical distinguishability. The PRNG in CAM is called in two modules: one that computes

cloud cover given longwave radiation, and the second with shortwave radiation. The combination

of flwds (downwelling longwave flux at surface) and qrl (longwave heating rate) causes the longwave

module to be present in the induced subgraph. However, the two variables that are needed to include

shortwave radiation in the induced subgraph (fsds and qrs) are not in the set of first five variables

returned by lasso.

4.6.3 GOFFGRATCH

Our third experiment is a modification in the Goff and Gratch Saturation Vapor Pressure

elemental function. We change a coefficient of the water boiling temperature from 8.1328e-3

to 8.1828e-3. This easy to miss typo results in a UF-CAM-ECT failure. The output of the

Goff and Gratch function is used extensively in the CAM core, so its effects are not localized.

The lasso variable selection method selects 10 variables. Due to experiment-specific conditions,

tuning the regularization parameter to select only five variables would require a more sophisticated

approach. Inducing a subgraph on locations that compute these variables results in a graph of

5,162 nodes and 9,873 edges (Figure 4.7a). The largest community (blue in Figure 4.7b) contains

the nodes affected by the incorrect coefficient. Instrumenting the top 10 most central variables

in this community would detect a difference, as there are paths from the variables in the bug
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(a)

(b)

(c)

Figure 4.5: RAND-MT first iteration. Variables computed using numbers generated by the
Mersenne Twister PRNG are larger red nodes. Larger orange nodes indicate those with the largest
eigenvector in-centrality.
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(a)

(b)

(c)

Figure 4.6: RAND-MT second iteration. Variables computed using numbers generated by the
Mersenne Twister PRNG are larger red nodes. Larger orange nodes indicate those with the largest
eigenvector in-centrality. Note the sparsely connected nodes on the perimeter of a and b: they
result from the bug locations not having paths to the most central nodes in the first iteration.
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location to these nodes (Figure 4.7c). Creating the induced subgraph of all shortest paths termi-

nating on these central nodes, algorithm 4.5.4 step 8b returns a subgraph that includes part of the

green community from the first iteration. Subsequent community detection reveals the remnants

of the green community of the first iteration, which are then excluded by sampling. However, in

this case, no further simulated iterative refinement can be performed by inducing a subgraph on

nodes connected to the instrumented variables, as this subgraph is so highly connected that the

induced subgraph equals the community subgraph. In this case, we can rank the differences ob-

tained by sampling and further refine the subgraph based on the nodes with the greatest differences.

4.6.4 AVX2

As noted in Section 4.1, this work is motivated by the lengthy, manual investigative process

to find the source of statistical distinguishability between CESM outputs generated on the Mira

(ALCF, 2018) and on Yellowstone (CISL, 2016) supercomputers described in Milroy et al., 2016.

The discrepancy was determined to be caused by FMA instructions used by Mira and sparked

interest in developing an automated process.

Using a method that measured each CAM output variable’s contribution to the CAM-ECT

failure rate, affected variables were identified and located in the Morrison-Gettelman microphysics

module (MG1) Milroy et al., 2016. KGen was used to convert this module into a kernel and to

find variables which had substantially different RMS values between Yellowstone and Mira. One

of these variables was nctend, which is modified by a frequently used temporary variable dum.

Nctend also exhibits significantly different values between Yellowstone and Haswell generation

(FMA capable) Intel CPUs.

Here we demonstrate that results culminating from months of work by CESM experts could

be obtained by our automated method. Because we are unable to use Mira and Yellowstone,

we evaluate FMA on Cheyenne (CISL, 2017). Cheyenne contains Intel Broadwell CPUs, which

support the Intel AVX2 instruction set, and these instructions include FMA. For our work, we
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(a)

(b)

(c)

Figure 4.7: GOFFGRATCH, first iteration. The bug locations are indicated as large red nodes, and
the top 10 most central variables in the blue (physics) community are indicated by larger orange
nodes. Path segments from the bugs to the sampled central nodes are thicker purple edges.
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compare an ensemble generated with AVX2 disabled (thus disabling FMA) to an experimental

set generated with AVX2 (and FMA) instructions enabled. We verify that enabling AVX2 and

FMA causes a UF-CAM-ECT failure (see Table 4.1). Since FMA instructions can be generated

from many different lines of source code (distributed sources of discrepancy), we employ KGen

to identify a small number of variables affected by AVX2 and FMA to designate as bugs. We

extract the Morrison-Gettelman microphysics kernel identified in Milroy et al., 2016 and compare

the normalized Root Mean Squared (RMS) values computed by the kernel with AVX2 disabled to

the normalized RMS values with AVX2 enabled. KGen flags 42 variables as exhibiting normalized

RMS value differences exceeding 10−12. Here, we determine if our iterative refinement procedure

can find some of these variables given CAM outputs most affected by AVX2 instructions.

Inducing a subgraph on assignment paths that compute CAM output variables affected by

enabling AVX2 instructions (selected by lasso) results in the graph in Figure 4.8a (4,801 nodes

and 9,329 edges). Five of the 42 variables identified by KGen are present in this subgraph, all of

which are in the blue community of Figure 4.8b. This community contains the CAM core physics

processes, of which MG1 forms a central part. The node with the largest eigenvector in-centrality

is the temporary, dummy variable dum in Figure 4.8c. Four of the five variables with normalized

RMS values exceeding our threshold are in the top 15 nodes with the greatest in-centrality. These

variables are nctend, qvlat, tlat, and nitend. The fifth variable, (qsout), is modified by

qniic (in the top 15 most central nodes) in an assignment statement. All five variables have paths

that terminate on all 15 most central nodes. That our iterative refinement procedure would sample

and identify the locations of nodes known to be most affected by AVX2 instructions on the first

iteration is a testament to the potential utility of our method, particularly in the challenging case

where hardware or CPU instructions cause statistical distinguishability.

4.6.5 AVX2 in the CESM graph

Here, we deviate slightly to discuss how centrality can be used to identify Fortran modules

crucial to information flow in the overall CESM graph. While the MG1 module and its constituent



74

(a)

(b)

(c)

Figure 4.8: AVX2. Variables found to take significantly different normalized RMS values between
Broadwell CPUs with AVX2 enabled (FMA enabled) and AVX2 disabled (FMA disabled) are
larger red nodes (nctend, qvlat, tlat, nitend, and qsout in MG1) and also in the top 15
most central nodes. Large orange nodes are remaining nodes in the top 15.
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Table 4.1: Selective AVX2 disablement

Experiment ECT failure rate

AVX2 enabled, all modules 92%
AVX2 disabled, 50 random modules 85%
AVX2 disabled, 50 largest modules 76%
AVX2 disabled, 50 central modules 13%
AVX2 disabled, all modules 2%

variables are causes of ECT failure with AVX2 and FMA enabled, these instructions can be gener-

ated in many CESM modules. This suggests we compute the (in and out) centrality of the modules

themselves (rather than individual variables) to rank them by their potential to propagate FMA-

caused differences within CESM. This viewpoint applies to other machine instructions or hardware

errors.

To calculate the centrality, we must collapse the graph of variables into modules by considering

the graph minor of CESM code formed by the quotient graph of Fortran modules. A graph minor

is a subgraph of a graph G obtained by contracting edges of G. This graph minor identifies (or

collapses) nodes using an equivalence relation, meaning that if two nodes satisfy the equivalence

relation, they are replaced by a single node. Edges between equivalent nodes are deleted, and edges

between remaining nodes and the new node are preserved. In this case we use the equivalence

relation v1 ∼ v2 ⇐⇒ v1 and v2 are in the same CESM module (modules become equivalence

classes). Applying this equivalence relation to the CESM graph yields a digraph of 564 nodes and

4,263 edges. Selectively disabling AVX2 on the top 50 modules ranked by centrality results in

a substantial reduction in the UF-CAM-ECT failure rate in comparison with AVX2 enabled on

all modules. Furthermore, this approach exhibits a substantially lower failure rate than disabling

AVX2 on 50 modules at random, and even the top 50 modules by lines of code. See Table 4.1 for the

failure rates. These results indicate that eigenvector centrality accurately captures the information

flow between CESM modules and provides a useful ordering. Selective disablement of instructions

such as AVX2 balances optimization with statistical distinguishability and leads to more efficient

CPU usage.
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4.7 Conclusions and future work

The goal of this study is to develop methods that make root cause analysis of CESM possible.

To this end, we create a toolkit to convert the CESM source code into a digraph together with

metadata that represents variable assignment paths and their properties. We develop an efficient

hybrid static program slicing approach based on combining code coverage with BFS. We combine

the Girvan-Newman algorithm with eigenvector in-centrality in series to enable runtime sampling of

critical nodes. We perform experiments based on CESM output to demonstrate in simulation how

our process can find causes of model discrepancy. Finally, we provide evidence that our methods

accurately characterize information flow at runtime by successfully finding variables determined

to be susceptible to FMA instructions. Creating a method to identify which variables to sample

to refine the root cause search space is a significant accomplishment. However, developing and

implementing a sampling procedure for the running model is a challenging undertaking that remains

to be done. We note that creating a Python interface for LLVM (Lattner et al., 2004) with Flang

(PGI, 2017) would allow our parsing to succeed on any compilable Fortran code and that integrating

C/C++ capability through Clang (University of Illinois/NCSA, 2007) is also desirable.

4.8 Supplementary Material

4.8.1 Parsing

Subprogram call arguments can be as deep (in terms of, e.g., function composition) as the

stack permits and composed of functions, arrays, strings, derived types, etc. We process such

expressions by treating each argument as a tree, and successively map outputs of lower levels to

corresponding inputs above. Each output gets an edge to the above layer’s input, which injects the

call’s graph structure into the CESM directed graph. The top level argument output is connected to

the subprogram’s corresponding argument in its definition. The complexity of discerning functions

from arrays is addressed by constant time lookups in the metagraph class function hash table. An

additional complexity of assignment statements containing functions is that the expression right-
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hand-side (RHS) can contain a large (compiler determined) number of functions. Thus processing

expressions with many deep functions on the RHS can be expensive. Ultimately, the RHS variables

and arrays and function outputs are given edges to the left-hand-side. An example of node-edge

mapping within a composite function is provided by the following process, where each function’s

internal variables will form a path connecting its inputs to its outputs, in order of depth:

ω = α(b(c, d) ∗ e(f(g + h(i))))

i→ input(h)

output(h)→ input(f)

g → input(f)

output(f)→ input(e)

c→ input1(b)

d→ input2(b)

output(e)→ input(α)

output(b)→ input(α)

and the output of the right-hand-side (α) gets a directed edge to the left-hand-side (ω):

output(α)→ ω

4.8.2 Hashimoto non-backtracking centrality

Scale-free or power law graphs which have degree distributions that are negative exponentials

with exponent magnitude greater than 2.5 are identified as causing localization in (Martin et al.,

2014). The degree distribution of the total CESM graph approximately follows a power law,

as can be seen in Figure 4.9. Induced subgraphs of the CESM graph are also approximately
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scale-free, consistent with the properties of such graphs (see Figure 4.10 for the GOFFGRATCH

experiment subgraph). A natural question is whether the concentration of centrality on graph

hubs has undesirable effects on the ranking of nodes. The application of non-backtracking or

Hashimoto centrality (Hashimoto et al., 1989) as a substitute for eigenvector centrality for power

law graphs is discussed in Martin et al., 2014. We compare the two centralities in Figure 4.11 for

the GOFFGRATCH experiment. The Hashimoto non-backtracking centrality indeed distributes

the centrality from the hubs to other nodes, but the effect is subtle until approximately the 300th

ranked node. Also note that the Hashimoto centrality does not provide a rank for all nodes in the

subgraph, as can be noted by the sharp drop at the end of its curve in Figure 4.11. This is due to the

Hashimoto centrality’s use of the line graph of the subgraph’s adjacency matrix, which excludes

nodes with no neighbors. Although we determine that the non-backtracking centrality provides

at best marginal improvement over eigenvector centrality for our graph, we provide a derivation

based on that which appears in Martin et al., 2014. Hashimoto centrality may prove beneficial

for models with graphs that follow power laws that produce more pronounced localization (Martin

et al., 2014).

4.8.2.1 Centrality derivation

This section is a reformulation of the derivation in Martin et al., 2014, which we have re-

worked in the interest of clarity. Let G be a graph with n× n adjacency matrix A, set of nodes V

and edges E. The graph order is the number of nodes: |V | = n, while the graph size is the number

of edges: |E| = m. Note that m is the number of nonzero entries in A if G is directed, and the

number of nonzero entries in the upper or lower triangle of A if G is undirected.

Let e ∈ E be represented as (v1, v2). If G is directed, (v1, v2) 6= (v2, v1) and the order represents

direction: v1 → v2 := (v1, v2). If G is undirected, (v1, v2) = (v2, v1).

Let N(i) be the set of neighbors of node i.
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Figure 4.9: Degree distribution of nodes in the CESM digraph.
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Figure 4.10: Degree distribution of nodes in the GOFFGRATCH digraph.



80

100 101 102 103

Log rank

10 21

10 18

10 15

10 12

10 9

10 6

10 3

Lo
g 

ce
nt

ra
lit

y
Hashimoto
Eigen

Figure 4.11: Log rank versus log absolute value of centrality for Hashimoto non-backtracking
centrality and eigenvector centrality in the GOFFGRATCH experiment subgraph. The absolute
value of the centralities is used since the lowest ranked terms are small negative numbers.

The Hashimoto, or non-backtracking matrix (Hashimoto et al., 1989) of graph G is denoted

B and is an adjacency matrix on E:

∀(u, v), (w, x) ∈ E;

B(u,v),(w,x) or B(u→v),(w→x) = δvw(1− δux)

Where δ is the Kronecker delta. For an undirected graph, each (v1, v2) ∈ E becomes

two ordered pairs (v1, v2), (v2, v1). Thus B is m × m if G is directed, and 2m × 2m for undi-

rected G. B is closely related to the line graph L(G) which is also an adjacency matrix on E:

L(G)(u→v),(w→x) := δvw

Instead of computing the eigenvector centrality on A, we use B. Let λ be the Perron-

Frobenius (leading) eigenvalue of B, and ~v be the corresponding eigenvector. Then the out-
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centrality (corresponding to out-edges) for some i ∈ V can be derived by starting from the eigenvec-

tor equation λ~v = B~v. To compute the in-centrality used in this work, we can reverse the directed

edges of A (via the transpose Aᵀ).

~v(i→j) =
1

λ

∑
(k→l)∈N((i→j))

B(i→j),(k→l)~v(k→l)

=
1

λ

∑
(k→l)∈N((i→j))

δjk(1− δil)~v(k→l)

=
1

λ

n∑
k

n∑
l

Aklδjk(1− δil)~v(k→l)

=
1

λ

n∑
l

Ajl(1− δil)~v(j→l)

or

~v(i→j) =
1

λ

n∑
l 6=i

Ajl~v(j→l)

then the full non-backtracking centrality of node i is:

ci =
∑

q∈N(i)

~v(i→q)

Where we are free to choose a constant to normalize the centrality.

4.8.3 Additional experimental results

Note that we refer to the Girvan-Newman algorithm (Girvan et al., 2002; Newman et al.,

2004) as G-N.

4.8.3.1 GOFFGRATCH

This supplementary section includes both the first and second iterations of GOFFGRATCH

(Figures 4.12 and 4.13, respectively). The second iteration of this experiment does not appear in
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Table 4.2: CAM output variables selected by the methods described in Sect. 4.3, and their internal
counterparts.

Experiment Output variables Internal variables

WSUBBUG wsub wsub
RANDOMBUG omega omega
GOFFGRATCH aqsnow, freqs, cldhgh, precsl,

ansnow, cldmed, cloud, cldlow, ccn3,
cldtot

qsout2, freqs, clhgh, snowl, nsout2,
clmed, cld, cllow, ccn, cltot

DYN3BUG vv, omega, z3, uu, omegat v, omega, z3, u, t
RAND-MT flds, taux, snowhlnd, flns, qrl flwds, wsx, snowhland, flns, qrl
AVX2 taux, trefht, snowhlnd, ps, u10, shflx wsx, tref, snowhland, ps, u10, shf

the paper.

4.8.3.2 RANDOMBUG

We select the module for this bug by randomly choosing a module from the set of CAM

modules known to be executed by our simulation in the first time step. We introduce an error in

the array index of a variable used to assign the contents of the derived type containing physics state

variables (t, u, v, etc.), in particular the state variable omega. As in the previous experiment, this

change results in a UF-CAM-ECT failure. Omega is output to file with the value state%omega,

so we use “omega” as the canonical name for generating the induced subgraph. This experiment

is more challenging than WSUBBUG, as omega is computed in other CAM modules, yielding a

subgraph of 628 nodes and 295 edges. Applying the G-N algorithm to the remaining nodes identifies

several small (fewer than 30 nodes) communities, one of whose most central node is the bug source.

See Figure 4.14.

4.8.3.3 DYN3BUG

Another example of a bug consisting of a single line change is located in a dynamics subroutine

that computes hydrostatic pressure in the CAM core. The bug particularly affects the five variables

listed in Table 4.2. We apply our iterative refinement to the induced subgraph of 6,017 nodes and

11,512 edges (Figure 4.15a), and successfully separate the red dynamics community from the blue
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(a)

(b)

(c)

Figure 4.12: GOFFGRATCH, first iteration. The bug locations are indicated as large red nodes,
and the top 10 most central variables in the blue (physics) community are indicated by larger
orange nodes. Path segments from the bugs to the sampled central nodes are thicker purple edges.
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(a)

(b)

(c)

Figure 4.13: GOFFGRATCH, second iteration. The bug locations are indicated as large red nodes,
and the top 10 most central variables in the blue community are indicated by larger orange nodes.
Path segments from the bugs to the sampled central nodes are thicker purple edges. A few black
edges can be seen in b, which correspond to edges removed by the G-N algorithm.
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(a)

(b)

(c)

Figure 4.14: Randombug, single iteration. The bug location is indicated by a large red node. In
c, the light blue nodes are the most central of the small community shown, and the purple edge
designates the connection from the bug to the instrumented node.
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physics community. Instrumenting the light blue, most central nodes in Figure 4.15c would detect

a difference in values between ensemble and experimental runs, as at least one instrumented node

is reachable from the bugs. Inducing a subgraph on nodes contained in paths terminating on the

central nodes connected to the bugs further reduces the size of the subgraph. In this way the

subgraph will become small enough to instrument all nodes, or the exact bugs will be sampled.

4.8.3.4 AVX2

Figure 4.17 is an assertion that restricting our induced subgraph nodes to variables present in

CAM is not necessary. This subgraph is created with the same affected variable list as Figure 4.17,

but allows nodes outside of CAM (such as in the land model). Although the graph is larger (5,162

nodes and 9,873 edges), it manifests the community structure of the CAM core (orange cluster).

Note that these communities are produced from two divisions of the G-N algorithm rather than

our default one, as the models’ structure is less evident with a single division. This suggests that

the same conclusions are reached with this subgraph after a greater number of iterations.

4.8.4 Centrality output examples

In this section, we provide in-centrality output to corroborate our assertion in paper Section

4.5.2, namely “Although sampling the whole core’s most connected nodes may detect floating point

differences between ensemble and experimental runs, instrumenting highly connected nodes in each

community instead can reduce the distance between instrumented variables and bug locations

(reducing the number of iterations needed to refine the search space).” In Appendix B.1, we

include the output of the eigenvector in-centrality computed for the AVX2 subgraph. The output

lists the top 500 most central nodes in the subgraph as (node, centrality value) tuples

in descending order of centrality. Note that the node name displayed appends the name of the

subprogram containing the variable to the name, which ensures unique node names in the graph.

For example, the top node by centrality is dum micro mg tend, which corresponds to dum in the

micro mg tend subroutine (part of the MG1 microphysics kernel). There are a substantial number



87

(a)

(b)

(c)

Figure 4.15: DYN3BUG first iteration. In these figures, the large orange nodes are the bugs, and
the large, light blue nodes designate the most central nodes to be sampled.
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(a)

(b)

(c)

Figure 4.16: DYN3BUG second iteration. In these figures, the large orange nodes are the bugs,
and the large, light blue nodes designate the most central nodes to be sampled.
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Figure 4.17: Communities generated by the induced subgraph defined by variables affected by the
AVX2 experiment. Variable locations are not restricted to CAM. The variables identified by KGen
are colored dark gray, and are among the top 15 most central in the orange community.

of nodes that appear like min line# subprogram. These nodes are Fortran procedures like min

or max, which we introduce into the graph by creating paths from their inputs to themselves, and

then to their outputs. This ensures correct dependency paths for these intrinsic procedures. Nearly

all of the top 500 most central variables are located in the MG1 kernel. Nodes in MG1 mask the

centralities of nodes in other modules, or clusters of modules.

Appendix B.2 lists the tuples in descending order of centrality for the first G-N community

of the AVX2 subgraph. Notice that these tuples are very similar to those seen in the centrality

output for the entire AVX2 subgraph. However, the second G-N community of the AVX2 subgraph

(Appendix B.3), contains nodes not in MG1 or closely associated modules. In fact, the top nodes

in the second community are not present in the top 500 nodes in the AVX2 subgraph, or in the

first community. This supports our choice of partitioning the subgraph into communities with G-N,

since we can search multiple possible connected clusters in parallel. Furthermore, if the sources of
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output discrepancy for AVX2 were in the second community, our sampled nodes would be closer to

the sources. For the AVX2 experiment the sources are the most central node (and several others

in the top 15), but for DYN3BUG (Section 4.8.3.3) the bugs are in the second community. This

can reduce the number of iterations necessary to converge on the discrepancy sources.



Chapter 5

Applying our Tools: Adapting CAM Microphysics for Single Precision

Computation

5.1 Introduction

Performing computations in single precision (32 bits or 4 bytes) is desirable from a perfor-

mance standpoint. In comparison to double precision (64 bits), half the memory is needed to store

each number, and arithmetic operations can be more than twice as fast (Baboulin et al., 2009). The

disadvantage of using single precision is the increased potential for numerical instability, and its

vastly smaller dynamic range. However, many algorithms remain stable (such as currently popular

deep learning methods) in low precision (even half precision) and have no need for large range (S.

Gupta et al., 2015). Adapting sections of CESM to run in single precision has been of interest for

a long time, and the tools developed in this thesis can help achieve this goal.

The majority of CESM atmosphere model component, the Community Atmosphere Model

(CAM), is devoted to the dynamical core (equations of motion) and physical processes. Physics

computations cost approximately 70% of CAM runtime, all of which is currently computed with

double-precision floating-point numbers. Many of the physics modules feature sub-grid scale param-

eterizations which are approximations that should not need the precision of a 16-decimal mantissa

of 8-byte floats (Palmer, 2014; Váňa et al., 2017). Computing these physical processes with 4-byte

floating-point numbers could translate to a substantial performance increase. The precision ex-

periment from Sections 2.3.2, 3.5.1, and 4.6.3 is effectively a proof of concept test of using single

precision for parameterized physics as goffgratch svp water is used in the CAM microphysics



92

package. That the modified function yields statistically indistinguishable results provides promise

that adapting larger sections of code may also produce statistically consistent output.

The Morrison-Gettelman microphysics version 2 (MG2) package performs sub-grid parame-

terizations of cloud microphysics processes such as “condensation/evaporation, freezing, melting,

and sedimentation,” aerosol physics, and precipitation for CAM (Morrison et al., 2008). See Figure

5.1 for a visual summary of CAM5 processes, including MG. Microphysics computations require a

high degree of approximation, as cloud processes represent a large range of physical and tempo-

ral scales (Morrison et al., 2008). Large scale models cannot resolve individual clouds, let alone

the physical processes within them. Therefore, models represent small-scale processes with distri-

butions and make predictions of their moments, such as number concentration (Morrison et al.,

2008). Parameterizations are expected to require fewer bits of precision to represent physical pro-

cesses faithfully (Váňa et al., 2017). It is reasonable that converting the package to single precision

can represent CAM cloud microphysics with sufficient fidelity to pass CESM-ECT. MG2 represents

an appreciable portion of the CAM code, and 6% of the atmosphere model runtime. Moreover,

converting MG2 to run in vectorized single precision translates to a speedup of 1.9 (on a specialized

vector processor) versus double-precision MG2. UF-CAM-ECT and the graph analysis developed

in this thesis used in concert with KGen (Kim et al., 2016; Kim et al., 2017) allow us to make

notable performance gains and progress toward achieving statistical indistinguishability for MG2

in single precision. In this chapter, we describe our efforts to adapt MG2 to use 4-byte floats while

preserving statistical consistency with our accepted UF-CAM-ECT ensemble.

5.2 Experimental Setup

MG2 consists of sections of seven Fortran modules and represents about 8,000 lines of code,

including functions and subroutines used by other CAM modules. The subroutine that executes

the microphysics processes is named micro mg tend, which is contained in micro mg2 0.F90,

and called in micro mg cam.F90. The MG2 tendency subroutine (micro mg tend) contains

more than 300 local variables in 2,681 lines of code. Other modules and subprograms initialize the
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Figure 5.1: Schematic of CAM5 processes and subcomponents. The Morrison-Gettelman micro-
physics package is indicated by “MG”. This figure appears in Neale, 2016 and is used with permis-
sion from the author.

package, read data from other parts of the model, set physical parameters and write variables to

the CAM output files, and compute auxiliary physics. They also read user-defined modifications

to CAM runtime behavior and broadcast them to all MPI ranks. MG2 relies on auxiliary modules

that compute water vapor saturation processes (wv sat methods.F90 which contains the Goff

and Gratch SVP function mentioned in Sections 2.3.2, 3.5.1, and 4.6.3) and computes expensive

transcendental functions like the gamma function and the error function (shr spfn mod.F90).

MG2 also contains very small (∼ 10−20) physical constants related to particle masses and mixing

ratios which are present in numerous equations.

To expedite the process of identifying runtime errors and individual value discrepancies, we

isolate and remove MG2 from the rest of the model through so-called kernel extraction. We use
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KGen (Kim et al., 2016; Kim et al., 2017) to extract MG2 as a kernel from CESM and perform

comparisons to data generated with MG2 integrated into CAM. KGen provides fine-grained testing

of variable values, and compares Normalized Root Mean Square (NRMS) differences between data

generated by the kernel when integrated into the model and values from the extracted kernel. KGen

considers NRMS differences higher than a user specified threshold as failures.

UF-CAM-ECT facilitates rapid modification prototyping and consistency testing of the whole

model, and we use DDT from ARM Forge (ARM, 2018) to trace variables and set watchpoints for

divergent values. We proceed with the assumption that highly divergent values encountered in the

extracted kernel correspond to statistical inconsistency as determined by UF-CAM-ECT. However,

a UF-CAM-ECT Pass gives us confidence in slightly different, non-BFB values discovered by KGen.

Our experimental configuration consists of an experimental set of 10 simulations, run on two

Cheyenne (CISL, 2017) nodes with 36 MPI processes (and no OpenMP threads) running on each

node. We use the 2.0.0 release of CESM2, with CAM6 physics, CLM 5.0 with prognostic crops,

sea ice (CICE) version 5 with prescribed ice, data ocean with prescribed ocean, MOSART (MOdel

for Scale Adaptive River Transport), CISM2 (ice sheet model) with ice evolution off, and a stub

wave component at year 2000 initialization time. We use a 2-degree finite volume CAM grid, with

a 1 degree POP displaced pole grid (F2000climo component set and f19 g17 mg17 resolution). To

facilitate debugging and tracing with DDT, we use the Single Column Atmosphere Model (SCAM)

which runs on a single Cheyenne CPU to avoid the complexity of parallel debugging.

5.3 Converting MG2 to Single Precision

Converting the KGen-extracted MG2 kernel to single precision is straightforward and con-

sists of substituting real(kind=r4) for real(kind=r8) in the extracted kernel. For example,

avg diameter is originally:

Original avg diameter :
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integer, parameter, public :: r8 = selected_real_kind(12)

! Pi to 20 digits; more than enough to reach the limit of double precision.

real(r8), parameter, public :: pi = 3.14159265358979323846_r8

real(r8) elemental function avg_diameter(q, n, rho_air, rho_sub)

! Finds the average diameter of particles given their density, and

! mass/number concentrations in the air.

! Assumes that diameter follows an exponential distribution.

real(r8), intent(in) :: q ! mass mixing ratio

real(r8), intent(in) :: n ! number concentration (per volume)

real(r8), intent(in) :: rho_air ! local density of the air

real(r8), intent(in) :: rho_sub ! density of the particle substance

avg_diameter = (pi * rho_sub * n/(q*rho_air))**(-1._r8/3._r8)

end function avg_diameter

The conversion to 4-byte floats via direct substitution appears as follows:

4-byte avg diameter :

integer, parameter, public :: r4 = selected_real_kind(6)

! Pi to 20 digits; far beyond the limit of single precision.

real(r4), parameter, public :: pi4 = 3.14159265358979323846_r4

real(r4) elemental function avg_diameter_r4(q, n, rho_air, rho_sub)

real(r4), intent(in) :: q ! mass mixing ratio

real(r4), intent(in) :: n ! number concentration (per volume)

real(r4), intent(in) :: rho_air ! local density of the air

real(r4), intent(in) :: rho_sub ! density of the particle substance

avg_diameter = (pi4 * rho_sub * n/(q*rho_air))**(-1._r4/3._r4)

end function avg_diameter
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Unfortunately, a naive, wholesale conversion of MG2 to 4-byte floats results in catastroph-

ically different outputs as determined by KGen verification. Nine MG2 variables exhibit NRMS

differences (which are relative) above a huge threshold of 1,000, with one variable manifesting

NRMS differences exceeding 1011. To gain more information on possible sources of such tremen-

dous differences, we run MG2 in single precision while integrated into CAM. Running the CESM

with the single-precision MG2 variant can generate and help to identify floating-point exceptions,

as vastly different values are output from MG2 to the rest of the model.

Converting MG2 to single precision integrated into CAM is similar to the conversion process

for the MG2 kernel for modules and subprograms that are only used within MG2. However, for

subprograms and modules that are also used outside of MG2 we must create separate 4-byte sub-

programs and modules. Inputs into the package must be demoted to single precision, and outputs

promoted to double precision. Furthermore, we must track values initialized by auxiliary subpro-

grams whose values are used outside of the main micro mg tend subroutine. After performing the

necessary modifications, running CESM with single precision MG2 generates an FPERROR excep-

tion during the file output stage. More detailed analysis indicates that the output fields (in double

precision) take values which are unrepresentable by the single-precision output arrays. Configuring

CAM to write double-precision output eliminates that floating-point exception, but results in a

100% UF-CAM-ECT error rate. In particular, all PCs fail all 10 runs; an indication of egregious

statistical difference. Deeper investigation requires using ARM DDT to debug the SCAM. This

tool helps us identify a parameter that causes a divide-by-zero exception (min mean mass in the

MGHydrometeorProps derived type) and an uninitialized value in micro mg cam.F90. Careful

code inspection related to min mean mass computations also reveals applications of the Fortran

transfer intrinsic function which may result in an incorrect bit pattern type conversion. We fix the

former by declaring it as a double (and by modifying related subroutines and functions to take

the double argument), and the latter by eliminating the transfer intrinsic in the KGen-extracted

kernel. These alterations reduce the number of variables taking values above the NRMS threshold

of 1,000 from nine to four, and reduce the number of UF-CAM-ECT PCs that fail from 50 to about
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25 (which is still a 100% failure). The combination of different floating-point kinds is known as

mixed precision, and it affords both advantages and disadvantages. Mixed precision computations

for linear systems (Baboulin et al., 2009) and simple climate component models (e.g. Dawson

et al., 2018; Thornes et al., 2018) have proven successful for producing accurate simulations with

substantial speedups over double precision. The disadvantage of mixed precision is increased code

complexity and reduced maintainability. In the following section, we take a step back and test the

outcome of performing expensive MG2 calculations in single precision, while the rest of the package

is computed in double precision.

5.4 Mixed Precision

As a first step toward statistically consistent full single precision in MG2, we modify two

expensive sets of functions and subroutines used within MG2: gamma function computations and

water vapor saturation calculations (in shr spfn mod.F90 and wv sat methods.F90, respec-

tively). In this case, MG2 effectively runs in mixed precision. Computing these functions and

subroutines in single precision results in a 0% EET failure rate for UF-CAM-ECT, and consid-

erable cost savings. Timing micro mg tend calls reports the maximum and minimum runtime

of the call during the entire simulation execution. MG2 running in double precision results in an

average maximum runtime of 0.410s per call, and an average minimum runtime of 0.371 (averaged

over 33 9th time step “ultra-fast” runs). For the mixed precision runs, the MG2 average maxi-

mum runtime is 0.342s, and the average minimum runtime is 0.314s (average of 33 runs). Running

MG2 in mixed precision represents an average maximum runtime reduction of 17% and an average

minimum runtime decrease of 15% (see Table 5.1). We include an example of a subroutine from

wv sat methods.F90 called in micro mg2 0.F90.

Mixed precision subroutine call :

USE wv_sat_methods, ONLY: qsat_water => wv_sat_qsat_water_r4, qsat_ice =>

wv_sat_qsat_ice_r4
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call qsat_water(t(i,k), p(i,k), esl(i,k), qvl(i,k))

elemental subroutine wv_sat_qsat_water_r4(t, p, es, qs, idx)

!------------------------------------------------------------------!

! Purpose: !

! Calculate SVP over water at a given temperature, and then !

! calculate and return saturation specific humidity. !

!------------------------------------------------------------------!

! Inputs

real(r8), intent(in) :: t ! Temperature

real(r8), intent(in) :: p ! Pressure

! Outputs

real(r8), intent(out) :: es ! Saturation vapor pressure

real(r8), intent(out) :: qs ! Saturation specific humidity

integer, intent(in), optional :: idx ! Scheme index

! single precision temp variables

real(r4) :: t4

real(r4) :: es4

t4 = real(t)

es4 = wv_sat_svp_water_r4(t4, idx)

es = dble(es4)

From the standpoint of code comprehension, mixed precision is less desirable than uniform

precision because it can result in unexpected behavior that is dependent on the compiler or CPU.

For example, passing a single-precision argument to a subroutine whose input argument is declared

as a double can result in undefined behavior. The compiler may catch an argument mismatch,

but even in a simple assignment statement with mixed precision the promotion and/or demotion

of types can cause confusion for programmers. Ideally, we can find a way to modify MG2 so that

mixed precision arithmetic is minimized or eliminated.
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Table 5.1: MG2 mixed precision results

MG2 precision Average max runtime (s) Average min runtime (s) UF-CAM-ECT fail. rate
double 0.410 0.371 0.0%
mixed 0.342 0.314 0.0%

5.5 Next Steps

While additional optimization to single-precision gamma function and water vapor saturation

process computations may further increase the speedup over double precision, our goal is to convert

as much of MG2 as possible to run in single precision. Conversion to single precision involves a

systematic analysis of variables that are highly divergent in the MG2 kernel. In Section 5.3 we

reduced the number from nine to four, and with our graph analysis we may succeed in correcting

the remaining four. Note that even if we succeed in correcting the final four variables, we will

likely need to reduce the KGen failure threshold from its currently excessive value of 1,000 down

to a much more reasonable value before we can expect the modified MG2 to pass UF-CAM-ECT

when integrated into CESM. At the same time, we are working closely with the creators of MG2

to identify error sources using traditional methods. These methods feature customized SCAM

output data analysis scripts designed specifically for MG2 applied by scientists with substantial

climate system expertise. We intend to improve our automatic tools so that they make the same

determinations as traditional methods.

To automate the reduction of the number of variables above the KGen failure threshold, we

must improve our slicing algorithm from Section 4.5.1. The current method simply traverses paths

in reverse without accounting for line number precedence, which does not resolve static paths well

enough for detailed debugging. In other words, we must consider paths that move backward through

the code, not merely through the graph. To permit such an approach, we embed a binary tree in

each node and edge’s metadata in the graph. Each binary tree contains the line numbers where

the node or edge appears in the source code. The binary tree data structure allows fast lookups for

line numbers greater than or less than (for forward and backward slicing, respectively) the current
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line. Current lines for every subprogram in the path are contained in a Python dictionary. These

data structure choices allow rapid path traversal and pruning.

We adopt an optimistic approach for our first attempt at finding source code error causes

of the four divergent variables by assuming that they share causes. The assumption allows us to

perform path intersection rather than union and dramatically reduce the search space. The MG2

graph consists of 1971 nodes and 2931 edges with 30 subroutines and 197 functions. By intersecting

all paths that terminate on the divergent four variables, we reduce the graph to 258 nodes in 30

subprograms. Several of these subprograms are unlikely sources as they are closely related to

those already determined not to cause statistical inconsistency (e.g., goffgratch svp water).

As a first step, we will convert all of these variables and subprograms to perform computations

in double precision. If converting the flagged variables and subprograms to double precision fails,

more substantial progress must be made to perform iterative sampling to realize Algorithm 4.5.4.

We discuss implementation details in the next chapter.



Chapter 6

Future Work and Concluding Remarks

In this final chapter, we discuss future work and provide concluding remarks.

6.1 Future Work

We will complete the CESM-ECT suite by adding functional root cause analysis, which

entails realizing Algorithm 4.5.4 for CESM. Broadly speaking, a practical implementation requires

two parts. The first consists of building a tool to transform the induced subgraph into an accurate

backwards slice with runtime data and to capture variable values for comparative analysis. The

values of the most central variables in communities (described in Section 4.5.2) must be compared

with a mechanism to detect meaningful difference. In this section, we discuss our approach to

achieving iterative convergence of Algorithm 4.5.4 through software implementation of appropriate

instrumentation techniques. In the interest of clarity, we reprint Algorithm 4.5.4 here. Note that

G-N denotes the Girvan-Newman algorithm.

Algorithm 6.1

(1) Perform variable selection detailed in Section 4.3

(2) Map the set of affected CAM output variables in step 1 to their internal CAM variables

{Vi}

(3) For each affected internal variable Vi, use BFS to find the set of nodes {nij} in all shortest

paths that terminate on variables with canonical names equal to Vi in the CESM digraph
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(4) Form the induced subgraph G via the union of nodes in the paths in step 3

(5) Use G-N to identify the communities {Ck} of undirected G (omitting communities smaller

than 3 nodes)

(6) Compute the eigenvector in-centrality for each Ck and select m nodes with largest centrality

{nkl}

(7) Instrument {nkl} for all k in parallel for an ensemble run and an experimental run, noting

the set of nodes which take different values {dkl} ({dkl} ⊆ {nkl})

(8) (a) If {dkl} = ∅ (i.e., no different values are detected), form the induced subgraph on all

nodes in G that are not in BFS shortest paths that terminate on {nkl}

(b) Else, form the induced subgraph of G generated by nodes in G that belong to BFS

shortest paths that terminate on {dkl}

(9) Repeat steps 5-8 until the subgraph is small enough for manual analysis or the bug locations

are instrumented

Algorithm 6.1, steps 1-6 produce a coarse slice of CESM, which offers the advantage of rapidly

returning an induced subgraph and associated G-N communities. Its primary disadvantage is that

the directed graph edges do not encode precedence, branching, or execution order. As mentioned

in Section 4.5.2, this means that step 8a or 8b cannot guarantee a correct solution for the next

induced subgraph. Providing a strict guarantee of correctness for subgraph resolution can be done

with assiduous runtime instrumentation. In effect, we trade slicing accuracy for low complexity

over the large model code, which translates the algorithmic cost of slicing into added sampling cost.

Fortunately, this delayed cost can be mitigated. Before discussing cost savings details, we describe

our proposed method of refining the coarse slice.

KGen is capable of automatically detecting variables that must be sampled to extract a

source kernel. After determining the necessary variables, it modifies the source code by inserting

calls to its sampling subroutines. Our needs are not as sophisticated: since Algorithm 6.1 gives
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us the set of variables in the form of an induced subgraph, we will adapt KGen to accept a list

of variables and their corresponding code lines as input. The additional input will allow KGen to

insert sampling calls in Fortran modules at the appropriate lines. The CESM digraph node and

edge location metadata includes lines of code, so adapting KGen will be possible.

KGen will need two new types of instrumentation capability: simple binary sampling, and

value tracing. By binary sampling, we mean detecting whether a particular edge is traversed at

runtime. Edge detection is cheap, and can be done with a logical value that is set to true if the

assignment statement is executed. This data can be written to file, which can be ingested by our

graph tool and used to prune execution paths. With this data, more accurate backwards slices can

be computed such that Algorithm 6.1 step 8 is guaranteed to return correct subgraphs for the next

iteration.

The most central variables of each community are to be sampled by value at Algorithm 6.1

step 7. Values will be recorded for one control (ensemble) and one experimental run, for purposes

of comparison in post-processing. Value instrumentation is more involved than binary sampling,

and may require new techniques. During runtime, variables selected for sampling can be altered

by assignments in loops, meaning that they may be subject to change a very large number of

times. Storing each value in memory, to be written to disk incrementally, is not feasible in general.

Furthermore, each central variable may be computed by a number of MPI processes (or OpenMP

threads). To reduce space complexity, we propose to save the means and standard deviations

of the most central variables. Saving means and standard deviations entails storing an auxiliary

array composed of pairs for each variable, e.g. for element xij of a 2-D array: (x̄n−1ij , σn−1ij ) on

each process or thread, and the update number n. The size of the array will not grow if the

means and standard deviations are updated incrementally, using online methods. Computing these

auxiliary values introduces quadratic overhead per instrumented array element, which should not

be prohibitively expensive. Upon simulation completion, these auxiliary arrays can be written to a

single netCDF file. Finally, post-processing will be done to combine means and standard deviations

across processes and threads. With this data, we can determine which of the most central variables
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exhibit different behavior between the control and experimental runs.

To differentiate between the central variables’ means and standard deviations from the control

and experimental runs, we must determine adequate classification thresholds. Furthermore, we

must conceive of a method to compare arrays of ordered pairs, rather than returning element-wise

comparisons. Taking guidance from Baker et al., 2015, we can compute “global means” of each

array, meaning that we calculate the average means and standard deviations for the array by row

or column (or both). Another potential approach is to compute the normalized Root Mean Square

(RMS) differences of means and standard deviations element-wise, in a similar fashion to the KGen

verification step. Choosing a classification threshold for means and standard deviations can be done

empirically, by using experiments from Sections 2.3 and 3.5 and inspecting the differences between

control and experimental values. There are many practical ways to select appropriate classification

boundaries, and a superior method may become evident once we generate the data.

In the case that several of the most central variables exhibit differences above the chosen

threshold, we can add a condition to Algorithm 6.1 that will accelerate its convergence. Step 8

induces a smaller subgraph based on nodes that can affect the most different central variables. If we

add a constraint that the induced subgraph be as small as possible (by ranking induced subgraph

sizes returned by BFS shortest paths terminating on the central variables), we can remove more

nodes as potential candidates for sources of inconsistency. When used with 9th time step (“ultra-

fast”) runs and the UF-CAM-ECT, each step of the process requires little CPU time and facilitates

parallelism via G-N community sampling (see Section 4.5.2). Depending on the induced subgraph

structure, the iterative convergence can be approximately logarithmic in the number of nodes.

Algorithm 6.1 does not have a well-defined stopping criterion. Although the algorithm will

converge on the sources, it is possible for the subgraph to become small enough that full tracing

(storing each value at each iteration) can be enabled for every variable. KGen could be modified to

perform this task by extracting a subgraph from the model instead of a kernel. Such an approach

allows conversion of our directed subgraph into a true Directed Acyclic Graph (DAG) by capturing

temporal precedence and dependencies. The DAG can be fast-forwarded or stepped backward in
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time to inspect value changes. Combined with assembly output, a correspondence between the

source, computed values, and machine instructions can be made.

Implementing Algorithm 6.1 with guaranteed convergence will allow identification of the

sources of statistical inconsistency in the CESM. While the testing and variable selection compo-

nents of the full CESM-ECT quality assurance framework are particular to the CESM, the graph

construction and analysis through Algorithm 6.1 can be used with any model written in Fortran.

With a different parser, C and C++ can be analyzed in the same way. While implementation de-

tails may prove challenging, the method is abstracted from the programming language. We believe

that our method is sufficiently general to permit root cause analysis of large-scale simulations, and

intend to perform a series of studies to verify this claim.

6.2 Concluding Remarks

In this thesis, we make contributions to extend the CESM-ECT created in Baker et al., 2015.

First we investigate the variational properties of the accepted ensemble by testing its classifications

of modifications that should not produce statistically inconsistent results. These modifications in-

clude other CESM supported compilers and code modifications. We perform additional testing of

ensemble size and composition and determine that the accepted ensemble should be larger. In par-

ticular, it should include a source of variation in addition to initial temperature field perturbations,

i.e., the compiler. We conceive of a new test, based on an ensemble of 9th time step (“ultra-fast”)

runs, which retains most of the desirable properties of the 12-month test and possesses a capability

that the longer test does not: detecting spatially localized changes. Furthermore, the ultra-fast test

is much less expensive by a factor of approximately 70. By encoding relationships between CESM

variables in a directed graph, we devise a method to iteratively converge on sources of statistical

inconsistency present in the Fortran source code. We provide simulated examples of such analysis

starting from actual model output and demonstrated the method’s convergence to the sources of

discrepancy. We make substantive progress on applying these new methods and tools to the goal of

modifying an expensive microphysics package (MG2) to perform computations with single precision
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floating point numbers. Converting only the most expensive computations to single precision yields

between 15 and 17% runtime speedup (while retaining statistical indistinguishability) for the MG2

package; we anticipate more significant improvements as we convert additional MG2 code to single

precision.

In Section 6.1, we delineate necessary steps for realizing Algorithm 4.5.4 and 6.1, and com-

pleting the CESM-ECT suite with an error source identification tool. We believe that this tool

will be sufficiently general to trace inconsistencies back to sources in other models as well, and we

intend to demonstrate this capability. The most promising part of the tool will be its represen-

tation of a model’s internal error source DAG, complete with values at high temporal resolution.

The time evolution of the complex system embedded into its graphical representation will allow for

sophisticated study of its properties, potentially leading to greater insight into high-dimensional

nonlinear and dynamical systems.
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Appendix A

Experiments from Baker et al., 2015

A.1 Experiment Names

• NO-OPT: changing the Intel compiler flag to remove optimization

• INTEL-15: changing the Intel compiler version to 15.0.0

• NO-THRD: compiling CAM without threading (MPI-only)

• PGI: using the CESM-supported PGI compiler (13.0)

• GNU: using the CESM-supported GNU compiler (4.8.0)

• EDISON: National Energy Research Scientific Computing Center (Cray XC30, Intel)

• DUST: dust emissions; dust emis fact = 0.45 (original default 0.55)

• FACTB: wet deposition of aerosols convection factor; sol factb interstitial = 1.0 (original

default 0.1)

• FACTIC: wet deposition of aerosols convection factor; sol factic interstitial = 1.0 (original

default 0.4)

• RH-MIN-LOW: min. relative humidity for low clouds; cldfrc rhminl = 0.85 (original default

0.8975)

• RH-MIN-HIGH: min. relative humidity for high clouds; cldfrc rhminh = 0.9 (original

default 0.8)
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• CLDFRC-DP: deep convection cloud fraction; cld frc dp1 = 0.14 (original default 0.10)

• UW-SH: penetrative entrainment efficiency - shallow; uwschu rpen = 10.0 (original default

5.0)

• CONV-LND: autoconversion over land in deep convection; zmconv c0 lnd = 0.0035 (origi-

nal default 0.0059)

• CONV-OCN: autoconversion over ocean in deep convection; zmconv c0 ocn = 0.0035 (orig-

inal default 0.045)

• NU-P: hyperviscosity for layer thickness (vertical lagrangian dynamics); nu p = 1 × 1014

(original default 1× 1015)

• NU: dynamics hyperviscosity (horizontal diffusion); nu = 9×1014 (original default 1×1015)



Appendix B

Centrality Output

B.1 AVX2 Subgraph Centrality

>>> avx2 subgraph incentrality[:500]

(dum micro mg tend, 0.455153), (ratio micro mg tend, 0.325264),

(tlat micro mg tend, 0.255383), (qniic micro mg tend, 0.198578),

(nric micro mg tend, 0.196431), (nsic micro mg tend, 0.191075),

(qctend micro mg tend, 0.188477), (qric micro mg tend, 0.180318),

(qitend micro mg tend, 0.15969), (prds micro mg tend, 0.157626),

(pre micro mg tend, 0.157551), (nctend micro mg tend, 0.148088),

(qvlat micro mg tend, 0.132584), (mnuccc micro mg tend, 0.121525),

(nitend micro mg tend, 0.120172), (nsagg micro mg tend, 0.109382),

(nragg micro mg tend, 0.107409), (dum1 micro mg tend, 0.0964774),

(qnitend micro mg tend, 0.0875948), (nnuccr micro mg tend, 0.0875681),

(mnuccr micro mg tend, 0.0875681), (npracs micro mg tend, 0.0834417),

(pracs micro mg tend, 0.0834417), (tmp micro mg tend, 0.0822866),

(nrtot micro mg tend, 0.0815155), (qstot micro mg tend, 0.0815155),

(nstot micro mg tend, 0.0815155), (qrtot micro mg tend, 0.0815155),

(ttmp micro mg tend, 0.0814203), (min 2140 micro mg tend, 0.0807908),

(min 2122 micro mg tend, 0.080781), (psacws micro mg tend, 0.0781575),

(npsacws micro mg tend, 0.0773532), (pra micro mg tend, 0.0767817),

(qrtend micro mg tend, 0.0693434), (nprai micro mg tend, 0.0670967),

(prai micro mg tend, 0.0669185), (qclr micro mg tend, 0.0627478),

(qtmp micro mg tend, 0.0627211), (eci micro mg tend, 0.0621703),

(npra micro mg tend, 0.0621291), (faltndc micro mg tend, 0.0607809),
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(faltndnc micro mg tend, 0.0601965), (min 2559 micro mg tend, 0.0600089),

(max 3120 micro mg tend, 0.0600089), (max 2558 micro mg tend, 0.0600089),

(min 2177 micro mg tend, 0.0600089), (min 2525 micro mg tend, 0.0600089),

(min 3004 micro mg tend, 0.0600089), (max 2524 micro mg tend, 0.0600089),

(max 3087 micro mg tend, 0.0600089), (min 3088 micro mg tend, 0.0600089),

(min 3121 micro mg tend, 0.0600089), (min 2168 micro mg tend, 0.0600089),

(max 1158 micro mg tend, 0.0600089), (nprc1 micro mg tend, 0.0582542),

(n0s micro mg tend, 0.0581463), (nsubi micro mg tend, 0.0576126),

(n0r micro mg tend, 0.0562208), (nnucct micro mg tend, 0.0552363),

(mnucct micro mg tend, 0.0552363), (msacwi micro mg tend, 0.0531491),

(nnuccc micro mg tend, 0.052809), (bergs micro mg tend, 0.0520531),

(lams micro mg tend, 0.0513731), (prc micro mg tend, 0.0512664),

(prci micro mg tend, 0.051026), (nprci micro mg tend, 0.0509864),

(nrtend micro mg tend, 0.0508104), (lamr micro mg tend, 0.0496719),

(nsubs micro mg tend, 0.0493965), (nsubc micro mg tend, 0.0493965),

(nsubr micro mg tend, 0.0493965), (nstend micro mg tend, 0.0451548),

(dumc micro mg tend, 0.0435571), (t micro mg tend, 0.039804),

(tlat1 micro mg tend, 0.038784), (qc micro mg tend, 0.0318119),

(dumi micro mg tend, 0.0310279), (qsout micro mg tend, 0.0301572),

(qctend1 micro mg tend, 0.0286232), (qrout micro mg tend, 0.0273842),

(qi micro mg tend, 0.0272577), (max 1722 micro mg tend, 0.0258981),

(max 2596 micro mg tend, 0.0258981), (nc micro mg tend, 0.0254224),

(dumfice micro mg tend, 0.0252079), (rainrt micro mg tend, 0.0251983),

(max 2597 micro mg tend, 0.025192), (max 1723 micro mg tend, 0.025192),

(qitend1 micro mg tend, 0.0242514), (nctend1 micro mg tend, 0.0224895),

(q micro mg tend, 0.020774), (qvlat1 micro mg tend, 0.020135),

(ni micro mg tend, 0.0196537), (nitend1 micro mg tend, 0.0182501),

(epss micro mg tend, 0.0168008), (epsr micro mg tend, 0.0163226),

(t svp water, 0.0159826), (t svp ice, 0.0159826),

(ni secp micro mg tend, 0.0155524), (nfice micro mg tend, 0.0149841),

(faltndi micro mg tend, 0.0132731), (faltndni micro mg tend, 0.0127688),

(min 3006 micro mg tend, 0.0127199), (max 1969 micro mg tend, 0.012355),

(min 1963 micro mg tend, 0.012355), (min 1959 micro mg tend, 0.012355),
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(state loc%q micro mg cam tend, 0.0111397), (prd micro mg tend, 0.0100962),

(dumnc micro mg tend, 0.00993771), (lamc micro mg tend, 0.0083619),

(min 1932 micro mg tend, 0.00819674), (max 1931 micro mg tend, 0.00819674),

(cmei micro mg tend, 0.00718911), (ncic micro mg tend, 0.0070591),

(min 1785 micro mg tend, 0.00678523), (min 2680 micro mg tend, 0.00678523),

(min 2681 micro mg tend, 0.00678523), (min 1784 micro mg tend, 0.00678523),

(ds0 micro mg tend, 0.0067732), (nprc micro mg tend, 0.00675914),

(min 1751 micro mg tend, 0.00656094), (min 1752 micro mg tend, 0.00656094),

(min 2628 micro mg tend, 0.00656094), (min 2627 micro mg tend, 0.00656094),

(ndfaer2 micro mg tend, 0.00596703), (ndfaer1 micro mg tend, 0.00596703),

(ndfaer4 micro mg tend, 0.00596703), (ndfaer3 micro mg tend, 0.00596703),

(faloutc micro mg tend, 0.00585526), (min 3194 micro mg tend, 0.00574271),

(qc micro mg cam tend, 0.00566289), (berg micro mg tend, 0.00547565),

(qie micro mg tend, 0.00526351), (dqsdt micro mg tend, 0.0052479),

(dqsidt micro mg tend, 0.0052479), (mu micro mg tend, 0.0052479),

(exp 2002 micro mg tend, 0.0052479), (dv micro mg tend, 0.0052479),

(sqrt 1838 micro mg tend, 0.0052479), (t1 micro mg tend, 0.0052479),

(exp 1807 micro mg tend, 0.0052479), (exp 1820 micro mg tend, 0.0052479),

(tcnt micro mg tend, 0.0052479), (exp 1813 micro mg tend, 0.0052479),

(exp 2006 micro mg tend, 0.0052479), (exp 1826 micro mg tend, 0.0052479),

(viscosity micro mg tend, 0.0052479), (rho micro mg tend, 0.0052479),

(qi micro mg cam tend, 0.00506245), (n0i micro mg tend, 0.00501755),

(qce micro mg tend, 0.00491612), (nc micro mg cam tend, 0.00482047),

(lami micro mg tend, 0.00481632), (falouti micro mg tend, 0.00419552),

(max 1179 micro mg tend, 0.00419419), (qc1 micro mg tend, 0.00419419),

(max 1110 micro mg tend, 0.00419419), (min 3195 micro mg tend, 0.00409082),

(ni micro mg cam tend, 0.00405991), (qinew micro mg tend, 0.00394143),

(rainrt1 micro mg tend, 0.00382677), (qi1 micro mg tend, 0.00359375),

(dum2l micro mg tend, 0.00344299), (max 2448 micro mg tend, 0.00341162),

(nc1 micro mg tend, 0.00335177), (nce micro mg tend, 0.00335177),

(log10 3395 micro mg tend, 0.00332223), (nie micro mg tend, 0.00293889),

(ninew micro mg tend, 0.00293889), (min 1441 micro mg tend, 0.00283013),

(relhum micro mg tend, 0.00273891), (q1 micro mg tend, 0.00273891),
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(epsi micro mg tend, 0.00268033), (dumnnuc micro mg tend, 0.00263705),

(nnuccd micro mg tend, 0.00263705), (ni1 micro mg tend, 0.00259121),

(max 2452 micro mg tend, 0.00259121), (relvar micro mg cam tend, 0.00259121),

(pgam micro mg tend, 0.00222549), (t wv sat svp water, 0.0021072),

(t wv sat svp ice, 0.0021072), (sc micro mg tend, 0.0020757),

(nsacwi micro mg tend, 0.00205049), (dumni micro mg tend, 0.00202004),

(tnd qsnow micro mg cam tend, 0.00197555), (uns micro mg tend, 0.00178918),

(ums micro mg tend, 0.00178918), (unr micro mg tend, 0.00173003),

(umr micro mg tend, 0.00173003), (niic micro mg tend, 0.00169304),

(qn micro mg tend, 0.0014687), (tn micro mg tend, 0.0014687),

(faloutnc micro mg tend, 0.00142277), (dc0 micro mg tend, 0.00139588),

(mfp micro mg tend, 0.0013838), (max 1103 micro mg tend, 0.00133112),

(min 1210 micro mg tend, 0.00133112), (min 2887 micro mg tend, 0.00131022),

(max 3246 micro mg tend, 0.00131022), (max 2889 micro mg tend, 0.00131022),

(min 3237 micro mg tend, 0.00131022), (max 2899 micro mg tend, 0.00114115),

(min 2900 micro mg tend, 0.00114115), (umc micro mg tend, 0.00111449),

(unc micro mg tend, 0.00111449), (min 1543 micro mg tend, 0.000930695),

(cdist1 micro mg tend, 0.000930695), (fc micro mg tend, 0.000853678),

(fnc micro mg tend, 0.000853678), (fni micro mg tend, 0.000794134),

(fi micro mg tend, 0.000794134), (faltndqce micro mg tend, 0.000771977),

(abi micro mg tend, 0.000691901), (ab micro mg tend, 0.000691901),

(max 1545 micro mg tend, 0.000691901), (rhof micro mg tend, 0.000691901),

(max 1497 micro mg tend, 0.000691901), (dz micro mg tend, 0.000691901),

(uni micro mg tend, 0.000670713), (umi micro mg tend, 0.000670713),

(exp 1665 micro mg tend, 0.000635), (exp 1667 micro mg tend, 0.000635),

(min 2880 micro mg tend, 0.000635), (max 2879 micro mg tend, 0.000635),

(faltndqie micro mg tend, 0.000553152), (qiic micro mg tend, 0.000519651),

(ncmax micro mg tend, 0.000453936), (faloutni micro mg tend, 0.00037103),

(rhin micro mg tend, 0.000361107), (mnuccd micro mg tend, 0.000347677),

(max 1012 micro mg tend, 0.000347677), (max 1425 micro mg tend, 0.000347677),

(relvar micro mg tend, 0.000341634), (lammax micro mg tend, 0.000293416),

(min 3306 micro mg tend, 0.000293416), (max 1551 micro mg tend, 0.000293416),

(min 2893 micro mg tend, 0.000293416), (max 2892 micro mg tend, 0.000293416),
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(lammin micro mg tend, 0.000293416), (min 1552 micro mg tend, 0.000293416),

(max 3250 micro mg tend, 0.000293416), (min 3251 micro mg tend, 0.000293416),

(max 3305 micro mg tend, 0.000293416), (t goffgratch svp water, 0.000277821),

(t goffgratch svp ice, 0.000277821), (min 3202 micro mg tend, 0.000266329),

(min 2875 micro mg tend, 0.000266329), (tnd qsnow micro mg tend, 0.000260464),

(nslip3 micro mg tend, 0.000206499), (nslip4 micro mg tend, 0.000206499),

(nslip2 micro mg tend, 0.000206499), (nslip1 micro mg tend, 0.000206499),

(exp 1843 micro mg tend, 0.000182445), (exp 1844 micro mg tend, 0.000182445),

(exp 1841 micro mg tend, 0.000182445), (exp 1842 micro mg tend, 0.000182445),

(min 2924 micro mg tend, 0.000179652), (min 2925 micro mg tend, 0.000179652),

(max 3046 micro mg tend, 0.000112552), (max 3045 micro mg tend, 0.000112552),

(max 3044 micro mg tend, 0.000104701), (max 3043 micro mg tend, 0.000104701),

(acn micro mg tend, 9.12225e-05), (ain micro mg tend, 9.12225e-05),

(asn micro mg tend, 9.12225e-05), (arn micro mg tend, 9.12225e-05),

(max 2507 micro mg tend, 9.12225e-05), (max 2510 micro mg tend, 9.12225e-05),

(max 2508 micro mg tend, 9.12225e-05), (max 2509 micro mg tend, 9.12225e-05),

(min 1516 micro mg tend, 6.85125e-05), (qcvar micro mg tend, 4.50421e-05),

(es goffgratch svp water, 4.14581e-05), (es goffgratch svp ice, 4.14581e-05),

(log10 374 goffgratch svp water, 3.66288e-05),

(log10 387 goffgratch svp ice, 3.66288e-05),

(cons18 micro mg tend, 5.93851e-06), (cons20 micro mg tend, 5.93851e-06),

(cons19 micro mg tend, 5.93851e-06), (es wv sat svp water, 5.46598e-06),

(es wv sat svp ice, 5.46598e-06), (es wv sat qsat water, 7.33401e-07),

(es svp water, 7.20653e-07), (es svp ice, 7.20653e-07),

(esn micro mg tend, 1.90027e-07), (esl micro mg tend, 1.20067e-07),

(esi micro mg tend, 1.10843e-07), (es qsat water, 9.66941e-08),

(min 216 wv sat qsat water, 9.66941e-08), (es wv sat svp to qsat, 9.66941e-08),

(esl aist vector, 9.50133e-08), (esl aist single, 9.50133e-08),

(esi aist single, 9.50133e-08), (esi aist vector, 9.50133e-08),

(min 1167 micro mg tend, 3.06656e-08), (exp 2609 aist single, 2.50578e-08),

(exp 2799 aist vector, 2.50542e-08), (es deriv outputs, 1.27485e-08),

(qs wv sat svp to qsat, 1.27485e-08), (aist aist single, 3.36269e-09),

(aist aist vector, 3.36174e-09), (dqsdt loc deriv outputs, 1.93549e-09),
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(desdt deriv outputs, 1.68091e-09), (qs qsat, 1.6808e-09),

(qvl micro mg tend, 1.6808e-09), (qvs micro mg tend, 1.6808e-09),

(qsn micro mg tend, 1.6808e-09), (qs wv sat qsat water, 1.6808e-09),

(qs micro mg tend, 1.6808e-09), (qvi micro mg tend, 1.6808e-09),

(max 2652 aist single, 4.43348e-10),

(ai st nc instratus condensate, 4.43348e-10),

(max 2842 aist vector, 4.43223e-10), (aist out aist vector, 4.43223e-10),

(q tq enthalpy, 2.88425e-10), (qsp findsp, 2.85227e-10),

(gam deriv outputs, 2.55182e-10), (dqsdt deriv outputs, 2.55182e-10),

(q1 findsp, 2.50819e-10), (qs findsp, 2.50819e-10),

(qs deriv outputs, 2.50819e-10), (qs compute eddy diff, 2.21603e-10),

(qs sfdiag, 2.21603e-10), (qs compute uwshcu, 2.21603e-10),

(satq gas phase chemdr, 2.21603e-10), (qs conden, 2.21603e-10),

(qs qsinvert, 2.21603e-10), (qs qsat water, 2.21603e-10),

(ai st instratus condensate, 6.61569e-11),

(ai0 st nc in instratus condensate, 5.8436e-11),

(enthalpy tq enthalpy, 3.82222e-11), (qsp findsp vc, 3.76053e-11),

(qvd findsp, 3.74289e-11), (gam qsat water, 3.36441e-11),

(gam qsat, 3.3644e-11), (dqsdt qsat water, 3.3644e-11),

(dqsdt qsat, 3.3644e-11), (derrdps qsinvert, 3.31927e-11),

(r1b findsp, 3.30693e-11), (qs instratus condensate, 3.30689e-11),

(dlnqsdt qsinvert, 2.98017e-11), (max 4692 conden, 2.92349e-11),

(excessu compute uwshcu, 2.92177e-11), (max 3815 compute uwshcu, 2.92172e-11),

(relhum gas phase chemdr, 2.9217e-11), (excess0 compute uwshcu, 2.92168e-11),

(temps compute eddy diff, 2.92168e-11), (qxbot sfdiag, 2.92168e-11),

(qxtop sfdiag, 2.92168e-11), (rhi qsinvert, 2.92168e-11),

(rvls conden, 2.92168e-11), (err qsinvert, 2.92168e-11),

(qsat in instratus condensate, 2.92168e-11), (qsat b mmacro pcond, 2.92168e-11),

(qsat0 instratus condensate, 2.92168e-11), (qs gridmean rh, 2.92168e-11),

(qm qsat hpa, 2.92168e-11), (qs aist single, 2.92168e-11),

(qs funcd instratus, 2.92168e-11), (qsat in aist vector, 2.92168e-11),

(enout findsp, 1.39108e-11), (qi instratus condensate, 1.0047e-11),

(qi st instratus condensate, 1.0047e-11), (gam findsp, 8.87148e-12),
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(dps qsinvert, 8.22828e-12), (xsat compute uwshcu, 7.7042e-12),

(qxm sfdiag, 7.7041e-12), (t qsat, 5.11467e-12),

(tsp findsp, 5.09003e-12), (enin findsp, 5.03934e-12),

(qw0 in compute uwshcu, 4.95801e-12), (max 1047 sfdiag, 4.86778e-12),

(max 1057 sfdiag, 4.86778e-12), (abs 1057 sfdiag, 4.86778e-12),

(abs 1047 sfdiag, 4.86778e-12), (u instratus condensate, 4.53598e-12),

(temps conden, 4.46065e-12), (beta mmacro pcond, 4.43767e-12),

(beta funcd instratus, 4.43689e-12), (dqsdt b mmacro pcond, 4.43574e-12),

(gam trbintd, 4.43574e-12), (dqsdt funcd instratus, 4.43574e-12),

(dqsdt gridmean rh, 4.43574e-12), (gam qsinvert, 4.43574e-12),

(ncf aist single, 4.02669e-12), (f gridmean rh, 3.87683e-12),

(min 1899 gridmean rh, 3.86244e-12), (u0 instratus condensate, 3.86106e-12),

(qc conden, 3.85444e-12), (tv drydep fromlnd, 3.85329e-12),

(u mmacro pcond, 3.85285e-12), (subsat compute uwshcu, 3.8521e-12),

(relhum usrrxt, 3.85208e-12), (u funcd instratus, 3.85207e-12),

(u0 in instratus condensate, 3.85207e-12), (log 4816 qsinvert, 3.85205e-12),

(alpha mmacro pcond, 3.85204e-12), (qst entropy, 3.85204e-12),

(qst ientropy, 3.85204e-12), (qst cldprp, 3.85204e-12),

(qs aist vector, 3.85204e-12), (alpha funcd instratus, 3.85204e-12),

(g findsp, 2.49845e-12), (t tq enthalpy, 1.47498e-12),

(bb mmacro pcond, 1.38113e-12), (t calc hltalt, 1.34544e-12),

(t instratus condensate, 1.34066e-12), (qv instratus condensate, 1.33543e-12),

(qi aist single, 1.32464e-12), (qi out instratus condensate, 1.32463e-12),

(sflh sfdiag, 1.28357e-12), (sfuh sfdiag, 1.28357e-12),

(ps qsinvert, 1.25976e-12), (dgdt findsp, 1.16965e-12),

(t1 findsp, 1.1547e-12), (x cu compute uwshcu, 1.1497e-12),

(gammai mmacro pcond, 1.09295e-12), (dudt funcd instratus, 1.09284e-12),

(betast mmacro pcond, 1.09269e-12), (thv x0 compute uwshcu, 1.03041e-12),

(thv x1 compute uwshcu, 1.03041e-12), (qtxsat compute uwshcu, 1.01659e-12),

(thlxsat compute uwshcu, 1.01659e-12), (min 2502 compute uwshcu, 1.01597e-12),

(t qsat water, 9.825e-13), (t no ip hltalt, 9.78024e-13),

(t deriv outputs, 8.03883e-13), (t gridmean rh, 7.21826e-13),

(qu cldprp, 7.172e-13), (chs trbintd, 6.73635e-13),
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(max 3823 compute uwshcu, 6.54091e-13),

(u nc instratus condensate, 5.98038e-13),

(fg gridmean rh, 5.95169e-13), (th conden, 5.90522e-13),

(u in astg pdf, 5.74841e-13), (qsthat cldprp, 5.74824e-13),

(acos 2634 aist single, 5.30894e-13), (evprain compute uwshcu, 5.27919e-13),

(evpsnow compute uwshcu, 5.2772e-13), (qv conden, 5.26283e-13),

(qv gridmean rh, 5.18249e-13), (log 3529 entropy, 5.17889e-13),

(tv drydep xactive, 5.10641e-13), (u0 nc instratus condensate, 5.09056e-13),

(qi conden, 5.08183e-13), (ql conden, 5.08181e-13),

(term drydep fromlnd, 5.08033e-13), (u nc mmacro pcond, 5.07972e-13),

(ncf aist vector, 5.0797e-13), (xr usrrxt, 5.07876e-13),

(min 3526 entropy, 5.07871e-13), (u nc funcd instratus, 5.07871e-13),

(tlcl qsinvert, 5.0787e-13), (hsat cldprp, 5.07868e-13),

(qsmix parcel dilute, 5.07866e-13), (log 2185 cldprp, 5.07866e-13),

(gamma cldprp, 5.07866e-13), (min 991 sfdiag, 3.38458e-13),

(min 960 sfdiag, 3.38457e-13), (min 1050 sfdiag, 3.38457e-13),

(sfi sfdiag, 3.03096e-13), (bquad compute uwshcu, 2.77358e-13),

(u astg pdf single, 2.12925e-13), (t aist single, 1.89303e-13),

(dpisdps qsinvert, 1.87993e-13), (dqlstdt mmacro pcond, 1.82095e-13),

(dalstdt mmacro pcond, 1.82094e-13), (sten compute uwshcu, 1.77447e-13),

(tc calc hltalt, 1.7739e-13), (t out instratus condensate, 1.76751e-13),

(qv out instratus condensate, 1.76066e-13),

(qi star mmacro pcond, 1.74643e-13),

(qi 0 mmacro pcond, 1.74642e-13), (qvten compute uwshcu, 1.74133e-13),

(xc compute uwshcu, 1.71568e-13), (sflh trbintd, 1.6923e-13),

(sfuh trbintd, 1.69229e-13), (p qsat, 1.66583e-13),

(dlnqsdps qsinvert, 1.66149e-13), (qsinvert qsinvert, 1.66092e-13),

(pis qsinvert, 1.66091e-13), (su cldprp, 1.53827e-13),

(max 2516 compute uwshcu, 1.51584e-13), (tmp1 compute uwshcu, 1.50551e-13),

(tmp2 compute uwshcu, 1.5055e-13), (hltalt no ip hltalt, 1.48528e-13),

(dalstdt funcd instratus, 1.44154e-13), (hsthat cldprp, 1.42745e-13),

(cquad compute uwshcu, 1.41406e-13), (thl conden, 1.37391e-13),

(qt conden, 1.37388e-13), (t wv sat qsat water, 1.29542e-13),
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(qc gridmean rh, 1.09113e-13), (tc gridmean rh, 1.0573e-13),

(qds cldprp, 1.04607e-13), (cms trbintd, 1.02303e-13),

(t0 instratus condensate, 9.51897e-14), (qu zm convr, 9.45563e-14),

B.2 AVX2 Subgraph Centrality: First Community

>>> avx2 community1 incentrality[:500]

(dum micro mg tend, 0.455153), (ratio micro mg tend, 0.325264),

(tlat micro mg tend, 0.255383), (qniic micro mg tend, 0.198578),

(nric micro mg tend, 0.196431), (nsic micro mg tend, 0.191075),

(qctend micro mg tend, 0.188477), (qric micro mg tend, 0.180318),

(qitend micro mg tend, 0.15969), (prds micro mg tend, 0.157626),

(pre micro mg tend, 0.157551), (nctend micro mg tend, 0.148088),

(qvlat micro mg tend, 0.132584), (mnuccc micro mg tend, 0.121525),

(nitend micro mg tend, 0.120172), (nsagg micro mg tend, 0.109382),

(nragg micro mg tend, 0.107409), (dum1 micro mg tend, 0.0964774),

(qnitend micro mg tend, 0.0875948), (nnuccr micro mg tend, 0.0875681),

(mnuccr micro mg tend, 0.0875681), (pracs micro mg tend, 0.0834417),

(npracs micro mg tend, 0.0834417), (tmp micro mg tend, 0.0822866),

(qrtot micro mg tend, 0.0815155), (nrtot micro mg tend, 0.0815155),

(qstot micro mg tend, 0.0815155), (nstot micro mg tend, 0.0815155),

(ttmp micro mg tend, 0.0814203), (min 2140 micro mg tend, 0.0807908),

(min 2122 micro mg tend, 0.080781), (psacws micro mg tend, 0.0781575),

(npsacws micro mg tend, 0.0773532), (pra micro mg tend, 0.0767817),

(qrtend micro mg tend, 0.0693434), (nprai micro mg tend, 0.0670967),

(prai micro mg tend, 0.0669185), (qclr micro mg tend, 0.0627478),

(qtmp micro mg tend, 0.0627211), (eci micro mg tend, 0.0621703),

(npra micro mg tend, 0.0621291), (faltndc micro mg tend, 0.0607809),

(faltndnc micro mg tend, 0.0601965), (max 1158 micro mg tend, 0.0600089),

(min 2559 micro mg tend, 0.0600089), (max 3087 micro mg tend, 0.0600089),

(min 2168 micro mg tend, 0.0600089), (min 2177 micro mg tend, 0.0600089),

(min 3004 micro mg tend, 0.0600089), (min 2525 micro mg tend, 0.0600089),

(max 2524 micro mg tend, 0.0600089), (max 3120 micro mg tend, 0.0600089),
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(min 3121 micro mg tend, 0.0600089), (min 3088 micro mg tend, 0.0600089),

(max 2558 micro mg tend, 0.0600089), (nprc1 micro mg tend, 0.0582542),

(n0s micro mg tend, 0.0581463), (nsubi micro mg tend, 0.0576126),

(n0r micro mg tend, 0.0562208), (nnucct micro mg tend, 0.0552363),

(mnucct micro mg tend, 0.0552363), (msacwi micro mg tend, 0.0531491),

(nnuccc micro mg tend, 0.052809), (bergs micro mg tend, 0.0520531),

(lams micro mg tend, 0.0513731), (prc micro mg tend, 0.0512664),

(prci micro mg tend, 0.051026), (nprci micro mg tend, 0.0509864),

(nrtend micro mg tend, 0.0508104), (lamr micro mg tend, 0.0496719),

(nsubr micro mg tend, 0.0493965), (nsubs micro mg tend, 0.0493965),

(nsubc micro mg tend, 0.0493965), (nstend micro mg tend, 0.0451548),

(dumc micro mg tend, 0.0435571), (t micro mg tend, 0.039804),

(tlat1 micro mg tend, 0.038784), (qc micro mg tend, 0.0318119),

(dumi micro mg tend, 0.0310279), (qsout micro mg tend, 0.0301572),

(qctend1 micro mg tend, 0.0286232), (qrout micro mg tend, 0.0273842),

(qi micro mg tend, 0.0272577), (max 2596 micro mg tend, 0.0258981),

(max 1722 micro mg tend, 0.0258981), (nc micro mg tend, 0.0254224),

(dumfice micro mg tend, 0.0252079), (rainrt micro mg tend, 0.0251983),

(max 1723 micro mg tend, 0.025192), (max 2597 micro mg tend, 0.025192),

(qitend1 micro mg tend, 0.0242514), (nctend1 micro mg tend, 0.0224895),

(q micro mg tend, 0.020774), (qvlat1 micro mg tend, 0.020135),

(ni micro mg tend, 0.0196537), (nitend1 micro mg tend, 0.0182501),

(epss micro mg tend, 0.0168008), (epsr micro mg tend, 0.0163226),

(t svp water, 0.0159826), (t svp ice, 0.0159826),

(ni secp micro mg tend, 0.0155524), (nfice micro mg tend, 0.0149841),

(faltndi micro mg tend, 0.0132731), (faltndni micro mg tend, 0.0127688),

(min 3006 micro mg tend, 0.0127199), (max 1969 micro mg tend, 0.012355),

(min 1959 micro mg tend, 0.012355), (min 1963 micro mg tend, 0.012355),

(state loc%q micro mg cam tend, 0.0111397), (prd micro mg tend, 0.0100962),

(dumnc micro mg tend, 0.00993771), (lamc micro mg tend, 0.0083619),

(max 1931 micro mg tend, 0.00819674), (min 1932 micro mg tend, 0.00819674),

(cmei micro mg tend, 0.00718911), (ncic micro mg tend, 0.0070591),

(min 1785 micro mg tend, 0.00678523), (min 2680 micro mg tend, 0.00678523),
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(min 2681 micro mg tend, 0.00678523), (min 1784 micro mg tend, 0.00678523),

(ds0 micro mg tend, 0.0067732), (nprc micro mg tend, 0.00675914),

(min 2628 micro mg tend, 0.00656094), (min 2627 micro mg tend, 0.00656094),

(min 1751 micro mg tend, 0.00656094), (min 1752 micro mg tend, 0.00656094),

(ndfaer2 micro mg tend, 0.00596703), (ndfaer1 micro mg tend, 0.00596703),

(ndfaer4 micro mg tend, 0.00596703), (ndfaer3 micro mg tend, 0.00596703),

(faloutc micro mg tend, 0.00585526), (min 3194 micro mg tend, 0.00574271),

(qc micro mg cam tend, 0.00566289), (berg micro mg tend, 0.00547565),

(qie micro mg tend, 0.00526351), (dqsidt micro mg tend, 0.0052479),

(dqsdt micro mg tend, 0.0052479), (exp 1820 micro mg tend, 0.0052479),

(t1 micro mg tend, 0.0052479), (tcnt micro mg tend, 0.0052479),

(rho micro mg tend, 0.0052479), (mu micro mg tend, 0.0052479),

(viscosity micro mg tend, 0.0052479), (exp 2006 micro mg tend, 0.0052479),

(exp 1826 micro mg tend, 0.0052479), (exp 1813 micro mg tend, 0.0052479),

(sqrt 1838 micro mg tend, 0.0052479), (dv micro mg tend, 0.0052479),

(exp 2002 micro mg tend, 0.0052479), (exp 1807 micro mg tend, 0.0052479),

(qi micro mg cam tend, 0.00506245), (n0i micro mg tend, 0.00501755),

(qce micro mg tend, 0.00491612), (nc micro mg cam tend, 0.00482047),

(lami micro mg tend, 0.00481632), (falouti micro mg tend, 0.00419552),

(qc1 micro mg tend, 0.00419419), (max 1110 micro mg tend, 0.00419419),

(max 1179 micro mg tend, 0.00419419), (min 3195 micro mg tend, 0.00409082),

(ni micro mg cam tend, 0.00405991), (qinew micro mg tend, 0.00394143),

(rainrt1 micro mg tend, 0.00382677), (qi1 micro mg tend, 0.00359375),

(dum2l micro mg tend, 0.00344299), (max 2448 micro mg tend, 0.00341162),

(nce micro mg tend, 0.00335177), (nc1 micro mg tend, 0.00335177),

(log10 3395 micro mg tend, 0.00332223), (nie micro mg tend, 0.00293889),

(ninew micro mg tend, 0.00293889), (min 1441 micro mg tend, 0.00283013),

(relhum micro mg tend, 0.00273891), (q1 micro mg tend, 0.00273891),

(epsi micro mg tend, 0.00268033), (nnuccd micro mg tend, 0.00263705),

(dumnnuc micro mg tend, 0.00263705), (ni1 micro mg tend, 0.00259121),

(relvar micro mg cam tend, 0.00259121), (max 2452 micro mg tend, 0.00259121),

(pgam micro mg tend, 0.00222549), (t wv sat svp water, 0.0021072),

(t wv sat svp ice, 0.0021072), (sc micro mg tend, 0.0020757),
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(nsacwi micro mg tend, 0.00205049), (dumni micro mg tend, 0.00202004),

(tnd qsnow micro mg cam tend, 0.00197555), (uns micro mg tend, 0.00178918),

(ums micro mg tend, 0.00178918), (umr micro mg tend, 0.00173003),

(unr micro mg tend, 0.00173003), (niic micro mg tend, 0.00169304),

(tn micro mg tend, 0.0014687), (qn micro mg tend, 0.0014687),

(faloutnc micro mg tend, 0.00142277), (dc0 micro mg tend, 0.00139588),

(mfp micro mg tend, 0.0013838), (max 1103 micro mg tend, 0.00133112),

(min 1210 micro mg tend, 0.00133112), (min 2887 micro mg tend, 0.00131022),

(max 3246 micro mg tend, 0.00131022), (max 2889 micro mg tend, 0.00131022),

(min 3237 micro mg tend, 0.00131022), (max 2899 micro mg tend, 0.00114115),

(min 2900 micro mg tend, 0.00114115), (umc micro mg tend, 0.00111449),

(unc micro mg tend, 0.00111449), (cdist1 micro mg tend, 0.000930695),

(min 1543 micro mg tend, 0.000930695), (fnc micro mg tend, 0.000853678),

(fc micro mg tend, 0.000853678), (fni micro mg tend, 0.000794134),

(fi micro mg tend, 0.000794134), (faltndqce micro mg tend, 0.000771977),

(abi micro mg tend, 0.000691901), (ab micro mg tend, 0.000691901),

(rhof micro mg tend, 0.000691901), (dz micro mg tend, 0.000691901),

(max 1497 micro mg tend, 0.000691901), (max 1545 micro mg tend, 0.000691901),

(uni micro mg tend, 0.000670713), (umi micro mg tend, 0.000670713),

(exp 1667 micro mg tend, 0.000635), (max 2879 micro mg tend, 0.000635),

(min 2880 micro mg tend, 0.000635), (exp 1665 micro mg tend, 0.000635),

(faltndqie micro mg tend, 0.000553152), (qiic micro mg tend, 0.000519651),

(ncmax micro mg tend, 0.000453936), (faloutni micro mg tend, 0.00037103),

(rhin micro mg tend, 0.000361107), (mnuccd micro mg tend, 0.000347677),

(max 1012 micro mg tend, 0.000347677), (max 1425 micro mg tend, 0.000347677),

(relvar micro mg tend, 0.000341634), (lammin micro mg tend, 0.000293416),

(max 3250 micro mg tend, 0.000293416), (max 2892 micro mg tend, 0.000293416),

(min 2893 micro mg tend, 0.000293416), (lammax micro mg tend, 0.000293416),

(min 3306 micro mg tend, 0.000293416), (max 1551 micro mg tend, 0.000293416),

(max 3305 micro mg tend, 0.000293416), (min 1552 micro mg tend, 0.000293416),

(min 3251 micro mg tend, 0.000293416), (t goffgratch svp water, 0.000277821),

(t goffgratch svp ice, 0.000277821), (min 3202 micro mg tend, 0.000266329),

(min 2875 micro mg tend, 0.000266329), (tnd qsnow micro mg tend, 0.000260464),
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(nslip1 micro mg tend, 0.000206499), (nslip3 micro mg tend, 0.000206499),

(nslip2 micro mg tend, 0.000206499), (nslip4 micro mg tend, 0.000206499),

(exp 1841 micro mg tend, 0.000182445), (exp 1843 micro mg tend, 0.000182445),

(exp 1842 micro mg tend, 0.000182445), (exp 1844 micro mg tend, 0.000182445),

(min 2925 micro mg tend, 0.000179652), (min 2924 micro mg tend, 0.000179652),

(max 3046 micro mg tend, 0.000112552), (max 3045 micro mg tend, 0.000112552),

(max 3043 micro mg tend, 0.000104701), (max 3044 micro mg tend, 0.000104701),

(acn micro mg tend, 9.12225e-05), (arn micro mg tend, 9.12225e-05),

(ain micro mg tend, 9.12225e-05), (asn micro mg tend, 9.12225e-05),

(max 2507 micro mg tend, 9.12225e-05), (max 2510 micro mg tend, 9.12225e-05),

(max 2508 micro mg tend, 9.12225e-05), (max 2509 micro mg tend, 9.12225e-05),

(min 1516 micro mg tend, 6.85125e-05), (qcvar micro mg tend, 4.50421e-05),

(es goffgratch svp water, 4.14581e-05), (es goffgratch svp ice, 4.14581e-05),

(log10 374 goffgratch svp water, 3.66288e-05),

(log10 387 goffgratch svp ice, 3.66288e-05),

(cons19 micro mg tend, 5.93851e-06), (cons20 micro mg tend, 5.93851e-06),

(cons18 micro mg tend, 5.93851e-06), (es wv sat svp water, 5.46598e-06),

(es wv sat svp ice, 5.46598e-06), (es wv sat qsat water, 7.33401e-07),

(es svp water, 7.20653e-07), (es svp ice, 7.20653e-07),

(esn micro mg tend, 1.90027e-07), (esl micro mg tend, 1.20067e-07),

(esi micro mg tend, 1.10843e-07), (es wv sat svp to qsat, 9.66941e-08),

(min 216 wv sat qsat water, 9.66941e-08), (es qsat water, 9.66941e-08),

(esi aist vector, 9.50133e-08), (esi aist single, 9.50133e-08),

(esl aist single, 9.50133e-08), (esl aist vector, 9.50133e-08),

(min 1167 micro mg tend, 3.06656e-08), (exp 2609 aist single, 2.50578e-08),

(exp 2799 aist vector, 2.50542e-08), (es deriv outputs, 1.27485e-08),

(qs wv sat svp to qsat, 1.27485e-08), (aist aist single, 3.36269e-09),

(aist aist vector, 3.36174e-09), (dqsdt loc deriv outputs, 1.93549e-09),

(desdt deriv outputs, 1.68091e-09), (qs qsat, 1.6808e-09),

(qvi micro mg tend, 1.6808e-09), (qvs micro mg tend, 1.6808e-09),

(qs micro mg tend, 1.6808e-09), (qsn micro mg tend, 1.6808e-09),

(qvl micro mg tend, 1.6808e-09), (qs wv sat qsat water, 1.6808e-09),

(max 2652 aist single, 4.43348e-10),
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(ai st nc instratus condensate, 4.43348e-10),

(max 2842 aist vector, 4.43223e-10), (aist out aist vector, 4.43223e-10),

(q tq enthalpy, 2.88425e-10), (qsp findsp, 2.85227e-10),

(gam deriv outputs, 2.55182e-10), (dqsdt deriv outputs, 2.55182e-10),

(q1 findsp, 2.50819e-10), (qs deriv outputs, 2.50819e-10),

(qs findsp, 2.50819e-10), (qs sfdiag, 2.21603e-10),

(qs qsinvert, 2.21603e-10), (qs compute uwshcu, 2.21603e-10),

(qs conden, 2.21603e-10), (qs compute eddy diff, 2.21603e-10),

(qs qsat water, 2.21603e-10), (ai st instratus condensate, 6.61569e-11),

(ai0 st nc in instratus condensate, 5.8436e-11),

(enthalpy tq enthalpy, 3.82222e-11),

(qsp findsp vc, 3.76053e-11), (qvd findsp, 3.74288e-11),

(gam qsat, 3.3644e-11), (gam qsat water, 3.3644e-11),

(dqsdt qsat water, 3.3644e-11), (dqsdt qsat, 3.3644e-11),

(derrdps qsinvert, 3.31927e-11), (r1b findsp, 3.30693e-11),

(qs instratus condensate, 3.30689e-11), (dlnqsdt qsinvert, 2.98017e-11),

(max 4692 conden, 2.92349e-11), (excessu compute uwshcu, 2.92177e-11),

(max 3815 compute uwshcu, 2.92172e-11), (excess0 compute uwshcu, 2.92168e-11),

(qxtop sfdiag, 2.92168e-11), (err qsinvert, 2.92168e-11),

(rhi qsinvert, 2.92168e-11), (qxbot sfdiag, 2.92168e-11),

(rvls conden, 2.92168e-11), (qsat0 instratus condensate, 2.92168e-11),

(qs aist single, 2.92168e-11), (qsat in instratus condensate, 2.92168e-11),

(qsat b mmacro pcond, 2.92168e-11), (qs funcd instratus, 2.92168e-11),

(qsat in aist vector, 2.92168e-11), (qm qsat hpa, 2.92168e-11),

(qs gridmean rh, 2.92168e-11), (temps compute eddy diff, 2.92168e-11),

(enout findsp, 1.39108e-11), (qi instratus condensate, 1.0047e-11),

(qi st instratus condensate, 1.0047e-11), (gam findsp, 8.87149e-12),

(dps qsinvert, 8.22828e-12), (xsat compute uwshcu, 7.7042e-12),

(qxm sfdiag, 7.70408e-12), (t qsat, 5.11466e-12),

(tsp findsp, 5.09004e-12), (enin findsp, 5.03934e-12),

(qw0 in compute uwshcu, 4.95801e-12), (abs 1057 sfdiag, 4.86778e-12),

(max 1047 sfdiag, 4.86778e-12), (max 1057 sfdiag, 4.86778e-12),

(abs 1047 sfdiag, 4.86778e-12), (u instratus condensate, 4.53598e-12),
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(temps conden, 4.46067e-12), (beta mmacro pcond, 4.43767e-12),

(beta funcd instratus, 4.4369e-12), (gam qsinvert, 4.43575e-12),

(gam trbintd, 4.43575e-12), (dqsdt b mmacro pcond, 4.43574e-12),

(dqsdt funcd instratus, 4.43574e-12), (dqsdt gridmean rh, 4.43574e-12),

(ncf aist single, 4.02669e-12), (f gridmean rh, 3.87683e-12),

(min 1899 gridmean rh, 3.86244e-12), (u0 instratus condensate, 3.86106e-12),

(qc conden, 3.85444e-12), (u mmacro pcond, 3.85285e-12),

(subsat compute uwshcu, 3.8521e-12), (u funcd instratus, 3.85208e-12),

(u0 in instratus condensate, 3.85207e-12), (log 4816 qsinvert, 3.85205e-12),

(qs aist vector, 3.85205e-12), (alpha funcd instratus, 3.85205e-12),

(alpha mmacro pcond, 3.85204e-12), (qst entropy, 3.85204e-12),

(qst cldprp, 3.85204e-12), (qst ientropy, 3.85204e-12),

(g findsp, 2.49845e-12), (t tq enthalpy, 1.47496e-12),

(bb mmacro pcond, 1.38112e-12), (t calc hltalt, 1.34543e-12),

(t instratus condensate, 1.34067e-12), (qv instratus condensate, 1.33544e-12),

(qi aist single, 1.32465e-12), (qi out instratus condensate, 1.32463e-12),

(sflh sfdiag, 1.28357e-12), (sfuh sfdiag, 1.28356e-12),

(ps qsinvert, 1.25976e-12), (dgdt findsp, 1.16965e-12),

(t1 findsp, 1.1547e-12), (x cu compute uwshcu, 1.1497e-12),

(gammai mmacro pcond, 1.09294e-12), (dudt funcd instratus, 1.09285e-12),

(betast mmacro pcond, 1.09269e-12), (thv x0 compute uwshcu, 1.03041e-12),

(thv x1 compute uwshcu, 1.03041e-12), (qtxsat compute uwshcu, 1.01659e-12),

(thlxsat compute uwshcu, 1.01659e-12), (min 2502 compute uwshcu, 1.01597e-12),

(t qsat water, 9.82502e-13), (t no ip hltalt, 9.78012e-13),

(t deriv outputs, 8.03864e-13), (t gridmean rh, 7.21828e-13),

(qu cldprp, 7.17193e-13), (chs trbintd, 6.73632e-13),

(max 3823 compute uwshcu, 6.54088e-13),

(u nc instratus condensate, 5.98039e-13),

(fg gridmean rh, 5.95163e-13), (th conden, 5.90526e-13),

(u in astg pdf, 5.74843e-13), (qsthat cldprp, 5.74829e-13),

(acos 2634 aist single, 5.30894e-13), (evprain compute uwshcu, 5.27926e-13),

(evpsnow compute uwshcu, 5.27728e-13), (qv conden, 5.26301e-13),

(qv gridmean rh, 5.18254e-13), (log 3529 entropy, 5.17896e-13),
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(u0 nc instratus condensate, 5.09051e-13), (qi conden, 5.08181e-13),

(ql conden, 5.08181e-13), (ncf aist vector, 5.0798e-13),

(u nc mmacro pcond, 5.07972e-13), (log 2185 cldprp, 5.07869e-13),

(min 3526 entropy, 5.07868e-13), (u nc funcd instratus, 5.07867e-13),

(hsat cldprp, 5.07867e-13), (tlcl qsinvert, 5.07867e-13),

(gamma cldprp, 5.07865e-13), (qsmix parcel dilute, 5.07864e-13),

(min 991 sfdiag, 3.38462e-13), (min 960 sfdiag, 3.38462e-13),

(min 1050 sfdiag, 3.3846e-13), (sfi sfdiag, 3.03103e-13),

(bquad compute uwshcu, 2.77361e-13), (u astg pdf single, 2.12923e-13),

(t aist single, 1.89305e-13), (dpisdps qsinvert, 1.87991e-13),

(dalstdt mmacro pcond, 1.821e-13), (dqlstdt mmacro pcond, 1.82099e-13),

(sten compute uwshcu, 1.77428e-13), (tc calc hltalt, 1.77388e-13),

(t out instratus condensate, 1.76755e-13),

(qv out instratus condensate, 1.76067e-13),

(qi star mmacro pcond, 1.74644e-13), (qi 0 mmacro pcond, 1.74641e-13),

(qvten compute uwshcu, 1.74137e-13), (xc compute uwshcu, 1.71561e-13),

(sflh trbintd, 1.69233e-13), (sfuh trbintd, 1.69228e-13),

(p qsat, 1.66594e-13), (dlnqsdps qsinvert, 1.66156e-13),

(qsinvert qsinvert, 1.66093e-13), (pis qsinvert, 1.66091e-13),

(su cldprp, 1.53819e-13), (max 2516 compute uwshcu, 1.51589e-13),

(tmp1 compute uwshcu, 1.50547e-13), (tmp2 compute uwshcu, 1.50543e-13),

(hltalt no ip hltalt, 1.48521e-13), (dalstdt funcd instratus, 1.44153e-13),

(hsthat cldprp, 1.42747e-13), (cquad compute uwshcu, 1.41414e-13),

(qt conden, 1.37389e-13), (thl conden, 1.37387e-13),

(t wv sat qsat water, 1.29535e-13), (qc gridmean rh, 1.09111e-13),

(tc gridmean rh, 1.05726e-13), (qds cldprp, 1.04608e-13),

(cms trbintd, 1.02301e-13), (t0 instratus condensate, 9.51859e-14),

(qu zm convr, 9.45578e-14), (ch trbintd, 9.40818e-14),

(chs compute eddy diff, 8.88135e-14), (evplimit compute uwshcu, 8.62434e-14),

(ql gridmean rh, 8.01248e-14), (qt gridmean rh, 7.8889e-14),

(sign 1887 gridmean rh, 7.84719e-14), (thj compute uwshcu, 7.78603e-14),
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B.3 AVX2 Subgraph Centrality: Second Community

>>> avx2 community2 incentrality[:500]

(vmr gas phase chemdr, 0.621436),

(vmr aero model gasaerexch, 0.242134),

(base sol exp sol, 0.209415),

(del h2so4 gasprod gas phase chemdr, 0.209381),

(hcl gas gas phase chemdr, 0.209381),

(base sol imp sol, 0.173494),

(conc charge balance, 0.171145),

(vmr noy ubc set, 0.168327),

(h2ovmr gas phase chemdr, 0.167234),

(vmr mmr2vmr, 0.156613),

(hno3 gas gas phase chemdr, 0.156613),

(fld negtrc, 0.156613),

(vmr rate diags calc, 0.156613),

(vmr flbc set, 0.156613),

(sulfate gas phase chemdr, 0.156613),

(vmr0 gas phase chemdr, 0.156613),

(vmr setinv, 0.156613),

(q modal aero gasaerexch sub, 0.09933),

(dvmrdt aero model gasaerexch, 0.0948804),

(q modal aero coag sub, 0.0899662),

(loss out imp sol, 0.0895197),

(q modal aero newnuc sub, 0.0815994),

(del h2so4 aeruptk aero model gasaerexch, 0.0815821),

(qin setsox, 0.0684489),

(wrk charge balance, 0.057664),

(del h2so4 gasprod aero model gasaerexch, 0.0527676),

(dqdt modal aero gasaerexch sub, 0.0526754),

(lsol imp sol, 0.0484051),

(xso4 setsox, 0.0483835),

(max 793 imp sol, 0.0437234),



Appendix 136

(max 781 imp sol, 0.0437234),

(xno2 noy ubc set, 0.0424214),

(xno noy ubc set, 0.0424214),

(h2o gas gas phase chemdr, 0.042146),

(h2ovmr usrrxt, 0.042146),

(h2ovmr setinv, 0.042146),

(relhum gas phase chemdr, 0.042146),

(vmr0 aero model gasaerexch, 0.0394692),

(sol set rates, 0.0394692),

(sum1 setinv, 0.0394692),

(sulfate usrrxt, 0.0394692),

(xh2o2 setsox, 0.0364824),

(xso2 setsox, 0.0364119),

(vol core modal aero gasaerexch sub, 0.0334672),

(vol core modal aero coag sub, 0.0303123),

(qin sox cldaero update, 0.0294701),

(xnox noy ubc set, 0.0285861),

(invariants setinv, 0.0274986),

(sum dqdt soa modal aero gasaerexch sub, 0.0260087),

(xferrate modal aero gasaerexch sub, 0.0251289),

(sum dqdt nh4 modal aero gasaerexch sub, 0.025033),

(sum dqdt msa modal aero gasaerexch sub, 0.025033),

(sum dqdt so4 modal aero gasaerexch sub, 0.025033),

(qold so4 modal aero gasaerexch sub, 0.0250329),

(g soa in modal aero soaexch, 0.0250329),

(qold soa modal aero gasaerexch sub, 0.0250329),

(qold poa modal aero gasaerexch sub, 0.0250329),

(qold nh4 modal aero gasaerexch sub, 0.0250329),

(q gas aer uptkrates, 0.0250329),

(xnumbconc modal aero coag sub, 0.0242108),

(dqdt other modal aero gasaerexch sub, 0.0239115),

(xferamt modal aero coag sub, 0.0229231),

(o3s loss imp sol, 0.0225605),
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(max 300 modal aero newnuc sub, 0.0205645),

(qh2so4 cur modal aero newnuc sub, 0.0205645),

(del h2so4 aeruptk modal aero newnuc sub, 0.0205601),

(solution imp sol, 0.0185767),

(rno noy ubc set, 0.0178951),

(dqdt modal aero rename sub, 0.0177518),

(xho2 setsox, 0.0174722),

(xo3 setsox, 0.0174722),

(xnh3 setsox, 0.0172503),

(xh2so4 setsox, 0.0172503),

(xmsa setsox, 0.0172503),

(rxt rates set rates, 0.0161302),

(xdelso4hp setsox, 0.0152665),

(rxt usrrxt, 0.0151567),

(del h2so4 gasprod modal aero newnuc sub, 0.0132984),

(dqdt nh4 modal aero gasaerexch sub, 0.0132226),

(dqdt so4 modal aero gasaerexch sub, 0.0126199),

(y imp prod loss, 0.0121989),

(xso4 init setsox, 0.0121935),

(xso4 sox cldaero update, 0.0121935),

(fc usrrxt, 0.0110617),

(tv drydep fromlnd, 0.0106723),

(relhum usrrxt, 0.0106215),

(sur usrrxt, 0.0106215),

(qnew so4 modal aero gasaerexch sub, 0.00948918),

(h2o2g setsox, 0.0091942),

(xh2o2 sox cldaero update, 0.0091942),

(so2g setsox, 0.00917643),

(xso2 sox cldaero update, 0.00917643),

(reaction rates gas phase chemdr, 0.00881511),

(max 580 modal aero gasaerexch sub, 0.00843434),

(rxt rates rate diags calc, 0.00840482),

(vol shell modal aero gasaerexch sub, 0.00829866),
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(tmp2 modal aero coag sub, 0.00815733),

(deldryvol a modal aero rename sub, 0.00801148),

(vol shell modal aero coag sub, 0.00790697),

(pso4 setsox, 0.00782152),

(o3s loss gas phase chemdr, 0.00760132),

(max 448 sox cldaero update, 0.00742698),

(max 445 sox cldaero update, 0.00742698),

(dqdt soa modal aero gasaerexch sub, 0.00708636),

(g soa tend modal aero soaexch, 0.00706446),

(invariants gas phase chemdr, 0.00693014),

(forcing imp sol, 0.00673023),

(max 1061 modal aero soaexch, 0.00630873),

(a poa in modal aero soaexch, 0.00630873),

(a soa in modal aero soaexch, 0.00630873),

(num a gas aer uptkrates, 0.00630873),

(tmpn modal aero coag sub, 0.00610154),

(max 306 modal aero coag sub, 0.00610154),

(dqdt other modal aero rename sub, 0.00602613),

(tmp q3 modal aero newnuc sub, 0.00545362),

(qh2so4 cur mer07 veh02 nuc mosaic 1box, 0.00518261),

(qnh3 cur modal aero newnuc sub, 0.00518261),

(max 264 modal aero newnuc sub, 0.00518151),

(dqdt wr sox cldaero update, 0.00499887),

(iter invariant imp sol, 0.00470764),

(sum dqdt nh4 b modal aero gasaerexch sub, 0.00445509),

(o3g setsox, 0.0044033),

(ho2s setsox, 0.0044033),

(nh3g setsox, 0.00434739),

(xh2so4 sox cldaero update, 0.00434739),

(xmsa sox cldaero update, 0.00434739),

(xnh3 sox cldaero update, 0.00434739),

(tmp1 modal aero gasaerexch sub, 0.00387178),

(delso4 o3rxn sox cldaero update, 0.00384742),
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(delso4 hprxn sox cldaero update, 0.00384742),

(ko usrrxt, 0.00372702),

(rate adjrxt, 0.00355853),

(p rate o1d to 2oh adj, 0.00341498),

(max 260 modal aero newnuc sub, 0.00335142),

(log10 727 usrrxt, 0.0032279),

(loss imp prod loss, 0.00310991),

(prod imp prod loss, 0.00310991),

(xso4 init sox cldaero update, 0.00307298),

(g soa modal aero soaexch, 0.0029987),

(tv drydep xactive, 0.00281063),

(term drydep fromlnd, 0.00268962),

(tmp q2 modal aero newnuc sub, 0.00268024),

(xr usrrxt, 0.00267682),

(tmpa modal aero soaexch, 0.00266351),

(min 577 modal aero coag sub, 0.00255798),

(qmax nh4 modal aero gasaerexch sub, 0.00239144),

(extfrc gas phase chemdr, 0.00233497),

(ccc setsox, 0.00225798),

(rate setrxt, 0.00222156),

(reaction rates imp sol, 0.00222156),

(reaction rates exp sol, 0.00222156),

(p rate phtadj, 0.00222156),

(tmp2 modal aero gasaerexch sub, 0.0021256),

(a soa tend modal aero soaexch, 0.0021001),

(qh2so4 avg modal aero newnuc sub, 0.00209201),

(max 573 modal aero coag sub, 0.00205579),

(log 282 modal aero newnuc sub, 0.00204988),

(tmp n2 mer07 veh02 nuc mosaic 1box, 0.00204739),

(xnumbconcavg modal aero coag sub, 0.0020318),

(a soa modal aero soaexch, 0.00202442),

(dryvol t del modal aero rename sub, 0.00201954),

(tmp1 modal aero coag sub, 0.0019927),
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(dqdt sox cldaero update, 0.00197235),

(xnumbconcnew modal aero coag sub, 0.0019606),

(dso4dt aqrxn sox cldaero update, 0.00193924),

(exp 849 gas phase chemdr, 0.00191567),

(b lu slv, 0.00185352),

(invariants usrrxt, 0.00174652),

(xhnm imp sol, 0.00174652),

(invariants aero model gasaerexch, 0.00174652),

(inv adjrxt, 0.00174652),

(airdens aero model gasaerexch, 0.00174652),

(inv o1d to 2oh adj, 0.00174652),

(m usrrxt, 0.00174652),

(a opoa modal aero soaexch, 0.00169774),

(tot soa modal aero soaexch, 0.00169244),

(tmpc modal aero coag sub, 0.00167494),

(tmp n1 mer07 veh02 nuc mosaic 1box, 0.00163527),

(max 1064 modal aero soaexch, 0.00158991),

(const gas aer uptkrates, 0.00158991),

(min 584 modal aero gasaerexch sub, 0.00151145),

(dqdt aq sox cldaero update, 0.00146475),

(term1 usrrxt, 0.00137227),

(delnh3 sox cldaero update, 0.00137173),

(min 1012 mer07 veh02 nuc mosaic 1box, 0.00134368),

(freducea mer07 veh02 nuc mosaic 1box, 0.00131209),

(qnh3 cur mer07 veh02 nuc mosaic 1box, 0.00130611),

(phi modal aero soaexch, 0.00130372),

(term2 usrrxt, 0.00128511),

(sat modal aero soaexch, 0.00124678),

(a soa tmp modal aero soaexch, 0.00122504),

(g star modal aero soaexch, 0.00113313),

(rxt indprd, 0.00111975),

(r1h2o2 setsox, 0.00110971),

(nh3g sox cldaero update, 0.00109562),
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(dmsadt gasuptk sox cldaero update, 0.00109562),

(dso4dt gasuptk sox cldaero update, 0.00109562),

(tmpc modal aero newnuc sub, 0.00107538),

(max 1118 modal aero soaexch, 0.0010413),

(qcw sox cldaero update, 0.0010169),

(dso4dt hprxn sox cldaero update, 0.000969618),

(ko m usrrxt, 0.000939274),

(log 745 usrrxt, 0.000939274),

(log10 740 usrrxt, 0.000939274),

(log10 735 usrrxt, 0.000939274),

(molenh4a per moleso4a mer07 veh02 nuc mosaic 1box, 0.000928095),

(tmpa modal aero newnuc sub, 0.000851864),

(dflx drydep fromlnd, 0.00079889),

(loss imp sol, 0.000783751),

(prod imp sol, 0.000783751),

(max 1155 modal aero soaexch, 0.000755726),

(tmpb modal aero newnuc sub, 0.000734965),

(term drydep xactive, 0.000708334),

(dtcur modal aero soaexch, 0.000685929),

(min 1013 mer07 veh02 nuc mosaic 1box, 0.000681509),

(xferfrac pcage modal aero coag sub, 0.000644657),

(b lu slv01, 0.000624508),

(extfrc exp sol, 0.000588454),

(extfrc imp sol, 0.000588454),

(max 831 setsox, 0.000569051),

(max 784 setsox, 0.000569051),

(lrxt imp sol, 0.000559873),

(tmpa modal aero coag sub, 0.000544571),

(qh2so4 avg mer07 veh02 nuc mosaic 1box, 0.000527224),

(tmp m2 mer07 veh02 nuc mosaic 1box, 0.000515978),

(tmp n3 mer07 veh02 nuc mosaic 1box, 0.000515978),

(dumloss modal aero coag sub, 0.000512049),

(dryvol t new modal aero rename sub, 0.00050896),
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(dqdt aqso4 sox cldaero update, 0.000496298),

(tmpb modal aero soaexch, 0.000478374),

(qh2so4 del mer07 veh02 nuc mosaic 1box, 0.000452728),

(lwc usrrxt, 0.000440153),

(o2 usrrxt, 0.000440153),

(xhnm setsox, 0.000440153),

(invariants setsox, 0.000440153),

(o2 rate o1d to 2oh adj, 0.000440153),

(n2 rate o1d to 2oh adj, 0.000440153),

(h2o rate o1d to 2oh adj, 0.000440153),

(min 991 mer07 veh02 nuc mosaic 1box, 0.000428861),

(max 1067 modal aero soaexch, 0.000427861),

(exp 520 modal aero coag sub, 0.000422113),

(exp 433 modal aero coag sub, 0.000422113),

(exp 496 modal aero coag sub, 0.000422113),

(tmp m1 mer07 veh02 nuc mosaic 1box, 0.000412117),

(prod indprd, 0.000408883),

(uptkrate gas aer uptkrates, 0.000400686),

(max 393 modal aero newnuc sub, 0.000399909),

(freduceb mer07 veh02 nuc mosaic 1box, 0.000389616),

(xferfrac pcage modal aero gasaerexch sub, 0.000380911),

(kgaero per moleso4a mer07 veh02 nuc mosaic 1box, 0.000356516),

(tmpb mer07 veh02 nuc mosaic 1box, 0.00035494),

(dqdt aqh2so4 sox cldaero update, 0.000353277),

(xferfracvol modal aero coag sub, 0.000347642),

(log10 621 usrrxt, 0.000345835),

(delnh4 sox cldaero update, 0.000345701),

(abs 1119 modal aero soaexch, 0.00032856),

(dflx drydep xactive, 0.000307777),

(extfrc indprd, 0.000296601),

(r2h2o2 setsox, 0.000279666),

(sflx gas phase chemdr, 0.0002789),

(qcw setsox, 0.00027696),
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(dmsadt gasuptk toso4 sox cldaero update, 0.000276115),

(dmsadt gasuptk tomsa sox cldaero update, 0.000276115),

(dens part mer07 veh02 nuc mosaic 1box, 0.000266668),

(max 440 sox cldaero update, 0.000256277),

(max 264 sox cldaero update, 0.000256277),

(max 432 sox cldaero update, 0.000256277),

(max 436 sox cldaero update, 0.000256277),

(qmolnh4a del max mer07 veh02 nuc mosaic 1box, 0.000239879),

(log10 821 usrrxt, 0.000236714),

(tcur modal aero soaexch, 0.00023111),

(qnh3 del mer07 veh02 nuc mosaic 1box, 0.000229621),

(mass1p aitlo modal aero newnuc sub, 0.000214685),

(mass1p aithi modal aero newnuc sub, 0.000214685),

(tvs gas phase chemdr, 0.000201336),

(max 395 modal aero newnuc sub, 0.000185224),

(exp 294 modal aero newnuc sub, 0.000185224),

(tmp uptkrate modal aero newnuc sub, 0.000185224),

(xferfrac vol modal aero rename sub, 0.000180183),

(beta modal aero soaexch, 0.000173021),

(min 359 modal aero rename sub, 0.000160592),

(rxt imp prod loss, 0.000141098),

(rxt linmat, 0.000141098),

(exp 498 modal aero coag sub, 0.000137241),

(exp 435 modal aero coag sub, 0.000137241),

(exp 522 modal aero coag sub, 0.000137241),

(so4vol in mer07 veh02 nuc mosaic 1box, 0.00013287),

(tmp m3 mer07 veh02 nuc mosaic 1box, 0.000130036),

(exp 453 modal aero coag sub, 0.000129045),

(max 542 modal aero coag sub, 0.000129045),

(exp 584 modal aero coag sub, 0.000129045),

(exp 543 modal aero coag sub, 0.000129045),

(dum modal aero rename sub, 0.000128267),

(dmdt ait modal aero newnuc sub, 0.000123557),
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(gr kk mer07 veh02 nuc mosaic 1box, 0.000123303),

(qso4a del mer07 veh02 nuc mosaic 1box, 0.000114095),

(solar flux drydep fromlnd, 0.000109383),

(freduce mer07 veh02 nuc mosaic 1box, 0.00010808),

(ind prd exp sol, 0.000103046),

(ind prd imp sol, 0.000103046),

(uptkrate modal aero gasaerexch sub, 0.00010098),

(tmp frso4 modal aero newnuc sub, 0.000100784),

(tmpe mer07 veh02 nuc mosaic 1box, 9.42025e-05),

(cs prime kk mer07 veh02 nuc mosaic 1box, 9.38053e-05),

(dndt ait modal aero newnuc sub, 9.03608e-05),

(wet volfrac so4a mer07 veh02 nuc mosaic 1box, 8.97277e-05),

(vmrcw aero model gasaerexch, 8.20702e-05),

(ocnice dflx drydep fromlnd, 7.75653e-05),

(fsds gas phase chemdr, 7.75653e-05),

(lchnk gas phase chemdr, 7.75653e-05),

(nu kk mer07 veh02 nuc mosaic 1box, 7.16698e-05),

(spec hum drydep xactive, 7.02901e-05),

(pressure sfc drydep fromlnd, 7.02896e-05),

(qnum c sox cldaero update, 6.89665e-05),

(gamma kk mer07 veh02 nuc mosaic 1box, 6.72753e-05),

(mass part mer07 veh02 nuc mosaic 1box, 6.7205e-05),

(qnuma del mer07 veh02 nuc mosaic 1box, 6.02747e-05),

(dtmax modal aero soaexch, 5.82438e-05),

(qnh4a del mer07 veh02 nuc mosaic 1box, 5.78684e-05),

(dso4dt ait modal aero newnuc sub, 5.65378e-05),

(dnh4dt ait modal aero newnuc sub, 5.65378e-05),

(dqdt modal aero newnuc sub, 5.12696e-05),

(air temp drydep fromlnd, 5.07403e-05),

(solar flux drydep xactive, 4.71144e-05),

(h2so4 uptkrate mer07 veh02 nuc mosaic 1box, 4.66798e-05),

(min 360 modal aero rename sub, 4.54093e-05),

(xfercoef modal aero rename sub, 4.54093e-05),
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(rxt linmat01, 3.55592e-05),

(so4vol bb mer07 veh02 nuc mosaic 1box, 3.34855e-05),

(faqgain so4 sox cldaero update, 3.00623e-05),

(faqgain msa sox cldaero update, 3.00623e-05),

(qso4a del modal aero newnuc sub, 2.8754e-05),

(qqcw modal aero gasaerexch sub, 2.80097e-05),

(dvmrcwdt aero model gasaerexch, 2.76519e-05),

(uptkratebb modal aero gasaerexch sub, 2.54487e-05),

(qmolso4a del max mer07 veh02 nuc mosaic 1box, 2.37407e-05),

(z drydep xactive, 2.12228e-05),

(tha drydep xactive, 2.09403e-05),

(vmr qqcw2vmr, 2.06832e-05),

(qnuma del modal aero newnuc sub, 2.03084e-05),

(sumf sox cldaero update, 2.02578e-05),

(icefrc drydep xactive, 1.95478e-05),

(thg drydep xactive, 1.88448e-05),

(exp 962 mer07 veh02 nuc mosaic 1box, 1.81324e-05),

(pressure sfc drydep xactive, 1.77142e-05),

(max 270 sox cldaero update, 1.73808e-05),

(tmpa mer07 veh02 nuc mosaic 1box, 1.72775e-05),

(max 969 mer07 veh02 nuc mosaic 1box, 1.72297e-05),

(ribn drydep xactive, 1.64193e-05),

(qnh4a del modal aero newnuc sub, 1.45839e-05),

(air temp drydep xactive, 1.27951e-05),

(crs drydep xactive, 1.1875e-05),

(rdc drydep xactive, 1.18736e-05),

(xfertend modal aero rename sub, 1.14439e-05),

(hvar drydep xactive, 1.14391e-05),

(fgain soa modal aero gasaerexch sub, 9.67247e-06),

(fgain so4 modal aero gasaerexch sub, 9.67247e-06),

(fgain nh4 modal aero gasaerexch sub, 9.67247e-06),

(mat linmat01, 9.61353e-06),

(zovl drydep xactive, 8.55816e-06),
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(so4vol pbl nuc wang2008, 8.43894e-06),

(so4vol binary nuc vehk2002, 8.43894e-06),

(xmol drydep xactive, 8.42215e-06),

(h drydep xactive, 8.08204e-06),

(sqrt 2606 drydep xactive, 6.97066e-06),

(sqrt 2625 drydep xactive, 6.97066e-06),

(dqqcwdt other modal aero gasaerexch sub, 6.96877e-06),

(ustar drydep xactive, 6.49201e-06),

(sqrt 2629 drydep xactive, 5.90943e-06),

(sqrt 2609 drydep xactive, 5.90943e-06),

(log 2584 drydep xactive, 5.80577e-06),

(sqrt 2589 drydep xactive, 5.80577e-06),

(sqrt 2624 drydep xactive, 5.76085e-06),

(log 2628 drydep xactive, 5.76085e-06),

(log 2623 drydep xactive, 5.76085e-06),

(ustarb drydep xactive, 5.66727e-06),

(cvar drydep xactive, 5.59951e-06),

(log 2608 drydep xactive, 5.34852e-06),

(sqrt 2605 drydep xactive, 5.34852e-06),

(log 2604 drydep xactive, 5.34852e-06),

(lcl frc landuse drydep xactive, 4.92765e-06),

(sqrt 2590 drydep xactive, 4.59962e-06),

(factor kk mer07 veh02 nuc mosaic 1box, 4.56968e-06),

(pg drydep xactive, 4.46429e-06),

(log 828 mer07 veh02 nuc mosaic 1box, 4.35423e-06),

(max 951 mer07 veh02 nuc mosaic 1box, 4.35423e-06),

(dqqcwdt modal aero rename sub, 4.21359e-06),

(b drydep xactive, 4.21093e-06),

(min 2508 drydep xactive, 4.13795e-06),

(vds drydep xactive, 3.75863e-06),

(wrk drydep xactive, 3.64803e-06),

(dep ra drydep xactive, 3.59083e-06),

(resc drydep xactive, 3.41125e-06),
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(sum uprt soa modal aero gasaerexch sub, 3.25894e-06),

(sum uprt so4 modal aero gasaerexch sub, 3.25894e-06),

(sum uprt nh4 modal aero gasaerexch sub, 3.25894e-06),

(rs drydep xactive, 2.99271e-06),

(mat linmat, 2.58709e-06),

(exp 1386 binary nuc vehk2002, 2.46718e-06),

(uptkrate soa modal aero gasaerexch sub, 2.43763e-06),

(min 2664 drydep xactive, 2.15681e-06),

(max 2659 drydep xactive, 2.15681e-06),

(psih drydep xactive, 2.15681e-06),

(log 1256 binary nuc vehk2002, 2.12676e-06),

(log 1316 binary nuc vehk2002, 2.12676e-06),

(tmp ratenucl pbl nuc wang2008, 2.12676e-06),

(deldryvol c modal aero rename sub, 2.01142e-06),

(bb drydep xactive, 1.8319e-06),

(z0b drydep xactive, 1.81433e-06),

(dqqcwdt other modal aero rename sub, 1.75625e-06),

(z0water drydep xactive, 1.6361e-06),

(dep rb drydep xactive, 1.6361e-06),

(cvarb drydep xactive, 1.46316e-06),

(uustar drydep xactive, 1.42965e-06),

(lnd frc drydep xactive, 1.24185e-06),

(dvel drydep xactive, 1.22913e-06),

(ratenuclt kk mer07 veh02 nuc mosaic 1box, 1.16218e-06),

(log 2499 drydep xactive, 1.12645e-06),

(wetvol dryvol mer07 veh02 nuc mosaic 1box, 1.09734e-06),

(dqqcwdt modal aero gasaerexch sub, 1.0619e-06),

(rds drydep xactive, 9.47241e-07),

(tmpa binary nuc vehk2002, 9.35836e-07),

(max 2866 drydep xactive, 8.59695e-07),

(exp 431 modal aero gasaerexch sub, 8.21311e-07),

(exp 433 modal aero gasaerexch sub, 8.21311e-07),

(exp 432 modal aero gasaerexch sub, 8.21311e-07),
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(rsmx drydep xactive, 8.02119e-07),

(exp 2739 drydep xactive, 7.54216e-07),

(lin jac imp sol, 6.51993e-07),

(cnum tot binary nuc vehk2002, 6.21773e-07),

(xferrate modal aero soaexch, 6.14326e-07),

(ratenucl pbl nuc wang2008, 5.77797e-07),

(crit x binary nuc vehk2002, 5.35981e-07),

(log 1186 pbl nuc wang2008, 5.35981e-07),

(exp 2583 drydep xactive, 4.57243e-07),

(depvel gas phase chemdr, 3.37736e-07),

(ocnfrac gas phase chemdr, 3.09763e-07),

(ocnice dvel drydep fromlnd, 3.09763e-07),

(snowhland gas phase chemdr, 3.09763e-07),

(max 1025 mer07 veh02 nuc mosaic 1box, 2.9289e-07),

(cnum h2so4 binary nuc vehk2002, 2.91774e-07),

(dfin kk mer07 veh02 nuc mosaic 1box, 2.76672e-07),

(min 1331 binary nuc vehk2002, 2.35847e-07),

(rateloge binary nuc vehk2002, 2.35847e-07),

(exp 1332 binary nuc vehk2002, 2.35847e-07),

(avg uprt soa modal aero gasaerexch sub, 2.06985e-07),

(avg uprt so4 modal aero gasaerexch sub, 2.06985e-07),

(avg uprt nh4 modal aero gasaerexch sub, 2.06985e-07),

(dv pan drydep xactive, 1.90076e-07),

(ratenuclt mer07 veh02 nuc mosaic 1box, 1.65922e-07),

(lmat nlnmat, 1.64314e-07),

(tmp rateloge pbl nuc wang2008, 1.35077e-07),

(exp 1404 binary nuc vehk2002, 1.35077e-07),

(gcoe binary nuc vehk2002, 1.35077e-07),

(dcoe binary nuc vehk2002, 1.35077e-07),

(fcoe binary nuc vehk2002, 1.35077e-07),

(ccoe binary nuc vehk2002, 1.35077e-07),

(jcoe binary nuc vehk2002, 1.35077e-07),

(acoe binary nuc vehk2002, 1.35077e-07),
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(hcoe binary nuc vehk2002, 1.35077e-07),

(ecoe binary nuc vehk2002, 1.35077e-07),

(icoe binary nuc vehk2002, 1.35077e-07),

(bcoe binary nuc vehk2002, 1.35077e-07),

(dvelocity drydep fromlnd, 1.10997e-07),

(mmr drydep xactive, 9.46652e-08),

(wind speed drydep xactive, 8.70377e-08),

(sfc temp drydep fromlnd, 8.51154e-08),

(rateloge mer07 veh02 nuc mosaic 1box, 8.38826e-08),

(cnum h2so4 mer07 veh02 nuc mosaic 1box, 7.85218e-08),

(pressure 10m drydep fromlnd, 7.80657e-08),

(ocnfrac drydep fromlnd, 7.80657e-08),

(ratenucl binary nuc vehk2002, 5.94377e-08),

(rateloge pbl nuc wang2008, 5.51816e-08),

(log 768 mer07 veh02 nuc mosaic 1box, 4.18152e-08),

(ratenuclt bb mer07 veh02 nuc mosaic 1box, 4.18152e-08),

(lmat nlnmat finit, 4.14099e-08),

(radius cluster binary nuc vehk2002, 3.40417e-08),

(mmr gas phase chemdr, 3.02658e-08),

(max 2503 drydep xactive, 2.1935e-08),

(pressure 10m drydep xactive, 2.15962e-08),

(sfc temp drydep xactive, 2.14506e-08),

(exp 822 mer07 veh02 nuc mosaic 1box, 2.11399e-08),

(cnum h2so4 pbl nuc wang2008, 1.97982e-08),

(max 833 mer07 veh02 nuc mosaic 1box, 1.97889e-08),

(ocnfrc drydep fromlnd, 1.96739e-08),

(lndfrac drydep fromlnd, 1.96739e-08),

(mat nlnmat finit, 1.53512e-08),

(radius cluster mer07 veh02 nuc mosaic 1box, 9.16095e-09),

(q get short lived species, 9.09704e-09),

(wind speed drydep fromlnd, 7.62752e-09),

(mmr mmr2vmr, 7.62752e-09),

(mmr drydep fromlnd, 7.62752e-09),
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(mmr set mean mass, 7.62752e-09),

(qh2o gas phase chemdr, 7.62752e-09),

(voldry clus mer07 veh02 nuc mosaic 1box, 6.66746e-09),

(va drydep xactive, 5.52802e-09),

(p drydep xactive, 5.44262e-09),

(tc drydep xactive, 5.40593e-09),

(ocnfrc drydep xactive, 4.95818e-09),

(mat nlnmat, 4.15217e-09),


