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Abstract

The human gut microbiome has emerged as a potential key factor involved in the manifesta-

tion of physical and mental health. Despite an explosion of cross-disciplinary interest in

researching the gut microbiome, there remains to be a gold-standard method for operationa-

lizing gut microbiome alpha diversity. Given researchers’ interest in examining the relation-

ships among gut microbiome alpha diversity and health-related outcomes of interest, a way

of operationalizing the microbiome that yields a numeric value, which could be used in com-

mon statistical approaches, is needed. Thus, the current study aims to provide methodologi-

cal guidance for how to operationalize microbiome alpha diversity. Findings suggest that

alpha diversity of the human gut microbiome is comprised of two sub-constructs (richness

and evenness), and we propose a step-by-step method of creating alpha diversity compos-

ite measures based on this key insight. Finally, we demonstrate that our empirically derived

richness and evenness composite measures are significantly associated with health-related

variables of interest (alcohol use, symptoms of depression) among a human clinical sample.

Introduction

Over the past two decades, the gut microbiome has received extensive attention from research

communities due to its apparent involvement in a host of medical and psychiatric disorders

[1]. Some researchers have begun to think of it akin to another body organ, which interacts

with the host to promote health and, in some instances, initiate disease. As a point of nomen-

clature, the microbial species that inhabit the gastrointestinal tract are known as gut micro-
biota, while the genomes of the microbiota are known as the gut microbiome. A common,

measurable outcome used in microbiome research is the diversity of microbes within a given

body habitat, which has been defined as the number, abundance, and distribution of organism
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types [2]. Relatedly, the microbiome can characterize the abundance and diversity of species of

gut microbiota [3]. Methodologically, human feces are representative of these interpersonal

differences [4], making fecal samples a viable sample to collect for such investigations.

Current objectives of microbiome research include understanding the mechanistic role of

microbial diversity in disease etiology and human health. Towards these ends, researchers

have outlined factors that drive variation in microbiome environments. Among these factors

are age, such that microbiome environments are volatile in human infancy and become more

stable after the first three years of the lifespan [5]. Furthermore, genetics, environment, and

lifestyle factors (e.g., diet, alcohol consumption) appear to influence the human gut micro-

biome [5,6]. For example, alcohol consumption is one such lifestyle factor that seems to be

associated with composition of the human gut microbiome and gut health more broadly. Spe-

cifically, alcohol consumption is associated with greater intestinal permeability [7]. In the con-

text of alcohol use disorder, intestinal permeability has been linked to increased levels of

proinflammatory signaling molecules [8] and gut microbiome dysbiosis (an imbalance of

microbial species within the gut) [7]. Though the causal relationship between gut microbiome

composition and inflammation are still being characterized, these initial studies support a the-

oretical model in which gut microbiome composition underlies the manifestation of disease

states via interactions with other biological systems, such as the immune system. Alcohol use

disorder is just one of many areas where the microbiome is emerging as an important biologi-

cal mechanism that could help explain the causes and consequences of various disease states.

A better understanding of the human gut microbiome, and the factors that drive variability

with respect to microbiome composition, could lead to important insights in the areas of men-

tal and physical health. A compelling body of research suggests that the gut-brain axis, which

refers to the bidirectional influence between the gastrointestinal tract and the brain [9], might

underlie the manifestation of disease and health dysfunction [10]. The composition of the gut

microbiome plays a fundamental role in the gut-brain axis [11]; therefore, studying gut micro-

biome composition is of principle importance in order to better comprehend the etiology and

consequences of physical and mental health dysfunction and refine maximally effective

treatments.

Despite the relevance of gut microbiome composition to human health, there is not yet a

gold standard, empirically based operationalization of gut microbiome alpha diversity, which

captures the diversity of species within a given sample [12–14]. In the literature to date, many

existing studies relating alpha diversity to human outcomes have selected individual alpha

diversity indices to use in statistical models. For example, Vogt and colleagues [15] separately

tested whether two alpha diversity metrics, abundance-based coverage estimator (Ace) and

Chao1, were associated with diagnostic (i.e., presence of Alzheimer’s disease) and biological

(i.e., cerebrospinal spinal fluid) outcomes. Furthermore, a recently published study tested

whether three alpha diversity metrics (observed operational taxonomic units (OTUs), Shan-

non, and Chao1) were associated with attention-deficit/hyperactivity disorder (ADHD) [16].

Additionally, Jiang and colleagues [17] found that Shannon diversity differed among patients

who met criteria for major depressive disorder and healthy controls. As exemplified by these

studies, a common strategy employed in the existing literature is to select a priori individual

alpha diversity indices to represent gut microbiome diversity. An examination of the literature

[18], including the mathematical expressions that are used to derive these alpha diversity mea-

sures [19], suggest that the construct of alpha diversity comprises both richness (i.e., how many

different kinds of species are present within a given community) as well as evenness (i.e., the

extent to which species within a community are held in even abundance with one another).

Importantly, no published study to date has empirically tested whether these richness/evenness

sub-constructs of alpha diversity emerge within human samples.
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There exist a number of documented alpha diversity indices, thus providing an opportunity

to empirically derive a composite measure based on multiple indices of alpha diversity. One

commonly used method for building composite measures is to run an exploratory factor anal-

ysis and create composite variables based on factor loadings [20]. One particular study investi-

gated the statistical benefits of using composite measures as compared to individual indicator

variables. The results of this study suggest that model fit is improved when using composites

compared to treating all indicator variables individually, which is especially true at smaller

sample sizes [20]. Another study evaluated the reliability of composite measures of pain com-

pared to individual pain measures. Findings suggest that the composite pain measures demon-

strated superior reliability (as defined by stability over time throughout the follow-up period)

compared to the individual measures [21]. These findings are consistent with what is known

about the statistical properties of multi-item scales. That is, writings on quantitative methodol-

ogy argue that composite measures reduce measurement error, increase reliability, and result

in improved normality [22] thereby improving the overall robustness of the measure.

Therefore, the aims of the current study were twofold: 1) to empirically derive a robust and

reliable measure of gut microbiome alpha diversity; and 2) to demonstrate the utility of the

derived gut microbiome metric with regards to statistically predicting measures of human

anthropometrics (i.e., age), behavior (alcohol use and fruit/vegetable consumption), and health

characteristics (depressive symptoms).

Materials and methods

Study design

The present set of analyses employed data from a larger parent study, which tested the effective-

ness of behavioral interventions among a sample of heavy alcohol drinkers who reported want-

ing to quit or reduce their drinking. The parent study was approved by the University of

Colorado Boulder Institutional Review Board, and all participants provided written informed

consent at the beginning of the baseline appointment. Only elements of the parent study that

are relevant to the current set of analyses will be outlined here. The current investigation

includes data from the baseline assessment prior to patients engaging in the intervention. At the

time of the baseline assessment, patients completed self-report and researcher-administered

assessments. Additionally, participants were provided a stool sample collection kit and were

instructed to return a viable sample to the lab at the time of their first intervention session.

Participant selection and eligibility

Advertisements in mass media outlets (e.g., newspaper, radio), social media (e.g., Facebook),

and direct mailings targeting the greater Front Range metropolitan area, which includes Boul-

der County, Denver, and suburbs of Denver, were the primary sources of participants. Partici-

pants who were deemed eligible following a phone screening procedure scheduled their

baseline appointment. For the current set of analyses, participants included a final sample of

64 individuals who were selected for inclusion according to the following criteria: 1) must

have been between the ages of 21 and 60 and provided informed consent; 2) had a primary

DSM-5 diagnosis of alcohol use disorder; 3) were within 10 days of last drink at the time of the

baseline assessment; 4) had been drinking heavily (criteria dependent upon individual’s age,

gender, and BMI) for a consistent period of time; 5) had a breath alcohol level of 0 at screening

(to sign consent form); 6) were not currently taking any medications for the treatment of psy-

chiatric disorders, including substance use disorders, mood disorders, and psychosis; 7) female

participants were not pregnant, as indicated by a pregnancy test administered at baseline; 8)

tested negatively for sedatives, opiates, cocaine, or amphetamine on drug screen at baseline; 9)
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did not meet criteria for a psychotic disorder or bipolar disorder; 10) had a Clinical Institute

Withdrawal Assessment (CIWA) score less than 8 (indicating no need for medical detox); 11)

had expressed a desire during their initial screen to reduce the number of drinks they regularly

consume; 12) had their baseline stool sample sequenced for analysis of microbiome composi-

tion by the initiation of data analysis.

Sample characteristics

All 64 participants completed each of the study procedures relevant to the current set of analy-

ses outlined below. Behavioral and biological data for these 64 individuals were collected

between September 2016 and December 2018. A summary of relevant sample characteristics at

baseline can be found in Table 1. The sample includes middle-aged adults (mean = 46.3 years),

and is broadly representative of the Boulder/Denver metropolitan areas with regards to race

(92.2% Caucasian). On average, participants reported moderate depression based on responses

to the Beck Depression Inventory (BDI; mean = 12.5; [21]). A validated self-report measure of

fruit and vegetable consumption [23] suggested that, at baseline, participants consumed 2.6

daily servings of fruits and vegetables on average.

Given the nature of the parent study, particular emphasis was placed on characterizing the

sample with regards to alcohol use. At baseline, participants reported hazardous or harmful

alcohol use indicative of dependence based on AUDIT score (mean = 19.4; [24]). Generally, an

AUDIT score of eight or above is considered harmful use, while an AUDIT score of 11 or

more is indicative of alcohol dependence [25]. The TLFB [26] was employed to quantify alco-

hol and other substance use across the preceding 30 days. At baseline, participants reported

drinking approximately 23 days in the preceding month, and an average of 4.5 drinks on each

drinking day (see Table 1).

Study procedures

Relevant to the current set of analyses, after arriving at the lab for their baseline appointment,

qualified participants: 1) completed an informed consent form; 2) filled out baseline self-report

questionnaires; 3) completed researcher-administered assessments; and 4) were also given a

gut microbiome sample collection kit at the end of the session to be returned during their first

scheduled intervention appointment.

Table 1. Characteristics of sample at baseline.

Measure Mean Standard Deviation

Age 46.34 9.30

AUDIT 19.39 8.07

Drinking Days/30 Days 23.27 5.47

Total Drinks/30 Days 103.82 62.26

Drinks/Drinking Day 4.47 2.37

BDI 12.45 7.54

Fruit and Vegetable Servings 2.57 2.00

AUDIT = Alcohol Use Disorders Identification Test; Drinking Days/30 = number of days over the past month

alcohol was consumed as reported on the 30-day Timeline Follow Back (TLFB); Total Drinks/30 Days = total

number of drinks reported on the TLFB over the preceding 30 days; Drinks/Drinking Day = average number of

drinks per days alcohol was consumed as reported on the TLFB; BDI = Beck Depression Inventory; Fruit and

Vegetable Servings = average number of fruit and vegetable servings consumed per day over the month preceding the

baseline session according to Subar et al. (2001).

https://doi.org/10.1371/journal.pone.0229204.t001
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The self-report measures that were administered included a number of individual differ-

ence measures, such as a demographics questionnaire that was used to collect information on

participants’ race, age, and sex. Participants also completed the Alcohol Use Disorders Identifi-

cation Test (AUDIT) [24], which was used to assess symptoms of alcohol dependence. In

order to assess the quality of participants’ diet, participants completed The Fruits and Vegeta-

ble Screener [23], a 10-item measure that was developed by the National Cancer Institute to

assess how many times in the previous month participants consumed different types of fruits

and vegetables, including portion size questions for every food item. This measure was shown

to be a useful estimate of median intakes of fruit and vegetable servings in U.S. populations,

and has been recognized as a proxy measure for quality of diet. In addition to the self-report

measures described above, participants worked with a research assistant to complete a TLFB

assessment. The TLFB is a calendar-based assessment of daily alcohol and drug use [27] that

has been shown to have good psychometric characteristics among a variety of drinker groups

and can generate variables that provide a wide range of information about an individual’s

drinking (e.g., pattern, variability, and magnitude of drinking).

Gut microbiome sample collection

As mentioned, participants were provided with a fecal sample collection kit during the baseline

assessment, and they were instructed to return the sample collection kit to the lab at the time

of their first therapy appointment. Participants provided a stool sample by using a BD BBL

CultureSwab Sterile, Media-free Swab (Cat. No. 220145, Becton, Dickinson and Company,

Sparks, MD, USA) and a piece of used toilet paper. Participants were instructed to collect a

sample within a day of providing it to the study staff. The sample was stored it at –80˚C until

molecular processing.

Molecular processing

DNA was extracted using the PowerSoil DNA extraction kit (Cat No. 12888–100 & 12955–4,

MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions.

Marker genes in isolated DNA were PCR-amplified using HotStarTaq Master Mix (Cat No.

203433, Qiagen, Valencia, CA, USA) and 515 F (5’-GTGCCAGCMGCCGCGGTAA-3’) 806 R

(5’-GGACTACHVGGGTWTCTAAT-3’) primer pair (Integrated DNA Technologies, Coral-

ville, IA, USA) targeting the V4 hypervariable region of the 16S rRNA gene modified with a

unique 12-base sequence identifier for each sample and the Illumina adapter as previously

described in Caporaso et al., 2012 [28]. The thermocycling program consisted of an initial step

at 94˚C for 3 min followed by 35 cycles (94˚C for 45 sec, 55˚C for 1 min, and 72˚C for 1.5

min), and a final extension at 72˚C for 10 min. PCR reactions were run in duplicate and the

products from the duplicate reactions were pooled and visualized on an agarose gel to ensure

successful amplification. PCR products were cleaned and normalized using a SequalPrep Nor-

malization Kit (Cat. No. A1051001, ThermoFisher, Waltham, MA, USA) following manufac-

turer’s instructions. The normalized amplicon pool was sequenced on an Illumina MiSeq run

by using V3 chemistry and 600 cycle, 2 x 300-bp paired-end sequencing. All sequencing and

library preparation were conducted at the University of Colorado Boulder BioFrontiers Next-

Gen Sequencing core facility, https://bficores.colorado.edu/sequencing-lab.

Microbial data processing and preliminary analysis

After the raw sequencing files were generated, data were processed using Quantitative Insights

Into Microbial Ecology (QIIME 2 version 2018.11) open source software [29]. A metadata file

for each run was validated using the Keemei Google Sheets add-on [30]. Raw sequencing files
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were demultiplexed and subsequently analyzed for quality by using the QIIME visualizer to

examine the interactive quality plots. De-noising parameters (i.e., trimming sequence read

lengths) were specified for each run according to the following: 1) demonstrated a minimum

of 150 nucleotides in both forward and reverse reads; and 2) maintained quality scores at or

above 30. Rarefaction was conducted according to [31]. A tree was generated for downstream

phylogenic diversity analyses by aligning sequences, generating an ‘unrooted’ tree, and then

‘rooting’ the tree. Taxonomy was assigned using the Ribosomal Database Project classifier [32]

trained on the Greengenes 13_8 16S rRNA gene database [33]. Several alpha diversity metrics

were calculated in QIIME 2 (see Table 2 for full list of alpha diversity measures that were

calculated).

Statistical analysis

Aim 1: Deriving a composite gut microbiome diversity metric. Selecting viable alpha
diversity metrics. Alpha diversity of species within the gut microbiome is a common outcome

of interest that is examined in microbiome research. Analysis of the composition of the micro-

bial community involves sequencing of the microbial community DNA, and matching the

sequences to known functional genes [5]. Aim 1 of the current study involved empirically

deriving a composite numerical metric that represents microbiome alpha diversity, which

could be used as a predictor or outcome of interest in common statistical models. As discussed

Table 2. Alpha diversity measures and descriptions.

Alpha Diversity

Measure

Description Citations

Ace An estimate of species richness using a correction factor [18,34]

Observed OTUs The number of different OTUs per sample [16]

Chao1 A measure of species richness, which gives more weight to rare species [34]

Margalef Measure of species richness in a given area or community [35,36]

Fisher alpha Relationship between the number of species and the relative abundance of each

species; referred to as a measure of richness

[37,38]

Faith pd Sum of OTU branch lengths; takes into account phylogenic distance between

OTUs; the greater the number of unique OTUs, the higher this index will be

[18,39]

Brillouin d Measures the diversity of the species present [18]

Shannon Calculation of richness and evenness using a natural logarithm; accounts for both

relative abundance and evenness of the taxa present; referred to as an attempt for

one metric to capture both richness and relative evenness

[18,40]

Enspie (ENS) Measure of the number of equally abundant species; if the relative abundance of

all species in a community were exactly identical, ENS would simply be the total

number of species in that community

[41]

Menhinick The ratio of the number of taxa to the square root of the sample size; referenced

as "species richness"

[18,35]

Mcintosh e A measure of how evenly/unevenly abundant taxa are in the sample [18,42]

Simpson Measure of relative abundance of the different species making up the sample

richness; referred to as an attempt for one metric to capture both richness and

relative abundance

[40,43]

Berger Parker d A measure of relative richness of the abundant species; higher values indicate

relative abundance disturbance

[18,44,45]

Strong Assesses species relative abundance unevenness/dominance concentration [46]

Simpson e A measure of evenness based on the number of organisms and number of species [43]

Pielou e Measure of relative evenness of species richness [12,42,47]

Heip e A measure of evenness [18,42]

Lladser pe A measure of how much of the environment contains unsampled taxa [18,48]

https://doi.org/10.1371/journal.pone.0229204.t002
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above, a composite measure comprised of alpha diversity metrics could be a useful way to

operationalize gut microbiome alpha diversity.

Alpha diversity metrics from the baseline microbiome samples output from QIIME 2 [29]

were evaluated for inclusion in an exploratory factor analysis (EFA). Briefly, EFA is a statistical

technique where the input is a correlation matrix of observed variables and the output is a

summary of how each observed variable maps onto latent, unobserved “factors.” For further

comprehensive descriptions of factor analytic methods see [49–52]. Because the number of

latent factors is typically far fewer than the number of observed input variables, factor analysis

is often considered to be a useful data reduction technique. Importantly, there are other statis-

tical techniques that allow researchers to explore the underlying relationships among variables,

including principal component analysis (PCA). Mathematically, the difference between PCA

and EFA concerns the variance that is analyzed among the observed variables, such that all the

variance in the observed variables is analyzed in PCA and only the shared variance among the

observed variables is analyzed in EFA. Theoretically, the difference between PCA and EFA lies

in the assumptions made about the nature of the relationship between the set of observed vari-

ables and the latent, unmeasured factor(s)/component(s). That is, factor analysis supposes that

the measured indicator variables are caused by latent, unmeasured forces (i.e., the latent fac-

tors). As articulated in a useful chapter by [53], factor analysis explores the underlying pro-

cesses that could have produced correlations among a given set of variables. In contrast, PCA

supposes that the individual indicator variables cause the component(s). As such, components

derived from a PCA analysis can be thought of simply as aggregates of the set of indicator vari-

ables. In other words, variables that comprise a component are merely empirically associated

and are not necessarily thought to reflect an underlying process.

In the case of the present analysis, our choice to use EFA was based on our theoretical

understanding of the alpha diversity construct. That is, using the EFA approach is consistent

with our implicit hypothesis that an underlying process(es) (e.g., biological, environmental)

cause(s) certain indicator variables to be correlated with one another. Therefore, our choice to

use EFA over PCA was made due to the directionality of our theory-based understanding of

the relationship among the alpha diversity construct and measurable indictor variables

thought to measure alpha diversity. In summary, the choice to use EFA instead of PCA was an

a priori, theory-driven decision. However, it is important to note that there is an ongoing

debate among statistical theorists and researchers regarding when to use EFA and PCA [54].

When electing to use an EFA approach, we also had to determine whether EFA or confirma-

tory factor analysis (CFA) was most appropriate. While some have noted that alpha diversity

of the gut microbiome may be comprised of richness and evenness processes (i.e., two pro-

posed factors), we believe that it is still prudent to continue to explore whether this hypothe-

sized structure of underlying processes is supported by empirical data in an exploratory

fashion. Therefore, we elected to specify an EFA as opposed to testing the two-factor CFA

model.

Prior to inclusion in the EFA, some alpha diversity metrics were excluded on the basis of

being highly correlated with other alpha diversity metrics. Rather than selecting an ad-hoc cut-

off for correlation strength, our strategy was to include the greatest number of observed vari-

ables as possible while simultaneously attempting to remove redundancy. Towards these ends,

we evaluated the pattern of correlations between observed variables, and retained metrics that

seemed to represent unique aspects of alpha diversity based on the correlation matrix. For

example, ace, observed otus, chao1, margalef, and fisher alpha are correlated with one another

at r>.98, therefore, we elected to retain one representative metric from that cluster of four

metrics (fisher alpha). Some instances of high correlations were addressed by removing met-

rics due to elevated skewness and kurtosis. For example, removing mcintosh e because of
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elevated skewness and kurtosis took care of the high correlation between mcintosh e and Shan-

non (r = -.94) and between mcintosh e and simpson (r = -.96).

Next, alpha diversity metrics were evaluated for inclusion in the EFA based on whether

there was an indication that the variable did not meet the assumption of normality. Specifi-

cally, some alpha diversity metrics were excluded from the EFA if they demonstrated elevated

skewness and/or kurtosis, which are numerical indicators of whether a given variable is nor-

mally distributed. We chose to exclude indicator variables on the basis of their skewness and/

or kurtosis because non-normality can affect the integrity of some statistical tests, including

factor analysis. Many statistical tests are based on the normality assumption [53]. Skewness

and kurtosis are measures of normality such that a skewness value different from 0 indicates

that the distribution deviates from symmetry, and a kurtosis value different from 0 indicates

that the distribution deviates from normality in tail mass and shoulder [55]. Cain and col-

leagues (2016) evaluated the impact of skewness and kurtosis in the context of several statistical

tests, including CFA. Specifically, authors simulated data with a known factor structure,

manipulated the skewness and kurtosis of the data, and evaluated the Type I error rate of

rejecting the factor model using the chi-squared-goodness of fit test. Results suggest that ele-

vated skewness and kurtosis result in Type I error rate of 30% in factor analysis [56]. Authors

suggest that researchers should report skewness and kurtosis so that results can be evaluated in

the context of the underlying variables meeting the assumptions of the normal distribution.

Additionally, authors suggest that researchers should consider taking steps to modify their

analyses to mitigate the impact of non-normally distributed variables on their analyses. Based

on the methodological literature discussed above, we chose to eliminate indicator variables

that demonstrated elevated skewness and kurtosis values. While some methodological research

has highlighted the consequences of including variables with non-normal distributions in uni-

variate and multivariate statistical analyses [56–58], there does not yet exist any concrete guid-

ance in terms of numerical thresholds for indices that measure normality. Specifically, there is

no agreed upon answer to the question: “how high of a kurtosis/skewness value is too high?”

Therefore, we decided to eliminate indicator variables that demonstrated elevated skewness

and kurtosis relative to the other indicator variables. See Table 3 for a summary of alpha diver-

sity metrics that were evaluated, and reason for exclusion from the EFA (if applicable).

Exploratory factor analysis. The final set of nine viable alpha diversity metrics was advanced

to the factor analysis stage. First, a scree plot was constructed in R version 3.5.3 in order to

determine how many factors likely underlie the set of diversity indicators. After evaluating the

scree plot and eigenvalues associated with each indicator variable, an exploratory factor analy-

sis was specified with the baseline microbiome data in R [59]. Factor analytic approaches dem-

onstrate considerable utility as a data reduction tool by reducing many variables down to

fewer factors assuming a latent factor structure. Such approaches summarize the patterns of

correlations in the observed correlation matrix to yield a more parsimonious and robust struc-

ture that is often more reliable than the original variables [53].

Specifically, all nine viable alpha diversity metrics were input into an EFA function specified

with a varimax rotation and maximum likelihood factoring method. Based on the results from

the EFA (see results section), a two-factor solution was adopted consistent with the theoreti-

cally relevant richness and evenness factors. Based on the pattern of factor loadings, searching

the literature to derive a theoretical understanding of each alpha diversity measure, and exam-

ining the mathematical equations that are used to calculate each measure [19], the two factors

were labeled “richness” and “evenness.” While we allowed the results of the EFA to guide our

decision to retain two factors we used our knowledge of the literature to both characterize

those two factors as “richness” and “evenness” and to guide our decisions in an iterative way

throughout the model building process, which is considered to be an accepted practice in the
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context of EFA [53]. That is, when the scree plot suggested a two-factor solution, we hypothe-

sized that the EFA results would support a “richness” and “evenness” factor structure based on

our knowledge of the alpha diversity literature. Because we hypothesized that the two-factor

solution may relate to “richness” and “evenness” factors, we chose to specify the model with a

varimax rotation. Varimax, the most commonly used rotation, is a variance maximizing proce-

dure that maximizes the variance of factor loadings (i.e., makes high loadings higher and low

loadings lower) [53]. Varimax assumes, and mathematically encourages, an orthogonal factor

structure [60,61]. Importantly, an orthogonal factor structure is consistent with the working

theoretical understanding of how the richness and evenness sub-categorizations of alpha diver-

sity measures relate to one another. That is, Mason and colleagues [62] argue that richness and

evenness are orthogonal to one another (i.e., vary independently of one another). Thus, speci-

fying the EFA with a varimax rotation is consistent with a theory-driven interpretation of the

factor structure.

In order to derive composite scores for each factor, each alpha diversity metric was trans-

formed into a z-score. This standardization step was crucial given that each alpha diversity

metric is measured on a different scale. Individual alpha diversity metrics were reverse scored

according to theory prior to being converted into a standardized scale. Next, alpha diversity z-

scores were averaged together according to the factor structure. This process resulted in a

“richness score” and an “evenness score” for each participant. These composite measures were

then used in subsequent statistical models (see below).

Aim 2: Association between derived diversity metric and human variables of interest.

Aim 2 of the study set out to assess the utility of the gut microbiome diversity metrics derived

in Aim 1 in the context of statistically predicting human outcomes. Towards these ends, we set

out to evaluate the association between gut microbiome alpha diversity, age, diet, depressive

symptoms, and recent alcohol consumption. These four human outcome variables were

Table 3. Summary of alpha diversity metrics.

Alpha Diversity Measure Included in EFA Reason for exclusion

Ace No High inter-correlation with other indicators

Observed OTUs No High inter-correlation with other indicators

Chao1 No High inter-correlation with other indicators

Margalef No High inter-correlation with other indicators

Fisher alpha Yes

Faith pd Yes

Brillouin d No High inter-correlation with other indicators

Shannon Yes

Enspie (ENS) Yes

Menhinick Yes

Mcintosh e No Elevated Skewness/Kurtosis

Simpson No Elevated Skewness/Kurtosis

Berger Parker d No Elevated Skewness/Kurtosis

Strong Yes

Simpson e Yes

Pielou e No Elevated Skewness/Kurtosis

Heip e Yes

Lladser pe Yes

OTUs = Operational taxonomic units; See Fig 1 for the correlation value between each pair of alpha diversity indices

evaluated.

https://doi.org/10.1371/journal.pone.0229204.t003
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selected due to their apparent association with gut microbiome composition and their broad

relevance to human health [63,64].

Simple regression models tested the relationships between the microbiome richness and

evenness composite measures and the four human health-related variables of interest. Diet was

operationalized as the average number of fruits and vegetables consumed over the previous 30

days per the Fruits and Vegetable Screener [23]. Alcohol use was operationalized as the total

number of standard alcoholic drinks consumed over the 30 days preceding the baseline

appointment according to the TLFB assessment [27]. Participant age was based on their

response on the demographics questionnaire. Finally, symptoms of depression was operatio-

nalized as participants’ scores on the BDI self-report measure [65].

First, baseline gut microbiota richness and evenness were regressed on baseline drinking

behavior in separate models. Second, baseline gut microbiota richness and evenness were

regressed on participant age in separate models. Third, baseline gut microbiota richness and

evenness were regressed on average daily fruit and vegetable consumption, which is a proxy

measure for quality of diet. Finally, baseline gut microbiota richness and evenness were

regressed on BDI scores, which is a measure of participants’ current depressive symptoms.

In addition to testing the association between the human outcomes and the derived com-

posite measures of microbiome diversity, simple regression models testing the association

between alcohol use, age, diet, BDI scores and individual alpha diversity metrics were also

specified. These models were identical to the models shown above, except instead of regressing

the composite diversity measures on the human health and behavior variables of interest, indi-
vidual alpha diversity measures (Faith pd, Strong) were regressed on each human outcome

variable in separate models. This was meant to determine whether the composite measures

derived in Aim 1 performed differently in their ability to statistically predict common human

health and behavior variables of interest compared to individual diversity metrics (e.g., Faith

pd). We chose to run regression models for only two individual measures of alpha diversity in

an attempt to be sensitive to the issue of multiple comparisons because as the number of tests

increase, so does the Type I error rate. Thus, we selected one “richness” measure and one

“evenness” measure a priori in order to explore the question of whether the composite metrics

provide predictive power over and above individual metrics of alpha diversity.

Results

Aim 1: Deriving a gut microbiome diversity metric

Selecting viable alpha diversity metrics. The full list of alpha diversity measures that

were output by QIIME are shown and described in Table 2. The correlations among these alpha

diversity measures are shown in Fig 1. Prior to inclusion in the EFA, some alpha diversity met-

rics were excluded on the basis of being highly correlated with other alpha diversity metrics.

Rather than selecting an ad-hoc cutoff for correlation strength, our strategy was to include the

greatest number of observed variables as possible while simultaneously attempting to remove

redundancy. Towards these ends, we evaluated the pattern of correlations between observed

variables, and retained metrics that seemed to represent unique aspects of alpha diversity based

on the correlation matrix. For example, ace, observed otus, chao1, margalef, fisher alpha are cor-

related with one another at r>.98, therefore, we elected to retain one representative metric

from that cluster of four metrics (fisher alpha). Some instances of high correlations were

addressed by removing metrics due to elevated skewness and kurtosis. For example, removing

mcintosh e because of elevated skewness and kurtosis took care of the high correlation between

mcintosh e and Shannon (r = -.94) and between mcintosh e and simpson (r = -.96). See Fig 1

for the correlation value between each pair of alpha diversity indices evaluated.
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In addition to examining correlations among the set of alpha diversity indicator variables,

the distributions of the indicator variables were also examined in order to determine viability

for inclusion in the EFA. Specifically, skewness and kurtosis were evaluated for each alpha

diversity indicator variable. At this stage, 4 metrics were excluded on the basis of demonstrat-

ing elevated skewness/kurtosis, as evidenced by their skewness and kurtosis: Simpson (skew-

ness = -5.03, kurtosis = 31.97), Pielou e (skewness = -1.84, kurtosis = 7.05), Mcintosh e

(skewness = 2.71, kurtosis = 12.12), and Berger Parker d (skewness = 2.78, kurtosis = 11.54).

Exploratory factor analysis. The final set of viable alpha diversity indicator variables

were included in an EFA (see Table 3). In order to determine the likely number of factors

Fig 1. Correlations among alpha diversity indices. Correlations among all calculated alpha diversity indices are displayed. Positive correlations displayed in blue, and

negative correlations displayed in red. Stronger correlations denoted by greater opaqueness.

https://doi.org/10.1371/journal.pone.0229204.g001
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among the sample of diversity indices, a scree plot was evaluated. Interpretation of the result-

ing scree plot (see Fig 2) suggests a two-factor solution. Specifically, two factors demonstrate

eigenvalues greater than or equal to one, and common approaches to factor analysis suggest

that eigenvalues greater than one are large enough to be retained [53]. An examination of the

literature on diversity suggests that measures of alpha diversity capture two sub-constructs of

diversity: richness and evenness [62,66–68]. Therefore, the scree plot, eigenvalues, and theory

based on past literature all indicate a two-factor solution.

A summary of the exploratory factor analysis results is found in Table 4. As shown in

Table 4, the factor loading pattern again supports a two-factor solution, as each alpha diversity

indicator variable loads cleanly onto either of the two factors (i.e., factor loading>.5). Impor-

tantly, none of the alpha diversity indicator variables show a cross-loading pattern. That is,

there are no indicator variables where the factor loading is>.5 for both factors (see Table 4). To

ensure that these decisive loading patterns were consistent with theory, relevant literature/each

measure’s mathematical expression [19] was consulted before categorizing a given alpha diver-

sity measure as a measure of “richness” or “evenness.” For example, Faith pd loaded strongly

onto the factor that has been labeled “richness” (.91 loading). Consultation of the literature con-

firms that it is appropriate to categorize Faith pd as a richness measure given that it is a measure

of cumulative OTU branch lengths, and the greater the number of OTUs, the higher the Faith

pd measure will be. This type of analysis was repeated for each alpha diversity measure.

Finally, in one case the factor loading was negative (i.e., Strong). In this case, an evaluation

of the literature suggests that this negative factor loading is theoretically meaningful. The liter-

ature and evaluation of the mathematical equation associated with strong suggest that this

measure does not measure evenness, but rather it measures unevenness, or species dominance.

Fig 2. Scree plot of alpha diversity indices. Scree plot showing likely number of factors underlying the relationships

among alpha diversity indices.

https://doi.org/10.1371/journal.pone.0229204.g002

PLOS ONE Derived composite measure of alpha diversity in the human microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0229204 March 2, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0229204.g002
https://doi.org/10.1371/journal.pone.0229204


In other words, a higher score on the Strong measure suggests that the community being mea-

sured is more dominated by a fewer number of species [19]. Therefore, the negative factor

loading in concert with an evaluation of the relevant literature and mathematical expression

suggest that this measure should be reverse coded prior to including it in a composite measure.

The Strong metric demonstrated observed values that ranged from 0–1. Therefore, in order to

reverse code this measure, the inverse of the original measure was estimated by the following

formula: 1-original measure. This reverse coding process was completed prior to Strong being

converted to a z-score. The culmination of this set of analyses resulted in empirically derived

and theoretically interpretable alpha diversity composite metrics (i.e., richness and evenness),

which were then used to represent microbiome composition in statistical models.

Aim 2: Association between derived diversity metric and human variables

of interest

In order to assess the utility of the microbiome composition metrics derived in Aim 1, simple

regression models tested the association between the richness and evenness composite mea-

sures and several variables of interest related to human health. Specifically, the associations

between richness, evenness, age, recent alcohol consumption, symptoms of depression, and

recent fruit and vegetable consumption were tested in separate models according to the models

outlined in the statistical analysis section above. Results from each of these models are summa-

rized in Table 5.

Table 5. Associations between microbiome composites and variables of interest.

beta coefficient (p-value)

Variable of Interest Richness Composite Evenness Composite Faith pd Strong

Drinks/30 days -.004 (.037) .00091 (.302) -.012 (.02) .0011 (.257)

Fruit/veggie servings .008 (.913) .045 (.13) -.074 (.72) .0038 (.287)

Age -.014 (.251) -.0025 (.677) -.047 (.173) .000065 (.92)

BDI .0023 (.881) .021 (.0032) -.028 (.515) -.0011 (.185)

BDI = Beck Depression Inventory; beta values and p-values correspond to the parameter estimate and p-value corresponding with the variable of interest in each row

regression models specified in the statistical analysis section (where richness/evenness composites were regressed on each variable of interest in separate models);

statistically significant parameter estimates and corresponding p-values at an α< .05 two-tailed threshold are shown in boldface type.

https://doi.org/10.1371/journal.pone.0229204.t005

Table 4. Results of the exploratory factor analysis.

Alpha Diversity Measure “Richness” Factor Loading “Evenness” Factor Loading h2 Final Categorization

Fisher alpha 1.0 1.0 Richness

Faith pd .91 .84 Richness

Shannon .86 .89 Richness

Enspie (ENS) .81 .90 Richness

Menhinick .77 .74 Richness

Strong� -.80 .81 Evenness

Simpson e .93 .90 Evenness

Heip e .92 1.0 Evenness

Lladser pe .55 .40 Evenness

h2 = proportion of variance of each measure explained by the factors

� denotes measure that was “reverse coded” prior to z-score conversion on the basis of direction of factor loading and evaluation of relevant literature and mathematical

expression; factor loadings > .5 shown.

https://doi.org/10.1371/journal.pone.0229204.t004
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Given the aims of the current investigation, we were not only concerned with whether the

composite measures of microbiome composition were significantly associated with the vari-

ables of interest. We were interested in what the pattern of results suggests regarding the utility

of the derived microbiome composite measures. Importantly, the pattern of results lends sup-

port to what we determined in Aim 1: richness and evenness are two subcomponents of micro-

biome composition. In fact, richness and evenness seem to relate differently to human

behavior. That is, richness, but not evenness, of species within the human gut microbiome was

associated with recent alcohol consumption (b = -.004, p = .037, 95% CI: -0.0074, -0.00024)

such that greater alcohol consumption is associated with less richness of species within the

microbiome (as expected based on our working theoretical model). Additionally, richness and

evenness of the gut microbiome appear to relate differently to current depressive symptoms.

That is, evenness, but not richness, is significantly associated with participants’ scores on the

BDI (b = .021, p = .0032, 95% CI: 0.0075, 0.035), such that greater depressive symptoms is asso-

ciated with less evenness of microbial species. Though only two of the human variables of

interested demonstrated differing relationships with richness and evenness based on meeting

significance thresholds (p< .05), the pattern of results more generally (e.g., directionality and

magnitude of parameter estimates) suggests that richness and evenness might differ with

regard to their associations with human behavior (e.g., diet, alcohol consumption) and human

characteristics (e.g., age, mental health).

Also of note is the finding that the gut microbiome composite measures detected significant

associations when individual alpha diversity measures did not. Specifically, model results sug-

gest that evenness of microbial species, operationalized by the evenness composite, is signifi-

cantly associated with symptoms of depression. However, this effect was not detected when

microbiome evenness was operationalized by the Strong metric (an individual alpha diversity

metric thought to capture (un)evenness of microbial species). This suggests that the micro-

biome composite measures may be a more robust and powerful way to capture composition of

the gut microbiome.

The impact of analytic decision making on results. Throughout the analytic process,

decisions were made that could have impacted the results. Specifically, we made the decision

to exclude some observed alpha diversity metrics from the EFA if a given metric demonstrated

elevated skewness/kurtosis or if a given metric was redundant (i.e., highly correlated) with

other alpha diversity metrics. In doing so, we intended to include a representative set of alpha

diversity indices that contributed unique information and did not violate the assumption of

normality. Though the intention behind these decisions was to enhance the robustness and

integrity of the analysis, we acknowledge that these decisions could have impacted the results.

In an effort to determine the possible impact of these decisions, we re-ran the scree plot and

EFA including all alpha diversity metrics.

Consistent with the primary results, the scree plot in which all alpha diversity indices were

included again indicated a two-factor solution. Thus, an EFA was specified with two factors.

The results of this model are summarized in Table 6. The results are broadly consistent with

the EFA results from the model that included the more exclusive list of alpha diversity indices.

That is, the factor loadings support a two-factor solution. Each of the alpha diversity indices

that was included in the more exclusive model demonstrates consistency between the two

models in terms of the pattern of factor loading. For example, Shannon was loaded strongly

onto the “richness” factor in the exclusive EFA (factor loading = .86), and Shannon loaded

strongly onto the “richness” factor in the all-inclusive model (factor loading = .81). Interest-

ingly, several alpha diversity metrics demonstrate a cross-loading pattern (the metric loads >

.5 onto both the “richness” factor and the “evenness” factor) in the context of the model that

includes the full set of alpha diversity metrics. Despite these cross-loadings, the pattern of
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factor loadings suggests that one factor represents “richness” and the other factor represents

“evenness.” Given that the interpretation of results was consistent across the two models, it is

reasonable to suggest that the decisions made regarding which factors to ultimately include in

the EFA did not influence the results in a way that impacts the broad conclusions drawn.

Discussion

Summary of results

The current study aimed to make a novel methodological contribution to the literature by

developing an empirically-derived composite metric(s) that captures gut microbiome alpha

diversity, which could be used in common statistical modeling approaches (Aim 1). Alpha

diversity emerged as a relevant construct due to the fact that alpha diversity broadly captures

within-participant microbial diversity. Additionally, several alpha diversity metrics have been

developed and documented [19], thus providing an opportunity to derive a robust composite

measure from a host of existing metrics.

Results provide key insights into the broad construct of microbial diversity, and offer a

novel method for operationalizing gut microbiome diversity. Results of the EFA empirically

confirm what has been noted in the literature. That is, existing alpha diversity metrics capture

two facets of microbial composition: “richness” and “evenness.” The current study provides

one possible method by which to calculate these composite measures. The method suggested

here is to reverse code metrics as needed, convert all metrics to standardized z-scores, and

average together metrics that are characterized as “evenness” metrics and average together

metrics that are characterized as “richness” metrics.

Results from Aim 2 of the current investigation demonstrate the utility of this methodologi-

cal approach with regard to investigating the relationship between microbiome composition

and variables related to human health. Results suggest that the microbiome composition

Table 6. Results of the exploratory factor analysis with all observed alpha diversity metrics.

Alpha Diversity Measure “Richness” Factor Loading “Evenness” Factor Loading h2

Ace .99 .99

Observed otus .99 .99

Chao1 .99 .99

Margalef .98 .98

Fisher alpha .96 .96

Faith pd .91 .83

Brillouin d .82 .56 .98

Shannon .81 .57 .98

Enspie (ENS) .68 .61 .84

Menhinick .61 .52 .64

Mcintoch e -.65 -.67 .86

Simpson .57 .58 .65

Simpson e .92 .85

Berger parker d -.51 -.68 .73

Strong� -.81 .70

Pielou e .85 .96

Heip e .98 .99

Lladser pe .40

h2 = proportion of variance of each measure explained by the factors; factor loadings > .5 shown

https://doi.org/10.1371/journal.pone.0229204.t006
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composite metrics that were derived using the method described in the manuscript demon-

strate significant associations with key variables of interest. Specifically, in this sample, micro-

biome richness was significantly associated with recent alcohol consumption, and microbiome

evenness was significantly associated with self-reported symptoms of depression.

Methodological considerations

The current study employs samples from human fecal samples, which were sequenced in

order to extract gut microbiome data. The sample is a methodological strength and enhances

the novelty of the current investigation for two main reasons. First, the sample is a clinical

sample comprised of participants who meet criteria for a common health condition (alcohol

use disorder), thus providing an opportunity to examine the relationship between the gut

microbiome and variables related to human health using a clinical sample of treatment-seeking

individuals. Second, the current study employed one of the largest sample sizes to date

(N = 64) compared to existing studies on the human gut microbiome and alcohol use. For

example, one study that investigated the effect of diet on the human gut microbiome was pub-

lished in the journal Nature in 2014 with a sample size of N = 10 [6]. The existing authoritative

studies on human gut microbiome composition and alcohol have sample sizes ranging

between N = 13–66 [7,69,70]. Thus, the current study makes a robust addition to the literature

at the intersection of clinical health and the human gut microbiome. Additionally, our analyti-

cal approach represents a methodological strength, as it is the first known application of factor

analysis to study the underlying structure of the alpha diversity construct in relation to the

human gut microbiome, thus enhancing the novelty and rigor of our analysis. Ultimately, the

current investigation provides one of the first sources of empirical evidence of key alpha diver-

sity sub-constructs (richness and evenness) within the human gut microbiome.

In addition to the methodological strengths discussed above, the study also has a number of

limitations, and our results should be interpreted in the context of these considerations. First,

though the sample size is moderate to large compared to previous published studies employing

fecal samples from human clinical samples in the context of alcohol use, the current sample

size is considered small in the context of factor analytic approaches, as discussed in Tabachnick

& Fidell [53]. Authors note, however, that the sample size guidelines might be relaxed if the

factor analysis solution include several high loading marker variables (< .8), as is the case in

the current set of analyses. Additionally, the health-related variables of interest included in the

current set of analyses (fruit and vegetable consumption, alcohol use behavior, depression

symptomatology) are based on self-report data. Though each of the respective self-report mea-

sures that were used to operationalize our variables of interest are validated, psychometrically

sound measures, future studies should consider ways of integrating objective measures of

behavior.

Furthermore, the statistical analyses conducted in this study included several statistical

tests. That is, 16 individual regression models were run in order to test the associations

between health-related variables of interest (i.e., age, alcohol consumption, fruit and vegetable

servings, BDI) and alpha diversity measures (i.e., richness composite, evenness composite,

Faith pd, Strong). Type I error rate, which is the likelihood of getting a “false positive” result in

the absence of a “true” effect, increases as the number of statistical tests increases. Given that

16 statistical tests were run, it is possible that some of the significant effects reported in the

present investigation were the result of Type I error. Importantly, efforts were made to reduce

the threat of Type I error. Specifically, we planned our statistical tests a priori, such that we

selected the four health-related variables of interest and the two individual alpha diversity met-

rics prior to the start of data analysis. Finally, these data are cross-sectional in nature because
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these variables were measured at one single time point. Ultimately, our interest is in character-

izing the causal relationships between manifestations of health and biological mechanisms.

Therefore, future studies should examine microbiome composition over time, and how stabil-

ity and/or changes in the human gut microbiome relate to changes in other biological and

behavioral variables of interest over time.

Directions for future research

While we feel that our study represents a meaningful contribution to the literature, our work

also highlights the many important questions that were not addressed in the present investiga-

tion. Future investigations should examine the impact of moderating factors on gut micro-

biome alpha diversity. The study sample in the current investigation was 92.19% Caucasian

and 49% female. Due to the sample size (n = 64 participants) we were not sufficiently powered

to evaluate the impacts of race and gender, two potentially important moderating factors, on

the gut microbiome. Therefore, it is not possible to determine if the results here extend to

non-Caucasian individuals, and both male and female gender. Future studies with larger sam-

ple sizes and higher racial diversity should be conducted to address these issues. Additionally,

future studies should seek to validate the factor structure found in the present investigation.

The two-factor solution and the “richness” and “evenness” factor names are consistent with

theory and with the interpretation of the EFA results in this study. It will be important to repli-

cate these results using different samples. Towards these ends, researchers could run explor-

atory and/or confirmatory factor analyses using other datasets comprised of human fecal

microbiome samples.

Significance and concluding remarks

Based on the current investigation, results suggest that gut microbiome alpha diversity is a

multi-dimensional construct, and thus researchers should consider operationalizing the gut

microbiome alpha diversity with this complexity in mind. As demonstrated by the results of

Aim 2 of the current investigation, different facets of gut microbiome complexity (i.e., richness

vs. evenness) show different relationships with key variables of interest. Failing to account for

the heterogeneity of the gut microbiome construct could mask true, significant associations

between facets of microbiome alpha diversity and key variables related to human health. With

this in mind, we are making two concrete methodological recommendations:

1. We suggest that the operationalization of microbiome alpha diversity should be comprised

of separate “richness” and “evenness” measures. We make this suggestion because we

found evidence that “richness” and “evenness” are two distinct sub-constructs of the

broader alpha diversity construct. One method by which this can be accomplished is for

researchers to create composite measures comprised of the individual alpha diversity indi-

ces that we used to construct our richness/evenness measures (i.e., richness = Fisher alpha,

Faith pd, Shannon, Enspie, Menhinick; evenness = Strong, Simpson e, Heip e, Lladser pe).

In order to further explore and justify this proposed factor structure, we also suggest that

researchers test this factor structure by specifying CFA models.

2. When investigating the relationship between human health and behavioral variables of

interest and microbiome diversity, researchers should use composite measures, comprised

of multiple individual alpha diversity indices that measure the same alpha diversity sub-

construct (i.e., richness, evenness). We make this suggestion because our results suggest

that composite measures can provide information over and above individual alpha diversity

metrics.

PLOS ONE Derived composite measure of alpha diversity in the human microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0229204 March 2, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0229204


Based on our analysis, these recommendations should be considered for the following rea-

sons: 1) composite measures are more robust and reliable compared to individual indices; 2)

the richness and evenness sub-constructs are empirically derived based on analysis of a human

sample; and 3) these composite measures demonstrate utility in predicting key health-related

variables of interest. It is our hope that this investigation serves as a methodological guide for

researchers across a host of disciplines.
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