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Dunham, Benjamin Z (Ph.D., Aerospace Engineering Sciences)

High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices

Thesis directed by Prof. Kurt K. Maute

This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable

of propagating any order of mixed or univariate derivative through common linear algebra functions – most notably

third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power

series – without changing data-type or modifying code line by line; this allows differentiation across sequences of ar-

bitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors

passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks

are constructed with special sparsity structures, termed “stencils,” each designed to be isomorphic to a particular mul-

tidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex

function evaluations are finite in length and thus exactly track derivatives without approximation error.

Although this use of the method in the “forward mode” is unique in its own right, it is also possible to apply

it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered

cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N –

i.e., (1) – the N × N Hessian can be found in (N) time, which is comparable to existing second-order adjoint

methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive

– e.g., aN ×N ×N rank-three tensor can be found in 
(

N2). Alternatively, a Hessian-vector product can be found in

(1) time, whichmay open upmanymatrix-based simulations to a range of existing optimization or surrogate modeling

approaches. As a final corollary in parallel to the NMD-adjoint hybridmethod, the existing complex-step differentiation

(CD) technique is also shown to be capable of finding the Hessian-vector product. All variants are implemented on a

stochastic diffusion problem and compared in-depth with various cost and accuracy metrics.
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Motivation and Background



Chapter 1

Overview

In broad terms, this dissertation concerns itself with the automatic differentiation of medium- to large-scale

engineering codes – that is, given an existing program, the goal herein is to compute derivatives of simulation output(s)

with respect to system parameters, and to do it with an absolute minimum of work on the part of the code developer.

Typical expected usage cases include those where the cost of human labor required to implement the differentiation

routines is likely to swamp the actual run cost; those where different program runs will need different orders or different

numbers of derivatives, preferably without major code re-writes for each case; and those where the precision of the

common finite difference method is simply too limited.

More specifically, this work focuses on arbitrary-order derivatives propagated through low-level matrix algo-

rithms implemented in third-party packages, with the most attention being paid to matrix arithmetic and linear algebra

solvers. Matrix routines deserve special consideration for the simple fact that, despite their wide use, they are not

amenable to most existing automatic differentiation (AD) techniques. This is because their back-end executables and

source code can rarely bemodified directly; this puts them in conflict with almost all standard AD packages (e.g., [1–7]),

which require recompilation after either a change in data-type or line-by-line code modification.

1.1 Contributions

To address such difficulties, this work presents a newmethod, termed “NilpotentMatrixDifferentiation” (NMD),

to semi-automatically find precise, any-order derivatives of unaltered third-party linear algebra routines like those in-

cluded in BLAS/LAPACK or MATLAB; “any-order,” here, means the ability to find simple first derivatives, mixed
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second derivatives (i.e., entries of the Hessian matrix), or even third, fourth, or N th mixed derivatives1. Hybrid mod-

ifications are also introduced for existing first-order differentiation approaches – namely, the popular discrete adjoint

method and the complex-step differentiation (CD) technique – which quickly extend them to higher orders.

The key insight to the new method is that very specific matrix sparsity structures, designed to be isomorphic to

certain non-real scalar algebras, can both store derivative data and compute the chain rule with most matrix operations.

Before entering any sequence of linear algebra routines, input matrices and vectors are mapped to new, larger matrices

that introduce derivative data in the proper structures; these will then self-propagate through successive matrix op-

erations with little or no further code modification on the part of the user2 . After all such operations are complete,

derivative information can easily be extracted from the resulting matrices or solution vectors. Crucially, the new infor-

mation provided by NMD will be just as precise and accurate3 as the output of the original program. Compare this to

the typical first-approximation tool of choice, the finite difference (FD) method, which might find only a few significant

figures or be entirely incorrect for higher orders.

Most real-world usage examples in this document are only summarized, and the derivation of NMD itself is

largely abstract. To give the reader a conceptual framework to work with, the mechanics of the approach will first be

introduced with a stylized example of how it might be used. The underlying theory will be saved for Part II.

1.2 A Motivating Example

Consider a case where a user wishes to quickly interface his or her code with a black-box optimization suite

(e.g., [8–10]), and to this end wishes to use automatic differentiation to provide the suite with second derivatives of

the code. The execution order of a generic, undifferentiated user program is shown in Figure 1.1(a). Such a program

loosely proceeds in the following way: first, user-written code performs any initialization computation, then discretizes

1 Various uses of second derivatives will be discussed throughout Chapter 2, and the use of third or higher derivatives will reviewed in Section 2.4.

2 In this context, “user” refers to the coder who must call linear algebra routines, not necessarily a user of the final program. The phrase “code
developer” could be used interchangeably.

3 Throughout this work, results from NMD or other methods will at times be referred to as “exact”. The word is reserved for situations where
a computed value is the derivative (at least as it would otherwise be given by a literal formula), rather than an approximation thereof; however, it
should formally be taken to mean “exact to within the limitations of computer architecture (machine epsilon) or of the original matrix algorithm
being modified”.
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(a)

AAA∶= Afunc(xxx)

BBB∶= Bfunc(xxx)

CCC∶= Cfunc(xxx)

bbb∶= bfunc(xxx)

xxx

DDD ∶= 1∕ℎ2
(

CCCMMM(1)(1)(1) − 2CCC
)

MMM(1)(1)(1) ∶= AAA +BBB

uuu ∶= DDD−1bbb(xxx) f∶= ffunc(uuu) f (xxx)

(b)

Figure 1.1: Data-flow of (a) a generic program and (b) the example specified by Equation 1.1 presented with an inter-
mediate calculation of the matrixMMM(1)(1)(1) (which makes the construction of DDD compatible with basic BLAS operations).
User source code (light gray) computes scalar (non-matrix) operations; it is accessible to the code developer and can
be modified. The linear algebra routines (dark gray), in contrast, either come in the form of precompiled binaries or
else are simply too large to modify.

a partial differential equation to build a matrix representation of the problem. Second, the program calls a series of

third-party linear algebra routines (e.g., in BLAS/LAPACK, MATLAB, or any of the many other numerical computing

packages); these are assumed to be inaccessible to traditional AD approaches. (This is generally the case unless the

user designed the program from the very start around a specialized matrix library meant for AD.) Third and finally, the

final matrix or vector result is examined by more user-written code, which performs any post-processing and outputs a

quantity of interest.

For the sake of argument, assume this specific user program solves only the following4 simple problem:

4 Chapter 8 will feature a much more elaborate program which includes some very similar operations.
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DDD =
(1∕ℎ2

)

(

CCC(xxx)
(

AAA(xxx) +BBB(xxx)
)

− 2CCC(xxx)
)

(1.1)

uuu = DDD−1bbb(xxx) (1.2)

where ℎ is a constant (undifferentiated) real scalar; xxx is the set of input parameters to be optimized; the matrics AAA, BBB

and CCC and the vector bbb are user-coded functions of xxx; and the final program output f (xxx) = f (uuu (xxx)) is a user-coded

function of uuu. Note that uuu can be considered a vector of internal state-variables, e.g., for an adjoint formulation as

discussed in Section 3.1.2. The data-flow of this specific example is visualized in Figure 1.1(b).

Assume the black-box optimization suite implements one of themany second-order optimizationmethods (some

of which will be further discussed in Section 2.1) that utilize both the function gradient ggg(xxx) ≡ ∇f (xxx) and second

derivative information contained in the Hessian matrixHHH(xxx) ≡ ∇2f (xxx). In particular, assume it requires the nonlinear

conjugate gradient (NCG) update coefficients that will be presented in Equations 2.11 and 2.13 (pages 17 and 18),

reprinted here for convenience:

� = −
gggTddd
dddTHHHddd

� =
gggTHHHddd − gggTddd
dddTHHHddd

(1.3)

where ddd is the search direction and � and � are used to move along ddd and update it, respectively.

1.3 Differentiation Approaches

Aswith all NCGvariants,gggmust be provided by the user; presumably, this is donewith amanual implementation

of the common adjoint method (Section 3.1.2), which in many cases can compute the entire N-input gradient with a

cost complexity of (1) – that is, independent ofN and proportional only to the cost of the original program. Second

derivatives, however, are more difficult to compute. Second-order adjoint methods (Section 3.1.3) with complexity

(N) exist to build the Hessian; these are, however, application-specific and far more time-consuming for most users

to implement. Meanwhile, standard forward-mode (non-adjoint) automatic methods (matrix-compatible or not), while
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less difficult to apply, findHHH in 
(

N2) time; for systems with largeN , this can be impractically expensive, even when

compared to human labor.

However, it is important to realize that the full Hessian is not always required – instead, algorithms often

(e.g., [11–17]) only call for the product of the matrix with one or two vectors. This becomes more than a seman-

tic difference if such a product can easily be found directly, without ever building5 the fullHHH. (Admittedly, this glosses

over several difficulties – many methods will require a pre-conditioner, or else an optimization algorithm that includes

a detection and solution strategy for negative curvature. [18]) To this end, Section 3.1.4 will discuss an existing manual

approach [19] for scalar codes – originally developed for neural network backpropagation algorithms, and meant to

be applied line-by-line – which can find a Hessian-vector product HHHvvv with the same cost complexity as the gradient

ggg. In Section 7.3, this dissertation will demonstrate that a combination of the discrete adjoint method with a single-

derivative instance of NMD can find the same product, for very little human effort.6 The same will be shown for

the combination of CD with the adjoint method, which has never been demonstrated before and hence constitutes an-

other important corollary contribution. However, implementing these combinations is in fact so straightforward that

they would not constitute an adequate demonstration for this chapter. Consider instead the equally-overlooked (if not

more-so) vector-Hessian-vector product – i.e., for the problem given in Equation 1.3, gggTHHHddd and dddTHHHddd. These can be

found by computing the directional derivatives7 of f (xxx + r1ddd + r2ggg) |r1=r2=0 with respect to r1 and r2, without any

modification of the adjoint method. (Note that products of two derivatives cannot be found directly with directional

evaluations; here, ggg is pre-computed.)

As the focus of this dissertation is limited to derivatives across the matrix routines (the dark gray steps in

Figure 1.1), it is assumed a standard AD technique is applied to the user code at each of the other steps, with the

real NMD work happening at the data hand-offs. Although any number of derivatives are possible with these tools,

5 This can be intuitively understood by drawing a parallel with linear solvers, which find xxx = AAA−1bbb but never build the full matrix inverseAAA−1.

6 Further, should the full HHH truly be needed, this hybrid approach can easily build it column by column, with the same (N) complexity as the
much more difficult to implement second-order adjoint methods.

7 Note that such non-adjoint directional values are not unique to NMD and could be found with AD for purely user-written, non-matrix code
(although this fact, too, is often overlooked in engineering literature, e.g., [11,12]). Instead, NMD’s role is to carry the derivative information through
linear algebra operations. Directional differentiation is chosen as a demonstration problem to emphasize that even one or two second derivatives
can be of great use, and thus motivate methods like NMD that can quickly make such quantities available for any matrix problem. However, note
that the most common discrete adjoint method is itself a matrix problem – typically, without NMD,HHHddd can only be found if a scalar-only method is
available to find the gradient.
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for this theoretical example it is taken as a given that the user code is altered such that every scalar variable (i.e., the

input variables and any temporary non-matrix variables created within Afunc, Bfunc, Cfunc, bfunc or ffunc) is

represented with an operator-overloaded data type capable of tracking two first derivatives (that is, )∕)r1 and
)∕)r2), one

univariate second derivative ()2∕)r21 ) and one mixed second derivative ()2∕)r1)r2 ). Any AD type that supports sparse

Hessian calculation (in this case, treated as a two-variable matrix regardless of the actual N) would be sufficient for

this task; if nothing else, one could even nest a first-derivative type within itself to find derivatives of derivatives.

Operator-overloaded types, however, cannot be used inside most matrix math routines.

For such a simple example with a small number of matrix operations and only a few derivatives, it is of course

possible to apply manual derivative formulas (e.g., [20]) every step of the way; in the case of the second derivatives,

these could be applied twice. However, for larger codes it would be preferable to automate the process as much as

possible, ideally without altering each intermediate operation. Assuming the code is real-valued and complex variants

of the matrix routines are available, two runs of the complex-step method could find the first derivatives without in-

termediate additions to the code; CD, however, cannot find second derivatives (at least not without an adjoint hybrid,

which is saved for Section 7.3). This is where the NMD method comes into play.

1.4 An Example of Nilpotent Matrix Differentiation

Both NMD and many forms of AD analytically (but not computationally) represent operator-overloaded calcu-

lations by adding non-real variables to the real-valued program input xxx – for example, to find derivatives with respect

to xj and xk, one could compute f (xxx + DDDê̂êe), where the vector ê̂êe represents a set of N non-real basis elements and

Djj = Dkk = 1 but the rest of the matrixDDD is zero. In the case of this specific example, though, the AD-augmented run

of the user program is treated analytically as f (xxxi +dddi"1 +gggi"2), where the basis elements "1 and "2 are commutative
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under multiplication and have the following nilpotent properties:

"1
3 = 0 yet "1 ≠ 0 and "21 ≠ 0 (1.4a)

"2
2 = 0 yet "2 ≠ 0 (1.4b)

"1
2"2 = 0 yet "1"2 ≠ 0 (1.4c)

Given this algebra, any (arbitrary) scalar z from the original program can be replaced with:

ẑ = z + z1"1 + z2"2 + z11"12 + z12"1"2 (1.5)

As will be explained in Chapter 5, when the program is properly initialized, the real-valued constants z1, z2,

z11, and z12 can in fact be interpreted as

z1 = )z∕)r1 z2 = )z∕)r2 (1.6)

z11 =
1
2
)2z∕)r12 z12 = )2z∕)r1)r2 (1.7)

As will further be explained in Chapter 6, any z can alternatively be replaced with:

Ž̌ŽZ = DM
(

z
)

= zIII +
(

)z∕)r1
)

EEE(1)(1)(1) +
(

)z∕)r2
)

EEE(2)(2)(2) + 1
2
(

)2z∕)r12
)

EEE(1)(1)(1)2 +
(

)2z∕)r1)r2
)

EEE(1)(1)(1)EEE(2)(2)(2) (1.8)

where III is the 5 × 5 identity matrix and EEE(1)(1)(1) and EEE(2)(2)(2) are nilpotent matrices constructed specifically (and automatically)

for this problem:

EEE(1)(1)(1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0
0 0 0 2 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

EEE(2)(2)(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.9)



9

This defines the operator:

DM
(

z
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z 0 )z∕)r1
)z∕)r2

)2z∕)r1)r2
0 z 0 2

(

)z∕)r1
)

)2z∕)r12
0 0 z 0 )z∕)r2
0 0 0 z )z∕)r1
0 0 0 0 z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.10)

The pattern defined by a matrix operator like Equation 1.10 will herein be referred to as a “stencil,” as it must

be applied identically to every entry in every matrix; the derivatives at a given position in the stencil must always be

taken with respect to the same program input. When building this representation, the derivatives would be supplied

by the aforementioned standard AD technique. Application of the operator to an entire matrix is performed blockwise;

for example, if the matrix AAA in the demonstration problem from Equation 1.1 were a trivial 2 × 2 matrix, it would be

redefined as:

Ǎ̌ǍA ∶=DM
(

AAA
)

(1.11)

=DM

( [

A11 A12
A21 A22

] )

(1.12)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A11 0 )A11∕)r1
)A11∕)r2

)2A11∕)r1)r2 A12 0 )A12∕)r1
)A12∕)r2

)2A12∕)r1)r2
0 A11 0 2

(

)A11∕)r1
)

)2A11∕)r12 0 A12 0 2
(

)A12∕)r1
)

)2A12∕)r12
0 0 A11 0 )A11∕)r2 0 0 A12 0 )A12∕)r2
0 0 0 A11 )A11∕)r1 0 0 0 A12 )A12∕)r1
0 0 0 0 A11 0 0 0 0 A12
A21 0 )A21∕)r1

)A21∕)r2
)2A21∕)r1)r2 A22 0 )A22∕)r1

)A22∕)r2
)2A22∕)r1)r2

0 A21 0 2
(

)A21∕)r1
)

)2A21∕)r12 0 A22 0 2
(

)A22∕)r1
)

)2A22∕)r12
0 0 A21 0 )A21∕)r2 0 0 A22 0 )A22∕)r2
0 0 0 A21 )A21∕)r1 0 0 0 A22 )A22∕)r1
0 0 0 0 A21 0 0 0 0 A22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.13)

and B̌̌B̌B and Č̌ČCwould be redefined in an identical manner. In the case of the vector b̌̌b̌b, as the rightmost column of the stencil

contains a copy of every derivative and as matrix multiplication is performed column-wise for the right multiplicand,

a single-column structure can be preserved by dropping the other columns:



10

b̌̌b̌b ∶= DV
(

bbb
)

= DV
( [b1

b2

] )

(1.14)

=
[

)2b1∕)r1)r2
)2b1∕)r12

)b1∕)r2
)b1∕)r1 b1 )2b2∕)r1)r2

)2b2∕)r12
)b2∕)r2

)b2∕)r1 b2
]T

(1.15)

Some readers may object that the expanded matrix appears much larger than the original; however, note that

while the number of non-zero entries in the matrix has grown by a factor of 12, the number of computed values (reals

plus derivatives) has likewise grown by a factor of 5, for a per-value growth factor of 2.4. Compare this to the product

and chain rules for ordinary scalar derivatives, which also require a disproportionate number of additional calculations

to differentiate individual operations.

Importantly, because the pattern shown in Equations 1.13 and 1.15 repeats itself after matrix addition and

multiplication, M̌̌M̌M(1)(1)(1) and Ď̌ĎD will automatically compute the derivatives )M (1)
ij∕)rrr and )Dij∕)rrr, keeping them in the same

stencil structure without any work on the part of the user; likewise, the result uuu will carry )ui∕)rrr, which can be passed

back to the ordinary AD types for any remaining scalar calculations. This is a small example problem with only a few

operations, but in general the derivative calculation will propagate through arbitrarily many matrix operations, e.g., for

coupled systems updated in a loop. With certain exceptions – e.g., the transpose operation, which (as will be discussed

in Section 6.2) only needs a small alteration – the work done by NMD is limited to matrix creation and analysis, thus

satisfying the goal of an automated process.

As for the work done during matrix creation, assuming the user defines the non-zero values of his or her matrices

using row/column/value {i, j, v} triplets, standard AD will provide operator-overloaded variants of v that normally

could not be assembled into a matrix; here, NMD can simply provide a single function to map from an original set of

one or more triplets to an extended set. For example, in MATLAB, this is a one-line addition to the matrix creation

routine:

[Ai2_vec, Aj2_vec, Aval2_vec] = AD2Stencil(Ai1, Aj1, Aval1_AD);
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Here, the RHS inputs constitute an AD-overloaded triplet8 {i, j, Aij} of the sparse matrixAAA and the LHS outputs

are real-valued vectors (a set of triplets) that define the stencilDM
(

Aij
)

. Likewise, for analysis of the results, NMDcan

provide a function that takes an index i corresponding to a scalar in the original vector uuu, examines the stencil-expanded

variant ǔ̌ǔu, and returns an AD type:

uval1_AD = Stencil2AD(u_NMD, ui1);

Once this second hand-off is complete, the overloaded type can propagate all derivatives to the final program

output where they can be analyzed. With the operator-overloaded AD and NMD both fully implemented, the program

can be represented schematically as shown in Figure 1.2.

After the program has been modified in these ways, it can recover each of the derivatives from Equation 1.8;

for the example problem, the directional second derivatives can then be interpreted as the requested products:

)2f∕)r12 = ddd
THHHddd )2f∕)r1)r2 = ggg

THHHddd (1.16)

1.5 Dissertation Goals and Organization

Before closing this summary chapter, recall that this particular example problem was chosen simply to motivate

the use of automatic higher-order derivatives for matrix codes. This dissertation is concerned with the topic of matrix

differentiation in general, not optimization in particular – as will be highlighted in the following chapter, automatic

differentiation is not limited to optimization problems. As such, in this document analysis is limited to the derivation

of NMD (as well as hybrids thereof); while numerical experiments are performed in Chapter 8 on a stochastic diffusion

problem, this is mostly for the sake of benchmarking and as proof-of-concept. During the abstract discussions to follow,

however, it is important to know that many concrete uses like the above demonstration are waiting in the wings.

The remainder of this document is organized as follows: in Part I, Chapter 2 will further motivate matrix differ-

8 In fact, although this will not always be possible in general, in MATLAB it is possible to overload entire vectors as AD types (even if full matrix
operations are too slow); as such, the above line of code can redefine every triplet – and thus the entire matrixAAA – with a single call.



12

Scalar Math
(User Code)

Matrix Math
(3rd-Party Binary)

Scalar Math
(User Code)

Input Initialize AD

Operator
Overloading

Initialization /
Discretization

Build NMD
Stencils

Unaltered
Functions

Linear
Algebra

Unpack NMD
Stencils

Operator
Overloading

Processing /
Quantity
of Interest

Extract Derivatives Derivs

Output

(a)

x̂̂x̂x∶= ADtype(xxx)xxx x̂̂x̂x∶= ADtype(xxx)

Â̂ÂA∶= Afunc(x̂̂x̂x)

B̂̂B̂B∶= Bfunc(x̂̂x̂x)

Ĉ̂ĈC∶= Cfunc(x̂̂x̂x)

b̂̂b̂b∶= bfunc(x̂̂x̂x)

Ǎ̌ǍA, B̌̌B̌B, Č̌ČC,̌ b̌b̌b∶= AD2Stencil
(

Â̂ÂA, B̂̂B̂B, Ĉ̂ĈC, b̂̂b̂b
)

Ď̌ĎD ∶= 1∕ℎ2
(

Č̌ČCM̌̌M̌M(1)(1)(1) − 2Č̌ČC
)

M̌̌M̌M(1)(1)(1) ∶= Ǎ̌ǍA + B̌̌B̌B

ǔ̌ǔu ∶= Ď̌ĎD−1̌b̌b̌b(xxx)

Df∶= DerivPart(f̂ )

f∶= RealPart(f̂ )

û̂ûu∶= Stencil2AD(̌ǔǔu)

f̂∶= ffunc(û̂ûu)

f (xxx)

D
[

f (xxx)
]

(b)

Figure 1.2: AD-augmented schematic of (a) a generic program and (b) the example specified by Equation 1.1: User
source code (light gray) is modified to use operator-overloadedAD data types (yellow); unaltered linear algebra routines
(dark gray) operate on real-valued matrices defined by NMD (orange).
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entiation by discussing a wider range of engineering applications that require second or higher derivatives; Chapter 3

will detail existing standard differentiation approaches (of both the automatic and manual variety); and Chapter 4

will expand the topic to include special algebras (i.e., non-real number systems) capable of differentiation. In Part II,

Chapter 5 will derive new “hypercomplex” algebra types built with scalar nilpotent elements, capable of any-order

differentiation; Chapter 6 will provide several examples of matrix structures that are isomorphic to particular scalar

algebras, introduce the concept of stencils for differentiation, then provide an algorithm capable of finding stencils to

represent arbitrary hypercomplex systems; and Chapter 7 will examine several hybrid methods, including the nilpotent

and complex-step adjoint methods and a (non-adjoint) NMD-CD combination. Finally, in Part III Chapter 8 will de-

scribe the stochastic diffusion problem and investigate method accuracy and cost, and Chapter 9 will draw conclusions.



Chapter 2

Motivation: Numerical Uses of High-Order Derivatives

Many developing fields of numerical computing [11,13–17,21–40] require or are otherwise improved by access

to high-order partial derivatives of computer codes – that is, those of higher order than the first derivatives found in

the gradient or Jacobian; these methods concern the Hessian or higher tensors, sparse subsets thereof, or in some cases

[19,41,42] implicit evaluations of derivative matrices projected onto a subspace. What follows is a non-comprehensive

overview of several broad fields and specific algorithms that utilize these quantities. The discussion is limited to the

usage of the derivatives in general and ignores how they are provided – existing methods that actually supply them will

be presented in Chapter 3 and Chapter 4. Throughout this chapter, it will be taken as a given that an algorithm such as

NMD, which can make derivatives of certain programs – namely, those with a heavy reliance on matrix operations –

easier to obtain, will find a natural niche among the many different approaches to differentiating code.

2.1 Optimization

Most real-valued, single-metric optimization algorithms can be expressed as the search for an exact or approx-

imate solution to the minimization problem

argminxxx f (xxx) ∶ xxx ∈ ℝNx , f ∈ ℝ (2.1)

where f is a cost function to be minimized or the negative of a metric to be maximized. A great many methods attempt

to find this solution by finding the point where the gradient is zero:
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∇f (xxx) = 0 (2.2)

A number of algorithms accelerate this search by utilizing second derivative information to predict changes in

∇f . This section attempts to provide a brief, noninclusive overview of several such methods.

2.1.1 Newton’s Method

Newton’s method is a powerful, if costly, iterative optimization scheme which requires both first- and second-

order derivatives. At each step in the algorithm, a quadratic interpolant is used to estimate the location of the minimum.

Using a Taylor expansion to build the interpolant, the one-dimensional method update step can be derived as:

f (xi + Δx) ≈ f̂ (Δx) = f (xi) + f ′(xi)Δx + f ′′(xi)
Δx2

2
(2.3)

f̂ ′(Δx) = 0 (2.4)

∴ f ′(xi) + f ′′(xi)Δx = 0 (2.5)

∴ Δx = −f ′(xi)∕f ′′(xi) (2.6)

Moving to many variables, the interpolant requires both the gradient and the Hessian matrix:

f (xxxi +ΔxΔxΔx) ≈ f̂ (ΔxΔxΔx) = f (xxxi) + ∇f (xxxi)TΔxΔxΔx +
1
2
ΔxΔxΔxTHHHΔxΔxΔx (2.7)

∇f̂ (ΔxΔxΔx) = 0 (2.8)

∴ ∇f (xxxi) +HHHΔxΔxΔx = 0 (2.9)

∴ ΔxΔxΔx = −HHH−1∇f (xxxi) (2.10)

whereHHH ≡ ∇2f (xxx) ∈ ℝNx×Nx is the Hessian. The full method thus proceeds as shown in Algorithm 2.1.

A number of methods exist for efficiently finding ∇f , as will be discussed in Chapter 3. Unfortunately, the
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Algorithm 2.1 Newton’s Method

1. Given: xxx0 ∈ ℝNx // Initial estimate

2. Repeat: // Enter Newton loop

a. HHHi ∶= ∇2f (xixixi) // Compute each entry of Hessian matrix
b. ΔxΔxΔxi ∶= −HHHi

−1∇f (xxxi) // Solve linear system to compute Newton step
c. xxxi+1 ∶= xxxi +ΔxΔxΔxi // Increment approximate solution

Until Converged // e.g., exit if ΔxΔxΔxi is very small

3. Output: argminx f (xxx) // Converged optimum of f

cost of building the Hessian in Step 2a can be prohibitive (e.g., [26]), as second-order differentiation algorithms typ-

ically have a time complexity that is 
(

Nx
2) more expensive than the original problem; for this reason, there are

almost always more efficient optimization algorithms available. However, some application-specific second-order ad-

joint methods (e.g., [23, 25]; see Section 3.1.3 for more details) have been shown to find HHH in 
(

Nx
)

, and in those

applications Newton’s method has been competitive. Alternatively, a broad category of “Quasi-Newton” methods exist

for building a (relatively) inexpensive, continuously-updating approximation of the Hessian. (As this work concerns

exact derivatives, such approximations will not be considered.) For problems with largeNx, though, inverting or even

storingHHH can be too expensive. In such cases, one of the following methods is often preferred.

2.1.2 Linear and Nonlinear Conjugate Gradient Methods

As the names imply, both linear (CG, [43]) and (most) nonlinear conjugate gradient (NCG, [12]) methods are

constructed using only a gradient (albeit merely an implicit one for linear CG), without higher-order information. They

are described here for two reasons: first, linear CG is a central component of the “Hessian-free” method described in

Section 2.1.3 and can be considered a subset of NCG; second and more importantly, second derivative information has

repeatedly (e.g., [13, 15, 27]) been suggested for use in NCG, even though it has rarely been directly available.

The linear conjugate gradient method (more commonly referred to simply as the conjugate gradient method)

is used to solve systems of linear equations, and can be derived by re-framing the problem as one of minimizing a

quadratic function. However, it is not itself truly considered an optimization algorithm, nor does it require derivatives,

and so only a brief summary is needed. In this work, all the reader needs to know is that (1) CG is a tool for solving

(potentially very large) systemsAAAxxx = bbb for xxx whenAAA is symmetric; (2) it does so by iterating through multiple search

directions dddi to update an approximation xxxi of the solution, until the residual AAAxxxi − bbb is sufficiently small; and (3)
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during the iteration, it never technically needs the fullAAA – only the result of the matrix-vector productAAAdddi, which is a

vector that might be provided by a user-written function. As mentioned in Section 1.3, similar matrix-vector products

(albeit, in every other case, Hessian-vector products) appear repeatedly throughout this work, in different contexts; in

many circumstances, computing the product might have a small fraction the cost of building the entire matrix. This

observation will become significant both for NCG and in Section 2.1.3, among many other places.

The nonlinear variant of CG is also derived in terms ofminimization of a quadratic function; here, the framework

is used more literally, to optimize some problem of the form given by Equation 2.1. Just like Newton’s method, NCG

assumes the problem is locally quadratic; it does not, however, always require second-order information (with notable

exceptions, below). Very briefly, the method iterates through a search via the steps laid out in Algorithm 2.2.

Algorithm 2.2 Nonlinear Conjugate Gradient Optimization

1. Given: xxx0 ∈ ℝNx // Initial estimate

2. Initialize: ddd0 ∶= ∇f (xxx) // Initial search direction

3. Repeat: // Enter NCG loop

a. �i ∶= argmin� f (xxxi + �dddi) // Inner loop: line search for minimal value of f along dddi
b. xxxi+1 ∶= xxxi + �idddi // Increment approximate solution
c. dddi+1 ∶= ∇f (xxxi+1) + �idddi // Increment search direction

Until Converged // e.g., exit if ΔxΔxΔx is very small

4. Output: argminx f (xxx) // Converged optimum of f

Here, xxxi is the estimated solution at iteration i, dddi is the search direction, �i is the scalar result of a one-

dimensional line search, and �i is the scalar NCG update parameter. Different line search methods for � and different

formulas for � define different variants of the NCG method; a comprehensive survey can be found in [12].

Of particular interest for this work, in 1993 Pearlmutter [19] suggested (albeit in a context other than NCG) the

line-search update step

�k = −
∇f (xxxk)Tdddi
dddTi HHHkdddi

(2.11)

which is simply a one-dimensional Newton method in the direction of dddi – this equation is applied repeatedly in an

inner loop until an ideal �i is found. As for the direction update, in 1967 Daniel [13] proposed
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�i =
∇f (xxxi+1)THHHidddi

dddTi HHHidddi
(2.12)

and in 2008 Andrei [14] proposed the variant

�i =
∇f (xxxi+1)THHHidddi − ∇f (xxxi+1)Tdddi

dddTi HHHidddi
(2.13)

These options are often overlooked, due to the assumed cost of buildingHHH; indeed, [12] explicitly chose not to

discuss Daniel’s approach because it “requires evaluation of the Hessian”. As was shown in Section 1.3, though, these

formulas do not technically require the Hessian matrix itself; they only require the Hessian-vector productHHHidddi or the

vector-Hessian-vector products gggTHHHddd and dddTHHHddd, where ggg = ∇f (xxx) is a separately-evaluated instance of the gradient.

Unfortunately, in the absence of NMD, calculating these products for large engineering applications can be

difficult. (For his part, in [15] Andrei was forced to use a limited-accuracy approximation.) If they could be found

efficiently and accurately, however, they could be extremely useful for NCG; indeed, the terms have broad utility in

many methods, including the ones presented in the next section. Importantly, an existing approach capable of finding

this quantity (albeit for a limited category of scalar codes, typically outside of engineering) does in fact exist, and will

be discussed in Section 3.1.4; further, several entirely novel approaches will be derived and presented in Chapter 7.

2.1.3 Truncated-Newton and Hessian-Free Optimization

In cases where the main cost of the Newton method lies in the inversion (rather than the construction) of the

Hessian matrix, a truncated-Newton method (TN, [28]) can be of great use. These methods make use of any iterative

linear algebra solver (i.e., any solver that works by converging toward a solution, rather than solving directly – the

linear conjugate gradient method is a prime example) to only approximately solve for the Newton update directionΔxΔxΔx

via a reduced or “truncated” number of iterations. In other words, rather than computing the exact minimum of the

interpolant from Equation 2.7, a truncated-Newton method merely comes close enough to generate an effective update

direction. Step 2b in Algorithm 2.1 therefore turns into an inner loop, which is terminated upon reaching some (very
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relaxed) convergence criteria of its own.

So-called “Hessian-free” optimizationmethods (e.g., [16,17]) take TN one step further by choosing linear CG as

the iterative method and providingHHHΔxΔxΔx directly, without buildingHHH; they are thereby even more effective for problems

with very large Nx where HHH is costly to build. This approach is shown in Algorithm 2.3. The now-familiar caveat

still applies: existing methods that can find HHHΔxΔxΔx efficiently and exactly1 are application-specific and more common

outside of engineering (e.g., the cited Hessian-free example [16] concerns the deep learning of neural networks). The

newNMDmethods presented in Part II could conceivably make Hessian-free or other truncated-Newton methods more

attractive to engineers.

Algorithm 2.3 Hessian-Free Optimization

1. Given: xxx0 ∈ ℝNx // Initial estimate
�CG ∈ ℝ // CG convergence parameter

2. Repeat: // Enter Newton loop

a. De�ne: hhh(vvv) ≡ HHH(xxxi)vvv // Implicit matrix-vector product
b. Conjugate Gradient: hhh(vvv) ≈ −∇f (xxxi) // Inner loop: truncated solve of HHHvvv ≈ −∇f

i. Increment CG Estimate vvvj
ii. Exit if:

|

|

|

hhh(vvvj) + ∇f (xxxi)
|

|

|

< �CG
c. ΔxΔxΔxi ∶= vvv // Approximate Newton step
d. xxxi+1 ∶= xxxi +ΔxΔxΔxi // Increment approximate solution

Until Converged // e.g., exit if ΔxΔxΔxi is very small

3. Output: argminx f (xxx) // Converged optimum of f

In cases where HHH might not be positive-definite, some algorithms simply add a parameterized constant along

the diagonal, which can be done implicitly as (HHH + kIII)ΔxΔxΔx = HHHΔxΔxΔx + kΔxΔxΔx; others supply a different “curvature” matrix

– for example, [29] used a modified variant of the Gauss-Newton (GN) method, a nonlinear least-squares algorithm.

In standard GN, an approximation to HHH is built as GGG = JJJT JJJ ≈ HHH (where JJJ is the Jacobian matrix), thereby bypassing

any need to find actual second-order information; however, this approximation is only effective when very close to

convergence or when nonlinear effects are minor. In the modified variant of GN, a program is divided into those

subsections that are known to be well-behaved and those that are not. A variant ofGGG is then built by chaining together

a combination of Jacobians and Hessians – for example, if f (xxx) = g1(g2(xxx)) but the Hessian HHH(2)(2)(2) of g2 might not be

1 Approximations are available, but as will be shown in Section 3.1.1, they are known to result in dramatic errors.
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positive-definite, then a curvature matrix could be defined asGGG = JJJ(2)(2)(2)THHH(1)(1)(1)JJJ(2)(2)(2), which is presumably better than using no

nonlinear information at all. Note that these matrices can be built by applying standard differentiation methods (manual

or automatic) to each program subsection in turn; with some effort, these methods can also calculateGGGΔxΔxΔx cheaply for

a more reliable Hessian-free method. Again, NMD might be used in these circumstances to supply such derivatives

across matrix routines.

2.2 Uncertainty Quantification and Sensitivity Analysis

As the name implies, uncertainty quantification (UQ, [44]) can be defined as the study, measurement, and

prediction of uncertainty in any given process. It includes the propagation of uncertainties from uncertain inputs to

uncertain outputs – e.g., using (approximations of) the probability distribution of program input(s) to estimate the

distribution of the output(s) – and the inverse problem, where the uncertainties in real-world measurements of some

system are compared to the outputs of a program modeling that system, in order to calibrate or quantify the input

parameters of the program. UQ is often mentioned in the same breath as sensitivity analysis (SA, [45, 46]), which

concerns the relative importance of each input, or the pairwise interaction (second-order) effects of inputs; it frequently

involves the calculation of first- or second-order [32, 33] sensitivity derivatives – the name of which is simply an

application-specific labeling of the same output-with-respect-to-input derivatives this dissertation concerns itself with.

General use of UQ employs a verywide array of tools, including both SA and some of the surrogatemodeling techniques

to be discussed in Section 2.3; as will be seen there, many surrogates benefit from second-order derivatives. There are

also uses of differentiation very specific to UQ; as one example of obvious relevance, for certain problems the inverse

Hessian of a least-squares measure can yield a covariance matrix. [30, 31]

More broadly, one of the chief challenges faced in many UQ applications is often described as “the curse of

dimensionality”, wherein either (1) the number of input variables needed by a program or (2) the number of necessary

sample points (and thus, the number of runs of the program) grows dramatically and nonlinearly with the complexity

of the problem under consideration. Among other reasons, this is because arbitrary random variables and random

processes can have a very high intrinsic number of dimensions – that is, many more than their physical range and

domain would otherwise suggest. Once decomposed into orthogonal basis functions, it may take thousands of such
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functions (e.g., [47]) to capture all significant behavior – and each function must be weighted by a coefficient, either

(1) provided by a very large input vector2 or (2) calculated by comparison with an even larger database of function

outputs and/or real-world measurements. In even more extreme cases, the most difficult inverse problems require one

to use scattered and uncertain measurements to infer, not just model input parameters, but the entire internal state of

a complex system. For example, in [31] oceanographers attempt to use satellite measurements of the ocean surface

to infer the state of the deep sea (and the uncertainty thereof), the behavior of which is complex enough to require

hundreds of millions of variables in a discretized PDE mesh.

This curse of dimensionality makes reverse-mode tools like the adjoint method (Section 3.1.2) very attractive,

as they can produce derivatives with respect to each ofNx different inputs with a cost that remains independent ofNx.

When users desire higher-order information for UQ applications, other reverse-mode methods will likely be similarly

attractive. Two existing second-order reverse approaches will be discussed in Section 3.1.3 and Section 3.1.4, and

again, this work will contribute several new options in Section 7.3, including an adjoint approach for derivatives higher

than second order.

2.3 Surrogate Modeling

Asmentioned repeatedly throughout this text, engineering simulations can be very expensive – and yet, a number

of applications (including both optimization and uncertainty quantification) can require a great many output samples

from these simulations. In many circumstances, it is more practical to provide cheap approximations of the output than

it is to evaluate the true simulation each time. In these cases, one can build a low-fidelity “surrogate” model (SM) which

attempts to inexpensively map the same inputs to similar outputs as the high-fidelity or “truth” model. This surrogate

can then be evaluated many times, at a small fraction the cost of the high-fidelity model. One of the simplest surrogate

models is a quadratic approximation – such as the Taylor-series interpolant from Equation 2.7, which explicitly called

for the Hessian – but there are far more sophisticated options. There are more types than can practically be mentioned

here; an incomplete list includes response surfacemethodology [48], polynomial chaos expansion [47], andKriging and

2 The demonstration problem detailed and implemented in Chapter 8 will provide one such example of UQ, by finding derivatives of an ap-
proximated random process (a two-dimensional field) with respect to the scalar random-variable coefficients (the program inputs) needed by a
Karhunen-Loève expansion.
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co-Kriging [22, 49],3 as well as many tools from the field of machine learning, such as support vector machines [50],

genetic programming [51], and neural networks [52]. Another type known as multifidelity modeling is often described

under the same umbrella (e.g., [11, 53]) as surrogate modeling, although it could arguably be called distinct in that it

does not fit a generic model to the high-fidelity code; instead, a lower-fidelity model is built via simplification of the

full model. This can be done via the simple expedient of coarsening a discretized mesh or relaxing internal solution

convergence criteria, or via more sophisticated reduced-order modeling (ROM) techniques that strip models down

to only those states that are quantifiably important – for example, one of the most popular ROM tools is the proper

orthogonal decomposition (POD) method, [54] which examines a large number of state-vectors sampled over time,

then identifies (via principle component analysis) the subspace in which the process varies the most. Regardless of

their inner workings, though, multifidelity models can generally be used in the same contexts as canonical surrogate

types and described with much the same language.

Surrogates can be classified (e.g., in [55]) by their order, or degree of fit with the truth model at the point

of construction (or at other high-fidelity points the model must fit): if, at some high-fidelity observation f (xxx0), only

the SM’s scalar output f̂ (xxx0) matches up, then the surrogate is called “zero-order”; if the gradient also matches (i.e.,

∇f̂ (xxx0) = ∇f (xxx0)), it is called “first-order”; and if the Hessian matches (i.e.,∇2f̂ (xxx0) = ∇2f (xxx0)), it is called “second-

order”. Methods calling for a second-order surrogate (e.g., [11, 53, 56]) imply a need to either build an effective

approximation of HHH or else directly collect at least some second-order derivative information from the high-fidelity

model. Further, even in some cases that do not require derivative agreement, first [47] and second [22, 49] derivatives

have been shown to improve SM properties, simply by providing additional information for the model to fit.

Possible uses of surrogate models (of any order) include Monte Carlo modeling for uncertainty quantification,

wherein a SM is run a great many times with random-variable inputs for the sake of studying the output probability

distribution. In this case, the SM need not even be zero-order (e.g., it might smooth the data such that it doesn’t

exactly fit some points), but the better the approximation of the surrogate, the more accurate the distribution. Another

major use is surrogate-based optimization (SBO, [53]), wherein a high-fidelity problem f (xxx) is optimized by iteratively

3 In [49] a Hessian-vector product was used to supply further covariance data (beyond the original outputs and the gradient) to a co-Kriging
model, but this was only in addition to the data from a whole Hessian; the multiplication appears to have been explicit, computed after the whole
Hessian was found.
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(1) building a local surrogate f̂i(⋅) from high-fidelity samples at or near the current location xxxi; (2) finding the input

xxxi+1 that optimizes the low-fidelity problem f̂i(xxxi+1), which might require many evaluations of the surrogate within

some inner-loop optimization algorithm; and (3) updating or re-building the surrogate f̂i+1(⋅) from new high-fidelity

evaluations. This process is shown in Algorithm 2.4; it can also be made more sophisticated by restricting step (2) to

stay within a “trust region” (e.g., [55,56]) where the surrogate is expected to provide a good approximation. Many SBO

and trust-region algorithms are built on the assumption that f̂ is (at least) first-order, in which case they are proven

to converge to the high-fidelity optimum. However, first-order SMs effectively limit one to first-order (gradient-only)

optimization algorithms [11]; to get a benefit from a second-order approach like Newton’s method or Hessian-enhanced

NCG, the curvature of the surrogate must match that of the truth model. In the case of multifidelity modeling, where

the low-fidelity models are not even guaranteed to be zero-order, methods exist to overlay one or more “correction” [11]

surrogates to make the combined model match; this requires collecting derivative information4 from both the high-

and low-fidelity models.

Algorithm 2.4 Second-Order Surrogate-Based Optimization

1. Given: xxx0 ∈ ℝNx // Initial estimate

2. Repeat: // Outer (high �delity) loop

a. De�ne f̂i such that: // Surrogate model of f (xxx) near xxxi
f̂i(vvv) ≈ f (xxxi + vvv) // Zero-order �t
∇vvvf̂i(vvv) ≈ ∇vvvf (xxxi + vvv) // First-order �t
∇2vvvf̂i(vvv) ≈ ∇

2
vvvf (xxxi + vvv) // Second-order �t

b. ΔxΔxΔxi ∶= argminvvv f̂ (vvv) // Inner (low �delity) loop: optimizer of choice
c. xxxi+1 ∶= xxxi +ΔxΔxΔxi // Increment approximate solution

Until Converged // e.g., if ΔxΔxΔxi is very small

3. Output: argminx f (xxx) // Converged optimum of f

2.4 A Selection of Higher-Order Applications

The preceding sections concerned themselves with second-order (Hessian) derivatives, which the simplest in-

4 Note that the cited example again incorrectly assumes the need to build the full Hessian – those authors’ second-order corrections could be
reframed to only require Hessian-vector or vector-Hessian-vector products.
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stances of NMD can easily provide. However, NMD can be used to arbitrarily high order. Uses for third and higher

derivatives are comparatively rare, but hardly unheard of; some of the obvious cases are those where derivative re-

quirements stack – for example, optimization on a embedded manifold (e.g., a curved, constrained subspace of the

search space, imbued with a “geodesic”, or nonlinear redefinition of a straight line) requires first or second deriva-

tives with respect to the manifold curvature, on top of the first or second derivatives of the objective function being

optimized. [57–59] Beyond stacking, two of the broadest uses of any-order derivatives are Householder’s methods and

generic Taylor (power) series.

Householder’s methods [37] are essentially higher-order generalizations of Newton’s method, albeit used to find

roots – rather than optima – of functions; under this framework, Newton’s method is the first-order Householder method

(utilizing only first derivatives) to find where a function is zero. (In other words, Newton optimization finds the root of

the derivative function.) Householder methods can be generalized to any order of derivative; each successive order also

increases the method’s order of convergence. Unfortunately, the cost of finding higher derivatives often outpaces the

speedup from faster convergence – however, the second-order variant, known as the Halley method, has been shown

to be competitive for certain problems. [38]

Much more practical is the use of arbitrary Taylor series, which can be used to approximate difficult nonlinear

functions to any desired degree of accuracy. For example, in astrodynamics [39,40], satellite guidance can be informed

by fifth- or higher-order series approximating a gravity potential, and in the study of particle accelerators [36], beam

dynamics can be described by power series of arbitrarily high order. Taylor series are also a useful tool for numerical

bifurcation analysis [34, 35, 60], itself a very broad field with applications in turbulence and chaos theory.



Chapter 3

Standard Differentiation Approaches

As shown in the previous chapter, many engineering applications benefit from the use of second- or higher-

order derivatives. Of course, many methods for numerical differentiation exist, of varying precision, ease of use, and

computational cost. Beyond this, differentiation approaches can generally be divided into two categories: those that

work in “forward mode” and those that work in “reverse mode”. Forward-mode methods begin by modifying either

the program inputs or the way those inputs are treated by the program, then run to completion before examining the

modified output. Reverse-mode methods begin with the pre-computed, undifferentiated output; find the derivative of

this value, not with respect to the program input but to the penultimiate (second-to-last) operation(s) performed by the

program; then proceed backward, computing the chain rule in reverse for every operation performed. This approach

can be very efficient for problems with many inputs (e.g., single-metric optimization over many parameters), as the cost

is typically a function only of the number of outputs. The forward mode, for its part, is dependent only on the number

of inputs, and can be very efficient in cases with many outputs (e.g., derivatives of an entire converged state vector).

Ultimately, between precision, ease, cost, and forward vs reverse mode, the choice of ideal method is problem-

dependent and a matter of user preference. To give a broad summary of the approaches available, this chapter will begin

by discussing the most widely-used forward-mode non-AD technique, finite differencing, and the most popular reverse-

mode technique in engineering, the manually-implemented adjoint method, in both its first- and second-order forms.

After presenting the oft-mentioned technique for computing HHHvvv, discussion will move on to automatic differentiation

itself and the computation of first- and higher-order derivatives for scalars and matrices. Finally, some differentia-

tion approaches differ in the underlying theory used to derive and implement them; discussion of these non-standard

methods will be saved for Chapter 4.
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3.1 Leading Non-Automatic Tools

In the broad ecosystem of competing differentiation methods for engineering applications, AD tools (including

NMD) fill the niche that demands precise values with minimal programming effort. Other niches, of course, have

different demands. Two of the most common demands are (1) very simple approximations and (2) maximally efficient

gradients; these are usually addressed by the finite difference and adjoint methods, respectively. Another niche is the

computation of derivative matrix products, which can be addressed by some AD tools or by intrusive implementation.

(It must be mentioned yet again: this can be more difficult for matrix codes.) All three approaches are addressed below.

It should be noted that finite differencing, which is ignorant of the internal workings of a program, is already compatible

with matrix subroutines; it is, however, very limited in precision. The discrete adjoint method, for its part, is entirely

defined by matrix operations – its main limitation lies in its implementation difficulty.

3.1.1 Finite Differences: Easy, Approximate, Forward-Mode Differentiation

The most commonly used method for finding a numerical derivative is the obvious approach: mimic the defini-

tion of the derivative by running two simulations with very slightly different inputs and computing the slope between

the outputs:

df
dx

≡ lim
ℎ→0

f (x + ℎ) − f (x)
ℎ

(3.1)

≈
f (x + ℎ) − f (x)

ℎ

|

|

|

|

|ℎ≪1

This is the simplest type of what aremore broadly known as finite difference (FD) [61]methods. Many engineers

are probably more familiar with finite differences as a means of discretizing a continuous variable over a mesh; while

this process involves manipulation of the same underlying FD equations, it must be made clear that this is not the type

of method considered within this work. Instead, herein FD methods are only considered in the context of computing

derivatives of entire functions or subfunctions with respect to their inputs.

While FD is very simple to implement, it suffers from accuracy limitations. One would expect that the closer

the data points – the smaller the step size ℎ between them – the more accurate the derivative computation will be.
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However, because computers are limited to a certain number of bits for each number, when the two function outputs

are almost identical subtractive cancellation error (a loss of significant figures, also known as rounding error) begins

to occur and gets progressively worse as the step size decreases; this behavior is shown in Figure 3.1. Practical use of

FD often involves careful work to decide on a step-size; worse, for many problems, there is no globally optimal value

of ℎ applicable to each derivative direction or every parameter setting.

Of course, more sophisticated FD methods exist than such simple rise-over-run calculations. [64,65] In general,

the label “finite differencing” is used to describe any class of method that compares function values at multiple points

in order to infer an approximate derivative of that function. More specifically, FD methods work by assigning a weight

to each function output and taking the sum. (For example, in Equation 3.1, the weight for f (x + ℎ) would be 1∕ℎ

and the weight for f (x) would be −1∕ℎ.) This general framework can be used to find approximate derivatives of any

order, for any number of inputs, from any number of function evaluations (above a certain minimum number required

for a given derivative) at any location, with any order of approximation accuracy. However, no matter the formula,1

FD can never be truly exact – subtractive cancellation is always a factor. Further, for the derivatives-of-functions

usage considered here, in the case of expensive engineering simulations most users try to avoid using more than a few

function evaluations, instead limiting themselves to very simple formulas. The most common formula remains the

so-called forward difference method of Equation 3.1, which is accurate to (ℎ) (at least in the regime of ℎ unaffected

by cancellation error); the next most popular formula is the central difference method:

df
dx

≈
f (x + ℎ) − f (x − ℎ)

2ℎ

|

|

|

|

|ℎ≪1
(3.2)

which is accurate to 
(

ℎ2
)

. (See Figure 3.1(a).) For cases with multiple inputs (e.g., f (xxx) for some vector of inputs

xxx), the forward difference method requires fewer overall function evaluations – only a single offset evaluation in each

direction, as opposed to two evaluations for central differences.

In the case of higher derivatives, it is very common to inductively apply a first-order formula multiple times.

For example, for a centered univariate second derivative, simply take the slope between f ′(x + ℎ∕2) and f ′(x − ℎ∕2),

1 With the arguable exception of FD in the complex plane, which will be discussed in Section 4.1.
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Figure 3.1:
(a) Finite differencing error in the first derivative. Following the traditions set by [62] and [63], the test function is
y(x) = ex∕√sin3 x + cos3 x evaluated at x = 3�∕4 − 0.2 and ℎ is presented logarithmically decreasing from left to right,
such that expected “better” values are on the right. Note that forward and centered FD initially follow (ℎ) and 

(

ℎ2
)

decreases in error, respectively, until dominated by (ℎ) subtractive cancellation error. The minimal-error value of ℎ
is problem-dependent, and in real-world applications no comparison to a known value will be available; as such, FD
error will likely be significant.
(b) FD error in first through fourth derivatives of the same test function. Higher derivatives use darker lines; the shaded
area indicates relative error greater than 100%. Note that the higher the order of derivative, the greater the  growth
rate in subtractive error and the smaller (i.e., the harder to identify) the minimal-error domain of ℎ. Further note the
early spike in error due to the strongly nonlinear nature of the test function – attempts to avoid subtractive error with
large step sizes can still lead to wildly incorrect results.
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each of which are in turn approximated by their own central differences:

d2f
dx2

= lim
ℎ→0

(

f (x+ℎ)−f (x)
ℎ

)

−
(

f (x)−f (x−ℎ)
ℎ

)

ℎ
(3.3)

=
f (x + ℎ) − 2f (x) + f (x − ℎ)

ℎ2
+ 

(

ℎ2
)

(3.4)

Unfortunately, whether univariate or multivariate, higher orders of derivatives suffer from higher error and are

more sensitive to step size – see Figure 3.1(b). Finally, as a forward-modemethod, FD requires additional function eval-

uations for each individual derivative in a gradient or Hessian; for problems with many inputs, this can be prohibitively

costly. An alternative differentiation approach known as the adjoint method addresses these problems, finding exact

derivatives for many inputs.

3.1.2 The Discrete Adjoint Method: Intrusive, Exact, Reverse-Mode Differentiation

In terms of usage, when evaluating competing strengths and weaknesses the adjoint method might be thought

of as an exact opposite of FD: it is a reverse-mode approach that requires problem-specific derivation and intrusive

manual implementation, yet yields exact values and can compute an entire gradient with a run-time cost comparable to

the underlying function itself. Just as with FD, though, the method describes a broad approach, not a single algorithm.

That approach can generally be described as a type of blockwise reverse-mode differentiation, applied to programs that

utilize vector quantities as intermediate variables; rather than operate on each atomic operation, the discrete version of

the approach divides a program into more manageable vector-valued subroutines and utilizes key Jacobian2 matrices.

This subsection, while not exhaustive, will examine one of the most common generalizations of an end-to-end

(input-to-output) adjoint approach. In this generalization, the underlying (forward) problem takes a vector of input

parameters xxx ∈ ℝNx ; somehow solves for or converges to a state vector uuu(xxx) ∈ ℝNu (where typically Nu ≫ Nx)

according to some constraint or residual function rrr(uuu,xxx) ∈ ℝNu , which is assumed be be zero for any converged uuu;

then computes a scalar quantity of interest f (uuu,xxx) ∈ ℝ as output. (Vector-valued outputs are less common, but can

still be informed by the following procedure.) In this process, the solution of rrr = 000 for uuu is assumed to constitute the

2 As will be discussed in Section 3.1.3, there are also (comparatively rare) second-order adjoint approaches that additionally utilize the Hessian.
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overwhelming majority of the work, and thus is assumed to be the most difficult subsection to differentiate in terms of

both human labor and computational run-time. As a simple example from aerospace design optimization, xxx might be

at set of airfoil design variables to be optimized, uuu might be a set of steady-state flow variables (pressure, velocities,

etc) at many points in a discretized mesh, rrr might be the residuals of both the discretized flow PDEs and boundary

conditions, and f might simply be the lift generated by a given design – easily computed by examining the solved-for

pressure at each mesh point.

Other variants of the adjoint method exist to find the gradients of intermediate quantities within programs

(e.g., [66]) or of functions integrated across time ( [67]); many applications break uuu or rrr into multiple quantities –

e.g., [22, 68] track flow and geometry variables in distinct state vectors, while [22, 67] have different functions for

flow residuals, grid deformation residuals, initial conditions, or boundary value constraints. Finally, while “discrete”

methods (including the one to follow) operate on the existing computational (already-discretized) quantities from the

forward problem, “continuous” methods begin with the underlying equations describing the physical system of interest.

In all cases, the goal is to find some gradient – in this case, ggg ≡ ∇xf = df∕dxxx, where d(⋅)∕dxxx represents the total

derivative. Note that, unlike some other fields discussed in Chapter 2, in this context ggg is by convention a row vector, as

is any other derivative of a scalar with respect to a vector. The quantities xxx, uuu, and rrr are column vectors; derivatives of

these with respect to scalars remain column vectors, while derivatives of columns with respect to vectors yield Jacobian

matrices indexed by the respective (row, column) indices.

For this problem formulation, derivation of the adjoint method begins by expanding the total derivative:

ggg =
df (uuu(xxx) ,xxx)

dxxx
=
)f
)uuu
duuu
dxxx
+
)f
)xxx

(3.5)

where duuu∕dxxx is the Jacobian of uuu with respect to xxx. Note that, as the bulk of the user program is assumed to go into

finding uuu(xxx), this matrix may be difficult or impossible to find directly. Further note that, as uuu is presumably a converged

PDE solution where each ui is correlated with other uj≠i (not to mention other quantities such as the geometry of

the computational mesh, etc.), it is impossible to change any single ui in isolation – therefore, uuu(xxx) is more properly

described as uuu(yyy(xxx)) for some unknown yyy(xxx), such that the partial derivative Jacobian )uuu∕)xxx = 0. This technicality can
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safely be ignored here, but will play a brief role in the second-order derivation in Section 3.1.3.

In the next step of the derivation, because uuu is assumed to be converged, rrr will always be zero – that is, any

change in xxx implies a corresponding change in uuu which satisfies

rrr(uuu(xxx) ,xxx) = 0 (3.6)

Because this quantity never changes, the total derivative is also zero:

drrr
dxxx

= )rrr
)uuu
duuu
dxxx
+ )rrr
)xxx

= 000 (3.7)

Thus, by imposing the convergence criteria, one can indirectly extract an expression for duuu∕dxxx:

duuu
dxxx

= − )rrr
)uuu

−1 )rrr
)xxx

(3.8)

Note that, as )rrr∕)xxx is a matrix and not a vector, actually computing duuu∕dxxx would require Nx system solutions.

However, it is known from Equation 3.5 that the full duuu∕dxxx is not required – only the projection of that matrix onto a

row vector. Inserting Equation 3.8 into 3.5 yields:

ggg =
df
dxxx

=
(

−
)f
)uuu

)rrr
)uuu

−1) )rrr
)xxx
+
)f
)xxx

(3.9)

where the term in parenthesis has been singled out for special consideration. This term is a row vector times a matrix,

which yields another row vector; under a transpose, it becomes

(

−
)f
)uuu

)rrr
)uuu

−1)T
= −

(

)rrr
)uuu

T)−1 )f
)uuu

T
(3.10)
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which is simply the (column-vector) solution to a linear system of equations. Denote this solution as a vector λλλ of

“adjoint variables”,3 defined by what is known as the adjoint equation:

)rrr
)uuu

T
λλλ = −

)f
)uuu

T
(3.11)

Substituting λλλ into Equation 3.9 yields:

ggg = λλλT
)rrr
)xxx
+
)f
)xxx

(3.12)

In practice, then, the adjoint method for finding the gradient across the entire program consists of three steps:

first, building (1) the intermediate gradients )f∕)xxx ∈ ℝNx and )f∕)uuu ∈ ℝNu and (2) the Jacobians )rrr∕)uuu ∈ ℝNu×Nu and

)rrr∕)xxx ∈ ℝNu×Nx ; second, solving the adjoint equation 3.11 for λλλ; and third, inserting λλλ into Equation 3.12.

Conceptually, the adjoint variables can be thought of as a linearized relationship between the output and the

residual function, just as the original solution state vector represents a relationship between the residual and the inputs.

Likewise, the matrix )rrr∕)uuu, which – as will be shown below – is often already found by the original forward problem,

can be thought of as representing the process by which the program finds uuu; the matrix )rrr∕)xxx as representing how the

input parameters influence that process; the vector )f∕)uuu as representing how the output quantity of interest depends on

the state vector; and the vector )f∕)xxx as representing any dependency of f on xxx which bypasses uuu – e.g., attempts by

the user to penalize (negatively weight) extreme values in xxx. Note that by finding λλλ, the adjoint method has bypassed

the difficultly of either solving for or differentiating duuu∕dxxx, which would have represented the complicated dependence

of the solution state on the input vector. Building the other Jacobians, in contrast, is far more tractable.

Take as simple example a program that solves the canonical AAA(xxx)uuu = bbb(xxx) and assume the quantity of interest

3 Note that so-called adjoint variables, from which the adjoint method draws its name, are not actually specific to this method; instead, they
generally describe intermediate variables in any reverse-mode differentiation method.
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is the Euclidean norm of uuu:

uuu = AAA(xxx)−1bbb(xxx) (3.13)

f (xxx) = f (uuu) =
√

uuuTuuu (3.14)

The residual of the solution uuu is:

rrr(uuu,xxx) = AAA(xxx)uuu − bbb(xxx) (3.15)

The derivative of this quantity with respect to uuu is thus

)rrr
)uuu

= AAA(xxx) (3.16)

which was already built by the forward problem. The derivative with respect to xxx is

)rrr
)xxx

=
)
(

AAA(xxx)uuu
)

)xxx
− )bbb
)xxx

(3.17)

which can be defined elementwise as

[ )rrr
)xxx

]

i,j
=
)ri
)xj

=
)
(

∑

k
Ai,k(xxx) uk

)

)xj
−
)bi
)xj

(3.18)

=
∑

k

)Ai,k
)xj

uk −
)bi
)xj

The two intermediate gradients of f are

)f
)uuu

= uuu
√

uuuTuuu
= uuu
f (uuu)

(3.19)
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which is trivial to compute, and

)f
)xxx

= 0 (3.20)

because f does not depend directly on xxx.

In this example and in general, )rrr∕)xxx can be built in multiple ways, all of which require some form of differentia-

tion – potentially, in fact, by one of the traditional tools of automatic differentiation that will be discussed in Section 3.2.

More often, the user must manually differentiate the equations, either elementwise via Equation 3.18 or through some

more efficient, problem-specific approach.

3.1.3 Second-Order Adjoints

Second-order (Hessian) adjoint methods cannot, unfortunately, run in constant ((1)) time. To understand why,

think of a first-order method as running the original problem in reverse, producing one output for every original input.

Now conceptualize a second-order approach as applying a second analytical adjoint methodology to the results of the

first – that is, as a method that considers the gradient to be Nx different outputs of a new function, then finds the

gradient of each of these outputs to build the Hessian matrix. Such a process necessarily has complexity 
(

Nx
)

, as

reverse-mode methods are linear in the number of outputs. This is still vastly superior to any forward-mode method,

which would have complexity 
(

Nx
2)

More broadly than this adjoint-of-an-adjoint approach, discussions of second-order methods in the literature

often (e.g., [25,68,69]) present four different approaches at once, derived by different combinations and orderings of (1)

the direct differentiation of either the forward equations or some intermediate adjoint equation and (2) the introduction

of new adjoint variables. What follows is an independent derivation of what has uniformly been found to be the

most efficient approach: the direct second-order differentiation of the forward equations, followed afterward by the

introduction of an adjoint vector; methods such as this are often simply presented in isolation (e.g., [22, 70]) without

discussion of the other approaches. Note that the three omitted methods require at least the same amount of derivation

and implementation work, if not more; the method presented here is not more analytically advanced, per se – it is

simply more cost-effective.
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Before beginning the derivation, note that it necessarily includes rank-three tensors (the derivatives of vectors

with respect to two other vectors). As such, it becomes convenient to adopt an index notation to differentiate individual

scalars at a time, using the indices (i, j) to index into xxx and (m, n) to index into uuu – that is, i, j ∈ {1,… , Nx} and

m, n ∈ {1,… , Nu}. When practical, the resulting equations will be reformulated in ways that take as much advantage

of matrix arithmetic as possible.

The derivation begins with the same total derivative operator used in Equation 3.5:

d(⋅)
dxxx

=
)(⋅)
)uuu

duuu
dxxx
+
)(⋅)
)xxx

(3.21)

d(⋅)
dxi

=
∑

m

(

)(⋅)
)um

dum
dxi

)

+
)(⋅)
)xi

(3.22)

d
dxi

[

f (uuu(xxx) ,xxx)
]

=
∑

m

(

)f
)um

dum
dxi

)

+
)f
)xi

(3.23)

Applying this operator a second time yields:

d2f
dxidxj

= d
dxj

[

∑

m

(

)f
)um

dum
dxi

)

+
)f
)xi

]

(3.24)

=
∑

m

[(

d
dxj

[

)f
)um

])

dum
dxi

+
)f
)um

d2um
dxidxj

]

+ d
dxj

[

)f
)xi

]

(3.25)

=
∑

m

[(

)
)um

[

df
dxj

])

dum
dxi

+
)f
)um

d2um
dxidxj

]

+ )
)xi

[

df
dxj

]

(3.26)

where the two instances of df∕dxj are entries of the original gradient, which can be expanded to yield:

d2f
dxidxj

=
∑

m

[(

)
)um

[

∑

n

(

)f
)un

dun
dxj

)

+
)f
)xj

])

dum
dxi

+
)f
)um

d2um
dxidxj

]

(3.27)

+ )
)xi

[

∑

n

(

)f
)un

dun
dxj

)

+
)f
)xj

]

=
∑

m

∑

n

⎛

⎜

⎜

⎜

⎝

)2f
)um)un

dun
dxj

+
)f
)un

d
dxj�

�
���
0

[

)un
)um

]

⎞

⎟

⎟

⎟

⎠

dum
dxi

(3.28)

+
∑

m

)2f
)xj)um

dum
dxi

+
)f
)um

d2um
dxidxj
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+
∑

n

)2f
)xi)un

dun
dxj

+
)f
)un

d
dxj�

�
��
0

[

)un
)xi

]

+
)2f
)xi)xj

The first crossed-out is term is zero because individual elements of uuu are not direct functions of each other; the

second is zero because (as mentioned above) uuu(xxx) is in actuality uuu(yyy(xxx)) for some unknown yyy, and hence, all partial

derivatives with respect to xxx are zero; only the total derivative is non-zero. The remaining equation simplifies to:

d2f
dxidxj

=
∑

m

∑

n

)2f
)um)un

dun
dxj

dum
dxi

(3.29)

+
∑

m

)2f
)xj)um

dum
dxi

+
)2f
)xi)um

dum
dxj

+
)f
)um

d2um
dxidxj

+
)2f
)xi)xj

This can be expressed in somewhat more compact form using matrices, but to avoid the rank-three tensor duuu2∕dxxx2,

derivatives must still be taken one at a time:

d2f
dxidxj

= duuu
dxi

T )2f
)uuu2

duuu
dxj

+
)2f
)uuu)xj

duuu
dxi

+
)2f
)uuu)xi

duuu
dxj

+
)f
)uuu

d2uuu
dxidxj

+
)2f
)xi)xj

(3.30)

Here, )2f∕)uuu2 is the partial-derivative Hessian of f with respect to uuu, while )2f∕)uuu)xi can be considered the

derivative of )f∕)uuu with respect to xi and )
2f∕)xi)xj is a single entry from the partial-derivative Hessian of of f with

respect to xxx (which, again, is only non-zero when f depends directly on xxx in a way independent of uuu). While the

calculation of these quantities is laborious to implement, it is computationally tractable.

Next, duuu∕dxi is the i
th column of duuu∕dxxx – note the repeated use of entries from this matrix. In the first-order case,

computing duuu∕dxxx (via Equation 3.8) was considered too costly, as the complexity was 
(

Nx
)

; however, as discussed,

this is the same complexity one would already expect for a second-order adjoint method. Moreover, while the first-

order instance of the matrix was projected onto a vector, in this instance every column is required – use of the entire

matrix is unavoidable.
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Once these first derivatives duuu∕dxxx are found from Equation 3.8, all that remains is to find the second derivatives

d2uuu∕dxidxj; here, just as in the first-order case, a substitution can be found by exploiting the fact that rrr is constant for

converged uuu, with zero first and second total derivative. Note here that, as )2rrr∕)uuu2 is a rank-three tensor, a summation

of matrix “slices” is required, but the second total derivative otherwise has the same form as that for f :

d2rrr
dxidxj

=
Nu
∑

m=1

(

dum
dxi

)2rrr
)uuu)um

duuu
dxj

)

+ )2rrr
)uuu)xj

duuu
dxi

+ )2rrr
)uuu)xi

duuu
dxj

+ )rrr
)uuu

d2uuu
dxidxj

+ )2rrr
)xi)xj

= 0 (3.31)

d2uuu
dxidxj

= −
( )rrr
)uuu

)−1
( Nu
∑

m=1

(

dum
dxi

)2rrr
)uuu)um

duuu
dxj

)

+ )2rrr
)uuu)xj

duuu
dxi

+ )2rrr
)uuu)xi

duuu
dxj

+ )2rrr
)xi)xj

)

(3.32)

Inserting this into Equation 3.30:

d2f
dxidxj

= duuu
dxi

T )2f
)uuu2

duuu
dxj

+
)2f
)uuu)xj

duuu
dxi

+
)2f
)uuu)xi

duuu
dxj

+
)2f
)xi)xj

(3.33)

−
)f
)uuu

( )rrr
)uuu

)−1
( Nu
∑

m=1

(

dum
dxi

)2rrr
)uuu)um

duuu
dxj

)

+ )2rrr
)uuu)xj

duuu
dxi

+ )2rrr
)uuu)xi

duuu
dxj

+ )2rrr
)xi)xj

)

A close examination reveals that the terms in parenthesis are premultiplied by the the same expression from

Equations 3.9 - 3.11 used to build the first-order adjoint variables:

−
)f
)uuu

( )rrr
)uuu

)−1
=

[

−
(

)rrr
)uuu

T)−1 )f
)uuu

T
]T

= λλλT (3.34)

Thus, this most common type of Hessian adjoint method begins withNx linear solves of the system

)rrr
)uuu
duuu
dxxx

= − )rrr
)xxx

(3.35)

in order to compute each column of duuu∕dxxx, followed by a single solve of the first-order adjoint equation

)rrr
)uuu

T
λλλ = −

)f
)uuu

T
(3.36)
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for a total cost proportional toNx+1 runs of the original problem. After the solves, the final Hessian can be computed

by inserting duuu∕dxxx and λλλ into

d2f
dxidxj

= duuu
dxi

T )2f
)uuu2

duuu
dxj

+
)2f
)uuu)xj

duuu
dxi

+
)2f
)uuu)xi

duuu
dxj

+
)2f
)xi)xj

(3.37)

− λλλT

( Nu
∑

m=1

(

dum
dxi

)2rrr
)uuu)um

duuu
dxj

)

+ )2rrr
)uuu)xj

duuu
dxi

+ )2rrr
)uuu)xi

duuu
dxj

+ )2rrr
)xi)xj

)

While the first-order adjoint method presented earlier only required the user (either manually or via an appli-

cation of automatic differentiation to the relevant program sections) to provide two row vectors ()f∕)xxx ∈ ℝNx and

)f∕)uuu ∈ ℝNu ) and two matrices ()rrr∕)uuu ∈ ℝNu×Nu and )rrr∕)xxx ∈ ℝNu×Nx ), this second-order method also requires three

additional matrices ( )2f∕)xxx2 ∈ ℝNx×Nx , )2f∕)uuu2 ∈ ℝNu×Nu , and )2f∕)uuu)xxx ∈ ℝNu×Nx ) and three rank-three tensors

()2rrr∕)xxx2 ∈ ℝNu×Nx×Nx , )2rrr∕)uuu2 ∈ ℝNu×Nu×Nu , and )2rrr∕)uuu)xxx ∈ ℝNu×Nu×Nx ). In many cases, a number of these terms

will be zero (e.g., if some subsection of the program has been linearized), but this cannot be guaranteed in general.

When they must be computed, the tensors might easily be too large to fit in memory, implying the need for a user-

written function to build temporary subsets on the fly (e.g., the matrix slice )2rrr∕)uuu)um from the summation over m in

Equation 3.37) even if such computations are redundant (e.g., repeated identically for all i, j in 3.37).

Beyond the burden of providing these quantities, as presented here (and in the broader literature) this approach

suffers from poor performance when finding subsets of the Hessian. For a single scalar entryHi,j(xxx) = d2f∕dxidxj , the

method requires two columns of duuu∕dxxx and thus a total of three system solves, counting the adjoint; worse, at times a

single entry may call for entireNu ×Nu residual derivative matrices or even aNu ×Nu ×Nu tensor. For a column of

the Hessian, all of duuu∕dxxx is required, and thus each of theNx + 1 solves that would be required for the full Hessian.

While it is theoretically possible to re-derive an alternate approach that utilizes directional derivatives for effi-

cient calculation of individual columns (or Hessian-vector products, which will be described in the next section), this

author has yet to see such an approach.4 Presenting a novel derivation is beyond the scope of this work, especially as

the goal herein is to present easy-to-implement alternatives.

4 Hessian-vector methods do exist for scalar AD; the discussion here is referring to matrix problems.
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3.1.4 Directional Derivatives and Implicit Products

In 1993, Pearlmutter [19] presented an intrusive differential operator, intended to be paired with neural network

backpropagation, that is capable of exactly finding the product HHHvvv of the Hessian and a vector without ever building

the full matrix. As already stated in Chapter 1, one way for engineers to understand the appeal of this simplification is

to compare it to the matrix system solution xxx = AAA−1bbb. Even though this expression includes AAA−1, such an inverse is

usually too expensive to compute and is almost never found in its entirety. Instead, most solver algorithms can directly

find the matrix-vector product without ever explicitly building the inverse.

Importantly, unlike the second-order adjoint method presented above, each use of this operator has the same

order of complexity as the algorithm (e.g., for Pearlmutter, backprogagation) used to find the gradient. Also note that

this capability includes as a subset the computation of a single column ofHHH, via the simple expedient of setting vvv to a

unit vector in a cardinal direction.

Pearlmutter derived his operator using a Taylor series expansion similar to Equation 2.7, expressing the gradient

near a known point xxx as

∇f (xxx +ΔxΔxΔx) = ∇f (xxx) +HHHΔxΔxΔx + (‖ΔxΔxΔx‖2) (3.38)

and solved for the Hessian-vector productHHHΔxΔxΔx:

HHHΔxΔxΔx = ∇f (xxx +ΔxΔxΔx) − ∇f (xxx) + (‖ΔxΔxΔx‖2) (3.39)

SettingΔxΔxΔx = ℎvvv and solving forHHHvvv then yields

HHHvvv =
∇f (xxx + ℎvvv) − ∇f (xxx)

ℎ
+ (ℎ) (3.40)

which is a simple finite difference formula between two evaluations of the gradient. (This is the same approximation

used by Andrei in [15].) To calculate precise values, Pearlmutter then defined the operator
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vvv
{

∇f (xxx)
}

≡ )
)r

(

∇f (xxxi + rvvv)
)|

|

|

|

|r=0
= HHHvvv (3.41)

vvv
{

g(yyy)
}

≡ )
)r

(

g(yyyi + rvvv)
)|

|

|

|

|r=0
(3.42)

which in its general form (Equation 3.42) can be manually applied line-by-line to every instruction in existing back-

propagation codes, or to other cases where intrusive implementation is feasible. For example, to apply the operator to

a single scalar multiplication within a code:

vvv
{

a(xxx)b(xxx)
}

= vvv
{

a(xxx)
}

b(xxx) + a(xxx)vvv
{

b(xxx)
}

(3.43)

He then suggested multiple applications, including both the line-search update step from Equation 2.11 and a

pairing with linear conjugate gradients to find the Newton update step, which of course forms the core of Hessian-free

optimization from Section 2.1.3. (Note that these suggestions were phrased in terms of machine learning, rather than

optimization in general.)

Since then, many AD tools have taken on the ability to reformulate problems in the same form as in Equa-

tion 3.41, extending the option for implicit (cheap) HHHvvv to many other scalar codes. In fact, this could be considered

an extension of a pre-existing AD capability (e.g., [42]) to implicitly find directional scalar first derivatives (gradient-

vector products), directional gradients (Jacobian-vector products), or even Jacobians of multidimensional input sub-

spaces (Jacobian-matrix products). Note that these approaches are unfortunately inapplicable to the adjoint method, as

it is built upon an inversion of the purely internal Jacobian )rrr∕)uuu, which is totally independent of the number of inputs

or outputs.

3.2 Standard Automatic Differentiation

It is true that when high-precision derivatives are called for, at least some modification of a user’s source code

becomes necessary. Often, however, users do not wish to derive and implement these calculations manually, as in
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the preceding sections – in many practical applications, the implementation time would outweigh the usage time.

This is the need served by automatic differentiation (AD) tools, of which there are simply too many to give a truly

comprehensive survey here.5 Traditionally, these tools use either automated source code modification (e.g., [1–3, 7])

or a new operator-overload data type (e.g., [4–6]), both of which approaches can come in forward- and reverse-mode

(e.g., [72]) variants. These methods are, admittedly, sometimes less efficient than derivatives found via manual coding,

but are instead designed with an eye toward fast (or, at worst, less-slow) implementation. Forward-mode variants, as

expected, favor decreased implementation time at the cost of increased run time, while reverse-mode methods gain

more efficient calculation by requiring more human effort (yet remain easier than manual reverse calculation).

AD packages are always built under the assumption that they will have access to a user’s raw source code or

the derivatives of user sub-functions; as a result, in most cases they are not designed with matrix operations in mind.6

However, despite the matrix-focused nature of this work, a brief overview of standard AD approaches is helpful for

the simple reason that matrix operations are almost never used in isolation. If derivatives are to be propagated across

these operations, a traditional (scalar) AD tool must bridge the differentiation gap between program initialization and

matrix function call and between matrix result and program output. This section will focus solely on first-order, single-

derivative (or, in the case of reverse mode, single-gradient) methods; once this foundation is complete, the jump to

higher-order multivariate derivatives in Section 3.3 will be relatively simple.

The concept of using one program to automatically differentiate another dates back to at least Beda et al’s work

in 1959 ( [73], as cited in [72]). In the early decades of the field, most of the work focused on the forward mode

of calculation; in many cases, the process was symbolic, yielding at program’s end a (typically extremly long and

expensive) algebraic expression for the derivative. Numeric methods that simply applied the chain rule appear to have

come into prominence in the 1980s [72], along with the introduction of the reverse mode of automatic computation

[72, 74].

Most AD theory uses a simplified view of underlying programs, expressing them as a linear sequence of many

commands; such a stylized program is shown in the pseudocode of Algorithm 3.1, along with detailed comments. It

5 The AD community portal www.autodiff.org lists 30 tools for C/C++, 15 for Fortran77, and 6 for MATLAB. [71]

6 Several exceptions to this rule will be discussed in Section 3.4; in brief, they amount to matrix packages built with AD in mind, rather than the
other way around.
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is perhaps most intuitive to demonstrate the various AD approaches by showing their modifications to this program –

hence the color-coding to indicate the original source code, which will be contrasted with new or modified AD code.

Algorithm 3.1 Pseudocode model for programs to which typical AD is applied. Blue shading indicates external inter-
face for the function or program; gray shading indicates open-source user code.

De�ne: S // Set of scalar data types e.g., �oat, complex<double>
gi(⋅) ∶ SNi → S // Command at step i e.g., a1=x1*x2; a2=exp(x3);

1. Given: xxx ∈ SNx // Input parameters e.g., f(double xvec[5], �oat x6);

2. Execute: yyy(1)(1)(1) ← xxx // Initialize set of internal program variables
for i = 1…NC : // Program expressed as a sequence of commands

ai ← gi(zzz(i)(i)(i)) ∶ zzz(i)(i)(i) ⊆ yyy(i)(i)(i) // Function of some subset of previous results
yyy(i + 1)(i + 1)(i + 1) ← {yyy(i)(i)(i), ai} // Add result to internal set

3. Output: f (xxx) ← aNC ∈ S // Quantity of Interest

3.2.1 Forward-Mode AD

The simplest mode of AD computes, in sequence, the derivative of each intermediate variable ai with respect to

one or more inputs (i.e., independent differentiation variables xj) via repeated application of the chain rule. For each

desired derivative d(⋅)∕dxj , a set of new variables are introduced – in the single-derivative case, one new ȧi for each ai in

the original program. The first such variables are the derivatives of the differentiated inputs with respect to themselves

– i.e., ẋj = dxj∕dxj = 1. In the cases of undifferentiated inputs, the paired initial derivative variables are set to zero –

i.e., no inputs are assumed to be functions of each other, so that ẋk = dxk∕dxj = 0 for k ≠ j. The chain rule applied to

the first user operation amounts to:

ȧ1 =
d
dxj

g1(xj) (3.44)

=
)g1
)y

dy
dxj

|

|

|

|

|y=xj

(3.45)

=
)g1
)xj

ẋj (3.46)

The calculation is repeated for all following operations:
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ȧi+1 =
d
dxj

gi+1(gi(⋅)) (3.47)

=
)gi+1
)gi

dgi
dxj

(3.48)

=
)gi+1
)gi

ȧi (3.49)

When implemented explicitly, this algorithm takes the form shown in Algorithm 3.2, which also allows for

multiple inputs to each intermediate operation gi. Note that explicit implementation is exactly the approach taken by

source-code modification tools; yellow highlighting in the pseudocode indicates new commands automatically inserted

by an AD tool.

Algorithm 3.2 Pseudocode for forward-mode automatic differentiation via the source-modification approach. Blue
shading indicates external interface for the function or program; gray shading indicates open-source user code; yellow
shading indicates new code generated by AD. Every line of user code is followed by one or more lines of generated
AD code.

De�ne: S // Set of scalar data types e.g., �oat, complex<double>
gi(⋅) ∶ SNi → S // Command at step i e.g., a1=x1*x2; a2=exp(x3);

1. Given: xxx ∈ SNx // Input parameters e.g., f(double xvec[5], �oat x6);

j ∈ 1...Nx // Index of target derivative i.e., �nd df∕dxj
2. Execute: yyy(1)(1)(1) ← xxx // Initialize set of internal program variables

ẏ̇ẏy(1)(1)(1) ← 000 // Initialize set of derivatives w/r/t xj
ẏj(1) ← 1 // Derivative of xj w/r/t to itself is 1

for i = 1…NC : // User program expressed as a sequence of commands
ai ← gi(zzz(i)(i)(i)) ∶ zzz(i)(i)(i) ⊆ yyy(i)(i)(i) // Function of some subset of previous results
ȧi ←

∑

k(żk(i))()gi∕)zk(i)) // Apply chain rule (total derivative) to user code

yyy(i + 1)(i + 1)(i + 1) ← {yyy(i)(i)(i), ai} // Add result to internal set

ẏ̇ẏy(i + 1)(i + 1)(i + 1) ← {ẏ̇ẏy(i)(i)(i), ȧi} // Add derivative of result to internal set

3. Output: f (xxx) ← aNC ∈ S // Quantity of Interest

df∕dxj ← ȧNC ∈ S // Derivative of QoI
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3.2.2 Reverse-Mode AD

A derivation7 of the reverse mode can begin with the observation that, for the sequence of operations shown

in Algorithm 3.1, the whole function f (xj) can be expressed as a function of any intermediate set of internal variables

yyy(i)(i)(i)(xj):

f (xj) = f
(

yyy(i)(i)(i)(xj)
)

(3.50)

yyy(i)(i)(i) = [a1, a2,… , ai] (3.51)

an = gn(yyy(n)(n)(n)) (3.52)

Consider the chain rule for another intermediate variable ak which came before step i:

)f
)ak

=
i−1
∑

m=k

)f
)am

)gm
)ak

(3.53)

Define this derivative as an adjoint variable āk. This yields the inductive relation

āk =
i−1
∑

m=k
ām
)gm
)ak

(3.54)

In contrast to the forward-mode variables ȧk, which represented the cumulative impact of all preceding calcu-

lations on the derivative ak, the adjoint variable āk represents the cumulative impact of ak on upcoming calculations.

More than that, if the future adjoint variables ām are known, āk can be expressed in terms that do not rely on the output

f directly. Noting that the derivative of the final atomic operation f = aNC
with respect to itself is one, it can be seen

that one can simply set the final adjoint āNC
= 1 and calculate every other adjoint variable in reverse order. After every

operation stretching back to g1 has been differentiated, one will have obtained the adjoints of every input variable –

i.e., the entire gradient of f (xxx). Pseudocode for this process is shown in Algorithm 3.3.

7 This derivation generally follows the logic and notation from [72].
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The reverse mode is quite elegant, in that it can compute an arbitrarily-large gradient with only one new adjoint

operation per original (forward-problem) operation – indeed, as shown in [72], even a very simple automatic imple-

mentation is guaranteed to have a cost less than five times that of the original program. However, the approach suffers

from a major drawback: the derivatives )gm∕)ak in Equation 3.54 are functions of the forward variables yyy(m)(m)(m) – in other

words, every single intermediate variable from the forward problem must be saved after its initial calculation. While

the stylized program in Algorithm 3.1 was represented as storing the entire vectoryyy(NC)(NC)(NC), this was only shown for the sake

of analytic simplicity; for programs of significant size, it can quickly become impractical. Nevertheless, reverse differ-

entiation can still be put to important use in engineering applications – e.g., by differentiating smaller sub-functions to

build the intermediate Jacobians and gradients needed by the (matrix) adjoint method discussed in Section 3.1.2 and

Section 3.1.3.

Algorithm 3.3 Pseudocode for reverse-mode automatic differentiation. Light blue shading indicates external interface
for the function or program; gray shading indicates open-source user code; yellow shading indicates new code generated
by AD, which generates the entire gradient at the cost of storing all forward variables (see text).

De�ne: S // Set of scalar data types e.g., �oat, complex<double>
gi(⋅) ∶ SNi → S // Command at step i e.g., a1=x1*x2; a2=exp(x3);

1. Given: xxx ∈ SNx // Input parameters e.g., f(double xvec[5], �oat x6);

2. Execute: yyy(1)(1)(1) ← xxx // Initialize set of internal program variables
for i = 1…NC : // Program expressed as a sequence of commands

ai ← gi(zzz(i)(i)(i)) ∶ zzz(i)(i)(i) ⊆ yyy(i)(i)(i) // Function of some subset of previous results
yyy(i + 1)(i + 1)(i + 1) ← {yyy(i)(i)(i), ai} // Add result to internal set

3. Output: f (xxx)← aNC ∈ S // Quantity of Interest

4. Store: yyy(NC)(NC)(NC) ∈ SNC+Nx // All internal variables must be retained

5. Reverse: ȳ̄ȳy ← 000 ∈ SNC+Nx // Initalize adjoints of all variables
ȳend ← 1 // Adjoint of output is 1
for i = NC ,…1: // Each user command examined in reverse

∀zk(i) ∈ zzz(i)(i)(i) where zk(i) = ym(i) // For each forward variable z ∈ yyy used as input to gi
ȳm ← ȳm + ȳi()gi(zzz

(i)(i)(i))∕)zk(i)) // Piece-wise summation of chain rule

6. Output: ∇f ← [ȳ1, ..., ȳNx ] // Gradient of f (xxx)

3.2.3 Automatic Source Modification vs Operator Overloading

Two broad approaches exist to implement either the forward- or reverse-mode methodology – namely, source

modification and operator overloading. In the first approach, another program is used to process user source code
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and generate a new program with additional code; in the second, a new data type is introduced to replace real-valued

variables in the user program.

The two methods have different advantages. Source modification can be more efficient at run-time because

the generating program can take a “long view” of many operations at once, searching for possible shortcuts, whereas

operator overloading must work naively on an element-by-element basis – after all, real-world programs do not actually

have the daisy-chain sequential dependency of Algorithm 3.1; instead, the dependency of one function upon another

is better represented as a directed acyclic graph (DAG), which opens up an entire field of optimization approaches

rooted in graph theory. This long-view feature can also make for more parallelizable code. Finally, older programming

languages such as Fortran77 do not even support new data types. The source-modification approach generally follows

the explicit forward or reverse algorithms already shown in Algorithm 3.2.

Operator-overloaded types, in contrast, lean even harder into the “automatic” part of AD, trading some efficiency

for even easier implementation. All or most differentiation is encapsulated away from the user’s sight; every time the

original code performs an operation, the overloaded variables used by the operation compute the relevant derivative

formula, the results of which are stored alongside the operation’s output variable(s). This encapsulation also makes AD

easier to use during code development – although source modification is automatic, if the user wishes to change his or

her underlying code, the AD tool must be run again after every change. In the forward mode, operator overloading can

be represented as shown in Algorithm 3.4.

The overloading approach can also implement reverse-mode differentiation, in a way almost identical to Algo-

rithm 3.3. In this mode, the forward sweep of the program still uses overloaded types; however, rather than calculate

derivatives, the overloaded variables âi save the real values ai to hard-disk along with a label to identify each operation

gi(⋅). The collected set of program data, known as a “tape”, is then used to run the reverse problem.

In this work, it is generally assumed (in pseudocode and elsewhere) that scalar user code is differentiated with a

forward-mode overloaded type, as it has a similar “set it and forget it” philosophy to NMD. However, there is no reason

that source-modification or reverse tools cannot be used to differentiate non-matrix sections of a program.
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Algorithm 3.4 Pseudocode for forward-mode automatic differentiation via operator overloading. Light blue shading
indicates external interface for the function or program; gray shading indicates open-source user code; yellow shading
indicates new data types or new code generated by AD. By defining and initializing new datatypes, the user source is
left relatively intact.

De�ne: S // Set of scalar datatypes e.g., �oat, std::complex<double>

A ≡ S × S // Set of AD data types e.g., ADOLC::adouble [75]
v̂ ∈ A // Overloaded instance of variable v i.e., v̂ ≡ {v, v̇}
g(⋅) ∶ SNi → S // Original command e.g., a1=x1*x2; a2=exp(x3);
ĝ(⋅) ∶ ANi → A // Command overloaded w/ chain rule i.e., ĝ(vvv) ≡ {g(vvv),

∑

k(żk(i))()gi∕)zk(i))};

1. Given: xxx ∈ SNx // Input parameters e.g., f(double xvec[5], �oat x6);

j ∈ 1...Nx // Index of target derivative i.e., �nd df∕dxj
2. Execute: ŷ̂ŷy(1)(1)(1) ← [xxx,000] // Initialize overloaded internal program variables

ŷj(1) ← [xj , 1] // Derivative of xj w/r/t to itself is 1

for i = 1…NC : // User program expressed as a sequence of commands
âi ← ĝi(ẑ̂ẑz(i)(i)(i)) ∶ ẑ̂ẑz(i)(i)(i) ⊆ ŷ̂ŷy(i)(i)(i) // Function of some subset of previous results

ŷ̂ŷy(i + 1)(i + 1)(i + 1) ← {ŷ̂ŷy(i)(i)(i), âi} // Add result to internal set

f̂ ← âNC ∈ A // Overloaded Quantity of Interest

3. Output: f (xxx) ← f0 ∈ S // Base (Undi�erentiated) QoI

df∕dxj ← f1 ∈ S // Derivative of QoI

3.3 Multivariate and High-Order AD

The preceding section introduced the basic form of standard AD tools using only a single new variable (i.e., a

forward derivative or adjoint) per original variable, allowing for the calculation of first derivatives. This work, however,

is focused on finding the Hessian and higher derivative tensors. These, too, can be found by existing AD tools (in non-

matrix cases) via various modifications discussed below. These include vectorization, to find additional derivatives at

once, and simplistic nesting of AD tools, to find higher derivatives. Another, more advanced method for arbitrary-order

differentiation that is more efficient than simple nesting will be saved for Section 4.5, as it is built around a special class

of algebras.

3.3.1 Vectorization

The examples above were limited to one derivative at a time, thereby forcing users to run AD once for each input

variable (or, in the case of reverse mode, once for each output). It is perhaps intuitive to avoid this inconvenience by

adding more AD variables, computing multiple derivatives at once; instead of a single variable (ȧ or ā), the modified

program would use an entire vector (ȧ̇ȧa = ∇a or ā̄āa = )fff∕)a) of variables at each point in the code. In many cases,
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however, the cost savings of this vectorization approach may not be worth the back-end implementation effort or the

extra memory burden – usually, even in the limit of very many derivatives at once, one can save at most 50% of the

time that would otherwise be spent going one at a time. There are exceptions to this rule: programs burdened with a

large amount of computation that is not differentiated. For example, if a program must spend a significant amount of

time loading constant, input-independent data from disk, it may make sense to avoid doing this more than once. A plot

of relative cost savings for various fractions of such fixed overhead can be seen in Figure 3.2. Note that an AD-enabled

program with this problem could almost certainly be improved simply by running the differentiation in a loop across

only those subroutines that require it. Sometimes, though, vectorization might be the path of least resistance, especially

when there is enough memory to spare.

Beyond the occasional opportunity for cost savings, there is one other situation where multiple simultaneous

derivatives are called for: the calculation of mixed higher-order derivatives, which requires access to lower-order fac-

tors. This is especially evident in the case of inductive AD – the simplest (and most simplistic) higher-order method-

ology.
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Figure 3.2: Vectorization Savings vs Fixed Overhead: Cost fraction of a single vectorized run vs many single-
derivative runs, plotted logarithmically against number of vectorized inputs. If differentiated code is a relatively small
portion of the total program cost, vectorization can avoid redundant computation of the fixed overhead. The legend
shows relative cost of overhead compared to total program cost; in the limit of 100% overhead, a vectorized run has a
cost 1∕Nx that of an equivalent number of singleton runs.
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3.3.2 Naive Induction

InductiveAD is the intuitive approach to taking second- and higher-order derivatives: applyADonce, then apply

it again. This can take the form of applying a source-modification tool to an already-modified code, or of replacing the

real numbers in the back-end of an overloaded type with yet another overloaded type. This approach, unfortunately,

suffers from several significant inefficiencies.

Mathematically, for a univariate second derivative of a variable y, the most literal form of induction can be

expressed in operator-overloaded notation by introducing a second-order AD variable ̂̂y, built by augmenting a first-

order variable ŷ:

ẏ ≡ d
dxj

[

y
]

(3.55)

ŷ ≡ y + ẏ (3.56)

̇̂y ≡ d
dxj

[

ŷ
]

(3.57)

= ẏ + ÿ

̂̂y ≡ ŷ + ̇̂y (3.58)

= (y + ẏ) + (ẏ + ÿ) (3.59)

In both the overloaded and source-modification approach, two copies of the first derivative of y are carried.

This is mirrored in the computation of values; for example, the inductive approach does not account for Leibniz’s

rule (i.e., the product rule for higher orders) – instead, it repeatedly calculates every permutation of a derivative term.

For the second univariate derivative of y(x)z(x), it would compute (yz′′ + y′z′) + (y′z′ + y′′z), rather than saving a

step and finding yz′′ + 2y′z′ + y′′z. This also occurs in the multivariate (vectorized) case, where the entire first-order

vector is calculated twice. In the case of higher tensors, the redundancy is given by binomial coefficients – e.g., for third

derivatives, there will be three repeated calculations (and three copies) of the gradient and three of the Hessian. Almost

as bad, naive induction does not account for symmetry of the Hessian: rather than limiting itself to the N(1 +N)∕2

unique second derivatives, it redundantly computes all N2 entries. The redundancy again worsens for higher tensors,
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which have more symmetries. These redundancies can be removed easily; however, this presumes the creators of the

AD method anticipate a need for higher derivatives. In many cases, they do not.

In one of the first methods designed with higher orders in mind, [76] a tree structure was used to store the deriva-

tives of derivatives, thereby allowing for sparse tensors, but much of the other computational redundancy remained.

Further, simply in terms of computer architecture, a tree structure can become very inefficient for tensors in many vari-

ables – it is far better to keep sequential indices in similarly sequential memory, leading to faster cache operation. Due

to inefficiencies such as these, later work moved from inductive implementation to inductive derivation; some meth-

ods (e.g., [77]) carefully calculated Leibniz’s rule (or, for other operations, the relevant time-saving coefficients) and

utilized elaborate indexing schemes for data stored in contiguous memory. More recent advances (e.g., [78]) abandon

induction entirely in favor of the algebra of Taylor polynomials, as will be discussed in Section 4.5.

It is also worth mentioning that, if all one needs is the Hessian, a number of sophisticated methods exist for

automatically finding a sparsity pattern (e.g., [79]) and, based on that pattern, finding the most efficient subspace (e.g.,

[80]) to find non-zero entries via a matrix of smaller dimension – an approach that is effectively a higher-dimensional

case of the directional derivatives described in Section 3.1.4. These tools are arguably distinct from differentiation

itself, as they amount to pre-processing before true AD begins, and will not be further considered in this work.

3.4 Matrix Operations and AD

So far within this chapter, only the non-automatic (finite difference and adjoint) methods have been capable

of finding derivatives of matrix functions. Unfortunately, many (if not most) large-scale engineering simulations or

optimizations rely heavily on such functions, typically supplied via third-party numerical libraries. Such libraries

typically have a great many source files (e.g., LAPACK 3.6.0 has 5,830 files [81]), in which case even allowing new

data types – let alone full sourcemodification – becomes laborious to the point of impracticality. Further, the best library

binaries (e.g., many implementations of the BLAS specification [82–84]) are often optimized by hand for individual

machine architectures; even if the (often proprietary) source is available, re-compiling from scratch might negate this

advantage.

It is therefore fair to claim that in general, if any user program written in a low-level language calls a third-
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party matrix library, external AD tools are no longer a valid option for scalar-by-scalar differentiation; for practical

differentiation applications, any method that can use linear algebra routines as-is would be vastly preferable. However,

in this claim the terms “low-level language” and “external” are carrying special weight.

Before addressing these qualifications, note that formulas certainly do exist for derivatives of whole matrices

– see for example [85] or [20]. Take, as two important examples, matrix multiplication and matrix-vector system

solution. If, given a matrixAAA from the original problem, one defines a derivative matrix Ȧ̇ȦA such that Ȧi,j = dAi,j∕dx for

every entry (i, j), then the matrix product rule is derived as:

CCC = AAABBB (3.60)

Ci,j =
∑

k
Ai,kBk,j (3.61)

Ċi,j =
∑

k
Ai,kḂk,j + Ȧi,kBk,j (3.62)

Ċ̇ĊC = Ȧ̇ȦABBB +AAAḂ̇ḂB (3.63)

which has the same form as the scalar product rule. System solution, however, has a form different from the quotient

rule. It is derived by beginning with a standalone inverse:

CCC = AAA−1 (3.64)

AAACCC = III (3.65)

Ȧ̇ȦACCC +AAAĊ̇ĊC = 000 (3.66)

Ċ̇ĊC = −AAA−1Ȧ̇ȦACCC (3.67)

= −AAA−1Ȧ̇ȦAAAA−1 (3.68)

A system solution is then the product of the inverse with a vector:
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xxx = AAA−1bbb (3.69)

ẋ̇ẋx =
(

−AAA−1Ȧ̇ȦAAAA−1
)

bbb +AAA−1ḃ̇ḃb (3.70)

= AAA−1
(

ḃ̇ḃb − Ȧ̇ȦAxxx
)

(3.71)

In other words, to find a single first derivative of a linear solve, one first solves the original problem, then

computes ḃ̇ḃb − Ȧ̇ȦAxxx and solves a second system for ẋ̇ẋx.

Similar formulas exist for many other matrix operations; if one wishes to manually compute matrix derivatives,

this is the way to go about it. Further, as discussed in the same sources above, adjoint variants of matrix operations exist,

allowing for reverse-mode computation if enough memory exists to store every intermediate matrix. Considering that

these formulas exist, and returning to the earlier qualifying terms “low-level language” and “external”, it becomes very

important to acknowledge that in a high-level language such asMATLAB, which treats matrices as encapsulated objects

(rather than a collection of individually-defined memory pointers and other parameters, such as in BLAS/LAPACK),

standard AD approaches can and have been implemented – e.g., for MATLAB, the most popular tool is ADiMat

( [86, 87]), which comes with some limited higher-order functionality.

Likewise, while “external” AD implementation for low-level libraries is cumbersome or impossible, certain

numerical computation packages are, in fact, internally designed by their authors with AD at least partly in mind.

For example, the Trilinos Project [88] from Sandia National Labs provides the Sacado [89] AD package, capable of

differentiating Trilinos-specificmatrices. In the unique case of the Eigen [90]matrix library (written in C++with heavy

use of modern templating features), users can actually supply custom data-types – including overloaded AD variables

– with which to build matrices and vectors. Eigen is open-source and designed to be recompiled on a program-by-

program basis; as such, it can even take special steps at compile time to optimize low-level operations (e.g., memory

addressing to improve cache performance, etc) around a given type. To the author’s knowledge, this makes Eigen the

single exception to the general rule claimed above: it is the only practical and even halfway efficient way to use standard

AD tools to differentiate matrices element-by-element, rather than with whole-matrix formulas.

There is one obvious drawback to automatic differentiation via any of these tools: AD users must design their
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entire program around a specific library and in a specific language, from the ground up. Looking ahead to Part II, NMD

is designed to fill the gaps between these cases, providing a method that can work in any context and any language.

Before beginning derivation of the new method, however, it is necessary to lay some groundwork by reviewing

several differentiation approaches that do not use derivative formulas directly; instead, they utilize algebras other than

that of the real numbers. The first of these approaches, the complex-stepmethod, is even compatible with forward-mode

first derivatives of matrix functions; the others all help put the upcoming derivation into context.



Chapter 4

Special Algebras for Differentiation

All themethods presented in Chapter 3 utilized simple freshman calculus to find derivatives. There are, however,

other approaches – non-real algebras which can find derivatives either as accidental side-effects or through clever

design. One of the most important reasons to review these methods, as far as this work is concerned, is the fact that

any of the non-real numbers considered here can be represented as matrices of real numbers held in specific patterns;

these representations will be saved for Chapter 6. For now, it is necessary to see how these systems work for the

differentiation of normal scalar code – and, in the case of the first method, for the differentiation of matrices.

4.1 Complex-Step Differentiation (CD)

As discussed in the previous chapter, automatic derivatives of matrix functions cannot (usually) be found by

back-end operator overloading or source modification. There is, however, one potential exception for real-valued prob-

lems: many libraries already come standard with function variants utilizing the arithmetic of complex numbers. In

many cases, a switch from real to complex data types can in fact serve as a form of AD.

4.1.1 History and Derivation

Any discussion of derivatives involving complex numbers would be incomplete without a mention of Cauchy’s

integral formula, which states that any univariate derivative of a complex point can be defined in terms of a contour

integral enclosing that point on the complex plane:
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f (n)(z0) =
n!
2�i ∮

f (z)
(z − z0)n+1

dz (4.1)

Indeed, the first use of complex numbers for numerical differentiation began with this equation, in the 1967

work of Lyness and Moler [62] who introduced a number of (quite complicated)1 integration formulas based on the

trapezoid rule. Like the Cauchy equation itself, these methods were all designed with derivatives of arbitrary order in

mind, and as the trapezoid rule does not require the subtraction of nearly-equal numbers, these formulas were capable

of finding derivatives to very high precision – albeit only in the limit of many function evaluations. For example, in

their example problem they found a fifth derivative of a real-valued function to nine significant figures via 59 complex

evaluations, and to ten significant figures via 1097 evaluations.

In 1998, Squire and Trapp [92] revisited the methods of Lyness and Moler and presented a vastly-simplified,

single-evaluation variant limited to first derivatives:

d
dx

(

f (x)
)

≈ 1
ℎ
Im

(

f (x + iℎ)
)

(4.2)

where the approximation holds in the limit of small ℎ. This formula has since been termed the complex-step derivative

approximation, or CD. The accuracy of the formula was proven with a simple Taylor series expansion:

f (x + iℎ) = f (x) + ℎi
1!
df (x)
dx

+ ℎ2i2

2!
d2f (x)
dx2

+ ℎ3i3

3!
d3f (x)
dx3

+… (4.3)

= f (x) + ℎi
df (x)
dx

− ℎ2

2
d2f (x)
dx2

− ℎ3i
6
d3f (x)
dx3

+… (4.4)

Im
(

f (x + iℎ)
)

= ℎ
df (x)
dx

− ℎ3

6
d3f (x)
dx3

+… (4.5)

df (x)
dx

= 1
ℎ
Im

(

f (x + iℎ)
)

+ 
(

ℎ2
)

(4.6)

Note that CD requires only a single function evaluation and can avoid subtractive cancellation error entirely;

1 In a 2013 blog post [91] for MathWorks, Moler himself stated “[...] the actual algorithms are pretty exotic. [...] If you asked me to describe
them in any detail today, I wouldn’t be able to.”
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therefore, for very small ℎ (e.g., 10−20 or smaller) it can yield results that are accurate to within a few bits of machine

precision – for double-precision floating-point arithmetic, this can translate to 14 or 15 significant figures.

The CD equation (4.2) can be interpreted in several ways. The first is as a two-point trapezoidal integration of

the parameterized Cauchy formula with z0 = x and z = x + iℎe2�it:

f ′(x) = 1
2�i ∫

1

0

f
(

x + iℎe2�it
)

(

iℎe2�it
)2

(−2�ℎ) e2�itdt (4.7)

= 1
ℎi ∫

1

0

f
(

x + iℎe2�it
)

e2�it
dt (4.8)

If f is analytic, the direction of the derivative is irrelevant and one can set f ′(x) = )f∕)x. Then, for f (z) = u+vi,

)f
)x

= )u
)x

+ )v
)x
i = 1

ℎi ∫

1

0

f
(

x + iℎe2�it
)

e2�it
dt (4.9)

)u
)x
i − )v

)x
= 1
ℎ ∫

1

0

f
(

x + iℎe2�it
)

e2�it
dt (4.10)

)u
)x

= 1
ℎ
Im

(

∫

1

0

f
(

x + iℎe2�it
)

e2�it
dt

)

(4.11)

Note that a two-point trapezoid rule is simply an average of the endpoints – yet evaluating this integral only at

t = 0 and t = 1 sends e2�it to one, causing the points to coincide. Thus, the supposed “trapezoid integration” only

requires a single evaluation and takes the same form as Equation 4.2. This is of course a very imprecise approximation

of the integral, but in this particular case it becomes precise in the limit of a tight contour (corresponding to a small ℎ).

Another interpretation of Equation 4.6 is as the definition of the derivative for a complex analytic function. As

discussed in [63], if f (z) is analytic, z = x + yi and f (z) = u + vi, then the Cauchy-Riemann equations state:

i
)f
)x

=
)f
)y

(4.12)

∴ )u
)x

= )v
)y

(4.13)

and )u
)y

= − )v
)x

(4.14)
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These relationships can be visualized as in Figure 4.1 using overlaid contour plots of u and v. Note there that

the real- and imaginary-valued gradients (and hence contours) are perpendicular to each other; further note that the

magnitudes of the gradients are identical at any given point, which can be seen by identical contour spacing at highest

resolution.
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Figure 4.1: Finite differencing in the complex plane: Contour plots of the complex function f (z) = ez∕
√

sin3(z) + cos3(z),
with dashes representing lines of constant real value and dots representing lines of constant imaginary value; the interval
between contours is uniform and identical for both real and imaginary measures. Each subfigure represents a closer
zoom on the point z0 = 3�∕4 − 0.2 (red star) and a correspondingly smaller step-size ℎ; the blue dot represents a
real-valued FD evaluation f (z0 + ℎ) and the green dot represents a complex-valued CD evaluation f (z0 + iℎ). Per the
Cauchy-Riemann relationships (Equation 4.12), the contours are perpendicular; for small ℎ, they are almost equally-
spaced, representing identical slopes.

The figure also demonstrates the differences between the FD and CD sampling schemes. To see how the

complex-step evaluation f (x+iℎ) can be treated similarly to the finite-difference evaluation f (x+ℎ), examine the orig-
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inal real-valued derivative )u∕)x from Equation 4.13 and substitute in the definition of the derivative in the imaginary

direction for the RHS:

)u
)x

= )v
)y

(4.15)

= )
)y

(

Im
(

f (x + iy)
)

)

(4.16)

= lim
ℎ→0

Im
(

f (x + i(y + ℎ))
)

− Im
(

f (x + iy)
)

ℎ
(4.17)

As f was originally a function of real variables only, y = 0:

)u
)x

= lim
ℎ→0

Im
(

f (x + iℎ)
)

− Im
(

f (x)
)

ℎ
(4.18)

Equation 4.18 has a structure with an obvious parallel to the real-valued definition of the derivative. Indeed,

the last subplot of Figure 4.1 shows that a very small step in the imaginary direction produces the same change in the

imaginary output as a similar step in the real direction would in the real output. The standard forward finite-difference

method uses the analogous real-valued equation to build an approximation with a small ℎ; the complex-step method,

however, can make one more simplification beyond Equation 4.18 by noting that the original f was purely real-valued,

and thus Im
(

f (x)
)

= 0:

)u
)x

= lim
ℎ→0

Im
(

f (x + iℎ)
)

ℎ
(4.19)

which directly yields the approximation from Equation 4.2.

4.1.2 Practical Usage

With CD, one is now free to choose an arbitrarily small step size, and can achieve results five to ten orders of

magnitude more accurate than even centered FD; this behavior is shown in Figure 4.2. There are minor implementation

issues that must be addressed when transforming a code to use the method – namely, there are a few functions that are
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Figure 4.2: Complex-step error in the first derivative: Just as in Figure 3.1 (adopting the same conventions as [62]
and [63]), the test function is y(x) = ex∕√sin3 x + cos3 x evaluated at x = 3�∕4 − 0.2 and ℎ is presented logarithmically
decreasing from left to right, such that expected “better” values are on the right. The complex-step method exhibits no
cancellation error; it is limited only by machine epsilon – which, for the double-precision arithmetic used here, comes
to 2−52 ≈ 2.22 × 10−16.

not complex-analytic (e.g., absolute value), and a few that are undefined off the real line (e.g., comparison operators like

less-than). These issues were overcome by Martins, Sturdza and Alonso [63], who in 2003 introduced2 the method to

the aerospace field and presented implementations for multiple languages including C++ and FORTRAN, along with

scripts to automate the change of types; all problematic functions were simply redefined to operate only on the real part

of the number. In the case of C++, they provided a custom “wrapper” overloaded data type, which added the needed

functionality to the default complex type; for FORTRAN, they provided a module that overloaded all intrinsic complex

functions. They then applied CD to several large aerospace problems written in FORTRAN, including an analysis of

supersonic natural laminar flow and an aero-structural solver for multidisciplinary optimization of a wing.

It is important to note that use of the C++ wrapper forces users to implement a custom type throughout their

(scalar) code – in which case, the same limitations of ordinary overloaded AD apply; as ordinary AD is not an ap-

proximation and can be more efficient, it may remain more attractive. In the FORTRAN case, in fact, the provided

module actually changed all intrinsic functions (even those that were already analytic) to use literal derivative formulas

rather than complex arithmetic, effectively transforming complex numbers into standard AD variables. Only operators

2 More precisely, Martins developed the modified implementations as a corollary to his 2002 PhD dissertation [93], advised by Alonso, where
he used CD to verify the coupled aero-structural adjoint method that was the primary thrust of his work. However, their joint publication with
Sturdza [63] (which did not discuss his adjoint method) is generally treated as the seminal CD work, alongside Squire and Trapp [92].
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(addition, multiplication, etc), which cannot be redefined in FORTRAN, were left unchanged. This still provided an

advantage for that language, in which a change from intrinsic to custom types is more complicated than in C++.

Martins et al [63] did not discuss the application of CD to matrix functions in their work, beyond noting that

any conjugate transpose operation in MATLAB must be replaced by a real-valued transpose; as they did not address

the issue for any other language, this mention may have merely been for the sake of reshaping sets of variables stored

as vectors. The method does, however, work for many matrix routines.

If f (xxx) truly represents an arbitrary program with complex-analytic behavior, one might expect any internal use

of matrix math to be irrelevant as far as CD is concerned – intuitively, the method can be applied to any such matrix

operation as long as each scalar entry of the matrix result is a complex-analytic function of the scalar entries of the

matrix argument(s). This intuition was more rigorously investigated by Al-Mohy and Higham [94], who analyzed the

complex-step approximation for derivatives of matrix-input functions, i.e.,

f ′ (AAA) =
Im

(

f
(

AAA + iℎȦ̇ȦA
))

ℎ

|

|

|

|

|ℎ≪1
(4.20)

Their analysis pointed to a few flaws: first, many individual matrix operations are not complex-analytic – for

example, any algorithm that utilizes a complex conjugate. Second, CD only works because it avoids subtractive cancel-

lation errors – but certain functions that internally already use complex math (e.g., trigonometric functions that utilize

a difference of complex exponentials), when fed a very small input, might introduce such errors.

However, because matrix addition, multiplication, and inversion are analytic and do not suffer from these flaws,

any matrix function represented by a power series is amenable to CD, as is any rational (polynomial times an inverse

polynomial) representation; this includes the very common approach of repeated multiplication by the same matrix.

This still gives CD a broad applicability to matrix math.

4.2 Complex Variants

While complex-step differentiation is practical and elegant, it is limited by the fact that it cannot find higher-

order derivatives. This shortcoming was addressed in at least three competing follow-on methods, each describing
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a different algebra and each published between 2011 and 2013. Two of them, utilizing “multicomplex” and “quasi-

complex” numbers, introduced additional imaginary elements and are covered below; the third, using “hyper-dual”

numbers, switched to nilpotent elements and is covered in Section 4.4. All three, however, were preceded by a more

efficient method utilizing truncated Taylor polynomials, described in Section 4.5; despite this, it is important to discuss

each, as they will give analytic insight into the more effective scalar and matrix algebras derived in Part II.

4.2.1 Multicomplex Variables

In 2012, Lantoine, Russell, and Dargent [39] introduced an arbitrary-order differentiation method based on the

existing algebra of multicomplex numbers [95, 96], denoted in set notation as ℂ(q). A number z ∈ ℂ(q) is inductively

defined as:

z = z0 + zqiq (4.21)

z0, zq ∈ ℂ(q−1) (4.22)

i2q = −1 (4.23)

∀j, k ∶ ij ik = ikij (4.24)

ℂ(1) ≡ ℂ (4.25)

ℂ(0) ≡ ℝ (4.26)

Given an element z ∈ ℂ(q) (termed a multicomplex number of degree q), the scalar values z0 and zq are not real

numbers, but elements of ℂ(q−1). Unrolling one level of induction, z can thus be expressed as:

z = (z0,0 + z0,q−1iq−1) + (z0,q + zq,q−1iq−1)iq (4.27)

Here, the subscripts are used to indicate which imaginary elements will be multiplied with a given coefficient

– for instance, zq,q−1 is multiplied by both iq−1 and iq but z0,0 has not been multiplied with anything.

Lantoine et al demonstrated that, just as in CD, very small steps in imaginary directions could be used to
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approximate derivatives to high accuracy. Omitting their derivation for brevity and using a second order variable as an

example:

z ∈ ℂ(2) (4.28)

∴ z = z0 + z0,1i1 + z0,2i2 + z2,1i1i2 (4.29)

Their multicomplex differentiation method (MCX) proceeded by setting the real coefficient of singleton imagi-

nary dimensions to the small step-size ℎ. Using the functions Im1, Im2, and Im12 to access z0,1, z0,2, and z2,1, respec-

tively, the formulas for all first- and second-order derivatives of a two-input function are:

)f (x, y)
)x

≈
Im1

(

f (x + ℎi1 + ℎi2, y))
)

ℎ
≈
Im2

(

f (x + ℎi1 + ℎi2, y))
)

ℎ
(4.30)

)f (x, y)
)y

≈
Im1

(

f (x, y + ℎi1 + ℎi2))
)

ℎ
≈
Im2

(

f (x, y + ℎi1 + ℎi2))
)

ℎ
(4.31)

)2f (x, y)
)x2

≈
Im12

(

f (x + ℎi1 + ℎi2, y))
)

ℎ2
(4.32)

)2f (x, y)
)y2

≈
Im12

(

f (x, y + ℎi1 + ℎi2))
)

ℎ2
(4.33)

)2f (x, y)
)x)y

≈
Im12

(

f (x + ℎi1, y + ℎi2))
)

ℎ2
(4.34)

Note that, in terms of which coefficients track which derivatives, this method corresponds exactly with the most

naive type of AD induction described in Section 3.3.2 – the MCX variable from Equation 4.29 is essentially used

as a two-input variant of the second-order univariate derivative in Equation 3.59. During any computation of high-

order derivative tensors (including the Hessian), this approach will redundantly compute many lower-order values; for

example, when finding )2f∕)x2 , )f∕)x will be contained in both Im1(f ) and Im2(f ).

In general, for all qth-order derivatives of n inputs, MCX needs one evaluation for each unique entry in the

highest-order tensor, and each evaluation needs to utilize variables with 2q real coefficients. The cost relative to the

original program (not counting the difference between complex arithmetic and simpler derivative formulas) is thus:
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(

n + q − 1
q

)

2q =
(n + q − 1)!
q!(n − 1)!

2q (4.35)

Lantonine et al emphasized ease of implementation as a primary reason to consider MCX, as the inductive

definition can easily be echoed with recursive data structures and repeated application of ordinary complex operator

logic. However, just as with ordinary CD, use of the method requires an overloaded type – and unlike CD, there are no

situations (such as FORTRAN operators or complex matrix3 libraries) where MCX is more practical to use than any

other overloaded AD type. Further, even when it comes to use of imaginary elements, another high-order tool can be

more efficient both in terms of speed and memory.

4.2.2 Quasi-Complex Gradients

Also in 2012, this author (working with Ryan Starkey) independently developed an approach called the method

of quasi-complex gradients (QCG) [97]. In contrast to the already-existing algebra of multicomplex numbers, the

method defined an entirely new algebra of what were termed quasi-complex numbers. Denote the set of n-variable,

qth-order quasi-complex numbers by ℂ(n,q). These numbers were constructed by beginning with a first-order definition

for numbers from ℂ(n,1):

a = a0 +
n
∑

j=1
aj i(j,1) (4.36)

∀j ∶ aj ∈ ℝ (4.37)

∀j ∶ i2(j,1) = −1 (4.38)

Such first-order variables were shown to be capable of computing many CD-type first derivatives at once –

hence the name quasi-complex “gradient”. Higher-order numbers a ∈ ℂ(n,q) were inductively defined by replacing

each real value within lower-order numbers with other quasi-complex numbers, in turn built around a generalization

3 Lantonine et al did describe a possible matrix representation of multicomplex numbers, but appear not to have used it in their reported experi-
ments. This representation will be discussed in Section 6.3.1.
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of imaginary numbers I(q):

a = a0 +
n
∑

j=1
aj i(j,q) (4.39)

∀j ∶ aj ∈ ℂ(n,q−1) (4.40)

∀j, p, k, r ∶ i(j,p)i(k,r) = i(k,r)i(j,p)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∈ I(p+r) (p + r) ≤ q

= −1 (p + r) > q

(4.41)

In other words, where multicomplex numbers are an inductive nesting of standard complex numbers, quasi-

complex numbers were designed to be inductive with vectorized imaginary components. This allowed for the calcu-

lation of entire derivative tensors at once (rather than one entry at a time, as with MCX), which avoided much of the

redundant computation of lower-order terms. Further, because the test-cases chosen for publication proved (inadver-

tently) to have significant overhead, vectorization also provided very significant cost-savings, just as seen in Figure 3.2.

More importantly, the above algebraic definition was only used for derivation, not implementation – many of the

pitfalls of naive induction mentioned in Section 3.3.2 were recognized, and significant effort was made to avoid them

by writing a special program to automatically generate code for overloaded QCG data-types of any desired order. This

generating program only needed to be run once for a given order of derivative, as the resulting variable declaration was

portable to any user program. The program was designed to be aware of variable aliases (i.e., redundant copies) – the

output code only tracked unique data, stored in a single contiguously-indexed vector for the sake of cache operation.

The generating algorithm symbolically built analytic QCG representations of the needed operators (multiplication,

division, etc.) and functions (exp, etc.), then recursively replaced the necessary symbols with additional nested QCG

representations, until the desired depth of recursion (i.e., order of derivative) had been reached; it then converted the

symbolic representation to C++ code, using the appropriate object member variables and indices in place of the analytic

symbols. Where possible, it used the process of symbolic expansion to recognize variables worth pre-computing

before entering loops. For example, the standard complex multiplication and division operators both utilize the real

component of the number to compute an imaginary result; when applied to the expansion of a qth-order derivative term,

this “quasi-real” value translated into the value of a (q − 1)th-order combination of components, which was computed
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before entering the qth loop.

Simply by recognizing and avoiding redundant data, the cost of QCG relative to the original program was

proportional only to the total number of derivatives to be calculated across all tensors, i.e.,

q
∑

j=1

(

n + j − 1
j

)

=
q
∑

j=1

(n + j − 1)!
j!(n − 1)!

(4.42)

which translated to a savings of nearly 2q over MCX.

Unfortunately, the generating program was still limited by the algebraic definition of quasi-complex numbers,

which made it unaware of simplifying derivative formulas like Leibniz’s rule; in a way, it was thus similar to the tree

structure [76] mentioned in Section 3.3.2, albeit with a much more efficient memory scheme – but unlike that approach,

QCG used imaginary arithmetic, which comes with a cost discussed in the next section. Further considering that, just

as with MCX, changing a code to use QCG was no easier than with an overloaded AD type (assuming proper use

and understanding of the AD tool in question, which can admittedly be nontrivial), other approaches can still be more

attractive.

4.2.3 Shortcomings of Imaginary Elements

The use of small steps in imaginary directions – whether one at a time, as with CD, or many at a time, as with

MCX and QCG – can compute derivative approximations with the same accuracy shown in Figure 4.2. However,

the use of complex arithmetic is more expensive than directly using derivative formulas. One can better understand

the difference by directly comparing individual complex operations to the corresponding formulas used by standard

automatic differentiation. Consider three simple examples: multiplication, division, and the cosine function. If used

within a larger code that computes some f (x), the goal then is to compute g⋆(a, b | x) = ab, g÷(c, d | x) = c∕d, and

gcos(� | x) = cos(�) along with the corresponding derivatives ġ⋆ = dg⋆∕dx, ġ÷ = dg÷∕dx, and ġcos = dgcos∕dx, found

from the intermediate variables a, b, c, d, and � already computed by the program. From Equation 4.2, these variables

will carry approximate derivatives of themselves with respect to x in the imaginary component and can be rewritten as

â ≈ a + iℎȧ, etc.

In the case of multiplication,
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ĝ⋆(â, b̂) = (a + iℎȧ)(b + iℎḃ) (4.43)

= (ab − ℎ2ȧḃ) + i(ℎȧb + ℎaḃ) (4.44)

Now introduce the approximation implicitly assumed by Equation 4.2:

ℎ ≫ ℎ2 ≈ 0 (4.45)

Under this approximation, the ℎ2ȧḃ term is entirely extraneous – more than a quarter of the cost of complex

multiplication is wasted. The high accuracy of the method holds because Equation 4.43 can be simplified to:

Re
(

ĝ⋆
)

≈ ab (4.46)

Im
(

ĝ⋆
)

= ℎ(ȧb + aḃ) (4.47)

The imaginary component contains the product rule – in other words, the same derivative structure of â and b̂

has been passed down. Next, in the case of division,

ĝ÷(ĉ, d̂) =
c + iℎċ
d + iℎḋ

(4.48)

= cd + ℎ2ċḋ
d2 + ℎ2ḋ2

+ iℎċd − ℎcḋ
d2 + ℎ2ḋ2

(4.49)

Again using Equation 4.45, this can be simplified to:

Re
(

ĝ÷
)

≈ cd
d2

= c
d

(4.50)

Im
(

ĝ÷
)

≈ ℎ ċd − cḋ
d2

(4.51)
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which is of course the true result and the derivative quotient rule, respectively. However, the complex division re-

quired 13 multiplications, three additions or subtractions, and two divisions. Compare this to five multiplications, one

subtraction, and two divisions for the quotient rule – in this case, CD is several times more expensive than traditional

AD.

Finally, in the case of the cosine function, the trigonometric identity

cos(p ± q) ≡ cos(p) cos(q) ∓ sin(p) sin(q) (4.52)

can be used to expand the definition of gcos:

ĝcos(�̂) = cos(� + iℎ�̇) (4.53)

= cos(�) cos(iℎ�̇) − sin(�) sin(iℎ�̇) (4.54)

This can be recast using the hyperbolic cosine and sine functions

sinh(p) = −i sin(ip) (4.55)

cosh(q) = cos(iq) (4.56)

and simplified with the small-angle4 approximations

cosh(p) |p≈0 ≈ 1 (4.57)

sinh(q) |q≈0 ≈ q (4.58)

to yield:

4 Like the more common small-angle approximations for sin and cos, these are simply the first term of the Maclaurin/Taylor series expansions.
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ĝcos(�̂) = cos(�) cosh(ℎ�̇) − sin(�)
sinh(ℎ�̇)
−i

(4.59)

≈ cos(�) − iℎ�̇ sin(�) (4.60)

This results in:

Re
(

ĝcos
)

≈ cos(�) (4.61)

Im
(

ĝcos
)

≈ −ℎ�̇ sin(�) (4.62)

which is again the true result as well as the chain rule applied to the derivative of the cosine function. However, along

the way, the complex evaluation likely required at least twice as many trigonometric calculations (in the form of cosh

and sinh) and two unnecessary multiplications.

While possibly pedantic, the preceding expansions and simplifications show that, in a certain sense, complex

formulas are differentiation formulas – albeit with additional, costly calculations that are extraneous for ℎ ≪ 1. For-

tunately, these extra calculations can be avoided by a switch from imaginary elements to another non-real type.

4.3 Dual Numbers

So-called dual numbers [98] are an extension of the real numbers, just as complex numbers are likewise an

extension. (Note, these are unrelated to the concept of a dual space.) Whereas a complex number z ∈ ℂ is defined as:

z = x + iy (4.63)

x, y ∈ ℝ (4.64)

i2 = −1 (4.65)
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a dual number a ∈ D5 is defined as:

a = b + "c (4.66)

b, c ∈ ℝ (4.67)

"2 = 0 (4.68)

" ≠ 0 (4.69)

In other words, where i is imaginary, " is a nilpotent element. A crucial property of dual numbers is the fact

that, like CD, the evaluation of a dual number input to a function can compute the derivative of that function [99] –

this can be quickly demonstrated with a Taylor series expansion of f (x + ℎ") about x:

f (x + ℎ") = f (x) + ℎ"
1!
df
dx

+ ℎ2"2

2!
d2f
dx2

+ ℎ3""2

3!
d3f
dx3

+…

= f (x) + ℎ
df
dx
" (4.70)

Note that, unlike the complex-step approximation, there are no ℎ2 or higher expressions – Equation 4.70 is

a finite sequence with precisely two terms. Therefore, no matter the size of ℎ, the nilpotent term holds the exact

derivative. Indeed, just as with standard automatic differentiation, if ℎ is set to 1 in the input, follow-on nilpotent terms

are identically equal to the derivative with respect to this input, with no coefficient to divide out – setting a nilpotent

term to unity is equivalent to the tautology “the derivative of this number with respect to itself is 1”.

In this work, the nilpotent coefficient of any dual number shall be accessed via the operator Nil(⋅), just as the

real and imaginary coefficients are accessed via the Re(⋅) and Im(⋅) operators, respectively. Using Equation 4.70 as an

example:

5 Note that dual numbers have not been used often enough in other contexts to have earned their own set notation. The use of D is adopted due
to their frequency in this work.
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Re(f (x + ℎ")) = f (x) (4.71)

Nil(f (x + ℎ")) = ℎ
df
dx

(4.72)

Another Taylor series expansion proves the chain rule holds:

g
(

f (x + ℎ")
)

= g
(

f (x) + ℎ
df
dx
"
)

(4.73)

= g
(

f (x)
)

+ ℎ"
1!
df
dx

dg
df

+ ℎ2"2

2!
d2f
dx2

dg
df

+… (4.74)

= g
(

f (x)
)

+ ℎ
df
dx

dg
df
" (4.75)

Re
(

g
(

f (x + ℎ")
)

)

= g
(

f (x)
)

(4.76)

Nil
(

g
(

f (x + ℎ")
)

)

= ℎ
dg
dx

(4.77)

Note that both Taylor series from Equation 4.70 and Equation 4.73 are equally valid for complex (analytic) func-

tions with real inputs, whichmeans that – unlike CD – any code utilizing complexmath would not break if differentiated

by dual numbers. In other words, for f (x) = u(x) + v(x)i,

f (x + ℎ") = f (x) + ℎ
df
dx
" (4.78)

= u(x) + v(x)i + ℎ
( du
dx

+ dv
dx
i
)

" (4.79)

u(x + ℎ") = u(x) + ℎ du
dx
" (4.80)

v(x + ℎ") = v(x) + ℎdv
dx
" (4.81)

When it comes to implementation of scalar dual numbers (e.g., [100, 101]), the code for low-level nilpotent

operations collapses to simple derivative formulas – and so, although derived via a special algebra, a dual number
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overloaded data-type is completely indistinguishable from a single-variable, first-order AD type.6 It is still useful to

frame differentiation in terms of dual numbers for the sake of algebraic manipulation and analysis – most importantly,

such an analysis will lead to a more general differentiation approach in Section 5.3, along with a way to represent these

numbers using only real values arranged in a matrix in Chapter 6. First, for the sake of completeness, it is necessary to

visit two other algebras useful for AD.

4.4 Hyper-Dual Numbers

An extension of the duals termed “hyper-dual” numbers [26, 102–104] capable of second-order differentiation

was introduced in 2011 by Fike and Alonso; the work ultimately became the subject of Fike’s 2013 dissertation. [26]7

For the sake of simplicity and consistency with the algebraic framework described earlier in Section 4.2.1, hyper-duals

are described herein with a parallel structure to multicomplex numbers: just as multicomplex numbers ℂ(q) can be

thought of “complex numbers with complex components”, hyper-duals are “dual numbers with dual components” –

although unlike multicomplex numbers, hyper-duals are only nested once, rather than an arbitrary number of times.

(Note, Fike and Alonso appear to have been unaware of Lantonine et al’s [39] work8 , and vice versa; Martins did,

however, go on to cite both in a 2013 review [105].) For this reason, hyper-duals will be denoted herein as D(2), the

structure of which can be derived as:

a ∈ D(2) (4.82)

a = a0 + a2"2 (4.83)

a0, a2 ∈ D (4.84)

"22 = 0 ≠ "2 (4.85)

a0 = a0,0 + a0,1"1 (4.86)

6 Strictly speaking, there are operations on dual numbers that are undefined for reals, e.g., the conjugate b + "c ≡ b − "c. However, these
operations do not correspond to any differentiable functions and in practice are omitted from AD implementations.

7 Note that Fike, like Martins (whose PhD thesis [93] broadened the use of the complex-step method), was also graduate student of Alonso;
unlike Martins, hyper-dual numbers were the primary focus of Fike’s dissertation, not a corollary.

8 Just as this author was, at the time, unaware of their work.
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a2 = a2,0 + a2,1"1 (4.87)

a0,0, a0,1, a2,0, a2,1 ∈ ℝ (4.88)

"21 = 0 ≠ "1 (4.89)

"1"2 = "2"1 ≠ 0 (4.90)

As generalized induction is not involved, simpler subscripts can be used to identify the elements. The definition

can thus be simplified to:

b ∈ D(2) (4.91)

b = b0 + b1"1 + b2"2 + b12"1"2 (4.92)

b0, b1, b2, b12 ∈ ℝ (4.93)

"21 = "
2
2 = 0 (4.94)

"1"2 = "2"1 ≠ 0 (4.95)

Just like MCX and QCG, when run through a formerly real-valued code hyper-dual numbers are capable of

finding a mixed second derivative. Again using a Taylor series and the operators Nil1,Nil2 and Nil12 to access the

coefficients of "1, "2 and "12, respectively:

f (x + ℎ"1, y + ℎ"2) =f (x) + ℎ
)f
)x
"1 + ℎ

)f
)y
"2 (4.96)

+
"21ℎ

2

2
)2f
)x2

+
"1"2ℎ2

2
)2f
)x)y

+
"2"1ℎ2

2
)2f
)x)y

+
"22ℎ

2

2
)2f
)y2

(4.97)

=f (x) + ℎ
)f
)x
"1 + ℎ

)f
)y
"2 + ℎ2

)2f
)x)y

"1"2 (4.98)

f (x) =Re
[

f (x + ℎ"1, y + ℎ"2)
]

(4.99)

)f
)x

=Nil1
[

f (x + ℎ"1, y + ℎ"2)
]

∕ℎ (4.100)

)f
)y

=Nil2
[

f (x + ℎ"1, y + ℎ"2)
]

∕ℎ (4.101)

)2f
)x)y

=Nil12
[

f (x + ℎ"1, y + ℎ"2)
]

∕ℎ2 (4.102)
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Note that Fike used a more involved derivation [102]: he started by looking for an extension of the complex

numbers that could track two first derivatives and a second derivative, which at first led him to the set of quaternions;

when these proved to suffer from the same subtractive cancellation error as finite differences, he began investigating

different types of non-real elements, focusing especially on the commutivity property (Equation 4.90); he then ul-

timately chose nilpotent elements of degree two, recognizing that they led to zero truncation error in the derivative

(i.e., higher-order terms in the Taylor series were zero). It appears that only then did the connection to canonical dual

numbers become clear, leading to the name “hyper-dual”.

Fike and Alonso used the new numbers to find second derivatives for multiple aerospace applications, including

unsteady Reynolds-averaged Navier Stokes computational fluid dynamics (URANS CFD) and inviscid transonic flow;

the resulting information was used for Kriging (a type of surrogate modeling) and multi-objective optimization of a

supersonic airfoil and a business jet. They also emphasized the potential use of hyper-duals to verify any new (hypo-

thetical) second-order adjoint method, just as Martins [93] had done when developing his first-order coupled adjoint

method.

Just like standard duals, the implementation [101] of hyper-duals collapses to literal differentiation formulas; as

such, it should be compared to standard AD approaches. However, the new approach was not tested alongside any other

second-order, operator-overloaded tool – the only methods considered appear to be the first-order9 ADOL-C [75] and

TAPENADE [7] packages, which use overloading and source modification, respectively. Just as with MCX and QCG,

there is little to recommend hyper-duals over newer high-order, forward-mode overloaded types (e.g., [106–109]).

Despite this, hyper-duals are fascinating for their demonstration of high-order nilpotent arithmetic and its use

in differentiation – through their use, Fike hinted at a powerful analytic approach to deriving other AD methods. The

algebras derived in Chapter 5 owe a certain amount of inspiration to his method.

9 ADOL-C is technically capable of higher orders, but must record a “tape” of every operation to hard-disk to do so; this is impractically expensive
for the large aerospace applications discussed here. TAPENADE is likewise technically capable of second-order calculations, but only by applying
it twice – a solution which suffers from all the drawbacks mentioned in Section 3.3.2. Both tools are quite old – TAPENADE dates from 2001, and
ADOL-C from 1992 – and were not designed with modern, large-scale codes in mind.
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4.5 Truncated Taylor Polynomials

In contrast to direct calculation of high-order derivatives, the tradition in AD for the past several decades (see,

e.g., [110,111], cited in [112]) has been to use the algebra of truncated polynomials. Implicitly, these are Taylor series,

but the underlying computations are the same for any polynomial.

To understand the concepts of both truncation and implicit Taylor behavior, consider two generic second-order

univariate polynomials y, z ∈ ℙ(1,∞), where ℙ(1,∞) denotes the set of all single-variable polynomials of arbitrary

order:10

y(t) = y0 + y1t + y2t2 (4.103)

z(t) = z0 + z1t + z2t2 (4.104)

When multiplied together, these yield:

f (t) = y(t)z(t) = (y0 + y1t + y2t2)(z0 + z1t + z2t2) (4.105)

= y0z0 + y0z1t + y0z2t2 (4.106)

+y1tz0 + y1tz1t + y1tz2t2

+y2t2z0 + y2t2z1t + y2t2z2t2

= y0z0 + (y0z1 + y1z0)t + (y0z2 + y1z1 + y2z0)t2 (4.107)

+(y1z2 + y2z1)t3 + y2z2t4

When calculating truncated polynomials of degree 2, one simply neglects to compute the t3 and t4 terms; this

truncation to finite length means that second-order truncated polynomials can be stored as overloaded variables in a

program, each being internally represented by no more than three real values. For two such variables ŷ, ẑ ∈ ℙ(1,2),

multiplication is defined as:

10 Notation adapted from [108].
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f̂ (t) = ŷ(t)ẑ(t)

= y0z0 + (y0z1 + y1z0)t + (y0z2 + y1z1 + y2z0)t2 (4.108)

Polynomial calculations such as this are trivial to implement and can be done very efficiently. Note that – at

least as far as their AD usage is concerned – elements such as ŷ and ẑ are not treated as functions, but as data; in the

implementation of such an overloaded data-type, no powers of t ever have to be calculated, as the resulting coefficients

will always be the same. Knowing this, re-imagine ŷ and ẑ as truncated Taylor series for functions of x with offset t:

ŷ(x + t) =ŷ(x) + t
1!
)ŷ(x)
)x

+ t2

2!
)2ŷ(x)
)x2

(4.109)

ẑ(x + t) =ẑ(x) + t
1!
)ẑ(x)
)x

+ t2

2!
)2ẑ(x)
)x2

(4.110)

f̂ (x + t) =ŷ(x + t)ẑ(x + t)

=ŷ(x)ẑ(x)

+
(

ŷ(x)
)ẑ(x)
)x

+
)ŷ(x)
)x

ẑ(x)
)

t

+
(

1
2
ŷ(x)

)2ẑ(x)
)x2

+
)ŷ(x)
)x

)ẑ(x)
)x

+ 1
2
)2ŷ(x)
)x2

ẑ(x)
)

t2 (4.111)

=f̂ (x) +
)f̂ (x)
)x

t + 1
2
)2f̂ (x)
)x2

t2 (4.112)

The generic polynomial multiplication has computed the first- and second-order product rules and stored the

result in Taylor form. A similar result holds for multivariate polynomials (i.e., those using multiple offsets tj for each

differentiated input xj of the function). Note that summation of polynomials is trivial, and obviously preserves the

Taylor structure; therefore, between addition and multiplication, it is now possible to compute arbitrary power series

of elements in ℙ(n,q). That is, for any polynomial with n inputs and highest order q, the entire polynomial can itself be

raised to any power and summed with other powers. This in turn allows computation of many elementary functions;

the exponential of a polynomial [108] is a useful demonstration.

First, for the sake of more concise notation, re-designate elements of ℙ(n,q) as having the form â = a0+ ȧ, where
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a0 is the constant value and all other terms are gathered into ȧ; this implies that any function of ȧ in isolation is in fact

operating on a polynomial with zero constant term. Using this notation, the exponential function is simply:

ex̂ = ex0+ẋ = ex0eẋ (4.113)

Recall that ex is defined as:

ex ≡
∞
∑

i=0

xi

i!
(4.114)

Putting this into the second exponential in Equation 4.113 yields:

ex̂ = ex0
( ∞
∑

i=0

ẋi

i!

)

(4.115)

However, examination of Equation 4.108 or Equation 4.111 will reveal that under multiplication, every first-

order term is multiplied by a constant (zero-order) term from one of the multiplicands; likewise, every second-order

term requires either two first-order terms or at least one constant term. Therefore, as ẋ has no constant term, ẋ2 will have

no first-order coefficients and ẋ3 will have no second-order coefficients. Generalizing to any degree of polynomial, ẋi+1

will have no ith-order coefficients – and so, because ẋ is truncated to the finite order q, the quantity ẋq+1 is necessarily

zero. In other words, ẋ is nilpotent, just like the unit elements used by dual and hyper-dual numbers.

Putting all this together, for any truncated Taylor polynomial x̂ ∈ ℙ(n,q), the exact exponential of x̂ is computed

by multiplying the original scalar exponential by a finite power series:

ex̂ = ex0
( q
∑

i=0

ẋi

i!

)

(4.116)

Similar power-series formulas exist for other operations; the most common can be found in [42, 108]. Thus, if

an overloaded program implements the algebra of ℙ(n,q), then any polynomial inputs structured as Taylor series will
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retain that structure as they propagate through the program. Derivatives can then be recovered from the output by

dividing particular polynomial coefficients by their corresponding Taylor coefficients. By calculating all derivative

terms via such simple power series of easy-to-compute polynomials, the Taylor-series approach to AD is significantly

more efficient than using literal differentiation formulas, which require more complicated computations (e.g., binomial

coefficients for Leibniz’s rule).

Importantly, a multivariate Taylor approach similar to this univariate example can be coupled with NMD, as

will be described in Part II and demonstrated in Part III. Before closing this chapter, though, it is necessary to note that

still more efficient approaches exist for multivariate derivatives. [42,78,112] These methods actually limit themselves

to univariate Taylor series – one for every entry in the highest-order tensor – and take advantage of the fact that such

polynomials use much simpler memory addressing and can thus be computed more efficiently. (Note that NMD, being

a matrix algorithm, cannot benefit from such a thing.) Each series is used to find derivatives along specially-selected

directions in the domain space; the actual multivariate derivatives are then known functions of the final results. The

precise details of such methods are beyond the scope of this paper, but the interested reader can find them in the cited

literature.



Part II

Hypercomplex Algebras and Nilpotent Matrix Differentiation



Chapter 5

Generalized Differentiation via Nilpotent Elements

As already described in Section 4.3, dual numbers are an extension of the algebra of real numbers. Most pre-

cisely, they form a commutative two-dimensional associative algebra over the reals; more generally, using a historical

terminology, they are a type of hypercomplex number [113, 114] – an umbrella category that also includes complex,

multicomplex, quasi-complex and hyper-dual numbers. The standard duals, as defined, can find first-order derivatives

with respect to a single input. It is possible, though, to find other derivatives by further extending the concept of dual

numbers and their nilpotent elements to other types of hypercomplex numbers with more dimensions. This chapter

introduces the concept by treating the new numbers as scalars; Chapter 6 will then present a matrix representation.

5.1 Hypercomplex Numbers

Hypercomplex numbers are defined [113] as elements of (D + 1)-dimensional distributive algebras over the

real numbers, generically denoted herein1 as ℍ(D); these algebras are not necessarily commutative, although non-

commutative variants will not be considered in this chapter. Each number is defined by a set of real coefficients

{x0, x1,… , xD} for the basis elements {1, ê1,… , êD}, where each êi is non-real and D is finite. Further, for such

an algebra to be closed, products of elements must yield elements (real or otherwise) already in the set. A few common

examples include:

1 This is something of an abuse of set notation, as there are in fact many distinct types of hypercomplex algebras of the same dimension. Further,
in many sources, the symbol ℍ is instead used to represent the set of quaternions (which are themselves hypercomplex). It is appropriated here out
of necessity.
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� Standard complex numbers:

D = 1

ê1 ≡ i i2 = −1

� Standard dual numbers:

D = 1

ê1 ≡ " "2 = 0 " ≠ 0

� Hyper-dual numbers:

D = 3

ê1 ≡ "1 ≠ 0 ê2 ≡ "2 ≠ 0 ê3 ≡ "12 ≠ 0

"21 = 0 "22 = 0 "212 = 0

"1"2 = "2"1 = "12

� Quaternions:

D = 3

ê1 ≡ i ê2 ≡ j ê3 ≡ k

ij = k = −ji ki = j = −ik jk = i = −kj

i2 = j2 = k2 = ijk = −1

Intuitively, one can apply the AD concept of vectorization to dual numbers, creating hypercomplex numbers

with many nilpotent elements to find many first derivatives:
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x̂ = x0 +
D
∑

i=1
xi"i (5.1)

∀i ∶ xi ∈ ℝ (5.2)

∀i ∶ "2i = 0 (5.3)

∀i ∶ "i ≠ 0 (5.4)

∀i, j ∶ "i"j = 0 (5.5)

Note that the last part of the definition (Equation 5.5) sets the nilpotent elements to be orthogonal to each other

– without this, the dimensionality of the algebra would grow to 2D, requiring a more sophisticated ruleset (discussed

in the next section). A multivariate Taylor series once again demonstrates the recovery of derivatives:

f (xxx + SSS""") = f (xxx) +
∞
∑

m1=0
⋯

∞
∑

mD=0

(

( D
∏

i=1

(ℎi"i)
mi

mi!

)

)
∑

j mj
∏

k )xkmk
f (xxx)

)

(5.6)

Here, xxx ∈ ℝD, SSS ∈ ℝD×D is a diagonal matrix representing step-sizes Sii = ℎi in each dimension2 and

""" = ["1,… , "D]T contains the nilpotent elements. This can be rewritten as:

f (xxx + SSS""") = f (xxx) +
∑

i
ℎi"i

)f
)xi

+
∑

i,j
ℎiℎj

"i"j
2!

)2f
)xi)xj

+… (5.7)

= f (xxx) +
∑

i
ℎi"i

)f
)xi

(5.8)

Simply define the operator Nili(⋅) to access the coefficient of "i, and each first derivative can be accessed as:

Nili
(

f (xxx + SSS""")
)

∕ℎi =
)f
)xi

(5.9)

2 Other configurations ofSSS can be used as a flexible framework for directional derivatives; see, e.g., [78], who phrase the problem without special
algebra as ∇zzzf (xxx + SSSzzz) such that zzz need not even be of the same dimensions as xxx.
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It is possible to use a similar approach to find high-order derivatives – although the work thus far has concerned

itself with nilpotent elements that square to zero, other types are possible. Define a nilpotent element of degree P to

be any element "j with the property "jP = 0 but "jP−1 ≠ 0. When such an element is used in an AD evaluation, the

univariate Taylor series becomes:

f (x + ℎ"j) = f (x) +
ℎ"j
1!

)f (x)
)x

+
(ℎ"j)2

2!
)2f (x)
)x2

+⋯ +
(ℎ"j)P−1

(P − 1)!
)P−1f (x)
)xP−1

(5.10)

The evaluation of f (x + ℎ"j) yields a P -term polynomial in "j (counting the real-valued term); the "jP term

and all following terms disappear. As can be seen, the mth non-real term will yield the mth-order derivative of f times

a known coefficient. By temporarily defining yet another operator Niljm (⋅) to access the "jm term, it can be seen that

)mf (x)
)xm

= m!Niljm
(

f (x + "j)
)

∕ℎm (5.11)

Polynomials of this form, whether they encode a derivative or not, describe a new class of hypercomplex algebra.

Although the entire polynomial can be described in terms of the bases {1, "j}, these are not the only basis elements

of the algebra – the fact that P coefficients are required to represent a result such as Equation 5.10 implies a total of

P dimensions: each non-zero power of "j is a basis unto itself, albeit non-orthogonal with every other basis. Before

continuing to mixed derivatives, it is important to address this complication.

5.2 Tensor Products and Indexing Notation

As seen, non-real elements with various properties can compute derivatives. However, for an algebra to be

closed, every possible product of two basis elements must result in some element already in the set or a multiple thereof.

Consider the vectorized algebra defined above. If the orthogonality restriction of Equation 5.5 is removed from the

definition, every product of distinct non-reals forms its own dimension; the resulting algebra is not D-dimensional,

as might be intended, but (2D)-dimensional (and if the square of individual elements wasn’t eliminated by nilpotency,

the dimensionality would be infinite – i.e., the algebra would not be closed). This is precisely the case with the multi-
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complex numbers from Section 4.2.1, which are quite inefficient in the calculation of derivatives – an element of ℂ(q)

can compute a single qth-order derivative, but the calculation of multiple derivatives of the same order requires a great

many redundant calculations of lower-order values. It is better to broadly define a set of rules to limit products to a

certain order, as with QCG; this allows for redundancy-free calculation and the omission of unwanted higher orders.

It also corresponds to differentiation algorithms that are not written in terms of special algebras: rather than consider

all possible multivariate derivatives and then throw out those that are unwanted, most code is written the other way

around, by choosing which mixed derivatives are wanted and then finding which coefficients are needed to compute

(e.g.) a product rule. Looking even further, the best algebras would allow for sparse sets of derivatives, requiring

element-by-element rules to selectively omit variables. Finally, note that the high-order algebras considered so far,

when run through a real-valued function, do not directly produce derivatives – instead, they calculate the desired value

times some coefficient, which must be divided out in post-processing. Given all this, the concept of a tensor product of

entire algebras might be more instructive, if only because it makes it easier to distinguish between the multiplication

of two elements êiêj and the element that actually results from that multiplication.

Given one algebra ℍ(D1) with basis elements {1, ê1,… , êD1} and another algebra ℍ(D2) with basis elements

{1, d̂1,… , d̂D2}, the tensor product can be denoted asℍ(D1)⊗ℍ(D2) and results in another algebra with (D1+1)(D2+1)

dimensions, corresponding to the basis elements {1, ê1,… , êD1} × {1, d̂1,… , d̂D2} enumerated as:

{

1⊗ 1, 1⊗ d̂1, … , 1⊗ d̂D2 ,

ê1 ⊗ 1, ê1 ⊗ d̂1, … , ê1 ⊗ d̂D2 ,

⋮

êD1 ⊗ 1, êD1 ⊗ d̂1, … , êD1 ⊗ d̂D2

}

(5.12)

Numbers in the new algebra are thus defined by (D1 + 1)(D2 + 1) real coefficients {x0,0,… , xD1,D2}. Just

as in the original algebras, multiplication must be closed – i.e., any product of tensor elements must yield another

tensor element already in ℍ(D1) ⊗ ℍ(D2). This requirement is satisfied if ℍ(D1) and ℍ(D2) are themselves closed and

multiplication of the new basis elements and their coefficients is performed piecewise using underlying rules for the

original algebras – that is, for two numbers x and y,
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∀i, j, k, l ∶ (xi,j êi ⊗ d̂j)(yk,lêk ⊗ d̂l) (5.13)

= xi,jyk,l(êiêk)⊗ (d̂j d̂l) (5.14)

Of special interest to this work is the case of an algebra tensored with itself – that is, ℍ(D) ⊗ℍ(D), which gives

an easy framework for discussing mixed derivatives with respect to the same set of inputs. For the base algebra ℍ(D) to

be closed, every scalar (i.e., ordinary) product êiêj must result in some element already in the set; in contrast, the tensor

elements are entirely new – in other words, êiêj ≠ êi⊗êj . Note that the tensor product is not intrinsically commutative,

i.e., (êi⊗êj) ≠ (êj⊗êi), even if multiplication of the new elements remains so, i.e., (êi⊗êj)(êk⊗êl) = (êk⊗êl)(êi⊗êj).

This means that even if êi and êj are orthogonal in the base algebra, (êi⊗1)(1⊗êj) = (êi⊗êj). A piecewise definition

of multiplication can thus be used to turn the vectorized first-order algebra from Equation 5.1 into an algebra capable

of both first and second derivatives.

Note that the tensor of the two real-valued basis elements (1⊗ 1) is (just like 1 itself) a multiplicative identity,

and thus can be treated simply as (1⊗ 1) = 1. This property implies that tensor products of hypercomplex algebras are

themselves hypercomplex. The new algebra can therefore be more easily denoted with the shorthand:

ℍ(D1D2) ≡ ℍ(D1) ⊗ ℍ(D2) (5.15)

x ∈ ℍ(D1D2) ⟹ x =
D1
∑

i=0

D2
∑

j=0
xij êij (5.16)

êij ≡ êi ⊗ d̂j (5.17)

êi ≡ êi1 = êi ⊗ 1 (5.18)

d̂j ≡ ê1j = 1⊗ d̂j (5.19)

ê00 ≡ 1 (5.20)

Note that Equation 5.18 and Equation 5.19 are adopted because the original definitions of êi and d̂j are no

longer useful within the new set – operations are only defined within an algebra, so that for x ∈ ℍ(D1D2), y ∈ ℍ(D1),
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and z ∈ ℍ(D2), the products xy, xz, and yz have no meaning.

As an example of how this framework can be useful, consider the tensor product of the set of dual numbers D

with another set D′, identical except for a distinct nilpotent element "2; denote the original nilpotent as "1, such that

y ∈ D⊗ D′ ⟹ (5.21)

y = y0(1⊗ 1) + y1,0("1 ⊗ 1) + y0,1(1⊗ "2) + y11("1 ⊗ "2) (5.22)

("1 ⊗ 1)2 = ("21 ⊗ 1) = (0⊗ 1) = 0 (5.23)

(1⊗ "2)2 = (1⊗ "22) = (1⊗ 0) = 0 (5.24)

("1 ⊗ "2)2 = ("21 ⊗ "22) = (0⊗ 0) = 0 (5.25)

("1 ⊗ 1)(1⊗ "2) = ("1 ⊗ "2) ≠ 0 (5.26)

Numbers from the new algebra can be more simply denoted by using the shorthand:

"1 ≡ ("1 ⊗ 1) (5.27)

"2 ≡ (1⊗ "2) (5.28)

"12 ≡ ("1 ⊗ "2) (5.29)

which results in

y = y0 + y1"1 + y2"2 + y12"12 (5.30)

This recreates the definition of the hyper-dual numbers from Section 4.4. The fact that tensor products of

hypercomplex algebras yield yet more hypercomplex algebras implies that arbitrarily many tensor products can be

combined; with the use of imaginary basis elements, such high-order products can likewise be used to recreate the

multicomplex and quasi-complex numbers from Section 4.2.1 and Section 4.2.2. They can further be used to build a
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“multidual” algebra with a parallel structure to the multicomplex numbers:

D(q) ≡ D⊗ D′ ⊗⋯⊗ D′q (5.31)

where D′p is a dual-like algebra with distinct nilpotent element "p. Such a multidual number is a generalization of

hyper-dual numbers to many dimensions, and will be revisited in Chapter 6.

As mentioned, strictly speaking the scalar product of two basis elements is distinct from the tensor product.

However, the chosen shorthand notation blurs the line between them – for example, êid̂j = (êi⊗1)(1⊗d̂j) = (êi⊗d̂j).

This is intentional – the demonstration of multiduals aside, tensor products are intended in this work as a quick way to

build differentiation systems where the number of independent variables has no relationship to the order of derivatives

to be calculated. The shorthand is only truly a problem in the case of an algebra tensored with itself,3 where there is no

convention to distinguish between êi ⊗ 1 and 1⊗ êi. This problem is done away with by noting that, while piecewise

multiplication is the most common way to satisfy closure of the new algebra, there are others – in particular, tensor

products of elements can be defined to be equal to other arbitrarily-chosen elements. Keeping in mind that the only

goal herein is differentiation, this work simply specifies that when an algebra is tensored with itself, êi⊗1 = 1⊗êi and

(êi⊗1)2 = êi⊗êi. Similarly, all other piecewise multiplication rules are modified to impose tensor commutativity, such

that êi⊗êj = êj⊗êi; this cuts the dimensionality of the system nearly in half andmakesmultivariate differentiation itself

commutative, thereby avoiding redundancy by accounting for symmetry of the Hessian and higher-order derivative

structures.

Even more general multiplication rules are possible – tensor products can also result in scalar multiples of other

elements, or even zero. This last option can be used to introduce derivative sparsity by removing dimensions from

consideration; alternatively, it can be used to assign arbitrary nilpotent degree to the new basis elements. It is useful

to express this relationship by stipulating that any nonzero product of shorthand elements is in fact a function of the

corresponding tensor product – that is, êiêj ∈ {0, g(êi ⊗ êj)} for some function g. This will be revisited in the next

section, and becomes especially helpful for the construction of general matrix representations in Chapter 6.

3 Note that the multiduals are not a case of an algebra tensored with itself – D, D′, etc, while similar in structure, are defined to be distinct.
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Again, to a large extent all of this flexibility means that tensor products of algebras are simply a different frame-

work for discussing systems capable of higher-order derivatives: one could instead carefully define rules for the scalar

product of non-real basis elements (as was done for QCG) that limited the algebra to omit unwanted or redundant cal-

culations. Use of tensor language provides a (hopefully) more understandable approach to targeting a certain number

of first derivatives, a certain number of second, and so on – rather than choosing some set of non-real elements and

discovering after the fact the dimensionality of the resulting system, this framework allows one to precisely sculpt a

new algebra as a combination of first-order systems.

Before continuing with a description of other high-order tensors, it is necessary to adopt a multi-index notation

to describe arbitrary tensor products of individual basis elements. Denote a collection of M different multiplicand

indices by � = {i1,… , iM} or � = {j1,… , jM}; then, a cumulative tensor product can be described in shorthand as:

ê� ≡
M

⊗
m=1

êim (5.32)

Again, tensor products of an algebra with itself will be constructed to be commutative. Therefore, in contrast

to the multi-index notation more commonly used in other contexts, here � and � do not represent tuples (ordered lists

of indices); instead, they should be considered multisets – that is, sets (which are defined to be unordered) that allow

multiple copies of indices. Here, duplicates of an index indicate repeated multiplication by the same basis element.

Because repeated multiplication by ê0 = 1 does not change an element, zero is excluded from the index multisets; this

implies that the real element is actually indexed by the empty set.

Because tensor products of basis elements are also basis elements (if nonzero), it is important to stipulate that

each index within a multiset corresponds only to an original element that was not constructed via a product, i.e., an

element that is indivisible by any other element. For concision, refer to any such indivisible element as a “prime” basis

element, and to any non-prime as a “composite” basis element. Using this language, the elements "1 and "2 from the

hyper-duals are prime and "12 is composite. The product of two arbitrarily-indexed elements ê� and ê� can then be

indexed by a multiset sum, which is simply a concatenation of the two index lists:
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ê� ⊗ ê� = ê�⊎� (5.33)

� ⊎ � ≡ {i1,… , iM1
, j1,… , jM2

} (5.34)

M1 = |�| (5.35)

M2 = |�| (5.36)

where the absolute value operator | ⋅ | has been used to represent the number of indices in each multiset, i.e., the

number of prime elements in each multiplicand; this will also be referred to as the order of the basis element (not

to be confused with a nilpotent element’s degree), as it will equal the order of the corresponding derivative. Under

this notation, powers of prime elements are represented by repeated indices – for example, the high-order univariate

derivatives discussed earlier in Section 5.1 would correspond to nilpotent elements "�i indexed by �i = {j, j, j,…},

such that �i contains i copies of j. The same notation can be applied to accessor operators, so that the earlier operator

Nilji is equivalent to Nil�i (x) = x�i .

In cases where operations on more than two arbitrary tensor elements are necessary, a subscript-of-a-subscript

notation would rapidly become unwieldy. For this reason, every basis element – including composites – is additionally

given a one-to-one mapping with a unique singleton index. To distinguish the two, {i, j, k,…}will henceforth be used

to indicate multi-indices, and {a, b, c,…}will be used to indicate singleton indices – and so, for example, êaêb = g(êc)

should be considered a shorthand for ê�a ê�b = g(ê�a ⊗ ê�b ) = g(ê�c ) for arbitrary multi-index sets �a, �b, and �c

with �c = �a ⊎ �b. A singleton index of zero corresponds to the empty multiset �0 = {} and the real-valued identity

element 1; beyond this, which singleton index corresponds to which multi-index is arbitrary and usually irrelevant for

derivation.

Given this framework, it is easier to discuss hypercomplex algebras capable of finding any desired set of deriva-

tives.
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5.3 Generalized Hypercomplex Algebras for AD

To build an algebraic system capable of finding any derivative, begin with a first-order algebra ℍ(D,1) defined

by D distinct nilpotents {"1,… , "D}; this corresponds to a problem with D differentiated inputs. To find derivatives

of orderM , take the repeated tensor product of ℍ(D,1) with itself, expressed as a tensor power:

ℍ(D,M) ≡ ℍ(D,1)⊗M (5.37)

Impose tensor commutativity and specify that all tensor basis elements "a – both prime and composite – have

nilpotent degree Pa =M − |�a|+ 2, which ensures that every enumerated element is nonzero while keeping multipli-

cation closed. Insert numbers from this algebra into the same generic multivariate Taylor series used in Equation 5.6:

f (xxx + SSS""") = f (xxx) +
∞
∑

m1=0
⋯

∞
∑

mD=0

(

( D
∏

i=1

(ℎi"i)
mi

mi!

)

)
∑

j mj
∏

k )xkmk
f (xxx)

)

(5.38)

= f (xxx) +
∑

i
ℎi"i

)f
)xi

+
∑

i,j
ℎiℎj

"i"j
2!

)2f
)xi)xj

+
∑

i,j,k
ℎiℎjℎk

"i"j"k
3!

)3f
)xi)xj)xk

+… (5.39)

where once again xxx ∈ ℝD, SSS ∈ ℝD×D is a diagonal matrix with Sii = ℎi, and """ = ["1,… , "D]T . To simplify notation,

denote multi-index powers and derivatives with:

� = {i1,… , iP } (5.40)

ℎ� ≡
P
∏

p=1
ℎip (5.41)

)�x ≡
P
∏

p=1

)
)xip

(5.42)

Accounting for the nilpotent elements, Equation 5.38 then simplifies to the finite series:

f (xxx + SSS""") = f (xxx) +
N
∑

a=1

ℎ�a
C(�a)

(

)�ax f (xxx)
)

"a (5.43)
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whereN is the total number of nilpotent elements of any degree or order andC(�a) is an integer function that depends on

how often individual prime indices are repeated inside �a. If multiplication and differentiation were not commutative,

C would always be equal to |�a|!, but as it is, any element without repeated prime factors will have C(�a) = 1 because

it appears multiple times in the summation in Equation 5.38; those with repeats will have 1 < C(�a) ≤ |�a|!.

It can now be seen that a number x ∈ ℍ(D,M) from the new hypercomplex algebra is defined by the collection

of real coefficients {x0,… , xN} where, for AD-style evaluation of f (xxx + SSS"""),

xa =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re (f (xxx + SSS""")) = f (xxx) a = 0

Nila (f (xxx + SSS""")) = ℎ�a
C(�a)

)�ax f (xxx) a ≥ 1

(5.44)

However, there are yet more modifications to the tensor elements that can be used to make differentiation even

more convenient. Recall that when building a tensor product of simpler algebras, products of the new tensor elements

can be mapped to other elements or to multiples thereof – one can trivially specify that "a"b = g("a ⊗ "b) = g("c) =

C(�c)"c . This removes the denominator from Equation 5.44, but more importantly, it will simplify the derivation of

arbitrary matrix representations in Chapter 6.

This algebra, as defined, can find every mixed derivative up to orderM . To find sparse subsets of these, define

an alternate ℍ(D,M)
′ where some of the tensor elements are defined to be zero or else have smaller nilpotency degree.

Consider two examples:

(1) If the first prime nilpotent element has degree P1 =M + 1 but all other Pi≠1 = 2 and all "i≠1 are orthogonal

both to each other and to "1 – i.e., "i ⊗ "j = 0 for (i > 1, j ≥ 1) – then the set is limited to the gradient and

all high-order univariate derivatives of f with respect to x1.

(2) If example (1) is modified such that "i≠1 are not orthogonal to "1 but remain so to each other – i.e., "i⊗"j = 0

for (i ≠ 1, j ≠ 1) but "i ⊗ "j ≠ 0 if i = 1 – then the set becomes the gradient and all univariate derivatives

thereof with respect to x1 – that is, every mixed derivative with at most a single )∕)xi≠1.

Unfortunately, this new hypercomplex scheme faces the same shortcomings laid out in Chapter 4 for standard

dual and hyper-dual numbers – namely, scalar implementation would be indistinguishable from literal differentiation
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formula, which in turn are less efficient than evaluation using truncated polynomials. Instead, the advantage of this

algebraic framework becomes clear when each "� is represented by an isomorphic matrix EEE(�)(�)(�), as will be explored in

the next chapter.



Chapter 6

Differentiation via Matrix Representations of Algebras

Thus far, when discussing special algebras useful for differentiation, this work has repeatedly stated that “matrix

representations” of the algebras exist. Formally, this means that an isomorphism M (⋅) exists to map every element

of a chosen scalar algebra S to a matrix of a particular structure. This map must be one-to-one, such that every

distinct element x ∈ S corresponds to a single matrix X̌̌X̌X =M (x), and onto, such that every matrix Y̌̌Y̌Y with the given

structure likewise corresponds to a single scalar element y ∈ S – equivalent to stating that the map is invertible, with

M−1
(

Y̌̌Y̌Y
)

= S
(

Y̌̌Y̌Y
)

= y. Further, to classify as an isomorphism, the mapmust preserve structure with respect to some

arbitrary operation ∙ on S – that is, map to some other operator ∗ on the structured matrices such that M (x ∙ y) =

M (x) ∗ M (y). The set of matrices with the given structure then forms its own algebra M . In this work, the

isomorphism must in fact form a map for each arithmetic operator: addition, multiplication of elements, multiplication

by a scalar, and their respective inverses; as the goal is to use these elements of M in the context of linear algebra

packages, these operations on M have to be the basic arithmetic of matrix math. Given an isomorphism with these

properties – which will henceforth still be referred to simply as a “matrix representation”, for concision – the two

algebras are effectively identical unless one introduces a new operation.

This chapter begins with simple examples of matrix representations and a demonstration of differentiation there-

with. It then discusses limitations of the approach, all of which amount to the use of operators that do not obey the

arithmetic isomorphism or are undefined on either S orM ; it also discusses ways to overcome many of these limita-

tions. Next, it expands the discussion to representations of the algebras presented in Chapter 4 before extending their

logic to build representations of the hypercomplex algebra types defined in Chapter 5. An algorithm is provided to

build matrices capable of representing any such algebra, and thus capable of computing any desired combination of
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derivatives.

6.1 Introduction: 2 × 2Matrix Representations

6.1.1 Complex and Dual Numbers Expressed as Matrices

Probably the most well-known matrix representation is that of the complex numbers:

Mℂ
(

a + bi
)

≡ a
⎡

⎢

⎢

⎣

1 0

0 1

⎤

⎥

⎥

⎦

+ b
⎡

⎢

⎢

⎣

0 −1

1 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

a −b

b a

⎤

⎥

⎥

⎦

(6.1)

This representation hinges on the fact that the second matrix squares to the negative identity. Following similar

logic, it is likewise possible to represent dual numbers by using a matrix that squares to zero [98] and thus is itself

nilpotent:

MD
(

c + d"
)

≡ c
⎡

⎢

⎢

⎣

1 0

0 1

⎤

⎥

⎥

⎦

+ d
⎡

⎢

⎢

⎣

0 1

0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

c d

0 c

⎤

⎥

⎥

⎦

(6.2)

Indeed, some educational sources [115,116] introduce dual numbers using this definition, foregoing the previous

notation entirely. To fully prove these two forms can always represent their respective scalar types, consider three

properties: First, simple addition, subtraction, and scalar multiplication or division are performed on an element-wise

basis, just as with the canonical forms, and so always result in matrices of the same form – thus, the matrix forms are

closed under those operations and respect the corresponding isomorphisms. Second, observe that multiplication of

either matrix type is not only closed, but commutative:

(a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i

⎡

⎢

⎢

⎣

a1 −b1
b1 a1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a2 −b2
b2 a2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

a1a2 − b1b2 −(a1b2 + a2b1)

a1b2 + a2b1 a1a2 − b1b2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

a2 −b2
b2 a2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a1 −b1
b1 a1

⎤

⎥

⎥

⎦

(6.3)

(c1 + d1")(c2 + d2") = (c1c2 − d1d2) + (c1d2 + c2d1)"
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⎡

⎢

⎢

⎣

c1 d1
0 c1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

c2 d2
0 c2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

c1c2 c1d2 + c2d1
0 c1c2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

c2 d2
0 c2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

c1 d1
0 c1

⎤

⎥

⎥

⎦

(6.4)

Third and finally, note that the determinants (a2+b2 for complex and c2 for dual) of these matrices are non-zero

only when the real components (and, in the complex case, the imaginary component) are also zero – in other words,

multiplicative inverses exist in the same circumstances as in the canonical forms. Combine these properties with the

associative and distributive properties of all square matrices, and it can be seen that these matrix representations are

in fact isomorphic to their canonical forms – and so, many operations on larger matrices built of blocks of these forms

will accurately compute complex or dual-numbered values. Specifically, these forms are compatible with any matrix

operation which can be defined blockwise yet still produce a result identical to the element-wise result.

Using this insight, it becomes possible to use matrix-form dual numbers as a new type of automatic differenti-

ation tool – one which is compatible with common linear algebra packages. To the author’s knowledge, matrix-form

duals have never been used in practice this way 1 in linear algebra problems. Of course, standard complex-step dif-

ferentiation (CD) has an advantage both in ease of implementation and in computational efficiency: it does not need a

matrix form to be used with such third-party packages, since these packages usually provide ordinary complex-number

variants of most routines. The purpose of this work, however, is to demonstrate new ways to compute more than a

single first-order derivative (following the hypercomplex discussion from Chapter 5), which is beyond CD. It still helps

to motivate the work by beginning with an example of standard single-variable differentiation.

6.1.2 A Single-Variable Example – Derivative of a Matrix Inverse

Any matrix YYY ∈ DN×M with dual-valued scalar values can be represented with a purely real-valued matrix Y̌YY

by applying the above isomorphism blockwise:

1 One anonymous programmer [117] did use dual-number matrices and higher-order univariate constructions as the interior data structure of an
operator-overloaded type, but this approach is incompatible with the types of low-level linear algebra libraries considered here, and thus introduces
extra overhead for no return – traditional AD is more efficient for operator-overloading approaches.

Further, as will be discussed in Section Section 6.3.1, Lantoine et al [39] demonstrated an alternative dense-matrix form for their multicomplex
variables (in turn cited from [96]) which included as a subset the 2 × 2 matrix representing standard complex numbers, but do not appear to have
used the matrix representation in their experiments.



95

Y̌YY =MD (YYY) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

MD
(

Y1,1
)

⋯ MD
(

Y1,M
)

⋮ ⋱ ⋮

MD
(

YN,1
)

⋯ MD
(

YN,M
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6.5)

MD
(

Yi,j
)

=

⎡

⎢

⎢

⎢

⎣

Re(Yi,j) Nil(Yi,j)

0 Re(Yi,j)

⎤

⎥

⎥

⎥

⎦

(6.6)

To see this ability in action, examine the solution to the canonical matrix equation AAAxxx = bbb with two elements

in each vector and consider the original “simulation input” to be the elements in AAA and bbb, with the simulation itself a

code that computes the simple inverse (or, more likely, solves the system in place):

⎡

⎢

⎢

⎢

⎣

x1

x2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

A11 A12

A21 A22

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

b1

b2

⎤

⎥

⎥

⎥

⎦

(6.7)

This substitution yields

x̌xx = ǍAA
−1
b̌bb (6.8)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(x1) Nil(x1)

0 Re(x1)

Re(x2) Nil(x2)

0 Re(x2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(A11) Nil(A11) Re(A12) Nil(A12)

0 Re(A11) 0 Re(A12)

Re(A21) Nil(A21) Re(A22) Nil(A22)

0 Re(A21) 0 Re(A22)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(b1) Nil(b1)

0 Re(b1)

Re(b2) Nil(b2)

0 Re(b2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.9)

Although the size of the problem has grown, it can be shown that because of the pattern of zeros, computation

of this larger matrix inverse is greatly simplified (for sparse algorithms) from a typical 4 × 4 problem.

To compute a derivative with respect to a single element, simply set one RHS nilpotent coefficient to one and all

others to zero, then perform the computation normally. For example, for the derivative of both x-values with respect

to A12, the problem becomes:
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(x1) Nil(x1)

0 Re(x1)

Re(x2) Nil(x2)

0 Re(x2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(A11) 0 Re(A12) 1

0 Re(A11) 0 Re(A12)

Re(A21) 0 Re(A22) 0

0 Re(A21) 0 Re(A22)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(b1) 0

0 Re(b1)

Re(b2) 0

0 Re(b2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.10)

Using the derivative functionality of dual numbers established in Equation 4.72, the computed solution will be:

x̌xx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 )x1∕)A12

0 x1

x2 )x2∕)A12

0 x2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.11)

Here, x1 and x2 will have values identical to the solution of a real-valued system. More applicable to real-world

tasks is the case whereAAA and bbb are functions of some input parameter p.

xxx = AAA(p)−1bbb(p) (6.12)

Assuming the real values of AAA and bbb are computed by user-written code, any standard AD tool is capable of

computing derivatives to construct the augmented RHS matrices:

x̌̌x̌x = Ǎ̌ǍA(p)
−1̌
b̌b̌b(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(A11) )A11∕)p Re(A12) )A12∕)p

0 Re(A11) 0 Re(A12)

Re(A21) )A21∕)p Re(A22) )A22∕)p

0 Re(A21) 0 Re(A22)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Re(b1) )b1∕)p

0 Re(b1)

Re(b2) )b2∕)p

0 Re(b2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.13)

Running this through any real-valued matrix solver routine will successfully apply the chain rule and compute

{)x1∕)p, )x2∕)p}; importantly, these values will be just as precise and accurate as the values of xxx found from an

unaltered system. If the user has post-processing code, the derivatives can be fed forward through yet more standard
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AD to find derivatives of any quantities of interest.

Hereafter, matrix substitutions of this type will typically be described as differential operators operating on

matrix functions:

DMp ≡

⎡

⎢

⎢

⎢

⎢

⎣

1 )∕)p

0 1

⎤

⎥

⎥

⎥

⎥

⎦

(6.14)

When this operator is applied to a matrix, it again replaces each scalar coefficient blockwise:

DMp
(

YYY(p)
)

≡

⎡

⎢

⎢

⎢

⎢

⎢

⎣

DMp
(

Y1,1
)

⋯ DMp
(

Y1,M
)

⋮ ⋱ ⋮

DMp
(

YN,1
)

⋯ DMp
(

YN,M
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6.15)

The block arrangement defined in Equation 6.14 is capable of finding a derivative solely due its special structure;

few rearrangements would compute anything of meaning. Moreover, it must interact solely with other blocks of the

same structure (be they with a zero or non-zero derivative in the upper right position), otherwise the meaning of the

elements will be destroyed. This restriction also applies to precisely which derivatives are stored in the upper right –

the position must only ever track )∕)p; it is not possible for a separate block to find another derivative. Put another

way, at program initialization only one nilpotent should be set to one; the only follow-on non-zero nilpotents are those

calculated by the natural flow of the program.

For this reason, Equation 6.14 is termed a stencil in this work: it must be applied identically to every element

in a problem. As will be seen throughout this chapter, more sophisticated stencils are possible – specifically, one can

find isomorphic structures for any of the algebras described in Chapter 5. Much of the core contribution of this work

can be viewed simply as a search for better stencils.
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6.2 Addressing Limitations

There are some obvious limitations to the stencil approach, but many of the worst are easily surmounted. For

one, the above substitution transforms the xxx and bbb vectors into two-column matrices, which would often necessitate

a different choice of algorithmic method – many functions, especially solvers, expect the right multiplicand to be a

vector. This difficulty can be overcome by noting both that matrix multiplication is performed column-wise on the

right multiplicand, and that the left columns of both xxx and bbb contain only redundant copies of the real values. A

substitution operator for column vectors can thus be defined as

DVp ≡

⎡

⎢

⎢

⎢

⎢

⎣

)∕)p

1

⎤

⎥

⎥

⎥

⎥

⎦

(6.16)

This vector stencil can use the same data structures and function calls as the original problem and will still

produce the correct real and nilpotent values after matrix-vector multiplication or system solution. For this reason, the

stencils created in this work will always contain complete copies of all necessary coefficients in the rightmost column.

In the case of dual numbers (but not all stencils), a similar substitution can be used for row vectors by using only the top

row ofDM
(

xxxT
)

; if similar functionality is desired for arbitrary stencils, the derivation presented later in this chapter

could easily be modified with new restrictions. Either way, observe that matrix-vector multiplication now has the same

computational complexity as the product rule in standard differentiation, albeit at higher memory cost in the matrix.

More generally, as mentioned in the opening to the chapter, stencil representations may fail if operations other

than basic matrix arithmetic are applied. This is the case for many (but not all) operations that operate row-by-row,

column-by-column, or element by element. For example, the transpose operation applied to a matrix representation of

a complex number corresponds to a conjugate of the scalar value. In the case of the CD or MCX methods, this breaks

differentiation because the complex-conjugate operation is not complex-analytic; in the case of NMD, the transpose

of any stencil matrix DMp (YYY)T simply does not have a corresponding scalar variant, and thus will likewise break

differentiation and likely scramble downstream real values of a code. (Note that if the derivatives of a given matrix are

zero, no harm will be done.)
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There are ways to address this, however, for both complex and dual-valued differentiation. In the case of CD,

one must use complex scalars (not matrix representations) and avoid the conjugate transpose in favor of the real-valued

transpose. For stencils, in certain circumstances it might be possible to apply thematrix operator only after the transpose

is complete – i.e., findDMp
(

YYYT
)

, notDMp
(

YYY
)T – but in general, a special operator (⋅)Ť must be defined to compute

the transpose blockwise. This operation is slower than the default transpose operation used in standard packages, but

in practice remains a very small portion of the total cost of a program. Similarly simple functions can be written to

perform many other operations (e.g., the diagonalization of a vector into a matrix) in blockwise fashion.

Interestingly, some algorithms that destroy the stencil structure can still propagate derivative information. For

example, even though LU decomposition – which operates row-by-row and column-by-column – not only shuffles the

matrix structure, but can suffer from additional matrix fill-in (that is, more than implied by the number of non-zeros

in the stencil), it can still be used to find exact derivatives of linear solutions. This phenomenon will be investigated in

Part III.

6.3 Representations of Other Existing Algebras

As stated in the introduction to Chapter 4, the scalar algebras discussed there can also be represented as matrices.

Two such representations will quickly be reviewed below – the first, for multicomplex numbers, because it provides an

already-existing toehold for any-order matrix differentiation, and the second, for multidual numbers, because it allows

a much more efficient any-order tool. A simple stencil exclusively for use on univariate high-order derivatives will then

be crafted, before moving on to the general multivariate case in Section 6.4.

6.3.1 Multicomplex Numbers

As presented in Section 4.2.1, multicomplex numbers are inductively defined as

z ∈ ℂ(q) ⟹ z = z0 + zqiq

i2q = −1
z0, zq ∈ ℂ(q−1)
ℂ(1) ≡ ℂ
ℂ(0) ≡ ℝ

(6.17)
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As demonstrated in [96] and [39], this inductive definition makes construction of high-order matrix represen-

tations relatively easy. Begin with a standard 2 × 2 complex matrix representing an element of ℂ(q):

Mℂ(q) (z) =Mℂ(q)
(

z0 + zqiq
)

≡
⎡

⎢

⎢

⎣

z0 −zq
zq z0

⎤

⎥

⎥

⎦

(6.18)

As this is an element of ℂ(q), the scalar values are not real numbers, but elements of ℂ(q−1). Using the same

indexing scheme as in Section 4.2.1, one can build matrix forms of z0 and zq and then perform a second blockwise

substitution:

Mℂ(q)
(

z0
)

=Mℂ(q)
(

z0,0 + z0,q−1iq−1
)

=
⎡

⎢

⎢

⎣

z0,0 −z0,q−1
z0,q−1 z0,0

⎤

⎥

⎥

⎦

(6.19)

Mℂ(q)
(

zq
)

=Mℂ(q)
(

z0,q + zq,q−1iq−1
)

=
⎡

⎢

⎢

⎣

z0,q −zq,q−1
zq,q−1 z0,q

⎤

⎥

⎥

⎦

(6.20)

M(2)
ℂ(q)

(z) =
⎡

⎢

⎢

⎣

Mℂ(q)
(

z0
)

−Mℂ(q)
(

zq
)

Mℂ(q)
(

zq
)

Mℂ(q)
(

z0
)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z0,0 −z0,q−1 −z0,q zq,q−1
z0,q−1 z0,0 −zq,q−1 −z0,q
z0,q −zq,q−1 z0,0 −z0,q−1
zq,q−1 z0,q z0,q−1 z0,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.21)

From this, a way can be seen to define a recursive multicomplex matrix operator as:

M(m+1)
ℂ(q)

(z) =
⎡

⎢

⎢

⎣

M(m)
ℂ(q)

(

z0
)

−M(m)
ℂ(q)

(

zq
)

M(m)
ℂ(q)

(

zq
)

M(m)
ℂ(q)

(

z0
)

⎤

⎥

⎥

⎦

(6.22)

This recursive operator is then applied inductively from m = 1 to m = q until the matrix is composed only of

real values. This representation is isomorphic to the first definition of multicomplex numbers – one can successfully

compute the product of two multicomplex numbers by multiplying two real-valued matrices of this form, and if one

cared to perform any linear algebra manipulations on multicomplex-valued matrices, a blockwise substitution of this

form would turn the problem into one with real values.
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When building the input matrix or examining the output results, it becomes (possibly) more intuitive to reinter-

pret “the product of two distinct imaginary terms” as “the imaginary component of another imaginary” (in the above,

zq,q−1) – that is, to find a given product of two or more terms, one looks for the block corresponding to the first term,

and then, within that block, finds the sub-block or real value corresponding to the next term. This corresponds to the

alternate tensor representation of multicomplex numbers, wherein the tensor product of two imaginary elements i1⊗i2

belongs to an entirely different algebra from the original i1 and i2 – the former has a 4 × 4 representation, while the

latter has 2 × 2; instead, one must refer to i1 ⊗ 1, or “the real component of an imaginary value”.

From this procedure, one can see that blockwise induction provides at least one way to represent a multivariate

algebra – one that has immediate, obvious parallels to dual numbers. Before moving on, it is important to acknowledge

that in their work on multicomplex differentiation, Lantonine et al [39] mentioned in passing that the above matrix

representation allows one to use real-valued linear algebra operations to find derivatives with MCX. However, they

appear not to have utilized this capability in their demonstrations – likely due to the fact that MCX would have required

the evaluation of dense matrices of dimension 2q × 2q .

6.3.2 Multidual Numbers

As seen with multicomplex numbers, there is an intuitive way to recursively build higher-order matrix repre-

sentations of many variables. To strip out much (but not all) of the redundant information contained in a MCX stencil,

begin by re-stating the multidual definition from Equation 5.31 with the same inductive pattern as for ℂ(q):

y ∈ D(q) ⟹ y = y0 + yq"q

"2q = 0
y0, yq ∈ D(q−1)
D(1) ≡ D
D(0) ≡ ℝ

(6.23)

To apply this method to dual numbers, begin with the original substitution:

M(1)
D(q)

(y) =M(1)
D(q)

(

y0 + yq"q
)

≡
⎡

⎢

⎢

⎣

y0 yq
0 y0

⎤

⎥

⎥

⎦

(6.24)

Define a recursive multidual (RMD) stencil as:
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M(m+1)
D(q)

(y) =
⎡

⎢

⎢

⎣

M(m)
D(q)

(

y0
)

M(m)
D(q)

(

yq
)

000 M(m)
D(q)

(

y0
)

⎤

⎥

⎥

⎦

(6.25)

where 000 is an all-zero matrix of the same size as the operators. When m = q, the substitution has reached maximum

recursive depth and the matrix is real-valued, in which case the operator will simply be denoted asMD(q) . Cases where

m < q are non-real and only useful as intermediate steps in stencil construction; m > q is undefined. The isomorphism

to a differential operator still holds – this time to an operator on a function of many inputs:

DM(1)
xxx

(

y(xxx)
)

≡

⎡

⎢

⎢

⎢

⎢

⎣

1 )∕)x1

0 1

⎤

⎥

⎥

⎥

⎥

⎦

(6.26)

DM(m+1)
xxx

(

y(xxx)
)

≡

⎡

⎢

⎢

⎢

⎢

⎣

0

DM(m)
xxx

(

y
)

DM(m)
xxx

(

y
)

)
)xm+1

(

DM(m)
xxx

(

y
)

)

⎤

⎥

⎥

⎥

⎥

⎦

(6.27)

Here,m ranges from 1 to the number of elements in the input vectorxxx. Applying this operation for a two-element

input vector [x1, x2]T yields:

DM(2)
xxx

(

y(x)
)

≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

1

0

0

1

)∕)x1

0

1

0

)∕)x2

1

)∕)x1

)∕)x2

)2∕)x212
⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.28)

Just as with the multicomplex case, substituting stencils of this form into linear algebra problems can compute

mixed derivatives; note that if x1 = x2, the operator will find univariate derivatives (albeit less efficiently than the stencil

described ahead in Section 6.3.3). The substitution can be carried out arbitrarily many times, each time applying the

operator with respect to a different input. Just as with the first-order operator, column stencils can sometimes discard

all but the last column of the matrix form:
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DV (2)
xxx

(

y(x)
)

≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

)2∕)x212

)∕)x2

)∕)x1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.29)

This is a fairly naive construction technique which, for q different independent differentiation variables, grows

stencil dimensions to 2q×2q , just as MCX does. It can already be seen, however, that this method yields sparse matrices

– and the deeper the recursion, the sparser the matrix. Along with the univariate stencil developed in Section 6.3.3,

it provides a ready example to consider when developing a wider stencil approach and was invaluable in the earliest

stages of developing NMD.

6.3.3 High-Order Univariate Nilpotents

Consider the 2 × 2 matrix used to represent the nilpotent element of standard dual numbers:

MD
(

"
)

≡
⎡

⎢

⎢

⎣

0 1

0 0

⎤

⎥

⎥

⎦

(6.30)

This matrix can be thought of as the 2 × 2 instance of an upper shift matrix UUU(S)(S)(S) – that is, a matrix with ones

along the superdiagonal (immediately above the main diagonal) and zero everywhere else. The name comes from the

fact that multiplication by a shift matrix moves all elements of another matrix or vector by one position – for example:

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0

0 0 1

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1 2 3

4 5 6

7 8 9

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

4 5 6

7 8 9

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(6.31)

⎡

⎢

⎢

⎢

⎢

⎣

1 2 3

4 5 6

7 8 9

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0

0 0 1

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 1 2

0 4 5

0 7 8

⎤

⎥

⎥

⎥

⎥

⎦

(6.32)
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As can be seen, premultiplication by UUU(S)(S)(S) shifts a matrix up one row and introduces a new row of zeros; post-

multiplication shifts a matrix to the right and introduces a new column of zeros.

Shift matrices – like all triangular matrices that exist entirely above the main diagonal – are nilpotent, for

reasons that are clear to see. Squaring a shift matrix moves the superdiagonal a further step away from the main, and

each successive power moves the diagonal one step further, until it disappears entirely:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.33)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

3

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.34)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

4

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.35)

From this, it can be seen that N ×N upper shift matrices are nilpotent elements of degree N . Following the

same logic as [117], this provides one possible matrix structure for the univariate algebra defined in Section 5.1. The

new basis elements – termed basis stencils or unit stencils – thus take the form:

M
(

1
)

≡ EEE(0)(0)(0) = III =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.36)
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M
(

"1
)

≡ EEE(1)(1)(1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.37)

M
(

"1
2) =M

(

"11
)

= EEE(1)(1)(1)2 ≡ EEE(2)(2)(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.38)

M
(

"1
3) =M

(

"111
)

= EEE(1)(1)(1)3 ≡ EEE(3)(3)(3) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.39)

where the parenthetical matrix labels use the same singleton index shorthand described in Chapter 5 for tensor elements,

i.e., actually represent the index multisets �1 = {1}, �2 = {1, 1}, and �3 = {1, 1, 1}. (Note that setting "13 =

"111 = "1 ⊗ "1 ⊗ "1, etc., is equivalent to setting g(⋅) from Section 5.2 to the identity function.) The expansion from

Equation 5.10 still applies:

f
(

M
(

x + ℎ"1
)

)

= f
(

xEEE(0)(0)(0) + ℎEEE(1)(1)(1)
)

(6.40)

= f (x)EEE(0)(0)(0) + ℎ
1!
)f (x)
)x

EEE(1)(1)(1) + ℎ2

2!
)2f (x)
)x2

EEE(2)(2)(2) + ℎ3

3!
)3f (x)
)x3

EEE(3)(3)(3) (6.41)

One possible high-order stencil for anN th-order univariate derivative is thus the (N + 1) × (N + 1) operator:

DM(N)
x ≡ EEE(0)(0)(0) +

N
∑

a=1

1
a!
EEE(a)(a)(a) )

a

)xa
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

0

1

0

0

0

0

1

)∕)x

0

0

0

1

)∕)x

)2∕)x2
2

0

0

1

)∕)x

)2∕)x2
2

)3∕)x3
6

0

⋱

⋱

⋱

⋱

…

1

)∕)x

)2∕)x2
2

)3∕)x3
6

⋮

)N∕)xN
N!

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.42)



106

This is only a very simple example – note that unit stencils need not be composed entirely of zeros and ones to

be isomorphic to particular basis elements. For example, consider the following alternate definition of EEE(1)(1)(1) forN = 5:

M
(

"1
)

≡ EEE(1)(1)(1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 5 0 0 0 0

0 0 4 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.43)

This matrix is still nilpotent with degree six, and hence can represent the same scalar nilpotent element. Next,

recall from Section 5.3 that composite tensor-product basis elements need not correspond directly to the literal product

of other elements – scalar multiples are also possible. To make this more clear, consider another alternate definition

for the remaining basis stencils (again, see Section 5.2 for the usage of g and Section 5.3 for C):

"1
a = g("1⊗a) = C(�a)"1⊗a = a!"1⊗a (6.44)

"1
⊗a = 1

a!
"1
a (6.45)

M
(

"1
⊗a) =M

(

"a
)

= EEE(a)(a)(a) (6.46)

EEE(a)(a)(a) ≡ 1
a!
EEE(1)(1)(1)a (6.47)

Of course, this logic simply folds the coefficient from Equation 6.42 into the definition of the higher-order unit

stencils, but combined with the new EEE(1)(1)(1) given by Equation 6.43, it leads to a more elegant full stencil:

DM(N)
x ≡ EEE(0)(0)(0) +

N
∑

n=1
EEE(n)(n)(n) )

n

)xn
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 5)∕)x 10)2∕)x2 10)3∕)x3 5)4∕)x4 )5∕)x5

0 1 4)∕)x 6)2∕)x2 4)3∕)x3 )4∕)x4

0 0 1 3)∕)x 3)2∕)x2 )3∕)x3

0 0 0 1 2)∕)x )2∕)x2

0 0 0 0 1 )∕)x
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.48)
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Of course, these stencil properties were not selected at random; they were carefully chosen so that the rightmost

column contains only the derivatives, without any coefficient. Further, although it was not an explicit goal in any

algorithm, note that for the special case of matrix-vector multiplication the new stencil has recreated Leibniz’s rule

(i.e., the high-order product rule). More than this, though, the algebraic analysis has proven that the entire stencil –

not just the last column – will be preserved across matrix-matrix operations. In Section 6.4, this approach will make

derivation easier for stencils with mixed derivatives.

6.4 Representing Aribtrary Hypercomplex Algebras with Stencils

As discussed in the introduction to this chapter, for a matrix representation to be isomorphic to a particular

algebra the core matrix arithmetic operations – addition, multiplication of elements, and multiplication by a scalar –

must produce a matrix with a structure that maps to the correct corresponding scalar sum or product. Note that addition

and scalar multiplication are trivially isomorphic, meaning that only matrix multiplication needs to be examined in

any depth. Thus, to construct an arbitrary representation, begin by considering the multiplication of any two scalar

hypercomplex numbers x and y:

y =
N
∑

a=0
ya"a (6.49)

z =
N
∑

b=0
zb"b (6.50)

f = yz =

( N
∑

a=0
ya"a

)( N
∑

b=0
zb"b

)

(6.51)

=
N
∑

a=0

N
∑

b=0
yazb"a"b

=
N
∑

c=0
fc"c

Now presume y and z are each carrying derivatives with respect to some vector of parameters xxx:

y = y (xxx + SSS""") =
N
∑

a=0

ℎ�a
C(�a)

)�ax (y)"a (6.52)
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z = z (xxx + SSS""") =
N
∑

b=0

ℎ�b
C(�b)

)�bx (z)"b (6.53)

f (xxx + SSS""") = f (y(xxx), z(xxx)) = y ⋅ z =

( N
∑

a=0

ℎ�a
C(�a)

)�ax (y)"a

)( N
∑

b=0

ℎ�b
C(�b)

)�bx (z)"b

)

(6.54)

=
N
∑

c=0
fc"c

where a, b, and c are singleton indices; N is the total number of nilpotent elements, including composites; and multi-

index operations and shorthand are as defined throughout Chapter 5. This leads to

f (xxx + SSS""") =
N
∑

c=0
fc"c (6.55)

=
N
∑

c=0

ℎ�c
C(�c)

)�cx (f )"c =
N
∑

a=0

N
∑

b=0

ℎ�aℎ�b
C(�a)C(�b)

)�ax (y))
�b
x (z)"a"b (6.56)

The calculation of any given fc in isolation is made more complicated by the fact that many different possible

pairings of multiplicands "a"b will yield the same "c – i.e., "c has many different factor pairs, which can be prime or

composite. For example, for �c = {1, 1, 2, 3}, the following products all hold:

g("1123) = "0"1123 = 1 ⋅ "1123

= "1"123

= "11"23

= "12"13

= "2"113

= "3"112

This same logic implies that the products of powers ℎ�aℎ�b are all equal to ℎ�c . In contrast, pairs of coefficient

functions C(�a)C(�b) are not guaranteed to equal C(�c). For example, as mentioned in Section 5.3, any composite

element without repeated prime indices will have C = 1 to account for summation of equivalent commutative products
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in the multivariate Taylor series, but those that do contain repeats will have C > 1. So, e.g., if �a = �b = {1, 2, 3},

then C
(

�a
)

= C
(

�b
)

= 1 – and yet, C(�c) = C({1, 1, 2, 2, 3, 3}) ≠ 1. This is quickly overcome by redefining

scalar multiplication of nilpotents following the rule established in Section 5.3: if one specifies that for all "p and "q ,

"p"q = g("p⊗"q) = g("r) = C(�r)"r, then the C-terms will cancel in every Taylor evaluation, reducing Equation 6.56

to

f (xxx + SSS""") =
N
∑

c=0
ℎ�c)�cx (f )"c =

N
∑

a=0

N
∑

b=0
ℎ�c)�ax (y))

�b
x (z)"a"b =

N
∑

a=0

N
∑

b=0
ℎ�c)�ax (y))

�b
x (z)C(�c)"c (6.57)

Note that if all ℎ are initialized to 1, then each coefficient of y, z, and f is exactly equal to a corresponding

derivative. Putting aside the actual calculation of C for the moment, using this scheme it is possible to calculate yz

via a brute-force double loop over all basis elements, summing the results of each individual pair of factors as they are

encountered. However, to represent elements in matrix form (i.e., as stencils), each fc must be computed in isolation

as the inner product of one stencil row and one stencil column; this implies that any stencil-building algorithm must be

capable of enumerating all factor pairs ("a, "b), just as in the example for "1123. The row-column matching also requires

a distinction between left factors and right factors, which will come in pairs indexed by a and b, as above. (Making this

distinction is equivalent to temporarily removing the commutativity property of the algebra.)

It is possible to find a full list of factor pairs by exhaustively computing all two-set partitions of �c . The first

step in this process is to compute all the left factors �a by running an n-choose-k algorithm nCk(�c, k) – i.e., one that

finds all k-index combinations of the multiset of n = |�c| indices – for each k = {0, ..., n}. After this, each paired right

factor �b can be found by a multiset difference operation �b = �c ⧵ �a, which amounts to removing a copy of every

index found in �a from �c .

If �c contains n indices, the resulting list of factors will contain 2n pairs. However, if �c contains any repeated

indices, the list will likewise contain repeated pairs. For example, consider the factors of "123 and "112, as required to

compute f123 and f112:

f123"123 =y0z123"0"123 + y1z23"1"23 + y2z13"2"13 + y3z12"3"12
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+y12z3"12"3 + y13z2"13"2 + y23z1"23"1 + y123z0"123"0

f112"112 =y0z112"0"112 + y1z12"1"12 + y1z12"1"12 + y2z11"2"11

+y11z2"11"2 + y12z1"12"1 + y12z1"12"1 + y112z0"112"0

The second and third factor pairs of "112 are duplicates, as are the sixth and seventh. (If one accounts for

commutativity, there are evenmore duplicates, but for matrix-math purposes left and right factors must remain distinct.)

The sum can thus be more compactly expressed as:

f112"112 =y0z112"0"112 + 2y1z12"1"12 + y2z11"2"11

+y11z2"11"2 + 2y12z1"12"1 + y112z0"112"0

So, rather than run the full double loop, it is possible to pre-compute a list of factor pairs and coefficients to be

used during each multiplication; this can be expressed as a set of 3-tuples:

F (c) =
{(

a(c)1 , b
(c)
1 , m

(c)
1

)

,
(

a(c)2 , b
(c)
2 , m

(c)
2

)

,…
}

(6.58)

As an example, for �c = {1, 1, 2} this becomes

f112"112 =
|F (112)|
∑

k=1
mkyakzbk"ak"bk

= y0z112"0"112

+ 2y1z12"1"12

+ y2z11"2"11

+ y11z2"11"2

+ 2y12z1"12"1

+ y112z0"112"0
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F (c) =
{

(

{}, {1, 1, 2}, 1
)

,
(

{1}, {1, 2}, 2
)

,…
}

(6.59)

Once this set is pre-computed, individual coefficients of hypercomplex products could be directly computed

within a user program as

fc"c =
N
∑

a=1

N
∑

b=1
yazb"a"b (6.60)

=
∑

(ak,bk,mk)∈F (c)

mkyakzbk"ak"bk (6.61)

This list-of-factors scheme allows faster implementation of scalar multiplication2 , but it is only of use for matrix

multiplication if each element index a, b, or c can be mapped to a valid corresponding (row, column) entry or set of

entries; further, this mapping must force the inner products of rows and columns to compute the appropriate coefficients

C . There are innumerable ways to build such amapping, althoughmost are difficult to derive for an arbitrary list of basis

elements. Fortunately, imposing two restrictions narrows the list of possible mappings in a way that makes derivation

easier: first, assume that for N distinct nilpotents, the rightmost column of the complete (N + 1) × (N + 1) stencil

contains a single copy of each coefficient (including the real) – i.e., assume that each unit stencil has a single entry

in the last column, which also serves to allow for matrix-vector multiplication of stencils. Second, specify that this

column has no coefficients, i.e., that those rightmost unit stencil entries are all one. This forces all calculation of C into

the other columns; if one can satisfy the two requirements, C will be found implicitly.

All that remains is to build a representation that under multiplication places a copy of each fc in the right

column – a task that is comparatively easy compared to all of the preceding discussion. First, define an index function

i(c) which maps one-to-one from an element’s singleton index to that element’s location (i.e, row) in the rightmost

column. To sort all non-zeros into the upper triangular part of the stencil, the algorithm built in this work sorts the

rows such that the highest-order elements (i.e., those with the most prime factors) are mapped to the top of the column.

2 It is faster by virtue of the fact that it again indirectly implements the Leibniz formula for multivariable derivatives – m amounts to a coefficient
in the rule, and C amounts to a method to implicitly cancel any difficult-to-compute denominators in the Taylor series. Note, however, that (1)
pre-computing the number of repeated factors is generally simpler that the actual formula (which is rather complicated for the multivariable case),
and (2) the hypercomplex framework grants a firmer analytic framework – it makes it clearer that the algebraic structure admits an isomorphic stencil
that can repeat itself across successive additions, products, and inversions, and gives a way to address functions that are non-isomorphic and thus
might break the chain of computation.
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Note that – just as with shift matrices – limiting the stencil to the upper triangle automatically makes every element

other than EEE(0)(0)(0) nilpotent, which again makes derivation easier. However, i(c) can in truth be arbitrary – as it merely

defines the column’s ordering, different definitions will simply result in different permutations of the same stencil.

Next, for each row i, arrange factor coefficients across columns j such that the inner product with the rightmost

column computes Equation 6.61:

Y̌̌Y̌Y = DM (y) (6.62)

Ž̌ŽZ = DM (z) (6.63)

F̌̌F̌F = DM (f ) = Y̌̌Y̌YŽ̌ŽZ (6.64)

∀c ∶
[

Y̌̌Y̌Y(i(c),⋅)
] [

Ž̌ŽZ(⋅,N)
]

=
N
∑

j=1
Y̌(i(c),j)Ž(j,N) =

∑

(a,b,m)∈F (c)

myazb (6.65)

Note that |F (c)| ≤ N , as there cannot be more factors than elements, and that every zb has been forced to

appear in the rightmost column Ž̌ŽZ(⋅,N). And so, by singling out each non-zero yazb, it is possible to define a map

j(a) that assigns the appropriate m-value to every scalar entry ya = Y̌(i(c),j(a)) in the left matrix multiplicand from

Equation 6.65. To pair ya and zb, note that the right matrix is row-indexed by j and simply stipulate that j(a) = i(b).

Thus, only one index map is required.

To break DM (⋅) into its constituent unit stencils, each (i(c), i(b)) (row, column) entry must correspond to the

matching left-hand basis element EEE(a)(a)(a), so that

∀(a, b, m) ∈ F (c) ∶ E(a)
i(c), i(b) = m (6.66)

In practice, it is easiest to build the stencils by looping over c, rather than a – that is, by building them in parallel,

rather than sequentially. The full procedure is shown in pseudocode in Algorithm 6.1, which can be used to build matrix

isomorphisms for any of the nilpotent algebras presented in Chapter 5 – and, thus, yields a ways to find any derivative

of a matrix function.
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Algorithm 6.1 A Stencil-Building Algorithm Compatible with Column Vectors

1. Given:
{

���(1)(1)(1),… , ���(M)(M)(M)
}

// Collection of desired element index multisets
s.t. ∀p ∶ ���(p)(p)(p) ≡ {�(p,1),… , �(p,Np)} // Sets-of-multisets � elements grouped by order p
s.t. ∀p, d ∶ �(p, d) ≡ {i

(d)
1 ,… , i(d)p } // Each order-p element is de�ned by p indices

2. Initialize:

∀p ∶ (p)(p)(p) ∶= ���(p)(p)(p) // Start set of *required* elements, including missing factors
for p =M, (M − 1),… , 2 // Factorize elements of each order p, starting with highest
for d = 1,… , |(p)(p)(p)| // Every element d of given order
for q = (p − 1),… , 1 // Factors of every possible order q

(q)(q)(q) ∶= (q)(q)(q) ∪ nCk((p, d), q) // n-choose-q enumerates all possible q-element factors of (p, d)
Result: (1)(1)(1),… , (M)(M)(M) // Multi-index set of every tensor element in the algebra
Result: N ∶=

∑

p |(p)(p)(p)| // Number of non-real elements (both prime and composite)

3. Find Factor Pairs:

MMM ∶= 000 ∈ ℤN×N // Initialize table of integer coe�cients m
for c = 1,… , N // For each element's list of factor pairs

F (c) ∶= {} // Initialize empty list
for p = 1,… ,M // Factorize elements of each order p into "c =

∑

(a,b,m) m"a"b
for q = 1,… , |(p)(p)(p)| // Every element q of given order

�c ∶= (p, q) // Look up product singleton index c
for r = 0,… , q // For every possible order of left multiplicand

��� ∶= nCk(�c, r) // Enumerate all possible order-r left multiplicands of �c
for s = 1,… , |���| // For every enumerated left multiplicand s

�a ∶= �s // Look up left multiplicand singleton index a
�b ∶= �c ⧵ �a // Find right multiplicand with multiset di�erence; look up b
F (c) ∶= F (c) ∪ {(a, b)} // Append to factor list
Mc,b ∶=Mc ,b + 1 // Increment coe�cient m

Result: F // Completed lists of all factor pairs for each element
Result: MMM // Summation coe�cients for each factor pair

4. Build Stencils:

for a = 1,… , N // For each element unit stencil
EEE(a)(a)(a) ∶= 000 ∈ ℤN×N // Initialize empty stencil

for c = 1,… , N // For each element's list of factor pairs
for p = 1,… , |F (c)| // For each factor pair of "c

(a, b) ∶= F (c)p // Extract factor indices
m ∶=Mc,b // Extract factor coe�cient
i ∶= i(c) // Unit stencil row index
j ∶= i(b) // Unit stencil column index
E(a)

i, j ∶= m // Insert unit stencil coe�cients

5. Output:
{

EEE(�1)(�1)(�1),… ,EEE(�N)(�N)(�N)
}

// Collection of all unit stencils



Chapter 7

Hybrid Methods and Directional Derivatives

As discussed in Section 3.3.2, AD tools for a given order of derivative can be nested one inside another to find

higher orders. This nesting approach is normally used inductivelywith a single type of tool, but intuitively, it can be used

to build arbitrary hybrids of different methods. Recall that, in addition to presenting Nilpotent Matrix Differentiation

for higher orders, this work has also reviewed two existing first-order matrix-compatible forms of differentiation: the

adjoint method (Section 3.1.2) and complex-step differentiation (Section 4.1). The three pairwise hybrids of these

methods each have promising uses, as discussed below; arguably, each combination shows more promise for practical

high-order differentiation than NMD in isolation.

For the sake of simplicity, the derivation of NMD has thus far neglected directional derivatives; however, the up-

coming interplay of methods makes them difficult to ignore any further. For this reason, each method will be presented

from the start in a directional context, which finally gives rise to the long-promised Hessian-vector and vector-Hessian-

vector products.

7.1 High-Order Forward Directional Derivatives

Given a function f (xxx) with xxx ∈ ℝNx , to compute a univariate derivative with respect to a single xm one could

evaluate the function with a single non-real element êm:

f (xxx + ℎuuu(m)(m)(m)êm) = f (xxx) +
(

ℎ
)f
)xm

)

êm +

(

ℎ2

2
)2f
)x2m

)

êm
2 +… (7.1)
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where uuu(m)(m)(m) is a unit vector in the mth direction and the series would be truncated if êm is nilpotent. More generally, one

can find a derivative in any direction defined by a vector vvv the same way:

f (xxx + ℎvvvêm) = f (xxx) + ℎ

(

∑

i
vi
)f
)xi

)

êm + ℎ2
(

∑

i,j

vivj
2

)2f
)xi)xj

)

êm
2 +… (7.2)

= f (xxx) + ℎ
(

vvvT∇f
)

êm +
ℎ2

2
(

vvvTHHHvvv
)

êm
2 + 

(

ℎ3
)

êm
3 (7.3)

Although this expansion has been limited to the second-order (Hessian) terms, higher-order directional tensors1

can of course still be found – they merely cannot be expressed as vector products of the standard tensors. However,

since analysis of second-order derivatives is sufficient to demonstrate hybrid methodology, third-order tensors and

higher will be ignored in this chapter. If NMD can add a second derivative order to a first-order method, it can add

arbitrarily many more.

To find derivatives in two directions vvv andwww:

f (xxx + ℎmvvvêm + ℎnwwwên) = f (xxx) +
∑

i

(

ℎmviêm + ℎnwiên
) )f
)xi

(7.4)

+
∑

i,j

1
2
(

ℎmviêm + ℎnwiên
) (

ℎmvj êm + ℎnwj ên
) )2f
)xi)xj

+…

= f (xxx) + ℎm

(

∑

i
vi
)f
)xi

)

êm + ℎm2
(

∑

i,j

vivj
2

)2f
)xi)xj

)

êm
2 (7.5)

+ ℎn

(

∑

i
wi
)f
)xi

)

ên + ℎn2
(

∑

i,j

wiwj
2

)2f
)xi)xj

)

ên
2

+ ℎmℎn

(

∑

i,j
viwj

)2f
)xi)xj

)

êmên +…

= f (xxx) + ℎm
(

vvvT∇f
)

êm +
ℎm2

2
(

vvvTHHHvvv
)

êm
2 + 

(

ℎm
3) êm

3 (7.6)

+ ℎn
(

wwwT∇f
)

ên +
ℎn2

2
(

wwwTHHHwww
)

ên
2 + 

(

ℎn
3) ên

3

1 The word “tensor” in this context refers to generalizations of vectors and matrices to higher dimensions, not to tensor products of algebras.
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+ ℎmℎn
(

vvvTHHHwww
)

êmên

+ 
(

ℎm
2ℎn

)

êm
2ên + 

(

ℎmℎn
2) êmên

2

where four different error terms have been broken out for later analysis. Note that, in addition to computing a univariate

quadratic term in each direction, this approach has found one mixed term vvvTHHHwww, which corresponds to finding the off-

diagonal Hessian value in the standard 2-dimensional formulation.

Recall the example optimization problem used to introduce NMD in Section 1.2. The goal there was to compute

a directional Newton update (see Section 2.1.1 or Section 3.1.4) for a line-search:

�k = −
∇fkTdddi
dddiTHHHkdddi

(7.7)

as well as Andrei’s [14] Nonlinear Conjugate Gradient update step (see Section 2.1.2):

�i =
gggiTHHHidddi − ∇fiTdddi

dddiTHHHidddi
(7.8)

Although the details were omitted in Chapter 1, note that ∇fk is the gradient as it exists at xxxk, which itself is

the estimate of the ideal value of xxx during iteration k of an inner or outer loop; HHHi is the Hessian as it exists at xxxi; and

gggi = ∇fi is a full evaluation of the gradient, stored as a vector in memory. The line-search formula for �k will be

evaluated many times for each i – Equation 7.7 is in fact the update to an inner loop used to find an ideal �i, used in turn

to update the search location with xxxi+1 = xxxi + �idddi; only a single evaluation of � is then needed to update the search

direction with dddi+1 = gggi+1 + �idddi. As different derivatives are required for � and �, in practice a smaller stencil would

be used for the inner loop.

When calculating � in Section 1.4, both gggTHHHddd and dddTHHHdddwere found simultaneously with a single NMD stencil.

The hypercomplex algebra corresponding to that stencil can be derived by analyzing Equation 7.6: if vvv = ddd andwww = ggg,

one can remove all undesired terms by setting:
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êm = "1 ≠ 0 (7.9)

ên = "2 ≠ 0 (7.10)

"1
3 = 0 ≠ "21 (7.11)

"2
2 = 0 (7.12)

"1"2 = "12 ≠ 0 (7.13)

"1
2"2 = "112 = 0 (7.14)

Counting the real element, this algebra has five basis elements and hence requires a 5 × 5 stencil, as was shown

in Equation 1.10:

DM
(

⋅
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 )∕)r1
)∕)r2

)2∕)r1)r2
0 1 0 2

(

)∕)r1
)

)∕)r12
0 0 1 0 )∕)r2
0 0 0 1 )∕)r1
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.15)

Recall that this stencil originally corresponded to the directional equation f (xxx + r1ddd + r2ggg) |r1=r2=0, which is

simply the real-valued equivalent of Equation 7.4; any AD tool would be initialized as if r1 and r2 were the program

inputs.

7.2 A Nilpotent-Complex Hybrid

Now, however, consider a different hypercomplex algebra using one nilpotent element êm = "1 of degree three

and a single imaginary element ên = i. Assume ℎm is non-negligible, but ℎn ≪ 1 such that ℎn2 ≈ 0. Then Equation 7.6

becomes:

f (xxx + ℎmvvv"1 + ℎnwwwi) = f (xxx) + ℎm
(

vvvT∇f
)

"1 + ℎn
(

wwwT∇f
)

i (7.16)
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+
ℎm2

2
(

vvvTHHHvvv
)

"1
2 + ℎnℎm

(

vvvTHHHwww
)

i"1

+ 
(

ℎn
2) + 

(

ℎn
2ℎm

)

"1 + 
(

ℎnℎm
2) i"1

2

This also computes the desired quantities, although (after accounting for the fact that "13 is precisely zero) there

are still three remaining error terms. The impact of these errors can best be understood by isolating individual output

terms with the operators Re(⋅), Im(⋅), Nil1(⋅), and Nil11(⋅):

Re
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
)

= f (xxx) + 
(

ℎn
2) (7.17)

Im
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
)

= ℎn
(

wwwT∇f
)

(7.18)

Re
(

Nil1
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
))

= ℎm
(

vvvT∇f
)

+ 
(

ℎn
2) (7.19)

Im
(

Nil1
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
))

= ℎnℎm
(

wwwTHHHvvv
)

(7.20)

Re
(

Nil11
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
))

=
ℎm2

2
(

vvvTHHHvvv
)

(7.21)

Im
(

Nil11
(

f (xxx + ℎmvvv"1 + ℎnwwwi)
))

= 
(

ℎnℎm
2) (7.22)

The nilpotent and imaginary terms together create a hypercomplex algebra defined by not five but six different

dimensions. Three of these dimensions can exactly compute derivative terms, including both of the desired second

derivatives, and two of them (just as with ordinary CD) are effectively exact due to the very small size of 
(

ℎn2
)

. The

only significant error2 is pushed into the sixth dimension – i.e., the imaginary part of the square of the prime nilpotent

– where it can safely be ignored. A matrix representation of this algebra can recover derivatives with the 3 × 3 tensor

(defined by using Algorithm 6.1 and adding an imaginary component):

DM′( ⋅
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + ℎi)∕)r1 2)∕)r2 + 2ℎi
)2∕)r1)r2

)2∕)r22

0 1 + ℎi)∕)r1
)∕)r2 + ℎi

)2∕)r1)r2

0 0 1 + ℎi)∕)r1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.23)

2 In point of fact, the “error” is actually a single third-order mixed derivative, but as this was not requested it is considered superfluous.
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where ℎ = ℎn can be divided out to recover derivatives from the imaginary component. Despite the extra imaginary

term, if the cost of increasing amatrix’s size is greater than the switch to complexmath, this stencil could be significantly

faster than that given by Equation 7.15.

In practice, a problem of this form would be computed by running the user program with r1 = 0 + ℎi and

r2 = 0 + "1, with "1 being the first derivative channel of an operator-overloaded AD type configured to track one first

and one second univariate derivative. At the hand-off from scalar to matrix math, every overloaded variable ẑ would

be carrying three complex values: z0 + ℎi)z∕)r1,
)z∕)r2 + ℎi

)2z∕)r1)r2 , and
)z2∕)r22 + ℎizerr; these would be inserted by

a standard NMD function (that is, the same function that would otherwise handle purely real-valued NMD) into the

appropriate stencil location(s) in an expanded matrix or vector.

If two separate NMD-enabled runs of the program are used, still-simpler stencils can be used. Consider a

standard 2 × 2 matrix representing a dual number, now augmented with imaginary values; omitting the hypercomplex

derivation, this “dual-complex” number can be used as a derivative stencil:

DM′′( ⋅
)

=

⎡

⎢

⎢

⎢

⎣

1 + ℎi)∕)r1
)∕)r2 + ℎi

)2∕)r1)r2

0 1 + ℎi)∕)r1

⎤

⎥

⎥

⎥

⎦

(7.24)

In this case, the overloaded AD type3 need only track a single first derivative. Before the first run of the

program, the directional inputs would be initialized just as above to compute the mixed second derivative; before the

second run, they would be initialized with r1 = 0, r2 = 0 + ℎi + "1 to compute the univariate second derivative.

Before moving on, note that the Newton line-search step � = −dddT∇f∕dddTHHHddd – a very useful quantity with broad

applicability to many other optimization frameworks besides NCG – can be found using just the terms calculated by a

single forward pass of Equation 7.24. Further note that the cost of this stencil (like any other) is independent of Nx,

meaning that gradient-vector and vector-Hessian-vector products can be found in constant time. The full Hessian is

3 If a C++ code has already been modified to use the CD method via Martins’ [63] “cplx” variable type, it could be straightforwardly converted
to use a dual-complex type, as cplx is simply a wrapper for C++’s standard complex<double>; this in turn is built using the language’s templating
ability, and can thus be redefined as complex<T> for any scalar typeT. Redefining cplx as a wrapper for complex<ADtype> would be trivial.
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not required, nor is the full gradient4 – and therefore, neither is an adjoint method.

As a final aside, observe that the terms calculated above can be used to form a quadratic interpolant, i.e., the

Taylor approximation:

f (xxx + tvvv) ≈ f̂ (t) = f (xxx) + tvvvT∇f + t2

2
vvvTHHHvvv + 

(

t3
)

(7.25)

where multiple values of t can be tested5 after a single run of NMD (or, for scalar codes, a single run of second-order

vanilla AD). This single-variable equation is one of the simplest types of surrogate model discussed in Section 2.3; a

two-variable interpolant (i.e., a quadratic approximation of f within the space spanned by www and vvv) could be built by

computing every term from Equation 7.6, and higher-dimensional interpolants could be created with the addition of

yet more non-real offset direction vectors. The availability of such Taylor approximations is perhaps unsurprising, as

the derivative terms are all derived from a Taylor series. More interesting is the fact that, as a forward method, the

terms are also found for all intermediate values of a user program. In cases where f (xxx) actually represents a quantity

of interest f (uuu(xxx)) extracted from a larger state-vector uuu – e.g., a PDE solved over a million-variable mesh – then this

solution state, too, is imbued by NMD with the information needed to build a quadratic estimate of uuu(xxx + tvvv) for any t:

uj(xxx + tvvv) ≈ ûj(t) = uj(xxx) + t∇ujTvvv +
t2

2
vvvT

(

HHHxxx
[

uj(xxx)
])

vvv + 
(

t3
)

(7.26)

For the full vector uuu, the gradient term∇ujTvvv instead uses a Jacobian matrix JJJ [uuu(xxx)]vvv, and the HessianHHH [uuu(xxx)]

is in fact a rank-three tensor, meaning the vector-Hessian-vector product yields a vector – but this product is still implicit

(and still found with a cost independent of Nu); no complicated tensor operations need to be considered. Again, this

surrogate model of the state-vector can be generalized to any number of direction vectors or any order of derivative.

4 Unfortunately, Andrei’s NCG update step � still requires a previous evaluation of the full gradient ggg = ∇f to find the gggTHHHddd term. NMD (or
any other AD method) can find the products of derivatives with vectors, but not the products of derivatives with other derivatives. Even for NCG,
though, note that NMD may still be a superior option in the inner (line-search) loop, which uses only the Newton step.

5 Note that the Newton update is a specific case of this – � is the solution of )f̂∕)t = 0.
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7.3 Nilpotent and Complex Adjoint Methods

Throughout Chapter 2, multiple applications were presented that made use of the product of the Hessian with

a vector. Section 3.1.4 introduced Pearlmutter’s [19] differentiation operator, the intrusive application of which could

turn a gradient algorithm into one forHHHvvv:

vvv
{

f (xxx)
}

≡ )
)r

(

∇f (xxxi + rvvv)
)|

|

|

|

|r=0
= HHHvvv (7.27)

In pursuit of an automatic alternative for computing this quantity, begin again with a generic hypercomplex

evaluation, this time of ∇f with a non-real step in a cardinal direction uuu(n)(n)(n), and examine the result element by element

with a Taylor expansion:

[

∇f (xxx + ℎuuu(n)(n)(n)ên)
]

j =
)f
)xj

+ ℎ
)2f
)xj)xn

ên +
ℎ2

2
)3f

)xj)xn2
ên
2 +… (7.28)

As expected, this approach simply differentiates the gradient with respect to xn. Already of note, though, is

the fact that the first ên term contains a single entry of the Hessian. When examining all j, it can be seen that this

formulation will compute an entire row or column of the matrix.

With an arbitrary direction vector vvv, the expansion becomes:

[

∇f (xxx + ℎvvvên)
]

j =
)f
)xj

+ ℎ

(Nx
∑

k=1
vk

)2f
)xj)xk

)

ên +
ℎ2

2

(Nx
∑

k=1

Nx
∑

l=1
vkvl

)3f
)xj)xk)xl

)

ên
2 +… (7.29)

=
[

∇f (xxx)
]

j + ℎ
[

HHH(j,⋅)
]

vvvên + 
(

ℎ2
)

ên
2 (7.30)

In other words, the first ên term now contains the inner product of a row of the Hessian with vvv; when examining

all j, this constitutes the complete Hessian-vector product:

∇f (xxx + ℎvvvên) = ∇f (xxx) + ℎHHHvvvên + 
(

ℎ2
)

ên
2 (7.31)
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It can now be see that, given any algorithm that evaluates the gradient, a great many possible hypercomplex al-

gebras could computeHHHvvv. Most importantly, this includes algebras utilizing nilpotent elements – i.e., those isomorphic

to NMD stencils – and complex numbers when ℎ ≪ 1.

Complex numbers have been suggested in this context before, at least in terms of generic functions that produce

the gradient. Such a scheme to compute HHHvvv was mentioned in passing (somewhat misleadingly described as a “finite

difference approximation”) in Nash’s 2000 survey [28] of Truncated Newton methods (see Section 2.1.3), which pre-

dated Martins’ 2003 [63] introduction of the complex-step method to the broader aerospace engineering community.

However, Nash did not appear to realize the power of the approach – e.g., he incorrectly described it as a (ℎ) method

and wrote as if it did not have the same accuracy as traditional AD.

Amore specific usagewas reported byBogdanConstantin in his 2014M.S. thesis atMIT [118], where he applied

the complex-step method as it exists today to an atmospheric chemistry-transport model. The code he considered,

GEOS-Chem, already featured a sophisticated sensitivity-analysis (SA – see Section 2.2) adjoint procedure [119],

constructed via a combination of scalar automatic differentiation, the discrete adjoint method described in Section 3.1.2,

and the continuous adjoint approach (based on the physics of the underlying physical systems, not just their code).

Although he successfully used CD to find second-order sensitivities (i.e., sensitivities of the adjoint sensitivities), his

work was kept in a pure SA framework and did not make the connection to other uses of differentiation – indeed, the

words “gradient” and “Hessian” were never used.

However, more general uses ofHHHvvv are possible, and – via Equation 7.31 – can be found via modification of any

existing gradient algorithm. When the manual formula of Equation 7.27 is put to use in the very specific field of neural

network deep learning (e.g., [16,41]), that gradient is found by the backpropagation algorithm, in which case scalar AD

could be used in place of hand-differentiation. Engineering applications, in contrast, more commonly find gradients

via the discrete adjoint method, which uses linear algebra – avoiding manual differentiation here requires either CD or

NMD.

One version of the discrete adjoint method was described in detail in Section 3.1.2. Once again, very briefly,

given a function f of inputs xxx, solution state-vector uuu(xxx), and residual rrr(uuu,xxx), the method amounts to:
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)rrr
)uuu

T
λλλ = −

)f
)uuu

T

∇f = λλλT
)rrr
)xxx
+
)f
)xxx

xxx ∈ ℝNx

uuu ∈ ℝNu

rrr(uuu,xxx) = 000 ∈ ℝNu

f (uuu,xxx) ∈ ℝ

(7.32)

Whenuuu is found via the solution of some systemAAA(xxx)uuu = bbb(xxx), the residual is just rrr = AAA(xxx)uuu−bbb(xxx), meaning that

)rrr∕)uuu = AAA(xxx) is already available; however, the other derivatives )rrr∕)xxx, )f∕)uuu and )f∕)xxxmust bemanually implemented by

the user. Each quantity, though, is expressed as a matrix or vector, and thus can be made to carry additional derivatives

via NMD. In the case of AAA, the derivative-augmented matrix Ǎ̌ǍA would be built by the forward run of the program; in

the other cases, presuming the derivative matrices aren’t themselves constructed via matrix operations (in which case

NMDwould remain the method of choice), first-order scalar AD could be employed during their construction, yielding

derivatives-of-derivatives to arrange in stencils. Just as with general (forward-mode) NMD, a blockwise variant of the

transpose operation in Equation 7.32 would be necessary to preserve the hypercomplex isomorphism – but again, the

cost of this is trivial compared to the cost of the solve.

Alternatively, if the program inputs and all successive operations are real-valued, CD could be used as long as

care is taken to use only complex-analytic functions; this includes both the scalar difficulties addressed by Martins [63]

in Section 4.1, and exclusive use of a real-valued transpose in Equation 7.32 – a complex-conjugate transpose, which

is not analytic, would ruin differentiation.

Chapter 2 presented several powerful applications of HHHvvv, but at least two more possibilities should be pointed

out. First and most obviously, the expansion from Equation 7.31 can be used to build a surrogate model for the gradient,

similar to Equation 7.25:

∇f (xxx + tvvv) ≈ ĝ(t) = ∇f + tHHHvvv + 
(

t2
)

(7.33)
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Note here that ∇f would be found alongsideHHHvvv, as it constitutes the real part of the NMD or CD adjoint. Just

as in Equation 7.25, many values of t can be evaluated after a single evaluation of the modified adjoint.6 This is a

linear extrapolation, and must therefore be held comparatively near xxx; however, as a second possibility, note that HHHvvv

and ∇f could likewise be used to build a surrogate model for the actual output that is broader than Equation 7.25:

f (xxx + tvvv + www) ≈ f̂ (t,www) (7.34)

= f (xxx) + tvvvT∇f + wwwT∇f (7.35)

+ t2

2
vvvTHHHvvv + t

2
wwwTHHHvvv (7.36)

+ 
(

||www||2
)

+ 
(

t3
)

(7.37)

where many values of both t and www could be provided after a single hybrid adjoint evaluation. Due to the poorer

order of accuracy with respect to the magnitude of the direction vector ||www||, this vector must be held relatively short,

which limits the surrogate to points somewhat near the line xxx + tvvv. This effectively makes Equation 7.34 a method for

perturbing Equation 7.25 in any direction in the search space, rather than simply along the vector vvv. At the perturbed

points, the surrogate would be imbued with knowledge of how ∇f curves toward vvv. Again, finding multiple products

(HHHvvv(1)(1)(1),HHHvvv(2)(2)(2),…) would expand the surrogate from points near a line to points near some subspace.

Practical computation of both an NMD-adjoint hybrid and a CD-adjoint hybrid will be made clearer with a

demonstration in Chapter 8. Before moving on, though, compare these hypercomplex adjoint approaches to the second-

order discrete adjoint method reviewed in Section 3.1.3. As stated there, that method could find the full Hessian with

cost-complexity 
(

Nx
)

, which was superior to forward-mode methods with necessary complexity 
(

Nx
2). In the

hypercomplex case, Equation 7.28 can be used to find a single column in (1) – and, thus, the entire matrix can also

be found in 
(

Nx
)

. The second-order method, however, could not cost-effectively find subsets of HHH – finding even a

single scalar entry in isolation required (at minimum) three solves of the system, and finding an entire column (let alone

HHHvvv for arbitrary vvv) required the same Nx + 1 solves as would be required to find the full matrix. This comes despite

6 Pearlmutter mentioned something very similar, but only in the context of deriving the Newton update step and assessing the accuracy thereof
by comparing a predicted gradient to the true gradient at the new Newton location.
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the fact that the hypercomplex variants (especially the CD hybrid) are far easier to implement. Even more strikingly,

arbitrary-order derivatives – third, fourth, or higher – can be found relatively easily with a nilpotent-adjoint hybrid (or

even a nilpotent-complex-adjoint hybrid) with a cost lower than forward-mode AD by a factor ofNx (that is, 
(

Nx
2)

for third-order tensors, 
(

Nx
3) for fourth-order, etc). All of this can be done without any new derivations on the part

of the user.



Part III

Demonstrating Nilpotent Matrix Differentiation



Chapter 8

Differentiating a Stochastic Diffusion Model

To demonstrate its use for actual problem-solving, all variants of Nilpotent Matrix Differentiation were used to

study a system defined by a second-order elliptic partial differential equation. Specifically, the original “user” program

was designed to find the equilibrium concentration of a two-dimensional diffusive process with a spatially-varying

stochastic diffusivity field, where the field itself was in turn was drawn from a lognormal random process approximated

by a Karhunen-Loève expansion (KLE, [120]). This problem was chosen as an NMD benchmark for four reasons:

First, codes that solve such elliptic PDEs should be familiar to most engineers. Second, this same problem has already

been studied in the context of system derivatives for uncertainty quantification [47]. Third, it strikes a good balance

between complex behavior and ease of implementation, which was important when testing early experimental variants

of NMD or competing methods like CD. Fourth and finally, the KLE approximation uses an arbitrary number of basis

functions (growing more accurate with each), each of which must be weighted by a coefficient; thus, the problem can

take an arbitrary number of inputs (i.e., the coefficients), each of which have similar quantitative impact and qualitative

meaning. This allows for an “apples-to-apples” comparison of NMD as applied to problems with different numbers of

independent differentiation variables.

This chapter is organized as follows: First, in Section 8.1, each step of the core problem is described in precise

detail. Second, in Section 8.2, experiments are described to measure accuracy and cost of several possible applications

of the NMD method. Results are then presented in Section 8.3 and Section 8.4.
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8.1 Detailed Problem Description

The two-dimensional diffusion problem is modeled as:

)u
)t
= ∇ ⋅

(

k∇u
)

(8.1)

= ∇ ⋅
(

k
( )u
)x1

+ )u
)x2

)

)

=
(

)k
)x1

)u
)x1

+ )k
)x2

)u
)x2

)

+ k
(

)2u
)x12

+ )2u
)x22

)

where many boundary conditions are possible. This work uses a stochastic variant of the diffusivity problem, which

takes as input a vector yyy ∈ ℝNy that contains samples of independent and identically distributed (i.i.d.) random

variables and ultimately outputs a quantity of interest (QoI) f (yyy) of an equilibrium solution. Before any AD tool

is applied, computation of the original problem proceeds as follows: First, it calculates a deterministic solution for

a spatially uniform diffusivity parameter, which is then used to define boundary conditions (BCs) for the stochastic

problem. Second, it uses Galerkin projection to approximate the eigenfunctions of a covariance kernel; together with

the coefficientsyyy, this is sufficient to sample a lognormal diffusivity field. Next, the diffusivity is used in a discretization

of the diffusion equation, resulting in a linear system that is solved to find an equilibrium concentration field. Finally,

the quantity of interest is the mean of the squared difference between the stochastic and deterministic solutions. For

convenience, the relevant variables and functions are listed here:1

Ny Number of input (independent) variables

Nu = N2
u1 Number of mesh nodes (total and per direction)

Nd = N2
d1 = (Nu1 − 2)2 Number of degrees of freedom (state variables)

Nb = N2
b1 Number of finite elements for eigenfunction approximation

xxx = [x1, x2]T ∈ [0, 1]
2 Geometric coordinate vector (the spatial domain)

1 Notation throughout this subsection adapted largely from [121] and [47].
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t ∈ [0,∞] Time (the temporal domain)

! ∈ Ω Random variable (the probabilistic domain)

yyy(!) ∈ ℝNy Input vector: standard-normal (i.i.d.) random samples

gi(xxxi, !) ∣ i ∈ {1,… , Nu} Gaussian random process; value at discretized location xxxi

ĝi(xxxi,yyy) Truncated Karhunen-Loève expansion (KLE) of g

Cgg(xxx1,xxx2) Squared exponential covariance function of g

�(i,j)(xxxi) ∣ j ∈ {1,… , Ny} Eigenfunctions of Cgg; value of function j at location i

�j Eigenvalues of Cgg

 n(xxx) ∣ n ∈ {1,… , Nb} Bilinear finite element basis for approximation of �(xxx)

ki(xxxi,yyy) Lognormal diffusivity coefficient

ui(xxx, t,kkk) Concentration of a species (e.g., thermal energy or a solute)

ggg, ĝ̂ĝg,���,kkk ∈ ℝNu Field vectors: values at all mesh points

uuu ∈ ℝNd State vector: values at all degrees of freedom

uuueq(kkk) ∈ ℝNd (Stochastic) equilibrium solution vector

uuuℎeat ∈ ℝNd (Deterministic) equilibrium solution vector for uniform k

f (uuueq) = f (yyy) Output variable (quantity of interest)

The goal of computation is to solve for system equilibrium at )u)t = 0, thus making Equation 8.1 an elliptic PDE.

The main difficulty in the solution stems from the fact that the diffusivity coefficient k is unevenly distributed across

the physical domain, in a way that differs from simulation to simulation; this distribution is modeled by a lognormal

random process, calculated as the exponential of the KLE of a Gaussian process g. Denoting the KLE approximation

as ĝ and indexing into node i of a discretized mesh, k can then be defined as:
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ĝi(xxxi,yyy) = g0 +
Ny
∑

j=1
yj
√

�j�(i,j)(xxxi) (8.2)

ki(xxxi,yyy) = k0 + exp(ĝi(xxxi,yyy)) (8.3)

Here, yj are independent, identically-distributed (i.i.d.) standard normal random variables; these will be consid-

ered the independent variables (i.e., inputs) during the system differentiation benchmarks, as they are the only variables

that change between different stochastic runs of the program. Next, �j and �j are the eigenfunctions and eigenvalues

of the squared exponential covariance function:

Cgg(xxx1,xxx2) = �2e−(‖x
xx1−xxx2‖∕lc )2 (8.4)

For the experiments described in this chapter (and somewhat following the similar experiment in [47]), the

parameters are set to � = 0.5, lc = 0.01, g0 = 0.1, and k0 = 0. Calculation of the above quantities and their use

in the KLE is explained in Section 8.1.2 and Section 8.1.3. First, though, it is instructive to consider the case of a

deterministic and uniform k, which leads to a helpful choice for the problem’s boundary conditions (BCs).

8.1.1 A Deterministic Known Solution: The Heat Equation

Observe that if k is constant in space, the problem reduces to the familiar (deterministic) heat equation )u
)t =

0 = ∇2u which, for certain boundary conditions, has an analytic equilibrium solution uℎeat. One particularly simple

way to find such a solution is to define a function that is linear in both directions, such that both second derivatives are

zero. For example:

uℎeat(xxx) =
(

m1x1 + b1
) (

m2x2 + b2
)

(8.5)

= m1m2x1x2 + m1b2x1 + m2b1x2 + b1b2

If the boundaries are held constant at values that match this function, the interior of the domain will converge
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to the same function. Note that Equation 8.5 has the analytic derivatives

)uℎeat
)m1

= m2x1x2 + b2x1

)uℎeat
)m2

= m1x1x2 + b1x2

)uℎeat
)b1

= m2x2 + b2

)uℎeat
)b2

= m1x1 + b1

)2uℎeat
)m1)m2

= x1x2

)2uℎeat
)m1)b2

= x1

)2uℎeat
)m2)b1

= x2

)2uℎeat
)b1)b2

= 1

In this work, m1 = b1 = 500 and m2 = b2 = 1000. Defining the original program’s Dirichlet BCs to be equal

to Equation 8.5 thus provides a straightforward way to verify both the original program and any derivative method

applied to it. However, when moving to the stochastic problem, k(xxx,yyy) becomes a field that varies across xxx; typically,

analytic solutions are no longer available – a discretized, purely numerical approximation is required. One of the

most straightforward approaches to studying the discretized solution vector uuueq and any function f (uuueq) is to simply

draw many samples of kkk and repeatedly solve the system. However, the sampling process itself is a nontrivial task.

Before entering the differentiatable section of code, it is necessary to build a Karhunen-Loève expansion of the process,

which in turns requires calculation of eigenfunctions of the chosen covariance kernel. These steps are described in

Section 8.1.2. This expansion can then be used to generate samples of the process, as described in Section 8.1.3. Only

after an instance of kkk has been realized can Equation 8.1 be discretized and solved, as described in Section 8.1.4.

8.1.2 Galerkin Projection and Karhunen-Loève Expansion

Any given random process p(xxx, !) can expressed with a generalized Fourier expansion (GFE) – that is, a de-

composition into infinitely many weighted basis functions:
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p(xxx, !) =
∞
∑

0
yj(!)�j(xxx) (8.6)

Any Fourier expansion is identically equal to the process itself, in the limit of infinitely many basis functions;

however, any numeric approximation must truncate the expansion to a finite number of terms Ny, thereby throwing

away a potentially significant amount of information. The best approach to this problem is generally considered to

be the Karhunen-Loève expansion (KLE), which has been shown to minimize total mean squared error for a given

truncation; it is defined as the GFE whose basis functions are the eigenfunctions of the process’s covariance function

Cpp(xxx1,xxx2). That is, each eigenfunction �j is a solution to the operator equation

∫ Cpp(xxx1,xxx2)�j(xxx2)dxxx2 = �j�j(xxx1) (8.7)

In plain English, Cpp(xxx1,xxx2) determines how much a field measured at xxx2 will change if the field is perturbed

at xxx1. If the function �j(xxx) is used to perturb an entire field over all xxx, the net impact on any given point xxx1 is thus

determined by the integral of the covariance function over the whole spatial domain. If that impact is simply a linear

scaling of �j(xxx1) at that point in isolation, then �j(xxx) is an eigenfunction of Cpp and the eigenvalue �j measures the

strength of the relationship. Because the relationship also works in reverse, it can be seen that the eigenfunctions with

the largest �j have the greatest impact on the field as a whole. This gives a natural way to approximate the process

defined by Cpp: stack the most important eigenfunctions on top of each other, until their collective behavior captures

that of of the true process.

Unfortunately, solutions of Equation 8.7 are rarely available analytically – they must be found via yet another

approximation. In this case, the approximate eigenfunctions are found via the method of Galerkin projection, which

is used to convert the continuous operator problem into one of solving for another, separate set of weighted basis

functions:
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�j(xxx) ≈ �̂j(xxx) =
Nb
∑

n=1
zj,n n(xxx) (8.8)

In this case, the functions  n(xxx) are chosen by the user; for this problem, they are simply (bi)linear finite el-

ements, as shown in Figure 8.1.Note that bilinear elements are the product of two one-dimensional linear elements,

with one running along each cardinal direction, much as the boundary condition solution chosen in Equation 8.5 is the

product of two linear solutions.
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Figure 8.1: (a): A sequence of five linear finite elements, with the central element highlighted. The value of each n(xxx)
is linear inside the element and zero everywhere else. (b): The central element of a 3 × 3 grid of bilinear elements.
This element is linear along cardinal directions but otherwise quadratic. Note that in both (a) and (b), the sum of all
elements is everywhere equal to 1, so that summing across all weighted elements yields a linear interpolation of �(xxx)
between adjacent known values. These are very small grids for demonstration, but in real applications hundreds of
elements (or more) are used in each direction.

The Galerkin method consists of, first, approximating the residual r of Equation 8.7 by substituting in Equa-

tion 8.8:
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r(xxx1) ≡ ∫ Cpp(xxx1,xxx2)�j(xxx2)dxxx2 − �j�j(xxx1) (8.9)

≈ ∫ Cpp(xxx1,xxx2)
Nb
∑

n=1
zj,n n(xxx2)dxxx2 − �j

Nb
∑

n=1
zj,n n(xxx1) (8.10)

=
Nb
∑

n=1

(

∫ Cpp(xxx1,xxx2)zj,n n(xxx2)dxxx2 − �jzj,n n(xxx1)
)

(8.11)

The method then sets the residual to be orthogonal to each  m(xxx) – that is, solves for a set of coefficients zj,n

such that each finite element’s approximation of the residual is equal to zero. This leads to one residual equation rm for

each element:

rm = 0 =∫ r(xxx1) m(xxx1)dxxx1 ∣ m ∈ {0,… , Nb} (8.12)

=∫

(Nb
∑

n=1

(

∫ Cpp(xxx1,xxx2)zj,n n(xxx2)dxxx2 − �jzj,n n(xxx1)
)

)

 m(xxx1)dxxx1 (8.13)

=
Nb
∑

n=1

(

∫ ∫ Cpp(xxx1,xxx2) n(xxx2) m(xxx1)dxxx2dxxx1

)

zj,n (8.14)

−
Nb
∑

n=1

(

∫  n(xxx1) m(xxx1)dxxx1

)

zj,n�j

This can be expressed as a generalized eigen-problem ofNb linear equations:

CCCZZZ −BBBZZZΛΛΛ = 000 (8.15)

where

CCC ∈ ℝNb×Nb (8.16)

Ci,j = ∫ ∫ Cpp(xxx1,xxx2) n(xxx2) m(xxx1)dxxx2dxxx1 (8.17)

BBB ∈ ℝNb×Nb (8.18)

Bi,j = ∫  n(xxx1) m(xxx1)dxxx1 (8.19)
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ΛΛΛ ∈ ℝNy×Ny (8.20)

Λi,j = �i,j�i (8.21)

ZZZ ∈ ℝNb×Ny (8.22)

Zi,j = zi,j (8.23)

After integrating to find the entries ofCCC andBBB (likely via numerical quadrature), solving this problem forZZZ and

the diagonal matrixΛΛΛ yields all the coefficients zj,n from Equation 8.8 along with the eigenvalues �j ; the eigenfunctions

can then be approximated at any point by inserting any chosen value of xxx into that equation, even if such a point was not

used to build the approximation – the finite elements can be used to approximate a value of �j(xxx) at entirely arbitrary

locations. Thus, the mesh used to model �(xxx) does not strictly need to match the one used to model p(xxx); this can be

advantageous in cases where computing � becomes more expensive than the actual intended use of p. Note, though,

that the matrix CCC cannot have more thanNb eigenpairs, which places an upper limit onNy ≤ Nb.

Once the vectors���(xxxi) ∈ ℝNu for each eigenfunction have been calculated at all discretized xxxi, random samples

of the discretized field ppp – originally a continuous problem with infinite degrees of freedom – can be very quickly

computed by inserting a finite number of random scalar samples yyy into the truncated KLE:

p(xxx, !) ≈ p̂(xxx,yyy) =
Ny
∑

j=1
yj�j�j(xxx) (8.24)

This can be made even simpler by concatenating the column-vectors into a matrixΦΦΦ and re-using the matrixΛΛΛ

from above:

ΦΦΦ =
[

���1,���2,… ,���Ny

]

∈ ℝNu×Ny (8.25)

p̂̂p̂p(yyy) = ΦΦΦΛΛΛyyy (8.26)

pi ≈ p̂(xxxi,yyy) (8.27)
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Note that every step up until the application of yyy is purely deterministic; thus, ΦΦΦ and ΛΛΛ only need to be built

once, after which an arbitrary number of random samples of ppp can be drawn.

8.1.3 Sampling the Diffusivity Field

For the specific problem considered here, the goal is to compute the lognormal field k(xxx, !) ≈ k(xxx,yyy), which

is defined to be the exponential of a Gaussian process – i.e., the exponential eg of a process g(xxx,yyy) wherein any finite

subset of points {g(xxxi)} ∣ i = {1, 2,…} will have a multivariate normal distribution. Thus, to compute discretized

samples of the entire field kkk(yyy), one sets p = g, chooses some two-dimensional covariance function Cgg(xxx(a)(a)(a),xxx(b)(b)(b)) =

Cgg([x1(a), x2(a)], [x1(b), x2(b)]), and proceeds as above.

When considering options for Cgg , it is important to note that the integrals in Equation 8.14 are taken over

the entire two-dimensional geometric domain; thus, entries of the matrix CCC theoretically require quadruple integrals.

Even using efficient sparse numerical quadrature, this can be impractically expensive. Fortunately, under certain cir-

cumstances, the product of two one-dimensional eigenfunctions (again, much like the product of two finite elements

or two boundary conditions) can itself be an eigenfunction of a two-dimensional process. This is only possible when

the covariance function is multiplicativly separable, such that Cgg is a product of one-dimensional functions. For this

reason, the covariance for this problem is chosen to be the squared exponential, which is a function of the distance d

between two points:

d = ‖xxx(a)(a)(a) − xxx(b)(b)(b)‖ =
√

∑

(xi(a) − xi(b))2 (8.28)

Cgg(xxx(a)(a)(a),xxx(b)(b)(b)) = Cgg(d) = �2e−(d∕lc )
2 (8.29)

= �2e−((x1(a)−x1(b))∕lc )
2−((x2(a)−x2(b))∕lc )2 (8.30)

= �2e−((x1(a)−x1(b))∕lc )
2
e−((x2

(a)−x2(b))∕lc )2 (8.31)

= Cgg(x1(a), x1(b))Cgg(x2(a), x2(b)) (8.32)

where �2 is the variance and lc is the correlation length (a scaling parameter); for this problem, � = 0.5 and lc = 0.01.

Given a one-dimensional Cgg of this form, the program first finds the eigenfunctions �i(x1) and eigenvalues �i for the
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one-dimensional problem; takes the outer product of the vector of eigenvalues ������T ; finds the largest eigenvalues �ij =

�i�j of the new process; and finally pulls out the corresponding two-dimensional eigenfunctions�ij(xxx) = �i(x1)�j(x2).

As mentioned in the previous section, the one-dimensional linear finite elements  (x1) used to approximate

�(x1) might be placed along a lower-resolution coordinate mesh than that for �(x1) itself; however, the separable

nature of this Cgg makes that unnecessary. Thus, for the sake of using identical meshes and identical bilinear elements,

the problem discretizes the field with a square grid, i.e., withNb1 = Nu1 nodes uniformly spaced in each direction such

that Nb = Nu = Nu1
2. Given this configuration, example eigenfunctions and samples of k are shown in Figure 8.2

and Figure 8.3, respectively.

�1 �2 �3 �4

�34 �35 �36 �37

Figure 8.2: Selected eigenfunctions (#1-4 and #34-37) of the Gaussian covariance kernel. Early eigenfunctions capture
broad behavior; successive eigenfunctions focus on increasingly fine-grained features.

8.1.4 PDE Discretization, Solution, and Quantity of Interest

Once k is known, the next step is to discretize Equation 8.1 in order to solve for equilibrium at )u)t = 0 – that is,

discretize
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Figure 8.3: Sample of the diffusion k-field forNu = 1282 = 16384,Ny = 10000, � = 0.5 and lc = 0.01.

(

)k
)x1

)u
)x1

+ )k
)x2

)u
)x2

)

+ k
(

)2u
)x12

+ )2u
)x22

)

= 0 (8.33)

and solve for u(xxx) = ueq(xxx) at every discretized value of xxx. As stated above, the computational mesh is a uniformly

spaced square grid with Nu1 nodes in each direction; denote the spacing of this grid as Δx = 1
Nu1−1

and index each

node as xxxn,m = [x1(n), x2(m)]. The adjacent points are then [x1(n) + Δx, x2(m)] = xxxn+1,m, etc.

The simplest centered finite difference2 formulas are sufficient to discretize Equation 8.33, and can now be

denoted as:

2 Note, this is one of the few times in this work where a “finite difference” does not refer to a derivative approximation across an entire system.
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)k
)x1

≈
k(x + Δx, y) − k(x − Δx, y)

2Δx

=
kn+1,m − kn−1,m

2Δx
)u
)x1

≈
u(x + Δx, y) − u(x − Δx, y)

2Δx

=
un+1,m − un−1,m

2Δx
)2u
)x12

≈
u(x + Δx, y) − 2u(x, y) + u(x − Δx, y)

Δx2

=
un+1,m − 2un,m + un−1,m

Δx2

and similarly for derivatives with respect to x2. Inserting these formulas into Equation 8.33 and rearranging yields:

1
Δx2

(

kn,m −
1
4
(

kn+1,m − kn−1,m
)

)

un−1,m

+ 1
Δx2

(

kn,m −
1
4
(

kn,m+1 − kn,m−1
)

)

un,m−1

+ − 4
Δx2

kn,m un,m

+ 1
Δx2

(

kn,m +
1
4
(

kn+1,m − kn−1,m
)

)

un+1,m

+ 1
Δx2

(

kn,m +
1
4
(

kn,m+1 − kn,m−1
)

)

un,m+1 = 0 (8.34)

Note that holding the mesh boundary values fixed reduces the number of degrees of freedom (DoFs) – thus,

while k must be provided at each of Nu = N2
u1 mesh nodes, u is only found at Nd = N2

d1 = (Nu1 − 2)2 DoF points

contained in the sub-mesh that excludes the edge nodes, indexed with n, m ∈ {2,… , Nu − 1}. To keep this context

clear, denote vectors of mesh values with a tilde, such that the k-field becomes k̃̃k̃k ∈ ℝNu while the u-field is simply

uuu ∈ ℝNd . Further denote the vector of boundary values as ṽ̃ṽv ∈ ℝNu , which is defined to be zero at every DoF node.

Note that any given double-indexed un,m will always be in the DoF sub-mesh (and thus represented in uuu) but adjacent

values un+1,m, etc., may not. Use of a single index (k̃i, ui, etc.) denotes a single entry of a vector, where the range of

the index can be inferred from context.
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Using this notation, if 3 ≤ n, m ≤ N − 2 – i.e., if every neighboring value of u is unknown – Equation 8.34

immediately yields five coefficients that can be placed into row i of a matrix AAA(̃k̃k̃k) ∈ ℝNd×Nd , where i = (m −

1) +Nd1(n − 2). In the remaining cases where one or more of the u-values are held fixed by the Dirichlet boundary

conditions, the product of the coefficient and the value must be added to a vector bbb(̃k̃k̃k, ṽ̃ṽv) ∈ ℝNd , such thatAAAuuu+bbb = 000.

OnceAAA and bbb are constructed in this way, the equilibrium is found via linear solution as uuu = uuueq = −AAA−1bbb.

As a rule, most engineering applications only solve for such an equilibrium in order to extract some quantity of

interest (QoI) f from the converged solution field. Here, f (uuueq) is arbitrarily chosen as the mean squared difference

between uuueq and the constant-k solution uuuℎeat chosen in Section 8.1.1 – that is,

f (uuueq) =
1
Nd

Nd
∑

i=1

(

ueq(i) − uℎeat(i)
)2 (8.35)

Even given this specific discretization and QoI, there are multiple ways to implement this problem. For rigor and

additional verification of the analytic model, the experiments described in this chapter use two different programming

approaches (both in MATLAB) to build AAA and bbb and to compute f . The first formulation relies heavily on scalar

calculations: each diffusivity value ki is found via scalar operations and Equation 8.24; likewise, when computing each

row of AAA, each entry is found one at a time as given in Equation 8.34. The only matrix operations are found in the

system solver, after which yet more scalar operations are used to compute the output via Equation 8.35. The data-flow

of this first program is shown in Figure 8.4, which adopts the same tilde notation for all whole-mesh vectors.

Nilpotent Matrix Differentiation might still be helpful for this problem formulation, even if it were only applied

to the solution step – using the manual matrix-inverse differentiation formula from Equation 3.71 is trivial for a single

derivative, but repeated application might become laborious for higher derivatives, especially when the order or number

of independent variables is expected to change across program runs. However, this is not how NMD is truly expected

to be used – its standout feature is the way derivatives propagate across many matrix routines, with most3 new code

required only before the first routine and right after the last.

3 Exceptions to the rule generally deal with treatment of vectors or other limitations discussed in Section 6.2, but are very simple to apply.
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���j , �j∶= Galerkin()

ĝ̂ĝg =
∑

ŷj�j���j

k̂̂k̂k∶= exp(ĝ̂ĝg)

Â̂ÂA, b̂̂b̂b∶= Abfunc(̂k̂k̂k,vvv)

uuuℎeat∶= HeatSoln()

vvv∶= BCfunc()yyy

f̂∶= 1
Nu

∑
(

ûeq(i) − uℎeat(i)
)2

f (yyy)

ǔ̌ǔueq ∶= −Ǎ̌ǍA−1̌b̌b̌b

Figure 8.4: Data-flow of the first, scalar-focused implementation of the diffusion problem. White functions represent
values that remain constant between function runs; gray represents user-written scalar code with varying inputs and
outputs; dark gray represents code that calls inaccessible matrix functions; and blue represents the program API.

For this reason, a second formulation of the program is also used as a more rigorous test for NMD. In this

implementation, every operation is replaced by a matrix variant. First, a matrix-matrix-vector product like that in

Equation 8.26 is used to calculate g̃̃g̃g(yyy):

g̃̃g̃g(yyy) = ΦΦΦΛΛΛyyy (8.36)

In the case of many eigenfunctions, this is significantly faster than the scalar variant. Next, rather than operate

on one element at a time, the vector g̃̃g̃g is converted to a diagonal matrix G̃̃G̃G, which allows the calculation of a similarly

diagonal K̃̃K̃K = expm(G̃̃G̃G), where expm is the matrix exponential function; this has an analogous definition to the scalar

exponential:

expm(G̃̃G̃G) ≡ eG̃̃G̃G =
∞
∑

n=0

G̃̃G̃Gn
n!

(8.37)

For a diagonal matrix, this was experimentally found to converge to machine precision after about n ≈ 10 terms.

A sparse implementation of expm is thus trivially inexpensive to run compared to the cost of calculating g̃̃g̃g(yyy).

Note that, as Equation 8.34 requires k-values even for the boundary nodes, K̃̃K̃K cannot simply be “stripped down”

by removing the boundaries. Instead, in order to construct AAA ∈ ℝNd×Nd and bbb ∈ ℝNd , temporary matrices Ã̃ÃA ∈
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ℝNu×Nu and b̃̃b̃b ∈ ℝNu must be built first, then mapped down to the smaller index set. The off-diagonals of these larger

matrices can be calculated using a set of four “shift” matrices:

S̃̃S̃S(Δn,Δm) ∈
{

S̃̃S̃S(−1,0), S̃̃S̃S(0,−1), S̃̃S̃S(1,0), S̃̃S̃S(0,1)
}

∈ ℝNu×Nu (8.38)

These are each sparse matrices with a single diagonal of all ones, offset from the main diagonal such that matrix

multiplication will “shift” a value from its own index to that of a neighbor in the indicated direction. That is:

K̃ii =
[

K̃̃K̃KS̃̃S̃S(Δn,Δm)
]

ij =
[

S̃̃S̃S(Δn,Δm)
T K̃̃K̃KS̃̃S̃S(Δn,Δm)

]

jj
(8.39)

K̃jj =
[

S̃̃S̃S(Δn,Δm)K̃̃K̃K
]

ij =
[

S̃̃S̃S(Δn,Δm)K̃̃K̃KS̃̃S̃S(Δn,Δm)
T
]

ii
(8.40)

= K̃(Δn,Δm)(ii) (8.41)

i = m +Nu1(n − 1) (8.42)

j = (m + Δm) +Nu1((n + Δn) − 1) (8.43)

Boundary values that have no neighbor will be “shifted off” the matrix entirely, i.e., set to zero. Note that

S̃̃S̃S(1,0) = S̃̃S̃S(−1,0)
T and S̃̃S̃S(0,1) = S̃̃S̃S(0,−1)

T – that is, to shift to the opposite neighbor, simply transpose the shift matrix.

Separate indices are used here for ease of notation.

Only once Ã̃ÃA and b̃̃b̃b are built can the extra information be stripped out. This is done using a map matrixMMM ∈

ℝNu×Nd , specially built so thatAAA = MMMT Ã̃ÃAMMM and bbb = MMMT b̃̃b̃b. This matrix is also sparse, with a single 1 in each column

(and thus having some empty rows); it is built during program initialization by finding the mesh index i corresponding

to each DoF index j, then setting Mij = 1. Given these matrices and the BC vector ṽ̃ṽv, the off-diagonal coefficients

from Equation 8.34 can be built with the following steps:
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∀Δn,Δm∶

K̃̃K̃K(Δn,Δm) = S̃̃S̃S(Δn,Δm))K̃̃K̃KS̃̃S̃S(Δn,Δm)
T (8.44)

C̃̃C̃C(Δn,Δm) =
1
Δx2

(

K̃̃K̃K + 1
4
(

K̃̃K̃K(Δn,Δm) − K̃̃K̃K(−Δn,−Δm)
)

)

(8.45)

Ã̃ÃA(Δn,Δm) = C̃̃C̃C(Δn,Δm)S̃̃S̃S(Δn,Δm) (8.46)

b̃̃b̃b(Δn,Δm) = Ã̃ÃA(Δn,Δm)vvv (8.47)

These steps calculate the coefficients corresponding to each neighbor on the full mesh; once they are found,

they must be summed and mapped to the DoF sub-mesh:

AAA =MMMT

(

− 4
Δx2

K̃̃K̃K +
∑

Δn,Δm
Ã̃ÃA(Δn,Δm)

)

MMM (8.48)

bbb = MMMT

(

∑

Δn,Δm
b̃̃b̃b(Δn,Δm)

)

(8.49)

Finally, onceAAA andbbb have been used to solve foruuueq , the quantity of interest fromEquation 8.35 is also expressed

entirely with vector operations as:

ddd = uuueq − uuuℎeat (8.50)

f (uuueq) =
1
Nu
dddTddd (8.51)

The data-flow of this second program is shown in Figure 8.5. This is a larger diagram that Figure 8.4 because

the inner workings of Abfunc(), which were hidden there, are broken out here; in terms of implementation, it is no

more complex. Note that for the deterministic version of the problem, the first three blocks of the matrix problem (i.e.,

those for ggg, GGG, and KKK) are bypassed so that a diagonal matrix KKK = k0III can be passed to the discretization process;
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yyy

f (yyy)

g̃̃g̃g ∶= Φ̃̃Φ̃ΦΛΛΛyyy

Φ̃̃Φ̃Φ,ΛΛΛ∶= Galerkin()

G̃̃G̃G∶= diag(g̃̃g̃g)

K̃̃K̃K∶= expm(G̃̃G̃G)

S̃̃S̃SΔ,MMM∶= SMfunc()

K̃̃K̃KΔ ∶= S̃̃S̃SΔK̃̃K̃KS̃̃S̃SΔ
T

C̃̃C̃CΔ ∶=
1
Δx2

(

K̃̃K̃K + 1
4

(

K̃̃K̃KΔ − K̃̃K̃K−Δ
)

)

Ã̃ÃAΔ ∶= C̃̃C̃CΔS̃̃S̃SΔ b̃̃b̃bΔ ∶= Ã̃ÃAΔṽ̃ṽv

AAA ∶= MMMT
(

− 4
Δx2
K̃̃K̃K +

∑

Δ Ã̃ÃAΔ
)

MMM

bbb ∶= MMMT
(
∑

Δ b̃̃b̃bΔ
)

f ∶= 1
Nu
dddTddd

ddd ∶= uuueq − uuuℎeatuuueq ∶= −AAA−1bbb

uuuℎeat∶= HeatSoln()ṽ̃ṽv∶= BCfunc()

Figure 8.5: Data-flow of the second, matrix-only implementation of the diffusion problem. White functions represent
values that remain constant between function runs, dark gray represents code that calls inaccessible matrix functions,
and blue represents the program API. Every operation on a variable with a Δ subscript is applied to each of Δ =
(Δn,Δm) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.

otherwise, the process remains the same.

8.1.5 Undifferentiated Program Results

Once again, this problem was chosen simply to benchmark differentiation algorithms; to some extent, the undif-

ferentiated (real-valued) outputs are beside the point. Nonetheless, it is useful to review the system behavior to clarify

precisely what the base program is meant to output.

A sample of the k-field was shown in Figure 8.3. Given a diffusivity sample such as that one, the diffusive system

reaches a equilibrium such as the one shown in Figure 8.6; this equilibrium represents the steady-state concentration of

some arbitrary solute after it has diffused across the spatial domain. Note in the figure that the deterministic behavior

imposed by the boundary conditions uℎeat(xxx) =
(

m1x1 + b1
) (

m2x2 + b2
)

for m1 = b1 = 500 and m2 = b2 = 1000

dominates the solution; however, the true quantity of interest is the stochastic deviation from deterministic expectations.
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Figure 8.6: Example diffusion equilibrium solution withNy = 10000 eigenfunctions. Elevation represents determin-
istic solution; color represents delta between stochastic and deterministic solutions.

Recall that the diffusion equation is:

)u
)t
=
(

)k
)x1

)u
)x1

+ )k
)x2

)u
)x2

)

+ k
(

)2u
)x12

+ )2u
)x22

)

Further recall that the boundary conditions were explicitly constructed to set both spatial second derivatives to

zero; therefore, considering that stochastic behavior constitutes so little of the solution’s total magnitude, one can expect

the second term of the equation to be negligible – the deviation should be dominated by first-order behavior. Given

this, examine the two remaining terms knowing that )k∕)x1 and
)k∕)x2 cannot be counted on to cancel. To maintain the

equilibrium )u∕)t = 0, if )k∕)x1 is large then
)u∕)x1 will likely be small, and likewise for )k∕)x2 and

)u∕)x2. However,

a small spatial derivative of the solute implies that the field is not conforming to the steep underlying deterministic

behavior – and so, in any location with small k-derivatives, u must “catch up”. This expectation is confirmed in

Figure 8.7, which demonstrates a close relationship between the two spatial gradient magnitudes.4

4 Note that these gradients were calculated by finite differences across the mesh – unfortunately, discretization of a PDE makes the true spatial
derivatives unavailable to NMD or any other AD method.
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a b

c d

Figure 8.7: (a) Sample of kwithNy = 100 eigenfunctions. (b) The corresponding stochastic equilibrium solution uuueq
and its deviation ddd = uuueq − uuuℎeat from the deterministic solution. (See Figure 8.6 caption). (c) Magnitude of the same
deviation’s spatial gradient vector ||∇xddd|| (green/blue) overlaid with contours of k (red/orange). (d) ||∇xddd|| overlaid
with contours of ||∇xkkk||. In general and as expected (see text), the field deviation is steepest at the local minima and
maxima of k, i.e, the minima of ||∇xkkk||.

Importantly, both versions of the program (summarized in Figure 8.4 and Figure 8.5) produce identical outputs

f (yyy) for identical input vectors yyy, and when differentiated (as will be shown in Figure 8.9 and Figure 8.10) produce

identical derivatives of f with respect to yyy. With this verification in hand, NMD benchmarks will only be reported for

the second problem, i.e., the one composed purely of matrix operations.
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8.1.6 Adjoint Formulation

As already mentioned repeatedly, one of the most promising applications of Nilpotent Matrix Differentiation is

the higher-order differentiation of the adjoint method, as that approach is itself based on matrix operations – namely,

the manipulation of several key Jacobians. To give a proof-of-concept of this capability, the adjoint method must first

be applied to the diffusion code. Specifically, the discrete variant discussed in Section 3.1.2 is implemented almost

exactly as described there.

To compactly rephrase the method using variables from the (forward) diffusion problem, denote the partial

derivative of any scalar z with respect to vectorwww as the gradient row vector zzzwww; likewise, denote the derivative of any

vector zzz as the Jacobian matrix ZZZwww. Then, given input yyy, solution uuueq(yyy), residual rrr(yyy,uuueq) = 0, and output f (uuueq), the

bulk of the method’s computational effort goes into solving the adjoint equation:

RRRTuuu λλλ = −fff
T
uuu (8.52)

Solving this system yields the adjoint vector λλλ; to compute the gradient df∕dyyy, this can be inserted into the

formula:

df
dyyy

= λλλTRRRyyy + fffyyy (8.53)

For the diffusion problem, the output f is given by Equation 8.50, above, and the residual is:

rrr = AAA(yyy)uuueq + bbb(yyy) = 0 (8.54)

The key derivatives required by the adjoint method are then:
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fffuuu =
2
Nu
(uuueq − uuuℎeat) (8.55)

fffyyy = 0 (8.56)

RRRuuu = AAA (8.57)

[

RRRyyy
]

(⋅,j) =
)rrr
)yj

(8.58)

= )AAA
)yj

uuueq +
)bbb
)xj

(8.59)

The first three derivatives are trivial, but RRRyyy ∈ ℝNd×Ny – the Jacobian of the residual with respect to the input

– must be defined column-wise. The overwhelming majority of the new implementation work goes into finding this

quantity efficiently. Referring to the original discretization Equation 8.34, it can be seen that AAA and bbb only depend on

yyy through linear use of the diffusivity vector k̃̃k̃k, which makes the first step of analytic differentiation straightforward:

)ri
)yj

=
)rn,m
)yj

= 1
Δx2

()kn,m
)yj

− 1
4

()kn+1,m
)yj

−
)kn−1,m
)yj

))

un−1,m

+ 1
Δx2

()kn,m
)yj

− 1
4

()kn,m+1
)yj

−
)kn,m−1
)yj

))

un,m−1

− 4
Δx2

)kn,m
)yj

un,m

+ 1
Δx2

()kn,m
)yj

+ 1
4

()kn+1,m
)yj

−
)kn−1,m
)yj

))

un+1,m

+ 1
Δx2

()kn,m
)yj

+ 1
4

()kn,m+1
)yj

−
)kn,m−1
)yj

))

un,m+1 (8.60)

The derivatives of k are in turn defined by
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K̃ii = k̃i = k0 + exp(g̃i) (8.61)

g̃i = g0 +
Ny
∑

k=1
yk�k�̃ik (8.62)

)g̃i
)yj

= �j�̃ij (8.63)

)K̃ii
)yj

=
)k̃i
)yj

= �j�̃ij exp(g̃i) (8.64)

Thus, )AAA∕)yj and
)bbb∕)yj could be built by replacing k̃̃k̃k in Figure 8.4 and K̃̃K̃K in Figure 8.5 with )k̃̃k̃k∕)yj and

)K̃̃K̃K∕)yj ,

respectively. This yields the most trivial way to buildRRRyyy: construct )AAA∕)yj and
)bbb∕)yj for each yj , then repeatedly apply

Equation 8.59 to find each column; this is, however, quite inefficient. A better way is reuse the diagonal matrix G̃̃G̃G

from the matrix-focused implementation of the problem (but not the diagonal K̃̃K̃K) and build two new (dense) Jacobians

G̃̃G̃Gyyy, K̃̃K̃Kyyy ∈ ℝNu×Ny :

g̃̃g̃g = Φ̃̃Φ̃ΦΛΛΛyyy (8.65)

)g̃̃g̃g
)yj

= �j�(⋅,j) (8.66)

G̃̃G̃Gyyy = Φ̃̃Φ̃ΦΛΛΛ (8.67)

K̃̃K̃Kyyy = expm(G̃̃G̃G)G̃̃G̃Gyyy (8.68)

Note that Equation 8.60 can be used to define values of RRRyyy ∈ ℝNd×Ny at every DoF node, but must index into

the boundaries to do so. Thus, the goal is to first build a whole-mesh matrix R̃̃R̃Ryyy ∈ ℝNu×Ny , then trim it with the map

matrixMMM. This procedure likewise needs access to a vector ũ̃ũu ∈ ℝNu of species concentrations across the whole mesh;

this is built simply by inserting the values of uuueq ∈ ℝNd into the corresponding locations in the BC vector ṽ̃ṽv ∈ ℝNu

(i.e., locations that were set to zero in the original ṽ̃ṽv).

In the original matrix-focused forward problem, k̃̃k̃k was turned into a diagonal matrix K̃̃K̃K, a function of which

was ultimately multiplied with the column vector ṽ̃ṽv. In this case, as K̃̃K̃Kyyy is already a matrix, it cannot be diagonalized;

instead, ũ̃ũu becomes the diagonal matrix Ũ̃ŨU. Each of the four neighbor terms from Equation 8.60 require an offset u and
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k, which can be calculated with the same shift matrices from earlier:

ũi = un,m (8.69)

ũq = u(n+Δn,m+Δm) = Ũ̃ŨUqq (8.70)

= Ũ̃ŨU(Δn,Δm)(i,i) (8.71)

=
[

S̃̃S̃S(Δn,Δm)Ũ̃ŨUS̃̃S̃S(Δn,Δm)
T
]

ii
(8.72)

)k̃i
)yj

=
)kn,m
)yj

= K̃̃K̃Kyyy(i,j) (8.73)

)k̃q
)yj

=
)k(n+Δn,m+Δm)

)yj
(8.74)

= K̃̃K̃Kyyy(Δn,Δm)(i,i) (8.75)

=
[

S̃̃S̃S(Δn,Δm)K̃̃K̃Kyyy
]

(i,j) (8.76)

Knowing these values, R̃̃R̃Ryyy can be built as the sum

R̃̃R̃Ryyy =
1
Δx2

(

−4Ũ̃ŨUK̃̃K̃Kyyy +
∑

(Δn,Δm)

(

S̃̃S̃S(Δn,Δm)Ũ̃ŨUS̃̃S̃S(Δn,Δm)
T
)(

K̃̃K̃Kyyy +
1
4

(

S̃̃S̃S(Δn,Δm)K̃̃K̃Kyyy − S̃̃S̃S(Δn,Δm)
T K̃̃K̃Kyyy

))

)

(8.77)

= 1
Δx2

(

−4Ũ̃ŨU +
∑

(Δn,Δm)

(

S̃̃S̃S(Δn,Δm)Ũ̃ŨUS̃̃S̃S(Δn,Δm)
T
)(

III + 1
4

(

S̃̃S̃S(Δn,Δm) − S̃̃S̃S(Δn,Δm)
T
))

)

K̃̃K̃Kyyy (8.78)

Thus, the target matrix RRRyyy can then be built with a procedure similar to Equations 8.44 through 8.49 and Fig-

ure 8.5, ultimately resulting in the formula:

RRRyyy =MMMT R̃̃R̃Ryyy (8.79)

= 1
Δx2

MMMT

(

−4Ũ̃ŨU +
∑

(Δn,Δm)

(

S̃̃S̃S(Δn,Δm)Ũ̃ŨUS̃̃S̃S(Δn,Δm)
T
)(

III + 1
4

(

S̃̃S̃S(Δn,Δm) − S̃̃S̃S(Δn,Δm)
T
))

)

K̃̃K̃Kyyy (8.80)

Note that every matrix in Equation 8.80 except K̃̃K̃Kyyy is sparse with a single (off-)diagonal; only a single dense

Nd × Ny multiplication is required. Add this to the equally-sized operations used to find g̃̃g̃g (Equation 8.65) and K̃̃K̃Kyyy
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(Equation 8.68), and the entire adjoint method – excluding the forward sweep used to find uuueq – requires threeNd ×Ny

dense matrix multiplications and one linear solution of aNu ×Nu but highly sparse system. For values ofNy used in

practice5 (on the order ofNy ∼ 101−103, compared toNu ∼ 1282−2562 ∼ 104−105) the cost of the solve is several

times that of the matrix creation.

The data-flow of the adjoint code is shown in Figure 8.8.

yyy g̃̃g̃g ∶= Φ̃̃Φ̃ΦΛΛΛyyy

Φ̃̃Φ̃Φ,ΛΛΛ∶= Galerkin()

G̃̃G̃G∶= diag(g̃̃g̃g)

K̃̃K̃K∶= expm(G̃̃G̃G)

S̃̃S̃SΔ,MMM∶= SMfunc()

K̃̃K̃KΔ ∶= S̃̃S̃SΔK̃̃K̃KS̃̃S̃SΔ
T

C̃̃C̃CΔ ∶=
1
Δx2

(

K̃̃K̃K + 1
4

(

K̃̃K̃KΔ − K̃̃K̃K−Δ
)

)

Ã̃ÃAΔ ∶= C̃̃C̃CΔS̃̃S̃SΔ b̃̃b̃bΔ ∶= Ã̃ÃAΔṽ̃ṽv

AAA ∶= MMMT
(

− 4
Δx2
K̃̃K̃K +

∑

Δ Ã̃ÃAΔ
)

MMM

bbb ∶= MMMT
(
∑

Δ b̃̃b̃bΔ
)

uuueq ∶= −AAA−1bbb

fffuuu ∶=
2
Nu

(

uuueq − uuuℎeat
)

Ũ̃ŨU∶= diag(uuueq)G̃̃G̃Gyyy ∶= Φ̃̃Φ̃ΦΛΛΛ K̃̃K̃Kyyy ∶= K̃̃K̃KG̃̃G̃Gyyy

RRRyyy ∶=
1
Δx2
MMMT

(

−4Ũ̃ŨU +
(

∑

Δ

(

S̃̃S̃SΔŨ̃ŨUS̃̃S̃SΔT
)

(

III + 1
4

(

S̃̃S̃SΔ − S̃̃S̃SΔT
)

)))

K̃̃K̃Kyyy λλλ ∶= −
(

AAAT
)−1fffuuu

∇f∇f∇f ∶= λλλTRRRyyy

uuuℎeat∶= HeatSoln()

ṽ̃ṽv∶= BCfunc()

∇f (yyy)

Figure 8.8: Data-flow of the diffusion adjoint problem. White functions represent values that remain constant between
function runs, dark gray represents code that calls inaccessible matrix functions, and blue represents the program API.
Every operation on a variable with a Δ subscript is applied to each of Δ = (Δn,Δm) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.
Functions and data inside the first dotted box are from the forward sweep of the problem; those inside the second box
are from new adjoint code.

5 Recall that when Φ̃̃Φ̃Φ and g̃̃g̃g were built they used a finite element basis withNb = Nu elements, which placed an absolute upper limit ofNy ≤ Nu
on the number of computable eigenfunctions.



152

8.2 Experiments in Nilpotent and Complex Differentiation

Nilpotent Matrix Differentiation was implemented in MATLAB and applied to both versions of the diffusion

program. In the version with many scalar operations, a specially-coded, vectorized and naively inductive AD technique

(see Section 3.3.2) was used for every operation outside the solve. This was coded by hand because arbitrary-order AD

methods are not available for MATLAB, and took the form it did because an efficient implementation would be a very

involved task beyond the scope of this work. A high-level schematic of the modified process is shown in Figure 8.9; as

this version was intended solely for verification of the second, matrix-only version, the precise details are not relevant.

It is only important to know that the calculated values of the two versions matched exactly, to within the precision

of the solver. Together with finite difference approximations and comparisons to known deterministic values (see

Section 8.3), it is safe to say that the matrix program correctly implements the model in all relevant ways.

Operator
Overloading Unaltered

Sparse Solve

Operator
Overloading

���j , �j∶= Galerkin()

ŷ̂ŷy∶= ADtype(yyy)

ĝ̂ĝg =
∑

ŷj�j���j

k̂̂k̂k∶= exp(ĝ̂ĝg)

Â̂ÂA, b̂̂b̂b∶= Abfunc(̂k̂k̂k,vvv)

uuuℎeat∶= HeatSoln()

vvv∶= BCfunc()yyy

f̂∶= 1
Nu

∑
(

ûeq(i) − uℎeat(i)
)2

f∶= RealPart(f̂ )

Df∶= DerivPart(f̂ )

f (yyy)

D
[

f (xxx)
]

Ǎ̌ǍA,̌ b̌b̌b∶= AD2Stencil
(

Â̂ÂA, b̂̂b̂b
)

ǔ̌ǔueq ∶= −Ǎ̌ǍA−1̌b̌b̌b û̂ûueq∶= Stencil2AD
(

ǔ̌ǔueq
)

Figure 8.9: Data-flow of the first, scalar-focused implementation of the diffusion problem, after AD and NMD are
applied. (See caption under Figure 8.5.) Yellow represents new or changed code for scalar AD; orange represents new
NMD code. The majority of the code (but not run-time cost) is the responsibility of scalar AD; NMD only differentiates
the solve. Both the output and the derivatives of this code match the matrix-focused implementation, verifying those
results.

The summary schematic for the NMD-modified matrix program is shown in Figure 8.10. As can be seen there,

the majority of the code modification comes at program initialization and immediately before program output. To use
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the same AD2Stencil() and Stencil2AD() functions as the scalar program (noting that most real-world applications

will have at least some scalar code, and thusmake some use of a standardADmethod), inputs are turned into an operator-

overloaded AD type purely for initialization, then immediately converted to a stencil column vector y̌̌y̌y; likewise, the

final output f is unpacked into an AD variable purely as a convenient container, which then presents resulting data

in the desired format. Considering that no intermediate derivatives are needed, this approach is not the only way –

one could alternatively use a hypothetical InitializeStencil() function to set relevant stencil entries to one, without

ever invoking a scalar AD tool. Indeed, the conversion of the deterministic matrices (white blocks in the figure) into

NMD stencils requires no derivative information, and thus follows the same initialization procedure for real-valued

and AD-overloaded types alike. Likewise, one could use a UnpackStencil() function to organize the final derivative

information into whatever format desired.
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yyy ŷ̂ŷy∶= ADtype(yyy)

y̌̌y̌y, Φ̌̌Φ̌Φ, Λ̌̌Λ̌Λ, Š̌ŠSΔ, Š̌ŠSΔT , M̌̌M̌M, M̌̌M̌MT , v̌̌v̌v, ǔ̌ǔuℎeat ∶= AD2Stencil
(

ŷ̂ŷy,ΦΦΦ,ΛΛΛ,SSSΔ,SSSΔT ,MMM,MMMT ,vvv,uuuℎeat
)

ǧ̌ǧg ∶= Φ̌̌Φ̌ΦΛ̌̌Λ̌Λy̌̌y̌y

ΦΦΦ,ΛΛΛ∶= Galerkin()

Ǧ̌ǦG∶= diag(̌ǧǧg)

Ǩ̌ǨK∶= expm(Ǧ̌ǦG)

SSSΔ,MMM∶= SMfunc()

Ǩ̌ǨKΔ ∶= Š̌ŠSΔǨ̌ǨKŠ̌ŠSΔ
T

Č̌ČCΔ ∶=
1
Δx2

(

Ǩ̌ǨK + 1
4

(

Ǩ̌ǨKΔ − Ǩ̌ǨK−Δ

))

Ǎ̌ǍAΔ ∶= Č̌ČCΔŠ̌ŠSΔ b̌̌b̌bΔ ∶= Ǎ̌ǍAΔv̌̌v̌v

Ǎ̌ǍA ∶= M̌̌M̌MT
(

− 4
Δx2
Ǩ̌ǨK +

∑

Δ Ǎ̌ǍAΔ
)

M̌̌M̌M

b̌̌b̌b ∶= M̌̌M̌MT
(

∑

Δ b̌̌b̌bΔ
)

ď̌ďd ∶= ǔ̌ǔueq − ǔ̌ǔuℎeatǔ̌ǔueq ∶= −Ǎ̌ǍA−1̌b̌b̌b

f̌̌f̌f ∶= 1
Nu
ď̌ďdŤ ď̌ďd

f̂ ∶= Stencil2AD
(

f̌̌f̌f
)

f∶= RealPart(f̂ )

Df∶= DerivPart(f̂ ) D
[

f (yyy)
]

uuuℎeat∶= HeatSoln()ṽ̃ṽv∶= BCfunc()

f (yyy)

Figure 8.10: Data-flow of the second, matrix-only implementation of the diffusion problem after NMD has been
applied. (See caption under Figure 8.5.) Yellow represents new or changed code for scalar AD; orange represents new
NMD code. Almost the entire original program (dashed box) uses unmodified matrix code, with the exception of the
diagonalize and dot-product functions (highlighted in orange), which require custom NMD variants.

As shown in the AD2Stencil() block, the matrix transposes SSSΔT andMMMT are computed before stencil conver-

sion, just as was mentioned in Section 6.2; this is not strictly necessary for these purely real-valued (undifferentiated)

matrices, as blockwise transpose operations are only called for when a stencil is carrying derivative information. In

fact, to make the entire code compatible with NMD, only two blockwise function variants are needed: one to diago-

nalize ǧ̌ǧg (which uses a vector-stencil) into Ǧ̌ǦG (which needs a matrix-stencil), and one to compute the dot product of the

deviation vector ď̌ďd with itself. Both functions are straightforward and only need to be implemented once, after which

they can be applied to any other program. The blockwise diagonalization simply locates each derivative value in ǧ̌ǧg

and places it in the appropriate location(s) in a new block-diagonal matrix Ǧ̌ǦG. The dot product function must unpack

vector-stencils into two matrices – one of many matrix-stencils laid out side by side (a “block row vector”) and one
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of many stacked on top of each other (a “block column vector”). After this, standard matrix multiplication yields a

single stencil, meaning that the program result f̌̌f̌f has been converted from a scalar to a matrix before hand-off to NMD

finalization.

Because the programwas designed from the start to use thematrix exponential expm() function, nomodification

is required there – NMD handles the power series implementation of the function just as well as it does every other

operation. If the original program had applied a standard scalar exponential exp() to each entry in ggg, NMD could

either temporarily unpack the augmented ǧ̌ǧg into a scalar AD vector ĝ̂ĝg, or else simply use Ǧ̌ǦG on a purely temporary basis

before returning to vector form. Note, though, the similarity to the truncated polynomial evaluation of exp() from

Section 4.5: just as a polynomial is represented as a real plus many powers of t, NMD uses a real (identity) basis stencil

plus many nilpotent basis stencils. In theory, a NMD-specific variant of expm could thus be developed that stripped

out derivative data in order to evaluate the real values of a matrix exponential in isolation, before evaluating a much

shorter power series for the derivative data. However, the cost of separating the data would almost certainly outweigh

any savings, let alone the extra implementation burden on the user.

Finally, NMD was also applied to the adjoint code; the schematic is shown in Figure 8.11. Note there that

this application requires three more custom function calls: another diagonalization for the vector ǔ̌ǔu (which uses the

same code used to diagonalize ǧ̌ǧg in the forward problem), a block-transpose of Ǎ̌ǍA before solving the adjoint equation,

and a conversion of λ̌̌λ̌λ into a block row vector before premultiplying with Ř̌ŘRyyy. Note that this last variant means ∇̌f̌∇f̌∇f is

itself in block row form; if it were to be passed to other matrix operations, it would first be converted back to a real

vector, but as is, it can be passed directly into Stencil2AD(). It is true that a switch from vector-matrix to matrix-

matrix multiplication requires a change of code (in BLAS, at least – the MATLAB prototype did not); if this were

truly undesirable, a block-transpose could be used to find ∇̌f̌∇f̌∇f Ť =
(

Ř̌ŘRyyy Ť λ̌̌λ̌λ
)

, which would use a single matrix-vector

multiplication and require no conversion to or from block row form.
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yyy ŷ̂ŷy∶= ADtype(yyy)

y̌̌y̌y, Φ̌̌Φ̌Φ, Λ̌̌Λ̌Λ, Š̌ŠSΔ, Š̌ŠSΔT , M̌̌M̌M, M̌̌M̌MT , v̌̌v̌v, ǔ̌ǔuℎeat ∶= AD2Stencil
(

ŷ̂ŷy,ΦΦΦ,ΛΛΛ,SSSΔ,SSSΔT ,MMM,MMMT ,vvv,uuuℎeat
)

ǧ̌ǧg ∶= Φ̌̌Φ̌ΦΛ̌̌Λ̌Λy̌̌y̌y

ΦΦΦ,ΛΛΛ∶= Galerkin()

Ǧ̌ǦG∶= diag(̌ǧǧg)

Ǩ̌ǨK∶= expm(Ǧ̌ǦG)

Š̌ŠSΔ, M̌̌M̌M∶= SMfunc()

Ǩ̌ǨKΔ ∶= Š̌ŠSΔǨ̌ǨKŠ̌ŠSΔ
T

Č̌ČCΔ ∶=
1
Δx2

(

Ǩ̌ǨK + 1
4

(

Ǩ̌ǨKΔ − Ǩ̌ǨK−Δ

))

Ǎ̌ǍAΔ ∶= Č̌ČCΔŠ̌ŠSΔ b̌̌b̌bΔ ∶= Ǎ̌ǍAΔv̌̌v̌v

Ǎ̌ǍA ∶= M̌̌M̌MT
(

− 4
Δx2
Ǩ̌ǨK +

∑

Δ Ǎ̌ǍAΔ
)

M̌̌M̌M

b̌̌b̌b ∶= M̌̌M̌MT
(

∑

Δ b̌̌b̌bΔ
)

ǔ̌ǔueq ∶= −Ǎ̌ǍA−1̌b̌b̌b

f̌̌f̌fuuu ∶=
2
Nu

(

ǔ̌ǔueq − ǔ̌ǔuℎeat
)

Ǔ̌ǓU∶= diag(̌ǔǔueq)Ǧ̌ǦGyyy ∶= Φ̌̌Φ̌ΦΛ̌̌Λ̌Λ Ǩ̌ǨKyyy ∶= Ǩ̌ǨKǦ̌ǦGyyy

Ř̌ŘRyyy ∶=
1
Δx2
MMMT

(

−4Ǔ̌ǓU +
(

∑

Δ

(

Š̌ŠSΔǓ̌ǓUŠ̌ŠSΔT
)(

III + 1
4

(

Š̌ŠSΔ − Š̌ŠSΔT
))))

Ǩ̌ǨKyyy λ̌̌λ̌λ ∶= −
(

Ǎ̌ǍAŤ
)−1

f̌̌f̌fuuu

∇̌f̌∇f̌∇f ∶= λ̌̌λ̌λŤ Ř̌ŘRyyy

∇̂f ∶= Stencil2AD
(

∇̌f̌∇f̌∇f
)

∇f∶= RealPart(∇̂f )

D
[

∇f
]

∶= DerivPart(∇̂f ) D[∇f ]

uuuℎeat∶= HeatSoln()ṽ̃ṽv∶= BCfunc()

∇f (yyy)

Figure 8.11: Data-flow of the diffusion adjoint problem after NMD has been applied. (See caption under Figure 8.8.)
Yellow represents new or changed code for scalar AD; orange represents new NMD code. Almost every user function
can be used as-is; the exceptions (highlighted in orange) include the diagonalization of ggg and uuu, the transpose ofAAA, and
the transposed row-multiply of λλλTRRRyyy, all of which require custom NMD variants as discussed in the text.

For the forward problem (including the deterministic variant of the matrix-only implementation), NMD was

used both in its simplest form, that of a dual-number stencil, and with a stencil capable of finding all entries of a 2 × 2

Hessian and the corresponding 2-variable gradient:
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DMyyy ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 2)∕)y2 0 )2∕)y22

0 1 0 )∕)y1
)∕)y2

)2∕)y1)y2
0 0 1 0 2)∕)y1

)2∕)y12

0 0 0 1 0 )∕)y2
0 0 0 0 1 )∕)y1
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8.81)

To compare additional approaches, first and second derivatives of the forward codes were also found with

centered finite differences and a single first derivative was found with CD; both were run with a great many step-

sizes, ranging from 106 all the way down to 10−18 (below machine epsilon). Likewise, NMD, FD and CD were all

applied to the adjoint code to find a Hessian-vector product in a random direction vvv; here, NMD was used both with a

single-variable dual stencil and a two-variable first-order stencil to find two products at once:

DMyyy ≡

⎡

⎢

⎢

⎢

⎢

⎣

1 0 )∕)y2
0 1 )∕)y1
0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(8.82)

The same stencil was also used in cardinal directions to find the first two columns of the Hessian, thereby

providing second derivative values to compare against forward NMD and FD for the stochastic problem. First derivative

values of the stochastic problemwere compared against the standard adjoint method (even though the real value of NMD

produced the same results). All derivatives of the deterministic problem, of course, were compared to the analytically-

known values. All accuracy measurements were averaged across ten runs and usedNy = 100 eigenfunctions.

In addition to measuring the accuracy of each method, the wall-clock execution time of every major program

block was measured across many runs, as was the memory requirement of every major matrix. As the matricesΦΦΦ, K̃̃K̃Kyyy,

andRRRyyy were all dense in the undifferentiated problem, they were not converted to sparse format (despite NMD stencils

themselves being sparse) as this would not constitute a fair test for a method designed to have little implementation

effort. All remaining matrices, including S̃̃S̃S, MMM, Ũ̃ŨU, K̃̃K̃K, G̃̃G̃G, and AAA, were sparse to begin with and remained so under

NMD.

Further, although the base code simply used MATLAB’s default backslash operator x = −A∖b to solve the
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system, on the back-end this operation called MATLAB’s built-in UMFPACK sparse solver system; for asymmetric

matrices like AAA, this system applied LU decomposition. The resulting sparse LLL and UUU matrices were invisible to the

user and to the profiling tool, but available under MATLAB’s sparse diagnostic system. Memory requirements for

these matrices are thus provided alongside the others.

8.3 Results: Differentiation Accuracy

The derivative methods were first verified in the forward mode by differentiating the deterministic code and

comparing the results to the analytically known values for the heat equation. Given the boundary conditions

uBC (xxx) =
(

m1x1 + b1
) (

m2x2 + b2
)

(8.83)

where m1 = b1 = 500 and m2 = b2 = 1000, first and second derivatives of u at the middle point of the mesh were

found with respect to m1 and m2; for CD, which is limited to a single first derivative, only )u∕)m1 was found. Relative

root-mean-square errors (RRMSE) of the results are shown in Figure 8.12, plotted against step size for FD and CD; the

RRMSE shown for NMD is from a single evaluation. Note that the figure also includes lines for machine epsilon, the

solve residual, and the upper bound on solution error given by the condition number6 (see the caption).

The important take-away from the figure is the fact that the error in the real quantity of interest (QoI, i.e., u at the

midpoint) is identical to the NMD and CD error in the first derivatives and to the NMD error in the second derivatives

– those methods are, for all intents and purposes, exact. The most striking feature of the data, though, is the behavior

of the finite difference method: extremely large step-sizes ℎ – on the order of 104 or higher – actually produced results

precise to near machine epsilon and better than the solve residual itself. This is likely due to the nature of the chosen

BCs and the corresponding analytic solution – each derivative is linearly dependent on at most a singlem-value, so that

any slope equation is insensitive to step-size ℎ = Δm. When the step-size is so large as to dominate the other values,

the calculation in fact becomes more accurate. The same behavior leads to similarly accurate values for CD, although

the properties of that method prevent error from ever setting in for smaller ℎ – first derivatives have the same precision

6 Importantly, the condition number ofAAA did not change under NMD.
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Figure 8.12: Comparison of derivative error vs known values of the deterministic heat equation, plotted against the
step-size used for FD and CD. Note that CD and NMD have almost exactly the same error as the real output itself –
those lines all overlap. In the case of FD, very large step-sizes produce surprisingly accurate values, due to the unusual
circumstances described in the text; however, if the user does not try these abnormal ℎ-values, error can be very high.

For reference, both the relative residual ||rrr|| of the linear solution and the upper bound on solution error given the
given condition number �(AAA) (both found with the l1 norm) are also provided, along with machine epsilon. These
are admittedly imperfect comparisons, as the other values represent RRMSE (relative root-mean-square error) in the
derivatives of the quantity of interest, not the linear solution; however, as the system solution is the major bottleneck
in the program’s accuracy, these values give at least some intuition into the best-case behavior.

for any step-size.

This is most certainly not something one can count on in production codes. More than this, note that if analytic

derivatives were not available, most users would not think to try such unintuitively large values of ℎ. In fact, the first

guess for a step size is often that which sets the error order of the FD approximation equal to the order of the subtractive

cancellation error [61]; for the
(

ℎ2
)

centered difference method and (for first derivatives)
(

eps∕ℎ
)

cancellation error,

where eps ≈ 10−16 is machine epsilon, this leads to:
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(

ℎ2
)

∼ 
(

10−16
ℎ

)

(8.84)

ℎ3 ∼ 10−16 (8.85)

ℎ ∼ 5 × 10−6 (8.86)

However, as can be seen in the figure, this value of ℎ only yields roughly five significant figures; compare this

to the eleven or twelve figures possible with CD or NMD. Meanwhile, the first-guess ℎ for the Hessian would likely

be:


(

ℎ2
)

∼ 
(

10−16

ℎ2

)

(8.87)

ℎ4 ∼ 10−16 (8.88)

ℎ ∼ 10−4 (8.89)

which leads to an RRMSE on the order of 100 – that is, second-order FD yields no significant figures at all; for the

guessed step-size, it is useless for differentiation purposes. For its part, NMD still finds eleven or twelve figures, while

CD cannot find second derivatives at all.

Next, for the forward stochastic problem, derivatives of f were found with respect to y1 and y2; results are

shown in Figure 8.13. As true values are unknown, this plot represents relative difference from the real-valued adjoint

method (for first derivatives) and from the NMD-adjoint method (for second derivatives); the close agreement of all

values indicates this is a fair comparison. As can be seen, for the stochastic problem forward NMD and CD produce

values that differ from the adjoints by roughly the same magnitude. This difference is very slightly more than would be

implied by the upper bound imposed by the condition number ofAAA – note, however, that the condition number reported

by MATLAB for sparse matrices uses the l1 norm7 , whereas reported errors are the RRMSE of the derivatives of f ,

and thus cannot be used as a true “apples-to-apples” comparison. Regardless, NMD and CD both provide nine or more

7 The residual also uses the l1 norm.
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significant figures of accuracy.

Figure 8.13: Error in stochastic forward-mode methods as compared to adjoint methods. All forward methods are
used to find derivatives of the first two y-values. Error in the gradient is as compared to the ordinary adjoint method;
error in the Hessian is as compared to a first-order NMD-adjoint hybrid. Other reference values are as described in
Figure 8.12.

In this problem, the error behavior for FD and CD is closer to what one might expect, but the ideal ℎ for FD

is again surprisingly large – 10−1 for the gradient and 101 for the Hessian. (Note that, as each y is a standard normal

variable, ℎ ∼ 10 represents ten standard deviations away from the mean.) In this case, the reason is likely the choice

of f (uuu): because diffusion is by nature a smoothing process, the mean squared deviation is very insensitive to changes

in yyy. Once again, the typical first guesses for ℎ would lead to very inaccurate values – only three significant figures for

the gradient and none for the Hessian. Again, without careful parameter searching FD would be useless for calculating

second derivatives.

Finally, FD, CD, and NMD were used to find a Hessian-vector product by taking a single first derivative of the

adjoint code; results are shown in Figure 8.14. In this case, values were compared to that of NMD, as it is the only

method theoretically guaranteed to find the exact derivative; again, close agreement of the results indicates this is a

fair comparison. Once again, CD – and, presumably, NMD – found the result to ten or more significant figures, while
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FD again had the same anomalous error behavior. The typical first guess of ℎ would yield less than three significant

figures.

Figure 8.14: Relative difference of stochastic FD and CD Hessian-vector values as compared to NMD. The difference
for CD is of the same order as numerical error and as errors from Figure 8.12 and Figure 8.13, implying NMD and CD
both have relative errors of the same order.

8.4 Results: Differentiation Costs

Given the experiments described in Section 8.2 and the desired derivatives found in Section 8.3, four variants of

both the forward and adjoint problem (i.e., a grand total of eight) were run: a real-valued (i.e., unmodified) variant for

finite differencing; a complex-valued variant for CD; and the two stencil-expanded variants for NMD – as described in

Section 8.2, a 2×2 and a 6×6 stencil for the forward mode and a 2×2 and a 3×3 stencil for the adjoint. As the diffusion

problem has a wide array of input parameters, a combinatoric number of benchmarks are possible. However, the two

major factors in the time and memory cost of the underlying program are the number of mesh nodesNu (i.e., the model

fidelity) and the number of eigenfunctions Ny (i.e., the number of inputs). Therefore, differentiation methods were
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tested against a wide array of both values – first, by holding Ny = 100 fixed and varying the number of nodes from

Nu = 162 = 256 up to a maximum of Nu = 2562 = 65536, then by holding Nu fixed at that maximum and varying

Ny from 22 = 4 up to 202 = 400. At each parameter setting, all major program steps were timed and the memory

requirements of all large matrices were recorded. Plots of these time and memory costs, including detailed captions,

can be found in Appendix A.

In terms of the cost versus the number of eigenfunctionsNy (plotted and discussed case by case in Section A.1),

two important trends stand out: first, the costs of both the forward code and the adjoint were linearly dependent on

this quantity, i.e., 
(

Ny
)

; second, the costs of both CD and NMD were a constant multiple of the code to which they

were applied, i.e., the cost of applying either method to a given code was (1). The first observation is unfortunate,

especially for the adjoint code, which one would hope to be independent of the number of inputs; it is due to the fact

that the cost of sampling the diffusivity field or building the Jacobians thereof will always be linearly dependent on the

number of eigenfunctions or on the number of independent differentiation variables. Note, though, that this was a very

largeNy – for comparison, the other published work [47] that built an adjoint of this problem used onlyNy = 30. For

large meshes and Ny in that range, the cost of sampling or building the Jacobians would be lost in the noise, leaving

an effectively (1) problem. The same can be said of any adjoint method where the cost of the solve significantly

outweighs the cost of problem setup.

The second observation is much more pertinent to this work and much more promising: in the both the forward

and adjoint modes, the additional cost of applying either CD or NMD was entirely independent of Ny. This was

expected for the forward mode, but the adjoint result is crucial: assuming a truly (1) gradient method, effectively

exact Hessian-vector products can likewise be found via either approach in (1) time, independent of the number of

inputsNy; if desired, the full Hessian can thus be found in 
(

Ny
)

.

Comparisons across multiple mesh sizes Nu (see Section A.2) – that is, across varying problem difficulties –

were more concerning: while the cost of applying almost all functions was independent of Nu, the major exception

was the all-important solve. Specifically, the time costs of sparse system solution using NMD grew faster than the

underlying problem. After some investigation, this was traced to the LU factorization performed automatically by

MATLAB, where memory costs were also shown to grow disproportionately. As alluded to in Section 8.2, when the

user invokes the backslash operator x = −A∖b on a matrixAAA, MATLAB executes a decision tree to determine how best
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to solve the system. In the case of asymmetric matrices (like those for both the real- and nilpotent-valued diffusion

problem), it builds the lower and upper triangular matrices LLL andUUU via its built-in implementation of the UMFPACK

(Unsymmetric MultiFrontal PACKage) [122] library.

As stated in Chapter 6, any operation that respects a stencil’s hypercomplex isomorphism will propagate deriva-

tives. The process of fully inverting a matrix, being the inverse of the very multiplication operation that stencils are

built to represent, is one such operation – and thus, so is any system solver that only finds a vector without building the

full matrix inverse. However, as stated in Section 6.2, algorithms that operate on a single row or column at a time are

almost certain to destroy the stencil structure, and thus the isomorphism. LU factorization is one such algorithm.

The process of LU factorization, then, presents a paradox: even though it is used as an intermediate step before

system solution, it operates column by column and cannot be expected to respect NMD’s block structure. In practice,

though, the algorithm can reach the correct result – it simply takes a much longer route to find it. In the process of

building the sparse factors, it generates more non-zero scalar values than should be expected from the sparsity pattern

of a given stencil; in fact, it can require more than twice the memory one would get even from dense fill-in of the stencil

(see Figure A.11). The time required for factorization (which in fact dominates the cost of the backslash operator) of

course grows proportionately to the size of LLL andUUU, as does the time required for the solve itself.

Although unfortunate, this behavior is not catastrophic for practical usage of NMD. Note that throughout Sec-

tion A.2, the costs of the solve and factorization form a straight line on a semilog plot; this implies logarithmic – i.e.,

sublinear – growth versusNu, which might considered quite respectable in any other context.

Before closing this section and with it all discussion of the diffusion proof of concept, note that the appendix

does not plot the NMD custom variants of the transpose, diagonalize, and dot-product functions, nor does it plot the cost

to initialize NMDmatrices. The is because the cost of these operations is highly implementation-specific, while the test

code is only a very rough prototype. It is sufficient to know that the relative cost of each custom variant was constant

versus Ny, while the absolute8 cost of initial stencil construction was linear in Ny (i.e., just like the cost of sampling

the field – if the cost of using the eigenfunctions was constant, NMD initialization would be, as well); likewise, each

function was linear with respect to the number of non-zero values (and thus with respect toNu) on which it operated.

8 The cost of stencil initialization cannot be expressed as a relative ratio, as there is nothing to compare it against.
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Conclusions

This work has shown that hypercomplex algebras with nilpotent elements can be used as an alternate analytic

framework to discuss high-order differentiation of computer code. For purely scalar functions – that is, those that op-

erate on individual real- or complex-valued numbers – nilpotent (and most other non-real) elements have only limited

real-world use as a practical tool, as existing codes must be modified to compute the non-real values; for matrix func-

tions, however, new options become available. Given the new analytic framework, isomorphisms can be constructed

to represent values from any hypercomplex algebra as purely real-valued matrices that store values in very specific

patterns, termed “stencils.” If a stencil is used to blockwise replace each element of another, pre-existing matrix, the

resulting structure can differentiate functions in identical fashion to numbers from the scalar hypercomplex algebra –

i.e., the modified matrix will carry derivatives of the original matrix, despite using only real numbers and only call-

ing unaltered code meant for the original matrix. Once imbued with this information, functions of the new matrix

or matrices will compute the chain rule with regard to most operations, including basic arithmetic, power series, and

system solvers. Many other operations such as transposition, diagonalization, or the dot product can easily be replaced

with variants that likewise propagate derivatives. All such computed values are exact to within the precision of the

underlying matrix routines themselves.

The concept of derivative stencils, combined with the analytic framework used to derive and construct them,

form a new method called Nilpotent Matrix Differentiation (NMD). Use of this method allows developers of existing

linear-algebra-intensive codes to find derivatives of long sequences of matrix operations after only modifying the initial

matrices of each sequence; alternatively, even differentiation of short sequences can be made easier when the number

or order of derivatives is expected to change between program runs – beyond the trivial redefinition of the problem’s
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stencil, no additional implementation is required to effect such a change. This ability to find derivatives with compar-

atively little human programming effort makes NMD an automatic differentiation (AD) method, with its own niche

among the broad array of existing AD tools.

One particularly useful application of NMD is a hybrid approach with the existing first-order discrete adjoint

method, which constructs a series of intermediate Jacobian matrices in order to solve for an entire gradient with a cost

that may be independent of the number of program inputsN . Applying a first-order stencil to the Jacobian matrices can

compute one or more implicit Hessian-vector products without evaluating the full Hessian, again with cost independent

ofN . If the vectors in question are basis vectors in cardinal directions, the entire Hessian can be computed one column

at a time with a cost linearly dependent on N , which makes NMD competitive with existing second-order adjoint

approaches that require far more implementation effort. Further, the application of second- or higher-order stencils can

find higher derivatives with similarly reduced cost.

As a proof of concept, both standalone and adjoint NMDwere applied to a stochastic diffusion problem that took

as input many coefficients for a Karhunen-Loève expansion of a random diffusivity field. First and second derivatives

of this problem were found with exactly the same precision as that of the original outputs, as were Hessian-vector

products. The cost of the calculation was disproportionate to the amount of new information found, but the same could

be said of many AD tools.

As a corollary contribution, it was shown that the existing complex-step differentiation (CD) technique can

likewise be applied to the adjoint method to find a Hessian-vector product. If existing code is complex-analytic and

purely real-valued at all steps, the CD-adjoint hybrid is a superior choice because it has a significantly lower cost.



Bibliography

[1] Christian H Bischof, Alan Carle, George F Corliss, Andreas Griewank, and Paul D Hovland. ADIFOR: Gener-
ating derivative codes from fortran programs. Scientific Programming, 1992.

[2] Christian H Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0: Automatic differentia-
tion of fortran 77 programs. IEEE Computational Science & Engineering, 1996.

[3] Christian H Bischof, Lucas Roh, and Andrew Mauer. ADIC — an extensible automatic differentiation tool for
ANSI-C. Software–Practice and Experience, 1997.

[4] J D Pryce and J K Reid. A fortran 90 code for automatic differentiation. tech. rep. ral-tr-1998-057. Technical
report, Chilton, Didcot, Oxfordshire., 1998.

[5] Eric T Phipps, Roscoe A Bartlett, Gay M David, and Robert J Hoekstra. Large-scale transient sensitivity anal-
ysis of a radiation-damaged bipolar junction transistor via automatic differentiation. Advances in Automatic
Differentiation, 2008.

[6] A Walther and A Griewank. Getting started with ADOL-C. In Combinatorial Scientific Computing, pages
181–202. Chapman-Hall CRC Computational Science, 2012.

[7] L Hascoët and V Pascual. The Tapenade automatic differentiation tool: Principles, model, and specification.
ACM Transactions on Mathematical Software, 2013.

[8] Mark Schmidt. minfunc. http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005.

[9] Openmdao. http://openmdao.org/, 2005.

[10] HEEDS MDO. http://www.redcedartech.com/products/heeds_mdo, 2016.

[11] Michael S Eldred, Anthony A Giunta, Samuel S Collis, et al. Second-order corrections for surrogate-based
optimization with model hierarchies. American Institute of Aeronautics and Astronautics, 2004.

[12] William W Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient methods. Pacific journal of
Optimization, 2(1):35–58, 2006.

[13] James W Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAM Journal on
Numerical Analysis, 4(1):10–26, 1967.

[14] Neculai Andrei. Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained op-
timization. Optimization Methods and Software, 22(4):561–571, 2007.

[15] Neculai Andrei. Accelerated conjugate gradient algorithm with finite difference hessian/vector product approx-
imation for unconstrained optimization. Journal of Computational and Applied Mathematics, 230(2):570–582,
2009.

[16] James Martens. Deep learning via hessian-free optimization. Proceedings of the 27th International Conference
on Machine Learning, 2010.

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://openmdao.org/
http://www.redcedartech.com/products/heeds_mdo


168

[17] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimization. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 1033–1040, 2011.

[18] Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, and Martin Takác. Large scale distributed hessian-free
optimization for deep neural network. CoRR, abs/1606.00511, 2016.

[19] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 1993.

[20] Mike B Giles. Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In
Advances in Automatic Differentiation, pages 35–44. Springer, 2008.

[21] I Ozak, F Kimura, and M Berz. Higher-order sensitivity analysis of finite element method by automatic differ-
entiation. Computational Mechanics, 16:223–234, 1995 1995.

[22] Markus P Rumpfkeil, Wataru Yamazaki, and Dimitri J Mavriplis. Design optimization utilizing gradient/hessian
enhanced surrogate model. 2010.

[23] Markus P Rumpfkeil and Dimitri J Mavriplis. Efficient hessian calculations using automatic differentiation and
the adjoint method with applications. AIAA journal, 48(10):2406–2417, 2010.

[24] Markus P Rumpfkeil, Wataru Yamazaki, and Dimitri J Mavriplis. Uncertainty analysis utilizing gradient and
hessian information. In Computational Fluid Dynamics 2010, pages 261–268. 2011.

[25] D. I. Papadimitriou and K. C. Giannakoglou. Direct, adjoint and mixed approaches for the computation of
hessian in airfoil design problems. International Journal for Numerical Methods in Fluids, 56:1929–1943, 2008.

[26] Jeffrey Alan Fike. Multi-objective optimization using hyper-dual numbers. PhD thesis, Stanford University,
2013.

[27] Neculai Andrei. A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization.
Applied Mathematics Letters, 20(6):645–650, 2007.

[28] Stephen G Nash. A survey of truncated-newton methods. Journal of Computational and Applied Mathematics,
124(1):45–59, 2000.

[29] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 14(7):1723–1738, 2002.

[30] H Pearl Flath, Lucas C Wilcox, Volkan Akçelik, Judith Hill, Bart van Bloemen Waanders, and Omar Ghattas.
Fast algorithms for bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank
partial hessian approximations. SIAM Journal on Scientific Computing, 33(1):407–432, 2011.

[31] Alexander Kalmikov and Patrick Heimback. A hessian-based method for uncertainty quantification in global
ocean state estimations. SIAM Journal of Scientific Computing, 36:S267–S295, 2014.

[32] Raphael T Haftka. Second-order sensitivity derivatives in structural analysis. AIAA journal, 20(12):1765–1766,
1982.

[33] Raphael T Haftka and Z Mroz. First- and second-order sensitivity analysis of linear and nonlinear structures.
AIAA journal, 24(7):1187–1192, 1986.

[34] Hil Meijer, Fabio Dercole, and Bart Oldeman. Numerical bifurcation analysis. In Encyclopedia of Complexity
and Systems Science, pages 6329–6352. Springer, 2009.

[35] PG Drazin and Y Tourigny. Numerical study of bifurcations by analytic continuation of a function defined by a
power series. SIAM Journal on Applied Mathematics, 56(1):1–18, 1996.

[36] Martin Berz. Differential algebraic description of beam dynamics to very high orders. Part. Accel., 24(SSC-
152):109–124, 1988.



169

[37] Pascal Sebah and Xavier Gourdon. Newton’s method and high order iterations. 2001.

[38] Annie AMCuyt and Louis B. Rall. Computational implementation of the multivariate halley method for solving
nonlinear systems of equations. ACM Transactions on Mathematical Software (TOMS), 11(1):20–36, 1985.

[39] G Lantoine, R P Russell, and T Dargent. Using multicomplex variables for automatic computation of high-order
derivatives. ACM Transactions on Mathematical Software, 38, 2012 2012.

[40] Alberto Abad. Computing derivatives of a gravity potential by using automatic differentiation. Celestial
Mechanics and Dynamical Astronomy, 117:187–200, 2013 2013.

[41] Nicol N Schraudolph and Thore Graepel. Combining conjugate directionmethods with stochastic approximation
of gradients. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, 2003.

[42] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. Society for Industrial and Applied Mathematics, 2008.

[43] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems,
volume 49. 1952.

[44] Ronald L Iman and JonCHelton. An investigation of uncertainty and sensitivity analysis techniques for computer
models. Risk analysis, 8(1):71–90, 1988.

[45] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume 1. Wiley New York, 2000.

[46] Andrea Saltelli, Stefano Tarantola, and Francesca Campolongo. Sensitivity analysis as an ingredient of model-
ing. Statistical Science, pages 377–395, 2000.

[47] Ji Peng, Jerrad Hampton, and Alireza Doostan. On polynomial chaos expansion via gradient-enhanced l1-
minimization. Journal of Computational Physics, 310:440–458, 2016.

[48] André I Khuri and Siuli Mukhopadhyay. Response surface methodology. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(2):128–149, 2010.

[49] Wataru Yamazaki and Dimitri J Mavriplis. Derivative-enhanced variable fidelity surrogate modeling for aero-
dynamic functions. AIAA journal, 51(1):126–137, 2012.

[50] Yonas B Dibike, Slavco Velickov, Dimitri Solomatine, and Michael B Abbott. Model induction with support
vector machines: introduction and applications. Journal of Computing in Civil Engineering, 15(3):208–216,
2001.

[51] J Sreekanth and Bithin Datta. Multi-objectivemanagement of saltwater intrusion in coastal aquifers using genetic
programming and modular neural network based surrogate models. Journal of Hydrology, 393(3):245–256,
2010.

[52] Rudolph van der Merwe, Todd K Leen, Zhengdong Lu, Sergey Frolov, and Antonio M Baptista. Fast neural
network surrogates for very high dimensional physics-based models in computational oceanography. Neural
Networks, 20(4):462–478, 2007.

[53] MS Eldred and DM Dunlavy. Formulations for surrogate-based optimization with data fit, multifidelity, and
reduced-order models. American Institute of Aeronautics and Astronautics, 2006.

[54] Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current science, 78(7):808–817,
2000.

[55] NataliaMAlexandrov, John EDennis Jr, RobertMichael Lewis, andVirginia Torczon. A trust-region framework
for managing the use of approximation models in optimization. Structural optimization, 15(1):16–23, 1998.

[56] Danny C Sorensen. Newton’s method with a model trust region modification. SIAM Journal on Numerical
Analysis, 19(2):409–426, 1982.



170

[57] Steven T Smith. Optimization techniques on riemannian manifolds. 1994.

[58] Craig Bakker, Geoff T Parks, and Jerome P Jarrett. On the application of differential geometry to MDO. In 12th
Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSMOMultidisciplinary
Analysis and Optimization Conference. AIAA.

[59] C Bakker, GT Parks, and JP Jarrett. Optimization algorithms and ode’s in mdo. In ASME 2013 Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME,
Portland, Oregon, 2013.

[60] Bruno Cochelin and Marc Medale. Power series analysis as a major breakthrough to improve the efficiency of
asymptotic numerical method in the vicinity of bifurcations. Journal of Computational Physics, 236:594–607,
2013.

[61] B. Fornberg. Finite difference method. Scholarpedia, 6(10):9685, 2011. revision no. 91262.

[62] J. N. Lyness and C. B. Moler. Numerical differentiation of analytic functions. SIAM Journal on Numerical
Analysis, 4:202–210, 1967.

[63] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J Alonso. The complex-step derivative approximation. ACM
Transactions on Mathematical Software, 29:245–262, 2003.

[64] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of Computation,
51:699–706, 1988.

[65] B. Fornberg. Calculation of weights in finite difference formulas. SIAM Review, 40:685–691, 1998.

[66] Michael B Giles and Niles A Pierce. An introduction to the adjoint approach to design. Flow, turbulence and
combustion, 65(3-4):393–415, 2000.

[67] AndrewM. Bradley. Pde-constrained optimization and the adjoint method. Tutorial, Stanford Computer Science,
2013.

[68] Larry L. Green Perry A. Newman GeneW. Hou Laura L. Sherman, Arthur C. Taylor III and Vamshi Mohan Ko-
rivi. First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental
iterative methods. JOURNAL OF COMPUTATIONAL PHYSICS, 129:307–331, 1996.

[69] Gene J-W Hou and Jeenson Sheen. Numerical methods for second-order shape sensitivity analysis with applica-
tions to heat conduction problems. International journal for numerical methods in engineering, 36(3):417–435,
1993.

[70] Devendra Ghate and Michael B Giles. Efficient hessian calculation using automatic differentiation. In 25th
AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, Inc, 2007.

[71] Tools for automatic differentiation. http://www.autodi�.org/?module=Tools. Accessed 2016-10-08.

[72] Andreas Griewank. On automatic differentiation. In Masao Iri and K. Tanabe, editors, Mathematical
Programming, pages 83–108. Kluwer Academic Publishers, Dordrecht, 1989.

[73] L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova. Programs for automatic differentiation for the
machine BESM. Technical Report, Institute for Precise Mechanics and Computation Techniques, Academy of
Science, Moscow, USSR, 1959. (In Russian).

[74] Masao Iri. Simultaneous computation of functions, partial derivatives and estimates of rounding errors : Com-
plexity and practicality. Departmental bulletin paper, Kyoto University, 1984.

[75] COmputational INfrastructure for Operations Research (COIN-OR). Automatic Differentiation by OverLoading
in C++ (ADOL-C). ADOL-C 2.6.2 Online Documentation.

http://www.autodiff.org/?module=Tools


171

[76] Anthony S. Wexler. An algorithm for exact evaluation of multivariate functions and their derivatives to any
order. Computational Statistics & Data Analysis, 6(1):1 – 6, 1988.

[77] Richard D. Neidinger. An efficient method for the numerical evaluation of partial derivatives of arbitrary order.
ACM Trans. Math. Softw., 18(2):159–173, June 1992.

[78] Andreas Griewank, Jean Utke, and AndreaWalther. Evaluating higher derivative tensors by forward propagation
of univariate taylor series. Mathematics of Computation of the American Mathematical Society, 69(231):1117–
1130, 2000.

[79] AndreaWalther. Computing sparse hessians with automatic differentiation. ACMTransactions onMathematical
Software (TOMS), 34(1):3, 2008.

[80] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your jacobian? graph coloring
for computing derivatives. SIAM review, 47(4):629–705, 2005.

[81] LAPACK–Linear Algebra PACKage. http://www.netlib.org/lapack/, 2015.

[82] Intel® MKL. Intel® Math Kernel Library. https://software.intel.com/en-us/intelmkl, 2016.

[83] OpenBLAS: An optimized BLAS library. http://www.openblas.net/, 2016.

[84] Apple iOS Library. Accelerate Framework Reference. https://developer.apple.com/library/ios/
documentation/Accelerate/Reference/AccelerateFWRef/, 2016.

[85] Paul S Dwyer and MS MacPhail. Symbolic matrix derivatives. The annals of mathematical statistics, pages
517–534, 1948.

[86] Christian H. Bischof, H. Martin Bücker, Bruno Lang, Arno Rasch, and Andre Vehreschild. Combining
source transformation and operator overloading techniques to compute derivatives for MATLAB programs. In
Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2002), pages 65–72, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[87] Christian Bischof, Bruno Lang, and Andre Vehreschild. Automatic differentiation for matlab programs. PAMM,
2(1):50–53, 2003.

[88] Sandia National Laboratories. Trilinos home page. Trilinos Online Documentation (https://trilinos.org/).

[89] Sandia National Laboratories. Sacado: Automatic differentiation tools for C++ applications. Trilinos Online
Documentation (https://trilinos.org/docs/dev/packages/sacado/doc/html/index.html).

[90] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[91] Cleve B. Moler. Complex step differentiation. http://blogs.mathworks.com/cleve/2013/10/14/
complex-step-di�erentiation/, 2013.

[92] William Squire and George Trapp. Using complex variables to estimate derivatives of real functions. SIAM
Review, 40:110–112, 1998.

[93] JoaquimR. R. A.Martins. A COUPLED-ADJOINTMETHODFORHIGH-FIDELITYAERO-STRUCTURAL
OPTIMIZATION. PhD thesis, stanford university, 2002,

[94] Awad H. Al-Mohy and Nicholas J. Higham. The complex step approximation to the fréchet derivative of a
matrix function. Numerical Algorithms, 53(1):133, 2009.

[95] Corrado Segre. The real representation of complex elements and hyperalgebraic entities (italian). Mathematische
Annalen, 40:413–67, 1892.

[96] G Baley Price. An Introduction to Multicomplex Spaces and Functions. Marcel Dekker, 1991.

http://www.netlib.org/lapack/
https://software.intel.com/en-us/intelmkl
http://www.openblas.net/
https://developer.apple.com/library/ios/documentation/Accelerate/Reference/AccelerateFWRef/
https://developer.apple.com/library/ios/documentation/Accelerate/Reference/AccelerateFWRef/
https://trilinos.org/
https://trilinos.org/docs/dev/packages/sacado/doc/html/index.html
http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/


172

[97] Benjamin Z Dunham and Ryan P Starkey. Qcg: Quasicomplex gradients for efficient and accurate computation
of any-order derivative tensors. In 12th Aviation Technology, Integration and Operations (ATIO) Conference
and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA.

[98] W K Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London Mathematical Society, 4:381–
395, 1873.

[99] Barak A Pearlmutter and Jeffery Mark Siskind. Lazy multivariate higher-order forward-mode ad. 2007.

[100] bxsfan [pseud.]. ad4julia/DualNumbers.jl. https://github.com/bsxfan/ad4julia/blob/master/
DualNumbers.jl, 2013.

[101] Jeffrey Fike. hyperdual.h. http://adl.stanford.edu/hyperdual/hyperdual.h, 2014.

[102] Jeffrey A Fike and Juan J Alonso. The development of hyper-dual numbers for exact second-derivative calcula-
tions. In 49th AIAAAerospace SciencesMeeting including the NewHorizons Forum andAerospace Exposition.
AIAA.

[103] Juan J. Alonso Jeffrey A. Fike, Sietse Jongsma and Edwin van derWeide. Optimization with gradient and hessian
information calculated using hyper-dual numbers. In 29th AIAA Applied Aerodynamics Conference. AIAA.

[104] Jeffrey A Fike and Juan J Alonso. Automatic differentiation through the use of hyper-dual numbers for second
derivatives. volume 87 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2012.

[105] Joaquim RRA Martins and John T Hwang. Review and unification of methods for computing derivatives of
multidisciplinary computational models. AIAA journal, 51(11):2582–2599, 2013.

[106] anon. adnumber: Software to compute derivatives of arbitrary order to machine precision.

[107] ELEKS Software. eleks/ADEL: Template-based automatic differentiation library.

[108] Dario Izzo and Francesco Biscani. The algebra of truncated polynomials. http://darioizzo.github.io/audi/
theory.html, 2015.

[109] COmputational INfrastructure for Operations Research (COIN-OR). A Package for Differentiation of C++
Algorithms. ADOL-C 2.6.2 Online Documentation.

[110] Ramon E Moore. Methods and applications of interval analysis, volume 2. SIAM.

[111] Richard D Neidinger. Computing multivariable taylor series to arbitrary order. In ACM SIGAPL APL Quote
Quad, volume 25, pages 134–144. ACM, 1995.

[112] Richard Neidinger. Directions for computing truncated multivariate taylor series. Mathematics of computation,
74(249):321–340, 2005.

[113] Kantor and Solodovnikov. Hypercomplex numbers. Springer-Verlag, Berlin, New York, 1978 (in German),
1989 (in English).

[114] Karen Parshall. Wedderburn and the structure of algebras. Archive for History of Exact Sciences, 32:223–349,
1985.

[115] O Knill. Lecture notes in linear algebra and differential equations – Exhibit: Other Numbers. http://www.
math.harvard.edu/archive/21b_spring_08/exhibits/dualnumbers/, 2008.

[116] E. W. Weisstein. Dual number. http://mathworld.wolfram.com/DualNumber.html.

[117] E. W. Weisstein. Exact numeric Nth derivatives. http://jliszka.github.io/2013/10/24/
exact-numeric-nth-derivatives.html, 2013.

[118] Bogdan V. Constantin. Application of the complex step method to chemistry-transport modeling. Master’s
thesis, Massachusetts Institute of Technology, 5 2014.

https://github.com/bsxfan/ad4julia/blob/master/DualNumbers.jl
https://github.com/bsxfan/ad4julia/blob/master/DualNumbers.jl
http://adl.stanford.edu/hyperdual/hyperdual.h
http://darioizzo.github.io/audi/theory.html
http://darioizzo.github.io/audi/theory.html
http://www.math.harvard.edu/archive/21b_spring_08/exhibits/dualnumbers/
http://www.math.harvard.edu/archive/21b_spring_08/exhibits/dualnumbers/
http://mathworld.wolfram.com/DualNumber.html
http://jliszka.github.io/2013/10/24/exact-numeric-nth-derivatives.html
http://jliszka.github.io/2013/10/24/exact-numeric-nth-derivatives.html


173

[119] A. Hakami D. K. Henze and J. H. Seinfeld. Development of the adjoint of geos-chem. Atmospheric Chemistry
and Physics, 7:2413–2433, 2007.

[120] Ruye Wang. E161: Computer Image Processing and Analysis – Karhunen-Loeve Transform (KLT). http:
//fourier.eng.hmc.edu/e161/lectures/klt/node3.html, 2016.

[121] Alireza Doostan. ASEN 6619/MCEN 6228 Uncertainty Quantification, Lecture 6 Notes, 2011.

[122] TIMOTHY A. DAVIS and IAIN S. DUFF. An unsymmetric-pattern multifrontal method for sparse lu factor-
ization. SIAM Journal of Matrix Analysis Applications, 18(1):140–158, 1997.

http://fourier.eng.hmc.edu/e161/lectures/klt/node3.html
http://fourier.eng.hmc.edu/e161/lectures/klt/node3.html


Appendix A

Time and Memory Benchmarks
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A.1 Costs vs Number of Eigenfunctions

A.1.1 Original Forward Problem

Wall-Clock Time of Program Steps Memory Requirements of Matrices

Cumulative Wall-Clock Time Cumulative Memory Requirements

Figure A.1: Costs of the original matrix-focused diffusion simulation (before differentiation was applied), excluding
cost of the KLE, as a function of the number of eigenfunction coefficients Ny (i.e., the number of program inputs).
Left column: time-cost of each significant program step. Right: memory cost of the biggest matrices. Top: Individual
costs. Bottom: Cumulative cost.

For the forward problem, only the size of the eigenfunction matrix Φ is dependent on Ny (linearly so), and only the
calculation of ggg is in turn dependent on Φ. All other costs, including the solve, are independent of Ny. Total costs of
the program are thus 

(

Ny
)

, although the overwhelming majority of the computation – even for largeNy – is (1).
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A.1.2 Forward Complex-Step Differentiation

Time Relative to Original Memory Relative to Original

Figure A.2: Relative costs of the forward code after CD has been applied. Each line represents fractional increase of
cost compared to original program. All cost-growth is independent of Ny – if the original was (1), then CD would
be, as well.

A.1.3 Forward Dual-Number Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.3: Relative costs of the forward code under dual-number NMD. All cost-growth is independent ofNy.
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A.1.4 Forward Two-Variable, Second-Order Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.4: Relative costs of the forward code after the stencil from Equation 8.81 has been applied. Each line
represents fractional increase of cost compared to original program. All cost-growth is independent ofNy.
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A.1.5 Original Adjoint Problem

Wall-Clock Time of Program Steps Memory Requirements of Matrices

Cumulative Wall-Clock Time Cumulative Memory Requirements

Figure A.5: Costs of the original adjoint code (before differentiation was applied), excluding cost of the KLE, as a
function of the number of eigenfunction coefficients Ny (i.e., the number of program inputs). Left column: time-cost
of each significant program step. Right: memory cost of the biggest matrices. Top: Individual costs. Bottom:
Cumulative cost.

For the adjoint problem, three matrices are linearly dependent onNy: Φ, K̃̃K̃Kyyy, andRRRyyy. The costs of multiplying by these
matrices similarly increase. All other costs, including the solve, are independent of Ny. Costs of this implementation
of the adjoint method are thus unfortunately 

(

Ny
)

– although note that (1) the forward method is similarly 
(

Ny
)

and (2) the total adjoint cost is less than twice that of the forward problem (Figure A.1).
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A.1.6 Adjoint Complex-Step Differentiation

Time Relative to Original Memory Relative to Original

Figure A.6: Relative costs of the adjoint code after CD has been applied. The cost of constructingRRRyyy arguably grows
somewhat, but note the logarithmic x-axis and the tight range of the y-axis – the growth is insignificant.

A.1.7 Adjoint Dual-Number Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.7: Relative costs of the adjoint code after dual-number NMD has been applied. All cost-growth is indepen-
dent ofNy or insignificant.
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A.1.8 Adjoint Two-Variable, First-Order Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.8: Relative costs of the adjoint code after the stencil from Equation 8.82 has been applied. Each line repre-
sents fractional increase of cost compared to unmodified adjoint. All cost-growth is independent ofNy or insignificant.
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A.2 Costs vs Size of System (Number of Mesh Nodes)

A.2.1 Original Forward Problem

Wall-Clock Time of Program Steps Memory Requirements of Matrices

Cumulative Wall-Clock Time Cumulative Memory Requirements

Figure A.9: Costs of the original matrix-focused diffusion simulation (before differentiation was applied), excluding
cost of the KLE, as a function of the number of mesh nodes. Left column: time-cost of each significant program step.
Right: memory cost of the biggest matrices. Top: Individual costs. Bottom: Cumulative cost.

Solving the system requires the overwhelming bulk of the computational effort, while memory requirements are equally
split between the eigenfunctionsΦΦΦ and the LLL,UUU decomposition built automatically (and hidden from the user and the
profiler) by MATLAB’s sparse solver.
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A.2.2 Forward Complex-Step Differentiation

Time Relative to Original Memory Relative to Original

Figure A.10: Costs of the diffusion program after CD has been applied in the forward mode. Each line represents
fractional increase of cost compared to original program. Despite providing twice as much information, costs are
less than twice that of the original program. Note that ΦΦΦ does not carry derivative information, and thus is purely
real-valued and requires no more memory than the original.

Note this is a semilog plot – the straight-line growth of the LLL,UUU memory requirements for Nu > 213 may imply
logarithmic growth, which also appears (albeit much more clearly) for NMD in Figure A.11; more likely for this
version, though, is an asymptotic approach to a constant memory ratio – probably exactly two, where every scalar has
an imaginary component.
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A.2.3 Forward Dual-Number Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.11: Costs of the diffusion program after dual-number NMD has been applied in the forward mode.
Each line represents fractional increase of cost compared to original program. Within measurement error, most of
the less-important functions and matrices (see relative sizes in Figure A.9) are constant multiples of the original.
Exceptions appear to include the matrix exponential expm() function (which was a very small fraction of the program
to begin with, and thus not a concern), as well as the much more important sparse solve and LU factorization.

Noting that this is a semilog-x plot, the straight-line behavior of the solve time and the memory requirements of LLL,UUU
imply logarithmic growth. The memory growth is especially concerning – a dual-number stencil should use at most
three times as much memory for a sparse matrix, or four times as much for a dense matrix like Φ. This rule is satisfied
by every matrix except the two factors.
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A.2.4 Forward Two-Variable, Second-Order Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.12: Costs of the diffusion program after NMD has been applied in the forward mode. Each line represents
fractional increase of cost compared to original program. These results are for the stencil defined in Equation 8.81 that
calculates two first derivatives and all three second derivatives from a two-input Hessian matrix, for a total of six times
as much information; the 6 × 6 stencil should contain at maximum 15 non-zero values for a sparse representation, or
36 scalar values for a dense representation.

Similar observations to Figure A.11 apply: the sparse solver time and LU factorization memory costs appear to have
logarithmic growth. Note that whileLLL,UUU have not exceeded expectations as egregiously as for the dual-number stencil
(in that they do not take more memory than even a dense fill-in would imply), they have still gone past the expected
maximum for a sparse representation.
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A.2.5 Original Adjoint Problem

Wall-Clock Time of Program Steps Memory Requirements of Matrices

Cumulative Wall-Clock Time Cumulative Memory Requirements

Figure A.13: Costs of the original adjoint code (before differentiation was applied), excluding cost of the KLE and
the forward sweep, as a function of the number of mesh nodes. For this experiment, the number of eigenfunctions (and
thus the number of first derivatives) is Ny = 100. Left column: time-cost of each significant program step. Right:
memory cost of the biggest matrices. Top: Individual costs. Bottom: Cumulative cost.

Solving the system requires a slight majority of the computational effort, with the bulk of the remaining time spent
on building RRRyyy and on the dense multiplication required to find K̃̃K̃Kyyy. Memory requirements are equally split four ways
betweenΦΦΦ, K̃̃K̃Kyyy, RRRyyy, and the LLL,UUU decomposition.
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A.2.6 Adjoint Complex-Step Differentiation

Time Relative to Original Memory Relative to Original

Figure A.14: Costs of the adjoint code after CD has been applied. Each line represents fractional increase of cost
compared to unmodified adjoint.

Similar observations apply as in the forwardmode (FigureA.10): despite providing twice asmuch information, costs are
less than twice that of the original program; most are constant multiples of the original. The solve and LU factorization
exhibit either logarithmic growth or asymptotic approach to a constant, but the total growth is insignificant.
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A.2.7 Adjoint Dual-Number Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.15:
Costs of the diffusion program after dual-number NMD has been applied in the adjoint mode. Each line represents
fractional increase of cost compared to unmodified adjoint. The same observations as Figure A.11 still apply: the
time-cost of the solve and the memory-cost of the LU factorization appear to be logarithmic. Again, the latter exhibits
dense fill-in in excess of the size of the stencil.
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A.2.8 Adjoint Two-Variable, First-Order Stencil Nilpotent Matrix Differentiation

Time Relative to Original Memory Relative to Original

Figure A.16:
Costs of the adjoint code after NMD has been applied. Each line represents fractional increase of cost compared to
unmodified adjoint. These results are for the 3 × 3 stencil given by Equation 8.82 that calculates two first derivatives
of the gradient, for a total of three times as much information as the real adjoint; it thereby finds the same derivatives
found by the forward-mode 6 × 6 second-order stencil from Figure A.12, which found the 2 × 2 sub-Hessian with
respect to the first two inputs. More than that, by finding the entirety of the first two columns, this adjoint stencil finds
a 100 × 2 subset of the Hessian.

The same logarithmic growth in the sparse solve and factorization appears as in the preceding NMD experiments.


