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In the last few years there have been major improvements in the performance of hard nat-

ural language processing tasks due to the application of artificial neural network models. These

models replace complex hand-engineered systems for extracting and representing the meaning of

human language with systems which learn features based on processing examples of language. In

this dissertation, I present deep neural networks for semantic role labeling, and then for Abstract

Meaning Representation parsing, and a novel Distributed Abstract Meaning Representation, or

DAMR. I then describe a model used to create fixed vector representations of sentence meaning

from DAMR. Finally, I use natural language inference to test the quality of the meaning content of

these fixed vectors.
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Chapter 1

Introduction

Natural Language Understanding is the subset of Natural Language Processing that deals

with computer comprehension of human language. Computers can be programmed to understand

human language by mapping it to structures, and then performing inference on those structures.

This dissertation describes novel research for mapping natural language to symbolic and vector

representation structures using neural networks, and presents results obtained using this approach.

1.1 Natural Language Understanding

The models described here produce computer-friendly meaning representations, which are

primarily meant to be used as the input for further processing in order to accomplish some higher-

order meaning associated task. This process is generally known as Natural Language Understand-

ing (NLU). NLU is a critical part of many of the most actively researched Natural Language Pro-

cessing (NLP) problems today, including question answering, translation, and dialog analysis.

NLU can be viewed as having various levels of intensity, ranging from shallow to deep.

(note that this has nothing to do with the ”Deep” in ”Deep Learning”). Shallow NLU extracts

specialized, simple meaning, such as determining the departure and destination cities in an airline

reservation application. In that case, specific ”slots” are filled based on the specific domain of in-

terest. Deep NLU attempts to understand language in a more general fashion, with less assumption

about semantic context. Deep NLU might be used to understand detailed technical content in a pro-

fessional journal, or to analyze the plot of a novel. In this dissertation we focus on representations
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and methods which can be used for Deep NLU.

For any task that requires NLU, when it is possible to consider the semantic content of text to

be limited to a narrow field, the accuracy of the NLU algorithm can be much higher than if a more

general context must be considered, so its important to match the algorithms to desired outcome.

Current methods for Deep Natural Language Understanding attempt to first model natural

language in a general way, capturing ideas that are expressed in text and mapping them into a

representation, which represents some state of affairs of the world. The representations are then

related to the ”world” we are interested in modeling. It is important to limit the ”world” we will

relate to if it can be done, because we will then increase the accuracy of our analysis. Examples of

the world we model for Deep NLU might be drug reactions for a medical text analytics application,

or useful information specific to a human user in the case of a personal digital assistant. The data

associated with the world is often stored in some sort of database, called a knowledge base.

The general system ability to draw valid conclusions from meaning representations and a

knowledge base is called inference. A practical system should be able to make an assessment

about the truth of propositions which are not explicitly expressed, but which can be logically

derived from the ideas expressed in a meaning representation. The two most commonly used

forms of meaning representations for Deep NLU are called Symbolic and Distributed. We now

describe each of these, along with the general methods which can be used to relate representations

of one of the two forms to each other.

1.2 Symbolic Meaning Representations

The symbols which are used in Symbolic Representations are used to represent objects,

relations between objects, and attributes of objects.

Groups of words in a sentence, like Rocky Mountain National Park, can be mapped to a single

object, in this case, a noun phrase, which can be identified by a subtask called shallow parsing, or

chunking. Another example of a symbolic subtask, called semantic role labelling, identifies the

roles of words in a sentence as related to a particular verb, or predicate.
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1.2.1 Abstract Meaning Representation

A recent innovation in symbolic representations is the Abstract Meaning Representation

(AMR) which is designed to incorporate these individual subtask productions into a single coherent

meaning representation. AMR is meant to be a more general purpose, broad-coverage meaning

representation, as opposed to a task-specific representation. While almost any isolated sentence

can be interpreted in different ways based on other evidence, such as surrounding context, there

is a notion of most probable meaning for a sentence, and a sentence can be disambiguated based

on that notion. The AMR specification comes close to being able to represent any disambiguated

english language sentence and development is continuing to improve its expressiveness.

Figure 1.1 shows an example of an AMR for the simple sentence It definitely sounds inter-

esting.

sound-01

interest-01it definite

ARG1 ARG2
mod

Figure 1.1: AMR Graph for the sentence: It definitely sounds interesting.

1.2.2 Truth-Conditional Reasoning

Truth-Conditional Reasoning requires some definition of truth, and a means for testing the

truthfulness of a meaning representation. This in turn enables verifiability, which allows us to

compare the state of affairs expressed in the language model to the state of affairs of our world. To

this end, automated deduction methods can be used in order to relate meaning representations to a

knowledge base [Montague, 1973, Blackburn and Bos, 2005].
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One commonly used logical framework is called first order logic, which is a flexible, well-

understood, and computationally tractable means of providing a truth-conditional mapping from

symbolic meaning representation expressions to the world being modeled. A typical reasoning

flow using symbolic meaning representations is shown in Figure 1.2. 1

1.3 Distributed Meaning Representations

Vector representations for symbolic representations consist of one-hot, or integer valued

vectors which are the length of the vocabulary, and they are therefore considered high dimensional

and sparse. Distributed Meaning Representation vectors express meaning using a relatively small

number (50 to 1000) of collections of real-valued parameters, and are described as low dimen-

sional and dense. The advantage of representing meaning this way is that comparisons between

representations become meaningful - cat vs. dog is more similar than cat vs. plant, for example.

1.3.1 Word Vectors

The use of distributed word representations generated from large text corpora is pervasive in

modern NLP. When word meanings are represented as vectors, we can consider this as defining a

semantic hyperspace, where each word is defined by its position. The idea of representing meaning

in a geometrical space is not new, it dates back to [Osgood and Suci, 1957], who asked subjects to

rate word meanings on a series of scales whose extremes were polar opposites, like happy - sad.

Vectors are the natural feature representation for neural networks, and much of todays NLP

research starts with word representations as input to neural networks, as does the work described

here.

Word Vectors can be trained ”from scratch” during task specific, supervised training. How-

ever, over the past decade or so, automated techniques which use the context of words in large

1 A more restricted logic framework, called Simple Discrete Event Calculus (SDEC), was used by [Mitra and
Baral, 2015] to accurately solve a set of text understanding and reasoning tasks posed by [Weston et al., 2015]. AMR
representations were obtained using an early AMR parser [Flanigan et al., 2014]. They were then translated to SDEC,
and processed by a reasoning engine, to answer basic questions. More details will be described in Chapter 2.
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quantities of text to create vectors has revolutionized Natural Language Processing in many areas.

The pre-trained word representations generated in this way group similar words together, and con-

tain a remarkable amount of meaning structure. Furthermore, the process has become efficient and

widely available. Pre-computed vectors of various sizes have been made available on the internet

for research.

One of the earliest use of automatically generated word representations dates back to 1986

due to [Rumelhart et al., 1988]. The follow up work includes applications to automatic speech

recognition and machine translation [Schwenk, 2007, Mikolov, 2012], and a wide range of NLP

tasks part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words

and the likelihood that the sentence makes sense: [Collobert and Weston, 2008] sentiment classifi-

cation: [Glorot et al., 2011] parsing natural scenes: [Socher et al., 2011b] analogy and paraphrase:

[Turney, 2013] image annotation: [Weston et al., 2011]

The word representations computed using neural networks are very interesting because these

embeddings explicitly encode many linguistic regularities and patterns. Somewhat surprisingly,

many of these patterns can be represented as linear translations. For example, the result of a vector

calculation vec(Madrid) - vec(Spain) + vec(France) is closer to vec(Paris) than to any other word

vector [Mikolov et al., 2013b, Mikolov et al., 2013a].

1.3.2 Sentence Vectors

The principle of compositionality describes how the semantic content of words and syntax

compose the larger meaning expressed by sentences. A distributed representation for sentence

level meaning is described in Chapter 5, and a means of converting this representation to a fixed

sized vector is described in Chapter 6. Fixed sized sentence vectors are interesting because they

can be used as the input for many different semantic processing tasks and applications.

One method of composing sentence meaning vectors without syntax is surprisingly effective:

simply add the word representations together, illustrated by the composition example Vietnam +

capitol = Hanoi in [Mikolov et al., 2013b]. We will explore more effective compositional meth-
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ods such as convolutional and recurrent neural networks, which learn to model complex semantic

phenomena that depend on word order, for example.

1.3.3 Relational Reasoning

Entailment and contradiction are considered to be key concepts in the linguistic field of se-

mantics, necessary (but not sufficient) for proper understanding of language. Natural Language

Inference (NLI) is the process of identifying and using these relations in computational systems

[Fyodorov et al., 2000, Condoravdi et al., 2003, Bos and Markert, 2005, Dagan et al., 2006, Mac-

Cartney and Manning, 2009]

An NLI model considers two sentences, a premise and a hypothesis, and attempts to de-

termine their relationship to each other. A common set of labels used to define this relationship

is:

• entailment: the meaning of the hypothesis can be inferred (entailed) from the premise

• contradiction: the meaning of the hypothesis contradicts the premise

• neutrality: the two sentences are semantically independent.

For example, given the premise Small boy wearing blue shorts sitting on bed, the hypothesis

the boy’s shorts are red is a contradiction. Likewise, The boy is 6 years old is neutral, and A boy is

wearing shorts is an entailment.

An inference-based reasoning flow using distributed meaning representations is shown in

Figure 1.3. The task is simple to define, but demands handling complex phenomena such as lexical

and syntactic ambiguity, lexical entailment, quantification, coreference, tense, belief, and modality.

As such, NLI is considered to be a very good benchmark task for assessing reasoning capability.

1.4 Artificial Neural Networks

Artificial Neural networks are algorithms which can be run on a computer, and which loosely

mimic the way that some believe that biological brains, including human brains, work. The theory
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is over fifty years old [Rosenblatt, 1962], and enthusiasm for it ebbs and flows over the decades.

Recently, new applications exhibiting state of the art performance, using advanced neural network

architectures and much cheaper and more powerful computers, are making them very interesting

once again.

In a biological neural network, like that shown in Figure 1.41 , axon terminals connect via

synapses to dendrites on other neurons. The electrical signals from one neuron to another can

have different synaptic strengths. If the sum of the input signals into one neuron surpasses a

certain threshold, the neuron sends an action potential (AP) at the axon hillock and transmits this

electrical signal along the axon to the next group of neurons.

In an artificial neural network composed of artificial neurons like (figure 1.5), signals from

a simulated neuron are multiplied by a weight before being transmitted to other neurons. This

weight is similar to synaptic strength in a biological network.

Biological axon firing based on a threshold is a form of non-linearity. The artificial equiv-

alent is a quick but smooth mathematical transition, such as a hyperbolic tangent, a sigmoid func-

tion, or the currently popular rectified linear unit (RELU).

Like many natural phenomena, rather than the incredibly complex structure of trillions of

independent connections, the brain is believed to be organized in a more organized, fundamental

way which can be thought of as successive application of a common pattern of neurons, which

some, such as [Kurzweil, 2012], call a pattern recognizer. The brain is remarkably adaptable. For

example, it is known that when a specialized part of the brain is damaged, other parts can learn to

compensate, suggesting that seemingly unlike functions such as sight or speech are composed of

similar structures.

An artificial neural network structure is created with default connections and connection

strengths, and an algorithm is applied to ”learn” the connections and weights of this general struc-

ture. The algorithm is called ”back-propagation” because it runs in the opposite direction from

1 Source: ”Blausen 0657 MultipolarNeuron” by BruceBlaus - Own work. Licensed under
Creative Commons Attribution 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Blausen 0657 MultipolarNeuron.png#mediaviewer/File:Blausen 0657 MultipolarNeuron.png.
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which the network normally runs, as will be explained. The process of running this learning algo-

rithm is called ”training”.

When the parameters of a network have been trained, the network is ready to perform its

task, which is referred to as running the network, or model, forward.

1.5 This Dissertation

Experiments with deep learning for generating symbolic and distributed meaning represen-

tations constitute the primary mode of research in this dissertation. My goal is to understand and

improve neural network based semantic extraction models that have been empirically shown to

help solve hard natural language processing problems. After Chapter 2 introduces the key techni-

cal concepts which will be used, Chapter 3 presents a convolutional neural network based semantic

role labelling system, which achieves state of the art performance for a dependency parse sourced

system. The key finding was that separate role and sense inference models yielded the best results,

and an ablation study shows the influence of various input features. Chapter 4 uses Long short-

term memory networks to create an Abstract Meaning Representation parser, this time without

using explicit syntax from a separate parsing task. The system learns to identify syntactic clues

embedded within the sentence implicitly, and obtains state of the art results. In chapter 5, the

AMR parser is modified and improved to create an intermediate representation, a Distributed Ab-

stract Meaning Representation. The parser results are further improved with the new architecture,

which confirms that the meaning of a sentence is adequately represented in the intermediate rep-

resentation. In chapter 6, this intermediate representation is used as a feature source to a bridging

network, which produces a fixed-sized vector representing sentence meaning. The sentence vectors

produced are then tested using two natural language inference corpora, SNLI and MultiNLI. The

results are promising, yielding competitive performance compared with other published sentence

vector techniques. Finally, Chapter 7 concludes and lays out promising directions for future work.
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Figure 1.4: Biological Neuron.
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Figure 1.5: Simple ANN Cell.



Chapter 2

Background

2.1 Symbolic Meaning

By themselves, symbols allow us to express completely equivalent entities, but a reference

system is necessary to gain further insight to compare two different symbols. For example, the

symbols boy, dog, and rock are all recognized as being different from each other, but there is

not an inherent property of the symbols that tells us that two are alive and the other inanimate.

Similarly, hop and jump are different symbols, but their similarity is not directly represented.

The words in a sentence can be thought of as discrete symbols. A count of the number of

word symbols in a document can be used to generally describe the document and compare it to

others, and is the basis for basic search algorithms like Google. This simple form of representing

a document is called a ”bag of words”, since we could cut the document into its constituent words

and jumble them up before counting them.

But words are ambiguous. Consider the sentence:

I saw a man on a hill with a telescope.

Does the word saw mean that we viewed him with our eyes, or did we cut him with a saw? Even

when words are disambiguated, sentences can almost always be interpreted in different ways. Did

we use the telescope to see the man, or is he the one with the telescope? Questions like these are

usually resolved using common sense, or the context of the sentence.

The importance of word order for understanding meaning, is illustrated in the example below,

taken from [Landauer et al., 1997]. Sentences (1-a) and (1-b) contain exactly the same set of words
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but their meanings are very different.

1-a: It was not the sales manager who hit the bottle that day, but the office worker with the

serious drinking problem.

1-b: That day the office manager, who was drinking, hit the problem sales worker with a

bottle, but it was not serious.

Even though word order can be very important, models which ignore word order can perform

surprisingly well, as we will show in Chapter 6.

2.1.1 Lexical Resources

Lexical resources are used to group word symbols together based on meaning. Various

lexical resources have been developed over the years, and four of the most important ones have

been linked together in a project called SemLink [Palmer, 2009, Loper et al., 2007]. Semlink

includes:

• PropBank: [Palmer et al., 2005a] A corpus of one million words of English text, annotated

with argument role labels for verbs; and a lexicon defining those argument roles on a per-

verb basis.

• VerbNet: [Schuler, 2005] A lexicon that groups verbs based on their semantic/syntactic

linking behavior.

• FrameNet: [Baker et al., 1998] A lexicon based on frame semantics.

• WordNet: [Miller et al., 1985, Fellbaum, 1998] A lexicon that describes semantic rela-

tionships (such as synonymy and hyperonymy) between individual words.

2.2 Syntactic Parsing

Syntactic parsing of natural language sentences is a central task in natural language process-

ing (NLP) which is an important step for composing language into meaning. The explicit use of

syntax has been an important component for many tasks, such as relation extraction, semantic role
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labeling (Gildea and Palmer, 2002) and paraphrase detection (Callison-Burch, 2008).

S
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.
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VBD
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NP

NN

market

NN

stock

DT

the

IN

after

VBN

announced
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NP

NNS

results

DT
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Figure 2.1: Tree for Charniak Parse Tree

There are two dominant ways to describe syntactic structure. The phrase-based, or con-

stituency based parse, which represents how words are combined to create phrases is shown in

figure 2.1. The dependency parse, which concentrates more on the relationship of words to each

other in a sentence, is shown in figure 2.2. Neural networks can be used create either form [Chen

and Manning, 2014, Pei et al., , Durrett and Klein, 2015, Nguyen et al., 2017], but more effort has

been applied recently towards the dependency parse, probably because it is applicable to a larger

group of languages and a dependency parser is easier to produce. We use a dependency parser to

source the semantic role labeler in Chapter 3.

DT NNS VBD VBN IN DT NN NN VBD
The results were announced after the stock market closed

NMOD SBJ

root

VC TMP
NMOD

NMOD SBJ

SUB

Figure 2.2: Example Dependency Parse, with POS Tags
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2.3 Semantic Role Labelling

Semantic role labeling (SRL) is a form of shallow semantic parsing which identifies the

predicate-argument structure in a sentence. The Proposition Bank Project [Palmer et al., 2005a]

added predicate-argument information called semantic role labels to the syntactic structures of the

Penn Treebank corpus, which spawned extensive machine learning activity meant to automatically

discover these relationships. Semantic role labelling is useful as an intermediate step in a large

number of semantic tasks, such as such as question-answering [Surdeanu et al., 2003, Moschitti

et al., 2003, Shen and Lapata, 2007], text categorization [Persson et al., 2009], and inference

[Emanuele et al., 2013].

2.4 Abstract Meaning Representation

Semantic parsing is the process of extracting meaning from text and expressing it in some

sort of common semantic framework. An important consideration has been the definition of the

framework - how can the ideas in a sentence be expressed in a general, consistent manner? Tra-

ditional representations have expressive shortcomings which have motivated the development of

a general graph based representation, called Abstract Meaning Representation (AMR) [Banarescu

et al., 2012].1

AMR graphs represent semantic information as a set of concepts (nodes) connected by rela-

tions (edges). AMR concepts incorporate a number of NLP tasks, including named entity recog-

nition, [Nadeau and Sekine, 2007], word sense disambiguation [Banerjee and Pedersen, 2002]

and lemmatization. AMR makes extensive use of PropBank framesets [Kingsbury and Palmer,

2002, Palmer et al., 2005a] to capture the relations between verbs and their arguments. In addi-

tion, AMR requires normalizing temporal expressions [Verhagen et al., 2010, Strötgen and Gertz,

2010].

Abstract meaning representation is a graphical semantic form which allows the expression

1 http://amr.isi.edu/language.html
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of the meaning of text as concepts and their relations. AMR graphs can be printed as regular text

(see figure 2.3b), or drawn as graphs (figure 4.1), which are generally understandable by humans

(although not as easily as the original text).

Corpora have been constructed with sentence-AMR pairs, which can then be used to train

an AMR parser. The parser described in section 4 uses recurrent neural networks in its underlying

architecture to learn how to parse sentences into AMR’s.

2.4.1 AMR as a source for semantic tasks

AMR is designed to contain sufficient semantic content for downstream processing, and a

number of tasks have been developed.

AMR has successfully been used as the front end of system designed to test the natural

language understanding ability of an intelligent agent by [Mitra and Baral, 2015]. [Weston et al.,

2015] observed that many of the question answering tasks currently proposed for testing language

understanding are too domain-specific, or require competence at so many subtasks (deduction, use

of common-sense, abduction, coreference etc.), making it difficult to interpret the results from

different approaches. They have introduced a set of 20 tasks for text understanding and reasoning

which are less intertwined, called babi. Each task is noiseless and provides a set of 1000 training

and 1000 test QA sets for problems which a human can potentially solve with 100% accuracy.

They use the Flanigan parser to create AMRs, and then use a simple translation of AMR to Simple

Discrete Event Calculus (SDEC). Here’s an example from Task 8 (list/sets):

AMR

Flannigan
Parser

translate
to SDEC
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The system in [Mitra and Baral, 2015] uses the [Flanigan et al., 2014] parser to generate

AMR:

and then translates to Simple Discrete Event Calculus (SDEC):

The system achieves nearly 100% on all 20 tasks, outperforming both Memory Network

[Weston et al., 2014] and the Dynamic Memory Network [Kumar et al., 2015], two recent advanced

neural network based models.

The graphical form of AMR can be useful and intuitive for composition and summarization.

[Liu et al., 2015] present early results for their investigation into using AMR as part of an ab-

stractive summarization tool. Abstractive summarization can use paraphrasing to describe a text,

as opposed to extractive summarization which just selects small subsets from it. They envision

a pipeline consisting of: i) parse sentences to AMR. ii) merge sentences into a single graph. iii)

resolve common meanings to create a source graph. iv) select a portion of the source graph to

generate a summary graph. v) use an AMR to text generator to create the summary. They assume

the eventual availability of AMR to text generators, but since they don’t exist yet, they heuristically

generate a bag of words representation of their summary for comparison instead.

[Kai and Grishman, 2015] use a set of carefully crafted experiments to investigate the benefit

of using information from AMR as features for event detection. They studied adding information
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from AMR about parent and sibling nodes, and found that the relation connecting sibling nodes,

and the combined word with relation of each sibling node, provide good evidence for word sense

disambiguation of the trigger candidate. They added AMR features to a maxent system and showed

a 2.1% improvement in F1 score for the ACE task.

2.5 Distributed Word Vectors

Prior to about 2012, most NLP systems treated words as atomic units, as indices into a

vocabulary. As machine learning techniques progressed, it became possible to train more complex

models on large data sets, and methods of creating dense word vectors, based on word context,

emerged. Notable contributions to this progression include ([Hinton et al., 2006], [Bengio et al.,

2007] and [Weston et al., 2012]).

Word vectors can be generated using unsupervised training, on large corpora, such as wikipedia.

For example, the word vectors generated by [Collobert et al., 2011] were created using a pairwise

ranking approach (([Schapire and Singer, 1998]). The goal of the neural network is to compute a

higher score when given a correct phrase than when given an incorrect phrase. The network is first

given the actual windowed words from the training corpus, then the same words with the center

word replaced by a nonsensical word. This generates a score for the correct and incorrect phrases,

which can be used as the ranking criteria:

Θ 7→
∑

x∈X

∑

w∈D

max

{
0, 1− fΘ(x) + fΘ(x(w))

}
(2.1)

where X is the set of all possible text windows with dwin words coming from the training corpus,

D is the dictionary of words, and x(w) denotes the text window obtained by replacing the central

word in the text window by the word w.

These word vectors (also called word representations, or embeddings) are then used as input

for further processing. A commonly used approach, described in [Collobert et al., 2011], is to

use vectors which have been pre-trained, using unsupervised training, to initialize a network. The

representations can then be fine-tuned using supervised training to execute a specific task.
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There is an almost unlimited amount of free, untagged information available on the web. A

method of training just the word representations from untagged databases has been very success-

fully applied to create a starting set of vectors that can be used to initialize a network, which is

then fine-tuned with supervised training to execute a specific task. By ”pre-training” these word

representations using large amounts of untagged text, very informative word relationships can be

inexpensively extracted, and later used as the starting point for task specific application learning,

see for example [Hinton et al., 2006], [Bengio et al., 2007] and [Weston et al., 2012].

The word representations generated by [Collobert et al., 2011] were created using a pairwise

ranking approach (([Schapire and Singer, 1998]). The goal of the neural network is to compute a

higher score when given a correct phrase than when given an incorrect phrase. The network is first

given the actual windowed words from the training corpus, then the same words with the center

word replaced by a nonsensical word. This generates a score for the correct and incorrect phrases,

which can be used as the ranking criteria:

Θ 7→
∑

x∈X

∑

w∈D

max

{
0, 1− fΘ(x) + fΘ(x(w))

}
(2.2)

where X is the set of all possible text windows with dwin words coming from the training corpus,

D is the dictionary of words, and x(w) denotes the text window obtained by replacing the central

word in the text window by the word w.

The collection of 130K word representations from [Collobert et al., 2011] was pre-computed

and published by the authors. Each representation is a vector of fifty real numbers. This model was

created by running an unsupervised neural network on the entire English Wikipedia, which took

seven weeks. The text was tokenized using the Penn Treebank tokenizer script, which resulted

in a dataset containing about 631 million words. The most common words from a Wall Street

Journal corpus were selected from the model, and another 30,000 of the most common words from

a Reuters corpus were also selected.
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2.6 Word Embedding Visualization

Unsupervised pre-trained word representations have been noted by [Mikolov et al., 2013b]

and others to have very interesting linguistic structure. To visualize this structure we analyzed

the embeddings using an approach based on Network Theory. Each word can be considered to

be a vertex in a 50 dimensional hyperspace, and the Euclidean distance between words provides

a similarity measure which is assigned to each edge in a network. This network can be grown by

applying edges to the word vertices, starting from the closest words, and adding edges in order

of increasing distance. The resulting structure is shown in Figure 2.4. The list of words in each

cluster, shown in Table 2.1 contains a readily visible degree of semantic and syntactic similarity

within each group.

The vectors which define the word representations (vertices) within these components are

plotted together in Figure 2.5. Distinct bands of similar strength show the common traits between

vectors which are responsible for the similarities which cause them to be grouped together within

the network.

2.6.1 Sentence Vectors

A significant amount of research effort is currently being applied towards generating vectors

to represent sentence meaning, and finding ways to use them as the basis for more sophisticated

semantic applications. The emergence of sentence vectors as a common representation form ben-

efits NLP research by allowing multi-task sentence representations to be produced independently

from tasks which use them as input.

Sentence vector representations can be created for use in specific tasks, for example, by

training an LSTM network using the sequence of word vectors representing the sentence as an

input using a task specific training objective. Because the resulting vectors are influenced heavily

by the training objective, they will be overfitted to the particular task.

Multi-task vectors on the other hand can be computed once, then and archived, and refer-
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enced as needed. They project meaning into a common space, promoting data sharing and re-use.

A straightforward method of creating multi-task sentence vectors is to average the word vectors for

the sentence. Even though this ”bag of words” method discards the important information associ-

ated with word order, it can be surprisingly effective for some tasks, such as sentiment analysis.

Systems which create sentence vectors using supervised learning require large amounts of

labelled training data, which can be expensive to create. Unsupervised learning techniques can

make use of large and easily obtainable unlabelled datasets. Autoencoders which encode sen-

tences into representations, and then try to decode them back into the original sentences have been

successfully used[Dai and Le, 2015].

Skip-thought vectors [Kiros et al., 2015] are generated using a training objective which can

be used for unsupervised training of sentence vectors. Similar to the word2vec skip-gram algorithm

[Mikolov et al., 2013a], which predicts neighboring words, sentence representations are trained by

having the system try to predict the previous or next sentences within book passages.

2.6.2 Sentence Vector Sourced Tasks

Some machine learning NLP systems can use a single vector representation as input. For

example, sentiment analysis can be accomplished by first using a model to compose a distributed

vector representation of the words in a sentence, then classifying the sentiment based on this rep-

resentation.

Many other NLP tasks take the form of examining the semantic content of two sentences,

and a common approach for these kinds of tasks is to first create a vector for each sentence and

then process the two vectors.

Answer Selection involves examining a question sentence and comparing with various can-

didate answers to find the closest match. It can be accomplished by converting the two sentences

into vectors which are then fed to an answer matching function to determine the degree of match

[Tan et al., 2015].

Paraphrase Identification compares semantic similarity, which can be done by comparing



21

two sentence vectors as in [Socher et al., 2011a].

Semantic Inference determines the semantic relationship between a premise sentence and a

hypothesis sentence. A classifier determines whether the premise (i) contradicts the hypothesis,

(ii) is not related, or (iii) is entailed (implied) by the hypothesis [Bowman et al., 2015].

2.7 Neural Networks

2.7.1 Forward

Neural networks are composed of layers. The parameters for each layer are referred to as

Θ, which includes a matrix of weights, W , and a vector of bias terms b. Each layer’s output,

prior to the activation function, can be calculated from the previous layer’s activation output and

parameters.

f lΘ = W l−1f l−1
Θ + bl−1 (2.3)

2.7.2 Word Level Likelihood

An objective function is attached to the outputs of the network in order to provide a frame-

work for what the network produces. A function which produces higher outputs, or scores, for

good results, and low outputs for bad results is desired, and can be used to train the network to

achieve that objective. One objective function is for example a mean squared error. A more com-

monly used, probabilistic objective is log-likelihood. To maximize a log-likelihood objective, the

predictions of the network are converted to properly normalized log-probabilities using a softmax

function ([Bridle, 1990]), which turns a linear regression into a logistic regression. This is some-

times referred as stacking a softmax function on top. This will coerce the network into producing

normalized probabilities, which are perfect for classification problems where we are trying to fig-

ure out the most probable class to assign to the input.
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Using the notation from [Collobert et al., 2011], the score of the system for tagi, given a

Θ and training example x, is [f(Θ, x)]i. The training example x is composed of the words of a

sentence and some limited features extracted from the words, which are specific to the model. For

Word Level Likelihood, a conditional tag probability given the training sample and the system

parameters, p(i|x,Θ) can be computed as:

p(i|x,Θ) =
e|f(Θ,x)|i

∑
k e
|f(Θ,x)|k

(2.4)

Defining the log add operator as

logadd
i

(zi) = log(
∑

i

ezi) (2.5)

To simplify some of the following descriptions the reference to x will be omitted, so that the

output of the network for a given tag i, |f(Θ, x)|i, will be shortened to f [Θ]i.

It’s mathematically convenient to maximize the log of the probability, called log likelihood.

The log-likelihood of one training example (x,y) can then be expressed as:

logp(y|x,Θ) = f [Θ]y − logadd
j

(f [Θ]j) (2.6)

The softmax training criterion is also referred to as cross-entropy. It doesn’t consider the

often important relationships between words in the sentence, so a sequence detector (such as a

Viterbi detector) is commonly added to the system to enforce dependencies between predicted

tags.

2.7.3 Back Propagation

Back propagation is an important algorithm used to train the weights of the system. The

objective is to choose parameters which will maximize the likelihood that the system produces
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the desired output. Back propagation does this by first calculating a cost function (which is the

log of the inverse of the probability discussed in section 2.7.2), then finding the partial derivatives

of each parameter with respect to this cost function. By subtracting a fraction of this derivative,

or gradient, from the parameters Θ while training, Θ are coaxed into a set of values which cause

f [Θ] to produce values with minimum cost (maximum likelihood). Note that there are many such

configurations, we are only looking for one during a single training session. This process is known

as stochastic gradient descent, and is used to train the models described here.

2.7.4 Word Level Likelihood Gradients

Backpropagation can be based on the Word Level Log-Likelihood gradients such as de-

scribed in section 2.7.2, or it can be based on Sentence Level Log-Likelihood gradients.

Backpropagation works by first computing the partial derivatives of the inputs of the neurons

(after the sum is calculated, but before the activation is applied). Once these so called δ terms are

computed, the gradients for parameters can be calculated from them. Calculation of the Cost

function with respect to the output gradients of the network, will now be described.

If y is the true tag for a given word, maximizing 2.6 corresponds to minimizing:

C(fΘ) = logadd
i

[fΘ]j − [fΘ]y (2.7)

So the gradient w.r.t. fΘ is

∂C

∂[fΘ]i
=

e[fΘ]i

∑
k e

[fΘ]k
− 1i=y ∀i (2.8)

Backpropagation then proceeds backwards, from output to input of the network, to calculate

the rest of the necessary partial derivatives of the cost function with respect to inputs:

∂C

∂f l−1
Θ

=
[
W l−1

]T ∂C
∂f lΘ

(2.9)

Finally, the gradients of the Θ parameters, W and b, can be calculated.
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∂C

∂W l−1
=

[
∂C

∂f lΘ

][
f l−1

Θ

]T
(2.10)

∂C

∂bl−1
=

[
∂C

∂f lΘ

]
(2.11)

2.8 Viterbi Forward

The Viterbi algorithm input is a matrix formed by joining column vectors created by the neu-

ral network. Each column vector consists of scores for all possible tags, where a score represents

the unnormalized log probability that a tag corresponds to the word. The tags are considered to

be hidden, or latent, states. The choice of log-likelihood cost functions for training the neural net-

work coerces the network into producing unnormalized log probabilities which can be converted

to normalized probabilities by using the softmax equation (equation 2.6).

The neural network output matrix which is passed on to the Viterbi detector is called fΘ, and

it contains elements [fΘ]i,t for every tag i and word t.

The Viterbi algorithm is initialized with a learned set of weights per tag (the I matrix), and

computes the log-likelihood of transitioning from each state to the next by applying a learned set

of weights from a square transition matrix A, with N2 elements, where N is the number of tags.

By considering all possible state transitions for all words, the Viterbi algorithm evaluates all

possible combinations of states for the sentence (a very large number, NT , where T is the number

of words in the sentence). It finds the most likely path by selecting the most likely path at each

state along the way, and computes the most likely path in linear time.

Let [j]T1 be the set of all NT possible paths which can describe a tag sequence. [x]T1 is

the input sentence, composed of T words. The viterbi parameters for the transition matrix and the

initialization matrix are grouped together with the other system parameters, Θ, and the entire group

of parameters is called Θ̃.



25

The score of a path [i]T1 is the sum of the transition scores and the network scores, (adding

logs instead of multiplying probabilities).

s([x]T1 , [i]
T
1 , Θ̃) =

T∑

t=1

([A][i]t−1,[i]t + [fΘ][i]t,t) (2.12)

The Viterbi algorithm finds the best sequence score s by computing the best path leading

up to each state in the sequence and discarding paths which are suboptimal. By backtracking the

states of the best path through the ”trellis”, the best path states (which result in the best score) can

be computed:

argmax
∀[j]T1

s([x]T1 , [j]
T
1 , Θ̃) (2.13)

2.9 Viterbi Cost Function (SLL)

The Viterbi cost function is based on Sentence Level Likelihood and is similar to equation

2.6, except the reference path score must be normalized by using the sum of the exponential of all

path scores (the sum of unnormalized probabilities for all possible paths, instead of for all possible

tags).

logp([y]T1 |[x]T1 , Θ̃) = s([x]T1 , [y]T1 , Θ̃)− logadd
∀[j]T1

(s([x]T1 , [j]
T
1 , Θ̃)) (2.14)

A recursion, described in [Rabiner, 1989] and specified in [Collobert et al., 2011], provides

a method of computing the second term in equation 2.14. An intermediate vector, δ, is calculated,

which will contain the unnormalized log probability that any path through the trellis will pass

through a particular state k for the particular word t. The delta vectors have a dimension of N,

the number of tags, and they will be used for training viterbi and optionally network parameters as

will be described later.
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Initialize δ0 for all states k, using the Viterbi initial State Log Likelihood matrix, I:

δt(k) = fΘ[x]k,0 + [I]k) ∀k (2.15)

Recursively compute the δs for words 1 through T:

δt(k) = fΘ[x]k,t + logadd
i

(δt−1(i) + [A]i,k) ∀k (2.16)

Followed by the termination:

logadd
∀[j]T1

(s([x]T1 , [j]
T
1 )) = logadd

i
(δT (i)) (2.17)

Which allows us to solve 2.14 for the log-likelihood in linear time.

2.10 Sentence Level Likelihood Gradients And Viterbi Training

If [y]T1 is the expected tag path for a sentence (from training data),

C(fΘ̃) = logadd
∀[j]T1

(s([x]T1 , [j]
T
1 , Θ̃))− s([x]T1 , [y]T1 , Θ̃) (2.18)

the second half of equation 2.18 is the Viterbi score of the expected path. From equation

2.12,

s([x]T1 , [y]T1 , Θ̃) =
T∑

t=1

([A][y]t−1,[y]t + [fΘ][y]t,t) (2.19)

(The first half of equation 2.18 is log of the sum of all possible tag paths.)

We want to calculate the gradients for the Viterbi transition matrix ∂C
∂[A]i,j

and the gradients of

the inputs ∂C
∂[fΘ]i,t

, which can be optionally used for Sentence Level Log-Likelihood calculations.

From [Collobert et al., 2011], these can be calculated with a recursive procedure:

Initialize the gradients to zero.
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∂C

∂[A]i,j
= 0,∀i, j and

∂C

∂[fΘ]i,t
= 0,∀i, t. (2.20)

accumulate gradients over the second part of equation 2.18, s([x]T1 , [y]T1 , Θ̃), by traversing

the expected path [y]T1 ,

∂C

∂[A][y]t−1,[y]t

+ = 1,∀t and
∂C

∂[fΘ][y]t,t

+ = 1,∀t. (2.21)

Defining the first part of equation 2.18 as Clogadd,

Use recursion to compute terms ∂Clogadd

∂δt(i)
. First, initialize ∂Clogadd

∂δT (i)
, using softmax:

∂Clogadd
∂δT (i)

=
eδT (i)

∑
k e

δT (k)
∀i (2.22)

Then traverse the trellis from T-1 to 1 (backwards) to iteratively compute the remaining
∂Clogadd

∂δt(i)
:

∂Clogadd
∂δt−1(i)

=
∑

j

∂Clogadd
∂δt(j)

eδt−1(i)+[A]i,j

∑
k e

δt−1(k)+[A]k,j
(2.23)

Using both the forward δt and the backward ∂Clogadd

∂δt(i)
, at each step we can iteratively update

both the ∂C
∂[fΘ][y]t,t

(which can optionally be used to back propagate the neural network):

∂C

∂[fΘ]i,t
+ =

∂Clogadd
∂δt(i)

(2.24)

and the gradient terms of the transition score matrix A:

∂C

∂[A]i,j
+ =

∂Clogadd
∂δt(j)

eδt−1(i)+[A]i,j

∑
k e

δt−1(k)+[A]k,j
(2.25)

This is described in [Rabiner, 1989] as calculating the ξt, and the sum of these quantities can

be interpreted to be the score for transitioning from state i to state j.

The gradient for the initial score matrix I can be computed with one last step of the algorithm

(or by considering it to be the first vector of an N by N+1 sized gradient matrix).



28

2.10.1 Convolutional Neural Networks

Convolutional neural networks are commonly used for computer vision tasks and for the

initial stages of speech recognition, but can also be used for the initial stages of natural language

text processing tasks. They work by considering a window of data inputs, and create a set of

local features surrounding each item of interest, in our case, words. By successively multiplying a

convolutional kernel to a sentence, which amounts to multiplying by a matrix of weights, a series

of such features surrounding words can be created, which are then further processed to achieve the

desired task. Chapter 3 goes into detail about how such as system can be used for semantic role

labelling.

2.10.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been used very successfully to process sequences

of data, such as for speech recognition [Graves et al., 2013b, Hannun et al., 2014] or for natural

language. For processing sentences, they work by creating a hidden representation for each word

based on the current word and the hidden representation created so far. As such they maintain a

memory of words as they are processed, and are capable of learning long term relationships, which

is important for language processing.

RNNs maintain a hidden vector h, which is updated at time step t as follows:

ht = tanh(W ∗ ht−1 + I ∗ xt) (2.26)

where tanh is the hyperbolic tangent function, W is the recurrent weight matrix and I is a

projection matrix.

One problem with simple recurrent networks is that they are difficult to train because the

gradients ”explode” or ”vanish” over long sequences. The currently accepted solution to this prob-

lem is to provide learnable information gates which help regulate the processing of memory over

time, which leads us to Long Short Term Memory networks.
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2.10.3 Long Short Term Memory Networks

Long Short Term Memory (LSTM) networks address the vanishing gradient problem by

incorporating gating functions into their state dynamics [Hochreiter and Schmidhuber, 1997]. At

each time step, an LSTM maintains both hidden vector h and a memory vector m responsible

for controlling state updates and outputs. The computation at time step t is defined as follows

[Kalchbrenner et al., 2015]:

gu = σ(Wu ∗ ht−1 + Iu ∗ xt)

gf = σ(Wf ∗ ht−1 + If ∗ xt)

go = σ(Wo ∗ ht−1 + Io ∗ xt)

gc = tanh(Wc ∗ ht−1 + Ic ∗ xt)

mt = gf �+gu � gc

ht = tanh(go �mt−1)

(2.27)

here σ is the logistic sigmoid function, Wu,Wf ,Wo,Wc are recurrent weight matrices and

Iu, If , Io, Ic are projection matrices.
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country (N1000)
95.66

wiki: "France"

name (N0)
99.46

op1: france

name
100.00

plan-01 (N1)
99.69

TOP: plan-01

ARG0
99.86

cooperate-01 (N4)
98.60

ARG1
94.78

ARG0
84.02

further (N2)
93.09

degree
75.66

nucleus (N3)
98.99

mod
69.06

country (N7)
85.95

ARG1
45.33

numerous (N6)
98.25

quant
91.13

(a) Graphical Representation (annotated with probabilities expressed as percentage.)

(p / plan-01
:ARG0 (c / country :wiki "France"

:name (n / name :op1 "France"))
:ARG1 (c2 / cooperate-01

:ARG0 c
:ARG1 (c3 / country
:quant (n2 / numerous))

:mod (n3 / nucleus)
:degree (f / further)))

(b) Textual representation of AMR (Penman/AMR).

Figure 2.3: Graphical and textual representations of the AMR for the example sentence: France plans
further nuclear cooperation with numerous countries .
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Figure 2.4: The large component as the network is grown for two network states during growth. The
structure of the colored groups, corresponding to the selected early distinct components, is especially visible
in the top diagram due to the networkx Spring-Layout Visualization algorithm.
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Summary Size Edges Words

Amino Acids 22 12200 adenine, aspartate, choline, cysteine, cytosine, dmso, glycerol, guanine, heme,
histidine, lipid, lysine, pyridine, pyrimidine, ribose ...

Anatomy 62 9000 abdomen, anus, aorta, cecum, cerebellum, cerebrum, cervix, clavicle, clitoris,
cochlea, conjunctiva, cornea, cytoplasm, cytoskeleton, dermis ...

Animals 91 7800 alligators, amphibians, aphids, arthropods, bivalves, boars, centipedes,
cephalopods, cetaceans, clams, cockatoos, cockroaches, copepods, corals, cor-
morants ...

Basic Chemi-
cals

26 8000 arsenide, azide, bromide, carbonate, chlorate, chloride, chlorine, deuterium,
fluoride, fluorine, helium, hydrate, hydroxide, hypochlorite, iodide ...

...

Foods 112 7000 almonds, apples, apricots, avocados, bananas, beans, beetroot, berries, black-
berries, blueberries, breadfruit, breads, buckwheat, burgers, burritos ...

Medical Condi-
tions

126 11000 abnormalities, adenocarcinoma, adenoma, anaemia, anemia, arrhythmias,
arthritis, atherosclerosis, atresia, bloating, bradycardia, bronchitis, cancers,
carcinoma, cholera ...

Sports Teams 74 11000 0ers, aeros, alouettes, astros, badgers, beavers, bengals, bisons, bobcats,
braves, broncos, bruins, buccaneers, buckeyes, bulldogs ...

Table 2.1: Selected, representative components during network growth. The size and number of edges added
are shown along with the first fifteen words from each component (in alphabetical order). These components
were selected because they are eventually joined and become part of the large component examined after
13,000 edges have been added.

Figure 2.5: Word Representations grouped by Component

Word Representations grouped by Component for the selected, representative early components during net-
work growth. Each representation is a 50 element real vector. Small euclidean distances, which represent
the close similarities responsible for component formation, can be seen as light or dark bands across each
group.



Chapter 3

Semantic Role Labelling with Dependency Parse Input

Semantic role labeling ([Gildea and Jurafsky, 2002]), the task of identifying and classify-

ing the semantic arguments of verbal and nominal predicates in text, represents one of the most

complex NLP tasks to be addressed by supervised machine learning techniques. In the standard

supervised approach to building SRL systems, collections of multiway classifiers are trained us-

ing annotated corpora such as PropBank ([Palmer et al., 2005b]). In this approach, classifiers are

trained using features derived directly from the original source text, as well as from subsequent

syntactic and semantic processing.

As reported in several shared tasks ([Carreras and Màrquez, 2004],[Carreras and Màrquez,

2005],[Hajič et al., 2009]), SRL systems trained in this manner can achieve high performance.

State-of-the-art systems employ classifiers such as support vector machines trained with large

numbers of relatively complex combinations of features, often combined with re-ranking based on

multiple syntactic analyses. Unfortunately, these approaches have a number of non-trivial limita-

tions including the computational cost of the syntactic parsing and the sparse nature of the complex

features on which they rely. This latter limitation is particularly critical since it leads to significant

degradation in performance when the trained system is applied to texts from new domains.

However, recent results using multilayer neural networks and pre-trained word embeddings

have demonstrated high performance using a much smaller number of minimalist features. The ar-

chitecture described by [Collobert et al., 2011] combines time delay convolutional neural networks

([Waibel et al., 1989]) and pre-trained word representations for a number of NLP tasks. They de-
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velop four components and compare their performance to previous benchmarks, one of which is

an SRL system which uses features derived from a phrase-structure parse as input, based on the

CoNLL 2005 shared task ([Carreras and Màrquez, 2005]).

The work described here adopts the basic architecture from [Collobert et al., 2011] and

explores issues related to the use of this architecture in the context of the CoNLL 2009 shared task.

In particular, we present Daisy, a system that (1) employs features derived from dependency parse

as input, (2) assigns semantic roles to both verbal and nominal predicates, and (3) automatically

assigns word senses to the predicates as described in the CoNLL 2009 shared task ([Hajič et al.,

2009]).

The following sections will describe the architecture of the Daisy system, present state-of-

the-art performance on the CoNLL 2009 shared task, and explore the utility of features derived

from dependency parses, including a version of the traditional SRL syntactic path feature.

3.1 Experimental Setup

The CoNLL 2009 shared task consists of identifying the sense and semantic arguments for

each given argument-bearing token (predicate). In addition to the words themselves, the training

data provides the part of speech, syntactic head, and syntactic dependency relation to the head

for each word in the sentence. Table 3.1 shows an example sentence and its representation in the

dataset. The PDEPREL and PHEAD features are the head word and dependency relation predicted

automatically by a dependency parser. In the example sentence, there are two predicates identi-

fied for labeling: announce, and close. The system should output two arguments for announce:

results:A1 (Object), and after:AM-TEMP (Temporal Marker). Similarly, market:A1 should be

output for the predicate close. In addition to role identification, the word sense for each predicate

is output, in the example, the expected sense for announce is 01, and for close is 02.

The training, validation, and evaluation datasets are annotated sentences from the Wall Street

Journal. An additional out of domain dataset mostly from the Brown corpus was also supplied. A

comprehensive F1 score was generated for both role labels and sense predictions using the provided
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eval09.pl perl script.

ID FORM LEMMA PLEMMA POS PPOS FEAT PFEAT HEAD PHEAD DEPREL PDEPREL FILLPRED PRED A[announce] A[close]

1 The the the DT DT 2 2 NMOD NMOD
2 results result result NNS NNS 3 3 SBJ SBJ A1
3 were be be VBD VBD 0 0 ROOT ROOT
4 announced announce announce VBN VBN 3 3 VC VC Y announce.01
5 after after after IN IN 4 4 TMP TMP AM-TMP
6 the the the DT DT 8 8 NMOD NMOD
7 stock stock stock NN NN 8 8 NMOD NMOD
8 market market market NN NN 9 9 SBJ SBJ A1
9 closed close close VBD VBD 5 5 SUB SUB Y close.02
10 . . . . . 3 3 P P

Table 3.1: CoNLL format SRL Dependency Parse Input Test Sentence Example

3.2 Semantic Role Labeling System

The general block diagrams for the Daisy SRL system are shown in Figures 3.1 and 3.2. The

input to the system is a list of words wi from w1 to wn, a list of predicate positions, and dependency

parse tree information for the sentence. We treat role labeling and the sense identification as two

separate tasks. For each predicate in a given sentence, the Role Subsystem outputs the list of

predicted role tags for all words (SRLi), and the Sense Subsystem outputs the sense tag of the

predicate. The system is composed of five major components:

• Word Preprocessing and Word Derived Feature Convolution (Figure 3.3).

• Predicate Position Feature Convolution.

• Word Position Feature Convolution.

• Neural Network and Viterbi (Figure 3.5).

• Predicate Sense Neural Network (Figure 3.6).

3.3 Word Derived Feature Convolution Section

The Word Derived Features and Convolution section, shown in Figure 3.3, is sourced by five

features which are derived on a word by word basis.

The upper portion of Figure 3.3 depicts the process of looking up features from the words and

parse tree information. The numeric information from the features for each word is concatenated
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Feature Vector Convolution

Word 
Derived

Role Neural Network and
Viterbi Decoder

Predicate Position
and Path

Word 
Position

⌃

Sentence Words
wi

Dependency Tree

Word POS

Sentence SRL Tags

SRLi

A B C

D

Figure 3.1: Role Subsystem

together to form one long feature vector, shown in the diagram as a multi-shaded set of rectangles.

Three words of feature information (the word and its two neighbors) from the Word Derived Fea-

ture Vector are multiplied by the the weights and bias of Θ4 and stored in the Convolved Word

Derived Feature Vector, for each word in the sentence. For the default convolution width of 300,

this results in a long vector of 300 · n, where n is the number of words in the sentence.

Each feature lookup table contains an entry for PADDING. In order to allow the window to

extend beyond boundaries of the sentence for early and late words the Feature Vector is padded

with the PADDING value from each lookup table. If a feature is in the table, the associated vector

is output, otherwise the vector corresponding to the special token UNKNOWN is output. The

PADDING and UNKNOWN vectors are trained during supervised training.

To train the word representations from scratch, all except the 0.02% least common words

from the training set are added to the lookup table. The remaining words are therefore trained

as the UNKNOWN word, which can then be used to represent any word encountered outside the

trained word list. For other features, the representation for the most probable token is used as the

UNKNOWN representation.
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Feature Vector Convolution

Word 
Derived

Sense Neural Network

Predicate Position
and Path

⌃

Sentence Words
wi

Dependency Tree

Word POS

Predicate Senses

BA

E

Predicate Lemma

Figure 3.2: Sense Subsystem

The five types of word-derived features tested for the SRL Dependency Parse tagger are:

• Word Embeddings

• Capitalization

• POS tag of word

• Dependency Relation

• POS tag of head

3.4 Word Pre-processing

The input data provided for the CoNLL 2009 task has already gone through some initial

tokenizing. This prevents tokenization differences of different systems from influencing the re-

sults, which are meant to allow comparison of the SRL tagging architecture itself. The Daisy

pre-processor does not split hyphenated input words, so each input word will result in a single

pre-processed word. Numeric values are collapsed to the single common 0 token, and words are

lower-cased to create a word representation lookup word.
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3.5 Word Embeddings

Words are transformed to numeric representations using a lookup table. Like all other feature

lookup tables in the system, the word representation vectors can be initialized to small random

values to start with, and then trained using the supervised training algorithm.

A method of training the word representations from untagged databases has been very suc-

cessfully applied to create a starting set of vectors that can be used to initialize a network, which

is then fine-tuned with supervised training to execute a specific task. By ”pre-training” these word

representations using large amounts of untagged text, very informative word relationships can be

inexpensively extracted, and later used as the starting point for task specific application learning,

see for example [Hinton et al., 2006], [Bengio et al., 2007] and [Weston et al., 2012].

The word representations used as input to the Daisy SRL System for the experiments de-

scribed here were generated by [Collobert et al., 2011] and were created using a pairwise ranking

approach ([Schapire and Singer, 1998]).

3.6 Capitalization

Prior to lower casing, each word is checked for all capitals, initial capital, any capital, or no

capitals, and this criteria is used to lookup a vector (default length 5) from the caps table.

3.7 Predicted Dependency Relation

The PDEPREL column from the training data, shown in table 3.1.

3.8 Predicted POS tag of word and of head

The Predicted Part-of-speech tag is provided in PPOS column of the training data. The head

part of speech tag is found by following the PHEAD column and extracting the PPOS column.

(see Table 3.1).
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3.9 Predicate Position and Path Feature Convolution Section

Predicate Position and optional Path features are extracted on a per word basis and convolved,

once per predicate (the outer loop of two).

3.10 Predicate Position Feature

The position of each word relative to the predicate being evaluated is represented by a vector

(of length 25), based on distances of ±12, and distances outside this range are saturated.

3.11 Dependency Path Feature

Information about the path from each word to a given predicate is provided in the Predicate

Position Convolution section as a per word feature. Information about the paths is stored in a

lookup table as usual. The results from experiments using different types of path information are

described in the results section.

Generic Path: The sequence of up and down transitions to traverse the tree from a word to a

given predicate is referred to here as the Generic Path. The dependency parse trees for each of the

two predicates from the example training sentence shown in Table 3.1 are diagrammed in Figure

3.4. The Generic Path for each word is shown in the diagram, above the part of speech tag for the

word.

Labeled Path: These are path descriptions which include both the arc direction (Generic

Path) and the dependency relation of the arc within the dependency tree. After several rounds of

experimentation, we chose to include paths which occur at least five times in the training data,

which resulted in about 77K unique path types.

3.12 Word Position Feature Convolution Section

The position of every word with respect to the specific word being evaluated is extracted

once per word, per predicate (the inner loop of two). In a similar fashion to the predicate position
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feature, the position of each word relative to the word being evaluated is represented by a vector

(of length 25), based on distances of ±12, and distances outside this range are saturated.

3.13 Role Neural Network and Viterbi

Figure 3.5 shows the process of combining the Convolved Feature Vectors, processing with a

neural network, and finding the most likely role sequence with a Viterbi detector. Both the Role and

Sense neural networks are constructed with a single nonlinear layer followed by an output layer.

The parameters for each layer are referred to here as Θ, which includes a matrix of weights, W ,

and a vector of bias terms b. Each layer’s output, prior to the activation function, can be calculated

from the previous layer’s activation output and parameters.

f lΘ = W l−1f l−1
Θ + bl−1 (3.1)

The tanh function is used as the nonlinear activation function.

The three Convolved Feature Vectors (diagrammed separately) are summed, then the maxi-

mum for each index within each group of 300 is determined. This results in a 300 element vector

which will be the input to the Neural Network. A single layer neural network followed by a single

output layer is used to create a ”score” for each possible role ”tag”, for the word and predicate

being analyzed. After running all words through the system for a single predicate, a matrix of SRL

role scores of size tags×words is created, which will be used as the input to the Viterbi sequence

decoder.

3.14 Sequence Decoder (Viterbi)

The Viterbi decoding algorithm input is a matrix which consists of a vector of SRL role

scores for each word. The algorithm is initialized with a learned set of weights per tag, and com-

putes the log-likelihood of transitioning from each state to the next by applying a learned set of

weights from the transition matrix.
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3.15 Predicate Sense Neural Network

Figure 3.6 shows the process of combining the Convolved Feature Vectors, processing with

a neural network, and finding the most likely sense for a given predicate. The neural network

parameters for the sense subsystem are managed with a lookup table holding parameters for each

lemma in the training set that is mapped to multiple senses.

3.16 Sense Labeler Training and Forward Model Creation

Both the Role and Sense subsystems are trained using stochastic gradient descent. A forward

pass is first run on the system, during which the indices of the maximum values of the sum of the

convolution layer (word-derived and predicate) are saved.

Backpropagation of the Sense Neural Network is based on minimizing a log-likelihood ob-

jective:

log p(y|x,Θ) = f [x,Θ]y − log(
∑

j

e(f [x,Θ]j)) (3.2)

The two Sense and Role subsystems have the same convolution structures (See figures 3.1

and 3.2). Experiments run using a common structure for both tasks resulted in about 0.5% worse

performance, so the the systems were kept independent.

A separate neural network was trained for each lemma found in the training data set, and

the parameters for each network were stored in a lookup table. This results in very large memory

requirements during training, especially since Adagrad ([Duchi et al., 2011] was used to decrease

training time. To minimize memory requirements and training time, the sense for lemmas which

always train to the same sense in the training data are stored in a dictionary. During forward

processing, when a lemma is encountered that was not trained (and therefore is not in the parameter

lookup table), the sense from the dictionary is output. If the lemma never occurred during training,

it won’t be in the dictionary, and the most commonly occurring sense of ”01” is output by default.
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3.17 Role Labeler Training and Forward Model Creation

During a forward pass, the activation layers and maxIndices are saved and reused during

training.

3.18 Cost Calculation

The Viterbi parameters for initial score and transition probabilities are trained using the

Sentence Level Log-Likelihood (SLL) cost function.

This cost function is based on Sentence Level Likelihood and is similar to equation 3.2,

except the reference path score must be normalized by using the sum of the exponential of all path

scores (the sum of unnormalized probabilities for all possible paths, instead of for all possible tags).

A recursive method, developed in [Rabiner, 1989] and specified in [Collobert et al., 2011], provides

an important and efficient means of computing the sum of the exponential of all path scores. An

intermediate vector, δ, is calculated, which will contain the unnormalized log probability that any

path through the trellis will pass through a particular state k for the particular word t. The δ vectors

have a dimension of N, the number of tags, and they are re-used for the gradient calculation during

backpropagation.

3.19 Backpropagation

The recursion described in [Collobert et al., 2011] is used to calculate Viterbi delta terms

and gradients. The error is then back-propagated through the system in reverse, ending with the

feature lookup tables. This is done for each word, for each predicate, requiring two nested loops

for training a full sentence. The loop structure makes for long training times, roughly three days

on a 2015 compute-optimized AWS core.



43

3.20 Results

3.21 Benchmark

The best ConLL 2009 English SRL F1 score (labeled ”Nugues”), and described in [Björkelund

et al., 2009], is used as a comparison benchmark. In this benchmark, 20 features were used for

argument identification, including the Dependency Relation Path, and Part of Speech of Depen-

dency Relation Path. A reranker was run on the output of multiple system outputs. The same SRL

was later tested using improved dependency parsing in [Björkelund et al., 2010]. [Woodsend and

Lapata, 2014] explores text rewriting and compares results with the benchmark, which they accept

as the current state-of-the-art.

Table 3.2 compares the benchmark with a complete Daisy system using a labeled path, with

a cutoff of 5, and two separate systems for sense and role labels. F1 scores are 0.41% higher for

the WSJ Eval dataset, and 2.59% higher for the out of domain (OOD) Brown dataset.

System Description WSJ F1 Brown F1

Benchmark
(CoNLL2009)

85.63% 73.31%

Daisy 86.04% 75.90%

Table 3.2: SRL Dependency Parse Test F1

3.22 Metrics

In all experiments, we strictly followed the standard evaluation procedure of the CoNLL

2009 challenge. A simple validation procedure using the specified validation set was used to

choose system hyper parameters, and the provided eval09.pl perl script was used to generate all

system F1 scores. The system F1 score is the harmonic mean of precision and recall for both role

and sense labels. Since we treated the predicate sense disambiguation and the predicate role as-

signment tasks as independent, it is interesting to view the performance of the two tasks separately.

The predicate sense task requires a label for each given predicate, so a per predicate accuracy was
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calculated (SenseAcc). Similarly we generated a role label F1 score (RoleF1) that is independent

of the sense labels. These subsystem performance metrics were also calculated on the CoNLL

2009 benchmark results for comparison.

3.23 Incremental Experiments and Results

Feature abbreviations used in the descriptions are shown in Table 3.3.

Abbrev. Feature Description

W words, initialized randomly prior to
training

C capitalization
P Part of Speech
HP Part of Speech of head word
DR Dependency Relation
GP Generic path
TW words, initialized with pre-trained

word representations prior to train-
ing

LP5 Labeled paths that occur at least five
times in the training data.

Table 3.3: Feature Abbreviations

Starting from a basic configuration of only words (randomly initialized) and capitalization

(W,C), the system was incrementally modified to include different feature mixes. Next, simple

per-token part of speech was added (W,C,P). Information from the dependency parser is added

in two steps, first the head word part of speech and dependency relation (W,C,P,HP,DR), and

next the generic path (W,C,P,HP,DR,GP). The word representations were then seeded with the

pre-trained representations described in section 3.5 (TW,C,P,HP,DR,GP). Finally, the labeled path

was used instead of the generic path, still seeding the words with pre-trained representations

(TW,C,P,HP,DR,LP5).

For each system configuration, 12 role subsystems and 8 sense subsystems were trained and

tested, using the WSJ development F1 score during training to determine the best model parameter
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state. After model generation, the WSJ development scores for different systems don’t correlate

well with the WSJ eval or Brown scores. For example, models with high development scores don’t

necessarily correspond to best scoring models for the WSJ or Brown data tests.

The CoNLL2009 results used as benchmarks were given as single data points so statistics

are not available.

Figure 3.7 shows the relationship between the development and Evaluation F1 scores, as well

as the general performance improvement as features were added.

Tables 3.4 and 3.5 show the statistical performance of the system with WSJ and Brown test

data.

For the WSJ (evaluation) dataset, The role subsystem F1 improves much more dramatically

than the sense subsystem as POS (+1.52%) and dependency parser information (+1.68%) is added.

The mean System F1 score is -0.25% under the benchmark without the pre-trained word represen-

tations. Adding the representations boosts performance such that even the lowest scoring systems

beat the benchmark, and the mean F1 score is about 0.41% higher.

For the Brown (OOD) dataset, The role subsystem F1 improves significantly with POS and

dependency parse information (+2.72%) while the sense subsystem benefits less (0.96%). The role

subsystem dramatically improves when pre-trained words are added (2.59%), due in large part to a

better ability to handle unseen words. The mean System F1 scores are higher than the benchmark

as soon as dependency parser information is supplied, and the F1 is significantly better for the fully

populated system (+2.59%).

3.24 Conclusions

We have presented a dependency-based semantic role labeler using neural networks, inspired

by [Collobert et al., 2011] and others to reduce the use of hand-crafted features and make use

of unsupervised techniques. Experimental evaluations show that our architecture improves the

state of the art performance for this task significantly, for both in domain and out of domain test

data. A key element of the system’s performance is based on the use of features derived from
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System Description SystemF1 RoleF1 SenseAcc
Min Mean (∆) Max Mean (∆) Mean (∆)

Daisy(W,C) 82.86 83.03 83.24 77.47 94.92
Daisy(W,C,P) 83.83 84.12

(+1.09)
84.43 79.00

(+1.52)
95.15

(+0.23)

Daisy(W,C,P,HP,DR) 84.46 84.79
(+0.67)

85.10 79.92
(+0.92)

95.29
(+0.13)

Daisy(W,C,P,HP,DR,GP) 85.05 85.38
(+0.58)

85.78 80.69
(+0.76)

95.46
(+0.17)

Benchmark (CoNLL2009) 85.63
(+0.25)

81.00
(+0.31)

95.59
(+0.13)

Daisy(TW,C,P,HP,DR,GP) 85.64 85.92
(+0.29)

86.17 81.40
(+0.40)

95.66
(+0.07)

Daisy(TW,C,P,HP,DR,LP5) 85.77 86.04
(+0.13)

86.31 81.53
(+0.13)

95.77
(+0.11)

Table 3.4: Performance on WSJ Eval Dataset for Various System Configurations

System Description SystemF1 RoleF1 SenseAcc
Min Mean (∆) Max Mean (∆) Mean (∆)

Daisy(W,C) 70.50 71.70 72.43 65.49 85.08
Daisy(W,C,P) 72.45 73.13

(+1.43)
73.78 67.38

(+1.89)
85.66

(+0.59)

Benchmark (CoNLL2009) 73.31
(+0.18)

67.78
(+0.40)

85.23
(-0.43)

Daisy(W,C,P,HP,DR) 72.47 73.48
(+0.17)

74.43 67.87
(+0.09)

85.71
(+0.48)

Daisy(W,C,P,HP,DR,GP) 73.17 73.83
(+0.36)

74.23 68.21
(+0.34)

86.04
(+0.33)

Daisy(TW,C,P,HP,DR,GP) 74.85 75.80
(+1.97)

76.46 70.80
(+2.59)

86.72
(+0.68)

Daisy(TW,C,P,HP,DR,LP5) 75.19 75.90
(+0.09)

76.93 70.62
(-0.18)

87.40
(+0.69)

Table 3.5: Performance on Brown Dataset (OOD) for Various System Configurations
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syntactic dependency parses. The use of a dependency-based path feature, in particular, provides

a significant boost in performance over simpler feature sets.

Promising future directions suggested by these results include whether proxies for the de-

pendency based features can be derived from a similar architecture without the direct need for a

full dependency analysis, thus eliminating the pre-processing parser cost. Another future direc-

tion involves the predicate disambiguation system. Although this sense disambiguation task is part

of the CoNLL 2009 SRL evaluation, it is more properly a word sense disambiguation problem. A

more thorough investigation of sense disambiguation in the context of an SRL system is warranted.
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Chapter 4

Abstract Meaning Representation Parser

4.1 Introduction

We present a system which parses sentences into Abstract Meaning Representations, im-

proving state-of-the-art results for this task by more than 5%. AMR graphs represent semantic

content using linguistic properties such as semantic roles, coreference, negation, and more. The

AMR parser does not rely on a syntactic pre-parse, or heavily engineered features, and uses five

recurrent neural networks as the key architectural components for inferring AMR graphs.

Semantic analysis is the process of extracting meaning from text, revealing key ideas such

as ”who did what to whom, when, how, and where?”, and is considered to be one of the most com-

plex tasks in natural language processing. Historically, an important consideration has been the

definition of the output of the task - how can the concepts in a sentence be captured in a general,

consistent and expressive manner that facilitates downstream semantic processing? Over the years

many formalisms have been proposed as suitable target representations including variants of first

order logic, semantic networks, and frame-based slot-filler notations. Such representations have

found a place in many semantic applications but there is no clear consensus as to the best repre-

sentation. However, with the rise of supervised machine learning techniques, a new requirement

has come to the fore: the ability of human annotators to quickly and reliably generate semantic

representations as training data.

Abstract Meaning Representation (AMR) [Banarescu et al., 2012]1 was developed to pro-

1 http://amr.isi.edu/language.html
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vide a computationally useful and expressive representation that could be reliably generated by

human annotators. Sentence meanings in AMR are represented in the form of graphs consisting

of concepts (nodes) connected by labeled relations (edges). AMR graphs include a number of

traditional NLP representations including named entities [Nadeau and Sekine, 2007], word senses

[Banerjee and Pedersen, 2002], coreference relations, and predicate-argument structures [Kings-

bury and Palmer, 2002, Palmer et al., 2005a]. More recent innovations include wikification of

named entities and normalization of temporal expressions [Verhagen et al., 2010, Strötgen and

Gertz, 2010]. [Bos, 2016] provides an insightful discussion of the relationship between AMR and

other formal representations including first order logic.

The process of creating AMR’s for sentences is called AMR Parsing and was first introduced

in [Flanigan et al., 2014]. A key factor driving the development of AMR systems has been the

increasing availability of training resources in the form of corpora where each sentence is paired

with a corresponding AMR representation 2 . A consistent framework for evaluating AMR parsers

was defined by the Semeval-2016 Meaning Representation Parsing Task3 . Standard training,

development and test splits for the AMR Annotation Release 1 corpus are provided, as well as

an additional out-of-domain test dataset, for system comparisons. 4

Viewed as a structured prediction task, AMR parsing poses some difficult challenges not

faced by other related language processing tasks including part of speech tagging, syntactic parsing

or semantic role labeling. The prediction task in these settings can be cast as per-token labeling

tasks (i.e. IOB tags) or as a sequence of discrete parser actions, as in transition-based (shift-reduce)

approaches to dependency parsing.

The first challenge is that AMR representations are by design abstracted away from their

associated surface forms. AMR corpora pair sentences with their corresponding representations,

without providing an explicit annotation, or alignment, that links the parts of the representation to

their corresponding elements of the sentence. Not surprisingly, this complicates training, decoding

2 See amr.isi.edu for information on currently available resources
3 http://alt.qcri.org/semeval2016/task8/#
4 Available from LDC as LDC2015E86 DEFT Phase 2 AMR Annotation R1 dataset.
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and evaluation.

The second challenge is the fact that, as noted earlier, the AMR parsing task is an amalgam

of predicate identification and classification, entity recognition, co-reference, word sense disam-

biguation and semantic role labeling — each of which relies on the others for successful analysis.

The architecture and system presented in the following sections is largely motivated by these two

challenges.

4.2 Related Work

4.2.1 AMR Parsers

Most current AMR parsers are constructed using some form of supervised machine learn-

ing that exploits existing AMR corpora. In general, these systems make use of features derived

from various forms of syntactic analysis, ranging from part-of-speech tagging to more complex

dependency or phrase-structure analysis. Currently, most systems fall into two classes: (1) sys-

tems that incrementally transform a dependency parse into an AMR graph using transition-based

systems [Wang et al., 2015, Wang et al., 2016], and (2) graph-oriented approaches that use syn-

tactic features to score edges between all concept pairs, and then use a maximum spanning con-

nected subgraph (MSCG) algorithm to select edges that will constitute the graph [Flanigan et al.,

2014, Werling et al., 2015].

As expected, there are exceptions to these general approaches. The largely rule-based ap-

proach of [Vanderwende et al., 2015] converts logical forms from an existing semantic analyzer

into AMR graphs. They demonstrate the ability to use their existing system to generate AMRs in

German, French, Spanish and Japanese without the need for a native AMR corpus.

[Peng et al., 2015] proposes a synchronous hyperedge replacement grammar solution, [Pust

et al., 2015] uses syntax-based machine translation techniques to create tree structures similar to

AMR, while [Artzi et al., 2015] creates logical form representations of sentences and then converts

these to AMR.
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An exception to the use of heavily engineered features is the deep learning approach of

[Foland Jr and Martin, 2016], which, following [Collobert et al., 2011], relies on word embeddings

and recurrent neural networks to generate AMR graphs.

4.2.2 Bidirectional LSTM Neural Networks

Unlike relatively simple sequence processing tasks like part-of-speech tagging and NER, se-

mantic analysis requires the ability to keep track of relevant information that may be arbitrarily

far away from the words currently under consideration. Recurrent neural networks (RNNs) are

a class of neural architecture that use a form of short-term memory in order to solve this seman-

tic distance problem. Basic RNN systems have been enhanced with the use of special memory

cell units, referred to as Long Short-Term Memory neural networks, or LSTM’s [Hochreiter and

Schmidhuber, 1997]. Such systems can effectively process information dispersed over hundreds

of words [Schmidhuber et al., 2002, Gers et al., 2001].

Bidirectional LSTMs (B-LSTM) networks are LSTMs that are connected so that both future

and past sequence context can be examined. [Zhou and Xu, 2015], successfully used a bidirectional

LSTM network for semantic role labelling. We use the LSTM cell as described in [Graves et al.,

2013a], configured in a B-LSTM shown in Figure 4.3, as the core network architecture in the

system. Five B-LSTM Neural Networks comprise the parser.

4.3 Parser Overview

Our parser5 will be explained using this example sentence: France plans further nuclear

cooperation with numerous countries .

A graphical depiction of an AMR for this sentence is shown in Figure 4.1.

Given an input sentence, the approach taken in our AMR parser is similar to [Flanigan et al.,

2014] in that it consists of two subtasks: (1) discover the concepts (nodes and sub-graphs) present

in the sentence, and (2) determine the relations (arcs) that connect the concepts (relations capture

5 source at https://github.com/BillFoland/daisyluAMR
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both traditional predicate-argument structures (ARGs), as well as additional modifier relations

that capture notions including quantification, polarity, and cardinality.) Neither of these tasks is

straightforward in the AMR context. Among the complications are the fact that individual words

may contribute to more than one node (as in the case of France), parts of the graph may be “reen-

trant”, participating in relations with multiple concepts, and predicate-argument and modifier rela-

tions can be introduced by arbitrary parts of the input.

At a high level, our system takes an input sentence in the form of a vector of word embed-

dings and uses a series of recurrent neural networks to (1) discover the basic set of nodes and

subgraphs that comprise the AMR, (2) discover the set of predicate-argument relations among

those concepts, and (3) identifying any relevant modifier relations that are present.

A high level block diagram of the parser is shown in Figure 4.2. The parser extracts features

from the sentence which are processed by a bidirectional LSTM network (B-LSTM) to create a

set of AMR subgraphs, which contain one or two concepts as well as their internal relations to

each other. Features based on the sentence and these subgraphs are then processed by a pair of

B-LSTM networks to compute the probabilities of relations between all subgraphs. All subgraphs

are then connected using an iterative, greedy algorithm to compute a single component graph, with

all subgraphs connected by relations. Separately, another two B-LSTM networks compute attribute

and name categories, which are then appended to the graph. Finally, the subgraphs are expanded

into the most probable AMR concept and relation primitives to create the final AMR.

4.4 Detailed Parser Architecture

4.4.1 AMR Spans, Subgraphs, and Subgraph Decoding

Mapping the words in a sentence to AMR concepts is a critical first step in the parsing pro-

cess, and can influence the performance of all subsequent processing. Although the most common

mapping is one word to one concept, a series of consecutive words, or span, can also be associated

with an AMR concept. Likewise, a span of words can be mapped to a small connected subgraph,
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such as the single word span France which is mapped to a subgraph composed of two concepts

connected by a name relation. (see the shaded section of Figure 4.1).

Training corpora provide sentences which are annotated by humans with AMR graphs, not

necessarily including a reference span to subgraph mapping. An automatic AMR aligner can be

used to predict relationships between words and gold AMR’s. We use the alignments produced by

the aligner of [Pourdamghani et al., 2014], along with the words and reference AMR graphs, to

identify a subgraph type to associate with each span. Each word in the sentence is then associated

with an IOBES subgraph type tag. We call the algorithm which defines span to subgraph mapping

the Expert Span Identifier, and use it to train the SG Network.

A convenient development detail stems from the fact that during the AMR creation process,

the identified subgraphs must be expanded into individual concepts and relations. For example,

the subgraph type ”Named”, along with the span France, must be expanded to create the concepts,

relations, and attributes shown in Figure 4.1. A Subgraph Expander algorithm implements this

task, which is essentially the inverse of the Expert Span Identifier. The Expert Span Identifier and

Subgraph Expander were developed by cascading the two in a test configuration as shown in Figure

4.4.

4.4.2 Features

All input features for the five networks correspond to the sequence of words in the input

sentence, and are presented to the networks as indices into lookup tables. With the exception of

pre-trained word embeddings, these lookup tables are randomly initialized prior to training and

representations are created during the training process.

4.4.2.1 Word Embeddings

We start with 300 dimension GloVe representations [Pennington et al., 2014] trained on the

840 billion word common crawl [Smith et al., 2013]. We added two binary dimensions: one for

out of vocabulary words, and one for padding, resulting in vectors with a width of 302. These em-
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beddings are mapped from the words in the sentence, and are then trained using back propagation

just like other parameters in the network.

4.4.2.2 Wikifier

The AMR standard was expanded to include the annotation of named entities with a canon-

ical form, using Wikipedia as the standard (see France in Figure 4.1). The wiki link associated

with this ”wikification” is expressed using the :wiki attribute, which requires some kind of global

external knowledge of the Wikipedia ontology. We use the University of Illinois Wikifier [Ratinov

et al., 2011, Cheng and Roth, 2013] to identify the :link directly, and use the possible categories

output from the wikifier as feature inputs to the NCat Network.

Named Entity Recognition can be valuable input to a parser, and state-of-the-art NER sys-

tems can be created using convolutional neural networks [Collobert et al., 2011] or LSTM [Chiu

and Nichols, 2015] aided by information from gazetteers. These gazetteers are large dictionaries

containing well known named entities (e.g., [Florian et al., 2003]).

Rather than add gazetteer features to our system, we make use of the NER information

already calculated and provided by the Univ. of Illinois Wikifier. We then encode the classified

named entities output from the wikifier as feature embeddings, which are used by the SG Network.

4.4.2.3 AMR Subgraph (SG) Network

The most frequent 25 subgraphs of 46 total which are identified by the SG network are shown

in Table 4.1. Subgraphs are composed of either a single concept, as in NonPred (non-predicate), or

two concepts, as in Named. The parent and child concepts and the relation connecting them within

the subgraph are shown for each subgraph in the table.

The features used as input to the SG network are:

• word: 45Kx302, the word embeddings

• suffix: 430x5, embeddings based on the final two letters of each word.
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• caps: 5x5, embeddings based on the capitalization pattern of the word.

• NER: 5x5, embeddings indexed by NER from the Wikifier, ’O’, ’LOC’, ’ORG’, ’PER’ or

’MISC’.

The SG Network produces probabilities for 46 BIOES tagged subgraph types, and the highest

probability tag is chosen for each word, as shown for the example sentence in Table 4.2.

4.4.2.4 Predicate Argument Relations (Args) Network

The AMR concepts (nodes) are connected by relations (arcs). We found it convenient to

distinguish predicate argument relations, or ”Args” from other relations, which we call ”Nargs”.

For example, see ARG0 and ARG1 relations in Figure 4.1 are ”Args”, compared with the name,

degree, mod, or quant relations which are ”Nargs”.

The Args Network is run once for each predicate subgraph, and produces a matrix Pargs

which defines the probability (prior to the identification of any relations6 ) of a type of predicate

argument relation from a predicate subgraph to any other SG identified subgraph. (For example,

see ARG0 and ARG1 relations in Figure 4.1.) The matrix has dimensions 5 by s, where 5 is the

number of predicate arg relations identified by the network, and s is the total number of subgraphs

identified by the SG Network for the sentence.

The Args features, calculated for each source predicate subgraph, are:

• Word, Suffix and Caps as in the SG network.

• SG: 46x5, indexed by the SG network identified subgraph.

• PredWords[5], 45Kx302: The word embeddings of the word and surrounding 2 words

associated with the source predicate subgraph.

• PredSG[5], 46x10: The SG embedding of the word and surrounding 2 words associated

with the source predicate subgraph.

6 relation probabilities change as hard decisions are made, see section 4.4.3
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• regionMark: 21x5, indexed by the distance in words between the word and the word

associated with the source predicate subgraph.

Table 4.3 shows an example feature set for one subgraph while evaluating a predicate sub-

graph.

4.4.2.5 Non-Predicate Relations (Nargs) Network

The Nargs Network uses features similar to the Args network. It is run once for each sub-

graph, and produces a matrix Pnargs which defines the probability of a type of relation from a

subgraph to any other subgraph, prior to the identification of any relations.7 The matrix has di-

mensions 43 by s, where 43 is the number of non-arg relations identified by the network, and s is

the total number of subgraphs identified by the SG Network for the sentence.

4.4.2.6 Attributes (Attr) Network

The Attr Network determines a primary attribute for each subgraph, if any.8 This network

is simplified to detect only one attribute (there could be many) per subgraph, and only computes

probabilities for the two most common attributes: TOP and polarity. Note that subgraph expansion

also identifies many attributes, for example the words associated with named entities, or the nor-

malized quantity and date representations. A known shortcoming of this network is that the TOP

and polarity attributes are not mutually exclusive, but noting that the cooccurrence of the two does

not occur in the training data, we chose to avoid adding a separate network to allow the prediction

of both attributes for a single subgraph.

4.4.2.7 Named Category (NCat) Network

The NCat Network uses features similar to the SG Network, along with the suggested cate-

gories (up to eight) from the Wikifier, and produces probabilities for each of 68 :instance roles, or

7 Degree, mod, or quant are examples of Narg relations in Figure 4.1.
8 (TOP: plan-01) and (op1: france) are attribute examples shown in Figure 4.1.
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categories, for named entities identified in the training set AMR’s.

• Word, Suffix and Caps as in the SG network.

• WikiCat[8]: 108 x 5, indexed by suggested categories from the Wikifier.

4.4.3 Relation Resolution

The generated Pargs and Pnargs for each SG identified subgraph are processed to determine

the most likely relation connections, using the constraints:

(1) AMR’s are single component graphs without cycles.

(2) AMR’s are simple directed graphs, a max of one relation between any two subgraphs is

allowed.

(3) Outgoing predicate relations are limited to one of each kind (i.e. can’t have two ARG0’s)

We initialize a graph description with all the subgraphs identified by the SG network. Prob-

abilities for all possible edges are represented in the Pargs and Pnargs matrices. The Subgraphs are

connected to one another by applying a greedy algorithm, which repeatedly selects the most prob-

able edge from the Pargs and Pnargs matrices and adds the edge to the graph description. After an

edge is selected to be added to the graph, we adjust Pargs and Pnargs based on the constraints (hard

decisions change the probabilities), and repeat adding edges until all remaining edge probabilities

are below a threshold. (The optimum value of this threshold, 0.55, was found by experimenting

with the development data set). From then on, only the most probable edges which span graph

components are chosen, until the graph contains a single component.

Expressed as a step by step procedure, we first define pconnect as the probability threshold at

which to require graph component spanning, and we repeat the following, until any two subgraphs

in the graph are connected by at least one path.

(1) Select the most probable outgoing relation from any of the identified subgraph probability

matrices. Denote this probability as pr.
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(2) If pr < pconnect, keep selecting most probable relations until a component spanning con-

nection is found.

(3) Add the selected relation to the graph. If a cycle is created, reverse the relation direction

and label.

(4) Eliminate impossible relations based on the constraints and re-normalize the affected Pargs

and Pnargs matrices.

4.4.4 AMR Construction

AMR Construction converts the connected subgraph AMR into the final AMR graph form,

with proper concepts, relations, and root, as follows:

(1) The TOP attribute occurs exactly once in each AMR, so the subgraph with highest TOP

probability produced by the Attr network is identified. The AMR graph is adjusted so that

it is rooted with the most probable TOP subgraph. After graph adjustment, new cycles are

sometimes created, which are removed by using -of relation reversal.

(2) The subgraphs identified by the SG network, which were considered to be single nodes

during relation resolution, are expanded to basic AMR concepts and relations to form

a concept/relation AMR graph representation, using the Subgraph Expander component

developed as shown in Figure 4.5. When a subgraph contains two concepts, the choice of

connecting to parent or child within the subgraph is made based on training data statistics

of each relation type (Arg or Narg) for each subgraph type.

(3) Nationalities are normalized (e.g. French to France).

(4) A very basic coreference resolution is performed by merging all concepts representing ”I”

into a single concept. Coreference resolution was otherwise ignored due to development

time constraints.
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4.5 Experimental Setup

Semantic graph comparison can be tricky because direct graph alignment fails in the presence

of just a few miscompares. A practical graph comparison program called Smatch [Cai and Knight,

2013] is used to consistently evaluate AMR parsers. The smatch python script provides an F1

evaluation metric for whole-sentence semantic graph analysis by comparing sets of triples which

describe portions of the graphs, and uses a hill climbing algorithm for efficiency.

All networks, including SG, were trained using stochastic gradient descent (SGD) with a

fixed learning rate. We tried sentence level log-likelihood, which trains a viterbi decoder, as a

training objective, but found no improvement over word-level likelihood (cross entropy). After all

LSTM and linear layers, we added dropout to minimize overfitting [Hinton et al., 2012] and batch

normalization to reduce sensitivity to learning rates and initialization [Ioffe and Szegedy, 2015a].

For each of the five networks, we used the LDC2015E86 training split to train parameters,

and periodically interrupted training to run the dev split (forward) in order to monitor performance.

The model parameters which resulted in best dev performance were saved as the final model. The

test split was used as the ”in domain” data set to assess the fully assembled parser. The inferred

AMR’s were then evaluated using the smatch program to produce an F1 score.

An evaluation dataset was provided for Semeval 2016 task 8, which is significantly different

from the LDC2015E86 split dataset. ([May, 2016] describes the eval dataset as ”quite difficult to

parse, particularly due to creative approaches to word representation in the web forum portion”).

4.6 Results

We report the statistics for smatch results of the ”test” and ”eval” datasets for 12 trained

systems in Table 4.4. The top five scores for Semeval 2016 task 8, representing the previous state-

of-the-art, are shown for context. With a smatch score of between 0.651 and 0.654, and a mean of

0.652, our system improves the state-of-the-art AMR parser performance by between 5.07% and

5.55%, and by a mean of 5.22%. The best performing systems for in-domain (dev and test) data
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correlated well with the best ones for the out-of-domain (eval) data, although the scores for the

eval dataset were lower overall.

4.6.1 Individual Network Results

The word spans tagged by the SG network are used to determine the features for the other

networks. In particular, every span identified as a predicate will trigger the system to evaluate

the Args network in order to determine the probabilities of outgoing predicate ARG relations.

Likewise, all spans identified as subgraphs (other than named subgraphs) will lead to a Nargs

network evaluation to determine outgoing non-Arg relations. The SG network identifies predicates

with 0.93 F1, named subgraphs with 0.91 F1, and all other subgraphs with 0.94 F1.

The Args network identifies ARG0 and ARG1 relations with 0.73 F1, but identification of

ARG2, ARG3, and ARG4 drops down to (0.53, 0.20, and 0.43). It is difficult for the system to

generalize among these relation tags because they differ significantly between predicates.

4.7 Conclusions

We have shown that B-LSTM neural networks can be used as the basis for a graph based

semantic parser. Our AMR parser effectively exploits the ability of B-LSTM networks to learn

to selectively extract information from words separated by long distances in a sentence, and to

build up higher level representations by rejecting or remembering important information during

sequence processing. There are changes which could be made to eliminate all pre-processing and

to further improve parser performance.

Eliminating the need for syntactic pre-parsing is valuable since a syntactic parser takes up

significant time and computational resources, and errors in the generated syntax will propagate

into an AMR parser. Our approach avoids both of these problems, while generating high quality

results.

Wikification tasks are generally independent from parsing, but wiki links are a requirement

for the latest AMR specification. Since our preferred wikifier application generates NER infor-
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mation, we used the generated NER tags as input to the SG network. But it would also be fairly

easy to add gazetteer information to the network features in order to remove the need for NER

pre-processing. Therefore, the wikification subtask is the only portion of the parser which requires

any pre-processing at all. Incorporating wikification gazetteers as B-LSTM features might allow a

performant, fully self contained parser to be created.

Sense disambiguation is not a very generalizable task, senses other than 01 and 02 for dif-

ferent predicates may differ from each other in ways which are very difficult to discern. A better

approach to disambiguation is to consider predicates separately, solving for a set of coefficients

for each verb found in the training set. A general set of model parameters could then be used to

handle unseen examples. Likewise, high level ARGs like ARG2 and ARG3 don’t generalize very

well among different predicates, and ARG inference accuracy could be improved with predicate-

specific network parameters for the most common cases.

The alignment between concepts and words is not a reliable, direct mapping: some concepts

cannot be grounded to words, some are ambiguous, and automatic aligners tend to have high error

rates relative to human aligning judgements. Improvements in the quality of the alignment in

training data would improve parsing results.
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Figure 4.1: An AMR graphical depiction of the meaning of the sentence France plans further nuclear
cooperation with numerous countries . Concepts are represented as ovals, and relations are the directed
connections between them. Predicate concepts are labelled with their PropBank sense, and semantic roles
are indicated by ”Arg” relations. Non-Arg relations like name or mod are called ”Nargs” in this paper. Note
the shaded section, which shows an example of a subgraph, containing related concepts and relations. In
the example, the subgraph represents ”France” which includes the category country and a shortened link to
the France wiki page.
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Feature Extraction

Sentence 

 

Subgraph Relation 
Resolution

AMR 
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UofI Wikifier
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Hard Max

Hard Max

Subgraph Spans

NER WikiCat[8]Word Features

PnargsPargs

relations category

Pattr

Figure 4.2: General Architecture for the AMR Parser. The parser creates an AMR based on the words
in a sentence. The 5 B-LSTM networks infer structures of the AMR. For example, the SG network infers
subgraphs, which are mostly single concept, like ”plan-01” or ”further”, but can also be like the more
complex shaded ”France” subgraph in the example. Other B-LSTM networks are used to infer predicate
argument relations (Args), other relations (Nargs), attributes like ”TOP” (Attr) and name categories like
”country” for France (Ncat).
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Figure 4.3: A general diagram of a B-LSTM network. Diagram shows the feature input vectors xi, the
forward layer (f) and the reverse layer (r). The network generates vectors of log likelihoods which are
converted to probability vectors and then joined together to form an array of probabilities.
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Figure 4.4: Expert System and Subgraph Expander Development. The alignment between the words in the
sentence and elements of the AMR is provided by an automatic aligner. The expert system uses the sentence,
reference AMR, and alignment to identify spans of words which are related to concepts within the AMR.
These spans are also labelled with a subgraph type. A ”subgraph expander” uses the words and subgraph
type to expand into AMR subgraphs.
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Figure 4.5: SG Network Training. The SG Network uses just the words in the sentence as input, and is
trained to imitate the output of the Expert System. This output defines spans of words and their subgraph
types, which are the nodes of the AMR graph. Later stages of the system use this information to infer other
aspects of the AMR, like relations (edges).
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Span Tag Count Accuracy Parent Child Relation

NonPred 60112 0.984 lemma(N)
Pred 45016 0.933 lemma(V)-sense
Named 17295 0.951 category/wiki-link name/words name
DateEntity 2050 0.982 date-entity/norm’d date
HaveOrg 1739 0.983 have-org-role lemma ARG2
Person0 1634 0.952 lemma(V) person ARG0
FrequentDouble 803 1.000 govern-01 government-organization ARG0
TemporalQuantity 695 0.993 temporal-quantity/quant (unit-type) unit
Person1 599 0.922 lemma(V) person ARG1
Thing1 515 0.935 lemma thing ARG1
More 406 0.972 lookup(word) more degree
HaveRel 400 0.984 have-rel-role-91 word ARG2
Include 317 0.885 include-91 word ARG2
Most 276 0.979 lookup(word) most degree
Thing2 242 0.914 lemma thing ARG2
HaveConcession 240 0.995 have-concession-91 lookup(word) ARG2
MonetaryQuantity 220 0.948 monetary-quantity/quant (quant-type) unit
Person2 159 0.895 lemma(V) person ARG2
BeLocatedAt 155 0.946 be-located-at-91 word ARG2
MassQuantity 152 0.995 mass-quantity (unit-type) unit
HaveCondition 136 1.000 have-condition-91 lookup(word) ARG2
Why 108 1.000 cause-01 amr-unknown ARG0
Thing0 107 0.934 lemma thing ARG0
DistanceQuantity 83 0.981 distance-quantity (unit-type) unit
Ago 73 1.000 before now op1

Table 4.1: Top 25 of 46 subgraph categories identified by the SG Network. Accuracies are measured
during system development, using the cascaded system shown in Figure 4.4. Parent and child nodes, and
their connecting relation, are used by the expert to identify spans, and by the expander to create final AMR
concepts and relations. NLTK lemmatizer specified for Nouns(n) of Verbs(v), lookup is the most common
translation for the word found in training data.
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words BIOES Prob kind

France S Named 0.995 Named subgraph
plans S Pred-01 0.997 plan-01
further S NonPred 0.931 further
nuclear S NonPred 0.990 nucleus
cooperation S Pred-01 0.986 cooperate-01
with O 1.000 O
numerous S NonPred 0.982 numerous
countries S NonPred 0.860 country
. O 0.999 O

Table 4.2: SG Network Example Output

feature width

Word[france] 302
Suffix[ce] 5
Caps[firstUp] 5
SG[S Named] 10
Word[further] 302
Word[nuclear] 302
Word[cooperation] 302
Word[with] 302
Word[numerous] 302
SG[S NonPred] 10
SG[S NonPred] 10
SG[S Pred-01] 10
SG[O] 10
SG[S NonPred] 10
Distance[4] 5

Table 4.3: Args Network Features for the
word France while evaluating outgoing args for
the word cooperation, associated with predicate
cooperate-01
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System Description Test F1 Eval (OOD) F1

Our Parser
(summary of 12 trained systems)

mean 0.707 0.652
min 0.706 0.651
max 0.709 0.654

RIGA [Barzdins and Gosko, 2016] 0.6720 0.6196
Brandeis/cemantix.org/RPI [Wang et al., 2016] 0.6670 0.6195
CU-NLP [Foland Jr and Martin, 2016] 0.6610 0.6060
ICL-HD [Brandt et al., 2016] 0.6200 0.6005
UCL+Sheffield [Goodman et al., 2016] 0.6370 0.5983

Table 4.4: Smatch F1 results for our parser and top 5 parsers from semeval 2016 task 8.



Chapter 5

Distributed AMR Parser

The AMR parser described in Chapter 4 is constructed from multiple recurrent neural net-

works, cascaded together to produce log-likelihoods related to AMR concepts and relations. These

resulting log-likelihoods are then used to choose and construct the most likely AMR corresponding

to the input sentence.

This AMR Parser was modified so that probabilities are preserved until AMR construction

time. Instead of deciding the subgraph type for each word early in the process, we instead maintain

the distributed representation produced by the SG neural network and use it as the feature for the

Args, Nargs, Attr, and Cat networks.

The modified AMR parser can be considered as having two separate stages: a) the generation

of distributed concept and relation representations b) converting these distributed representation

into discrete symbols and connections which make up the AMR. An advantage of this architec-

tural view is that an intermediate result is produced, which we can investigate as the source for se-

mantic processing besides AMR construction. We call this intermediate representation Distributed

Abstract Meaning Representation, or DAMR.

The system shown in figure 4.2 was modified and split into two discrete systems so that it

produces DAMR as a byproduct. The resulting systems, which can now be called a DAMR Parser

and AMR Constructor, are shown in Figures 5.1 and 5.2.

The DAMR Parser is composed of many layers, each of which can be considered to be a

distributed representation of features for that layer. This gives us a number of possible levels to
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choose for defining the information to be used to construct DAMR. In the diagrams, we show

the option of selecting the layer prior to the softmax output layer. For most of the experiments

which follow, however, we chose to use the log-likelihoods produced by the softmax layer. The

log-likelihoods can be interpreted as a probability distribution over tags, and thus should be more

suitable for modification based on disambiguating evidence.

Feature Extraction

Sentence 

 

subgraph 
distributed reps.

Word Features

Args

SG

Nargs Attr

UofI Wikifier

NER

DAMR

Figure 5.1: DAMR Parser

A sentence in isolation can usually be interpreted in many different ways. We can disam-

biguate the meaning of a sentence based on information not specifically specified by it, by using

surrounding context, pragmatic evidence, or common sense, for example.

DAMR preserves some of the ambiguity associated with the semantic structure of repre-

sented meaning. It preserves probabilistic semantic representations which could be modified using

other information to improve the interpretation of meaning.

The NN based AMR parser natively delivers probability distributions, and these distribu-

tions could be preserved until meaning must be resolved, for example, a symbolic representation

is desired. Up until that time, new information could be used to alter or bias the probability distri-

butions, taking into account all known information.
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Subgraph Expansion and
AMR Construction

PnargsPargs

relations

Pattr

softmax softmax softmaxsoftmax

Psg

DAMR

Figure 5.2: AMR Constructor

Even though DAMR representations are induced using supervised training, the training ob-

jective is not task specific, since it is based on inducing general semantic information as defined by

the AMR semantic framework. DAMR should therefore be useful as a multi-task representation.

The DAMR to Sentence Vector Bridge should be trainable with either task-specific or unsupervised

(task-generic) objectives. For simplicity, we will use an inference task objective to test the DAMR

representation.

5.1 Distributed Subgraph as a Training Feature

During training, the expected, or ”gold” subgraph type is derived from the human annotated

AMR graphs provided in training data. An SG network is first trained using the gold subgraph

target to feed an objective function for back propagation. The output of a trained SG network

is then used to generate the distributed feature which will be used as input to the SG-dependent

networks: Args, Nargs, Attr, and Cat.



76

The error rate from the trained SG network will impact the quality of the distributed SG

feature. Introducing errors during training is a concern, but during forward (decode) mode, the

input to the network will contain cascaded errors from the SG network, so it may be important to

include them during training to simulate the expected forward environment. The tradeoffs of using

the gold SG target to bias the distribution during training were investigated using the following

vector feature schemes:

• Forced Probability: Train with pseudo probabilities generated from the gold SG target.

• Corrected Probability: Train with SG network probabilities, except when the most prob-

able tag conflicts with the gold tag, in which case use a set of pseudo probabilities gener-

ated from the gold SG target.

• Raw SG Probability: Train with SG network probabilities with no influence of the gold

SG target.

The results of this experiment showed that the Corrected and Raw SG probability features

generated equivalent results, whereas Forced Probability feature performed significantly worse.

Therefore, the Raw SG Probabilities were used to train SG dependent networks for DAMR cre-

ation.

5.2 Distributed AMR Description

Figure 5.4 shows a rough illustration of a DAMR, composed of the intermediate productions

from BDLSTM neural networks as described.

Recall that the AMR parser divides spans of words in a sentence into concept subgraphs.

A distributed representation of the probabilities over concept subgraph types for each word is

generated by the SG network. A corresponding attribute representation for each word is generated

by the Attr network, and a distribution over named categories is generated by the Cat network.

These three vectors are concatenated together to form a single vector f for each word. Thus,
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for a sentence which is described by s words, the distributed representation of these subgraphs is

f0, f1, ...fs−1.

The relations from predicate subgraph concepts, or Args, are obtained from the Args BDL-

STM network, and form an sxs array called A, where each entry Aij is the distributed representa-

tion of the relation between the predicate subgraph i to subgraph j (a directed relation). Note that

a noconnection relation is included in the class set, and that in the case where i = j, noconnection

is forced, since self loops are not allowed in the AMR description. The N matrix for Nargs is

constructed in the same way as A for Args.

5.3 Results

The DAMR Parser was tested and compared with the AMR parser. This serves as an inde-

pendent check of the quality of the DAMR representation. Each network was trained individually,

and the F1 score for the dev partition was used to determine the best parameters. Statistics were

not gathered for multiple parsers as for the AMR Parser, but the single DAMR parser derived from

the best performing networks as judged by dev F1 was tested using the eval corpus as before. F1

results are shown in table 5.1. Parser results improved to 0.659 when the log probabilities for SG

were used as input to Args, Nargs, Attr, and Cat networks, which was not completely expected.

The reason for the improvement is probably due to the systems ability to exploit the extra in-

formation about ambiguous subgraph types that is maintained in the probabilistic representation.

Unfortunately, the individual test results from the AMR Parser development were tested using the

gold SG as input, instead of using the output of the SG network, as was done for the DAMR NN

testing. Therefore, a direct comparison cannot be made without further experimentation.

The F1 Scores for each network are shown in figure 5.2.

The F1 score for the test partition was calculated for each network, and the confusion matri-

ces are shown in figures 5.5, 5.6, 5.7, 5.8 and 5.9.



78

System Description Test F1 Eval (OOD) F1

DAMR Parser 0.659

AMR Parser
(summary of 12 trained systems)

mean 0.707 0.652
min 0.706 0.651
max 0.709 0.654

RIGA [Barzdins and Gosko, 2016] 0.672 0.6196
Brandeis/cemantix.org/RPI [Wang et al., 2016] 0.667 0.6195
CU-NLP [Foland Jr and Martin, 2016] 0.661 0.6060
ICL-HD [Brandt et al., 2016] 0.620 0.6005
UCL+Sheffield [Goodman et al., 2016] 0.637 0.5983

Table 5.1: Smatch F1 results for the DAMR parser and top 5 parsers from semeval 2016 task 8.

Network Precision Recall F1

Subgraph (SG) 0.828 0.863 0.845
Predicate Relation (Args) 0.662 0.586 0.622
Non-predicate Relations (Nargs) 0.613 0.529 0.568
Attributes (Attr) 0.811 0.814 0.812
Named Categories (Cat) 0.770 0.818 0.793

Table 5.2: Precision, Recall, and F1 results for DEFT test split for each individual neural network in the
DAMR parser system

# ::id DF-225-195986-849_2659.13 ::amr-annotator SDL-AMR-09 ::preferred
# ::tok It definitely sounds interesting .
# ::alignments 0-1.1 1-1.3 2-1 3-1.2
(s / sound-01~e.2 
      :ARG1 (i / it~e.0) 
      :ARG2 (i2 / interest-01~e.3) 
      :mod (d / definite~e.1))

sound-01

interest-01it definite

ARG1 ARG2
mod

Figure 5.3: DAMR to AMR.
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A

N

Figure 5.4: Rough example of a DAMR, for a sentence with five spans.
f0...fs−1 Sourced by AMR Parser, see Sections 4.4.2.3 and 4.4.2.6
A Sourced by AMR Parser, see Section 4.4.2.4
N Sourced by AMR Parser, see Section 4.4.2.5
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Figure 5.5: Confusion matrix for the 131 subgraph tags produced by the SG Network on the DEFT
test dataset. The number of training samples for infrequent tags results in a higher error rate, as can be
seen by the loss of a coherent diagonal map about a third of the way down. The detailed chart shows
the most frequent 10 labels in the training data. The system occasionally confuses the three types of
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more accurately by a second network. The BIOES tags are mostly useful just for named tags.
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Figure 5.6: Confusion matrix for the 6 arg tags produced by the distSG-sourced Args Network on the DEFT
test dataset. The bottom four tags are not present in the test data. The recall of 0.586 is evident in the high
numbers in the left hand squares, indicating that no Arg was identified by the system. Some of the errors in
precision (0.662) can be seen in the high numbers in the top row, indicating an argument was indicated by
the system when none actually existed. Some of these errors are due to cascaded errors from the probability
distribution produced by the SG Network (distSG).
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performance.
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Chapter 6

Sentence Vectors from Semantic Graphs

In this chapter, we investigate the use of DAMR as the feature source for a model, called

the DAMR Bridge, which creates fixed length sentence vectors. Two Natural Language Inference

corpora were used as benchmark tasks to assess the quality of the sentence vectors produced.

The motivation for converting DAMR to sentence vectors is twofold: First, it allows us to as-

sess the quality of AMR independently from the smatch graph comparison algorithm. The smatch

algorithm is used to compare a golden AMR to the output from a parser. It does this by breaking

down the two graphs into sets of triples for concepts, attributes, and relations, and comparing the

two sets in order to produce precision, recall, and f1 scores. The correspondence between one set

of concepts and another is obtained by using a hill-climbing algorithm to minimize error, and that

algorithm is stochastic and dependent on the number of steps applied during computation. The

idea is that if one concept is wrong is in a parsed graph, all other concepts should be aligned to

each other, so that only one triple is in error. This matching can be prone to wide variation when

the graphs are large and more than one concept differs.

Smatch also does not have a notion of relative semantic relevance, it penalizes the difference

between slightly different word senses as much as a polarity error which negates the entire meaning

of a sentence.

Second, we can investigate the effectiveness of using intermediate results from a pre-trained

symbolic parser as the source for distributed sentence representations. Sentence vector sourced

tasks are becoming more common. A graph-based intermediate representation like DAMR allows
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graphical algorithms to be applied, like the abstractive summarization described in Chapter 2. The

probabilistic form of DAMR also gives more options for influence with contextual or pragmatic

evidence. These graphical advantages might give us more discourse level analysis options, while

maintaining compatibility with some standard downstream vector-sourced application.

For these two reasons, it is interesting to explore the use of DAMR and DAMR bridge to

assess meaning using a natural language inference corpus.

6.1 DAMR to Sentence Vector Bridge

DAMR is nonuniformly sized, expanding to express longer sentences and more complex

semantic content. The Args matrix is a two dimensional sparse matrix whose dimensions are

p×n, where p is the number of identified predicates, and n is the number of words in the sentence.

The size of the Nargs matrix is n × n. A model which we call DAMR Bridge links the 2-D,

nonuniformly sized DAMR to a fixed size sentence vector representation.

The DAMR Bridge is a compositional model that uses distributional triplets from DAMR

to create a fixed size distributed vector representation. It is sourced by the DAMR Parser, and

contains a Feature and Network section, which create a sentence vector. The Bridge Network is

trained and tested based on data from a Natural Language Inference corpus. The entire system

from sentences to inference tag probability is shown in figure 6.1. Note that the DAMR parser A

is pretrained on the AMR corpus, while the rest of the system is trained on an NLI corpus.

The model is trained with a cross-entropy loss objective, using minibatch Stochastic Gradient

Descent. RMS Propagation [Tieleman and Hinton, 2012] was used to minimize sensitivity to

learning rates, which were kept at 0.01 . The batch size is 512. Dropout of 0.2 is applied to the

LSTM Recurrent and non-recurrent weights, and dropout of 0.3 is applied to all weights in the

classifier. The 300D Glove 840B pretrained mixed-case vectors [Pennington et al., 2014] were

used and were not altered during training. A dimension with value of 1.0 was added to represent

Out-Of-Vocabulary words.

Model parameters are shared between hypothesis and premise sentences, to create a single
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generic sentence encoding model that can is used for either sentence during testing.

All sentences are pre-padded up to a maximum length, which is necessary to form a consis-

tent batch of multiple sentences to the GPU for fast processing. This maximum length will directly

impact run time, so it was chosen carefully. A value of 42 was chosen for the SNLI corpus, and all

sentences longer than that were truncated, which impacted less than 0.1%. The Multi-NLI corpus

contains transcriptions of spoken dialog which can exceed 400 words in length. We chose to to

use a padded sentence length of 100 for all Multi-NLI sentences, and to truncate the sentences

longer than 100 (roughly 0.2%). Note that this was done for both the AMR neural networks and

the DAMR bridge.

6.1.1 DAMR Bridge Features

6.1.1.1 Relation Compression

Rather than process the entire matrices of all possible relations described by Args and Nargs

probabilities, we use an algorithm to select the most likely relation connections for each word and

process using a ranked list.

Let n = number of words in the sentence. Define M as a matrix with dimension nxn, where

Msd = max(Asdx, Nsdy), ∀x ∈ Args and ∀y ∈ Nargs

M describes the maximum probability of any inferred Args or Nargs connection between

source word index s and destination word index d.

For each row in M, which represents the word with index s as the source of a relation, we

sort the column indices d, representing destination word indices, based on the value of Msd. This

sorted list, D, is a list of relation destination indices d emanating from word index s, ranked by

maximum probability of connection Msd, for each s. We then have a list of destinations d for each

source word s, ranked by maximum connection probability.
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d = D(s, r)

The compression process is depicted in Figure 6.2.

Representing the word index of the source as s and destination d, the features representing

distributed triples from the DAMR representation are shown in table 6.1

Symbol Description

Source Word

Ws source word embedding
SGs source word distribution over SG labels
Attrs source word distribution over Attr labels
Cats source word distribution over Cat labels

Destination Word

Wd destination word embedding
SGd destination word distribution over SG labels
Attrd destination word distribution over Attr labels
Catd destination word distribution over Cat labels

Relation
Argssd relation distribution over Arg labels
Nargssd relation distribution over Narg labels

Table 6.1: DAMR Bridge Features

6.1.2 DAMR Bridge Network

An LSTM row is used to reduce the sequence of features associated with a ranked row r into

a fixed-size vector, which represents the words and their relations to other words in the sentence

for a given relation probability rank from D. We refer to each LSTM row production as a ranked

relation vector, Kr. The ranked relation vectors are then batch normalized and added together to

create a sentence vector
∑rows−1

r=0 Kr where rows is the number of LSTM rows we choose to add

to the model for representing ranked probabilities from D.

The features input to the LSTM row r for source word s are defined as:

f rs = {Ws, SGs, Attrs, Cats,Wd, SGd, Attrd, Catd, Argssd, Nargssd}where d = D(s, r)

Figure 6.4 shows the details of an LSTM row.
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While the model is designed to support experimentation with up to five rows, we found that

more than two did not improve performance and took a very long time to converge, so we limited

the experiments for this version of the DAMR Bridge to two rows, representing the first and second

most likely relations sourced by each word.

6.1.3 NLI Classifier

The NLI Classifier is used during sentence vector model training and for evaluating sentence

vectors from either DAMR Bridge or simple Continuous Bag of Words models. The architecture

is based on the best performing systems for NLI classification described in [Bowman et al., 2015,

Marelli et al., 2014, Merity, 2016, Mou et al., 2016].

6.1.4 CBOW Projected Model

The Continuous Bag of Words (CBOW) Projected model is shown in figure 6.7. This model

is based on composing word representations into a sentence vector by summing the representa-

tions together, completely ignoring word order. A projection layer projects the distributed word

representations (in our case, Glove 640B, 300d) in to the model space, speeding up training and

improving overall results. Batch Normalization is used to normalize the sentence vectors to reduce

covariate shift [Ioffe and Szegedy, 2015b], which also speeds up training.

6.2 Testing Semantic Representations

We will use NLI to test the quality of DAMR-sourced sentence vector representations us-

ing standard published corpora, and compare with published results from other models on these

corpora.

NLI standardized corpora have been steadily improving over the years. Up until 2015 or

so, the primary sources of annotated NLI corpora have been the Recognizing Textual Entailment

(RTE) challenge tasks. Another commonly used corpus was provided for the SemEval 2014 task
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called Sentences Involving Compositional Knowledge (SICK). These are mostly hand-labeled data

sets which were used for a number of innovative advances in the field, but they are limited by three

important factors.

• They are limited to less than 5000 training samples in size, which is very small for dis-

tributed techniques such as neural networks, which require very large amounts of training

data.

• A lack of consistency for handling indeterminacies of event and entity coreference.

• The quality of the data sets is lower due to automatic construction of many of the examples

[Marelli et al., 2014].

6.3 SNLI

The Stanford Natural Language Inference Corpus, (SNLI Corpus)[Bowman et al., 2015]

was created to overcome some of the problems with previous NLI Corpora. Over half a million

sentences are generated and verified by humans, using Amazon mechanical turk.

The premise sentences are descriptions of photos from Flickr. These descriptions were pro-

vided by an independent crowd-sourced effort, to eliminate photographer specific bias. These

descriptions are relatively simple and literal. The hypotheses are generated by mechanical turkers

based on just the premise description text, and they are provided with instructions for how to gen-

erate entailing, contradicting, and neutral sentences. The instructions are specifically tailored to

help prevent indeterminacies.

A validation step was performed by another group of mechanical turkers on a randomly

segmented test and development data split. Five independent assessments for each pair were made,

and the majority vote determined a gold label for the pair. In 92% of the validated pairs, the gold

label matched the author’s label, and only 2% of the pairs did not have a majority voted gold label,

which means the process generated good quality data suitable for the task. The gold labels were

used for validation and test, with the 2% without a gold label discarded.
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A standard split was published, with 550,152 training pairs, 10,000 development pairs, and

10,000 test pairs. Table 6.2 shows some randomly selected samples from test dataset. The Premise

sentences are generally simple and well formed, since they are all meant to describe a visual scene.

The hypotheses are generally much shorter than the premises, and are also relatively simple.

Performance from a variety of models have been published, using the standard convention

that only the training set is used for training, dev for monitoring progress, and test for final evalu-

ation. The models can be considered to be of two types:

• Models which construct sentence representations independently for premise and hypoth-

esis, and then classify based on the sentence representations.

• Models which consider the sentences together in some way, for example using attention

between sentences, or which otherwise do not strictly generate sentence representations

independently.

We will compare DAMR experiments with the published models which create premise and

hypothesis representations independently. The SNLI website 1 shows many of the up to date

results. By evaluating DAMR and the DAMR Bridge using this corpus, and comparing with the

performance of using other representations, we should be able to gain a good perspective of the

quality of the semantic content expressed in DAMR.

The fully populated DAMR Experiment model features are shown in 6.3, and these can be

gated on or off independently for ablation studies. The system is described with a label which

contains a 1 for each enabled feature, and a 0 if it is not used. Table 6.3 shows an example of a

system where features are limited to: word embeddings for source and destination, subgraph types

for source and destination, and Args for the relation between source and destination. The label for

this system is 1-1-100-100-10 as shown in the table.

Table 6.4 shows DAMR experiments accuracy in context with accuracy of other relevant

published sentence encoding models for the SNLI Corpus. The circled numbers will be used to

1 http://nlp.stanford.edu/projects/snli/
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reference the models in the following discussion.

1 is a baseline classifier presented by [Bowman et al., 2015] that emphasizes handcrafted

features.

2 [Bowman et al., 2016] encodes the premise and hypothesis with two different LSTMs.

3 [Vendrov et al., 2015] use unsupervised skip-thoughts pre-training with GRU encoders.

Skip-thoughts uses sentence to sentence context for training, similar to word2vec for words.

4 [Mou et al., 2015] use a tree-based CNN to capture sentence-level semantics.

5 [Merity, 2016] uses a well-tuned CBOW model with projection, surpassing previous

published CBOW model performance by about 2%. This provided us with an example keras code

base and a higher baseline target for CBOW.

6 1-0-000-000-00 1 Row is really just a single LSTM row with projected word represen-

tation input. This system performs about the same as CBOW. Since it actually adds word order

to the model over CBOW, this is a strange result, but not unique to the DAMR experiments, for

example, [Williams et al., 2017] report lower numbers with LSTM models than with CBOW on

the SNLI corpus also. Perhaps this is due to the simplicity of SNLI sentences, and word order is

not as important for good performance.

7 1-1-111-111-11 2 Rows is an attempt to extend the model from 9 into a higher number

of rows, taking into account the second most probable relations in addition to the first. Instead of

better accuracy, the result was worse, which is probably an indication that concentrated tuning is

needed for increased DAMR rows.

8 CBOW Projected is an experiment which replicates the performance of 5 [Merity,

2016] using projected word embeddings and tuning the system for best performance. Note that

the classifier width is 300 vs. 600 for 5 , but the system performs slightly better. The parameters

found for this configuration were used for all others to try to normalize experiments somewhat.

9 1-1-111-111-11 1 Row performs about 0.5% better than the 8 CBOW Projected model.

This represents using all the DAMR features for the most probable relation and destination from

each word. See Figure 6.9 for details.
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10 [Bowman et al., 2016] introduces a stack-augmented parser-interpreter neural network

(SPINN) which combines CFG parsing and sequence interpretation within a single hybrid model.

11 [Munkhdalai and Yu, 2016b] use an S-LSTM structure which applies to tree structures,

but do not use a pre-parser to define the tree, instead dividing the sentence words into a binary tree.

12 1-0-111-111-11 1 Row + CBOW Projected concatenates the DAMR bridge vector

with the Projected CBOW model vector, and was the best performing DAMR SNLI configuration.

The concatenated model performs about 1% better than CBOW alone, and about 0.5% better than

DAMR alone. Earlier experiments that leaving out the destination word representation did not

have an effect on performance, so this experiment was conducted without it. The model mainly

performs better for contradiction than with CBOW alone, but also improves for the entailment

prediction. See Figure 6.8 for details.

13 [Liu et al., 2016] use BiLSTM to generate sentence representations, and replace average

pooling with inner-attention.

14 [Munkhdalai and Yu, 2016a] use a memory augmented neural network, which they

call neural semantic encoder (NSE), they encode sentence vectors using read, compose and write

operations.

In summary, DAMR improves the accuracy for the SNLI corpus by about 0.5%. An ablation

study did not show a steady progressive improvement as more features were added. The best

performance resulted from a DAMR bridge generated sentence vector concatenated to a CBOW

model generated vector, about 0.5% better than with DAMR alone.
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Premise Hypothesis Label
Two children are sitting in the same
wooden lawn chair while a green
rake is leaning against the same
chair.

The children are inside playing
video games.

contradiction

The children are getting ready for
anap.

neutral

Two children are on the lawn. entailment
A man with a gray beard and an
apron smiles.

A man eating a cow. contradiction

A grandfather smiling while baking neutral
A man smiling. entailment

This young man is wearing blue
jeans and a cowboy hat, and is
walking away from a calf that is
currently roped within an arena.

Nobody has jeans contradiction

A tall person in jeans neutral
A person in jeans entailment

A black and white dog playing with
a broken volleyball

Two dogs are walking down the
road.

contradiction

The dogs are playing with the ball
that the kids just broke.

neutral

Two dogs are playing with a ball. entailment

Table 6.2: SNLI Data Triplets, randomly sampled from the test dataset.

Ws - Wd - SGs Attrs Cats - SGd Attrd Catd - Argssd Nargssd

1 - 1 - 1 0 0 - 1 0 0 - 1 0

Table 6.3: DAMR Bridge Feature Ablation Notation. A ”1” indicates that the feature is enabled. In this
example we illustrate the meaning of 1-1-100-100-10, where features are limited to: word embeddings for
source and destination, subgraph types for source and destination, and Args for the relation between source
and destination.
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Ref Author Model Test Acc

1 [Bowman et al., 2015] 100D LSTM encoders 77.6
2 [Bowman et al., 2016] 300D LSTM encoders 80.6
3 [Vendrov et al., 2015] 1024D GRU encoders w/ unsupervised

’skip-thoughts’ pre-training
81.4

4 [Mou et al., 2015] 300D Tree-based CNN encoders 82.1
5 [Merity, 2016] CBOW w/projection 82.5
6 DAMR Experiments 1-0-000-000-00 1 Row 82.5
7 DAMR Experiments 1-1-111-111-11 2 Rows 82.5
8 DAMR Experiments CBOW Projected 82.6
9 DAMR Experiments 1-1-111-111-11 1 Row 83.1
10 [Bowman et al., 2016] 300D SPINN-PI encoders 83.2
11 [Munkhdalai and Yu, 2016b] 300D NTI-SLSTM-LSTM encoders 83.4
12 DAMR Experiments 1-0-111-111-11 1 Row + CBOW Pro-

jected
83.6

13 [Liu et al., 2016] 600D (300+300) BiLSTM encoders with
inner-attention

84.2

14 [Munkhdalai and Yu, 2016a] 300D NSE encoders 84.6

Table 6.4: SNLI Performance Accuracies for Various Models, including DAMR Experiments. All DAMR
Experiments use LSTM, Sentence Vector, and Classifier Output widths of 300.
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acc=82.6%

contr neutr entail

Sys Label

2669 310 258

266 2471 482

89 252 3027

1-1-111-111-11 1 Row
acc=83.1%

contr neutr entail

Sys Label

0.926% -0.977% 0.051%

0.458% -0.397% -0.061%

0.051% -0.092% 0.041%

Delta%
Overall Acc+0.57%

SNLI test partition,
CBOW Projected vs. 1-1-111-111-11 1 Row

Figure 6.9: SNLI CBOW vs. 1-1-111-111-11 1 Row
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6.4 MultiNLI

While the SNLI corpus improved significantly over the RTE and SICK datasets, it still has

some recognized room for improvement. The image caption premises in SNLI represent a limited

subset of language that describes scenes, and are short and simple. The simplicity of the sentences

makes it difficult to sort out the effectiveness of differing models, because there is not much per-

formance margin to distinguish them. This is particularly evident with models that process the two

sentences together, using attention or memory based mechanisms to discern inference relations.

The restricted origin of the sentences leaves out a lot of the variation associated with language,

which makes the models less general.

The latest NLI corpus is called Multi-NLI [Williams et al., 2017], and it maintains the large

dataset advantages (433k pairs), but represents english language from ten different genres. These

genres are derived from both written text and transcribed speech, and were selected to cover a

range of styles, degrees of formality, and topics. Five are used for training data, and there are held-

out datasets from those five genres that are referred to as the matched dev and matched test data.

There are also held-out datasets for the other five genres, which are referred to as mismatched. The

matched and mismatched test datasets had not yet been released to the public during our DAMR

experimentation, they are being used in conference challenge. We therefore randomly divided the

dev dataset into two parts, both representing in-domain genres, and used one half as a development

set, the other as a held-out test dataset. The out-of-domain dataset was used without repartitioning.

This leaves us with about 1000 of each of the in-domain genre for each of dev and test, and a full

2000 of each of the out of domain genres for test. See Table 6.5.

The in-domain, or matched, genres, as described in [Williams et al., 2017], are:

• FICTION: contemporary fiction written between 1912 and 2010, spanning crime, mys-

tery, humor, western, adventure, science fiction, and fantasy. The authors of these works

include Isaac Asimov, Agatha Christie, Ben Essex (Elliott Gesswell), Nick Name (Piotr

Kowalczyk), Andre Norton, Lester del Ray, and Mike Shea. See Table 6.8.
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Genre Train Dev. Test Available ESIM CBOW

SNLI 550,152 10,000 10,000 9,800 86.7% 80.6%

FICTION 77,348 2,000 2,000 980 73.0% 67.5%
GOVERNMENT 77,350 2,000 2,000 988 74.8% 67.5%
SLATE 77,306 2,000 2,000 967 67.9% 60.6%
TELEPHONE 83,348 2,000 2,000 990 72.2% 63.7%
TRAVEL 77,350 2,000 2,000 982 73.7% 64.6%

9/11 0 2,000 2,000 1974 71.9% 63.2%
FACE-TO-FACE 0 2,000 2,000 1974 71.2% 66.3%
LETTERS 0 2,000 2,000 1977 74.7% 68.3%
OUP 0 2,000 2,000 1961 71.7% 62.8%
VERBATIM 0 2,000 2,000 1946 71.9% 62.7%

MultiNLI Overall 392,702 20,000 20,000 22.3 72.2% 64.7%

Table 6.5: Various MultiNLI Performance Accuracies From [Williams et al., 2017]

• GOVERNMENT: reports, speeches, letters, and press releases from public domain gov-

ernment websites. See Table 6.9.

• SLATE: articles on popular culture, written between 1996-2000, taken from the archives

of Slate Magazine. See Table 6.10.

• TELEPHONE: transcriptions of two-sided, conversations held in 1990 to 1991 by speak-

ers of both sexes from several major dialect regions, taken from the University of Penn-

sylvanias Linguistic Data Consortium Switchboard corpus. See Table 6.12.

• TRAVEL: travel guides discussing vacation and traveling abroad, released in the early

2000s by Berlitz Publishing. See Table 6.14.

The out-of-domain, or mismatched, genres, as described in [Williams et al., 2017], are:

• 9/11: report on the September 11th 2001 terrorist attacks, released on July 22, 2004 by

the National Commission on Terrorist Attacks Upon the United States. See Table 6.16.

• FACE-TO-FACE: transcriptions of two-sided in-person conversations from the Charlotte,
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NC area in the early 2000s, taken from the the Charlotte Narrative and Conversation

Collection. See Table 6.17.

• LETTERS: letters promoting fundraising for non-profit organizations written in late 1990s-

early 2000s, collected by The Indiana Center for Intercultural Communication of Philan-

thropic Fundraising Discourse. See Table 6.18.

• OUP: five non-fiction works published by Oxford University Press on the textile industry

and child development. See Table 6.19.

• VERBATIM: articles from a quarterly magazine containing short posts about language

and linguistics for non-specialists, written between 1990 and 1996, taken from the Verba-

tim archives. See Table 6.20.

We use the training data as specified for training networks, dev for selecting the best param-

eters during training. We later show the results for the two test datasets in detail, on a per genre

basis.

Table 6.6 shows Multi-NLI In-Domain Genre experiments accuracy in context with accuracy

of other relevant published sentence encoding models for the Multi-NLI In-Domain Corpus. Table

6.6 shows In-Domain Genre experiment accuracy, and a confusion matrix of results is shown in

Figure 6.10.

The circled identifiers will be used to reference the models in the following discussion. Dif-

ferent letters represent different models, the number refer to in-domain vs. out-of-domain, for

example A1 and A2 refer to the same model, run on in-domain and out-of-domain datasets.

6.4.1 In-Domain Performance Discussion

We first discuss the results for the in-domain dataset, summarized in Table 6.6. The progres-

sion of adding features was meant to explore the benefit using DAMR.

A1 CBOW [Williams et al., 2017] is a baseline CBOW model which was used to initially

test Multi-NLI.
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B1 CBOW Projected is the optimized CBOW model developed for DAMR bridge testing,

which outperforms the baseline significantly due to improved architecture, primarily word projec-

tion, multi-layer classification, batch normalization, dropout, and parameter tuning. The model

serves as a better baseline for evaluating DAMR performance impact, and is used as a reference

in most of the confusion chart results presented for various networks and genres. See figures 6.12

through 6.15.

C1 1-0-000-000-00 is a single LSTM row with the projected word embeddings for the

sentence as input. The accuracy of this model is about 1.2% better than the CBOW Projected

model.

D1 1-0-100-000-00 adds the distributed subgraph representation feature for source words

to model C1 , and improves accuracy by 0.9%.

E1 1-0-111-000-00 adds the distributed attribute and category feature to model D1 , im-

proving accuracy by about 0.1%.

F1 1-1-100-100-00 adds the word embedding and distributed subgraph representation fea-

ture for destination words to model D1 , and drops accuracy by -0.8%.

G1 1-1-111-111-00 adds the distributed attribute and accuracy representation features for

source and destination words to model F1 , without any accuracy effect.

H1 1-1-100-100-10 adds the word embedding for destination, the distributed subgraph

representation features for source and destination words, and the distributed Args feature to model

C1 , and improves accuracy by 0.9%, the same improvement as for model D1 .

I1 1-1-111-111-11 uses all DAMR features for one row, but performs about 0.5% worse

than models D1 and H1 .

J1 ESIM [Chen et al., 2017] is an Enhanced Sequential Inference Model, implemented by

[Williams et al., 2017] as a baseline model which was used to initially test Multi-NLI, selected

because it showed the best accuracy for the SNLI dataset at the time (May, 2017). Although

the model exploits information from both premise and hypothesis together, without independent

sentence vector encoding, it is presented here for comparison, and as one of the few published
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models for MultiNLI performance to date.

In summary, the ablation study for the in-domain Multi-NLI corpus shows some positive im-

pact from using the DAMR bridge over just LSTM processing of word representations, improving

performance by 0.9% for two of the models ( E1 and H1 . It did not constently show improve-

ment as feature complexity was increased. This is possibly due to a lack of tuning, perhaps more

dropout is necessary due to overfitting. The models were intentionally not trained individually to

avoid biasing the study, and widths were restricted to 80 for LSTM and 100 for the classifier in

order to speed up training.

6.4.2 Out-of-Domain Performance Discussion

We next discuss the results for the out-of-domain dataset, summarized in Table 6.7, a confu-

sion matrix for results is shown in Figure 6.11. The same models, and the feature progression used

to create them, were used as in the in-domain analysis.

A2 CBOW [Williams et al., 2017] is a baseline CBOW model which was used to initially

test Multi-NLI.

B2 CBOW Projected is the optimized CBOW model developed for DAMR bridge test-

ing. All out-of-domain models were compared with this model, details are shown in figures 6.14

through 6.18.

C2 1-0-000-000-00 is a single LSTM row with the projected word embeddings for the sen-

tence as input. The accuracy of this model is about 1.6% better than B2 . This model performance

is almost as good as circledE1, and already represents nearly the highest accuracy of the OOD

experiments.

D2 1-0-100-000-00 adds the distributed subgraph representation feature for source words

to model C2 , and accuracy decreases by -0.1%.

E2 1-0-111-000-00 adds the distributed attribute and category feature to model D2 , im-

proving accuracy by about 0.1%, getting the performance up to slightly better than the simple B2

.
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F2 1-1-100-100-00 adds the word embedding and distributed subgraph representation fea-

ture for destination words to model D2 , and drops accuracy by -0.2%.

G2 1-1-111-111-00 adds the distributed attribute and accuracy representation features for

source and destination words to model F2 , and accuracy drops by -0.4%.

H2 1-1-100-100-10 adds the word embedding for destination, the distributed subgraph

representation features for source and destination words, and the distributed Args feature to model

C2 , and accuracy reduces by 0.3%.

I2 1-1-111-111-11 uses all DAMR features for one row, but performs about 0.4% worse

than models C2 and E2 .

J2 ESIM [Chen et al., 2017] is the Enhanced Sequential Inference Model, explained earlier.

In summary, the ablation study for out-of-domain data shows little evidence of positive im-

pact from using the DAMR bridge over just LSTM processing of word representations. It did not

consistently show improvement as feature complexity was increased, it is more a random effect.

The performance indicates that the models may be overfitting to the in-domain training data. This

is possibly due to a lack of model tuning, perhaps more dropout is necessary to prevent overfit-

ting. These are the same models used for in-domain testing, and the models were intentionally

not trained individually to avoid biasing the study. This dataset looks promising, so the results are

surprising. Published results from other models and ablations should help to provide context for

the unexpected model performance.
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Ref System
Accuracy

dev test (all ID) fiction gov slate telephone travel

A1 CBOW [Williams et al., 2017] - 64.8% 67.5% 67.5% 60.6% 63.7% 64.6%

B1 CBOW Projected 69.0% 68.7% 69.7% 74.7% 61.8% 70.6% 66.4%
C1 1-0-000-000-00 70.0% 69.8% 69.4% 72.9% 63.0% 72.2% 71.4%
D1 1-0-100-000-00 70.3% 70.6% 70.2% 72.9% 65.5% 72.4% 71.7%
E1 1-0-111-000-00 70.5% 70.7% 70.0% 74.0% 65.7% 72.8% 71.1%
F1 1-1-100-100-00 70.6% 69.8% 70.8% 72.2% 63.7% 71.6% 70.4%
G1 1-1-111-111-00 70.0% 69.8% 70.3% 72.3% 63.8% 71.5% 71.1%

H1 1-1-100-100-10 70.8% 70.7% 71.4% 73.8% 65.5% 70.9% 71.9%
I1 1-1-111-111-11 70.4% 70.2% 70.0% 73.0% 64.4% 72.3% 71.1%

J1 ESIM [Williams et al., 2017] - 72.3% 73.0% 74.8% 67.9% 72.2% 73.7%

Table 6.6: Multi-NLI In-Domain Genre DAMR Experiment Results. All DAMR Models have 100 width
output and 80 width LSTM hidden states.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

1125 263 258

285 951 280

180 271 1294

CBOW Projected
acc=68.7%

contr neutr entail

Sys Label

1139 222 285

221 928 367

123 219 1403

1-1-100-100-10
acc=70.7%

contr neutr entail

Sys Label

0.285% -0.836% 0.550%

-1.304% -0.469% 1.773%

-1.162% -1.060% 2.221%

Delta%
Overall Acc+2.04%

Confusion Matrices for
CBOW Projected vs. Best System for In Domain

Figure 6.10: Confusion matrix shows the results for the best performing In-Domain Multi-SNLI model,
labeled H1 1-1-100-100-10, which is a single row LSTM.
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id System
Accuracy

dev all OOD (test) 9/11 facetoface letters oup verbatim

A2 CBOW [Williams et al., 2017] - 64.7% 63.2% 66.3% 68.3% 62.8% 62.7%

B2 CBOW Projected 69.0% 69.1% 67.0% 71.4% 72.8% 68.6% 65.6%
C2 1-0-000-000-00 70.0% 70.7% 69.3% 71.9% 73.7% 70.6% 67.7%

D2 1-0-100-000-00 70.3% 70.6% 68.6% 72.0% 74.8% 69.6% 68.2%
E2 1-0-111-000-00 70.5% 70.7% 69.5% 72.2% 74.5% 69.7% 67.5%
F2 1-1-100-100-00 70.6% 70.5% 67.8% 71.8% 73.4% 70.6% 68.9%
G2 1-1-111-111-00 70.0% 70.1% 68.8% 70.4% 75.0% 69.5% 66.9%

H2 1-1-100-100-10 70.8% 70.4% 68.4% 73.1% 74.5% 68.8% 67.4%
I2 1-1-111-111-11 70.4% 70.3% 68.5% 71.4% 74.3% 69.3% 67.8%

J2 ESIM [Williams et al., 2017] - 72.3% 71.9% 71.2% 74.7% 71.7% 71.9%

Table 6.7: Multi-NLI Out-of-Domain Genre DAMR Experiment Results. All DAMR Models have 100
width output and 80 width LSTM hidden states.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

2159 531 550

520 1901 708

293 436 2734

CBOW Projected
acc=69.1%

contr neutr entail

Sys Label

2185 449 606

407 1850 872

177 371 2915

1-0-111-000-00
acc=70.7%

contr neutr entail

Sys Label

0.264% -0.834% 0.570%

-1.149% -0.519% 1.668%

-1.180% -0.661% 1.841%

Delta%
Overall Acc+1.59%

Confusion Matrices for
CBOW Projected vs. Best System for Out Of Domain

Figure 6.11: Confusion matrix shows the results for the best performing Out-of-Domain Multi-SNLI model,
labeled E2 1-0-111-000-00.
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Genre Premise Hypothesis Label
fiction I was pulled into the bar. I managed to escape their grasp and

ran just outside the bar.
contradiction

The lure of alcohol was unrelenting
and the bar pulled me in.

neutral

I was dragged through the door of
the pub.

entailment

fiction Ca’daan’s mouth hung open. Ca’daan kept his mouth shut. contradiction
Ca’daan’s mouth was cut wide
open.

neutral

Ca’daan had his mouth wide open. entailment
fiction He had forgotten about Adrin. He remembered Adrin all this time. contradiction

He had forgotten that Adrin was go-
ing to join them.

neutral

He didn’t remember Adrin. entailment
fiction I felt an immeasurable 230 con-

tempt for him .
I felt great respect for him... contradiction

I had no reason for feeling the way
I did about him.

neutral

I felt intense disrespect for him... entailment

Table 6.8: Multi-NLI In-Domain Fiction Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

232 54 56

52 206 49

34 52 245

CBOW Projected fiction
acc=69.7%

contr neutr entail

Sys Label

245 54 43

44 196 67

22 50 259

1-1-100-100-10 fiction
acc=71.4%

contr neutr entail

Sys Label

1.327% 0.000% -1.327%

-0.816% -1.020% 1.837%

-1.224% -0.204% 1.429%

Delta%
Overall Acc+1.73%

Confusion Matrices for
CBOW Projected vs. Best System for fiction Genre

Figure 6.12: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled H1 1-1-100-100-10, for the In-Domain Fiction Genre.
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Genre Premise Hypothesis Label
government The Congress, which controls our

funding levels, began to include
many members who did not support
the purpose and goals of a federal
civil legal services program.

the congress has no responsibility
when it comes to controlling fund-
ing levels.

contradiction

the congress also has different func-
tions, though they are all broad
scoping.

neutral

the congress is generally responsi-
ble for controlling funding levels.

entailment

government They are levied through the power
of the Government to compel pay-
ment, and the person or entity that
pays these fees does not receive
anything of value from the Govern-
ment in exchange.

They are not levied through the
power of the Government to com-
pel payment.

contradiction

They are levied through the power
of the Government to compel pay-
ment in cash only

neutral

They are levied through the power
of the Government to compel pay-
ment.

entailment

Table 6.9: Multi-NLI In-Domain government Genre Examples, randomly selected.

Figure 6.13: Confusion matrix for the CBOW Projected model, which had the best accuracy for the In-
Domain government Genre.
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Genre Premise Hypothesis Label
slate What’s needed, alongside an evac-

uation plan, is a realistic program
to stabilize conditions for those left
behind.

Once everyone has been evacuated
as much as possible, we can’t worry
about those left behind.

contradiction

Evacuation is always the first line of
response.

neutral

Those left behind will need a pro-
gram for stabilizing conditions if
they cannot evacuate.

entailment

slate 5) The Democrats are reaping what
they sowed (after torturing Robert
Bork, John Tower, and Clarence
Thomas).

Democrats rarely have any political
relevance.

contradiction

Democrats are replacing many Re-
publicans because they were always
very forceful in their approach.

neutral

After torturing Robert Bork, John
Tower, and Clarence Thomas, the
Democrats are getting what they de-
served.

entailment

Table 6.10: Multi-NLI In-Domain Slate Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

193 58 60

75 177 65

53 58 228

CBOW Projected slate
acc=61.8%

contr neutr entail

Sys Label

202 33 76

47 184 86

36 54 249

1-0-111-000-00 slate
acc=65.7%

contr neutr entail

Sys Label

0.931% -2.585% 1.655%

-2.896% 0.724% 2.172%

-1.758% -0.414% 2.172%

Delta%
Overall Acc+3.83%

Confusion Matrices for
CBOW Projected vs. Best System for slate Genre

Table 6.11: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled E1 1-0-111-000-00, for the In-Domain Slate Genre.
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Genre Premise Hypothesis Label

telephone oh boy it the i think it’s like one or
the other isn’t it i mean you either

It’s definitely that one. contradiction

I think it’s one or the other kind of
shirt.

neutral

I think it’s one or the other. entailment
telephone um-hum yeah that’s very true you

know how many is it they say we
have so many lawyers in this coun-
try and i guess i i live near Washing-
ton being in in Baltimore it’s some-
thing like one in four people in the
Washington

There are barely any lawyers in this
country.

contradiction

We don’t need so many lawyers. neutral
There are a lot of lawyers in this
country.

entailment

telephone um yeah that sounds kind of neat uh
is location at all important to you
like you know how far it is from
your house or whatever

That sounds really stupid. contradiction

Location doesn’t matter to some
people but it may matter to you I
don’t know.

neutral

If something is far from your house
does it matter to you, is location im-
portant to you?

entailment

Table 6.12: Multi-NLI In-Domain Slate Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

251 48 52

52 170 65

21 53 278

CBOW Projected telephone
acc=70.6%

contr neutr entail

Sys Label

254 48 49

37 175 75

23 37 292

1-0-111-000-00 telephone
acc=72.8%

contr neutr entail

Sys Label

0.303% 0.000% -0.303%

-1.515% 0.505% 1.010%

0.202% -1.616% 1.414%

Delta%
Overall Acc+2.22%

Confusion Matrices for
CBOW Projected vs. Best System for telephone Genre

Table 6.13: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled E1 1-0-111-000-00, for the In-Domain Telephone Genre.
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Genre Premise Hypothesis Label
travel It recalls William Randolph

Hearst’s castle in Caleornia,
with its imaginative juxtaposition
of ancient Roman and Chinese
sculpture, fine Venetian glass
chandeliers, Syvres porcelain, old
Flemish masters, and naughty
French erotica.

There is no art or sculptures located
there.

contradiction

William Randolph Hearst didn’t
love chandeliers, but kept them to
make his lady happy.

neutral

William Randolph Hearst’s castle
housed a collection of sculptures
and other fine arts.

entailment

travel Growth continued for ten years, and
by 1915 the town had telephones,
round-the-clock electricity, and a
growing population many of whom
worked in the railroad repair shop.

Growth was stifled, and most of the
population couldn’t find work.

contradiction

The town was hooked up to the
electricity and telephone grids be-
cause of its geographical impor-
tance.

neutral

Economic growth continued apace,
with many people employed by the
railroad repair shop.

entailment

Table 6.14: Multi-NLI In-Domain Travel Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

251 48 52

52 170 65

21 53 278

CBOW Projected telephone
acc=70.6%

contr neutr entail

Sys Label

254 48 49

37 175 75

23 37 292

1-0-111-000-00 telephone
acc=72.8%

contr neutr entail

Sys Label

0.303% 0.000% -0.303%

-1.515% 0.505% 1.010%

0.202% -1.616% 1.414%

Delta%
Overall Acc+2.22%

Confusion Matrices for
CBOW Projected vs. Best System for telephone Genre

Table 6.15: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled H1 1-1-100-100-10, for the In-Domain Travel Genre.
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Genre Premise Hypothesis Label
nineeleven United 93 crashed in Pennsylvania

at 10:03:11, 125 miles from Wash-
ington, D.C.

United 93 never crashed and is still
flying to this day.

contradiction

The United 93 crash was caused by
the passengers.

neutral

125 miles away from DC, United 93
crashed.

entailment

nineeleven Some family members who listened
to the recording report that they can
hear the voice of a loved one among
the din.

No one was allowed to listen to the
recordings.

contradiction

The loved ones of the victims heard
screaming on the recording.

neutral

Folks who listened to the tape heard
their family members on it.

entailment

Table 6.16: Multi-NLI Out-of-Domain NineEleven Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

426 101 125

119 340 164

71 71 557

CBOW Projected nineeleven
acc=67.0%

contr neutr entail

Sys Label

441 80 131

94 341 188

47 63 589

1-0-111-000-00 nineeleven
acc=69.5%

contr neutr entail

Sys Label

0.760% -1.064% 0.304%

-1.266% 0.051% 1.216%

-1.216% -0.405% 1.621%

Delta%
Overall Acc+2.43%

Confusion Matrices for
CBOW Projected vs. Best System for nineeleven Genre

Figure 6.14: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled E2 1-0-111-000-00, for the Out-of-Domain Nine Eleven Genre.
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Genre Premise Hypothesis Label
facetoface I don’t, I kind of don’t think about

that though, because I’m like my
life is my life, you know?

I think about it every day of my life. contradiction

I do what I want with my life. neutral
This is my life I just do not want to
think about it.

entailment

facetoface That was the deal for them to get
off my back and let me do what I
wanted to do.

They never cared and I always did
what I wanted.

contradiction

I agreed to being financially cut-off
so that I could do what I wanted.

neutral

I made a deal with them so that I
could make my own decisions.

entailment

facetoface But, then like me and my mom will
talk all the time and she’ll come
over here and she’ll like have a
beer and a cigarette with me and it
doesn’t matter anymore!

I would never dare drink in front of
my mother.

contradiction

My mom and I both like to have the
same kind of beer.

neutral

My mom and I hang out all the time
and chat, we even share a drink.

entailment

Table 6.17: Multi-NLI Out-of-Domain Face to Face Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

459 110 88

104 386 148

52 62 565

CBOW Projected facetoface
acc=71.4%

contr neutr entail

Sys Label

470 87 100

93 383 162

28 61 590

1-1-100-100-10 facetoface
acc=73.1%

contr neutr entail

Sys Label

0.557% -1.165% 0.608%

-0.557% -0.152% 0.709%

-1.216% -0.051% 1.266%

Delta%
Overall Acc+1.67%

Confusion Matrices for
CBOW Projected vs. Best System for facetoface Genre

Figure 6.15: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled H2 1-1-100-100-10, for the Out-of-Domain Face to Face Genre.
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Genre Premise Hypothesis Label
letters Information regarding inadequate

classrooms, moot court facilities,
offices, the library and support ser-
vice areas follow the above para-
graphs.

All of the adequate spaces are listed
in the paragraphs above.

contradiction

There are too many professional
spaces with inadequacies.

neutral

Information about inadequate com-
munity or services is listed above.

entailment

letters These are challenging times for
public institutions of higher educa-
tion, with legislative appropriations
unable to fund schools to the level
they have in the past.

Public institutions are being funded
fine and we don’t need your help.

contradiction

No one cares about public educa-
tion anymore so schools aren’t be-
ing funded like they used to.

neutral

Legislative appropriations can’t
fund schools as well as they could
in the past.

entailment

Table 6.18: Multi-NLI Out-of-Domain Letters Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

478 109 65

83 397 105

43 133 564

CBOW Projected letters
acc=72.8%

contr neutr entail

Sys Label

493 91 68

62 386 137

29 108 603

1-1-111-111-00 letters
acc=75.0%

contr neutr entail

Sys Label

0.759% -0.910% 0.152%

-1.062% -0.556% 1.619%

-0.708% -1.265% 1.973%

Delta%
Overall Acc+2.18%

Confusion Matrices for
CBOW Projected vs. Best System for letters Genre

Figure 6.16: Confusion matrix compares the results of the CBOW Projected model against the best perform-

ing model, labeled G2 1-1-111-111-00, for the Out-of-Domain Letters Genre.
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Genre Premise Hypothesis Label

oup The changes now going on have
their analog in the last century,
when technological innovations of
the day like railroads, telegraph,
and steam power’developed for pur-
poses far afield of retail, apparel, or
textiles’helped transform the mass
distri-bution of goods and informa-
tion.

Steam power definitely did not have
any bearing on the distribution of
goods and information.

contradiction

The telegraph had more of a bearing
on information than the railroad.

neutral

Mass distribution of goods and in-
formation was affected by techno-
logical innovations such the steam
power.

entailment

oup In colonial days, housewives typ-
ically did spinning, weaving, and
tailoring for the family.

Housewives went out hunting in
colonial days.

contradiction

Housewives also took care of chil-
dren in colonial days.

neutral

Housewives usually did basic tex-
tile works for the family in colonial
days.

entailment

Table 6.19: Multi-NLI Out-of-Domain OUP Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

400 102 131

93 397 151

55 84 548

CBOW Projected oup
acc=68.6%

contr neutr entail

Sys Label

398 92 143

72 398 171

37 62 588

1-1-100-100-00 oup
acc=70.6%

contr neutr entail

Sys Label

-0.102% -0.510% 0.612%

-1.071% 0.051% 1.020%

-0.918% -1.122% 2.040%

Delta%
Overall Acc+1.99%

Confusion Matrices for
CBOW Projected vs. Best System for oup Genre

Figure 6.17: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled F2 1-1-100-100-00, for the Out-of-Domain OUP (Oxford University Press) Genre.
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Genre Premise Hypothesis Label
verbatim It is difficult to make any sensible

connection between the lives of au-
thors and their creations.

It is very easy to connect the au-
thor’s life to their writing.

contradiction

Authors rarely write about their life
experiences.

neutral

It’s hard to make any sort of con-
nection between the author’s life
and their work.

entailment

verbatim The soldier in charge would com-
mand, after each firing, that the rank
on the scaffold step down and be
replaced by the rank that had just
reloaded, thus alternating ranks and
sustaining the rifle fire.

The commanding soldiers just
stayed and fought themselves with
no rotation.

contradiction

This system does not seem like it
would have worked.

neutral

The commanding soldier demanded
after each firing that the rank be
reloaded.

entailment

Table 6.20: Multi-NLI Out-of-Domain Verbatim Genre Examples, randomly selected.

contr neutr entail

Sys Label

contr

neutr

entail

R
ef

L
ab

el

396 109 141

121 381 140

72 86 500

CBOW Projected verbatim
acc=65.6%

contr neutr entail

Sys Label

408 92 146

92 395 155

52 68 538

1-1-100-100-00 verbatim
acc=68.9%

contr neutr entail

Sys Label

0.617% -0.874% 0.257%

-1.490% 0.719% 0.771%

-1.028% -0.925% 1.953%

Delta%
Overall Acc+3.29%

Confusion Matrices for
CBOW Projected vs. Best System for verbatim Genre

Figure 6.18: Confusion matrix compares the results of the CBOW Projected model against the best perform-
ing model, labeled F2 1-1-100-100-00, for the Out-of-Domain Verbatim Genre.
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6.5 Conclusion

In this chapter, we investigated the use of a DAMR Bridge model to create semantic sentence

vectors from an AMR parser, and tested these representation using natural language inference.

One motivation for converting DAMR to sentence vectors is to provide a more semantically-

driven AMR test approach in contrast with the symbolic graph comparison approach currently in

use. Another is to investigate the quality of the vector meaning representations themselves, as a

novel approach to generate sentence vectors.

Two corpora were described and tested, for a series of models designed to check the effect of

adding more and more information from the DAMR representations. The results were mixed. The

ablation studies did not show consistent performance increases with increasing feature contribu-

tion, but SNLI performance was improved with DAMR by about 1% over either a CBOW model

or LSTM of word embeddings.

Testing with in-domain Multi-NLI corpus data shows an accuracy improvement of about

0.9% for the best two DAMR model configurations. Testing using the DAMR bridge with out-of-

domain Multi-NLI data, however, did not improve accuracy over the optimized CBOW model.

The difference between in and out of domain performance indicates that the model may be

overfitting to the in-domain training data. A possible option for the future is to expand the widths

of the bridge LSTM and classifier outputs, since these were held at fairly narrow widths in order

to be able to run more experiments and to help to prevent model tuning from being a factor in

the ablation study. Increasing the dropout rates for the various portions of the model can also be

explored to prevent any overfitting that might be occurring.



Chapter 7

Conclusions

Neural networks, especially bidirectional LSTM networks, are able to analyze sequences

efficiently and accurately, and they can be used to create very effective models for natural language.

The convolutional neural network architecture chosen for the semantic role labeler described in

chapter 3, can be improved by using the LSTM-based approaches of later chapters. Convolutional

networks impose a local context window, and are not able to handle long-term dependencies within

a sentence as well as recurrent networks like LSTM.

The ablation studies for semantic role labeler show that the addition of path information from

a dependency parser as a feature improved performance.

There was no need to identify the predicates since they were given in the dataset. However,

predicates needed to be disambiguated by determining the predicate sense label. Because the sense

labels don’t generalize well between predicates, a set of model weights was maintained separately

for each predicate in the training dataset.

While the AMR Parser described in Chapter 4 does perform well against other methods

currently in use, the 66% smatch score loosely implies that a third of the semantic information is

not properly parsed.

The alignment of words in the sentence to symbols in the AMR is essential for training,

but it is not a required part of human annotation and is most commonly supplied by automatic

alignment methods. These methods currently have a fairly high error rate, which causes training

data to suffer, leading to deteriorated system performance.
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AMR parsing requires the identification of predicates, which is done by the SG network.

In addition, the SG network identifies the predicate sense for senses 00 and 01, which seem to

generalize better than the rest. Having the SG network also decide the verb sense was probably not

the best choice. A better architecture might be to first identify general spans using the SG network,

and then to use a predicate-specific network for predicate sense disambiguation as was done in the

semantic role labeler described in Chapter 3. This sense-identifying model could be trained with

resources outside the AMR corpus, such as propbank, in order to improve its performance. The

same could be done for identifying semantic roles.

Non-predicate relation identification performance (from Nargs) seems to have room for im-

provement. Perhaps a finer segmentation of this class of relations could be used to create more

specialized handling of them in order to improve performance.

The AMR Parser architecture uses two levels, first, SG, then the rest of the networks. Its

possible that performing the parsing using more cascading levels would improve performance. For

example, first SG, next Args, then Nargs which uses the output of the first two levels, etc.

By eliminating syntactic pre-parsing, the system resource requirements have been reduced,

but the use of an external named entity recognizer still keeps the system dependent on pre-processing.

The named entity process has been done with LSTM networks and some readily available gazetteers,

and incorporating this technique into the architecture would make it more self-contained. The wik-

ification process is a similar, list dependent task that might also be implemented internally.

In Chapter 5, we created a distributed AMR representation, and evaluated the meaning con-

tent it contains by converting it to an AMR, and then using the smatch program to compare with

gold AMR’s in order to generate an F1 score. The result was about 0.5% better than the process

described in Chapter 4, which decides on the identity of SG tags earlier in the program flow.

An expansion of the DAMR concept in the AMR parser would be to make SG decisions

based on a combination of SG prob distribution and Arg/Narg distributions, which might lead to a

higher quality decision overall. Currently, even though distributed SG representations are used as

features for the Args, Nargs, Attr, and Cat networks, the SG is selected based only on the highest
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probability tag for SG.

In Chapter 6, we test DAMR quality in a different way, by first creating premise and hy-

pothesis vectors, and then using those vectors as input to an inference classifier. We conducted

feature ablation experiments for various models in order to investigate the effect of adding in-

creasing amounts of information from DAMR, but failed to find a direct correlation with system

performance. It is difficult to identify the reasons for this lack of direct feature impact, but general

AMR quality improvements might make a difference. The AMR training data content and the NLI

data content are different from each other, which also might explain lack of the trend we were

searching for. Even so, we demonstrated that both the SNLI and MultiNLI results can improved

by adding DAMR content to sentence vector models.

DAMR might allow us to make discourse-level meaning extraction more accurate, for both

symbolic and distributed inference flows. Investigation into using DAMR as an intermediate, pli-

able form of meaning representation would be an interesting future direction. DAMR can be mod-

ified based on pragmatic, context, or other evidence outside the scope of an individual sentence.

This can be done, for example, to disambiguate the sentence before a hard AMR is generated. The

same can be done prior to creating sentence vectors, in order to improve the semantic quality of

the generated vectors.

Finally, a few thoughts on measuring AMR quality. A graph comparison program called

smatch is the primary means of assessing AMR quality from different parser models. The smatch

program compares symbols between two AMR graphs using a stochastic, hill-climbing algorithm,

and does not use any measure of semantic relevance to create its score. Opposite meaning and

slight differences are the same to smatch, making the scores almost irrelevant for true meaning

assessment. The DAMR bridge makes using NLI possible because the AMR parser from Chapter

4 creates distributed representations prior to producing a symbolic AMR graph.

If it was possible to start with an AMR and convert it to a distributed form, suitable as a

feature for a Bridge model like that discussed in Chapter 6, a semantic comparison of AMR’s using

NLI would be possible. This would allow work to proceed towards improving the semantic content
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described in AMR instead of improving the smatch score, for any AMR parsing architecture.

A difficulty with creating a DAMR from an AMR is that AMR expresses lemmatized sym-

bols. The words leave, leaves, leaving, left all might be mapped to the lemma leave and assigned

a predicate sense in the AMR. There is no generic Glove embedding representation for leave-01,

or leave-02, for example. Another aspect to consider is that AMR contains disambiguated sym-

bols, so the representation for the word left in Right, not left needs to be different from They left.

Standard word embeddings like Glove will represent both meanings for left with a single repre-

sentation. One solution would be to add representations for lemmatized and disambiguated AMR

symbols to an existing semantic space, like that defined by Glove embeddings. We could then use

this expanded, large vocabulary embedding space, for mapping from AMR to DAMR. We could

then use a bridge model, as described in Chapter 6, to create sentence vectors to feed a natural

language inference model in order to measure AMR semantic quality.
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7.0.1 Frequently used Acronyms

CBOW Continuous Bag of Words. When applied to a model, this is also called

the sum of word embeddings model.

AMR Abstract Meaning Representation (Chapter 2.4)

DAMR Distributed Abstract Meaning Representation (Chapter 5.2)

LSTM Long Short Term Memory, a type of recurrent neural network, capable

of learning long-term dependencies.

NLI Natural Language Inference [Bowman et al., 2015].

SNLI Stanford Natural Language Inference Corpus [Bowman et al., 2015].


