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Abstract. KORUS-AQ was an international cooperative air
quality field study in South Korea that measured local and re-
mote sources of air pollution affecting the Korean Peninsula
during May–June 2016. Some of the largest aerosol mass
concentrations were measured during a Chinese haze trans-
port event (24 May). Air quality forecasts using the WRF-
Chem model with aerosol optical depth (AOD) data assimila-

tion captured AOD during this pollution episode but overpre-
dicted surface particulate matter concentrations in South Ko-
rea, especially PM2.5, often by a factor of 2 or larger. Anal-
ysis revealed multiple sources of model deficiency related to
the calculation of optical properties from aerosol mass that
explain these discrepancies. Using in situ observations of
aerosol size and composition as inputs to the optical prop-
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erties calculations showed that using a low-resolution size
bin representation (four bins) underestimates the efficiency
with which aerosols scatter and absorb light (mass extinction
efficiency). Besides using finer-resolution size bins (8–16
bins), it was also necessary to increase the refractive indices
and hygroscopicity of select aerosol species within the range
of values reported in the literature to achieve better consis-
tency with measured values of the mass extinction efficiency
(6.7 m2 g−1 observed average) and light-scattering enhance-
ment factor (f (RH)) due to aerosol hygroscopic growth (2.2
observed average). Furthermore, an evaluation of the opti-
cal properties obtained using modeled aerosol properties re-
vealed the inability of sectional and modal aerosol represen-
tations in WRF-Chem to properly reproduce the observed
size distribution, with the models displaying a much wider
accumulation mode. Other model deficiencies included an
underestimate of organic aerosol density (1.0 g cm−3 in the
model vs. observed average of 1.5 g cm−3) and an overpre-
diction of the fractional contribution of submicron inorganic
aerosols other than sulfate, ammonium, nitrate, chloride, and
sodium corresponding to mostly dust (17 %–28 % modeled
vs. 12 % estimated from observations). These results illus-
trate the complexity of achieving an accurate model repre-
sentation of optical properties and provide potential solutions
that are relevant to multiple disciplines and applications such
as air quality forecasts, health impact assessments, climate
projections, solar power forecasts, and aerosol data assimila-
tion.

1 Introduction

Exposure to air pollutants is estimated to be the leading
environmental risk affecting human health (Gakidou et al.,
2017), and aerosols represent the leading pollutant responsi-
ble for these effects (Cohen et al., 2017). The estimates of
aerosol impacts on human health generally involve the use of
ground-based monitoring networks that are combined with
aerosol optical depth (AOD) satellite retrievals and/or model
estimates for regions not monitored to obtain global esti-
mates (Liu et al., 2009; van Donkelaar et al., 2016; Goldberg
et al., 2019a). The use of AOD to estimate surface concentra-
tions often involves using atmospheric composition simula-
tions able to “translate” a column-integrated measure of light
extinction due to aerosols (AOD) into surface aerosol mass
concentrations. Satellite AOD is also often used to improve
air quality forecasts of surface particulate matter through data
assimilation (Saide et al., 2013, 2014; Kumar et al., 2019;
Benedetti et al., 2009). Aerosols also impact climate through
aerosol–cloud–radiation interactions and represent one of the
largest uncertainties in climate projections (Boucher et al.,
2013). Chemistry–climate models estimate 3-D distributions
of aerosols, which are used by a radiative transfer module to
estimate aerosol radiative effects. Again, this translation of

aerosol mass to optical properties is performed in these mod-
els, often showing large inter-model variability (Myhre et al.,
2013; Stier et al., 2013; Kipling et al., 2016). Similarly, short-
term predictions of solar power (Schroedter-Homscheidt et
al., 2013; Jimenez et al., 2016) and visibility forecasts (Clark
et al., 2008; Lee et al., 2017) also require the use of aerosol
optical properties. Thus, evaluating the ability of models to
properly translate aerosol mass and number concentrations
into aerosol optical properties is key to providing confidence
in model results supporting these disciplines.

Previous research has shown various degrees of consis-
tency between model evaluations of surface aerosol mass
concentrations and column-integrated aerosol properties. Lee
et al. (2016) used satellite AOD to constrain surface PM10
(particulate matter with diameters below 10 µm) predictions
and found large improvements against surface monitors re-
gardless of the model used for aerosol optical properties.
Their results also showed slight discrepancies in the PM10
and AOD when comparing models to observations, with
some optical models showing larger biases in PM10 than
AOD and some presenting the opposite behavior. Lennart-
son et al. (2018) also found discrepancies when compar-
ing the ratio between PM2.5 and AOD for observations and
WRF-Chem simulations; the modeled ratios were 30 %–
50 % higher over South Korea during May–June 2016. Simi-
lar discrepancies were found by Mangold et al. (2011) when
assessing model skill in predicting a regional pollution event
over Europe driven by forest fire emissions and stagnation.
Crippa et al. (2019) performed an ensemble of simulations
to assess what combination of model inputs and configu-
rations resulted in the best agreement with observations in
the southeast US. They reported that simulations configured
with a modal aerosol model performed the best against AOD
observations, while a sectional aerosol approach showed the
best agreement against surface PM2.5, and hypothesized that
aerosol hygroscopic growth and optical properties calcula-
tions could play a role in this discrepancy. Palacios-Peña et
al. (2019) evaluated the aerosol optical properties of an en-
semble of models over Europe, finding that differences due
to diversity in modeling systems were larger than when using
different emission inventories or when turning aerosol radia-
tive feedbacks on and off. Reddington et al. (2016) evalu-
ated a global aerosol model in tropical regions affected by
biomass burning. They found that the model underestimated
AOD more than PM2.5, even when an upper-limit estimate of
aerosol hygroscopicity was assumed for the aerosols. Red-
dington et al. (2019) found further inconsistencies, as the
model showed a good representation of the observed verti-
cal profile while underestimating AOD, and hypothesized it
was due to uncertainties in the AOD computations. In another
study, Zieger et al. (2013) compared observations of scatter-
ing enhancement due to hygroscopic growth against results
from the Optical Properties of Aerosols and Clouds (OPAC)
software module, showing a systematic overprediction. This
overprediction could lead to mismatches between AOD and
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PM2.5 in models using this code. Curci et al. (2019) evaluated
black carbon absorption for an ensemble of models over Eu-
rope and North America, finding that biases were driven by
the mixing state assumptions in the optical properties com-
putations.

The KORUS-AQ (Korea–United States Air Quality) cam-
paign was an international cooperative air quality field study
in South Korea that measured local and remote (e.g., anthro-
pogenic, biomass burning, dust) sources of air pollution af-
fecting the Korean Peninsula during May–June 2016. The
objectives of the present study are to (1) evaluate one of the
forecast systems used to support flight planning during the
mission; (2) assess the degree of consistency between aerosol
optical properties and mass concentrations for the forecast-
ing and other configurations; and (3) explain the identified
discrepancies. The results will provide guidance for future
model development and we expect will motivate this type of
analysis for other modeling systems and locations.

2 Methods

2.1 Regional modeling

Air quality forecasts were performed using the Weather Re-
search and Forecasting model (Skamarock et al., 2008) cou-
pled to Chemistry (WRF-Chem) (Grell et al., 2005) to sup-
port both KORUS-AQ flight planning and post-campaign
analysis. The modeling domains are shown in Fig. 1, with a
regional domain of 20 km resolution, covering major source
regions of transboundary pollutants affecting the Korean
Peninsula: anthropogenic pollution from eastern China, dust
from inner China and Mongolia, and wildfires from Siberia
(Saide et al., 2014). A 4 km resolution domain was nested to
cover the Korean Peninsula and surroundings at higher res-
olution. This inner domain encompassed the region where
the KORUS-AQ flights were planned and was able to bet-
ter resolve local sources. The forecasts were performed once
daily and used meteorological initial and boundary condi-
tions from the National Centers for Environmental Predic-
tion Global Forecast System (NCEP, 2007) and chemical
boundary conditions from the Copernicus Atmosphere Mon-
itoring Service (Inness et al., 2015). Initial conditions for
gases and aerosols were obtained from the previous fore-
casting cycle. AOD data assimilation was implemented for
the outer domain using data from low-earth-orbiting (GMAO
Neural Network retrieval) and geostationary satellites (Geo-
stationary Ocean Color Imager retrievals; Choi et al., 2016,
2018; Lee et al., 2010) as described in Saide et al. (2014).
To our knowledge, this was the first near-real-time imple-
mentation of assimilating geostationary AOD. Each assimila-
tion step modified aerosol mass, keeping the species distribu-
tion and size of each bin constant. Thus, the assimilation had
the potential to change the bin-aggregated composition and
size distribution when size bins with different compositions

were scaled differently. Although there was no data assimi-
lation performed on the inner domain, this domain was ini-
tialized 18 h after the outer domain and was thus influenced
by data assimilation through initial and boundary conditions.
The forecast configuration was based on WRF-Chem ver-
sion 3.6.1 with modifications. The aerosol and gas chemistry
packages corresponded to the four-size-bin Model for Simu-
lating Aerosol Interactions and Chemistry (MOSAIC; Zaveri
et al., 2008) and a simplified hydrocarbon chemical mecha-
nism (Pfister et al., 2014), both selected to reduce computa-
tional costs compared to using the eight-size-bin MOSAIC
configuration and more complex chemical mechanisms. Al-
though detailed secondary organic aerosol (SOA) forma-
tion schemes have been implemented for the four-bin MO-
SAIC configuration (Shrivastava et al., 2013; Knote et al.,
2015), it increases computational costs significantly. Thus,
the simplified SOA formation scheme, proposed by Hodzic
and Jimenez (2011) and verified to work well in multiple
later studies (e.g., Hayes et al., 2015; Shah et al., 2019), was
implemented to keep computational costs low. While this
scheme included anthropogenic and biomass burning SOA,
biogenic SOA was also modeled by using an SOA precur-
sor surrogate derived from isoprene as described in Shrivas-
tava et al. (2011). Aerosol–radiation interactions were in-
cluded (Fast et al., 2006), while aerosol–cloud interactions
were excluded to avoid the computational costs of track-
ing cloud-borne aerosols. Anthropogenic emissions were de-
veloped by Konkuk University for KORUS-AQ forecasting
and are described in Choi et al. (2019a) and Goldberg et
al. (2019b). Natural dust, sea spray, and biogenic emissions
were computed online using the Goddard Aerosol Radiation
and Transport (GOCART) scheme (Ginoux et al., 2001; Zhao
et al., 2010), following Gong et al. (2002), and estimates
from the Model of Emissions of Gases and Aerosol from Na-
ture (MEGAN; Guenther et al., 2006), respectively. Biomass
burning emission estimates were obtained from the Quick
Fire Emissions Dataset (Darmenov and da Silva, 2015) and
were added using the online plume-rise model implemented
in WRF-Chem (Grell et al., 2011). Other modeling configu-
rations related to meteorological parameterizations and anal-
ysis nudging are described in Saide et al. (2014).

In addition to the forecasting results, we performed retro-
spective sensitivity simulations summarized in Table 1. We
first used the same configuration as the forecast, which we
labeled MOSAIC4b. To explore the model sensitivity to in-
creasing the resolution of the aerosol size bins, we performed
simulations using the MOSAIC eight-bin configuration cou-
pled to the Carbon Bond Mechanism version Z (CBM-Z)
chemical scheme (Zaveri and Peters, 1999) and labeled it
MOSAIC8b. Some caveats of this sensitivity simulation are
that it uses a different gas-phase chemistry scheme and does
not include secondary organic aerosol formation; thus, this
needs to be considered in the analysis when comparing it
to the base configuration. WRF-Chem can also be config-
ured with the Modal Aerosol Dynamics Model for Europe
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Table 1. Summary of WRF-Chem simulations. Refractive indices, hygroscopicity parameters, and size bins are defined in Tables 2 and 3.
Refer to Sect. 3.2 and 3.3 for definitions of the base and updated configurations.

Name Aerosol scheme Size bins used for OP GSD of the modes Refractive index Hygroscopicity

MOSAIC4b Sectional four bins Four bins – Base Base
MOSAIC8b Sectional eight bins Eight bins – Base Base
MADE1 Modal Eight bins Base Base Base
MADE2 Modal Eight bins Updated Base Base
MADE3 Modal Eight bins Updated Updated Base
MADE4 Modal Eight bins Updated Updated Updated

Figure 1. Modeling domains for the forecast simulations. Only the
outer domain is used for the retrospective simulations.

(MADE) model, whereby aerosol sizes are represented by
lognormal modes (as opposed to sections as for MOSAIC).
We used the configuration coupled to the updated Regional
Atmospheric Chemistry Mechanism (RACM; Ahmadov et
al., 2015), which contains secondary organic aerosol forma-
tion using the volatility basis set (Ahmadov et al., 2012) and
aerosol optical properties calculations (Tuccella et al., 2015).
We label these simulations as MADE plus a number, with
the number going from 1 to 4 depending on changes to the
parameters described in Table 1.

Simulations MOSAIC4b, MOSAIC8b and MADE1 are re-
ferred to as base configurations, while MADE2–4 are sen-
sitivity simulations. All retrospective simulations were per-
formed only for the 20 km resolution domain in this study, as
we focus on a pollution event from long-range transport (24–
26 May 2016). Also, no data assimilation was performed for
these simulations. Unless otherwise noted, they use the same
inputs and parameterizations as for the forecast simulations.

2.2 Optical properties calculation

Aerosol optical properties in WRF-Chem are computed us-
ing a Mie code and Chebyshev expansion coefficients for
each size bin, assuming an internal mixture within the bin
and a volume mixing rule (Fast et al., 2006). The refractive
indices (real part) and density used for each species are de-
fined in Table 2 under the base configuration column. Only

black carbon and other inorganics (OINs; inorganic aerosols
other than sulfate, ammonium, nitrate, chloride, and sodium)
are considered to absorb solar radiation with an imaginary
refractive index of 0.71 and 0.006, respectively. For the MO-
SAIC configurations, the size bins in the optical properties
calculation correspond to those in the aerosol model (four
and eight size bins, defined in Table 3), while for modal
aerosols the modes are mapped to eight sectional bins (the
same boundaries as the eight MOSAIC bins) before the cal-
culation by computing the aerosol mass and number concen-
tration included in each section. WRF-Chem computes op-
tical properties for ambient conditions. Thus, the derivation
of dry extinction and scattering enhancements due to hygro-
scopic growth at fixed relative humidity requires computa-
tions at the post-processing stage. These computations re-
quire the aerosol water to be recalculated for the specified rel-
ative humidity. Since both the MOSAIC and MADE aerosol
models compute aerosol water based on aerosol thermody-
namics, versions of these computations are needed at the
post-processing stage. In order to simplify the process and
add additional capabilities, an alternative optical properties
code at the post-processing stage was developed that mimics
the WRF-Chem one. This alternative approach uses Mie cal-
culations from the Mätzler (2002) code, which is based on
the Appendix of Bohren and Huffman (1983). Aerosol water
uptake was parameterized using the method proposed by Pet-
ters and Kreidenweis (2007), which utilizes the hygroscop-
icity parameter (κ). Values for the hygroscopicity parame-
ter representing the base configuration are obtained from the
WRF-Chem code used to compute aerosol water for the God-
dard Chemistry Aerosol Radiation and Transport (GOCART;
Chin et al., 2002) model, which implements the κ approach
and a volume mixing rule. Following this configuration κ is
set to 0.5 for ammonium sulfate and ammonium nitrate. For
sodium chloride κ is set to 1.5 (Zieger et al., 2017). For or-
ganic aerosol, black carbon, and dust, κ is set to zero as these
aerosol types are currently not considered to be electrolytes
in the MOSAIC and MADE thermodynamic models and thus
do not contribute to water uptake in these frameworks (Fast et
al., 2006). Ways to improve these simplifications will be dis-
cussed later in the text. Figure 2 shows an evaluation of the
alternative approach against the WRF-Chem routines used in

Atmos. Chem. Phys., 20, 6455–6478, 2020 https://doi.org/10.5194/acp-20-6455-2020



P. E. Saide et al.: Understanding and improving model representation of aerosol optical properties 6459

Table 2. Real refractive indexes (dimensionless), hygroscopicity parameter (dimensionless), and aerosol density (g cm−3) used in the base
and updated configurations. Values that changed in the updated configurations are noted in italics. Note that measured organic aerosol density
was used in the closure studies.

Real refractive index Hygroscopicity parameter Density

Base Updated Base Updated Base

Ammonium sulfate 1.52 1.527 0.5 0.61 1.8
Ammonium nitrate 1.5 1.553 0.5 0.67 1.8
Sodium chloride 1.45 1.45 1.5 1.1 2.2
Other inorganics 1.55 1.55 0 0.14 2.6
Organic aerosol 1.45 1.55 0 0.14 1
Black carbon 1.85 1.85 0 0 1
Aerosol water 1.33 1.33 – – 1

Figure 2. (a) Extinction-to-mass ratio for dry conditions (20 % RH) as a function of dry particle diameter considering a monodisperse
aerosol distribution of fixed aerosol composition equal to the mean of the data analyzed. Blue and green lines represent results using optical
properties code from WRF-Chem and the alternative approach, respectively. (b) Scatterplot comparing aerosol water (µg m−3) estimated
by WRF-Chem routines for the forecast simulations (MOSAIC four-bin) and using the alternative approach at 80 % RH during 02:00–
05:00 UTC of the flight analyzed in this study. The solid red line indicates the 1 : 1, line and the dashed red line represents the regression line
(slope of 0.94).

post-processing mode for the MOSAIC model that were de-
veloped as part of the data assimilation scheme (Saide et al.,
2013). Under dry conditions, the alternative approach shows
similar results as the WRF-Chem optical properties, with the
extinction-to-mass ratio curves following each other for all
sizes (Fig. 2a). The high-frequency oscillations shown by
the Mie code of our alternative approach are smoothed in
WRF-Chem due to the use of the Chebyshev expansion co-
efficients (Fast et al., 2006) and interpolation between wave-
lengths (optical properties at 400 and 600 nm are used to de-
rive values at mid-visible wavelengths). Water uptake using
the MOSAIC approach and the one described here provides
similar results (Fig. 2b), with values ∼ 7 % lower in the al-
ternative approach that will be taken into consideration when
evaluating the optical properties code in the next sections.
The alternative optical properties code provides flexibility to
evaluate changes in configuration that would be difficult to
implement in the WRF-Chem optical properties code. These
include using more than eight bins to improve size resolution,

using variable density for aerosol species, and altering κ to
vary the extent to which different aerosol chemical species
take up water.

2.3 Airborne observations

Airborne data used in this study were measured by instru-
ments onboard the NASA DC-8 research aircraft as part of
the KORUS-AQ campaign (Aknan and Chen, 2019) during
the flight starting at 22:00 UTC on 24 May (25 May local Ko-
rean time) 2016. This flight focused on measurements over
the Yellow Sea and sampled some of the highest aerosol
mass concentrations of the deployment, originating mostly
from anthropogenic pollution from China (Peterson et al.,
2019; Nault et al., 2018). This flight was also chosen as it
corresponds to a period of large model discrepancies (see
the “Results and discussion” section). Measurements used in
this study include numerous in situ chemical compositions,
mass concentrations, and physical properties of the aerosol,
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as well as remote sensing physical properties of the aerosol.
PM1, not including black carbon, was measured by the Uni-
versity of Colorado Boulder high-resolution time-of-flight
aerosol mass spectrometer (HR-ToF-AMS, hereinafter AMS
for short; DeCarlo et al., 2006; Nault et al., 2018). These
measurements included the mass concentrations of sulfate,
nitrate, ammonium, chloride, and organic aerosol, as well
as the estimated aerosol density. The estimation of aerosol
density is described in Nault et al. (2018) and DeCarlo et
al. (2004). Refractory black carbon concentrations were mea-
sured by the NOAA Single Particle Soot Photometer (SP2;
Lamb et al., 2018). Bulk water-soluble inorganic aerosol was
measured by the University of New Hampshire using Teflon
filters, followed by offline ion chromatography with an esti-
mated aerodynamic diameter cutoff of ∼ 4 µm (SAGA; Dibb
et al., 2000; McNaughton et al., 2007). The in situ physi-
cal aerosol properties were measured by the NASA Lang-
ley Aerosol Research Group (LARGE), which included dry
aerosol scattering, extinction and single-scattering albedo,
and scattering enhancements due to hygroscopic growth.
These measurements were done with two TSI nephelome-
ters (at 450, 550, and 700 nm wavelength) and a particle soot
absorption photometer (at 470, 532, and 660 nm wavelength)
as described in Ziemba et al. (2013). Aerosol size distribu-
tions were also measured by the LARGE suite using a scan-
ning mobility particle sizer (SMPS, TSI model 3936), a laser
aerosol spectrometer (LAS, TSI model 3340), and an aerody-
namic particle sizer (APS, TSI model 3321). AMS and SP2
measure mostly submicron aerosols, while the LARGE inlet
cutoff is at 5 µm aerodynamic diameter (McNaughton et al.,
2007). Relative humidity was estimated using measurements
of water vapor from the NASA Langley/Ames Diode Laser
Hygrometer (Podolske et al., 2003). Finally, extinction cur-
tains were measured using the Airborne Differential Absorp-
tion Lidar–High Spectral Resolution Lidar (DIAL–HSRL;
Hair et al., 2008) from the NASA Langley lidar group. In
situ data were obtained from the 1 s merges (version 3) and
merged with the corresponding version of the data that was
available through individual files (e.g., size distributions).

Though the instruments measuring size distributions over-
lap in some size bins, they use different sampling frequen-
cies, and they use different sizing techniques based on dif-
ferent measures of aerosol diameters (e.g., geometric, opti-
cal, and aerodynamic). Thus, these measurements need to
be homogenized and combined to obtain a single size dis-
tribution. A total of 32 size bins using a geometric diam-
eter from a lower bound of 39 nm to an upper bound of
10 µm with a width (dlnD) of 0.1737 are used to re-bin the
SMPS, LAS, and APS size distributions. These boundaries
and the width are chosen so the distributions can be easily
aggregated to the modeled size bins (Table 3). Data from the
SMPS, LAS, and APS are used for bins 1–8 (39–156 nm), 9–
18 (156–743 nm), and 19–32 (743 nm–10 µm), respectively.
APS measures aerodynamic diameters, and thus these are
converted to geometric diameters by multiplying the aero-

Figure 3. (a) Scatterplot of total inorganic aerosol (sulfate, ammo-
nium, chloride, and nitrate) mass (µg m−3) as measured by SAGA
and AMS, averaging the AMS data to the SAGA integration time
(R2
= 0.72, slope= 1.07). The solid red line indicates the 1 : 1 line.

(b) Scatterplot of aerosol volume measured by the AMS and LAS,
accounting for the AMS transmission. The solid red line indicates
the 1 : 1 line, the solid black line represents an approximate cutoff
for the LAS saturation, and the dashed red line represents the re-
gression line when using data below the black line (slope of 0.9).

dynamic diameter by
√
X/ρ (valid in the continuum regime

where most of the coarse-mode aerosol mass is in this study)
and assuming a dynamic shape factor (X = 1.6) and density
(ρ = 2.6 g cm−3) for dust aerosols, which we assume dom-
inates the coarse-mode aerosol. This assumption is made as
AMS and SAGA measured similar concentrations of inor-
ganic species (Fig. 3a), and thus sulfate, ammonium, chlo-
ride, and nitrate were mostly not present in sizes covered by
SAGA but not by AMS. But since the aerosol size distribu-
tion measurements do show aerosol presence in these coarse
sizes, we assume it is dominated by dust. Although LAS
measures geometric diameter when particles are spherical,
it is calibrated with National Institute of Standards and Tech-
nology (NIST)-traceable polystyrene latex (PSL) spheres,
which have a larger refractive index (1.595) than the mix-
tures measured during the flight. Thus, LAS diameters are
multiplied by 1.115 to approximately correct for this differ-
ence (Nault et al., 2018). While LAS and APS results are re-
ported at 1 Hz frequency, SMPS provides data every minute.
Since most datasets used in this work are provided at 1 Hz,
we use nearest-neighbor interpolation to assign SMPS values
at 1 Hz resolution. This is likely to have a negligible impact
on our results as there is little aerosol mass in the bins as-
signed from the SMPS and mass extinction efficiency is low
at these sizes.

Previous studies have found a saturation of the LAS detec-
tor for large aerosol number and mass concentrations (Liu et
al., 2017; Nault et al., 2018), which occurs when scattering
from individual particles starts overlapping so that the sig-
nal does not go down to the baseline between events. This
was the case for a large fraction of the measurements in the
haze layer during the flight studied. Figure 3b shows that
while this saturation is evident for large aerosol mass con-
centrations, for lower aerosol mass concentrations (with no
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Table 3. Lower and upper diameters (µm) for the 4, 8, and 16 size bin configurations.

4-bin Lower Upper 8-bin Lower Upper 16-bin Lower Upper

Bin 1 0.039 0.156 Bin 1 0.039 0.078 Bin 1 0.039 0.0552
Bin 2 0.156 0.625 Bin 2 0.078 0.156 Bin 2 0.0552 0.078
Bin 3 0.625 2.5 Bin 3 0.156 0.312 Bin 3 0.078 0.11
Bin 4 2.5 10 Bin 4 0.312 0.625 Bin 4 0.11 0.156

Bin 5 0.625 1.25 Bin 5 0.156 0.221
Bin 6 1.25 2.5 Bin 6 0.221 0.312
Bin 7 2.5 5 Bin 7 0.312 0.442
Bin 8 5 10 Bin 8 0.442 0.625

Bin 9 0.625 0.884
Bin 10 0.884 1.25
Bin 11 1.25 1.77
Bin 12 1.77 2.5
Bin 13 2.5 3.54
Bin 14 3.54 5
Bin 15 5 7.07
Bin 16 7.07 10

Figure 4. (a) Time series of rubidium (grey, left axis, measured by the AMS), black carbon (black dashed line, right axis, measured by SP2),
and total organic aerosol (green, right axis, measured by AMS) during the haze event sampled by the NASA DC-8 over the Yellow Sea.
Rubidium was quantified using the AMS difference signal, a relative ionization efficiency of 1, and the same collection efficiency as the rest
of the submicron aerosol (Nault et al., 2018). (b) Average size-resolved AMS measurements sampled (aerodynamic diameter) by the NASA
DC-8 for the same period shown in (a).

saturation expected) the LAS measures larger volume con-
centrations than the AMS+SP2 by ∼ 11%. Although 11 %
falls within the stated accuracies of both measurements, it
also potentially reflects a true difference in concentrations.
The AMS detected exotic metals not typically reported, such
as rubidium (Fig. 4a), in the haze event. There was, on aver-
age, 10 ng sm−3 of rubidium in the plume between 01:30 and
05:00 UTC (and up to 71 ng sm−3). Rubidium originates ei-
ther from soil (e.g., dust; Kabata-Pendias and Pendias, 2001)
or anthropogenic emissions, such as dust from steel and alu-
minum industries (Dillner et al., 2006; Tang et al., 2018).
Rubidium is one of numerous types of metal emitted from

these sources and would account for the minority of the mass
for these emissions (Dillner et al., 2006). Also, the detection
shown here is likely a lower limit of the actual concentra-
tions considering the refractory nature of aerosols typically
containing rubidium. The presence of rubidium would sug-
gest other inorganic material present in the haze event not
typically measured by the AMS, further suggesting that the
11 % difference in volume is due to these types of com-
pounds. Thus, we corrected the LAS submicron number and
volume distributions using the aerosol mass measured by
the AMS+SP2 accounting for the ∼ 11 % volume not de-
tected. For this, scaling factors were computed using the
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aerosol volume (estimated using the measured aerosol mass
and the aerosol density reported by the AMS), corrected by
11 %, and dividing by the measured LAS volume, account-
ing for the AMS transmission. The AMS transmission con-
siders 100 % and 0 % efficiency at aerodynamic diameters of
550 nm and 1.5 µm, respectively, and a linear decrease be-
tween using the logarithm of the aerodynamic diameters (Hu
et al., 2017). The transmission curve was converted to a ge-
ometric diameter for each observation using Eq. (28) from
DeCarlo et al. (2004) iteratively to update the Cunningham
slip correction factor until convergence. The LAS correction
assumes that the fractional contribution of aerosol not mea-
sured by AMS+SP2 is constant, which is a limitation of the
approach, but we expect it to have a limited impact on the
analysis due to the small contribution. The submicron dust
aerosol mass concentration is estimated using this volume
residual, assuming a dust density of 2.6 g cm−3 (value used
in WRF-Chem), and falls into the OIN aerosol category when
comparing to model estimates.

2.4 Ground-based observations

We also used multiple sources of ground-based observa-
tions. This includes Level 2.0 AOD at 500 nm wavelength,
which was obtained from the Aerosol Robotic Network
(AERONET; Holben et al., 1998) version 3 algorithm (Giles
et al., 2019). During KORUS-AQ, the AERONET team en-
hanced the long-term AERONET sites with a short-term
DRAGON network (Holben et al., 2018) to assess the
mesoscale spatial variability of aerosol properties; thus, a to-
tal of 21 locations were available during the campaign pe-
riod. We also used PM2.5 and PM10 from the air quality net-
work maintained by the Korean National Institute of Envi-
ronmental Research (NIER). For the period analyzed, PM2.5
and PM10 data were available from 320 and 329 locations,
respectively, distributed across the peninsula.

3 Results and discussion

3.1 Forecast evaluation

Figure 5a shows comparisons of AOD measured by the
AERONET network over South Korea versus forecasted
AOD at the site locations. The model shows good perfor-
mance over the period (e.g., mean AOD for observations and
the model is 0.58 and 0.60, respectively). This performance
is expected as the system is assimilating satellite AOD, and
satellite AOD retrievals have shown good agreement with
AERONET data in the region (Choi et al., 2019b). However,
the forecasts generally show large overpredictions of sur-
face particulate matter for the period of large concentrations
in the peninsula (mean bias for PM2.5 and PM10 is 44 and
21 µg m−3, respectively), consistent with previously reported
results (Lennartson et al., 2018). These overpredictions are
more severe for PM2.5 during the passing of the transbound-

Figure 5. Time series of box and whisker plots for AOD (a),
PM10 (b), and PM2.5 (c) for select days in the month of May 2016,
comparing observations and forecasts over sites in South Korea.
Data are aggregated by day (in UTC). Center solid lines indicate
the median, circles represent the mean, boxes indicate upper and
lower quartiles, and whiskers show the upper and lower deciles.

ary pollution coming from China (25 and 26 May), some-
times exceeding a factor of 2 difference. This points towards
model deficiencies in connecting surface mass concentra-
tions with column optical properties, which is explored in
this study focusing on the day the aircraft sampled this air
mass (24 May). Also note that PM2.5 and PM10 are similar
in the model, while PM10 is larger than PM2.5 in the obser-
vations (reflected in the differences in mean bias), pointing
towards model biases in representing coarse-mode aerosols.

Figure 6 shows observed and forecasted AOD retrievals
at noon local time the day of the 24 May DC-8 flight that
sampled the transboundary pollution that affected the Ko-
rean Peninsula. The forecasts shown have not yet assimilated
the AOD retrieved that day, showing the ability of the sys-
tem to carry forward the information assimilated the day be-
fore. AODs larger than 1 were found over areas in the Yel-
low Sea that were correctly forecasted and that enabled the
KORUS-AQ team to plan a successful flight (track in yellow
in Fig. 6c) in the region. Data from this flight are used to
perform a detailed model evaluation to understand the model
biases.
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Figure 6. Observed (a) and forecasted (b) AOD maps at 03:00 UTC (noon local Korean time) on 25 May. (c) Advanced Himawari Imager true
color imagery for the same time with overlays of the DC-8 (in yellow) and Twin Otter (in red) flight tracks for that day (source: KORUS-AQ
flight report).

One potential reason for the discrepancies found could be
related to the model representation of aerosol vertical pro-
files. Figure 7 shows aerosol extinction curtains over the DC-
8 trajectory (aircraft altitude in red solid line) as sampled by
the DIAL-HSRL and as predicted by the forecasts. The haze
layer is mostly confined to below 2 km, which the model rep-
resents properly (e.g., mean extinction in this layer for the
observations and model is 0.44 and 0.38 km−1, respectively).
The model has slightly higher mixing layers, which, if any-
thing, would lead to opposite biases (e.g., underestimation of
surface concentrations). A layer with lower aerosol extinc-
tion found between 2 and 6 km, which DIAL-HSRL classi-
fied as dust (not shown) and where SAGA reported elevated
levels of Ca+2 associated with dust, is also well captured by
the model in terms of both aerosol type and amount (mean
extinction in this layer during 00:00–01:00 UTC for the ob-
servation and model is 0.012 and 0.015 km−1 respectively).
Thus, we discard issues with the model representation of the
vertical placement of the plume as reasons explaining the
AOD to PM inconsistencies mentioned earlier.

AOD is also highly sensitive to relative humidity (Brock et
al., 2016a), and previous studies have explained AOD biases
due to model issues representing relative humidity (Feng et
al., 2016). In situ measurements of relative humidity in the
haze layer showed average values of 62 % with an interquar-
tile range of 9 % (57 %–66 %). The forecast shows a rea-
sonable representation with a slightly higher average value
(64 %) and interquartile range (10 %). Thus, we conclude that
skill in predicting relative humidity is not related to the dis-
crepancies found in this study.

From this analysis, we conclude that the likely reason for
the discrepancy resides in the computation of the aerosol op-
tical properties, i.e., how aerosol mass is translated to AOD,
and thus in the following sections we perform a thorough
evaluation of this topic using in situ airborne data.

3.2 Closure studies

Model representation of optical properties can be separated
into two stages: (1) how well the model represents the
aerosol properties that drive the optical properties compu-
tation (e.g., size distribution, composition, concentrations,
etc.); and (2) the accuracy of the optical properties code. The
latter can be evaluated by driving the optical properties code
using observed quantities and comparing the outputs with
measurements of aerosol optical properties, a methodology
that has been applied for previous field campaigns (Barnard
et al., 2010; Brock et al., 2016a) and that we will refer to as a
“closure study” here. This allows us to isolate issues regard-
ing the optical properties code and to assess ways to improve
the model representation of optical properties.

One challenge of closure studies is that the optical proper-
ties code requires speciated and size-resolved aerosols; thus,
assumptions need to be made on how to distribute the mea-
sured chemical species into the size bins. Figure 3a shows
a scatterplot of SAGA filter-based vs. AMS online measure-
ments of inorganic aerosol mass concentrations (sulfate, ni-
trate, ammonium, chloride), showing good agreement for this
flight. While secondary inorganic aerosol mass concentra-
tions were elevated in the coarse mode for other KORUS-AQ
flights (and thus not detected by AMS; Heim et al., 2020), for
the flight analyzed here this fraction seems to be negligible.
Thus, we assume that the tail of the coarse mode is composed
of only OINs (likely dust). We also assume that the compo-
sition is not size-dependent within the accumulation mode.
Size-resolved AMS measurements support this assumption
by showing a similar composition within the accumulation
mode (Fig. 4b). We set the aerosol diameter cutoff between
the accumulation mode and the lower tail of the coarse mode
at 884 nm based on size distribution measurements (Fig. 8).
Also, since both LAS and APS cover the lower tail of the
coarse mode, we use APS estimates in this range because
LAS presents lower volume concentrations.
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Figure 7. DIAL-HSRL (a) and WRF-Chem forecast simulation (b) extinction curtains at 532 nm for the KORUS-AQ flight on 24 May.
The red solid line represents the altitude of the aircraft from which DIAL-HSRL was being operated. (c) Box and whisker plots as in
Fig. 5, aggregating the observed and modeled data shown in panels (a, b) for the periods during which the aircraft was above the haze layer
(00:00–01:00 and 05:00–05:45 UTC).

Table 4. Description of closure cases. Refer to Sect. 3.2 for defini-
tions of the base and updated configurations. Size bins are defined
in Table 3.

Name No. of size Refractive index Hygroscopicity
bins

Closure 1 4 Base Base
Closure 2 8 Base Base
Closure 3 16 Base Base
Closure 4 16 Updated Base
Closure 5 16 Updated Updated

Figure 9 shows multiple statistical metrics in the form of
box and whisker plots for observations and closure results
during the three consecutive hours that the DC-8 spent mea-
suring the haze layer at multiple altitudes (02:00–05:00 UTC;
see Fig. 7). The different closure scenarios are described in
Table 4 and consist of the base configuration and then the
base with varying parameters such as the size bin resolution,
refractive indices, and hygroscopicity parameter.

3.2.1 Dry extinction

A variable that is typically computed to assess the efficiency
of an aerosol population at scattering light is the ratio be-
tween dry extinction (scattering) and aerosol mass concentra-
tions, which is typically referred to as “mass extinction (scat-
tering) efficiency”. Note that for this study, the aerosol mass
concentration corresponds to that measured by AMS+SP2.
We also define “volume extinction efficiency” as the ratio

between dry extinction and the aerosol volume concentration
obtained from the aerosol size distribution measurements
after performing the corrections described in Sect. 2.3. As
AMS and SP2 measure mostly submicron aerosols of select
chemical species, there is potential for unaccounted aerosol
mass contributing to aerosol extinction that could complicate
the interpretation of the mass extinction efficiency. There-
fore, the volume extinction efficiency is reported in addition
to the mass extinction efficiency as the extinction and volume
are measured for all aerosols in the same size range (behind
the LARGE inlet).

Figure 9a and b clearly show how the base configuration
of the optical properties code drastically underpredicts the
mass and volume extinction efficiencies (e.g., mean mass ex-
tinction efficiency for the observations and Closure 1 is 6.7
and 4.5 m2 g−1, respectively), consistent with the discrepan-
cies shown in Fig. 5. Aerosols are binned into four size bins
in the base configuration (Closure 1); thus, Closures 2 and
3 explore finer binning to 8 and 16 sections, respectively.
The finer binning does improve the performance, especially
when going from four to eight bins (average mass extinc-
tion efficiencies of 4.5 and 5.0 m2 g−1, respectively). Figure 8
shows the size distributions for the three types of size aggre-
gation, showing a large diversity in the bin concentrations
contributing to the total mass in fine-resolution bins, which
is lost when aggregating to coarser-resolution bins. Figure 10
shows steep changes in the volume extinction efficiency for
the diameters at which most of the aerosol mass is found
(200–500 nm). In the four-bin configuration, the whole ac-
cumulation mode is included in one bin. After aggregation,
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Figure 8. Resulting average size distributions (blue bars) when ag-
gregating observed data (02:00–05:00 UTC) to 4, 8, and 16 size
bins. Sizes distributions show the average mass concentration in
each bin normalized by the maximum value within each distribu-
tion. Red lines separate bins aggregated when going from a finer to
coarser bin representation. Size bins boundaries are defined in Ta-
ble 3. Red circles indicate the average AMS transmission efficiency
(dimensionless) for each size bin.

a mean diameter of 293 nm is obtained, which has a volume
extinction efficiency below 6 m2 m−3 with base refractive in-
dices. On the other hand, a large percentage of the accumu-
lation mode is found in bin no. 4 with the eight-bin configu-
ration, which has a mean diameter of 380 nm and a volume
extinction efficiency of ∼ 8 m2 m−3; this raises the overall
efficiency substantially. The improvements from 8 to 16 bins
are lower than from four to eight bins, but they are still signif-
icant and due to similar reasons. For instance, bin no. 8 in the
16-bin configuration shows a volume extinction efficiency
above 9 m2 m−3, getting close to the maximum values for

Figure 9. Box and whisker plots (as in Fig. 5) showing observa-
tions and closure results driving the optical properties code with
observations. Closure cases are described in Table 4. Results are
shown for (a) the extinction-to-mass ratio (550 nm; mass extinction
efficiency), (b) extinction-to-volume ratio (volume extinction effi-
ciency), (c) f (RH) measured at 550 nm, (d) the 550–700 Ångström
exponent, and (e) dry single-scattering albedo. The blue numbers
on top of the plots represent the sample size used when computing
statistics.

base refractive indices. Negligible improvements are found
when further refining from 16 to 32 size bins (not shown).

Although improvements are found when refining the size
bins, significant biases still persist for the 16-bin configu-
ration (Fig. 9a, b). Thus, we explore modifying the refrac-
tive indices used in the Mie calculation (see Sect. 2.3) based
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Figure 10. (a) Volume extinction efficiency (blue, scale on the left) and f (RH) (orange, scale on the right) as a function of geometric
dry particle diameter considering a monodisperse aerosol distribution of fixed aerosol composition equal to the mean of the data analyzed.
Different lines represent cases in which the real refractive index and hygroscopicity correspond to the base and updated conditions (see text
for details). Black markers on top of the plots represent the calculated volume mean diameter for each size bin when using 4 (circles), 8
(squares), and 16 (x) bins for the mean observed size distribution (numerical values found in Fig. 8). Note that only mean diameters below
1 µm are shown. (b) Same as (a) but for dry single-scattering albedo and the 550–700 nm Ångström exponent.

on values reported in the literature for the aerosol species
accounting for the most submicron mass. Typical real re-
fractive indices assumed in closure studies (e.g., Brock et
al., 2016a) for ammonium sulfate and ammonium nitrate
are 1.527 (Hand and Kreidenweis, 2002) and 1.553 (Tang,
1996), which are larger than those used in the base config-
uration, and thus we update them accordingly. For primary
and secondary organic aerosols, there is a large range of val-
ues found in the literature (e.g., Moise et al., 2015; Lu et al.,
2015). Aldhaif et al. (2018) derived the organic aerosol (OA)
real refractive index from field deployments by air mass type,
finding a mean value of 1.54 with 1.52–1.55 as the 25–75th
percentile range for urban air masses. We chose the value of
1.55 as it is in the 25–75th percentile range and because it is
a typical value used in past studies (Zhang et al., 1994; Hand
and Kreidenweis, 2002; Hodzic et al., 2004). This value also
corresponds to the mean real refractive index reported by Lu
et al. (2015) for primary organic aerosol based on a literature
review. The Closure 4 case includes these updates (summary
of updated parameters in Table 2), showing an increase in the
efficiencies that improves the model representation (Fig. 9a,
b). Although the mass and volume extinction efficiencies are
still underpredicted (e.g., average mass extinction efficien-
cies of 6.7 and 6.1 m2 g−1 for observations and Closure 4,
respectively), there is much better agreement when using the
updated refractive indices, obtaining an overlap of the ob-
served and modeled 25–75th percentile boxes. Besides the
overall increase in the efficiencies, there is also a slight shift
towards smaller sizes for the location where the curve of

efficiencies vs. particle dry diameter achieves its maximum
(Fig. 10a). The update in the OA refractive index generates
the most impact (not shown) due to the larger increase (7 %
change vs. 0.5 % and 3.5 % for ammonium sulfate and am-
monium nitrate, respectively) and large contribution to the
total mass (23 % on average).

3.2.2 Hygroscopic growth

While the analysis in the previous subsection was performed
for dry aerosol extinction, we also explored possible biases
due to hygroscopic growth, considering that relative humid-
ity was in the 50 %–80 % range in the haze layer. We assessed
the performance of the optical properties code, driven by ob-
served inputs in representing the aerosol light-scattering en-
hancement factor (f (RH)), defined here as the ratio between
550 nm aerosol scattering at 80 % (wet) and 20 % (dry) rela-
tive humidity.

Figure 9c shows that the base configuration performs well
for f (RH) (average of 2.2 vs. 2.1 for observations and Clo-
sure 1, respectively). This is due to a combination of the
wrong reasons (i.e., cancellation of errors), as it deteriorates
when increasing the size bin resolution (Closures 2 and 3)
and upon increasing the refractive indices (Closure 4), go-
ing down to average values as low as 1.7. Figure 10a ad-
ditionally shows f (RH) and can help explain this behavior,
as f (RH) has a strong decreasing trend with increasing di-
ameter in the region < 350 nm. Thus, because the four-bin
representation displays an apparent decrease in the mean di-
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ameter (Fig. 7), f (RH) is overestimated. As the size bins
are refined, less aerosol mass falls in the smaller size bins,
decreasing the total f (RH). The further decrease in f (RH)
with increasing refractive indices at these size ranges is also
shown in Fig. 10a. While our alternative approach at comput-
ing aerosol water uptake resulted in values ∼ 7 % lower than
that shown by WRF-Chem, the difference in the observed vs.
Closure 4 f (RH) are close to 30 %; thus, we conclude that
similar biases would be expected for the WRF-Chem rou-
tines.

To improve the optical properties code performance, we
updated the hygroscopicity parameter based on values found
in the literature for the species contributing to most of the
aerosol mass. κ values are generally reported with a large
range of uncertainty and can depend on the measurement
technique and environmental conditions. Petters and Krei-
denweis (2007) show a wide range of κ values for ammo-
nium sulfate (from 0.33 to 0.72 with a mean of 0.53) and
for κ derived using growth factors, with a mean value of
0.61 based on cloud condensation nuclei (CCN) measure-
ments. For ammonium nitrate, only CCN-derived κ is avail-
able, with a mean value of 0.67 and a range of 0.577–0.753.
We chose to use the mean values of the CCN-derived esti-
mates (0.61 for ammonium sulfate and 0.67 for ammonium
nitrate), as they are contained in the ranges provided in Pet-
ters and Kreidenweis (2007) and in other studies (e.g., Good
et al., 2010). For organic aerosol, the range is even larger.
We chose to treat organic aerosol and OINs as slightly hy-
groscopic, as was originally specified in the WRF-Chem pa-
rameterization for GOCART, with κ values of 0.14 for both,
which is consistent with values reported for aged urban OA
and for rural environments (Wang et al., 2010; Mei et al.,
2013; Levin et al., 2014). κ of sodium chloride was updated
to 1.1 following the revisions of Zieger et al. (2017) to con-
sider the properties of inorganic sea salt. This large decrease
in κ has little impact for the study period as sea salt mass
concentrations represented less than 1 % of the total in both
observations and models. A summary of the updated κ val-
ues can be found on Table 2. Figure 9c shows significant
increases in f (RH) from Closure 4 to Closure 5 (average
f (RH) of 2.1) up to a similar level as the observations. Sen-
sitivity analysis shows that most of the change is related to
the κ increases in ammonium sulfate and ammonium nitrate
due to their larger contribution to the mass fraction (62 % on
average), while additional water uptake of organics and other
inorganic aerosols play a minor role. Thus, choosing a lower
OA κ value more consistent with other studies (Brock et al.,
2016a; Shingler et al., 2016) would have resulted in similar
findings.

3.2.3 Other aerosol optical properties

Figure 9d and e show the change for the Ångström expo-
nent (AE) and single-scattering albedo (SSA) for the dif-
ferent model closure configurations. Overall, the represen-

tation of both AE and SSA improves when going from the
coarse size bin resolution and base parameters to the finer
bin and updated parameters, which represents independent
pieces of evidence that the change in configuration is in the
right direction. As seen in Fig. 10b, AE is sensitive to the
aerosol size distribution and generally decreases with larger
aerosol sizes. This explains the sharp decrease when refin-
ing the aerosol size bins (mean AE drops from 2.4 in Clo-
sure 1 to 2.2 in Closure 2) due to the lower mean diameters
for the four-bin configuration as described previously. Fig-
ure 9e shows that SSA gradually increases with the change
in configuration (from 0.92 in Closure 1 to 0.94 in Closure 5),
which is due to changes in mean diameters and higher scat-
tering when increasing the real refractive indices (Fig. 10b).
While the AE of Closure 5 matches the observed values very
well (mostly due to improvements from Closure 1 to 2), SSA
is still slightly underpredicted (mean observation of 0.95),
which is an issue previously identified in other closure stud-
ies using a similar approach for computing aerosol optical
properties (Barnard et al., 2010). This underestimation could
be due to multiple uncertainties including assumptions on
black carbon and OIN complex refractive indices, black car-
bon mixing state, and the size-independent black carbon frac-
tional contribution to the accumulation mode.

3.3 Evaluation of retrospective simulations

The previous section provides clarity on what we should
expect from the optical properties code if the model is re-
producing observed aerosol size distributions and composi-
tion. In this section we perform a similar analysis but driving
the optical properties code with simulated aerosol properties
(summarized in Table 1 and shown in Fig. 11). Comparing
Fig. 11a and b, we can see large discrepancies in the per-
formance of the mass and volume extinction efficiencies that
are opposite to the closure studies (Fig. 9) for which they
remain consistent. For instance, MOSAIC4b shows a good
representation for the mass extinction efficiency against Clo-
sure 5 (mean of 6.4 and 6.2 m2 g−1, respectively) but largely
underestimates the volume extinction efficiency (mean of 4.5
and 7.5 m2 m−3, respectively). Comparing Figs. 11 and 9,
the mass extinction efficiency is shifted up in the three base
modeling configurations, and thus a refinement in size bins
(going from MOSAIC4bin to MOSAIC8b or MADE1) has
the opposite effect on performance for mass and volume ex-
tinction efficiencies. The modeled aerosol mass concentra-
tion used when computing the mass extinction efficiency is
that for which the AMS transmission is applied. Thus, one
possible explanation could be that the models have signifi-
cant aerosol mass outside the sizes the AMS can detect. This
would reduce the mass concentration after applying the trans-
mission curve, which would increase the extinction-to-mass
ratio (i.e., the mass extinction efficiency) due to the unac-
counted mass that contributes to extinction. Figure 12 shows
the size distributions and AMS transmission efficiency for
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Figure 11. As Fig. 9 but comparing observations and the Closure 5
study to different modeling configurations (described in Table 1).

the simulations, for which this issue is evident as all three
base model configurations (MOSAIC4b, MOSAIC8b, and
MADE1) place substantial aerosol accumulation-mode mass
in sizes at which the AMS transmission starts decreasing
(> 625 nm). This is not the case for the observed size distri-
bution (Fig. 8), for which most accumulation-mode aerosol
mass is within the AMS transmission and explains the con-
sistency between the mass and volume extinction efficiency
for closure studies.

Another contributor to this discrepancy is the model pre-
diction of chemical composition. Figure 13 shows that, al-
though OIN absolute concentrations are in the range of

the observations, all modeling configurations overpredict the
fractional contribution of submicron OIN mass (17 %–28 %
vs. 12 % in the observations), with the MOSAIC configura-
tions showing larger overpredictions. Since the aerosol mass
used in the mass extinction efficiency corresponds to that
measured by AMS+SP2 for which OINs are not included,
then overpredicting the OIN fraction would increase the mass
not accounted for in the ratio, increasing it relative to the
observations. Potential reasons contributing to the overpre-
diction in the OIN fraction include (1) an overprediction of
the “other PM2.5” anthropogenic emission category and/or
distributing it in the accumulation mode as opposed to in
the lower tail of the coarse mode; (2) overprediction of the
fine mode by windblown dust parameterizations (Kok, 2011);
and/or, (3) insufficient production of secondary organic and
inorganic aerosols (see underprediction in Fig. 13a), which
has the effect of increasing the fractional contribution of the
primary aerosol species (OINs in this case). Underpredic-
tions of organic aerosol could be explained by large varia-
tions of secondary organic aerosol production within urban
areas (Nault et al., 2018) that are not captured by the model-
ing configurations. Underpredictions of secondary inorganics
could be due to missing mechanisms to produce sulfate dur-
ing Chinese haze conditions (e.g., Gao et al., 2016a). These
mechanisms were not included in this study as uncertainties
remain on the actual pathways (Guo et al., 2017) and repre-
sentation in models (Song et al., 2018). Other potential rea-
sons for the underestimate of secondary inorganics could in-
clude the slow in-cloud H2O2 oxidation of SO2 due to under-
estimates of cloud volume and NOx underpredictions (e.g.,
Goldberg et al., 2019b).

Another point to note is that models underpredict the rela-
tive magnitude of the coarse aerosols (2.5–10 µm range, bin
no. 4 in the four-bin configuration). This helps to explain why
the biases shown in Fig. 5 are more pronounced for PM2.5
than PM10, as the underprediction in the coarse aerosols is
offset by the overprediction in the fine aerosols and is con-
sistent with findings from previous studies (Balzarini et al.,
2015; Im et al., 2015).

As mentioned earlier, all three base modeling configura-
tions have issues representing the size distribution regard-
less of the large diversity in chemical and aerosol schemes.
This is a topic that needs to be explored further in a future
dedicated study. In the case of the MOSAIC configurations,
the shape of the size distribution evolves through aerosol
processes (coagulation, condensation, etc.). Since these pro-
cesses that modify the size distribution are reasonably well
known (Seinfeld and Pandis, 2016), it is unlikely that such
large errors would arise from the model implementation of
these processes. A more likely explanation is that the shape
of the size distribution established at the point of emission is
too wide to start with and unfolds into the results shown. In
the case of the MADE1 configuration, the widths of the log-
normal modes are controlled by the geometric standard de-
viation (GSD). In the WRF-Chem implementation the GSD
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Figure 12. Same as Fig. 8 but for simulations using different modeling configurations. Size bins and AMS transmission efficiency are
aggregated to coarser bins when possible for comparison across configurations. Size bin boundaries are defined in Table 3.

is fixed at 1.7, 2.0, and 2.5 for nuclei, accumulation mode,
and coarse mode, respectively. Changing the GSD to 1.6 for
both the nuclei and accumulation mode (i.e., MADE2 sim-
ulations) results in a better representation of the observed
aerosol size distribution (Fig. 12 vs. Fig. 8), with a narrower
accumulation mode peaking in the 300–450 nm range and
a much smaller mass contribution in sizes above 625 nm.
These results are consistent with Brock et al. (2016b), who
showed that GSDs in the southeastern US are in the 1.4–1.6
range, while chemistry–climate models generally overpredict
them by using a GSD value of 2.0.

After correcting the modeled size distribution, a larger
percentage of the aerosol mass is found within the AMS
transmission (see the increase in mass for all species from
MADE1 to MADE2 in Fig. 13a). Also, the model represen-
tation of mass and volume extinction efficiency against ob-
servations now follows the same trend for MADE2 (Fig. 11a,
b). Another reason for potential discrepancies is related to the
aerosol density used for organic aerosol (OA) in the model.
For the closure study, OA mass is converted to volume us-
ing the density reported by the AMS, which varies substan-
tially with the oxidation state of organic aerosol (Kuwata
et al., 2012). For the period analyzed here, the OA density
has a mean of 1.5 g cm−3 and 25th and 75th percentiles of
1.35 and 1.6 g cm−3, respectively. In the case of the sim-

ulations, the aerosol optical properties code in WRF-Chem
uses a constant OA density of 1.0 g cm−3. Thus, a lower den-
sity translates into larger volume per unit mass, increasing
the mass extinction efficiency and explaining the remaining
discrepancy. On the other hand, the volume extinction effi-
ciency is less sensitive to changes in aerosol density as a
decrease in density decreases both extinction and volume.
In fact, the volume extinction efficiency remains consistent
with the analyses shown in the previous section when chang-
ing the size distribution and aerosol density. Thus, we use
volume extinction efficiency in the following analysis.

As shown in Fig. 11b, the dry-extinction-to-volume ratio
is greatly underestimated by almost a factor of 2 by the MO-
SAIC4b simulation, which helps explain the discrepancy de-
scribed in Fig. 5. As described in the previous section, large
improvements are found when computing optical properties
using a finer aerosol bin representation, with some remaining
biases (MOSAIC8b and MADE1 bring the mean volume ex-
tinction efficiency to 6.4 and 6.5 m2 m−3, respectively). This
large improvement from the four- to eight-bin configuration
is in agreement with previous studies that found an over-
all consistency between AOD and surface PM when using
eight size bins (Saide et al., 2014; Gao et al., 2015, 2016b).
Surprisingly, simulations with a better aerosol size distribu-
tion representation (MADE2) do not significantly modify the
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Figure 13. (a) Bar plot showing submicron aerosol mass concentration by species for observations (AMS+SP2) and retrospective simula-
tions. (b) Pie charts showing the percentage contribution by each species for observations and retrospective simulations.

representation of the volume and mass extinction efficiency
(mean volume extinction efficiency remains at 6.5 m2 m−3).
Figures 12 and 10 show that both size distributions (MADE1
and MADE2 for the eight-bin configuration) are centered in
a size range with high mass extinction efficiency (∼ 9 m2 g−1

at a 400 nm diameter). While the original size distribution has
less mass assigned to this high-efficiency bin, it has substan-
tial mass in larger size ranges at which the mass extinction ef-
ficiency is still high (∼ 7 m2 g−1 at ∼ 800 nm diameter). On
the other hand, the updated size distribution has larger mass
in smaller size bins in which the mass extinction efficiency
drops substantially (∼ 3–4 m2 g−1 at 200–250 nm diameter).
Thus, the overall mass extinction efficiency remains similar
for both size distributions due to compensating effects. As
performed in the previous section, a sensitivity simulation is
carried out such that the refractive indices of selected species
are increased (MADE3–4), which brings the ratios to simi-
lar levels as Closure 5 (mean volume extinction efficiency of
7.6 m2 m−3 for MADE4 vs. 7.5 m2 m−3 for Closure 5).

In terms of aerosol hygroscopic growth and its effects on
scattering, all base simulations underpredict f (RH) (1.7–1.8
on average, with observations and Closure 5 showing 2.2 and
2.1, respectively), which also helps explain the discrepancies
shown in Fig. 5. Improving the size distribution (MADE2)
has a small but positive effect on the f (RH) representation.
The largest improvement is found when updating the hygro-
scopicity parameters for the same species updated in Closure
5 (average f (RH) of 2.0 for MADE4). After this, a slight
underprediction is still found. A possible contribution to this
bias could be linked to the simulations not representing the
aerosol chemical composition properly. As seen in Fig. 13,
MADE2 reasonably represents the observed pie chart but

does show a slight overprediction of the less hydrophilic
species (sum of OA, BC, and OINs is 44 % vs. 37 % in the
observations). Another contributor to this bias is the low OA
density used in the retrospective simulations. Using a lower
aerosol density has a similar effect as using a larger refrac-
tive index (more extinction per unit mass), and, as seen in
Fig. 10a, increasing the refractive index reduces f (RH), ex-
plaining the bias. A sensitivity analysis using observed OA
density confirms this finding (not shown).

AE performance improves drastically when the size res-
olution is improved (average AE increases from 1.0 in
MADE1 to 1.9 in MADE2) as the size distribution is shifted
to smaller sizes, increasing AE. The AE after all the updates
(MADE4) is still low (mean AE for MADE4 is 1.6 vs. 2.2
in the observations), which is partially related to the low OA
density but also might be associated with the modeled size
distribution. Out of the base simulations, SSA performance
is better for the MADE1 simulation (mean of 0.93) as MO-
SAIC8b (mean of 0.89) overpredicts the black carbon frac-
tion (Fig. 13) and MOSAIC4b (mean of 0.90) has a coarse
size bin representation (see previous section). After the up-
dates (MADE4), SSA skill is comparable to that of the Clo-
sure 5 study (mean of 0.94), likely due to BC being well rep-
resented in both magnitude and fractional contribution (the
MADE2 results shown in Fig. 13 are similar to those from
MADE4).

4 Conclusions

In this study, we first evaluated WRF-Chem forecasts, which
included the assimilation of AOD, performed to support
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flight planning during the NASA/NIER KORUS-AQ field
campaign. While forecasts showed accurate predictions of
aerosol optical depth, there were overpredictions of surface
particulate matter in the Korean Peninsula, with the largest
deviations occurring for PM2.5 during a transboundary pol-
lution event. Additional analysis showed that the model was
able to capture the vertical extent and the relative humidity
of the haze layer, pointing towards issues related to the cal-
culation of aerosol mass to optical properties.

Further analysis was split into two sections. First, a clo-
sure study was performed by driving the optical properties
parameterization with in situ observations of aerosol size dis-
tributions and composition collected by the DC-8 aircraft.
These were compared to measured optical properties, includ-
ing mass and volume extinction efficiencies, hygroscopic
growth represented by f (RH), the Ångström exponent, and
single-scattering albedo (SSA). This analysis showed closure
was not possible by the base configuration and that multi-
ple modifications were needed to achieve closure. These in-
cluded driving the optical properties code with a finer size
bin representation (from 4 up to 16 bins), increasing the re-
fractive indices of ammonium nitrate (to 1.553) and organic
aerosol (to 1.55) according to ranges found in the recent liter-
ature, and increasing the hygroscopicity parameter of ammo-
nium sulfate (to 0.61), ammonium nitrate (to 0.67), organic
aerosol (to 0.14), and other inorganics (to 0.14) within pub-
lished ranges. The coarse bin representation and low values
of refractive indices and hygroscopicity parameters explain
why the forecasts showed the largest discrepancies during
the haze event, as these events are associated with large rel-
ative humidity and aerosol size distributions that peak close
to the maximum mass extinction efficiencies.

Second, aerosol optical and microphysical properties were
evaluated for retrospective simulations using three different
aerosol models within WRF-Chem. This exercise addition-
ally found that all three aerosol models were unable to prop-
erly capture the aerosol size distribution, showing a larger
size range than what was observed. As a result, a substan-
tial fraction of modeled aerosol mass was in sizes at which
the AMS transmission starts decreasing, which led to dis-
crepancies between the modeled mass and volume extinc-
tion efficiencies. We also found that, while the model uses
a value of 1.0 g cm−3 for organic aerosol density, larger val-
ues were observed with a mean of ∼ 1.5 g cm−3 and con-
siderable variability, which generated further discrepancies
and reduced the skill in predicting some of the optical prop-
erties. Other issues included an overprediction of the OIN
fractional contribution by all models (which could be due to
issues with OIN emissions and/or secondary aerosol forma-
tion). The size distribution of a configuration using a modal
scheme was improved by reducing the geometric standard
deviation (GSD) of the accumulation mode from 2.0 to 1.6.
Further increasing the refractive indices and hygroscopicity
parameters (as noted above) provided an overall better rep-
resentation of optical properties. Future work needs to as-

sess if the simulated size distributions can be improved by
including primary aerosol emissions in the model using size-
resolved and source-specific observational datasets (Winijkul
et al., 2015; Lu et al., 2015).

A series of assumptions were made in this study that
should be considered when analyzing the results. One of
them corresponds to the correction of the LAS measurements
to account for the PSL calibration and for the saturation of
the instrument at high aerosol concentrations. The calibra-
tion correction was performed by applying a single scaling
factor to the measured diameters, which may not be constant
due to changes in aerosol size and composition (Kupc et al.,
2018). In addition, the saturation correction was applied for
all LAS size bins equally, while the saturation of the instru-
ment is a function of both particle concentration and size.
The use of these assumptions could impact the results, which
could account for some of the minor mismatches found be-
tween observations and the closure study after accounting for
possible model uncertainties (Closure 5). The LAS was the
only instrument onboard sampling the overall aerosol size
distribution over the ranges in which the accumulation mode
peaked, so it would be useful for future field campaigns to
have overlapping instruments with similar capabilities over
this size range or dilute the sample during high-concentration
events as has been done in other deployments (Brock et al.,
2019).

The consistency of relationships between AOD and PM
in models is a key element of effectively improving predic-
tions through data assimilation of AOD and/or PM mass.
This work found that multiple sources of model uncertainties
need to be addressed to provide an accurate representation
of optical properties and avoid mismatches when performing
data assimilation driven by AOD observations. These include
the use of a fine aerosol size representation in optical prop-
erties calculations and an improved representation of aerosol
properties (size distribution, chemical composition, refrac-
tive index, hygroscopicity parameter, density). Accurate rep-
resentation of aerosol optical properties is also important for
other fields that use these models to make the connection be-
tween aerosol mass concentrations and aerosol optical prop-
erties, including assessments of aerosol health effects based
on satellite data, proper projections of aerosol–radiation in-
teractions by climate models, visibility forecasts, and solar
power predictions for energy applications.

In this study we evaluated different configurations of the
WRF-Chem model for the specific case of anthropogenic
outflow from China, and thus future studies can perform sim-
ilar analyses for other types of air masses and assess if the
model configuration updates suggested here produce better
results in other scenarios. Also, a similar analysis is needed
for other air quality and chemistry–climate models to assess
if similar biases or different ones arise.
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