Performance Evaluation of the
Myrias SPS-2 Computer

Oliver A. McBryan, Roldan Pozo

CU-CS-505-90 December 1990

Department of Computer Science
University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309-0430

(303) 492-7514
(303) 492-2844 Fax
mcbryan@boulder.colorado.edu

PERFORMANCE EVALUATION OF THE
MYRIAS SPS-2 COMPUTER

Oliver A. McBryan ’

Roldan Pozo T

Center for Applied Parallel Processing
Dept. of Computer Science,
University of Colorado,
Boulder, CO 80309, USA.

ABSTRACT

The Myrias SPS-2 is the first massively parallel computer to provide a MIMD shared-
memory programming model. Systems have been built with up to 1,024 nodes, although the
experiments reported here were all performed on a 64 node system. We describe the system in
some detail, particularly the software environment for applications programming. The highlight
of the software environment is the virtual shared memory environment.

We have analyzed the performance of the shared memory environment by studying system
efficiency as a function of both number of processors in use and of paging activity. We conclude
that the system is robust and provides high efficiency for tasks of granularity about 100,000
floating point operations. However there is about a 50% overhead for the luxury of utilizing vir-
tual shared memory. Programming the system is enormously easier than for other local memory
MIMD systems.

Our performance studies start with measurements of simple saxpy type numerical
processes. We also describe the implementation and performance of Poisson type relaxation
kernels in one, two and three dimensions, as well as a complete application from the oceano-
graphic modeling area (the Shallow Water Equations). Efficiency was high as long as task
granularity was sufficiently large.

Keywords: parallel, performance, pde

+ Research supported in part by AFOSR grant AFOSR-89-0422.

1. MYRIAS SPS-2 OVERVIEW

1.1. SPS-2 Hardware

The Myrias SPS-2 computer, built by Myrias Research Corp. of Edmonton, Alberta, is a
massively parallel distributed memory computer with a virtual shared memory software environ-
ment. The largest system built to date has 1044 processing elements but the system design is
scalable to even larger sizes.

Each processor is a 32-bit Motorola 68020 microprocessor, with a 68882 floating point
coprocessor, and 4 Mbytes of local memory. The architecture is a three-level hierarchical bus
design, utilizing 33 Mbytes/sec busses to interconnect processors within clusters and clusters to
each other. Processors are assembled in groups of four on a board, connected among each other
by a bus, along with an I/O port controller. At the second level in the hierarchy is the card cage,
containing 16 processor boards and thus 64 processors, as well as an off-cage communication
board. A pair of busses connect the 16 boards of a cage. Each communication board supports
five off-cage links which can be connected to other cages or to the front end computer, which is
currently a SUN 3 work-station. While the host provides user access to the SPS-2, all SPS-2
tasks execute entirely on SPS-2 nodes. The host is used only for compilation, program initiation
and access to I/O devices.

1.2. SPS-2 Software and Programming Model

All system software has been developed for an abstract system called the G Machine. This
is intended to clarify the programming model and to provide a layer of insulation from hardware
details. The SPS-2 supports a global 32-bit virtual address space. Processes achieve parallelism
by spawning independent subtasks, each conceptually executing in a copy of the parent’s
memory. To preserve efficiency, pages of the parent’s memory are not actually copied until
required by a child (copy—on—demand). There is no explicit concept of shared access to
memory locations by multiple processors. However upon completion of child processes their
memories are merged with the parent’s memory according to specific rules explained in detail
below. The subtask creation and subsequent merging process represent an implicit shared
memory concept.

1.2.1. PARDO

A single facility is available to effect subtask creation, execution and merging: the PARDO
construct (also see PARBEGIN below). This is implemented as Fortran and C language exten-
sions called pardo. The PARDO model used by Myrias is somewhat unusual in that there are no
possibilities for multiple processors to directly modify shared data (see below). A PARDO is
executed by specifying a code segment to be executed and the number of child tasks to be run.

pardo 10,1 =1, N
<Code to be executed>
10 continue

Any Fortran DO loop may be replaced by a PARDO provided the body of the loop is indepen-
dent across all loop iterations. The C pardo is similar to the Fortran version, and is thus syntacti-
cally weaker than the C for statement:

pardo (var=start : end, step) { ...},

where the start, end and step expressions must be of integer type. Each thread of execution
performs completely independently in its own address space, starting with a copy of the parents
memory. Execution of a child proceeds in normal sequential mode, except that PARDO’s may
be nested recursively. On completion of all children, the memory states of the children are
merged to form the new memory state of the parent. Thus a child can never affect the memory
of another child, but can affect the memory state of its parent, but only after all children merge.

A second available facility for parallel task execution is the PARBEGIN which implements
a parallel IF-THEN-ELSE or case statement.

parbegin
<code>

parallel
<code>

parallel
<code>
end par

The C version utilizes parallel {, par and } in place of parbegin, parallel and end par. The
PARBEGIN may be thought of as a special case of PARDO where the different cases are simply
different loop iterations, and so we will ignore PARBEGIN in the sequel.

1.2.2. Task Memory Merging Rules

The rules for merging of child memories, at a parent memory address, on child task com-
pletion are:

e If no child stored a value at the address, the location in the parent memory retains its origi-
nal value.

° If exactly one child changed the value at the address, the location in the parent receives the
last value from the child.

e If more than one child stores a value at the address the result is unpredicatable (undefined)
unless all values stored are the same.

-4-

Efficiency is maintained throughout the process by using a copy-on-write approach which
ensures that most of the global address space is never really replicated. While the hardware
ignores the issue of whether a given memory location is undefined, the Myrias debugger may be
used to detect undefined values.

A significant possibility for efficiency in merging occurs in connection with merge timing.
Logically, merging occurs upon termination of the last child task and is completed before the
parent executes the next instruction. In practice, merging can begin as soon as a child task com-
pletes, with various merging activities proceeding on the very processors which would otherwise
be idled by the terminated task(s). Furthermore it is not essential that the merge actually com-
plete for a page until that page is referenced in a subsequent instruction by the parent - indeed in
many circumstances some pages may never be referenced before the parent terminates, and thus
need never be merged!

The memory copying and merging rules at times imply surprising semantics. For example,
the code fragment:

pardo 10 j=1,N
do 10 i=1,N
A(ji) = A(ij)
10 continue

will correctly transpose the matrix A .

Another interesting feature of Myrias software is that all statically allocated memory (e.g.
static variables and common blocks in C or Fortran) is actually only created by the kernel on first
reference.

1.2.3. Use of Recursion

The programming approach to the system is functional in nature and is based on parallel
recursion. In fact recursion has been added to Fortran as a Myrias extension, and is strongly
recommended to users in the various manuals. As an example, we describe an implementation
of a global vector sum, assuming the vector is initially of length N. The parent creates two
tasks, each intended to sum half of the elements, storing the results in variables left and right.
Each child task similarly spawns two more children, storing results into two local variables of
the principal child, and so on. On completion of a pair of child tasks, its parent has the two par-
tial sums in separate variables, and therefore it proceeds to add these, providing the sum to the
next parent above. In this way the result is obtained at the global parent in time O (log (N))
without ever sharing memory. All assignment of work to processors is handled automatically.

This programming style is undoubtedly elegant, but because of the recursion involved, the
resulting program is not recognizable as a standard Fortran program. Recognizing this problem,
Myrias has recently extended the PARDO model by adding the capability to specify that certain
variables are to be shared for reduction operations. For example, the summation variable,
perhaps sum, can be declared to be a candidate for reduction, using a compiler directive, in

-5-

which case the compiler would recognize the construct

pardo 10 i=1,n
sum = sum + expr(i)
10 continue

as a reduction operation and would generate appropriate code. Myrias supports reduction opera-
tions for integer and floating point sum, max, min, logical operations and several others.

1.2.4. Comments on Effectiveness of Myrias Software

The ideal parallel software development environment is one where one can take a serial
program from a CRAY, SUN or other system, and run it immediately on the parallel system
without change. The program may run with poor performance: for example no parallelism has
been introduced, but at least it is running on the new hardware. Then, one can begin the
refinement process of optimizing the software to the parallel hardware, but starting with a work-
ing program.

The current Myrias system comes close to attaining this goal - far closer than any other
MIMD massively parallel system. Serial programs indeed run immediately on the system. In
fact even programs with massive memory needs will run without modification: while the pro-
grams run on a single processor, they can access memory stored on other processors. The only
requirement is to request sufficient SPS-2 processors (domain size) before running.

To begin the refinement process, one introduces PARDO instead of DO wherever indepen-
dent iterations are observed in DO loops - the compiler could also be optimized to detect some
of these. Performance is generally then greatly enhanced since multiple processors will be
working on the code previously handled by one. Unfortunately this is the end of the line on
SPS-2 - no further optimizations are available. It is desirable that further levels of refinement be
made available. For example, users may in the end want to specify which processors specific
tasks should run on, or to lock and share specific memory locations for write access without
incurring the overhead of a complete merge.

1.3. SPS-2 Performance

In the following sections 2-5 we describe the performance evaluation of the SPS-2 which
we have performed with the 64-processor SPS-2 at the Center for Applied Parallel Processing
(CAPP) in Boulder, Colorado. In section 2 we discuss simple scalar performance benchmarks
which provide a single-node upper bound on realizable performance from more realistic applica-
tions. In section 3 we describe performance for vector operations of the Saxpy type which in
principle involve no merging interaction between child tasks on completion. Section 4 studies
relaxation schemes in 1, 2 and 3 dimensions where we find that merging and non-local paging
effects reduce efficiency very substantially. Section 5 discusses a complete application - the

-6-

solution of the Shallow Water Equations, and provides comparisons between the CRAY-XMP,
the Connection Machine CM-2 and the SPS-2.

Throughout the study we quote performance in terms of megaflops (Mflops). Timing was
done throughout in terms of wall-clock time (Myrias routine ertime). Measurements in tables
specify the number of tasks T' used, as well as the domain size (number of active processors) D
which ranges from 1 up to 64. We have tested values of T that are several (2,4, .. 16) times
greater than D, but found little performance gain in most cases. Thus we describe here results
for the case T=D in most examples.

To allow relative comparison, the non-parallel single processor performance numbers have
sometimes been scaled linearly to an "equivalent performance" on a 64 processor machine. We
will always mark such scaled quantities in the tables with an asterisk to help identify them.

Several tables also record a quantity called "Efficiency". This will be defined (unless stated
otherwise) as the ratio:

Efficiency (T') = Mflops (T)/I(T Mflops(1)),

where Mflops (T') is the observed Mflops with T=D tasks, and Mflops (1) is the serial perfor-
mance, with PARDO replaced by DO. Efficiency measurements will generally be performed
where possible on scaled problems: i.e. the data set for the efficiency experiment with T tasks
should be T times larger than that used to study the single processor speed. In cases where
Mflops (1) cannot be measured due to memory constraints, we use Mflops (D ;) as the reference
point, where D .. is the smallest domain on which the benchmark will run.

There are other measures of efficiency used in this study. Generally if an efficiency value
of 1.0 appears in a table, then that quantity was used as an efficiency reference for that table.
Such efficiency values are supplied primarily to aid in understanding the variations within tables
and should not be regarded as measures of absolute efficiency (such as the function given
above).

2. SCALAR PERFORMANCE

In order to get a feeling for the likely peak machine rates of the system, we have analyzed
performance of several simple scalar benchmarks. All were on a single SPS-2 processor, in a
loop sufficiently long (e.g., 10,000,000) to ensure that loop overhead or similar effects are not
being measured, and that timing resolution is not causing perturbations. For comparison, results
from a SUN Sparc-station 4/110 and from a MIPS workstation have been included. The results
are shown in Table 1.

Table 1: SPS-2 Single Node Scalar Performance
1-Node 64-Node Ext. Prec.

Benchmark Mflops Mflops™ Mflops” SUN Sparc MIPS
¢ =a+c 0545 3.488 6.515 2.617 4.939
c =a*c 0510 3.264 6.180 2.589 2.952
¢ = a*c unrolled 0874 5.594 8.211 3.256 3.529
¢ =c +a*c 0753 4.819 8.570 3.254 3.737
c=c+a*ca=a-+c*b 0874 5.594 8.7296 3.937 3.969
super—unroll 6288 40.24

Each algorithm was implemented as a Fortran program and compiled with the -O2 option of the
Myrias Fortran compiler, mpfc, giving the highest level of standard optimization. The data types
were 32-bit. Slightly higher performance would be obtained with double precision data, and
higher still with extended precision. Extended precision is obtained using the -O2f compiler
option. For uniformity of results we quote only the single precision values. Double precision
data would have decreased the largest problems that we could study in the PDE solution and
application benchmarks. For comparison, we include above the extended precision benchmark
values. The 64-Node figures and extended precision figures are simply linear extrapolations of
the single node values and are useful in comparisons with the real 64-node parallel benchmarks
presented later. While extended precision produces close to a doubling of performance in simple
scalar benchmarks, we found only a 6%-14% improvement in the performance of the relaxation
and shallow water benchmarks described later.

The unrolled version of ¢ = a*c was obtained by unrolling 4 times. The super—unroll is a
special benchmark designed to make maximum use of the 68881 registers and is totally
unrepresentative of any normal computation. Since it is specific to the SPS-2 it was not meas-
ured on other systems. The actual code consists of the three lines:

fi=fi*f
sum = sum* fi
sum = sum - fi
repeated 16 times and surrounded by a DO loop of length 1 million. The super-unroll 64-Node

values are actual measured values for a PARDO loop (the rest of those columns are extrapo-
lated).

-8-

3. SAXPY TYPE VECTOR KERNELS

We have performed a detailed study of the performance of saxpy type operations in order
to learn more about the relevant system parameters. Saxpy type operations appear in many
situations as the low-level computationally intensive core of vectorizable applications. Exam-
ples include direct solvers for systems of equations and conjugate gradient iterative solvers for
PDE. As test cases we have used the vector operations:

a(i)=a@)+s*c(@), i=1,...N. (1)
a@)=a(@)+b()*c(), i=1,..,N. (2)

which we refer to as saxpy and vaxpy respectively. All arrays are floating point and s is a
scalar.

We have performed three studies of (1), (2) encompassing both single processor and multi-
ple processor cases. We remark that on a standard distributed processor, such as an Intel iPSC/2,
there would be no point in measuring multiprocessor versions of these two benchmarks. Neither
involves any interprocessor communication, and so one can predict exact linearity of perfor-
mance over the single-processor case. Because of interaction with the virtual memory system
this is no longer true on the SPS-2.

3.1. Single Node Performance

Single-node performance is measured by ensuring that all of the vectors a,b,c are
resident in the node memory. Because of the virtual memory, one can run a program on a single
processor (i.e. PARDO of length 1, or simply a DO), but with data spread over a larger number
of processors (the domain). We will denote the number of tasks actually computing by T', and
the domain size of processors requested to provide virtual memory by D in the sequel. To
ensure true single processor behavior, one must therefore run on a single processor with the
domain size also set to 1 - i.e. T=1 and D=1. The performance results, presented in Table 2, are
in agreement with the scalar benchmarks presented earlier. The SPS-2 performance was meas-
ured for the largest vectors that would fit in a single node: of length 65,536 elements.

Table 2: SPS-2 Single Node Saxpy Performance
1-Node 64-Node
Benchmark Mflops Mflops® Sun Sparc MIPS

a =a+s*c 056 3.584 9979 9790
a =a+b*c 052 3.328 7266 .6919

We have also studied (1-2) in two more interesting situations:

a) asingle processing node where N is so large that the vectors cannot reside in a single node
(T=1,D >1).

-9.

b) the true parallel processing case where we allow more than one processor to perform the
work (T >1,D >1).

Test a) gives a measure of the cost of accessing virtual memory, while test b) involves spawning
child tasks (since T >1) and therefore measures the overheads of task creation and merging. The
simplest case discussed above with all vectors resident in one node and only one task is useful as
a comparison point.

3.2. Single Processor Access to Virtual Memory

In case a) we examine the effectiveness of the virual shared memory environment of the
SPS-2 from the viewpoint of a single processor. A remarkable feature of the SPS-2 is that a pro-
gram computing on only one processor can solve a problem that is too large to fit in a single pro-
cessor. The ability to do so stems from the SPS-2 virtual memory. For this study we take vari-
ous vectors in (1-2) and complete the operation using only one processor. Table 3 shows the
degradation in performance resulting from this use of virtual memory in the case that the vector
length is the largest that will fit in a single node (D =1). Table 4 shows the case where we allow
the vector length to scale with the domain size D, but still use only one processor to perform the
computation T=1.

Table 3: Single Node Multiple Domain
SPS-2 Saxpy Performance: Fixed Length Vector
Benchmark Length Tasks Domain Mflops
a = a+s*c 64K 1 1 0566
a =a+s*c 64K 1 2 0419
a =a+s*c 64K 1 4 0415
a =a+s*c 64K 1 8 0363
a =a+s*c 64K 1 16 .0363
a =a+s*c 64K 1 32 0362
a =a+s*c 64K 1 64 0361
a =a+b*c 64K 1 1 0545
a =a+b*c 64K 1 2 0376
a =a+b*c 64K 1 4 0375
a =a+b*c 64K 1 8 0317
a =a+b*c 64K 1 16 0318
a =a+b*c 64K 1 32 0317
a =a+b*c 64K 1 64 0317

-10-

Table 4: Single Node Multiple Domain
SPS-2 Saxpy Performance: Scaled Vector Length
Benchmark Length Tasks Domain Mflops Efficiency
a =a+s*c 64K 1 1 0566 1.000
a =a+s*c 128K 1 2 0417 737
a =a+s*c 256K 1 4 0390 689
a =a+s*c 512K i 8 0324 572
a = a+s*c M 1 16 0312 551
a = a+s*c 2M 1 32 0320 565
a =a+s*c M 1 64 .0303 535
a = a+b*c 64K 1 1 0545 1.000
a =a+b*c 128K 1 2 0375 .688
a =a+b*c 256K 1 4 0338 620
a =a+b*c 512K 1 8 0265 486
a =a+b*c 1M 1 16 0255 468
a =a+b*c 2M 1 32 0258 473
a =a+b*c 4M 1 64 0254 466

The efficiency number given here is the ratio of performance with D processor domain to the
performance on 1 processor. Thus we observe about a 40-50% drop in performance due to the
overhead of virtual memory access. Of course the overhead would be reduced if more
significant work were performed at each vector element.

3.3. Multiprocessor Overheads and Task Granularity

As discussed in the introduction, the SPS-2 copies parent data spaces to child tasks and
merges pages of data on task completion that have been written into by multiple processes.
Since the indices i in operations (1,2) are all distinct, it follows that if the work is divided among
several tasks, no two tasks ever operate on the same element a (i) and thus the merging rules are
satisfied trivially in all cases. Basically this means that no merging between children should be
required on task completion. This is not quite true since, except in exceptional cases, a division
of the vector a (i) among T tasks will generally not provide segments restricted to disjoint sets
of pages. Thus some limited inter-child page merging should be expected, except in the special
case that a is chosen to be page-aligned and where N is a multiple of T and N /T is a multiple of
the page size.

In this study, case b) referred to above, we allocate large vectors a, b, ¢ and we study per-
formance as the number of tasks T is increased. We use two possible interpretations of "large
vectors". In the first case, we choose fixed size vectors and vary T. As per-task data granularity
decreases with increasing T, performance decreases relatively - i.e less than linear speedup is

-11-

exhibited. Linear speedup may be restored by increasing the work performed per task. This we
do by repeating the operations (1,2) nit times in each task. For constant nit we find that perfor-
mance is sub-linear, but the deviation from linear is less the larger nir becomes. With the choice
nit =T completely linear growth is exhibited. Table 5 exhibits performance measured for
several vectors lengths and using from 1 to 64 processors. The three columns correspond to the
choices nit =1, nit =T /4 and nit =T . For each choice we provide both Mflops and computa-
tional efficiency. The efficiency base (1.0) is the performance of a single processor on the larg-
est array that will fit in its memory (D =1) - .0565 Mflops. The single processor was measured
with nitz = 1, which is not optimal, and efficiencies above 1.0 in the table occur for this reason.

Table 5: Fixed Vector Length
SPS-2 Saxpy Performance
nit =1 nit = T/4 nit=T
Length Tasks Domain Mflops Effic. Mflops Effic. Mflops Effic.
4M 64 64 1.383 386 3.657 1.020 4.088 1.141
256K 4 4 .139 .62 133 .59 206 91
256K 8 8 207 45 183 40 457 1.01
256K 16 16 349 39 722 .80 965 1.07
256K 32 32 .618 34 1.849 1.02 2.069 1.14
256K 64 64 779 21 3.561 1.01 4.039 1.12
64K 1 1 .056 1.000
64K 2 2 072 .643
64K 4 4 129 .576 122 545 215 960
64K 8 8 152 339 250 558 437 975
64K 16 16 231 258 589 657 936 1.044
64K 32 32 317 177 1.031 575 1.925 1.074
64K 64 64 309 086 2.507 699 3.751 1.047

The data for the case nit =T are essentially linear - i.e. efficiency is 100% to within meas-
urement accuracy. Thus we conclude that the work involved in the case nit =T dominates the
PARDO overheads. Within a single processor this work amounts to applying a saxpy operation
at each point of a vector of length 262144/64 and repeating this 64 times, or a total of .52 million
floating point operations (task granularity). Linearity was not achieved with the choice nit = T/4
which corresponds to a task granularity of 130K floating point operations. Our conclusion is that
tasks with granularity below 100,000 operations will encounter severe inefficiencies.

-12-

In the second interpretation of "large vector" we take the vector length with T=D tasks to
be T times the vector length with one processor. This is a more appropriate measure of parallel
efficiency in that vector size (i.e. work to be performed) is being matched to the domain size. In
this case we observe results as in table 6 below. We note that performance is about 35% of
linear in scaling from 1 to 64 processors.

Table 6: Variable Vector Length
SPS-2 Saxpy Performance
Benchmark Length Tasks Domain Mflops Efficiency

a =a+s*c 64K 1 1 056 1.000
a =a+s*c 128K 2 2 071 634
a =a+s*c 256K 4 4 136 .607
a =a+s*c 256K 8 8 204 455
a =a+s*c M 16 16 390 435
a =a+s*c 2M 32 32 157 422

a =a+s*c 4M 64 64 1.389 388

-13 -

4. POISSON TYPE RELAXATION PERFORMANCE

In this section we study simple relaxation processes for 1D, 2D and 3D Poisson equations.
These are typical of processes occurring in many applications codes involving either elliptic
PDE solution or time evolution equations. The most direct applicability of these measurements
is to performance of standard "fast solvers" for the Poisson equation. The code kernels we will
describe are essentially those used in relaxation, multigrid and conjugate gradient solution of the
Poisson equation. Because the Poisson equation has constant coefficients, the ratio of computa-
tional work per grid point to memory traffic is severe, and it is fair to say that while typical,
these are very hard PDE to solve efficiently on a distributed memory system. To give a more
realistic problem we discuss an actual time evolution system in the following section, where the
same general performance is exhibited.

The three relaxation processes we study are:

b()=2a@)+a(i-1)+a(i+]), (1
b(i)=4a(i)+a(,i-D+a(,i+)+a(-1i)+a(j+1,i), 2)
bk,j,i)y=6ak,j,i)+ak,ji-)+a(k,ji+1)+ (3)

ak,j-1i)+ak,j+1i)+atk-1,j,i)+ak+1,j,0).

Here the arrays are respectively of dimensions n, nixn,, nXnsxn3. The equations above are
to be applied at each point of the interior of the corresponding 1D, 2D or 3D rectangular grid,
which we will denote generically as G. Were the equations to be applied at the boundary of G,
then they would index undefined points on the right hand side. This choice of relaxation scheme
corresponds to imposition of Dirichlet boundary conditions in a PDE solver.

To maintain brevity we will describe only the 2D case in detail. We implement the above
algorithm serially by enclosing the expression in a nested set of DO loops, one for each grid
direction. For the 2D case the code looks like:

do 10j = 2,nl-1
do 10i =2,n2-1
b(j,i)=40*a(,i))+a(i-D+a(i+)+a(-1i)+a(+1,i)
10 continue

To parallelize the code with T tasks, we would like to replace each DO with a PARDO, but this
in general generates too many tasks - a number equal to the grid size. Instead we will decom-
pose the grid G into T contiguous rectangular subgrids and each of T tasks will be assigned to
process a different subgrid.

The partitioning scheme used is simple. Let T=T,T, be a factorization of T. Then we
divide the index interval [2,n,~1] into T, essentially equal pieces and similarly we divide
[2,n,~1] into T, pieces. The tensor product of the interval decompositions defines the 2D
subgrid decomposition.

-14 -

In case T'; does not divide n -2 evenly, we can write:
n 1—2 =h 1T1 + Ty 091<T1.

We then make the first 7, intervals of length 4 ,+1 and the remaining T ,—r intervals of length
h, and similarly in the other dimension(s). This is conveniently done with a procedure

decompose (a,b ,t ,istart iend)

which decomposes an interval [a,b] into ¢ near-equal length subintervals as above, and which
initializes arrays istart (t), iend (¢t) with the start and end indices of each subinterval.

Thus the complete code to parallelize the above loop takes the form:

decompose(2,nl-1,tl,istartl iendl)
decompose(2,n2-1,12,istart2 iend?2)
pardo 10 ql=1,t1
pardo 10 q2=1,12
do 10 i=istartl(ql),iendl(ql)
do 10 j= istart2(q2),iend2(q2)
b(ji)=40%a(,i)+a(i-D+a(,i+D)+a(-1i)+a(G+1,i)
10 continue

In practice we collapse the double PARDO into a single PARDO of product length T=T,T, in
order to minimize possible recursive PARDO overhead.

The above procedure provides many different parallelizations of a given problem, one for
each possible factorization of the number of tasks 7. At one extreme are decompositions by
rows (case T=1), and at the other extreme are decompositions by columns (Ty=1), with inter-
mediate values representing decompositions by subrectangles. As we will see, performance is
strongly influenced by which of these choices is made. We have in all cases found that decom-
position by columns gives maximum performance. This is not a priori obvious, as in fact area-
perimeter considerations would suggest that virtual memory communication would be minim-
ized with a decomposition where T; =T,. Two competing effects are at work: the communica-
tion bandwidth requirements are determined by the perimeter of subgrids, whereas communica-
tion overhead costs (including merging) are determined additionally by a factor proportional to
the total number of data requests. The latter quantity is minimized by a column division. Row-
division is unfavorable because of the Fortran rules for data storage.

In Table 7 we present the results for 1D, 2D and 3D relaxation processes on arrays of vary-
ing size and using various number of processors. We have presented the best performance meas-
ured for each task value T, which in all cases occurred with T{=T. We have found only slight
variations from using multiple tasks per processor (i.e. T >D) and have presented only results for
the cases T=D as a result. For each grid size, the 16-processor result is regarded as efficiency
1.0, and the higher processor number efficiency is computed relative to the 16-processor case
(the problems are too large to fit on a single processor with T=D =1).

-15 -

The measurements described here were performed by repeating the PARDO loop for the
relaxation process 10 times. However only the last 9 iterations were actually timed. The first
iteration plays the role of an initializer - pages of data that are randomly scattered in memory are
brought to their most desirable locations during this first iteration of the PARDO. This seems to
be the appropriate measurement approach to give a feeling for likely performance of iterative
solvers or time evolution equations, both of which involve perhaps hundreds of iterations of a
basic step similar to the one studied here. For a "one-shot" relaxation operation performance
will be of order 20% lower due to overheads related to bringing in initial copies of pages. Times
varied by only a percent or so if 1 iteration was timed rather than 9.

Table 7: Relaxation Performance
Dim. Grid D T1 T2 T3 Mflops Efficiency
1 M 16 16 587 1.000
1 M 32 32 1.033 .880
1 M 48 48 1.692 961
1 1M 64 64 1.880 .801
2 1K x1K 16 16 1 .889 1.000
2 1K x1K 32 32 1 1.516 853
2 1K x1K 48 48 1 2.400 900
2 1K x1K 64 o4 1 2.796 786
3 128x128x64 16 16 1 1 1.063 1.000
3 128x128x64 32 32 1 1 1.955 919
3 128x128x64 48 48 1 1 2.593 813
3 128x128x64 64 64 1 1 3.359 .790

It is instructive to study the variation in performance for a given task number T as the task
decomposition varies - we call this varying the subgrid aspect ratio, although in fact it is the rask
subgrid aspect ratio. We present sample results for 2D and 3D relaxations in Tables 8 and 9.
The efficiency measures the deviation from the optimal case. Not all aspect ratios would in fact
run. For heavily row-oriented ratios (e.g. T;=1, T,=T') the system runs out of virtual memory
and kills the program unless the grid size is very small. There is no way to predict under what
circumstances this will occur, nor to recover gracefully when it does occur.

-16-

Table 8: 2D Effect of Subgrid Aspect Ratio
Dim. Grid D Ti1 T2 Mflops Efficiency

2 1Kx1K 64 8 8 537 191

2 1Kx1K 64 16 4 1.207 429

2 1Kx1K 64 32 2 1.997 710

2 1Kx1K 64 64 1 2.811 1.000

2 512x512 64 1 o4 036 .022

2 512x512 64 2 32 076 .047

2 512x512 64 4 16 217 134

2 512x512 64 8 8 502 310

2 512x512 64 16 4 946 584

2 512x512 64 32 2 1.336 825

2 512x512 64 64 1 1.619 1.000

Table 9: 3D Effect of Subgrid Aspect Ratio
Dim. Grid D Ti1 T2 T3 Mflops Efficiency

3 128x128%64 64 4 4 4 1.424 411
3 128x128%64 64 8 4 2 2.292 .661
3 128x128x64 64 16 2 2 2.286 .660
3 128x128x64 64 8 8 1 2.723 .786
3 128x128x64 64 16 4 i 3.082 .889
3 128x128x64 64 32 2 1 3.292 950
3 128x128x64 64 64 1 1 3.465 1.000
3 66X66X66 64 64 .089 .045
3 66X66x66 64 4 4 4 908 463
66X66x66 64 64 1 1 1.963 1.000

Finally, we demonstrate for the case of 2D relaxation, that choosing task numbers T larger
than the domain size D does not improve performance. Table 10 illustrates the variation in
Mflops on a 1K x1K grid when the number of tasks ranges over 64, 128, 512 and 1024 on a 64
processor domain.

-17 -

Table 10: 2D Effect of Many Tasks per Processor
Dim. Grid D T1 T2 Mflops Efficiency
2 1K x1K 64 64 1 2.811 1.000
2 1K x1K 64 128 1 2.736 973
’ 2 1Kx1K 64 512 1 2.508 892
2 1K xX1K 64 1024 1 2.243 .800

4.1. Implementations of Block Ordering

We have studied two data layouts and three computational methods for implementing
block-ordering of matrices.

The first data layout is the one described above where we declare array data as a 2D array,
in which case Fortran allocates the data contiguously by columns. Each task processes a subar-
ray, and clearly the columns in subarrays are also then contiguous, although successive columns
in any subarray are not contiguous, and involve a substantial stride, except in the case T=T. Of
course the virtual memory system plays havoc with the concept of contiguity at the word level,
but it will certainly preserve the concept at the page level, and with a reasonable implementa-
tion, contiguous columns should mostly fall in contiguous pages.

The second data layout is one where we store the data for each subgrid contiguously: i.e.
the sub-columns are stored contiguously and successive sub-columns are contiguous within each
grid block. The second layout is equivalent to the first in case T1=T but not otherwise. The data
storage in this case may be implemented as a single large linear array or as a linear array of 2D
sub-arrays. Since individual tasks work almost entirely within a single block, one might expect
better performance with this layout due to the improved locality of data.

The three computational methods used are:

1) the "normal"” method computes the start and end indices of grid-blocks within the large 2D
data arrays (layout 1) as described above, using multiple calls to the procedure decompose .
Standard DO loops are then performed with bounds determined by decompose .

2) the "index" method uses an explicit address calculation to retrieve data elements from a
large 1D array, ordered as in layout 2.

3) the "subroutine" method, treats the large one-dimensional array (layout 2) as a 1D array of

smaller 2D arrays, and passes a pointer to the appropriate 2D array to a subroutine. Then
subroutine declarations are used to equivalence the 1D input parameter array to a 2D array.

Table 11 shows the relative performance of these three methods in the case T =T , where they all
involve the same data layout. The index method (recommended in the PARDO Cookbook) actu-
ally degrades performance. This is due in part to the fact that the address calculation for each

- 18-

array reference involves 13 integer operations and hence overshadows savings in page
referencing/merging. The other two approaches are more or less comparable, with an advantage
for the subroutine method in the case of small task number (i.e. large subgrids).

Table 11: Block 2D Relaxation
Performance in Mflops
Grid D T Normal Index Subroutine
S12x512 12 12 0.27 0.14 0.51
512x512 15 15 0.36 0.16 0.60
512x512 18 18 0.44 0.19 0.72
512x512 21 21 0.52 0.22 0.80
S12x512 24 24 0.54 0.24 0.79
S12x512 27 27 0.86 0.27 0.85
512x512 30 30 0.89 0.28 1.03
512x512 33 33 0.90 0.30 0.97
512x512 36 36 0.99 0.31 1.14
512x512 39 39 0.98 0.31 1.18
S12x512 42 42 1.05 0.32 1.22
512x512 45 45 1.11 0.33 1.24
512x512 48 48 1.15 0.33 1.23
512x512 51 51 1.24 0.35 1.24
512x512 54 54 1.24 0.34 1.26
512x512 57 57 1.27 0.33 1.16
512x512 60 60 1.29 0.33 1.19
512x512 63 63 1.30 0.35 1.36

In Table 12 we present some examples of performance of the three methods in cases where
T#T, i.e. for non full-column decompositions. As expected, the subroutine method shows a
definite advantage the further we move from the case T =T .

-19 -

Table 12: Block 2D Relaxation Comparisons

Mflops
Grid D T T1 T2 Normal Index Subroutine
512x512 15 15 15 1 0.36 0.16 0.60
512x512 15 15 5 3 0.21 0.18 0.27
512x512 15 15 3 5 0.14 0.16 0.32
512x512 30 30 30 1 0.89 0.28 1.03
512x512 30 30 15 2 0.59 0.33 1.02
512x512 30 30 10 3 048 0.33 0.83
S512x512 30 30 6 5 0.36 0.33 0.87
512x512 30 30 5 6 0.34 0.32 0.78
512x512 45 45 45 1 1.11 0.33 1.24
512x512 45 45 15 3 0.62 0.44 1.16
512x512 45 45 9 0.49 0.43 1.11
512x512 60 60 60 1 1.3 0.34 1.20
S12x512 60 60 0 2 1.10 048 140
512x512 60 60 15 4 0.81 0.54 1.36
512x512 60 60 12 5 0.67 0.53 1.39
512x512 60 60 10 6 0.56 0.54 1.28
512x512 63 63 63 1 1.29 0.34 1.26
S12x512 63 63 21 3 0.81 0.56 1.25
512x512 63 63 9 7 0.51 0.54 1.18
512x512 63 63 7 9 043 0.55 1.17
512x512 63 315 315 1 1.12 0.03 1.04
512x512 63 315 105 3 0.73 0.33 1.07
512x512 63 315 63 5 0.60 0.44 1.11
512x512 63 315 45 7 0.48 0.48 1.14
512x512 63 315 35 9 0.39 0.50 1.09

=20 -
5. ACOMPLETE APPLICATION - THE SHALLOW WATER EQUATIONS

As another example of the current capabilities of massively parallel architectures, we
describe the implementation of a standard two-dimensional atmospheric model - the Shallow
Water Equations - on the SPS-2. These equations provide a primitive but useful model of the
dynamics of the atmosphere or of certain ocean systems. Because the model is simple, yet cap-
tures features typical of more complex codes, the model is frequently used in the atmospheric
sciences community to benchmark computers2. Furthermore, the model has been extensively
analyzed mathematically and numerically3-4. We have recently implemented the Shallow Water
Equations model on a range of parallel machines (including Connection Machine CM-2, Intel
iPSC/860, SUPRENUM-1, ES-1) using both explicit>7 and spectral® solution methods for the
equations.

The Shallow Water Equations, without a Coriolis force term, take the form
U _yp, , OH _

v+—=0,
ot ox
v _ U+ 9 _ 0,
ot oy
qu_ oPu + oPv 0,
ot ox dy
where u and v are the velocity components in the x and y directions, P is pressure, { is the vor-
ticity: {= -g—;— - % and H, related to the height field, is given by: H =P + W?+vHr2. Itis

required to solve these equations in a rectangle @ <x <b, ¢ <y <d. Periodic boundary condi-
tions are imposed on u, v, and P, each of which satisfies f(x+b,y)=f (x+a,y),
fGy+d)=f(.y+c).

A scaling of the equations results in a slightly simpler format. Introduce mass fluxes
U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equations reduce to:

Wy, O _

ou _z =
ot V+8x 0.
v oH _
at+ZU+ay--O,
P AU A _
at+8x+8y_0'

5.1. Discretization

We have discretized the above equations on a rectangular staggered grid with periodic
boundary conditions. The variables P and H have integer subscripts, Z has half-integer sub-
scripts, U has integer and half-integer subscripts, and V has half-integer and integer subscripts

221 -

respectively.

Initial conditions are chosen to satisfy V=0 at all times. We time difference using the
Leap-frog method. We then apply a time filter to avoid weak instabilities inherent in the leap-
frog scheme:

F(n) =f(n) + o (f(n+1)_2f(n)+f (""1)) ,

where o is a filtering parameter. The filtered values of the variables at the previous time-step are
used in computing new values at the next time-step. For a complete description of the discreti-

zation we refer to2.

5.2. CRAY Fortran Code

It is interesting to compare the actual code for the CRAY and SPS-2 implementations. The
Fortran code implementing the above explicit algorithm involves a 2D rectangular grid with
variables: u(i,j),v(@i.j),p(.j),z(.j), psi(i,j), h(i,j). There are three main loops, two
corresponding to the leap-frog time propagation of various quantities, and one for the filtering
step. A typical code sequence, used in the updating of the U, V and P variables, is:

do 200 j=1,n
do 200 i=1,m
unew(i+1j) = uold(i+1,j)+
tdts8*(z(i+1 j+1)+z(i+1 j))*(cv(i+1,j+1)+cv(ij+1)+cv(ij)
+ov(i+l j))-tdtsdx*(h(i+1,j)-h(i,j))
vaew(i,j+1) = vold(i,j+1)-tdts8*(z(i+1 j+1)+z(i,j+1))
*(eu(i+1j+1)+culij+1)+cu(ij)+cu(i+l))
-tdtsdy*(h(i j+1)-h(i,j))
pnew(ij) = pold(i j)-tdtsdx*(cu(i+1,j)-cu(i,))
-tdtsdy*(cv(i,j+1)-cv(ij))
200 continue

Each such loop is followed by code to implement the periodic boundary conditions. Note
that there are loops for both the horizontal and vertical boundaries, and in addition some corner
values are copied as single items.

5.3. SPS-2 Code

For the SPS-2 implementation, we simply parallelize the code in the way described in sec-
tion 4, introducing two calls to decompose followed by a double PARDO over tasks. Each task
performs a double DO loop using indices provided by decompose. That is the only code
modification required for the main loops. Similarly the boundary condition loops are parallel-
ized by treating them as 1D grids and using a single call to decompose for each side of the
subgrid. In practice task granularity for the boundary loops can become very small and so we

-2

have used a smaller number of tasks to parallelize the boundary than were used in the interior of
subgrids.

S.4. Performance Results: SPS-2 and other Systems

We have compared the explicit model on a CRAY-YMP”, on the Connection Machine
CM-2, on the Intel iPSC/860, on the SUPRENUM-1 and on the SPS-2. In each case we have
solved the largest grid size that would fit in memory.

The CRAY-YMP performed the explicit computations at 1532 Mflops with 8 processors on
a 512x512 grid. Connection Machine CM-2 32-bit performance was 4475 Mflops on a
2048x2048 grid, and was 2,893 Mflops in 64-bit arithmetic.

The SPS-2 performed the explicit model at 2.71 Mflops with 64 processors on a 1024x1024
grid, and performed at .117 Mflops on a single processor with a correspondingly smaller grid.
Thus parallel efficiency is about 36%. As with the relaxation examples, we studied many poten-
tial ways to decompose the grid among the tasks. The most efficient proved to be to use full
column slices.

Table 13: Performance of Shallow Water Equations
Machine Processors | Grid Size Mflops
CM-2 65,536 8096x8096 | 4475.
CRAY-YMP 8 - 512x512 1532.
CRAY-XMP 4 512x512 560.
iPSC/860 128 1024x2048 543.
SUPRENUM-1 16 512x512 72.
SPS-2 64 1024x1024 2.710
MIPS 1 128x128 1.431
SUN Sparc 1 1 256x256 1.389
SPS-2 1 128%x128 117
ACKNOWLEDGEMENTS

Most of the development work for the computations described here was performed on the
SPS-2 computer at the Center for Applied Parallel Processing (CAPP), University of Colorado.
We would also to thank Myrias Research Corporation for providing helpful tips on maximizing
performance.

* All CRAY measurements were performed by R. Sato of NCAR.

-23.

References

1. O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Myrias SPS-2 Computer,”” CS
Dept Technical Report, University of Colorado, Boulder, 1990.

2. G.-R. Hoffman, P.N. Swarztrauber, and R.A. Sweet, ‘‘Aspects of using multiprocessors for
meteorological modeling,”” in Multiprocessing in Meteorological Models, ed. D. Snelling,
pp. 126-195, Springer-Verlag, Berlin, 1988.

3. R. Sadourny, ‘‘The dynamics of finite difference models of the shallow water equations,”’
JAS, vol. 32, pp. 680-689, 1975.

4. G.L. Browning and H.-O. Kreiss, ‘‘Reduced systems for the shallow water equations,’
JAS, to appear.

5. O. McBryan, ‘“New Architectures: Performance Highlights and New Algorithms,”” Paral-
lel Computing, vol. 7, pp. 477-499, North-Holland, 1988.

6. O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Evans and Sutherland ES-1
Computer,”” CS Dept Technical Report, University of Colorado, Boulder, 1990.

7. O. McBryan, ‘““‘A Comparison of the Intel iPSC860 and SUPRENUM-1 Paralle] Comput-
ers,”’ Supercomputer, 1991, to appear. '

8. O. McBryan, ‘‘Connection Machine Application Performance,’’ in Scientific Applications

of the Connection Machine,, ed. Horst Simon, pp. 94-115, World Scientific Publishing Co.,
Singapore, 1989.

