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ABSTRACT  

Optically-driven diffusion of high refractive index molecules within a transparent thermoset polymer matrix is a 
promising platform for hybrid optics that combines a wide range of optical structures from large scale holograms to 
micron-scale gradient index waveguides in a single integrated optical system. Design of such a system requires 
characterization of the optical response of the material at a wide range of spatial scales and intensities. While 
holographic analysis of the photopolymers is appropriate to probe the smaller spatial scales and lower intensity optical 
response, quantitative phase mapping of isolated structures is needed to probe the response to the higher intensities and 
lower spatial frequencies used in direct write lithography of waveguides. We apply the transport of intensity equation 
(TIE) to demonstrate quantitative refractive index measurements of 10 μm-scale localized gradient index structures 
written into diffusive photopolymer materials using both single- and two-photon polymerization.  These quantitative 
measurements allow us to study the effect of different exposure conditions and material parameters such as writing beam 
power, exposure time, and wt% loading of the writing monomer on the overall profile of the refractive index structure. 
We use these measurements to probe the time scales over which diffusion is significant, and take advantage of the 
diffusion of monomer with a multiple-write scheme that achieves a peak refractive index contrast of 0.025.  
Keywords: transport of intensity, holography, photopolymer, waveguide, diffusion, integrated optics 
 

1. INTRODUCTION  
Two-component photopolymer gels offer a low-cost, versatile material system that incorporates the high diffusivity and 
reaction rates associated with liquid chemistry into a solid, robust polymer package. This form factor has proven 
effective in the creation of numerous embedded and diffractive optical devices, ranging from optical waveguides and flat 
optics to holographic displays, and solar concentrators [1,2,3,4]. The diverse library of available monomers and polymers 
allows for extensive customization of the material properties, while the orthogonal polymerization chemistries of the 
initial thermoset matrix and the optically-activated writing monomer allow for distinct control over the mechanical and 
optical properties of the final product.   

While there are successful commercial options available, such as Covestro’s Bayfol material [5], fundamental materials 
research can create systems that are customizable for specific applications, designing for such properties as high change 
in refractive index, specific wavelength response ranges and absorption spectra, various mechanical properties, ease or 
speed of processing, or biocompatibility. As new materials are developed, it is essential to be able to fully assess their 
optical properties over a wide range of spatial and intensity scales. Design of materials systems requires characterization 
of the optical response of the material at spatial scales ranging from 100s of nanometers for reflection holograms, to 
millimeters for larger optical elements. The optical response must also be probed over a wide range of intensities, from 
mW/cm2 for large area exposures by low power, continuous wave lasers for holography up to MW/cm2 (average power) 
for focused exposures from high power, pulsed lasers for two-photon direct write of isolated waveguides. 

While holographic analysis of the photopolymers is appropriate to probe the smaller spatial scales and lower intensity 
optical response, it can only probe a single spatial frequency set by the hologram pitch and does not provide a full 
quantitative mapping of the index response. Quantitative phase imaging of isolated structures is needed to probe the 
response to the higher intensities of focused pulsed lasers used to write waveguides. Popular techniques such as Shack-
Hartman wavefront sensing and interferometry either lack the resolution necessary to study isolated micron-scale 
structures or are sensitive to phase aberrations within the optical system. The transport of intensity equation (TIE) 
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derived by Teague in 1983, is a non-interferometric imaging technique that directly recovers the optical phase delay by 
using the axial change in intensity of a series of defocused images about the object plane [6]. Because the TIE does not 
suffer from strict coherence requirements of the illumination source, it may be implemented in a simple brightfield 
microscope [7,8].  Given the thickness of the phase structure, the TIE can be used to directly map the refractive index 
contrast of a 2D phase element and has been used to study transparent phase structures such as cells and waveguides 
fabricated in glass [9,10,11].  
     
We apply the TIE to demonstrate quantitative index measurements of localized gradient index structures written into 
diffusive photopolymer materials using both single- and two-photon polymerization. These quantitative measurements 
allow us to study the effect of different exposure conditions and material parameters such as writing beam power, 
exposure time, and wt% loading of the writing monomer on the overall profile of the refractive index structure. We 
measure characteristic diffusion times of writing monomer along with refractive index, and take advantage of the 
diffusion of monomer with a multiple write system that achieves a peak refractive index contrast of 0.025. These phase 
microscopy measurements, along with holographic analysis of these materials, will allow us to design optical systems 
including both large-scale holograms along with localized structures such as waveguides. 
 

2. EXPERIMENTAL METHODS 
 
2.1 Materials 

The “liquid” components of the photopolymer gel commonly include a photoinitiator and monomer encapsulated within 
a solid, crosslinked polymer network via an orthogonal polymerization reaction.  Photoexposure initiates polymerization, 
locally consuming the monomer and creating immobile polymer chains.  Subsequent diffusion causes the monomer 
concentration to re-equilibrate, after which a final uniform light exposure polymerizes the remaining monomer and 
renders the material optically inert.   
 
The writing monomer 1a (phosphorothioyltris(oxybenzene-4,1-diylcarbamoyloxyethane-2,1-diyl) triacrylate was 
synthesized following a procedure reported in various Covestro patent literature [12]. Briefly, 0.0207g (0.09 mmol) of 
2,6-di-tert-butyl-4-methylphenol and 57 mL of Desmodur RFE (27% solution of tris(p-isocyanatophenyl) thiophosphate 
in ethyl acetate, 38.9 mmol) were added to a dried 100 ml round bottom flask with a magnetic stir bar. The reaction was 
started by adding 13.5 g (116.3 mmol) of 2-hydroxyethyl acrylate to the flask dropwise. The reaction was performed at 
60oC with a reflux condenser overnight. The product was collected by cooling and removal of ethyl acetate in vacuum to 
obtain a waxy semicrystalline solid. 
 

The crosslinked matrix of the two-component photopolymer system consists of a stoichiometric ratio of isocyanate 
(Desmodur N3900) and alcohol (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone) that forms a 
flexible polyurethane. The photoreactive component contains of a 1:10 molar ratio of photoinitiator TPO (2, 4, 6-
Trimethylbenzoyl-diphenyl-phosphineoxide) and 1a monomer described above. Samples were made with 10 wt% or 30 
wt% of this writing monomer. The matrix and photoreactive components were mixed together in their liquid form prior 
to significant polymerization of the polyurethane, degassed, and then cast between a 1 mm glass microscope slide and a 
150 μm glass coverslip. Sample thickness was set using spacers ranging between 13 and 25 μm. Polymerization occurred 
overnight in an oven at 60°C. 
 
 
2.2 Exposure system 

The optical layout for the exposure system is shown in Figure 1. The sample is mounted on a 5-axis stage that controls 
both tip/tilt and xyz motion, while a confocal reflection microscope operating at 660 nm is used to align the sample and 
provide a non-contact method for measuring the thickness of the sandwiched photopolymer layer.  The confocal beam is 
co-aligned with both a 405 nm continuous wave laser and a 780 nm pulsed laser (100 fs pulses with 50 MHz repetition 
rate) that are used to initiate polymerization with one and two photons respectively. Because the chosen photoinitiator is 
non-absorptive at 660 nm, the confocal arm does not initiate significant polymerization. The co-alignment of the writing 
and analyzing wavelengths allows for optical path length measurements directly where the exposures will occur. The 
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4. CONCLUSION 
We apply the TIE phase imaging method to make quantitative, 2D measurements of the index profiles written into a two-
chemistry holographic photopolymer using a focused beam. The method is used to characterize both the single- and two-
photon index response of the material over a wide range of exposure intensities as well as investigating the characteristic 
diffusion times as a function of polymerization. The method is straightforward to implement and is a powerful tool to 
investigate the index response and diffusion characteristics of different materials to optimize characteristics for the 
design of optical elements with low spatial frequency features. Utilizing these measurements and modifying the exposure 
conditions allows us to achieve an enhanced Δ݊ without changing any of the chemistry. 
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