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 Chronic kidney disease (CKD) is associated with a clinically-observed increase in bone fragility, yet 

the specific changes to fracture resistance-determining bone quality are not understood. CKD disrupts 

systemic mineral homeostasis and alters bone turnover. Thus, it was hypothesized that CKD deleteriously 

affects tissue-scale material properties. In Aim 1, mice with surgically-induced moderate CKD had 

diminished tissue-scale material properties, including mineral content and nanoindentation modulus, in 

bone formed during CKD compared with sham mice. Heterogeneity of microscale bone material was also 

altered with CKD. Next, CKD occurs most often in the elderly, yet geriatric patients with CKD have higher 

fracture risk than age-matched individuals without CKD. Aging reduces bone quality and may affect the 

behavior of osteocytes, the most prevalent type of bone cell. Osteocytes are essential for maintaining bone 

quality, but age-related changes to osteocytes, including lacunar morphologies, are not known. We 

hypothesized that osteocyte lacunae would have different morphologies with increasing age in mouse 

cortical bone. In Aim 2, we found that osteocytes become smaller, more spherical, and sparser with 

advancing age. Additionally, a convenient and inexpensive method to visualize and analyze 3D osteocyte 

lacunar geometries from confocal laser scanning microscopy depth stacks was presented. In Aim 3, it was 

hypothesized that aging and CKD together reduce bone material quality for mice with moderate CKD across 

the hierarchical organization of the bone tissue composite. We found that aging and CKD diminish bone 

material properties, including mineral and collagen matrix, from the microscale to the whole bone. 

Additionally, CKD reduced microscale material heterogeneity. Lastly, in Aim 4, it was hypothesized that 

fracture toughness depends on microscale material heterogeneity. In a rat model of exercise and obesity, 

fracture toughness of the femur was significantly influenced by the heterogeneity of nanoindentation 

modulus for lamellar bone. The relationship between fracture toughness and standard deviation of modulus 

had a negative quadratic form, implying that too-low or too-high variability in mechanical properties is 
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deleterious to bone toughness. The collected work reported here provides insights into how bone material 

quality is diminished in CKD as well as how these changes may alter bone fracture resistance. 
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CHAPTER 1 

1. Introduction 

1.1 Motivation and Specific Aims 

Chronic Kidney Disease (CKD) is an important global public health problem that has accelerated in 

prevalence in recent decades alongside the growing elderly populations of developed nations [Coresh et al., 

2007; Levey et al., 2007; Nickolas et al., 2008]. CKD is associated with a clinically-observed increase in 

bone fragility. Individuals with CKD have a higher incidence of both fracture and fracture-related mortality 

than age- and sex-matched controls with normal kidney function [Nitsch et al., 2009; Nickolas et al., 2008]. 

Indeed, it is known that CKD is commonly and perniciously accompanied by renal osteodystrophy, 

disrupted mineral homeostasis, and extracellular calcification under the broader syndrome of Chronic 

Kidney Disease – Mineral and Bone Disorder (CKD-MBD) [Moe et al., 2006].  

Bone fragility from CKD-MBD is challenging for the clinician to detect and manage. Patients are at 

greatest risk of bone fracture with severe CKD, long duration of mild-moderate CKD, or the combination 

of CKD and advanced age [Naylor et al., 2014]. Dual Energy X-Ray Absorptiometry (DEXA) is the clinical 

standard for identifying bone mineral loss, yet in CKD many patients present with fracture without an 

abnormal DEXA score [Nickolas et al  2008]. Currently, changes from CKD to bone material and structure 

that result in loss of bone fracture resistance are not known. At the same time, therapeutics used clinically 

to manage bone loss in CKD (i.e., antiresportives such as bisphosphonates) are used with limited 

understanding of their specific effects on bone fragility in CKD, and may have undesired systemic 

repercussions. Thus, clinical decision making may benefit from an improved understanding of the material 

and structural determinants of skeletal fragility in CKD. 

The principle objective of this thesis is to determine why CKD causes increased fracture risk in a mouse 

model of CKD. Bone fracture resistance is determined by bone quality – a constellation of hierarchical 

material and structural contributing elements that together determine bone strength and toughness [Seeman 

et al., 2006; Donnelly et al, 2010]. Bone material and microarchitecture can be modified, for better or 
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worse, through pharmaceuticals, exercise, and diet, and thus it is imperative to for the clinician to 

understand the sources of bone fragility in CKD in order to appropriately direct patient care. The altered 

mineral homeostasis and bone turnover resulting from CKD-MBD implies that bone quality may worsen 

with renal dysfunction [Moe et al., 2006; Wolf et al., 2015]. Yet the specific effects of CKD on bone 

material, including mineral and matrix components, and microarchitecture have yet to be determined. The 

first aim of this work is to understand whether bone quality is diminished in bone formed during 

CKD. The osteocyte, which resides within bone and systemically participates in CKD, is a key regulator 

of bone quality. Osteocyte perilacunar remodeling changes the shape of osteocyte lacunae, which can 

impact bone microstructure, material properties, and mechanosensitivity. Yet osteocyte lacunae are 

complex three-dimensional shapes, and current methods to visualize these three-dimensional networks 

require prohibitively rare or expensive technologies (e.g., synchrotron radiation, nanoCT). The second aim 

of this work is to develop a convenient and efficient method to visualize and analyze networks of 3D 

osteocyte lacunae based on confocal laser scanning microscopy (CLSM), a relatively common and 

inexpensive tool. The method is first applied to investigate how changes occur to osteocyte lacunar 

networks with aging. Next, although CKD is most common among the elderly, the combined influences of 

aging and CKD on bone quality are unknown. It is not understood how aging and CKD influence the 

osteocyte lacunar geometries, cortical and trabecular microarchitecture, tissue-scale bone material 

properties, and whole-bone mechanical and material properties that together influence fracture resistance. 

Therefore, the third aim is to determine how aging and CKD together participate in diminishing bone 

quality. In early work for this thesis studying the effects of CKD on bone material at the microscale, a 

compelling hypothesis emerged that kidney dysfunction may change material heterogeneity. The fourth 

aim is to identify the role of bone material heterogeneity in intrinsic bone fracture toughness, such 

that the altered bone tissue heterogeneity in CKD and other metabolic bone diseases can be better 

interpreted. 

 The overarching hypothesis of this work is that CKD deteriorates bone quality, including 

microscale material properties, to decrease bone fracture toughness. Bone quality is hypothesized to 
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worsen progressively with advancing kidney disease, and in addition to the bone quality reduction 

associated with aging. It is further hypothesized that microscale material heterogeneity specifically 

contributes to the fracture toughness of bone. The net effect of these worsening bone parameters lies in their 

contribution to bone fragility. In order to address this overarching hypothesis, the following Specific Aims 

are proposed. 

Specific Aim 1: Determine whether microscale bone quality is reduced in bone formed following the onset 

of CKD.  

While bone material properties in surgical models of CKD in rodents (e.g., 5/6th nephrectomy) have 

been evaluated, disagreement exists about whether bone material quality is worsened or conserved with 

kidney disease [Kadokawa et al., 2011, Iwasaki et al., 2011, Iwasaki et al., 2015]. The lack of agreement 

may originate from the location of microscale material property evaluation; these previous efforts have 

surveyed a select few microscale locations in the cortical mid-envelope although actively forming bone 

following 5/6 Nx in mice and rats forms along the outer periosteal and endosteal surfaces. Thus, while 

altered mineralization and mechanical properties at the microscale are suspected because of the 

pathophysiology of renal osteodystrophy, microscale material properties have not been thoroughly 

surveyed in either human or animal models. The hypothesis of Aim 1 was that bone material properties 

are diminished in CKD, and that microscale arrays spanning cortical bone tissue established before 

and after nephrectomy would reveal deleterious changes to bone material properties. 

To complete Aim 1, 11-week-old C57Bl/6J mice underwent either 5/6 nephrectomy (5/6 Nx), to 

induce CKD, or sham surgeries and were killed at 22 weeks of age. Nanoindentation arrays were placed on 

a transverse section of the midshaft tibia in arrays spanning the cortical thickness. Arrays were large enough 

to survey indentation modulus in the newest bone located near the periosteal surface as well in extant bone 

in the cortical mid-envelope. Following nanoindentation, the mineral volume fraction was assessed by 

quantitative backscattered scanning electron microscopy (qBSE) at the indentation sites. Bones from mice 

with 5/6 Nx had significantly lower nanoindentation modulus and lower mineral volume fraction in newly 
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formed bone after the onset of CKD; this pattern was not observed in sham mice. Further, altered variance 

in modulus and mineral volume fraction in 5/6 Nx compared with sham implies a possible loss of tissue-

scale toughening mechanisms [Tai et al., 2007; Yao et al., 2011]. These changes to bone material were 

observed in the absence of changes to bone microarchitecture from microCT and whole bone bending 

strength and modulus from three-point bending. 

The key result of Aim 1 was that microscale bone material was observed to worsen (less 

mineralized and lower nanoindentation modulus) with moderate CKD. Another important observation was 

that heterogeneities of both modulus and mineral volume fraction were altered with CKD. The work was 

innovative in employing large, site-matched arrays spanning the cortical thickness that allowed assessment 

of microscale cortical bone properties in bone formed before and after nephrectomy. The size of these arrays 

enabled estimation of material heterogeneity, which had not been explored in CKD models prior to this 

study. The significance of Aim 1 was to resolve the previously unanswered question of whether bone 

material worsened in CKD, and thereby to establish an important line of inquiry into how clinically-

observed loss of bone fracture resistance is associated with diminished material properties. 

Specific Aim 2: Develop a method to assess 3D osteocyte lacunar geometries and evaluate changes to 

osteocyte lacunar networks in aging. 

Osteocytes, which account for approximately 95% of bone cells, are critical for coordinating bone 

deposition and resorption, as well as bone mechanotransduction. They also participate systemically in 

disease processes via endocrine signaling [Bonewald 2011; Schaffler et al., 2014]. In addition, the osteocyte 

can directly modify the local bone material environment through perilacunar remodeling. The reversible 

removal and deposition of bone in the perilacunar space may contribute to maintenance of bone quality and 

fracture resistance [Alliston 2014; Tang et al., 2014; Fowler et al., 2016]. Perilacunar remodeling is thought 

to participate in systemic mineral homeostasis, and is sensitive to extreme physiological conditions (e.g., 

lactation, hibernation, microgravity) and some therapeutics (e.g., glucocorticoids) [Qing et al., 2012; Kaya 

et al., 2015; Kwiecinski  et al., 1987; Lane et al., 2004]. Aging may alter mineral metabolism, and is also 

associated with changes to osteocyte behavior (i.e., expression of toxic proteins by senescent osteocytes) 
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[Orwoll et al., 2009; Tsai et al., 1984; Farr et al., 2016]. Yet it is unknown if aging alters osteocyte lacunar 

geometries, such as volume and orientation. These changes to osteocyte lacunar geometries may affect bone 

structural competence, fracture properties, and mechanosensitivity. 

Visualizing and measuring osteocyte lacunar geometries is necessary for understanding the role of the 

osteocyte in modulating bone quality. Most attempts to visualize osteocyte lacunae have involved two-

dimensional (2D) approaches, which have several critical limitations. Osteocyte lacunae can appear 

indistinguishable from non-lacunar objects (e.g., a cross-section of vasculature). Furthermore, the 

ellipsoidal shape that characterizes osteocyte lacunae can be sliced into many different ellipses with widely 

differing geometries depending on the sectioning plane.  Three-dimensional (3D) images can surmount the 

challenges of 2D quantification of osteocyte lacunar network geometries. Yet previous efforts to visualize 

lacunae in 3D often utilize expensive and inaccessible technologies (e.g., synchrotron-radiation microCT 

and submicron-resolution conventional CT ‘nanoCT’). By contrast, confocal laser scanning microscopy 

(CLSM) is a relatively common, fast, and inexpensive technique with the ability to capture depth stacks (z-

stacks) at submicron resolution of brightly stained (e.g., basic fuchsin) osteocyte lacunae. Some prior work 

has employed CLSM for analysis of 3D lacunae [McCreadie et al., 2004; Kamel El-Sayed et al., 2015; Lai 

et al., 2015; Kerschnitzki et al., 2013]. These studies rely either on manual segmentation (slow and prone 

to user error) or construct proprietary algorithms for segmenting and reconstructing lacunae for 3D analysis. 

The primary purpose of Aim 2 was to develop an open-source method for automatic segmentation and 

reconstruction of osteocyte lacunae in 3D from CLSM images. These 3D networks of osteocyte lacunae 

can then be analyzed for network geometries and orientations. The secondary purpose of Aim 2 was to 

evaluate whether 3D osteocyte lacunar geometries change with aging. The hypothesis of Aim 2 was that 

osteocyte lacunae can be reconstructed in 3D from images generated in confocal laser scanning 

microscopy, and that these 3D images reveal changes to osteocyte lacunar geometries with aging in 

mice that would be overlooked in 2D analyses of osteocyte lacunae. 

A Matlab-based program was developed that manually segments and reconstructs osteocyte lacunae 

from image stacks obtained from CLSM. The validity of this approach was tested with use of phantom 



6 

 

geometries, manual segmentation, and comparison with nanoCT. To study the effect of aging on 3D 

osteocyte lacunar geometries, ~200 µm thick sections of basic fuchsin-stained cortical mouse bone from 

the midshaft tibia were prepared from 6, 18, and 24 month old mice who served as sham controls for a study 

of aging and CKD.  

The primary result from Aim 2 is that osteocyte lacunae can be reconstructed and analyzed in 3D 

from z-stacks generated during confocal laser scanning microscopy, a convenient and accessible 

technology. The Matlab-based program constructed during this project enables time-efficient segmentation 

of lacunae while minimizing user bias. The secondary goal of this project was to investigate whether aging 

changes 3D osteocyte lacunar geometries. It was found that lacunae from cortical mouse bone become 

smaller, more spherical, and sparser with aging. With the exception of diminished lacunar number density, 

changes with aging from 3D analyses were not evident in 2D assessments from the same mice. Instead, 

closest center of mass and orientation appeared to change in 2D but not 3D, revealing that 2D metrics have 

the potential to be misleading. 

 Aim 2 is innovative in providing an open-source tool to study 3D osteocyte lacunar networks from 

CLSM imaging. While the method was first demonstrated for studying the effects of aging on 3D osteocyte 

lacunar geometries, the same approach can be utilized to study osteocyte lacunae in CKD as well as in other 

diseases, physiological states, and interventions that affect the osteocyte. 

Specific Aim 3: Determine the influence of CKD and aging on bone fragility.  

The prevalence of CKD increases with age, such that the majority of patients with CKD are elderly 

[Nickolas et al., 2008]. Aging is known to diminish bone quality with respect to microarchitecture as well 

as to material properties. Aging thins trabeculae and cortical bone, and increases cortical porosity [Riggs et 

al., 2004]. Bone material also worsens; with increased age there is greater mineralization and altered 

mineral chemistry [Boskey et al., 2002; Boskey et al., 2010; Akkus et al., 2003], increased accumulation 

of microdamage [Shaffler et al., 1995], and increased non-enyzmatic crosslinking of the collagen matrix 

[Wang et al., 2002]. It is not known how aging and CKD together reduce bone quality, and whether the 

effects of CKD on bone are greater in older patients. Clinicians are limited in treating the skeletal effects 
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of CKD in part from the unknown interaction between aging and CKD on bone quality. Human studies of 

these combined effects have not been conducted and are complicated by the high incidence of additional 

aging-related diseases known to diminish skeletal fracture resistance (e.g., diabetes). Thus, studying bone 

outcomes in a model of CKD in young through geriatric mice may provide the first insights into the 

combined effects of CKD and aging on bone quality and fracture resistance. The hypothesis of Aim 3 was 

that CKD and aging lower bone quality in mice, including material properties and bone 

microarchitecture, more than aging alone. It was further hypothesized that reduced heterogeneity of 

material properties (e.g., nanoindentation modulus) is significantly associated with lowered bone fracture 

toughness. 

Bone quality spanning multiple length scales was evaluated for young (3 mo), middle-age (15 mo), 

and old (21 mo) C57Bl/6 male mice undergoing either 5/6 Nx or Sham procedures and aged an additional 

three months (final ages 6, 18, and 24 months). Whole bone mechanical properties were assessed from 

three-point bending of the femur. Microarchitecture of trabecular bone (proximal tibia) and cortical bone 

(midshaft femur) were assessed from microCT. Site-matched maps spanning the cortical thickness of the 

femur evaluated bone chemistry from Raman spectroscopy, modulus from nanoindentation, and mineral 

volume fraction from qBSE. Enzymatic and non-enzymatic collagen crosslinks were evaluated using high-

performance liquid chromatography (HPLC).  

The key finding of Aim 3 is that bone quality changes with both aging and CKD, such that bone 

quality is worst in the oldest animals with CKD. Aging reduced trabecular and cortical microarchitecture 

and whole-bone mechanical properties. CKD further diminished both trabecular and cortical 

microarchitecture and whole-bone mechanical and material properties. The effect of CKD on bone quality 

emerged with age. Few differences were evident between CKD and sham for young mice. At middle-age, 

mice with CKD compared with sham had diminished whole bone mechanical and material properties (e.g., 

stiffness, toughness, post-yield displacement) cortical microarchitecture (e.g., cortical porosity, cortical 

thickness), and modulus from nanoindentation. Old mice with CKD compared with sham had diminished 

trabecular microarchitecture (e.g., trabecular number, trabecular thickness, trabecular mineral density), as 
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well as reduced collagen crosslinks. Though there were few significant differences in cortical bone for old 

mice with CKD vs sham, mean cortical microarchitecture was generally lowest in old mice with CKD. Both 

old and middle-age mice had decreased mineral, as evidenced by both trabecular and cortical mineral 

densities measured by microCT. Material property differences were most evident at middle-age at both the 

microscale (lower modulus and standard deviation, a measure of heterogeneity, from nanoindentation) and 

whole bone scale (toughness from three-point bending). 3D osteocyte lacunar geometries became smaller, 

more spherical, and sparser with age in sham mice, but were not different between ages for mice with CKD, 

potentially implicating the osteocyte in bone quality changes in CKD. 

The innovation of Specific Aim 3 is that it is the first assessment of bone quality changes in CKD 

alongside aging. Aim 3 is also innovative in generating site-matched maps of cortical bone chemistry, 

composition, and mechanical properties spanning the cortical thickness. This Aim is further innovative in 

comparing the evaluating the influence of microscale material properties on whole bone structural integrity. 

The significance of this work is in improving the clinical understanding of how bone fracture resistance is 

lost with CKD as well as the role of aging in this process. Specically, knowledge of changes to mineral and 

collagen with aging and CKD may help the clinician consider appropriate treatment choices. 

Specific Aim 4: Investigate how bone material property heterogeneity contributes to whole bone fracture 

toughness.  

Bone is a hierarchical composite with material and structural elements ranging from the nanoscale 

to the mesoscale. Bone structure at the microscale is known to be important to bone fracture toughness; a 

known toughening mechanism in human bone is for cracks to deflect along relatively compliant osteonal 

cement lines [Koester et al., 2008]. Bone material properties and their microscale spatial heterogeneity are 

widely thought to also be important to bone toughness, but the work supporting this theory has been largely 

observational [Lloyd et al., 2016]. For example, work spanning a number of disease models has found that 

heterogeneity of bone composition (from quantitative SEM techniques) is abnormal in individuals with 

fragility fractures [Roschger et al., 2008; Busse et al., 2009; Tamminen et al. 2014]. Heterogeneity in 

nanoindentation modulus, which results in part from compositional variance, has been demonstrated using 
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FEA models to provide a tissue-scale toughening mechanism [Tai et al., 2007; Yao et al., 2011]. However, 

no previous report has detailed a direct evaluation of how heterogeneity of tissue-scale modulus, as well as 

variance in microscale bone chemistry (e.g., mineral:matrix, crystallinity) and composition (i.e., mineral 

volume fraction) contribute to bone fracture toughness. Because of this gap in understanding, it is unknown 

if therapies that increase or decrease material heterogeneity would influence bone fracture resistance. The 

hypothesis of Aim 4 was that microscale bone heterogeneity, including variance for both tissue-scale 

stiffness and physical characteristics of the bone tissue composite, contributes to rat bone fracture 

toughness. 

 To evaluate the contributions of material heterogeneity on fracture toughness, notched fracture 

toughness testing was conducted on rat femurs from a study of exercise and obesity. Male and female rats 

were fed a high-fat diet for 10 weeks, starting at 5 weeks of age, and separated into lean, middle, and obese 

tertiles within sex by weight. The lean and obese rats were then randomly assigned to exercised (treadmill 

running) or sedentary groups and were killed four weeks later. Femurs from these rats were notched and 

fractured to obtain a fracture toughness. Microscale material properties and their variance (i.e., 

heterogeneity) were then assessed for both lamellar and woven bone with nanoindentation and Raman 

spectroscopy. 

 Fracture toughness was higher for exercised compared with sedentary rats. Multiple linear 

regression models revealed that fracture toughness for lamellar bone and woven bone depended on 

microscale bone heterogeneity. Fracture toughness had a negative quadratic dependence on the standard 

deviation of reduced modulus as well as mineral:matrix for lamellar bone regardless of exercise or obesity, 

implying that a “sweet spot” of material properties and their variance contributes to fracture resistance.  

The significance of Aim 4 lies in evaluating the contribution of disrupted material variance to the 

development of bone fragility. With this knowledge, researchers and clinicians may be aided in 

understanding the significance of altered heterogeneity observed in bone from human fragility fractures in 

diseases such as CKD. 
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FIGURE 1-1: OUTLINE OF SPECIFIC AIMS 

 

 

 

  

Overarching hypotheses 
 A) Chronic Kidney Disease (CKD) worsens bone quality, including microscale material properties, to 

decrease fracture toughness. 

 B) Microscale material heterogeneity contributes to fracture toughness in bone.  

Aim 1 

Question: Does microscale bone material quality worsen a mouse model ofCKD? 

Key findings: CKD lowers microscale bone mineralization and modulus and also alters the variance of 

these material properties.  

Innovation: This study was the first to robustly assess bone material quality at the microscale through 

mapping material properties through the cortical thickness. 

Significance:  The findings that CKD reduces bone mineral and tissue-scale stiffness may assist the 

clinician in determining appropriate therapies.  

Status: Published in Heveran et al., Bone, 2016 

 

Aim 2 

Question:  Can 3D osteocyte lacunae geometries be assessed from confocal laser scanning microscopy 

(CLSM), and do lacunar geometries change with aging in mice? 

Key findings: Osteocyte lacunae can be reconstructed and analyzed in 3D from CLSM. Lacunae are seen 

to decrease in size and increase in sphericity with increased age in mice. 

Innovation: This work introduces a convenient, efficient method for analyzing 3D osteocyte lacunae 

geometries. It is the first to report changes to lacunar dimensions with aging in cortical bone.  

Significance:  Changing lacunar geometries with aging may have important consequences to bone quality 

and mechanosensitivity. This method will be useful for studying osteocyte lacunae in CKD as well as in 

other diseases and therapeutic interventions.  

Aim 3 

Question: How do CKD and aging together 

influence bone quality and fracture resistance in 

mice?  

Innovation: This is the first study of bone quality 

in CKD for young through old rodents. 

Significance:  The findings that mineral and 

collagen are worsened with both CKD and aging 

may help clinicians determine appropriate 

therapies for elderly patients with kidney disease. 

 

Aim 4 

Question:  How does material property heterogeneity 

contribute to rat bone fracture toughness? 

Innovation:  This study directly assesses how 

variance in microscale material properties explain 

bone fracture toughness.  

Significance:  Understanding how heterogeneity 

affects fracture toughness may impact diagnostics and 

treatment for a variety of bone-quality reducing 

diseases, including CKD. 
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2. Background 

2.1 Chronic Kidney Disease 

2.1.1  Bone fragility in Chronic Kidney Disease: prevalence and clinical limitations  

Bone fragility with Chronic Kidney Disease (CKD) is a growing global public health concern 

[Levey et al., 2007; Moe et al., 2006]. Primarily affecting elderly populations, the incidence of moderate 

to severe CKD is estimated at 24-36% of adults over 64 years [Zhang et al., 2012]. Renal osteodystrophy 

is a common complication of CKD, now recognized as a component of the Chronic Kidney Disease – 

Mineral and Bone Disorder (CKD-MBD) syndrome involving disruption of mineral homeostasis, bone 

pathology, and extraskeletal (e.g., vascular) calcification [Moe et al., 2006].  

CKD has been clinically associated with an increase in fracture risk [Naylor et al., 2014; Nickolas 

et al., 2008]. In a three-year cohort study conducted in Ontario, Canada, fracture prevalence in adults with 

CKD increased with severity of disease and age. For men and women over the age of 65, 2-4% of men and 

6-8% of women with mild to moderate CKD sustained a bone fracture. These rates increase with severity 

of disease; this same age group experienced fracture rates of 5% and 10% for men and women with end-

stage renal disease, respectively. Prevalence of fracture risk was also seen to increase with age. Men and 

women ages 40-65 with end-stage renal failure had lower rates of fracture, at 3% and 4%, respectively, than 

older patients with similarly staged kidney disease [Naylor et al., 2014]. This increased fracture prevalence 

has been associated with mortality. Nitsch et al reported that men and women age 75 years and over with a 

hip fracture suffer a 2-fold increase in mortality compared with age- and sex- matched individuals without 

CKD [Nitsch et al., 2009].  

 A lack of knowledge about the specific effects of CKD on bone fracture resistance critically limits 

clinicians in providing appropriate care for patients. Specifically, fracture risk in patients with CKD is 

difficult to predict, and appropriate treatment is uncertain. Measuring bone mass with Dual-Energy X-ray 

Absorptiometry (DEXA) is the clinical standard for assessing fracture risk and can identify patients with 

profound bone mineral loss. Yet DEXA is not predictive of fracture risk in CKD [Nickolas et al., 2008]. 

As a low-resolution, two-dimensional technique, DEXA that can miss important changes to bone 
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microarchitecture and material properties. Thus, patients often present with fractures while having normal-

range DEXA scores. Without understanding the effects of CKD on bone microarchitecture and material, it 

is difficult to address the limitations of DEXA to improve fracture prediction. Clinicians are also limited in 

how to treat bone fragility in CKD. Most patients with CKD are older, and bisphosphonate therapies for 

managing skeletal fragility in aging are predominantly focused on controlling unbalanced bone remodeling 

(i.e., greater bone-resorbing osteoclast activity versus bone-forming osteoblast activity) through reducing 

osteoclast numbers or activity [Rogers et al., 2000].  However, it is known that in aging (without CKD), 

bisphosphonate drugs can lead to adynamic bone disease and worsen bone mineral and the supporting 

collagen network [Gourion-Arsiquaud et al., 2010; Allen et al., 2008; Mashiba et al., 2000]. Treatment of 

CKD patients with phosphate binders or calcitriol to suppress parathyroid hormone (PTH) can also lead to 

adynamic bone disease, and may further increase the risk of cardiovascular calcification [Malluche et al., 

2004]. An improved understanding of the effects of CKD on bone quality is necessary for clinicians to best 

choose therapeutics to manage the skeletal fragility of their patients. 

Currently, the effects of CKD on bone quality to impart skeletal fragility are not known. In 

particular, it is not understood whether and how CKD changes bone microarchitecture and material quality. 

It is also important to identify how changes to bone quality in CKD occur together with deleterious changes 

to bone that occur in normal aging. In understanding the etiology of skeletal fragility in CKD, clinicians 

may gain valuable insights into which treatments are most appropriate for patients of varying ages and 

stages of disease. In the following sections, the pathophysiology of CKD is first discussed (2.1.2), along 

with an overview of rodent models available to study the effects of CKD on the skeleton (2.1.3). The 

physiological roles of the skeleton (2.2), as well as the complexities of bone as a hierarchical (2.3), dynamic 

(2.4), and heterogenous composite (2.5) are then explored, with emphasis within each section on the 

possible influences of CKD to disrupt the intricate functions, structure, and material of bone to impart 

fragility. Finally, section 2.6 summarizes what is known from experimental work involving CKD on bone 

quality, and highlights gaps in the current understanding of CKD-induced skeletal fragility. 
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2.1.2 The pathophysiology of Chronic Kidney Disease 

The healthy kidneys work alongside the parathyroid, intestine, and bone to regulate mineral 

homeostasis. The definition of CKD is based on a glomerular filtration rate (GFR, ml/min per 1.73 m2) of 

less than 60 ml/min for three or more months. The level of reduction determines the stage of disease (stage 

1: > 60 ml/min, stage 2: 59-45 ml/min, stage 3: 44-30 ml/min, stage 4: 29– 16 ml/min, stage 5 (end stage 

renal disease requiring dialysis): < 15) [Levey et al., 2012]. Because GFR is difficult to measure, calculating 

an estimated GFR (eGFR) from serum creatinine is common. The failing kidney can be managed by dialysis 

or transplant, thus morbidity instead commonly results from cardiovascular disease (CVD), acute kidney 

infection, or complications related to bone fracture [Moe et al., 2006; Levey et al., 2012]. 

The healthy kidney excretes phosphorus and calcium and thus participates along with the intestine, 

where minerals are absorbed, and the bone, where minerals are stored, to maintain mineral homeostasis 

[Moe et al., 2006]. When kidney function is compromised and glomerular filtration rate decreases, the 

serum concentration of phosphate and calcium increase. The elevated phosphate directly and indirectly, 

through masking serum calcium, trigger an increase in parathyroid hormone (PTH) expression. PTH acts 

on the kidney to reduce reabsorption of phosphate while also increasing the absorption of calcium through 

upregulating an enzyme responsible for conversion of vitamin D to its active form, calcitriol [Quarles et 

al., 2008]. Bone is also affected; PTH acts on the OPG/RANK pathway to increase osteoclastic resorption 

and elevate bone turnover, which in turn increases serum phosphate and calcium [Moe et al., 2006]. 

Fibroblast growth factor 23 (FGF23) is also active in phosphate metabolism, and is secreted by osteocytes 

very early in CKD progression [Fang et al., 2014]. As with PTH, FGF23 also works to decrease phosphate 

re-absorption at the kidney, but FGF23 activity decreases calcitriol and thus may interfere with the self-

regulating feedback loop between PTH and vitamin D [Quarles et al., 2012]. FGF23 and PTH work together 

in early kidney disease to compensate for hyperphosphatemia and are largely effective in controlling 

systemic (i.e., circulating) phosphate levels, but secondary hyperparathyroidism (SHPT) develops as CKD 

progresses [Quarles et al., 2012; Komaba et al., 2010]. The onset of SHPT is characterized by high bone 

turnover as the bone is removed in response to sustained elevated PTH and then re-established as newly 
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deposited bone tissue [Kazama et al., 2015]. The net bone mass is not profoundly impaired, thus the use of 

DEXA as a screening tool for low bone mass in CKD is insufficient [Nickolas et al., 2008]. The 

overexpression of PTH over time appears to impair osteoblast performance and may eventually lead to the 

low-turnover adynamic bone disease that is common in end stage renal disease [Moe et al., 2006]. 

The dysregulation of phosphate and calcium in CKD is likely to impair bone material properties 

and microarchitecture. Healthy cortical bone matures in the span of weeks to months from osteoid to bone 

tissue with increased mineral content, crystal size, perfection, and orientation, substitution of carbonate into 

the hydroxyapatite mineral lattice, and crosslinking throughout the collagen matrix [Donnelly et al., 2009]. 

Because bone remodeling is temporally staggered, healthy cortical tissue of the whole bone has a range of 

maturities. The various degrees of mineralization, range of crystal sizes and orientations, and amount of 

crosslinking may all contribute to a heterogeneous, fracture-resistant bone [Seeman et al., 2006; Gourion-

Arsiquaud et al., 2013; Boskey et al., 2003; Saito et al., 2010]. The frequent removal of mature cortical 

bone and replacement with newly-deposited osteoid as occurs in CKD may result in a less mature, less 

heterogeneous bone tissue composite. Bone microarchitecture could also be impaired; cortical and 

trabecular microarchitectures have been shown to negatively correlate with increased biochemical markers 

of bone turnover [Chaitou et al., 2010]. It is unknown how loss of bone quality in CKD would participate 

with normal decrease in bone quality, including both material and microarchitecture, with aging. The 

potential effects of altered mineral homeostasis and abnormal bone turnover in CKD on specific aspects of 

bone material and microarchitecture are discussed in depth in sections 2.2 - 2.6. 

The deleterious changes to bone from CKD clinically correspond with the development of vascular 

calcification. The concurrence of bone and vascular changes are now recognized as Chronic Kidney Disease 

– Metabolic Bone Disorder [Moe et al., 2008]. Calcium and phosphate liberated into serum from increased 

bone turnover can cause vascular smooth muscle cells to mineralize [Moe et al., 2006]. Identifying 

appropriate treatments to restore bone quality could therefore potentially improve cardiovascular outcomes 

as well as manage bone fragility. Treatment of CKD-MBD has been attempted with bisphosphonates, which 

diminish osteoclastic activity and thereby slow bone turnover [Moe et al., 2008; Moe et al., 2015]. 
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Bisphosphonates are prescribed to preserve bone mass in osteoporosis, but are known to diminish bone 

material properties including altered bone mineral content and chemistry [Gourion-Arsiquaud et al., 2010], 

increased collagen crosslinking [Allen et al., 2008], and accumulation of microdamage [Mashiba et al., 

2000]. Because the specific changes to bone material and structure in CKD are poorly understood, clinicians 

are critically lacking information when prescribing bisphosphonates or other bone-affecting therapies to 

manage skeletal fragility or related cardiovascular disease. These fundamental questions about the effects 

of the complex pathophysiology of CKD on bone quality and fracture resistance motivate the use of 

carefully designed preclinical rodent models of kidney disease. 

2.1.3 Rodent models of Chronic Kidney Disease 

Chronic Kidney Disease is highly co-morbid with aging and other diseases such as diabetes and 

hypertension [Levey et al., 2007]. In order to study the isolated effects of CKD on bone, rodent models 

have been employed. These models span chemical, surgical, and genetic induction of either spontaneous or 

progressive kidney disease [Yang et al., 2010]. Chemical induction of CKD includes the spontaneous CKD 

that results from injection of a nephrotoxin or high doses of adenine delivered through diet [Yang et al., 

2010; Ferrari et al., 2014]. Surgical models, such as uninephrectomy (UNx) and 5/6th nephrectomy (5/6 

Nx), gradually produce chronic kidney disease [Chanutin & Ferris, 1932]. Unlike the severe CKD, and 

confounding malnutrition, caused by oral adenine administration, UNx and 5/6 Nx produce mild and 

moderate CKD, respectively, that mimic many aspects of human disease [Ferrari et al., 2014; Yang et al., 

2010; Gava et al., 2012]. The 5/6 Nx model induces high turnover renal osteodystrophy unless paired with 

thyroparathyroidectomy, in which low-bone turnover results [Iwasaki et al., 2015]. The primary 

disadvantage of 5/6 Nx is that consistent ablation of the mouse kidney is difficult, and thus some variation 

in the severity of kidney disease achieved through surgery is likely. Though 5/6 Nx has been commonly 

employed to since the 1930s to study CKD in renal and cardiovascular systems [e.g., Chanutin & Ferris, 

1932; Gava et al., 2012, Moe et al., 2008], few studies have considered bone outcomes [Iwasaki et al., 

2011; Iwasaki et al., 2015; Kadokawa et al., 2011].  
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Genetic models have also been employed to study CKD. The Cy/+ model involves autosomal 

dominant polycystic kidney disease produced by a mutation in a gene that codes for the SamCystin protein. 

When employed in male Han:SPRD rats, Cy/+ model produces high-turnover CKD in young adults 

[Newman et al., 2014; Moe et al., 2014; Allen et al., 2015]. An alternate approach used in mice is the 

genetic induction of Alport Syndrome. In both rodents and humans, Alport Syndrome involves the 

progressive onset of CKD (alongside loss of hearing and other complications) because of a deficiency in 

Type IV collagen, affecting basement membranes and thus kidney glomeruli [Rheault et al., 2004]. In a 

model of Alport Syndrome (Col4a3 knockout) on the 129 background, 10-week old mice with severe CKD 

had high-turnover renal osteodystrophy. However, in this context, mice have severe CKD by 9 weeks of 

age [Stubbs et al., 2012]. Growth of the immature skeleton during the entirety of disease progression 

complicates the longitudinal assessment of renal osteodystrophy. A separate model of Alport Syndrome, 

the Col4a5 knockout on a C57Bl/6 background, is more promising for the temporal characterization of 

CKD on the murine skeleton [Rheault et al., 2004]. In the Col4a5 model, male C57Bl/6 mice with the x-

linked knockout experience a slowly progressive renal disease. Moderate kidney disease and proteinuria 

develops by age 75-100 days, and severe disease (glomerular filtration rate 10-20% of normal) manifests 

by 200 days of life [Rheault et al., 2004]. Bone outcomes have not been characterized for this model. A 

limitation of the genetic models is that all lead to severe CKD in either skeletally immature or young adult 

rodents. Thus, genetic models are not currently appropriate for studying the combined effects of CKD and 

aging on the skeleton. 

2.2. Physiological functions of bone 

Bone provides the structural framework for the body’s soft tissues. However, the skeleton serves 

several additional critical roles. Red blood cells are created within the marrow of long bones. Bone is also 

a mineral reservoir; the resorption or deposition of mineralized bone tissue helps to facilitate serum 

homeostasis of calcium and phosphate. Bone participates in mineral homeostasis through activities 

coordinated by the osteocyte. The osteocyte orchestrates the absorption of bone by osteoclasts and the 

deposition of bone by osteoblasts [Bonewald 2011]. It has recently been established that the osteocyte can 
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also directly engage in mineral homeostasis through removing the material volume surrounding the 

osteocyte lacuna in reversible process called perilacunar remodeling [Teti et al., 2009]. The surface area 

available for resorbing mineral via the osteocyte lacunar-canalicular system is immense relative to surfaces 

available for osteoclastic resorption [Bonewald 2011]. Changes to bone material and microarchitecture 

occur as the skeleton dynamically responds to systemic mineral requirements through osteoclast- and 

osteocyte-mediated resorption. Pathological changes to osteocyte behavior, including altered bone turnover 

from osteoclasts and osteoblasts, and potentially perilacunar remodeling, could occur with the altered 

mineral homeostasis of CKD. 

Bone also has paracrine and endocrine functions through the actions of the osteocyte. For example, 

the osteocyte can secrete sclerostin to decrease differentiation of osteoblasts [Quarles et al., 2008]. FGF23, 

secreted by the osteocyte, has a role in down-regulating vitamin D and affecting both PTH and serum 

phosphate [Quarles et al., 2012]. These paracrine and endocrine functions are known to be disrupted in 

CKD. FGF23 is secreted early in CKD progression, preceding detectable changes to circulating phosphate, 

PTH, and vitamin D [Fang et al., 2014]. Sclerostin is also elevated in both mouse and human bones 

[Sabbagh et al., 2012].  

While participating in many physiological processes, bone maintains fracture resistance as a strong, 

tough, and relatively lightweight composite. The hierarchical, heterogeneous, and dynamic characteristics 

that impart fracture resistance to healthy bone and their potential disruptions through CKD are explored in 

depth in sections 2.3-2.5. 

2.3 Bone is a hierarchical composite 

Bone tissue has a hierarchical organization, with length-scales of structural importance ranging 

from the whole bone down to the nanoscale [Weiner & Traub, 2002; Seeman et al., 2006]. The basic 

structural unit of bone is carbonated hydroxyapatite mineral embedded within type I collagen fibers. Bone 

mineral shares many similarities with geologic hydroxyapatite (Ca10(PO4)3(OH)). Both contain calcium, 

phosphate, and hydroxyl groups. However, while tremendous heat and pressure cause geologic 

hydroxyapatite to form large, relatively perfect hexagonal crystals, the physiological environment of the 
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body constrains the size of bone mineral. The hydroxyapatite comprising bone mineral is actually 

carbonated hydroxyapatite. Carbonate favorably substitutes at body temperatures for phosphate groups in 

“B” sites (and also for hydroxyl groups in “A” sites, but less commonly in biological apatites) [Wopenka 

& Pasteris, 2005]. Generally forming plates (but sometimes rods), bone mineral crystals have a very high 

surface area relative to volume and are thus easily dissolved when necessary to liberate calcium for 

physiologic demands. Indeed, dimensions of bone mineral crystals are on the order of 50 nm x 25 nm x 2 

nm [Weiner & Traub, 1992].  

The other primary constituent of the bone tissue composite is type I collagen. The ~300 nm length 

collagen molecule is comprised of a left-handed triple helix of collagen proteins. These molecules are held 

together into fibrils by crosslinks, some of which are enzymatically formed and others (advanced glycation 

end-products (AGEs) are formed spontaneously in response to glycation or oxidation. A gap zone between 

the ends of collagen molecules provides a binding site for bone mineral. The staggering of neighboring 

collagen molecules by 67 nm creates a characteristic banded look of the mineralized fibrils (~0.5 μm thick). 

Collagen fibrils in turn pack together to create collagen fibers. Collagen fibers arrange into dense lamellae 

in a given orientation to constitute cortical bone. These lamellae form layers of bone that replace the 

disordered “woven bone” common to growing animals, including rodents. In large animals, cortical bone 

can form osteonal structures. Within an osteon, lamellae form concentric rings around Haversion canals, 

containing blood vessels and nerves. Each ring of lamellar bone (thickness 3-7 μm) has a different 

orientation, taking a “twisted plywood” structure. The osteon is surrounded by a cement line with a less 

mineral-dense, tough material able to dissipate crack energy through deflection. Cancellous, or “spongy” 

bone, is formed from thin plates of mineralized collagen. The bridge-like trabeculae within cancellous bone 

form at the end of the long bones and align toward the principal directions of load [Seeman et al., 2006]. 

The bone mineral-collagen composite may be expected to change in CKD. The disrupted mineral 

homeostasis that accompanies kidney disease could change the amount of mineralization, the perfection of 

crystals, and their chemistry. These types of changes have been observed in other metabolic bone diseases, 

including osteomalacia and hypophosphatemic rickets [Faibesh et al., 2005; Karunaratne et al., 2012]. 
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Collagen crosslinking could also change with CKD. In particular, CKD increases oxidative stress and 

elevates AGEs [Linden et al., 2008]. This increased non-enzymatic collagen crosslinking could 

pathologically stiffening bone and lowering toughness [Allen et al., 2008]. Increased AGEs have been 

proposed as a mechanism by which bone can lose tissue-scale toughness. In SAXS-WAXS experiments of 

diabetic tissue, the increased crosslinking of aging tissue led to less plasticity in mineralized collagen fibrils 

[Zimmerman et al., 2011]. Indeed, increased non-enzymatic crosslinks have been observed in clinical 

studies of patients with end-stage renal failure [Malluche et al., 2012]. Thus, bone material, including 

mineral and collagen, is expected to change in CKD due to altered mineral homeostasis and oxidative stress. 

Additional changes to bone quality in CKD are expected from changes to bone turnover and related tissue 

maturation. These changes are detailed in the next section. 

2.4 Bone is a dynamic structure: tissue maturation, remodeling, and aging 

 Bone is not a static tissue structure and can change in both microarchitecture and material 

properties. During skeletal expansion of the growing organism, changes to bone are referred to as modeling. 

Following skeletal maturity and the cessation of skeletal growth, bone continues to change by the process 

of remodeling. Osteocytes direct remodeling through coordinating bone deposition by osteoblasts and 

resorption by osteoclasts. During remodeling, osteoclasts dissolve bone to cut a cone into the existing tissue. 

The osteoblasts which follow then establish a new osteon, while embedded osteoblasts in the bone matrix 

become osteocytes [Hadjidakis et al., 2006]. Rodents and other small animals that lack osteonal bone can 

only model bone tissue, optimizing bone geometry through depositing bone on forming surfaces and 

remove bone from other surfaces. This process is most active during skeletal growth in mice, and tapers 

markedly after skeletal maturity [Ferguson et al., 2003].  

 Bone remodeling can occur for several reasons, including maintenance of bone material. When 

bone microdamage or tissue-scale material properties change the local strain profile, osteoclasts are 

recruited to begin remodeling, ultimately establishing new bone free of damage and with immature material 

properties [Burr et al., 1985; Robling et al., 2006]. Bone remodeling can also take place in response to 

systemic physiological demand for mineral. The osteocyte can also directly participate in mineral 
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homeostasis through perilacunar remodeling. Osteocytes and their interconnecting canaliculi network form 

a surface area in contact with mineralized bone that greatly exceeds the area available for conventional 

remodeling [Teti et al., 2009]. Thus, osteocytes can directly dissolve bone mineral in the perilacunar space 

surrounding osteocytes to quickly respond to physiological needs for mineral. This effect has been observed 

in lactation, where osteocytes reversibly repair their perilacunar environments, as well as in irreversibly in 

hibernation, spaceflight, and glucocorticoid therapy [Qing et al., 2012; McGee-Lawrence et al., 2011; 

Blaber et al., 2013; Lane et al., 2006]. Perilacunar remodeling has recently been suggested to be essential 

to bone quality maintenance. In one study, MMP13 knockout mice unable to undergo perilacunar 

remodeling had diminished bone quality and fracture toughness [Tang et al., 2012]. These bone quality 

changes (hypermineralization, disorganized collagen, increased non-enzymatic crosslinks) in MMP13-null 

male mice were consistent with the hypothesis that perilacunar remodeling is essential for maintenance of 

tissue-scale bone quality. Gardinier and coworkers found that perilacunar bone has lower mineral:matrix 

from Raman spectroscopy and mineral content from SEM after exercise, and that these changes to osteocyte 

behavior may be mediated by PTH signaling [Gardinier et al., 2016]. 

 The maturation of newly deposited bone occurs over the span of days to weeks. Bone tissue is first 

deposited as unmineralized osteoid. Within days, a collagen network develops and mineral deposition 

begins. The majority of hydroxyapatite mineral crystals establish during this primary nucleation phase. 

These crystals contain little carbonate and are poorly organized. Over the next weeks to months, these bone 

crystals gradually grow and mature. Bone hydroxyapatite crystals become larger and more aligned. 

Collagen crosslinking also increases during tissue maturation. Enzymatic crosslinks mature over the course 

of primary mineralization, while non-enzymatic crosslinks establish as the tissue ages and is exposed to 

glycation and oxidation [Saito & Marumo, 2010]. These increases in mineral content and size as well as 

collagen crosslinking all contribute to stiffening of bone tissue with maturation [Donnelly et al., 2009]. The 

higher carbonate content of mature bone tissue is not known to have a biomechanical effect, but does 

increase the local solubility of bone mineral and may therefore facilitate remodeling of mature bone 

[Wopenka & Pasteris, 2005]. The course of tissue maturation can be witnessed through surveying 
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microscale bone chemistry, composition, and mechanical properties in bone deposited over a span of time 

[Donnelly et al., 2009].  

 Aging changes tissue material properties in part because of less-frequent bone remodeling. With 

decreased bone turnover, the average tissue age increases. Thus, aged bone has more mineral with larger 

crystals and more substituted carbonate [Boskey et al., 2002; Currey et al., 1996]. Older bone also has more 

mature enzymatic and non-enzymatic crosslinks [Nyman et al., 2006]. With less frequent remodeling, the 

aging skeleton also has more microdamage [Schaffler et al., 2005]. Aging also commonly results in 

disruptions between osteoclastic resorption and osteoblastic deposition. With unmatched deposition 

compared to absorption, bone mass is lost and the microarchitectures of cortical and trabecular bone worsen 

[Parfitt et al., 1983]. These deleterious changes to material properties, microarchitecture, and bone mass 

together contribute to the loss of bone fracture resistance with aging [Currey et al., 1996; Zioupos et al., 

1998]. 

 The effects of CKD on bone quality are uncertain, yet abnormal bone turnover implicates changes 

to bone tissue maturation. In high-turnover CKD, the average tissue age would be expected to be reduced. 

The amounts of mineral and enzymatic collagen crosslinking may also be lower, and crystals smaller and 

less substituted with carbonate. However, non-enzymatic crosslinking could still increase. The uremic 

environment of CKD introduces bone to oxidative stress, which may promote formation of AGEs. While 

diminished mineral and enzymatic crosslinks could reduce bone stiffness, increased non-enzymatic 

crosslinks would be expected to have an opposite effect. Changes to osteocyte perilacunar remodeling could 

also potentially occur, which could further affect how and where bone material is changed in CKD. 

Meanwhile, even if net bone mass is constant in CKD, increased turnover could result in changes to cortical 

and trabecular microarchitecture. Though changes to bone material and microarchitecture from high 

turnover could all plausibly occur in CKD, it is unclear which of these changes would contribute most to 

loss of fracture resistance. Altered turnover could also lead to changes in microscale heterogeneity of 

material properties. The potential influence of bone heterogeneity on skeletal fragility in CKD is detailed 

in the following section.  
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2.5 Bone is a heterogeneous composite: contributions of compositional and structural variation to fracture 

toughness 

The dynamic remodeling of the hierarchical bone-mineral composite results in characteristically 

heterogenous bone tissue. Bone has variable tissue age and maturation, and thus heterogeneous microscale 

mineralization, collagen crosslinking, and stiffness. Structural variation also exists. Osteocyte lacunae are 

varied in their shape and orientation. In human and other large animal bone, the lamellar boundaries within 

osteons as well as the cement lines surrounding osteons introduce structural variability. For small animal 

bone, the largest structural variation occurs with lamellar boundaries. 

Bone heterogeneity may contribute to fracture resistance, though important questions remain about 

how variance in material and structure actively toughen bone [Lloyd et al., 2015, Tai et al., 2011; Koester 

et al., 2008]. The influence of structural heterogeneity on bone fracture toughness is currently more 

understood than contributions to toughness from material variance. In work from the Ritchie group, 

osteonal bone is seen to have increasing fracture toughness with length of crack (i.e., a rising R-curve). 

That is, cracks can propagate relatively easily when approximately 100 µm or shorter. Longer transverse 

cracks begin to interact with bone structure, such as cement lines, and dissipate energy through deflection 

[Koester et al., 2008].  

The role of material heterogeneity on fracture toughness is less clear. Abnormally high or low 

variance in mineral volume fraction has been noted in backscatter SEM studies comparing bone samples 

with and without fragility fractures. The coefficient of variance of bone mineralization was lower in iliac 

crest biopsies from women with vertebral fractures versus healthy cadaveric controls [Ciarelli et al., 2009]. 

Yet in another study of bone mineralization at the iliac crest, cadaveric trabeculae from women with 

osteoporotic vertebral fractures had a wider distribution of bone mineral content than healthy trabeculae 

[Busse et al., 2009]. Increased heterogeneity in mineralization has also been reported in both trabecular and 

cortical bone for fracture-prone children [Tamminen et al., 2014].  

The specific impairments to bone tissue toughening mechanisms from altered mineral 

heterogeneity are not well understood. Microscale bone mineralization is moderately predictive of 
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nanoindentation modulus, although there is considerable scatter in this composite-law relationship within 

normal ranges of mineral content [Oyen et al., 2008]. Nonetheless, potential toughening mechanisms 

related to mineral heterogeneity could include crack energy dissipation at interfaces between material 

domains with dissimilar tissue-scale stiffness, as indicated by FEA populated with spatial variance in 

modulus measured by AFM [Tai et al., 2011]. Locally stiff regions may also facilitate microcracking, a 

toughening mechanism observed to increase the fracture toughness of bone [Vashishth et al., 1997; Ziupos 

et al., 1998]. In addition to variability in mineral content, other aspects of bone material heterogeneity could 

influence fracture toughness. Variation in mineral size and orientation could potentially influence crack 

initiation and propagation. Further, variability in collagen properties may also be important. Tissue-scale 

bone stiffness determined in part by collagen integrity and crosslinking. Additionally, intermolecular 

sliding of collagen molecules allows bone to undergo substantial plastic strains [Launey et al., 2010]. 

Ultimately, the contributions of variation in mineral content, mineral size and orientation, and collagen 

integrity to bone fracture toughness are not understood. 

Very limited experimental work has considered how microscale material heterogeneity influences 

fracture toughness. Makowski and coworkers considered how bone chemistry measured from Raman 

spectroscopy contributes to fracture toughness in human cortical bone spanning a range of ages [Makowski 

et al., 2015]. Mineral:matrix, crystallinity, and carbonate:phosphate had poor correlations with fracture 

toughness, though principal components of whole spectra were somewhat predictive of fracture toughness 

[Makowski et al., 2015]. In another study, Granke and coworkers assessed clinically-measurable 

parameters of bone quality (stiffness from reference point indentation, bound and free water from NMR) 

as well as more traditional measures of bone quality (cortical porosity and total mineral density from 

microCT) as well a fracture toughness from human cortical bone spanning several decades of age [Granke 

et al., 2015]. Multiple linear regression (MLR) showed that the initiation fracture toughness decreased with 

age and pore water, and increased with bound water and loading stiffness from reference point indentation. 

In a second MLR model within the same study, initiation fracture toughness decreased with cortical porosity 

and pentosidine content [Granke et al., 2015]. These findings demonstrate that fracture toughness does have 
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measurable dependency on bone quality characteristics. However, neither of these studies comprehensively 

assessed how variability in physical characteristics of the bone-tissue composite (e.g., chemistry and 

composition) as well as the microscale modulus affect fracture resistance. The paucity of experimental 

studies on this topic limits the interpretation of observed abnormal microscale material heterogeneity in 

bone fragility-causing diseases such as CKD. 

CKD has the potential to change bone heterogeneity. The increased turnover associated with 

hyperparathyroidism lowers the average tissue maturation. Locally, this may increase heterogeneity of 

mineral content as bone undergoes rapid turnover and re-mineralization. However, tissue-scale elastic 

properties are influenced by mineral content, crystal maturity, and also collagen crosslinking. To date, no 

studies have evaluated how CKD influences bone material heterogeneity.  

2.6 Review of studies of bone outcomes in CKD: current knowledge and gaps in understanding 

The effects of CKD on bone quality have been studied in a limited number of prior efforts. Very 

few works have involved human bone, likely because of the comorbidity of CKD with diabetes and other 

conditions, the prevalence of patient treatment with bone-affecting therapies such as corticosteroids or 

estrogen-replacement therapy, as well as the challenges involved in obtaining human biopsy samples 

[Nickolas et al., 2008; Malluche et al., 2012]. In a study of trabecular bone from iliac crest biopsies obtained 

from patients with end-stage renal disease, bone demonstrating high-turnover characteristics from 

histomorphometry had 10% lower mineral:matrix (assessed with Fourier-transformed infrared 

spectroscopy, FTIR) and 12% lower nanoindentation modulus compared with biopsies from healthy 

volunteers of similar age. No differences were observed in crystallinity or the ratio of mature to immature 

enzymatic matrix crosslinks from FTIR. Altered bone turnover affected bone quality outcomes. Patients 

with low-turnover bone did not demonstrate material changes, but did have lowered trabecular bone volume 

and thickness than controls [Malluche et al., 2012]. Additional studies of bone quality in human studies of 

CKD are sparse. Case study evidence presented in a review article described “island-like” hypomineralized 

regions of human trabecular bone [Kazama et al., 2015]. Mitome and coworkers evaluated iliac bone 

biopsies from patients on dialysis with severe secondary hyperthyroidism and high-turnover bone. Bone 
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outcomes were compared with cadaveric controls. Analysis of crosslinks with HPLC revealed that the CKD 

group had relatively more immature enzymatic crosslinks compared with controls, and a 10-fold increase 

in pentosidine [Mitome et al., 2012]. Important evidence has been gathered from these human studies about 

how bone material may change in CKD. However, these few studies have not answered numerous 

clinically-relevant questions. In particular, it is unknown how CKD affects bone quality outcomes in the 

cortical as well as trabecular compartments, how CKD and aging together reduce bone quality, and how 

bone quality may be affected in kidney disease preceding end-stage renal failure.   

 Studies of bone outcomes in rodent models of CKD are relatively more frequent than human 

studies, but results from these efforts still create confusion about the changes to bone material and 

microarchitecture occurring with kidney disease. Whether and how CKD affects microscale bone material 

has been a particular source of disagreement between studies. Kadokawa and co-workers reported on bone 

outcomes from male Crlj:CD1 mice subjected to moderate CKD via 5/6th nephrectomy (5/6th of kidney 

volume removed, ‘5/6 Nx’) at 5-6 weeks of age. At 26 weeks of age, mice had diminished trabecular 

thickness and increased trabecular spacing, as well as lower trabecular number, bone volume / total volume, 

and connectivity density. Meanwhile, measurements at the center of the midshaft cortical tibia with FTIR 

and nanoindentation did not evidence differences in microscale material properties with CKD, leading the 

authors to conclude that bone fragility in CKD originates from diminished bone microarchitecture and not 

impairment of bone material [Kadokawa et al., 2006]. Findings from this study were in disagreement with 

a later study of CKD in 12-week old male Sprague-Dawley rats, where high-turnover CKD was induced 

with 5/6 Nx and compared with low-turnover CKD (5/6 Nx + thyroparathyroidectomy (TPTx)), low-

turnover control (TPTx), or sham groups.  After 16 weeks of CKD, both high- and low- turnover groups 

had reduced storage modulus and tan delta for the whole femur, as well as diminished microscale material 

properties. Raman measures of Pentosidine:matrix were increased and crystallinity was decreased for both 

high-turnover and low-turnover groups. Meanwhile, mineral:matrix decreased in high-turnover CKD and 

increased with low-turnover CKD. The degree of orientation of hydroxyapatite bone crystals (alignment of 

c-axis) was also decreased in both high- and low-turnover CKD. As with the Kadokawa et al. report, 
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material properties in this study were measured in the middle of the cortical thickness at the sectioned mid-

shaft diaphysis. While there were differences in the bone studied (tibia vs femur), and method of microscale 

material assessment (FTIR vs Raman), a potentially more significant reason for discrepancies between these 

studies is the location of material property assessment. In rodents, bone forms predominantly on periosteal 

and endosteal surfaces. Newly formed bone following 5/6 Nx may be expected to demonstrate an effect of 

CKD, while extant tissue in the interior bone cortex would be less likely to change. Both studies reported 

surveying the interior bone tissue; differences from one study to another in distance of the evaluation sites 

from the forming surfaces could influence the interpretation of bone material quality measurements.  

 Progressive genetic models are also employed to study bone quality changes in CKD. In a genetic 

polycystic CKD model in male Cy/+ rats, there were no differences in bone quality at 30 weeks (moderate 

disease) between rats with CKD and their wild-type littermates [Newman et al., 2014]. Neither AFM-

measured elastic modulus nor Raman chemistry (mineral:matrix, carbonate:phosphate, crystallinity) 

measured at the cortical surface of whole bones worsened with CKD. Enzymatic and non-enzymatic 

(pentosidine) crosslinks measured by HPLC were also similar between CKD and wild-type groups. Initial 

indentations from reference point indentation (RPI) were 20% deeper with CKD, suggesting a possible 

change in bone mechanical properties. Meanwhile, 35-week old Cy/+ rats with severe renal dysfunction 

and high-turnover or low-turnover (through administration of calcium to drinking water) bone had increased 

pentosidine [Allen et al., 2015]. High-bone turnover rats had significantly higher cortical porosity and lower 

ultimate stress from four-point bending than controls, while low-turnover rats had significantly lower 

toughness. Tissue-scale material property measurements analogous to the earlier study in younger rats were 

not reported. Thus, current rodent studies depict an incongruous picture of whether material properties 

should change in moderate CKD, and whether these changes are likely to involve the mineral, the collagen 

matrix, or both. 

 Several studies have also considered the effects of therapeutic agents on bone outcomes in CKD. 

Iwasaki et al administered an oral adsorbent of the ureac toxin indoxyl sulfate to rats with 5/6 Nx and TPTx 

[Iwasaki et al., 2013]. The AST-120 drug rescued the increased pentosidine, mineral:matrix ratio, and 
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carbonate:phosphate resulting from CKD, but did not have a different effect from vehicle on whole bone 

storage modulus or tan delta. Several other studies have considered treatment effects in the Cy/+ model of 

genetic CKD. Rats were treated with zoledronic acid, an anti-resportive bisphosphonate, calcium in the 

drinking water to serve as a phosphate binder and lower PTH, or both [Moe et al., 2014]. These therapies 

were administered at 25 weeks, and bone outcomes evaluated at 35 weeks in rats with severe CKD. Both 

zoledronic acid and calcium increased trabecular bone volume measured by microCT. However, while 

calcium lessened cortical porosity and increased ultimate load and stiffness from three-point bending, 

zoledronic acid did not. Calcium meanwhile lead to increased calcification at the aortic arch. Another study 

compared zoledronic acid, an anti-sclerostin antibody, and vehicle on bone outcomes in Cy/+ rats [Moe et 

al., 2015]. Rats were additionally stratified into high- and low-PTH groups through administration of 

calcium in their drinking water. The anti-sclerostin antibody only increased bone volume / total volume and 

trabecular mineralization surface in animals with low PTH. Cortical porosity was not affected by either 

treatment, nor were biomechanical properties from four-point bending. None of these studies have 

thoroughly evaluated how candidate treatments impact microscale material properties or fracture toughness. 

The effects of bisphosphonates and anti-sclerostin antibody on bone material in CKD are likely complex, 

and a more complete understanding of the effects of CKD on bone material is necessary to evaluate whether 

a therapy can rescue diminished bone quality and fracture resistance.  

 In summary, previous studies of bone outcomes in human CKD as well as rodent analogues present 

evidence that changes to bone material properties and microarchitecture may be important for 

understanding the development of bone fragility with kidney disease. However, several gaps currently exist 

in the understanding of how bone quality is diminished with CKD. First, rodent studies are necessary for 

the careful study of bone outcomes in CKD, but are in disagreement about whether and how microscale 

bone material may change. Studying bone formed after the onset of CKD as opposed to extant tissue may 

serve to clarify these discrepancies. It is also important to understand whether the osteocyte may contribute 

to changes to bone quality in CKD. The osteocyte is implicated in the pathophysiology of CKD, and a 

growing body of work suggests that the osteocyte regulates local bone material and structure. Yet changes 
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to three-dimensional osteocyte lacunar geometries have not been investigated in CKD. Next, previous 

animal models have all involved young rodents. It is unknown how aging and CKD together influence bone 

outcomes. This is an essential question considering that most patients with CKD are elderly. Lastly, though 

effects of CKD on microscale bone heterogeneity could contribute to loss of fracture toughness, this 

hypothesis has not been evaluated. These gaps in the clinical understanding of how CKD affects bone 

quality and fracture resistance motivate the work described within this thesis.  
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3. Bone quality characterization 

3.1 Nanoindentation 

3.1.1 Contact mechanics  

The contact mechanics underlying nanoindentation analysis originate from Hertzian mechanics for 

elastic contact. For frictionless, elastic contact of a rigid spherical indenter with a homogeneous material, 

Hertz found that the contact radius (a) is related to the radius of the indenter (R) and the deflection of the 

specimen free surface (h) as [Fisher-Cripps 2002]: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.1                                         𝑎2 =  𝑅ℎ 

Hertz showed that for spherical contact, the surface deflection is related to the applied load as [Fischer-

Cripps 2002]: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.2                                           𝑃 =
4 𝐸𝑅√𝑅

3
ℎ3/2 

Half a century later, Sneddon further determined that for a cone of angle 2α, the relationship between load 

and displacement could be modified as [Sneddon 1948]: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.3                                            𝑃 =
2 𝐸𝑅𝑡𝑎𝑛(𝛼)

𝜋
ℎ2 

In the 1970s, the Russian scientists Bulychev et al published a method to determine Young’s modulus from 

the unloading curve of an indentation test [Bulychev et al, 1976]. A relationship between the unloading 

slope, max load, and contact area was derived from Sneddon’s equation for conical contact (Equation 3.1.3), 

by taking the derivative of P with respect to h and setting h=hmax, a = hctan(α), and hc/h = 2/π, and A = πa2. 

The resulting equation, now utilized in most conventional elastic-plastic nanoindentation analyses is: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.4                                                  𝐸𝑅 =
𝑑𝑃

𝑑ℎ
 
√𝜋

√𝐴
  =  𝑆

√𝜋

√𝐴
  

This approach assumes elastic unloading, and thus dP/dh is taken from the initial portion of the unloading 

curve. Pharr, Oliver, and Brotzen demonstrated that Equation 3.1.4 can be applied to all axially symmetric 

indenters geometries instead of just conical tips [Pharr et al., 1992]. This relationship applies well to elastic 
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and also elastic-plastic contact [Oliver & Pharr, 2004] and is robust to small geometric deviations from 

axisymmetry [Gao & Wu, 1993].  

3.1.2 Oliver - Pharr analysis 

Oliver and Pharr pioneered an analytic approach to nanoindentation in the early 1990s by providing 

a method to estimate contact area and contact depth from indentation without the need to directly image the 

residual indents as had been required in earlier hardness testing [Oliver & Pharr, 2004]. In the Oliver-Pharr 

method, testing with a known tip geometry (through calibration) makes measurement of modulus and 

hardness possible from the load-displacement curves. Oliver and Pharr expanded upon work by Sneddon 

to calculate the contact depth, hc, knowing only the maximum depth, maximum load, and stiffness, all of 

which are easily measurable properties: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.5                                                  ℎ𝑐 = ℎ𝑚𝑎𝑥 −  𝜀 
𝑃𝑚𝑎𝑥

𝑆
  

The constant ε is given as 0.75 for a paraboloid of revolution.  

Tip calibration to calculate A = A(hc) is achieved by placing an array of indents at varying loads in a known 

reference standard (e.g. fused quartz or single crystal aluminum). Using a known value for Er for the 

calibration material, A is calculated for each point using Equation 3.1.4 and then regressed against hc to 

give a calibration curve. The curve is fit with the relation:  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.6                                                   𝐴 = 𝐶0ℎ𝑐
2 +  𝐶1ℎ𝑐 + 𝐶2ℎ𝑐

1/2
+ 𝐶3ℎ𝑐

1/4
…   

Having established A = A(hc) from tip calibration, the reduced modulus for the material under investigation 

is calculated from Equation 3.1.4. 

This reduced modulus is a combination of both sample and tip mechanical properties (Etip = 1140 GPa, νtip= 

0.17), according to: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.7                                                  
1

𝐸𝑟
=  

1

𝐸′
+ 

(1 − 𝑣𝑡𝑖𝑝
2 )

𝐸𝑡𝑖𝑝
 

The plane strain elastic modulus, E’, is a function of the sample elastic modulus as well as Poisson’s ratio. 

Thus, in calculating and reporting E’, assumptions are avoided about the sample Poisson’s ratio.  
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.8                                                  𝐸𝑠𝑎𝑚𝑝𝑙𝑒
′ =

𝐸𝑠𝑎𝑚𝑝𝑙𝑒

(1 − 𝑣𝑠𝑎𝑚𝑝𝑙𝑒
2 )

 

The contact hardness can be calculated from: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.9                                                  𝐻 =  
𝑃𝑚𝑎𝑥

𝐴
 

However, it should be noted that contact hardness scales with total deformation upon loading, because at 

Pmax both elastic and plastic contributions to deformation have occurred. Thus, contact hardness is highly 

correlated to elastic modulus for materials with considerable elastic response, such as bone, and is not an 

independent measure [Olesiak et al, 2010; Ferguson et al 2009; Oyen & Ko 2007].  

3.1.3 Special considerations for nanoindentation of bone 

Nanoindentation is useful for understanding how age [e.g., Donnelly et al., 2011; Rho et al., 2002], 

disease [e.g., Heveran et al., 2016; Nyman et al., 2011; Fratzl-Zelman 2009], and other physiologically 

relevant factors influence bone tissue mechanical properties. However, the standard triangular load-unload 

curve sufficient for analyzing metals and ceramics is troublesome for the nanoindentation of viscoelastic 

materials, including bone. The viscoelasticity of bone has contributions from multiple length-scales: 

collagen fibers, cement lines, and fluid flow together generate the time-dependent mechanical response of 

bone tissue [Garner et al., 2000]. When indenting a viscoelastic material with a triangular load-unload 

function, the unloading curve bows outward due to the creep rate exceeding the unloading rate [Ebenstein 

et al., 2006; Olesiak et al., 2010; Bushby et al., 2004], preventing analysis of stiffness from the unloading 

curve slope. Viscoelastic energy can be dissipated with a hold period as the central segment in a trapezoidal 

load function [Ebenstein et al., 2006, Olesiak et al, 2010]. Alternatively, viscoelasticity of bone can be 

directly analyzed from the hold period [Olesiak et al, 2010].  
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Figure 3-1: Nanoindentation of cortical mouse bone 

 

Another important consideration for the nanoindentation of bone is porosity. The pores in bone can 

crush and compact during indentation, leading to an artificial stiffening under the indenter tip [Vanstreels 

et al., 2013]. Embedding the bone with an infiltrating polymer, such as poly(methyl)methacrylate (PMMA) 

stabilizes the pore volumes and also allows for the surface to be polished to a fine finish [Bushby et al., 

2004]. The embedding process does change mechanical properties of bone; dehydration and embedding 

results in significantly increased nanoindentation modulus and thus results following this method require 

careful comparison with bone prepared differently [Bushby et al., 2004]. 

3.1.4 Assessment of microscale heterogeneity using nanoindentation 

The spatial heterogeneity of mechanical properties at the nano- to microscales corresponds to 

chemical, structural, and compositional variation in the material [Ulm et al., 2007]. Nanoindentation has 

been employed to assess heterogeneity of modulus in shales [Wilkinson et al., 2015; Ulm et al., 2007], 

concrete [Ulm et al., 2007], polymers [Bedoui et al, 2008], battery electrode materials [Baranowski et al, 
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2016; Amanieu et al, 2014], and bone [e.g., Heveran et al., 2016; Paietta et al., 2011, Ulm et al 2007, Rho 

et al., 2002; Tai et al., 2007; Yao et al., 2011; Hoffler et al., 2000]. From finite element analyses generated 

from spatially-surved nanoindentation modulus in bovine bone, it is expected that heterogeneity in 

mechanical properties measured with nanoindentation can contribute to energy dissipation at crack tips and 

therefore improved fracture toughness [Tai et al., 2007; Yao et al., 2011]. 

 Properly evaluating heterogeneity in nanoindentation modulus requires careful tip selection and 

well as choice of indentation depth. In bone, the smallest structural features, such as individual lamellae 

and the interlamellar transition zones between them, occur at in the order of single micrometers [Gupta et 

al., 2006]. Tips small enough to survey bone microstructure include Berkovich and small (e.g., 5 µm radius) 

conicospherical geometries. Small conicospherical tips have the additional advantage of promoting elastic 

contact [Bushby et al., 2001]. Though loading-unloading curves from nanoindentation of bone demonstrate 

hysteresis and therefore inelastic energy dissipation, this plasticity is not explained by dislocation motion 

as with metals. Instead, inelasticity in bone is often achieved by microcracking [Ritchie et al., 2008].  Depth 

of indentation is also an important consideration for assessing material heterogeneity. Shallow indentations 

are overly influenced by surface roughness, while increasing depth inevitably volume-averages material 

response. For bone embedded in PMMA, indentations between 200-500 micrometers in depth avoid surface 

roughness without substantial compromise in resolution of material heterogeneity [Paietta et al., 2011]. 

3.2 Raman spectroscopy 

3.2.1 Theory  

Raman spectroscopy is a vibrational spectroscopic technique based on the inelastic scattering of 

laser light. In a typical Raman test, an approximately micrometer-sized beam of monochromatic light from 

a laser source is focused on the study sample (spot size = 1.22 λ / numerical aperture). Though most photons 

elastically interact with the sample (Rayleigh scattering), a small fraction of the incident light (~ 1 in 107 

photon) is inelastically scattered from molecular vibrations of the sample (Raman scattering). By 

exchanging energy with the sample, photons either lose (Stokes shift) or gain (anti-Stokes shift) energy, 

and therefore change frequency. Raman shifts occur at characteristic energies depending on the sample 
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chemistry. Molecular vibrations depend on the mass of the atoms and the strength of the bonds between 

them. Thus, weak bonds and heavy atoms lead to small Raman shifts while strong bonds and light atoms 

result in large Raman shifts. When intensity is plotted against the Raman shift in frequency (usually the 

stronger Stokes signal), bands emerge at characteristic frequency shifts to form the chemical “signature” of 

a material. Raman spectra can be collected in approximately micrometer-resolution maps; because of the 

non-destructive nature of the technique, spacing can be reduced to the resolution limit to deliver a two-

dimensional map of sample chemistry [Colthup 2012].  

3.2.2 Bone chemistry assessment with Raman spectroscopy 

Raman spectroscopy delivers information about the carbonated hydroxyapatite mineral as well as 

the supporting collagen matrix. The major peaks pertaining to bone mineral include ν1 Phosphate (960 cm-

1), ν2 Phosphate (430 cm-1), proline (855 cm-1), and B-type carbonate (1070 cm-1). The collagen matrix is 

primarily assessed from the amide I, amide III, proline, and CH2 peaks.  The amide I peak (1670 cm-1) 

corresponds to C=O bonds perpendicular to the collagen backbone, while the amide III peak (1270 cm-1) 

results from C-N vibrations along the backbone [Kazanci et al., 2006]. The CH2 peak is generated by 

collagen side groups and, to an extent, noncollageneous proteins. Yeni et al posited that changes to collagen 

secondary structure from dehydration should affect backbone amide peaks more than the side-group CH2 

signal [Yeni et al., 2006]. Some peaks are also known to be polarization dependent. The collagen amide I 

and v1 phosphate in particular are known to vary in intensity according to the polarization direction of 

incident laser light. This effect can be exploited with appropriate polarization optics to interpret collagen 

orientation, as has been shown in osteonal bone [Makowski et al., 2013]. However, without additional 

optics, v1phosphate:amide I demonstrates substantial polarization phase mismatch and thus is dependent on 

not only mineral content but also tissue organization [Gamsjaeger et al., 2010].  Better alternatives include 

v2phosphate:amide III and v1phosphate:proline, which are each phase-matched to avoid polarization 

dependence [Gamsjaeger et al., 2010; Makowski et al., 2013]. 

3.2.3 Data acquisition and analysis 
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The acquisition of Raman spectra begins with determining appropriate excitation parameters. 

Although red and green lasers are both common in Raman spectroscopy systems, utilization of red laser 

light has the advantage of minimizing fluorescence from bone matrix proteins [Carden et al., 2000]. Longer 

exposures and repeated acquisitions can improve signal to noise ratio for generated spectra. From the 

acquired Raman data, analysis starts with removal of background fluorescence, where a fitted polynomial 

subtracts the baseline from the spectra. The spectral contributions from embedding media can also be 

subtracted [e.g., McCreadie et al., 2006, Carden et al., 2000, Donnelly et al., 2009], although as previously 

mentioned, the process of bone dehydration and embedding with an infiltrating polymer can alter the 

secondary structure of collagen and thus affect backbone amide vibrations [Yeni et al., 2006]. Following 

baseline subtraction and correction for embedding media, peak areas and intensities are quantified. 

Results from Raman spectroscopy are typically compared in terms of peak ratios. Raman 

spectroscopy is exquisitely sensitive to topography, and so differences in beam focus from topographic 

gradients or surface roughness greatly affect peak intensities. Thus, normalized peak intensity or area ratios 

allow comparison of compositional information across samples [Carden et al., 2000]. Commonly reported 

ratios for bone include mineral:matrix and carbonate:phosphate. The mineral:matrix ratio is commonly 

reported as ν1 phosphate / amide I, but either ν1 or ν2 phosphate can be normalized to any of the collagen 

peaks: amide I, amide III, proline, or CH2 [Carden et al., 2000]. The carbonate:phosphate ratio can be 

reported as the 1070 cm-1 carbonate peak / ν1 or ν2 phosphate. Both mineral:matrix and carbonate:phosphate 

ratios are expected to increase with bone tissue maturation and the consequent increase in collagen 

mineralization as well as carbonate substitution into the hydroxyapatite crystal lattice [Donnelly et al., 

2009].  

 

 

 

 



45 

 

 

Figure 3-2: The Raman spectrum of bone 

Some groups interpret the ratio of 1660/1690 sub peaks within the amide I envelope as representing 

the ratio of immature to mature crosslinks. This interpretation originated in FTIR work where band signals 

corresponding to standards for immature and mature crosslinks were determined at 1660 and 1690 cm-1 

[Paschalis et al., 2001]. Further work has revealed that care is required in the interpretation of the 1660/1690 

ratio for Raman spectroscopy [McNerny et al 2014]. In particular, changes to the amide I envelope are 

produced by sample dehydration or denaturation [Yeni et al., 2006]. However, even for samples without 

substantial damage from dehydration or embedding, the 1660:1690 ratio does not necessarily relate to 

changes to immature and mature crosslinks. For instance, in a study of lathyritic rats, the 1660:1690 did not 

correspond with immature and mature collagen crosslinks measured by gold-standard technique of high 

performance liquid chromatography [McNerny et al., 2014]. For these reasons, the 1660:1690 ratio is not 

interpreted in the studies comprising this thesis, where the amide I band has likely been modified from 

sample dehydration and embedding.  

Crystallinity can also be measured from Raman spectra. Yeramshetty et al demonstrated that 

crystallinity, defined as the inverse of the half-width of the ν1 phosphate peak at the half-maximum intensity, 
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correlates well to the c-length of the carbonated hydroxyapatite crystal measured from the [002] reflection 

in X-Ray Diffraction for a range of biomineralized tissues [Yeramshetty et al, 2006]. As with 

mineral:matrix and carbonate:phosphate ratios, crystallinity is expected to increase with tissue maturation, 

although over a comparatively narrow spatial region [Donnelly et al., 2009]. 

3.2.4. Raman spectroscopy measurements co-located with nanoindentation 

Raman spectroscopy is well-suited for matched testing with nanoindentation. Raman spectra can 

be obtained under a range of preparation and environmental conditions, and are thus compatible with 

requirements for specimen thickness, stability, and hydration for nanoindentation. Unlike other 

spectroscopy techniques (e.g., Fourier-Transformed Infrared Spectroscopy), Raman spectra can be obtained 

from thick specimens, which are generally more appropriate for nanoindentation testing [Carden et al., 

2000].  Samples are sometimes embedded in stabilizing media for nanoindentation (e.g., PMMA, epoxy, 

acrylic); the contributions of an infiltrating polymer can be readily subtracted from Raman spectra [e.g. 

Donnelly et al., 2009, McCreadie et al., 2006]. Raman spectroscopy can also be performed for wet or 

submerged specimens [Carden et al., 2000]. Maintaining sample hydration can be important for retaining 

sample microstructure (e.g., biological materials), or for preserving the relationship between material 

chemistry and a time-dependent mechanical response (e.g., viscoelastic or poroelastic materials). 

Raman spectroscopy and nanoindentation are especially complementary because the microscale 

resolution of Raman spectroscopy is similar to the radii of the smallest indenter tips (i.e., Berkovich or 

small conicospherical geometries). The matched length scales of Raman Spectroscopy and nanoindentation 

allows the generation of spatially matched two-dimensional maps of sample chemistry and mechanical 

properties (Figure 3-3).  
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Figure 3-3: Site-matched measurement of bone material properties 

 

Using this technique, the dependency of mechanical performance on microscale material 

heterogeneity has been assessed for bone tissue [Donnelly et al., 2009; Hofmann et al., 2006] However, 

because Raman spectroscopy must be assessed prior to nanoindentation in order to preserve sample 

structure, co-locating Raman spectroscopy and nanoindentation maps on separate instruments, as has been 

required with conventional Raman spectroscopy and nanoindentation platforms, is time-consuming and 

introduces the opportunity for spatial error. Using a novel co-located Raman Spectroscopy – 

Nanoindentation system facilitates mapping sample chemistry and mechanical properties efficiently and 

accurately [Tomaschke et al., – in preparation]. 

3.3 Quantitative backscattered SEM 

Secondary electron microscopy (SEM) techniques can probe the topography and composition of 

bone tissue. In SEM, electrons are emitted from a filament and directed towards the sample surface. The 

filament is typically tungsten, and emits electrons thermionically when voltage is applied and the filament 

consequently heats. The electron beam is focused onto the sample surface with condenser and objective 

lenses. The beam rasters across the sample surface under the control of electromagnetic coils, and the 

resulting spatial image is viewed on the computer monitor [Goldstein et al., 2003].  
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The interaction of the electron beam with the sample produces secondary, Auger, and backscattered 

electrons. Secondary electrons form when an electron from the incident beam inelastically interacts with 

sample valence electrons, causing a sample atom to ionize and eject an electron. Some of the electrons 

emitted by the sample through this mechanism have enough energy to travel to the sample surface and 

escape towards the detector. The secondary electron mode detector is typically positively biased to help 

direct these electrons for collection. In this mode, bright areas on the image correspond to areas on the 

sample that generate a larger number of secondary electrons. Thus, secondary mode imaging is dominated 

by topographical contrast and is relatively unaffected by sample composition. Auger electrons are generated 

when an electron from an inner shell is ejected. An outer shell electron must radiate energy in order to fill 

the lower-energy inner shell vacancy, and necessarily emits x-ray radiation. The x-rays produced by these 

shell transitions have characteristic energies associated with the emitting element, and thus this signal can 

be used for compositional analysis [Goldstein et al., 2003]. 

The backscattered signal is generated from elastic interactions between the incident beam and the 

nuclei of sample atoms. Backscattered electrons necessarily have higher energy (> 50 eV) than secondary 

electrons. These backscattered electrons travel linearly towards the backscatter detector. The secondary 

detector is sometimes positively biased during backscattered SEM imaging in order to avoid collection of 

the relatively stronger secondary mode signal [Goldstein et al, 2003]. Backscatter and secondary modes 

probe different interaction volumes; backscattered electrons can be generated several micrometers into the 

sample, while secondary electrons have a shallow escape depth close to the surface [Howell et al., 2003]. 

The proportion of backscattered electrons to the number of incident electrons is referred to as the backscatter 

coefficient. The larger nuclei of heavier elements are more likely to backscatter incident electrons, and thus 

a strong compositional dependence exists between the backscatter coefficient and the atomic number 

[Goldstein et al., 2003]. The backscatter coefficient, η, is related to the atomic number, Z, as in Equation 

3.3.1: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3.1                       𝜂 = 2−9/√𝑍 
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Brightness in grey level is related linearly to the backscatter coefficient [Campbell et al., 2012]. 

Therefore, measuring grey level in backscatter mode can be used to explore material composition. The 

backscatter coefficient is sensitive to working distance, beam current, accelerating voltage, and spot size. 

In order to obtain quantitative information (quantitative backscattered SEM, or qBSE) about sample 

composition that can be compared between imaging sessions, reference standards are used that bracket the 

expected compositional variation of bone. Carbon, aluminum, and magnesium reference standards are often 

used but have major drawbacks. Carbon, with an atomic number of 6, has a much lower atomic number 

than bone, which has a range of approximately 9-14 [Campbell et al., 2012], and often lies below the lower 

end of the range of many commercially available backscatter detectors. Meanwhile, as metals, aluminum 

and magnesium both suffer some amount of tunneling contrast and also oxidize over time, adding 

experimental uncertainty to analyses [Campbell et al., 2012]. An alternate approach involves using tunable 

reference materials made of glass. Borosilicate glass doped with lithium and rubidium creates compositions 

bracketing the expected range of bone. These glasses are amorphous, are therefore exempt from tunneling 

contrast, and are also stable over time [Campbell et al., 2012]. Moreover, these standards (in our lab) have 

been developed to bracket the range of atomic numbers observed in biologic mineralized tissues. 

The above method can measure a calibrated mean grey level for a sample. This mean grey level 

can be converted to a mineral volume fraction for bone, assuming atomic numbers and densities of 6.833 

and 1.285 g/cm3 for the organic matrix and 14.06 and 3.18 g/cm3 for bone hydroxyapatite mineral 

[Campbell et al., 2015]. From the measured mean grey levels, a bone-equivalent mineral volume fraction 

can therefore be calculated from each of the reference standards. These known mineral volume fractions 

for the reference standards are then mapped to mean grey level = 0 for the brightest standard and mean grey 

level = 255 for the darkest standard in order to calibrate imaging data for each session. 

3.4 Notched fracture toughness testing  

3.4.1 Theory 
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Fracture toughness testing can assess the resistance of bone tissue to crack initiation and also crack 

propagation. The consideration of fracture toughness in material assessment and design is relatively recent, 

following unexpected structural failures in the early through mid 20th century of storage containers (e.g., a 

tank containing 2 million gallons of molasses fractured in Boston, MA in 1919, leading to a devastating 

flood), welded ship hulls, and airliners. In the early 1920s, the British scientist A.A. Griffith made the 

founding contributions to fracture mechanics through studying glass, which he observed failed at much 

lower stress in tension than would be theoretically predicted from molecular bonding strengths. Description 

of Griffith’s findings and the following discussion of fracture mechanics are restricted to mode-I opening 

cracks, versus mode II sliding in plane or mode III sliding out of plane.  

 

 

 

Figure 3-4: Modes of fracture. Fracture can occur in three different modes: opening, in-plane shear, and 

out-of-plane shear. The first of these modes is the focus of the fracture toughness theory and discussion in 

this dissertation. Figure credit ‘Twisp’, Wikimedia Commons. Licensed under Public Domain. 

 

Griffith considered that for a mode I crack to propagate, the external work dW must be equal to at 

least the change in surface energy from crack growth (dΓ0) and also potential energy (dU) from crack 

opening displacement (Equation A.4.1) [Rosler et al., 2010]. 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.1                                                    𝑑𝑊 = 𝑑𝑈 + 𝑑𝛤0 

The strain energy release rate, G, is the energy per crack area to extend the two new surfaces associated 

with crack propagation. G is calculated by considering the change in energy balance with crack propagation, 

da, as shown in Equation 3.4.2 [Rosler et al., 2010]. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.2                                                   𝐺 =  
1

𝑡
(

𝑑𝑊

𝑑𝑎
−

𝑑𝑈

𝑑𝑎
) =  

1

𝑡

𝛤0

𝑑𝑎
= 2𝛾0 

For the situation of negligible external work, Griffith assumed that the potential energy released by crack 

propagation was available for the formation of new crack surfaces. In the 1950s, Irwin updated this 

understanding by considering the effects of plasticity at the crack tip in metals. Irwin determined that energy 

from crack propagation could also be dissipated at the “process zone” around the tip through dislocation 

motion, microcracking, or other non-linear elastic mechanisms. Among other contributions, Irwin found 

that linear elastic fracture mechanics (LEFM) could still be employed if the process zone was relatively 

small compared with the crack length and also located far from specimen edges. Irwin also related Griffith’s 

energy criterion to intrinsic material properties through defining the stress intensity factor, K, a measure of 

intensity of stresses resulting from crack size, geometry, and applied force. The stress intensity factor is 

related to the strain energy release rate, G, and the plane-strain elastic modulus as in Equation 3.4.3. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.3                                                   𝐺 =  
𝐾2

𝐸′
 

In linear elastic fracture mechanics, there exists a relatively simple relationship between the stress intensity 

factor, K, applied load, and crack length. The relationship between K, applied stress (S), and crack length 

(a) is: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.4                                                 𝐾 = 𝐹𝑆√𝜋𝑎 

The factor F is a dimensionless geometry factor that depends on the context of shape and position of crack 

in the specimen, as well as the crack length and specimen dimensions (i.e., thickness or half-width). Kc is 
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the critical value at which fracture will happen, and is affected by loading rate, temperature, and the 

dimensions of the specimen. If the specimen is thick enough for plane strain conditions, Kc becomes KIC, 

the mode-I plane strain fracture toughness. KIC is considered a material property describing the material’s 

ability to resist fracture in the presence of a crack. When analyzing fracture toughness from applied load, 

Equation 3.4.5 is employed. Here, P is the applied load, Fp is another dimensionless geometry factor and 

function of crack length and specimen half-width, t is the specimen thickness, and b is the specimen half-

width. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.5                                            𝐾 = 𝐹𝑃

𝑃

𝑡√𝑏
 

LEFM requires small-scale yielding such that the process zone around the crack tip is small relative to the 

crack, the remaining unbroken ligament, and the distance from the sample boundaries. In order to employ 

LEFM for a material with a process zone, such as bone, the sample must either meet plane strain conditions 

per ASTM 399-90, or have dimensions approximately 8 times the radius of the process zone. This radius 

can be calculated from Equation 3.4.6, where. 𝜎0 is the yield stress. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.6                                                2𝑟0 =  
1

𝜋
(

𝐾

𝜎0
)

2

 

Accordingly, the requirements for LEFM to apply to a plane stress sample are that the crack length, 

remaining ligament, and sample width all exceed   
1

4𝜋
(

𝐾

𝜎0
)

2
. Otherwise, the observed fracture behavior has 

too much of a contribution from yielding [Dowley et al., 2013]. 

A fracture toughness test requires an initially sharp crack exceeding the dimensions of any internal 

flaw in the specimen. For metals, a pre-crack is established through cyclic loading. For softer materials and 

also for bone, the initial notch is instead introduced with a razor [Ritchie et al., 2008]. In an ASTM standard 

fracture toughness test, the sample is machined into a single edge notch bend or compact tension specimen, 

notched, and broken in three point bending [ASTM E399]. KQ is calculated from Equation 3.4.5 with P = 

PQ, the load at which a line 95% of the initial stiffness extending from the origin intersects the loading 
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curve. If LEFM is satisfied, the small-small yielding criteria limits the sample plasticity and thus the 

decrease in slope is due to crack growth. For a valid KC, the Pmax must be less than 10% greater than PQ. 

This KC is considered KIC and considered a material property if plane strain conditions are met [ASTM 

E399]. 

Alternative approaches exist for analyzing the fracture toughness of an elastic-plastic material for 

which the geometric demands of LEFM are not possible. One such approach is the J-integral. The definition 

of the J-integral is the line integral around a path that encloses the crack tip. Indeed, J is the equivalent of 

G, the strain energy release rate, for a nonlinear-elastic situation. J can be used to calculate fracture 

toughness per ASTM E1820. This method allows the calculation of JIC for small samples that would fail 

linear elastic assumptions in traditional fracture toughness testing. JIC can then be used to estimate KIC: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.7                                                   𝐾𝐼𝐶 =  √(𝐽𝐼𝐶  𝐸′) 

In the J method, crack growth cannot easily be monitored by the loading curve, as changes in stiffness occur 

from both crack growth and plasticity. Thus, partial unloading can be employed to monitor changes in 

compliance per ASTM E1820 specifications for single edge notch bend or compact tension samples; the 

slopes of the unloading curves decrease as the crack increases length [ASTM E1820]. 

J is calculated as: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.8                                                       𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 

The elastic component of J is calculated as: 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.9                                                      𝐽𝑒𝑙 =  𝐾2 (1−𝑣2)

𝐸
                                            

Jel is evaluated for each crack length increment of the partial unload regime; K at each of these increments 

is calculated according to equations appropriate to the sample geometry per ASTM E1820. Jpl is calculated 

from Apl, which is given from the area under the curve associated with crack extension. Then, for standard 
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specimen configurations, Jpl is calculated as in Equation 3.4.10, where n is a geometric factor, t is thickness, 

and b-a is the uncracked ligament: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.10                                                       𝐽𝑝𝑙 = 𝑛 
𝐴𝑝𝑙

𝑡(𝑏 − 𝑎)
  

J is then plotted versus the crack extension in order to generate an “R curve” and evaluate crack resistance. 

From this curve, JQ is the value of J where the crack extension is 0.20 mm. The crack propagation toughness 

can also be assessed. Materials such as bone have no true KIC; Kc increases with critical crack length because 

the growing cracks begin to interact with bone microstructure such as cement lines [Koester et al., 2008]. 

Kc (from Jc) can be plotted versus crack extension. The slope of this R curve describes the crack propagation 

toughness.  

3.4.2 Evaluation of fracture toughness for small animal bones 

Fracture toughness testing for small animal bones such as from mice and rats is challenging because 

these specimens are too small to be machined into single edge notch bend or compact tension specimens. 

The Ritchie group described a protocol for determining fracture toughness of mouse and rat bones, which 

has since been adopted by the bone quality community [Ritchie et al., 2008; McNerny et al., 2015; 

Makowski et al., 2014; Ionova-Martin et al., 2011]. A small cylindrical rodent bone, typically the femur, is 

notched with a razor blade on the anterior aspect to a depth achieving a consistent notch angle less than 

110° (Figure 3-4). Bones are broken in three-point bending, with the notched surface in tension. The broken 

surface is then studied in backscatter mode in SEM, allowing measurement of the initial notch and 

instability angles. The initial notch angle (Θnotch) is measured from clearly visible razor grooves. The 

instability angle (θinstability) is evaluated from the zone of stable crack propagation. Stable crack propagation 

appears as a darker, grooved surface immediately following the initial notch. Not all bones are sufficiently 

ductile to produce stable crack propagation.  
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Measurement of the initial notch and instability angles, in combination with the force-displacement 

curves from three-point bending, allow the calculation of Kinitial, Kmax, and Kinstability fracture toughnesses 

from Equation 3.4.11.  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4.11                                  𝐾𝑐 =  𝐹𝑏

𝑃𝑠𝑆𝑅𝑜

𝜋(𝑅𝑜
4 −  𝑅𝑖

4)
√𝜋𝑅𝑚𝜃𝑐 

In Equation 3.4.11, Ro and Ri are the outer and inner radii of the cortical bone cross-section, respectively. 

Ps is the applied load, θc is the half-crack angle, and S is the outer loading span. Fb is a lengthy geometrical 

factor developed for a thick-walled cylindrical pipe with an edge crack, as is reported in Ritchie et al., 2008. 

Kinitial is a function of the initial notch angle as well as the yield load, PQ, determined by the intersection of 

the loading curve and a secant line drawn from the origin with a slope of 95% of the initial stiffness. As 

mentioned previously, a valid Kc result requires limited plasticity and thus Pmax/PQ < 1.1. Importantly, rodent 

bones often fail this criterion, and thus Kinitial is infrequently reported. As an alternative to the 5% secant 

method, the maximum load and initial notch angle can be used to calculate Kmax. This measure is 

straightforward to analyze but inherently limited because stable crack growth cannot be included. A third 

measure, Kinstability, incorporates stable crack growth through measuring an instability angle from SEM (3-

1-4). This latter measure has the advantage of including crack propagation toughness, which for larger 

samples would be calculated from a Kc vs crack extension “R curve.” 
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Table 3-1: Fracture toughness measurements for small animal bones 

Kc Measure Ps θc 

Kinitial PQ Θnotch 

Kmax Pmax Θnotch 

Kinstability Pfinal θinstability 

 

 

  
 

Figure 3-5: Measurement of fracture toughness for small animal bones SEM image on right collected by 

Chelsea Heveran. Figure adapted from Ritchie et al., Bone, 2008. Fracture toughness is evaluated for 

femurs through measuring the notch half-angle in SEM and equation 3.4.11. 

 

The J-integral method would be enticing for fracture toughness testing of rodent bone given the 

geometrical limitations of small bones and their elastic-plastic behavior. However, the method is currently 

limited by numerical relationships between J and sample geometry. A solution for thin-walled cylinders 
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from the nuclear piping industry has been employed (Equation 3.4.11), but is invalid for samples, including 

most rat and mouse bones, with a mean radius:thickness ratio below 5. Furthermore, the length of the 

uncracked ligament is typically insufficiently large for mice and barely sufficient for rats [Ritchie et al., 

2008]. 

3.5 High-performance liquid chromatography 

The bone tissue composite contains several types of collagen, of which type I collagen is most 

prevalent.  Type I collagen molecules are comprised of a central triple helical region as well as two 

nonhelical telopeptide regions at the amino- and carboxyl- terminals. Intramolecular and intermolecular 

crosslinking facilitate the organization of collagen molecules into fibrils. The collagen matrix derives its 

strength from these crosslinks, which in turn contributes to whole bone mechanical properties [Saito et al., 

2010]. 

Collagen crosslinks occur in enzymatic and non-enzymatic varieties. Enzymatic crosslinks form 

via the activity of the enzymes lysine hydroxylase and lysyl oxidase. There are seven major enzymatic 

crosslinks: dehydrodihydroxylysinonorleucine (deH-DHLNL), (2) dehydrohydroxylysinonorleucine (deH-

HLNL), (3) dehydrohistidinohydroxymerodesmosine (deH-HHMD), (4) hydroxylysylpyridinoline (HP), 

also known as pyridinoline, (5) deoxypyridinoline lysylpyridinoline (LP)), also known as 

deoxypyridinoline, (6) pyrrole, and (7) histidinohydroxylysinonorleucine (HHL). Of these, the first three 

are immature, divalent crosslinks, which are reducible in NaBH4. The latter four are mature, trivalent, and 

irreducible. Over time, the immature crosslinks mature into the mature crosslinks; specifically, deH-

DHLNL matures into HP or pyrrole while deH-HLNL matures into LP [Saito et al., 2010]. Mature 

crosslinks are important for bone mechanical properties. In rodent studies of lathyrism, where lysyl oxidase 

is inhibited and thus quantities of enzymatic collagen crosslinks are reduced, bone fracture toughness, 

strength and stiffness are impaired [McNernie et al., 2015; Oxlund et al., 1995]. 

Non-enzymatic crosslinks are instead induced by glycation or oxidation and are thus referred to as 

“advanced glycation end-products” (AGEs). Pentosidine is one such AGE, with concentration in bone 

determined by rate of formation and removal via bone tissue turnover. Higher concentrations of pentosidine 
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have been observed in advanced age [Wang et al., 2002], as well as in diseases such as diabetes [Oren et 

al., 2011], and are associated with reduced fracture toughness [Granke et al., 2015]. 

Collagen crosslink content for bone can be assessed using High-Performance Liquid 

Chromatography (HPLC). This technique is utilized in order to separate components in a mixture. The 

sample mixture is pressurized and pumped through a column containing either polar media and a non-polar 

mobile phase (“normal-phase HPLC”), or, more commonly, non-polar media and a polar mobile phase 

(“reversed-phase HPLC”). Components in the sample have different affinities with the polar and non-polar 

phases, and thus these components separate in the column. The mobile phase for reversed-phase HPLC 

often contains water and may also contain organic solvents (e.g., acetonitrile or methanol) or acids. The 

mobile phase composition is changed over the course of the experiment to encourage the elution of 

particular sample components. 

An HPLC experiment to characterize bone collagen crosslinks begins with hydrolyzing the bone 

tissue with HCl to break down bone collagen matrix into smaller peptides. The resuspended hydrolysate is 

then injected into the HPLC system. The collagen crosslinks of interest (e.g., HP, LP, pentosidine) are 

fluorescent and thus their elution from the column can be detected at characteristic retention times. The 

peak areas or intensities associated with each component can be translated into a quantitative measure of 

crosslink concentration in the bone sample through the use of calibration standards [Bank et al., 1997]. 

These crosslink concentrations are then normalized to the concentration of collagen in the sample. Because 

the amino acid hydroxyproline has a constant concentration within collagen (14% per collagen weight), 

measuring hydroxyproline concentration provides a reference for collagen content. Thus, following the 

measurement of crosslink concentration, the same samples can be derivatized and then evaluated with 

HPLC for amino acid concentration, including hydroxyproline [Banks et al., 1996]. 
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4. Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice 

 

This chapter is published in full as: 

Heveran, C. M., Ortega, A. M., Cureton, A., Clark, R., Livingston, E. W., Bateman, T. A., Levi, M, King, 

K.B. & Ferguson, V. L. (2016). Moderate chronic kidney disease impairs bone quality in C57Bl/6J 

mice. Bone, 86, 1-9. 

Abstract 

Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are 

not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone 

tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham 

procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with 

high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone 

gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed 

through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the 

cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (µCT) and whole 

bone strength were also evaluated. We found that moderate CKD minimally affected bone 

microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased 

with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 

micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral 

volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were 

also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. 

The observed lower bone material quality may play a role in the decreased fracture resistance that is 

clinically associated with human CKD.  
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4. 1 Introduction 

Chronic kidney disease (CKD) is recognized as a global health problem [Levey et al., 2007]. An 

estimated 7.2% of adults over age 30 and 23-36% of persons aged 64+ have at least moderate kidney 

dysfunction [Zhang & Rothenbacher, 2008]. Bone fragility is an important consequence of CKD. In a three-

year study, patients with moderate CKD had a 1.6 - 2.4 fold increase in fracture prevalence compared with 

age-matched controls having mild or no disease. With severe CKD, fracture rate increases by 3.1 – 5.1 fold 

[Naylor et al., 2014]. Moreover, the presence of moderate CKD increases fracture-related mortality by two 

fold in patients over 70 years of age [Nitsch et al., 2009]. The mechanisms by which bone fragility develops 

in CKD are incompletely understood. 

Although bone mineral density is used clinically to diagnose fracture risk, bone fragility in CKD 

cannot be explained by declines in bone mineral density alone [Nitsch et al., 2009]. However, a growing 

body of work across several models of bone disease demonstrates that bone strength and fracture resistance 

also depend on bone quality. Bone quality is the comprehensive state of tissue microarchitecture and bone 

material properties including mechanical response, mineralization, collagen cross-linking, and 

accumulation of microdamage [Donnelly 2011, Seeman & Delmas, 2006]. CKD is a disease of profoundly 

dysregulated mineral homeostasis, and thus, changes in bone mineralization and other parameters of bone 

quality may be expected [Moe et al., 2006, Wolf 2015].  

Few previous studies have investigated bone quality in CKD. Some of these prior works employed 

5/6th nephrectomy (5/6 Nx), which is well-established to produce moderate CKD with high-turnover 

osteodystrophy that mimics key aspects of human kidney dysfunction [Fleck et al., 2006, Gava et al., 2012]. 

Bone quality has been observed to decrease after 5/6 Nx; diminished bone microarchitecture (BV/TV, Tb.N, 

Conn.D, and increased Tb.Sp) was observed for tibial trabecular bone in Crlj:CD1 mice 16 weeks following 

5/6 Nx [Kadokawa et al., 2011]. Microscale cortical bone material properties have been assessed after 5/6 

Nx, but results for these studies are in disagreement about whether bone material quality is diminished or 

preserved. In a complex model of CKD (5/6 Nx with additional thyroparathyroidectomy (TPTx) in rats), 

bone developed a low-turnover response while Raman Spectroscopy revealed higher mineral to matrix 



65 

 

ratio, carbonate to phosphate ratio, collagen maturity, and pentosidine to amide ratio in cortical bone 

compared with TPTx alone [Iwasaki et al., 2011]. In a subsequent study by the same group, rats were given 

either 5/6 Nx alone or alongside TPTx. 5/6 Nx produced high-turnover bone response as well as increased 

mineral to matrix ratio, while 5/6 Nx and TPTx resulted in low-turnover and decreased mineral to matrix 

ratio. Increased pentosidine to matrix ratio, decreased crystallinity and degree of orientation of the c-axis 

of bone mineral crystals were general to both uremic models [Iwasaki et al., 2015]. Meanwhile, Kadokawa 

et al. did not observe changes in FTIR-observed mineral to matrix ratio, mineral maturity, collagen 

maturity, or indentation modulus in mice after 5/6 Nx compared with sham. Critically, these studies all 

employed microscale materials characterization techniques (e.g., nanoindentation, FTIR, Raman 

Spectroscopy) within the middle of the cortical thickness [Iwasaki 2011 et al., Iwasaki et al., 2015, 

Kadokawa et al., 2011]. Yet new rodent bone is apposited primarily on periosteal and endosteal surfaces 

[Ferguson et al., 2003, Donnelly et al., 2010]. It is possible that the inconsistent observation of bone 

material changes after 5/6 Nx results from surveying bone that predominantly existed prior to nephrectomy; 

that is, material property assessment regions of interest were not necessarily placed on bone actively 

forming under the influence of CKD.    

 Bone material quality has not been studied in rodent cortical bone for tissue apposited after 

nephrectomy. In this study, we evaluate the influence of moderate CKD established via 11 weeks of 5/6 Nx 

in C57Bl/6J mice, a low bone density, well-characterized inbred mouse strain. We seek to characterize how 

bone microscale material properties may diminish in bone established during CKD, and together with 

microarchitecture and whole bone strength describe bone quality in a mouse model of moderate CKD with 

high bone turnover.  

4.2  Materials and Methods 

4.2.1 Specimens 

Eight-week-old male C57Bl/6J mice (n = 26) were obtained from Jackson Laboratories (Catalog 

number 000664, Bar Harbor, ME). Mice were maintained on a 12-h light / 12-h dark cycle and housed (n 

= 5 max) in polycarbonate cages with standard bedding. Mice were fed a normal rodent chow diet with 
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water freely available. We randomly assigned mice to sham (n = 12) or 5/6 Nx (n = 14) groups. The 5/6 Nx 

group underwent a two-stage nephrectomy procedure; at 10 weeks of age, 2/3 of the right kidney was 

ablated, followed by complete ablation of the left kidney one week later. The control group received sham 

operations with the same timeframe. Mice were anesthetized using 1.5% isoflurane during procedures. A 

post-operative dose of buprenorphine (0.5 mg/kg) was administered after surgeries and prior to recovery 

and every 12 hours for the following 2 days. Calcein (10 mg/kg) and tetracycline (20 mg/kg) were 

administered via intraperitoneal injection two weeks and two days before euthanasia, respectively. Mice 

were euthanized at 11 weeks following the second procedure by exsanguination and midline thoracotomy. 

Following euthanasia, femurs, tibiae, and humeri were harvested. The right femur diaphysis was cleaned 

of soft tissue and marrow, and then snap-frozen and stored at -80° C for gene expression. Other harvested 

bones were stored in phosphate buffered saline (PBS) soaked gauze at -20° C until analyses or embedding. 

All animal procedures were approved by the Institutional Animal Use and Care Committee at the University 

of Colorado Denver. Investigators were blinded to specimen treatment status for methods described in §2.2-

§2.6. For methods described in §2.7 – §2.9, specimens were randomly selected from each treatment group. 

4.2.2 Serum chemistry 

Serum biochemistry analyses were performed on blood drawn at sacrifice. Plasma creatinine 

concentrations were determined using kits from BioAssay System (Hayward, CA). Blood urea nitrogen 

(BUN), plasma phosphate and plasma calcium levels were measured with kits from Stanbio Laboratory 

(Boerne, TX). Intact plasma parathyroid hormone (PTH) level was measured with kits from Immutopics 

(San Clemente, CA). Phosphate, calcium, and creatinine assays were performed for sixteen samples each 

(5/6 Nx: n = 8, sham: n = 8). BUN and PTH were assessed for twelve samples (5/6 Nx: n = 6, sham: n = 6), 

and eleven samples (5/6 Nx: n = 5, sham: n = 6), respectively. 

4.2.3 qPCR 

Relative gene expression was performed using quantitative real-time polymerase chain reaction 

(qPCR). Frozen femurs were powdered with two 30-second pulses 2600 rpms per manufacturer’s 

instructions (Sartorious mikro-dismembrator S). RNA was extracted and cDNA prepared as previously 
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described by King et al. [King et al., 2009]. The fast SYBR green qPCR method (Bio-Rad CFX connect 

real-time system) was used with the primer sequences listed in Table 4-1.  

 

Table 4-1. Primer sequences used for mRNA analysis. 

Gene Forward Sequence Reverse Sequence 

18s CGCCGCTAGAGGTGAAATTCT CGAACCTCCGACTTTCGTTCT 

Alpl GAGGGACGAATCTCAGGGTA TTTCAAGGTCTCTTGGGCTT 

Ibsp CTTACCGAGCTTATGAGGATGAAT AAATGGTAGCCAGATAAGACAG 

Bglap AGACAAGTCCCACACAGCAG TTGGACATGAAGGCTTTGTC 

Col1a1 GCTCCTCTTAGGGGGCACT CCACGTCTCACCATTGGGG 

Alpl = gene for alkaline phosphatase; Ibsp = gene for bone sialoprotein; Bglap = gene for osteocalcin; 

Col1a1 = gene for type I collagen α1 chain. 

 

All primers were designed and then individually validated to the MIQE guidelines of amplification 

efficiency between 90% and 110% [Bustin et al., 2009]. Conditions were set at an initiation temperature of 

95° C for 20 seconds, followed by 40 cycles of denaturing at 95° C for 3 seconds and annealing at 60° C 

for 30 seconds. Following this DNA amplification, a melting temperature sequence was used to determine 

size of amplicon. Data were analyzed using the ΔΔCq method for relative fold change (equations 2.3.1 – 

2.3.3) with 18s as the reference gene. For this method, Cq is defined as the number of cycles necessary to 

reach the threshold cycle of target amplification, and ΔCq is the difference between the number of cycles to 

threshold for the gene of interest and the reference gene. Smaller values for ΔCq indicates the presence of 

more copies of RNA, because less time is necessary to reach the peak of the reverse transcription reaction. 

ΔΔCq is the difference between ΔCq for 5/6 Nx and sham, and its value has reverse orientation of the fold 

change. 

Equation 4.2.3.1  ∆𝐶𝑞 = 𝐶𝑞𝑔𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝐶𝑞18𝑠 

Equation 4.2.3.2  ∆∆𝐶𝑞 = ∆𝐶𝑞5/6𝑁𝑥 − ∆𝐶𝑞𝑆ℎ𝑎𝑚 

Equation 4.2.3.3  𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 2−∆∆𝐶𝑞 
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4.2.4 µCT 

Left tibiae were cleaned of non-osseous tissue and stored in 70% ethanol at 4°C. Left femurs 

were cleaned and fresh frozen in PBS soaked gauze at -20°C. The femurs were defrosted at 4°C overnight 

before micro-computed tomography imaging (µCT). Microarchitecture was evaluated via µCT for all 26 

study specimens (10 µm voxel size; MicroCT 80, Scanco Medical AG, Basserdorf, Switzerland). For the 

tibiae, scans extended in the distal direction from immediately below the proximal growth plate. The 

scans were acquired using a 70-kVp peak X-ray tube potential, a 0.5 mm Al filter, and an integration time 

of 800 ms to minimize beam hardening effects and optimize the signal-to-noise ratio. Each sample was 

contoured semi-automatically and subjected to Gaussian filtration. Thresholding was site-specific, using 

values of 450 and 723 mg HA/cm3 for tibial and femoral analyses, respectively. The proximal tibia was 

evaluated for parameters including trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), 

trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), and connectivity density (Conn.D). Femurs were 

scanned at the mid-diaphysis, with µCT cortical bone parameters including total mineral density (TMD), 

cortical thickness (Ct.Th), cortical bone area (BA), total area (TA), cortical porosity (Ct.Po), moment of 

inertia about the anterior-posterior axis (Imax), moment of inertia about the medial-lateral axis (Imin), and 

the distance between the centroid and bone surface in the anterior-posterior direction (Cmin) [Bouxsein et 

al., 2010]. Contours for cortical bone were fit tightly to the periosteal and endosteal surfaces, without 

gaps, so as to minimize measurement variance. Contours for trabecular bone were drawn a distance away 

from the endocortical surface to avoid erroneously including cortical bone. 

4.2.5 Ashing 

Humeri from all 26 mice were first oven-dried at 105° C for 24 hours and weighed to obtain dry 

bone mass. The bones were then oven-dried at 800° C for 24 hours to obtain the bone mineral mass. Percent 

mineralization was calculated from the ratio of bone mineral mass to dry bone mass.  

4.2.6 Whole Bone Mechanical Testing 

Following µCT, all left femurs underwent three-point bending and femoral neck testing (Insight II 

Material Testing System, 250 N load cell, MTS Systems Corporation, Eden Prairie, MN). We removed 
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bones from the PBS-soaked gauze and placed them on fixtures for mechanical testing while taking care to 

maintain their hydration levels. Femurs were first tested to failure in three-point bending using a deflection 

rate of 5 mm/min on a custom anvil with an 8-mm span. The proximal femur fragment was then placed in 

a pencil vise fixture mounted in-line with the main compressive direction, with the femoral head pointing 

up [Jämsa et al., 1998]. The femoral neck was tested to failure using a deflection rate of 5 mm/min.  

For both three-point bending and femoral neck tests, load-displacement curves were analyzed for 

mechanical properties including stiffness, maximum load, displacement at maximum load, energy at 

maximum load, load at yield, displacement at yield, energy at yield, post-yield displacement, load at 

fracture, displacement at fracture, and energy at fracture. The yield point was defined as the intersection of 

a secant line drawn with a 10% reduction in slope from the initial tangent stiffness and the load-

displacement curve [Jepsen et al., 1996]. Using Imin and Cmin from µCT, we estimated material properties 

including bending modulus, maximum stress, and toughness from the three-point bending data using 

standard beam bending equations as applied to the mouse femur [Turner & Burr, 1993]. 

4.2.7 Mineral Apposition Rate 

Fluorescent labels administered in this study were too diffuse to allow reliable dynamic 

histomorphometry, including an estimate of mineral apposition rate (MAR). In order to calculate MAR for 

the purposes of estimating the amount of bone tissue formed following nephrectomy, we employed 

published femoral mid-diaphysis periosteal mineral apposition rates for the same strain, sex, and age range 

of mice [Ferguson et al., 2003]. In that study, bone formation was characterized for femurs from male 

C57Bl/6 mice at 18 time points between 4 and 104 weeks of age. Mice killed at 10, 12, 15, 18, and 22 

weeks of age and administered tetracycline labels at 6-day intervals permit characterization of MAR 

relevant to the current study. Periosteal MAR was calculated as the bone formation rate (bone area / time 

between labels) divided by the linear extent of the mineralizing perimeter. Using this calculated periosteal 

MAR for the age of mice in the present study, mean linear apposition (calculated from a crescent-shaped 

area) was estimated to be 80 µm.  

4.2.8 Nanoindentation 
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Subsequent to µCT analysis, tibiae were histologically dehydrated in ethanol and embedded in 

poly(methyl)methacrylate (PMMA). Embedded bones were sectioned at 0.8 mm proximal to the tibia-fibula 

junction using a low speed diamond saw (Isomet, Buehler, Lake Bluff, IL). Specimens were ground using 

wet silicon carbide paper (600 and 1200 grit), and then polished using aluminum oxide pastes (9, 5, 3, 1, 

0.1, 0.05 µm) and Rayon fine clothes (South Bay Technologies, San Clemente, CA) to a final finish of 0.05 

µm. Samples were sonicated between each polishing step. 

Nanoindentation was performed for twelve randomly selected samples (5/6 Nx: n = 6, sham: n = 

6) using a Hysitron TI 950 Triboindenter (Hysitron Inc., Minneapolis, MN) and 5 µm diamond spherical 

tip. The nanoindentation array was situated on the posterior-lateral quadrant of the cortical tibia mid-

diaphysis (Figure 4-1).  
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Figure 4-1: Microscale material property assessment. Modulus and minVf were measured at matched 

micrometer-scale sites in arrays placed on the posterior-lateral mid-diaphysial tibia, with points spaced 20 

µm in x & y. Arrays extended through the cortical thickness, sampling bone tissue of varying age, including 

bone likely to have been established either before or after CKD. 

 

 

Arrays had a minimum of six points in each row, and eight rows such that material properties were 

evaluated throughout the cortical thickness. The first row was parallel to, and within 20 µm from, a tangent 

line to the periosteal surface. Spacing in both x and y directions between indents was 20 µm. The load 

function was depth controlled; indentation rate was 31 nm/s until a max depth of 500 nm. Max depth was 

maintained for 120 s to allow dissipation of viscoelastic energy. Indentation modulus was calculated using 

Oliver-Pharr analysis considering the first 45% of the unloading curve [Bushby et al., 2004].    

4.2.9 Quantitative Backscattered Scanning Electron Microscopy 

Following nanoindentation, samples were sputter coated with carbon in preparation for scanning 

electron microscopy using backscattered electron imaging (qBSE, JEOL JASM6490 LV, 20 kV, aperture 
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60 µm, 14-mm working distance) [Boyde et al., 1999, Campbell et al., 2012]. Images were acquired at 

300x to include the nanoindentation array using both backscatter compositional and shadow modes. Raw 

grey levels of compositional images were calibrated using borosilicate glass reference standards [Campbell 

et al., 2012]. Custom Matlab code was employed to measure the mean grey level in circular regions of 

interest (ROI) situated over the nanoindentation indents, and convert mean grey level to corresponding 

mineral volume fraction (minVf) based on a previously published calibration curve [Campbell et al., 2012]. 

The ROI radius was selected to be 2.5 times the indent contact radius (R) after performing a sensitivity 

analysis with ROI ranging from 1-3; minVf was observed to stabilize at and beyond 2.5R. The indent 

impression was excluded from the ROI for analysis to reduce error from topographic shadowing. Black 

pixels were not included in mean grey level calculation, as post-calibration pixel values of 0 indicate regions 

without mineral content, such as cracks, lacunae, or PMMA. If an ROI overlapped with a crack, lacuna, or 

the bone/PMMA interface, the ROI and its corresponding indent were excluded from minVf and indentation 

modulus datasets, respectively. The distance of indents from the periosteal surface was measured using the 

shadow-mode images and the ImageJ measurement tool [Rasband 1997]. Endosteal perimeter (Endo.P), 

periosteal perimeter (Peri.P), endosteal area (Endo.A), periosteal area (Peri.A) and cortical area (Cort.A, 

the difference between periosteal and endosteal areas) were also calculated from qBSE images using 

ImageJ.  

4.2.10 Data Analysis 

Data are presented as mean ± standard error of the mean. The average and variance for modulus 

and minVf were calculated per row (eight rows spaced at 20 µm, with 6-9 points each). The average 

modulus and minVf at each row were compared between 5/6 Nx and sham groups using repeated-measures 

ANOVA. Post-hoc testing was conducted between row means within each treatment group, and for each 

row between treatments. A modified Bonferroni procedure was employed to control family-wise error at 

alpha = 0.05. Variance in modulus and minVf was compared between treatment groups at each indentation 

row for all indents via Levene’s method.  
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All other measures were compared for 5/6 Nx and sham groups utilizing unpaired t-tests, with 

significance set a priori to p < 0.05. Data sets were examined for both normality and equal variance. All 

statistical analyses were performed with Minitab (v.17).  

4.3 Results 

4.3.1 Kidney Function 

Moderate CKD following 11 weeks of 5/6 Nx was confirmed with significantly higher BUN (sham 

= 7.42 mg/mL, 5/6 Nx = 44.68 mg/mL, p < 0.001) and creatinine levels (sham = 0.37 mg/mL, 5/6 Nx = 

0.50 mg/mL, p = 0.042) in 5/6 Nx than sham [Levey et al., 2003]. Mean PTH was not statistically different 

between groups (sham = 211.12 pg/mL, 5/6 Nx = 359.27 pg/mL, p = 0.120). Serum calcium and phosphate 

did not change with treatment status.  

4.3.2 Gene Expression 

The expression of genes coding for mouse alkaline phosphatase (Alpl) and mouse bone 

sialoprotein (Ibsp) were significantly higher in mice that received nephrectomy (Table 4-2). The 

expression of osteocalcin was nearly 5-fold higher with nephrectomy, but was not significant, potentially 

due to variation among the control mice (as indicated by a higher standard deviation in ΔCq data). Type I 

collagen showed no difference. 
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Table 4-2. Expression of bone matrix and mineralization genes in the femurs of sham and 5/6 Nx treated 

C57Bl\6J male mice (n = 11 / group).  

Gene 

 

Treatment 

 

ΔCq ± StdError ΔΔCq ± StdError Fold-change 

(significance) 

Alpl     

 Sham  19.4 ± 0.5 0 ± 0.5 0 

 5/6 Nx   17.5 ± 0.5 −1.9 ± 0.5 6.1 (p = 0.020) 

Ibsp     

 Sham  17.4 ± 0.6 0 ± 0.6 0 

 5/6 Nx   15.7 ± 0.5 −1.7 ± 0.5 5.4 (p = 0.031) 

Bglap     

 Sham  16.5 ± 0.6 0 ± 0.6 0 

 5/6 Nx   14.5 ± 0.5 −1.5 ± 0.5 4.8 (p = 0.067) 

Col1a1     

 Sham  13.5 ± 0.5 0 ± 0.5 0 

 Nephrectomy   12.6 ± 0.5 −0.9 ± 0.5 2.3 (p = 0.206) 

Alpl = gene for alkaline phosphatase; Ibsp = gene for bone sialoprotein; Bglap = gene for osteocalcin; 

Col1a1 = gene for type I collagen α1 chain; Cq = quantification cycle (also known as quantification 

threshold, Ct). 

 

4.3.3 Bone microarchitecture 

µCT of the tibia revealed significantly decreased Tb.N (-5.87%, p = 0.016) and increased Tb.Sp 

(7.74%, p = 0.008) with 5/6 Nx. For the femur, TMD was lower after 5/6 Nx (-1.89%, p < 0.001) (Table 4-

3). Cortical porosity was higher following 5/6 Nx (+107.90%, p =0.139), but this difference was not 

significant because of high variance. No other µCT measures of the tibia (BV/TV, Tb.Th, vBMD) or femur 

(pMOI, Bone Area, Total Area, BA/TA) differed between sham and 5/6 Nx. No differences were found in 

Endo.P, Peri.P, Endo.A, Peri.A, or Cort.A as measured from qBSE images of the tibial midshaft.  
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4.3.4 Ashing 

No differences were observed between sham and 5/6 Nx for dry mass (sham = 21.22 ± 0.67; 5/6 

Nx: 21.74 ± 0.34), mineral mass (sham = 12.53 ± 0.37; 5/6 Nx: 12.46 ± 0.14), or percent mineral (sham = 

59.81 ± 2.85; 5/6 Nx: 57.39 ± 0.55). 

4.3.5 Whole Bone Mechanical Properties 

Sham and 5/6 Nx groups did not differ in mechanical properties at maximum load, yield, or fracture 

as measured by three-point bending and femoral neck testing (Tables 4-4 and 4-5). Material properties 

(bending modulus, maximum stress, toughness) calculated from three-point bending were also unchanged 

with 5/6 Nx. 
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Table 4-4: Femur mechanical properties determined by three-point bending (mean ± standard error). 

Parameter Sham (n = 12) 5/6 Nx (n = 14) 

 

Stiffness (N/mm) 115.63 ± 4.29 114.54 ± 5.39 

Load at Yield (N) 15.64 ± 0.90 15.58 ± 0.77 

Displacement at Yield (mm) 0.15 ± 0.01 0.15 ± 0.01 

Energy at Yield (mJ) 1.30 ± 0.11 1.29 ± 0.10 

Post-Yield Displacement (mm) 0.34 ± 0.03 0.33± 0.06 

Max load (N) 18.46 ± 0.59 17.75 ± 0.61 

Displacement at Max Load (mm) 0.25 ± 0.018 0.25 ± 0.020 

Energy at Max Load (mJ) 2.99 ± 0.32 2.97 ± 0.32 

Load at Fracture (N) 15.51 ± 0.68 15.27 ± 0.86 

Displacement at Fracture (mm) 0.49 ± 0.02 0.48 ± 0.06 

Energy at Fracture (mJ) 6.99 ± 0.49 6.48 ± 0.78 

Bending Modulus (GPa) 8.89 ± 0.99 9.42 ± 0.81 

Maximum stress  (MPa) 189.36 ± 8.22 195.60 ± 8.16 

Toughness (N/mm2) 8.87 ± 0.54 8.94 ± 1.07 

No significant differences were observed between sham and 5/6 Nx for any measure. 
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Table 4-5: Femur mechanical properties determined by femoral neck fracture test (mean ± standard 

error). 

Parameter Sham (n = 12) 5/6 Nx (n = 14) 

Stiffness (N/mm) 175.54 ± 5.58 170.35 ± 5.25 

Max load (N) 21.46 ± 0.89 22.25 ± 0.67 

Displacement at Max Load (mm) 0.16 ± 0.01 0.19 ± 0.02 

Energy at Max Load (mJ) 1.97 ± 0.13 2.53 ± 0.29 

Load at Yield (N) 19.05 ± 1.01 17.86 ± 0.94 

Displacement at Yield (mm) 0.12 ± 0.01 0.12 ± 0.00 

Energy at Yield (mJ) 1.26 ± 0.11 1.14 ± 0.10 

Post-Yield Deflection (mm) 0.07 ± 0.15 0.09 ± 0.02 

Load at Fracture (N) 18.30 ± 1.43 20.71 ± 0.86 

Displacement at Fracture (mm) 0.19 ± 0.01 0.20 ± 0.02 

Energy at Fracture (mJ) 2.57 ± 0.26 2.84 ± 0.37 

No significant differences were observed between sham and 5/6 Nx for any measure. 

 

4.3.5 Microscale Mechanical Properties 

Repeated measures ANOVA found a significant main effect of row away from the periosteal 

surface, as well as a significant interaction between treatment and row. Sham mice had the lowest modulus 

in the first 20 µm from the periosteal surface, but no row means were significantly different for this 

treatment group (Figure 4-2).  
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Distance (µm) Indentation modulus (GPa) 

 Sham 5/6 Nx 

0-20 26.25 ± 0.82A 23.71 ± 0.34C 

20-40 28.87 ± 0.96A 26.32 ± 0.52B,C 

40-60 29.48 ± 0.89A 28.05 ± 1.10B,A 

60-80 28.96 ± 1.00A 29.86 ± 0.88A 

80-100 29.31 ± 0.67A 30.77 ± 0.58A 

100-120 29.32 ± 0.46A 30.32 ± 0.69A 

120-140 29.31 ± 0.56A 30.41 ± 0.97A 

140-160 28.44 ± 0.84A 29.51 ± 0.57B,A 

 

Figure 4-2: Indentation modulus measured at 20 µm increments from the periosteal surface. A) 

Indentation modulus increases with distance from the periosteal surface. Modulus increases with distance 

in sham mice as bone tissue matures until a plateau is reached 20 µm from the periosteal surface. Modulus 

is initially lower and matures more slowly with 5/6 Nx. B) Mean and standard error for indentation 

modulus at each row. Within each treatment group, measures that do not share a letter subscript are 
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significantly different. Significance was set at family-wise α of 0.05. Error bars indicate standard error 

of the mean. 

 

Nephrectomized mice had a larger region of lower modulus tissue than observed in sham. Modulus 

was significantly lower in rows 1 and 2 (0-40 µm) than in rows 4 – 7 (80-140 µm). Row 2 (20-40 µm) and 

row 3 (40-60 µm) also did not differ, indicating that the zone of lower modulus tissue from 5/6 Nx extends 

through the first 60 µm of tissue. Row 8 had a similar modulus to Rows 2 and 3, which may indicate altered 

material properties in newly apposited endosteal bone. Comparing each row between treatments, modulus 

was lower in 5/6 Nx than sham for row 1 (p = 0.028) and row 2 (p = 0.042). These between-group 

comparisons reveal noteworthy trends, but p-values were higher than the critical α adjusted for family-wise 

error. Variance was also compared for all points between treatment groups by row using Levene’s test 

(Table 4-6). 
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Table 4-6: Variance in microscale material properties calculated at each array row. 

 Modulus minVf 

Row Sham 5/6 Nx Sham 5/6 Nx 

 

1 

 

 

6.58 
 

2.24* 
 

3.23 
 

8.54 

2 

 

7.34 3.17* 2.01 4.03* 

3 

 

7.52      5.97 3.81 8.72* 

4 

 

7.59 5.72 4.26 6.00 

5 5.30 

 

2.71 4.20 4.84 

6 

 

3.51 4.49 4.09 3.30 

7 

 

2.62 6.99 3.03 5.58 

8 4.81 2.51 3.30 2.55 

     

Variance calculated from points pooled across specimens within each treatment group per row. 

Significant differences (p < 0.05) between 5/6 Nx and sham are indicated by *. 

 

For row 1 (0-20 µm), variability in modulus was significantly lower (-65.96%) in 5/6 Nx than sham, 

indicating decreased heterogeneity of tissue-scale stiffness with kidney disease. Row 2 (20-40 µm) also had 

significantly lower variance (-56.81%) in 5/6 Nx than in sham. All other rows had variance that did not 

significantly differ between treatments. 

4.3.6 Microscale bone mineralization 

Sham mice had similar minVf throughout cortical bone; no differences in minVf were seen with 

distance from the periosteal surface. By contrast, in 5/6 Nx, a periosteal band of undermineralized tissue 

was clearly visible in bone expected to have apposited post-nephrectomy (Figure 4-3).  
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Figure 4-3. Quantitative Backscattered SEM images of the cortical tibia for sham and 5/6 Nx. Mineral 

volume fraction was assessed with qBSE at the cortical mid-diaphysis of the tibia for A) sham and B) 

5/6 Nx mice. Images used for analyses were captured at 300x for regions of interest (dotted lines). 

Mineral volume fraction does not differ with distance from the periosteal surface for C) sham, but is 

lower in the newest (i.e, most recently apposited) periosteal bone for D) 5/6 Nx. 

 

 

In repeated measures ANOVA with factors of row and treatment, the main effect of row was 

significant as was the interaction between row and treatment. There were no differences in minVf between 

any rows for sham mice. A markedly different mineralization profile was evident with 5/6 Nx (Figure 4-3). 

Row 1 (0-20 µm) had significantly lower minVf than more interior rows 5-7 (80-140 µm). The area of 

undermineralized tissue with 5/6 Nx was observed to extend through row 4, as the first four rows (0-80 µm) 

did not significantly differ in minVf (Figure 4-4). 
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Distance (µm) minVf (%) 

 Sham 5/6 Nx 

0-20 44.93 ± 0.79A 42.15 ± 1.13B 

20-40 44.92 ± 0.63A 43.17 ± 0.82A,B 

40-60 45.15 ± 0.87A 44.22 ± 1.17A,B 

60-80 44.87 ± 0.82A 46.22 ± 0.99A,B 

80-100 45.11 ± 0.84A 46.66 ± 0.87A 

100-120 44.73 ± 0.85A 46.93 ± 0.68A 

120-140 45.41 ± 0.71A 46.38 ± 0.96A 

140-160 45.11 ± 0.80A 45.47 ± 0.56A,B 

Figure 4-4: Mineral volume fraction measured at 20 µm increments from the periosteal surface. A) 

Mineral volume fraction (minVf) increases with distance from the periosteal surface for 5/6 Nx, but 

not for sham. B) Mean and standard error for minVf at each row. Within each treatment group, 

measures that do not share a letter subscript are significantly different. No row means differ between 

treatment groups. Significance was set at family-wise α of 0.05. Error bars indicate standard error of 

the mean. 
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Row 8, which on some bones approached the endosteal surface, was similar to rows 2-4; this last 

row may be influenced by newly apposited endosteal bone. Variance in minVf was also compared between 

treatment groups for each row (Table 4-6). For bone 0-20 µm from the periosteal surface, variability in 

minVf was 122.98% higher in 5/6 Nx than sham, but variances for the two groups were not significantly 

different. Bone 20-40 µm in distance had significantly higher variability (+100.50%) in mineral for 5/6 Nx 

than for sham. At 40-60 µm, variance in minVf also significantly higher (+128.87%) for 5/6 Nx than for 

sham. All other rows had variance that was not significantly different between treatments. 

4.4 Discussion 

The purpose of this investigation was to evaluate bone quality alterations, including tissue 

microarchitecture and material properties, in a mouse model of high-turnover chronic kidney disease 

(CKD). Kidney disease was induced at 11 weeks of age via 5/6th nephrectomy (5/6 Nx) in male C57Bl/6J 

mice. The significantly elevated BUN and creatinine were observed without concomitantly increased PTH, 

and thus without evidence of secondary hyperparathyroidism, suggesting that CKD was moderate in 

severity [Joy et al., 2007, Levey et al., 2003]. We observed markedly altered maturation of bone material 

properties with distance from the periosteal surface for 5/6 Nx compared with sham. These deleterious 

alterations occurred despite only minimal changes to bone microarchitecture and without significant 

differences in whole bone mechanical response or material properties derived from three-point bending. 

Our findings of altered microscale mineral volume fraction and modulus may provide new insight into the 

clinically observed increase in bone fragility that accompanies human CKD. 

 Our work fills a critical gap by assessing microscale bone material properties in arrays extending 

through newer and into older bone tissue, including bone close to the periosteal surface that is likely 

established after 5/6 Nx.  While previous studies of rodent bone quality in simple (i.e, 5/6 Nx) and complex 

(i.e., 5/6 Nx compounded with thyroparathyroidectomy) surgical models of CKD have surveyed cortical 

bone for material properties, each study evaluated bone material quality at interior cortical bone that likely 

formed prior to CKD [Iwasaki et al., 2011, Iwasaki et al., 2015, Kadokawa et al., 2011]. In our study, bone 
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material quality was similar in the oldest, most interior bone for CKD and sham groups, indicating that 

previously established bone was not affected by kidney dysfunction. In contrast to sham, 5/6 Nx was 

characterized by a 40-60 µm band of bone with both lower modulus and lower mineral volume fraction 

compared with more interior, older bone. In other words, older, more mineral-dense cortical bone was 

preceded by a zone of newer, lower quality bone tissue for 5/6 Nx (Figure 4-3). These observations 

underscore the importance of assessing microscale material properties in newly formed as opposed to pre-

existing bone in nephrectomy models of CKD.  

It was necessary to assess whether the reduced indentation modulus and mineral volume fraction 

observed in new bone apposited after 5/6 Nx were caused by CKD, or were instead explained by normal 

bone mineral maturation, i.e., the temporal mineralization of osteoid. Because mice in this study were not 

skeletally mature at the time of 5/6 Nx, substantial bone formation and cortical expansion were concurrent 

with CKD [Ferguson et al., 2003, Glatt et al., 2007]. It is known that newly deposited osteoid increases in 

mineral content, crystallite size, and stiffness over time until achieving the chemistry, structure, and 

mechanical response of mature bone [Donnelly 2010]. We therefore compared bone maturation patterns 

between sham and CKD groups. We observed a normal pattern of bone tissue maturation in new cortical 

bone for sham mice. This maturation was exhibited by increasing indentation modulus values, measured 

within micrometer-sized regions of bone, within the first ~20 µm distance from the periosteal surface and 

then a plateau in modulus values at distances > 20 µm. Sham mice did not evidence differences in mineral 

volume fraction with distance from the periosteal surface. By contrast, tissue maturation was altered with 

CKD; the region of less-stiff tissue extended to 40-60 µm from the periosteal surface and was also 

undermineralized. 

While our fluorescent labels confirmed periosteal apposition at the site of our nanoindentation 

arrays, they were too diffuse to allow calculation of mineral apposition rate or clearly distinguish sites of 

newly formed bone tissue. Consequently, it was not possible to determine the exact boundary between bone 

tissue apposited before and after nephrectomy. However, a zone of new, lower-quality bone tissue 60 µm 

in width is quite possible; from mineral apposition rates measured for the femur for the same strain, sex, 
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and age range of mice, an estimated 80 micrometers of periosteal apposition may be expected [Ferguson et 

al., 2003]. Because the periosteal and endosteal perimeters (and cortical area) were not different for 5/6 Nx 

and sham, mineral apposition is comparable between groups. Furthermore, gene expression indicates 

significantly raised Alpl and Ibsp, both of which are related to matrix mineralization. While we cannot 

determine if these changes were due to a change in osteoblast/osteocyte activity or number, because 

osteocalcin and collagen gene expression were not greater in the CKD group, change in activity as opposed 

to number seems more likely. These increased markers of matrix mineralization do not necessarily imply a 

greater content of mineral in new bone tissue; indeed, we observe that mineral volume fraction is decreased 

in new bone with CKD. Instead, increased expression of Alpl and Ibsp likely corresponds with high-

turnover bone response and the deposition of a substantial quantity of new tissue following 5/6 Nx. The 

exact boundary of new and pre-existing bone within these 160 µm wide arrays is less important than the 

observation of altered tissue mineral and modulus maturation with CKD in arrays that include both new 

tissue and bone established before nephrectomy. Indeed, abnormal mineral maturation kinetics have been 

observed in other diseases where bone quality is reduced and fracture risk increased, such as osteoporosis 

and osteogenesis imperfecta [Roschger et al., 2008].  

Our observations may also imply a reduction in bone toughness with CKD. The marked increase 

in mineralization and modulus between new and extant bone potentially introduces a dissimilar material 

interface with CKD; abnormal interfaces in bone can reduce tissue toughness [Wagermaier et al., 2015]. 

Microscale bone tissue heterogeneity is altered for bone apposited during CKD, which may also imply a 

reduction of bone tissue toughness. Specifically, variance was decreased for indentation modulus and 

increased for mineral volume fraction. Lowered heterogeneity in indentation modulus has not been directly 

related to fracture risk [Lloyd et al., 2015], yet has been experimentally observed in bones where fracture 

has occurred [Tjhia et al., 2011]. Cortical bone in atypical bone fracture with severely suppressed bone 

turnover had reduced variance in indentation modulus measured at 500 nm, the same depth as assessed in 

our study, when compared with an age-matched group without fracture [Tjhia et al., 2011]. Variance in 

indentation modulus may serve to increase tissue-scale toughening mechanisms. Fratzl et al. analytically 
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established that periodically varying elastic and inelastic regions should increase toughness [Fratzl et al., 

2007]. Additionally, experimentally-measured heterogeneous indentation modulus was seen to promote 

energy dissipation in a finite element model when compared with homogenous modulus [Tai et al., 2011]. 

While the Tai et al. study assessed heterogeneity in elastic properties from indents at 40 nm of depth, we 

indented to 500 nm in order to minimize the effects of surface roughness while maintaining the same 

coefficient of variance as indents as shallow as 100 nm [Paietta et al., 2011]. It is beyond the scope of the 

present study to evaluate if the energy-dissipation mechanisms proposed by Tai et al. extend to this greater 

length scale. Meanwhile, altered heterogeneity in mineral volume fraction may also contribute to bone 

fragility. Abnormally high or low variance in mineral volume fraction has been noted in backscatter SEM 

studies comparing bone samples with and without fragility fractures. The coefficient of variance of bone 

mineralization was lower in iliac crest biopsies from women with vertebral fractures versus healthy 

cadaveric controls [Ciarelli et al., 2009]. Yet in another study of bone mineralization at the iliac crest, 

cadaveric trabeculae from women with osteoporotic vertebral fractures had a wider distribution of bone 

mineral content than healthy trabeculae [Busse et al., 2009]. Increased heterogeneity in mineralization has 

also been reported in both trabecular and cortical bone for fracture-prone children [Tamminen et al., 2014]. 

Thus, abnormal variance in mineral volume fraction, whether too high or too low, may be indicative of 

lower tissue toughness and reduced fracture resistance. Tissue toughness was not directly evaluated in this 

study; however, the emergence of a materials interface, less variable indentation modulus, and more 

variable mineral volume fraction are characteristic of less-tough bone. This potential reduction of bone 

toughness, along with lower stiffness and mineralization, may comprise important factors influencing 

skeletal fragility in CKD. 

The decrease in indentation modulus variance concurrent with increase in mineral volume fraction 

variance was unexpected. From tissue composite theory, it is expected that the infilling of stiff mineral 

within a softer matrix should substantially increase the overall bone tissue modulus. However, in 

considering the dependence of modulus on mineral volume fraction as published in prior works, the 

variance in mineral volume fraction only poorly explains that of modulus within the range of mineral 
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volume fraction data observed in our study [Currey 1998, Oyen et al., 2008]. An alternate explanation is 

that lowered mineral volume fraction observed in CKD has a minor influence on tissue stiffness, and that 

the variance in modulus may be better explained by coincident changes related to mineral deposition or 

growth, such as mineral crystal size and distribution, mineral chemistry, or modifications to the underlying 

collagen matrix. 

The length-scale of observation is important for identifying bone quality changes in bone-affecting 

metabolic diseases [Roschger et al., 2008, Karunaratne, et al., 2012], and appears to be particularly crucial 

in CKD. At the micrometer length scale, bone material quality was worse with CKD. Yet lowered material 

quality did not impair mechanical or resulting material properties at the whole bone scale. How and to what 

degree whole bone properties change with CKD remains unclear. Iwasaki et al. observed changes in whole 

bone storage modulus and tan delta in rats after 16 weeks with 5/6 Nx and a high-phosphate diet [Iwasaki 

et al., 2015]. Meanwhile, in a Cy/+ genetic CKD model in rats, diseased bones had significantly lower 

ultimate stress, a trend towards lowered toughness, and no change in modulus as measured from three-point 

bending [Allen et al., 2014]. In another study with Cy /+ rats, CKD significantly reduced ultimate stress 

and stiffness, while energy to failure was not changed [Moe et al., 2014]. That whole bone mechanical 

properties were not compromised in our study could result from a lesser quantity of diseased bone or less 

severe CKD. To gain insight into the influences of poor bone quality on whole bone properties, we 

performed a first order approximation of flexural load at the yield point for either sham or diseased cases. 

The load at yield for a whole long bone can be estimated by calculating whole bone modulus in three point 

bending [Turner & Burr, 1993]. For this calculation, moments of inertia were taken from microCT, moduli 

were chosen to be the mean of the three closest nanoindentation rows to the periosteal surface for either 

sham or 5/6 Nx groups (from Figure 4-2), mean displacement at yield was 0.15 mm (from Table 4-4),  and 

span length was maintained at 8-mm. Since load scales linearly with whole bone modulus, the load at yield 

for bones consisting entirely of diseased tissue was predicted to decrease by -16.6% as compared to healthy 

bones. However, we observed from qBSE that on average 21% of cortical bone area had apparently 

diminished minVf following 11 weeks of 5/6 Nx, therefore the expected reduction in load at yield should 



89 

 

be substantially less than the aforementioned extreme example of a fully diseased bone. Thus, the 10-20% 

standard deviation observed around max, yield, and fracture loads exceeds the magnitude of the estimated 

effect size of 5/6 Nx. While whole bone strength is one important part of the suite of bone quality 

assessments, the uncertainty inherent in mouse bone flexural testing may limit the ability to resolve 

important changes in bone quality in moderate CKD [Ferguson et al., 2003, Jämsa et al., 1998]. Instead, 

the use of microscale techniques such as nanoindentation and qBSE may more reliably reveal changes to 

bone quality that could contribute towards fracture risk. 

Our study had several limitations. The primary limitation was that dynamic bone 

histomorphometric measurements were not possible because of prohibitively diffuse fluorescent labels. 

Dynamic histomorphometry would have provided additional insight into how bone formation and 

resorption are altered with CKD and will be implemented wherever possible in future studies. Also limiting 

was the single time-point for gene expression assessment. Longitudinal analysis of serum markers of bone 

would aid in interpretation of bone material changes and should be performed in future analyses. 

Furthermore, in our study and others, rodents were skeletally immature at the time of nephrectomy 

[Kadokawa et al., 2011, Iwasaki et al., 2011, Iwasaki et al., 2015]. The tendency of bone microarchitecture 

and whole bone mechanical properties to diminish with CKD may have been overshadowed by substantial 

bone growth as mice underwent skeletal maturation. The confounding influences of age and CKD could be 

clarified with a study of young, middle-aged, and mature mice.  

In summary, microscale material properties of the cortical bone within the tibia diaphysis were 

impaired for mice that experienced surgically-induced CKD concurrent with skeletal maturation. Bone 

apposited between 11 weeks of age (time of 5/6 Nx) and 22 weeks (euthanasia) possessed lower and less 

variable indentation modulus, as well as lower and more variable mineral volume fraction, compared with 

bone from sham mice. The current work addressed an important inconsistency in whether microscale 

material properties change with CKD; namely, through placing arrays in a location of actively forming 

bone, lower bone material quality was readily observed. A preponderance of evidence collected from this 

study and others now suggests that CKD does affect bone material properties, and that these properties may 
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involve the quantity of mineral or its maturation (e.g., current work, Iwasaki et al., 2011, Iwasaki et al., 

2015), or the collagen network supporting mineralization [Allen et al., 2014]. Looking ahead, a site-

matched approach employing nanoindentation alongside Raman Spectroscopy may reveal greater detail 

about how formation and maturation of bone mineral and matrix are specifically altered with CKD, and 

how these changes contribute to diminished microscale mechanical properties. 
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Abstract 

Osteocytes can participate in systemic mineral homeostasis through perilacunar remodeling. Changes to 

osteocyte lacunae may affect bone quality, tissue strains, and mechanosensitivity. Though aging is 

associated with both decreased bone quality and altered mineral metabolism, it is not known if osteocyte 

lacunae undergo age-related changes in geometry. In order to survey lacunar changes with age, we 

developed an open-source method whereby 3D osteocyte lacunae are automatically segmented and then 

reconstructed from confocal laser scanning microscopy (CLSM) depth stacks and then analyzed for 

geometries and orientation. This method takes advantage of the availability and speed of CLSM while 

avoiding time-consuming and bias-prone manual segmentation. We report that 3D osteocyte lacunae 

measured by confocal laser scanning microscopy become smaller, more spherical, and more sparsely 

populated with increased age in cortical mouse bone in groups spanning 6 – 24 months of age. Critically, 

these age-related changes are not seen in 2D analyses from the same samples. These results motivate further 

inquiry into how changes to osteocyte lacunar geometries and perilacunar material contribute to diminished 

bone quality in aging. 

5.1. Introduction 

Osteocytes, which account for approximately 95% of bone cells, are critical for coordinating bone 

deposition and resorption, as well as bone mechanotransduction. Osteocytes also participate systemically 

in disease processes via endocrine signaling [Bonewald 2011; Schaffler et al., 2014]. In addition, the 

osteocyte can more directly modify the local bone material environment. This effect was first observed in 

extreme physiological conditions, including lactation, hibernation, and glucocorticoid therapy, where the 
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osteocyte resorbs perilacunar bone to maintain systemic mineral homeostasis in a process known as 

osteocytic osteolysis [Qing et al., 2012; Kaya et al., 2015; Kwiecinski  et al., 1987; Lane et al., 2004]. 

These perilacunar bone changes can be reversible, as observed after weaning in previously lactating mice 

[Qing et al., 2012; Kaya et al., 2015]. Indeed, recent findings suggest that osteocytic osteolysis may be a 

special case of perilacunar remodeling, which occurs in healthy bone and may contribute to maintenance 

of bone quality and fracture resistance [Alliston 2014; Tang et al., 2014; Gardinier et al., 2016; Fowler et 

al., 2016]. The lacunar-canalicular network is large, accounting for an estimated 1-14% of cortical bone 

volume [Schaffler et al., 2014]. Not surprisingly, changes to lacunar geometries can substantially affect 

bone quality. Enlargement of lacunae with lactation has been shown to reduce cortical bone modulus from 

microindentation [Kaya et al., 2015]. In addition, changes to osteocyte lacunar geometries could affect bone 

tissue strains, fracture properties, and mechanosensitivity. 

Bone quality and fracture resistance are decreased with aging [Ferguson et al., 2003; Halloran et 

al., 2002; Raghaven et al., 2012; Nalla et al., 2004]. Perilacunar remodeling has been shown to contribute 

to fracture resistance-determining bone quality, but changes to perilacunar remodeling and resulting 

osteocyte lacunar geometries with aging are unknown. Aging is associated with changes to mineral 

metabolism, including lower levels of circulating calcidiol in older men and impaired conversion of 

calcidiol to calcitriol, the physiologically active form of vitamin D, in elderly women [Orwoll et al., 2009; 

Tsai et al., 1984]. Calcitriol facilitates intestinal absorption of calcium, osteoclastic resorption, and 

osteoblast activity [Lips 2006]. Thus, changes in vitamin D metabolism with aging could increase the 

burden of the skeleton and particularly the lacunar-canalicular network to maintain systemic calcium 

homeostasis. Perilacunar remodeling could change with aging for other reasons as well. Aging is also 

known to increase the prevalence of senescent osteocytes, which express toxic factors into the local bone 

tissue environment [Farr et al., 2016]. Several groups have observed in 3D and 2D that the number density 

of lacunae (number of lacunae per volume of bone) decreases with advancing age, for both humans and 

rodents [Vashisth et al., 2000; Busse et al., 2010; Lai et al., 2015; Mullender et al., 1996]. Changes to 
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perilacunar geometries could potentially compensate for age-related declines in bone strength. However, 

how osteocyte lacunar geometries change with aging is uncertain. 

Very few studies have evaluated the effects of aging on osteocyte lacunar geometries. Mullender 

and coworkers, using 2D histomorphometry, found that osteocyte lacunae from trabecular bone of the iliac 

crest had smaller mean lacunar area for men and women aged 55 years or older, compared with individuals 

less than 55 years of age [Mullender et al., 1996]. However, these age-related differences in lacunar area 

were not significant. Two-dimensional imaging may contribute to the uncertainty about whether osteocyte 

lacunae change in aging. 2D imaging has several critical limitations. Osteocyte lacunae can appear 

indistinguishable from non-lacunar objects (e.g., a vascular cross-section in bone). Furthermore, the 

ellipsoidal shape that generally characterizes osteocyte lacunae can yield a range of 2D shapes depending 

on the sectioning plane (Figure 5-1). It is possible that 2D methods are sufficient for detecting large changes 

to osteocyte lacunae as occur with lactation, but that 2D techniques have insufficient resolution to capture 

more subtle changes in lacunar morphologies that could result from aging. 



97 

 

 

Figure 5-1: A 3D ellipsoid can be sliced into many different 2D shapes. Different 2D cross-sections of a 

3D ellipsoid produce very different geometries. Accordingly, 3D methods are most appropriate for 

comparing osteocyte lacunar geometries between samples. 

 

Three-dimensional (3D) images can surmount the challenges of 2D quantification of osteocyte 

lacunar geometries. Previous efforts have utilized synchrotron-radiation microCT to generate 3D images of 

osteocyte lacunae and surrounding canaliculi [Carter et al., 2013; Dong et al., 2014; Hesse et al., 2015; 

Fowler et al., 2016]. Submicron-resolution conventional microCT (‘nanoCT’) could also be employed for 

osteocyte lacunae visualization. However, both of these technologies are prohibitively expensive and 

unavailable for many researchers. By contrast, confocal laser scanning microscopy (CLSM) provides a 

relatively common, fast, and inexpensive technique with the ability to capture depth stacks (z-stacks) of 

osteocyte lacunae at submicron resolution. Some prior work has considered CLSM for the purpose of 

studying 3D osteocyte network geometries [McCreadie et al., 2004; Kamel El-Sayed et al., 2015; Lai et 
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al., 2015].  However, this technique has not been widely utilized, perhaps because of the necessity of either 

manually segmenting osteocytes, which is both time intensive and prone to user bias, or constructing 

algorithms to appropriately segment 2D osteocyte lacunae slices and then reconstruct and analyze 3D 

osteocyte geometries. An open-source tool for analyzing 3D osteocyte lacunar geometries from CLSM z-

stacks would enable facile and time-efficient analysis of how lacunae change with aging, disease, and 

therapeutic interventions. 

CLSM has only been sparingly employed to characterize 3D age-related changes to osteocyte 

lacunae. Lai et al reported that osteocyte lacunae from trabecular and cortical bone of male C57Bl/6 mice 

had smaller mean lacunar volume and surface area at 32 weeks of age than 15 weeks, but these differences 

were not significant. However, only three mice were studied at each age, and only 10 lacunae were analyzed 

for each cortical and trabecular compartment per study animal [Lai et al., 2015]. In addition to 3D 

assessment of osteocyte lacunae, assessing rigorously large numbers of lacunae in studies with greater 

statistical power are needed to evaluate effects of aging on osteocyte geometries. 

In this study, we employ CLSM to evaluate how 3D osteocyte lacunar geometries change with 

aging in large arrays of lacunae imaged from cortical mouse bone. We present an open-source automatic 

segmentation method for convenient and time-efficient analysis of 3D osteocyte lacunae, as well as metrics 

for analyzing 3D osteocyte geometries. The validity and limits of our approach are considered by analysis 

of phantom ellipsoidal objects and comparison with manual segmentation.  

5.2. Methods 

5.2.1 Visualization and quantification of 3D osteocyte lacunar geometries 

A Matlab-based process to segment osteocyte lacunae from 2D images within z-stacks from CLSM 

to generate 3D osteocyte lacunae is described in 5.2.1.1. Parameters to describe 3D osteocyte lacunae 

geometries are then defined in 5.2.1.2. In section 5.2.1.3, several strategies are presented to understand the 

limitations and validity of our method. Finally, in section 5.2.2, we describe an experiment in which cortical 

bone from young through old mice were imaged using CLSM to quantify the effects of age on osteocyte 

lacunar morphology. 
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5.2.1.1  3D osteocyte lacunae segmentation and reconstruction 

The process of segmenting and reconstructing osteocyte lacunae from confocal z-stacks is outlined in 

Figure 5-2.  

 

Figure 5-2: Method to reconstruct 3D osteocyte lacunae from CLSM z-stacks. A) Cortical bone is stained 

with basic fuchsin, dehydrated, and embedded in PMMA. Ground sections 200 µm thick are prepared for 

imaging. B) Z-stacks of images are acquired with CLSM. C) The 3D Osteocyte Lacunae Analysis 

program is used to segment osteocytes from raw images, using thresholding, filtering, and erosion / 

dilation steps. D) Potential osteocytes are reconstructed in 3D. The user can select non-osteocytes (e.g., 

vasculature) for exclusion. This final 3D matrix is analyzed for osteocyte lacunar geometries. 

 

The following process constitutes the 3D Osteocyte Lacunae Analysis program:  

1) Thresholding: images are first stored as individual 2D image slices. Each image within a z-stack first 

undergoes smoothing via Gaussian filter and then thresholding. The image is filtered with a 2D 

smoothing kernel specified by sigma, (0.65 in our program). The mean of the smoothed image is 

obtained and used for the thresholding parameter. Thus, each image slice has a different threshold 

which is proportional to the mean intensity of that slice. The thresholding parameter is the mean of the 

Gaussian smoothed image multiplied by 1.9. This value, as well as sigma, worked well with our mouse 
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bone image data, and could be easily modified to better fit other data sets. The binarized 2D images 

within each stack are then stored in a 3D matrix, referred to here as ‘3D_Segmented_Image’. 

2) Holes are filled for objects within the 3D matrix using the Matlab function imfill(3DSegmentedImage, 

‘holes’). Specifically, black pixels within the white outlines of the 3D lacunar edges are converted to 

white pixels so that each lacuna becomes a filled volume. The resulting image is called 

‘3D_Segmented_Image_Filled.’ 

3) Erosion and dilation: These imaging processing operations are commonly used to eliminate small, 

unwanted objects remaining from thresholding. The functions used in the program operate on 3D 

volumes. A spherical (radius = 5 pixels) structuring element (SE) is chosen for the erosion and dilation 

procedure. Objects in the 3D matrix are eroded with reference to the structuring element to remove 

osteocyte lacunae processes and canaliculi and are then dilated back to their original volumes. The 

Matlab function imopen(3D_Segmented_Image_Filled, SE) achieves the erosion and dilation 

procedure, using the same SE for each step. 

4) Edge filter: segmented objects are removed if any portion of the object touches an image boundary. 

This prevents incomplete objects from inclusion in the final analysis. 

5) Volume filter: segmented objects smaller than 100 µm3 or larger than 2000 µm3 are removed, as 

osteocyte lacunae observed in this study generally have volumes between 200-600 µm3. 

6) User selection and removal of non-osteocyte lacuna objects: following steps 1-5, the segmented and 

filtered 3D image is visualized in a custom Graphical User Interface (GUI) named Visualize Lacunae 

GUI. Users can visualize the segmentation results and select objects (e.g., vasculature) for exclusion.  

7) Analysis: 3D osteocyte lacunae geometries and orientation metrics are analyzed from the final 3D 

matrix according to the parameters outlined in section 5.2.1.2. 

5.2.1.2 Osteocyte lacunae network parameters  

Osteocyte network parameters in 3D and 2D are summarized in Figure 5-3.  
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Figure 5-3: Definitions of osteocyte lacunar geometries. 
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Our work employs “ellipsoidal” and “lacunar” definitions of ellipsoidal objects for calculation of 

volume and surface area. Previous work (e.g., McCreadie et al., 2004; Lai et al., 2015) described the 

geometry of 3D osteocyte lacunae objects based upon a best-fit ellipsoid. We calculate ellipsoidal volume 

and ellipsoidal surface area using the same approach. Briefly, the eigenvalues and eigenvectors of the 

inertia matrix were calculated to yield the principle moments of inertia and principle directions, respectively 

From the principle moments of inertia, a best-fit ellipsoid and its corresponding surface area and volume 

can be calculated. We also calculate lacunar volume from the number of pixels that comprise the 3D 

osteocyte lacunar object volume. Lacunar surface area is calculated by performing a Delauney 

triangulation of the pixels forming the object surface, and summing the area of the triangles. 

Sphericity is the ratio of the smallest to largest radii. For the ellipsoidal approach, radii are 

calculated from the principle moments of inertia. For the lacunar approach, radii are calculated directly 

from the center of mass along the principle directions to the object edge. A value of 1 indicates a perfect 

sphere, with decreasing values indicating a more elongated geometry. 

Closest center of mass is defined as the shortest distance in 3D space between osteocyte lacunae 

centers of mass. This value is calculated for each osteocyte lacunae within the sample and provides a 

measure of how far apart the lacunae are spaced. 

Span theta is defined as the angle difference (in degrees) between the average of all lacunar 

principle axes and the principal axes of individual osteocyte lacunae. This parameter estimates the degree 

of alignment of a group of osteocyte lacunae in 3D space. The name of this variable was chosen as it only 

exists on the plane that spans the vectors of the individual principal axes and the average principle axis. 

A slice from each z-stack (5th from the imaging surface) was analyzed for 2D analogs of the 3D 

metrics. Lacunar area measures the area filled by the pixels of the segmented 2D osteocyte lacunae. 

Lacunar perimeter is evaluated from the pixels forming the object edge. Circularity is the ratio of major to 

minor axes, where a value of 1 indicates a perfect circle. Closest center of mass is the shortest distance 

between centers of mass in 2D space. The 2D equivalent of span theta is the standard deviation of angles 

between the major axis and an arbitrary x axis for all lacunae. 
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5.2.1.3 Validation 

We first verified that the program appropriately quantifies 3D osteocyte lacunar geometries through 

analyzing phantom objects. These 3D ellipsoids were created with known dimensions and orientations and 

are available as open-source files along with the 3D Osteocyte Lacunae Analysis program (Figure 5-4).  

 

Figure 5-4: 3D ellipsoidal phantoms. The program accurately calculates A) orientation and B) surface 

area for ellipsoidal phantoms. 

 

We next estimated the percentage of osteocytes present in bone that are segmented by the 3D 

Osteocyte Lacunae Analysis program and included in the 3D reconstruction for analysis of lacunar network 

geometries. Some loss of lacunae in an automatic segmentation protocol is expected, as segmentation is 

affected by inhomogeneity in stain penetration and the presence of bright objects such as bone marrow 

within the image. In order to estimate an expected number of lacunae to compare with results from 

automatic segmentation, manual segmentation was performed for three cortical mouse bone z-stacks (one 

randomly chosen sample from each of the three age groups described in 2.2) using ScanIP (version 7.0, 

Simpleware, Synopsys Inc). The manually segmented lacunae were subjected to a volume filtration step 
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analogous to volume filtering within the automatic 3D Osteocyte Lacunae Analysis program (objects with 

volumes less than 100 µm3 or more than 2000 µm3 were excluded). Manually segmented lacunae were not 

further modified (i.e., no dilation / erosion or smoothing) before analysis of lacunar geometries. The number 

of osteocyte lacunae segmented by the 3D Lacunar Analysis program was compared with the number 

obtained through manual segmentation. Lacunar geometries obtained from automatic and manual 

segmentation for the same samples were then compared. 

5.2.2  Demonstration of technique  

We applied the protocol presented in Section 5.2.1 for visualization and quantification of 2D and 

3D osteocyte lacunar geometries to evaluate osteocyte lacunae in cortical bone from skeletally mature 

young adult, middle-age, and old mice. 

5.2.2.1    Cortical bone sample preparation and imaging 

C57Bl/6J male mice at three ages (3 months, n =6; 15 months, n = 7; 21 months, n = 6) underwent 

sham (i.e., placebo surgery) abdominal procedures as a control for a separate study. Mice were aged for 3 

months following sham surgeries on Harlan Teklad 2920X chow diet and killed. At the study endpoint, 

mice were 6, 18, and 24 months of age. Six-month old mice are skeletally mature young adults, 18 month-

old mice are middle-age and beyond peak for most mechanical properties, and 24 month mice are 

considered geriatric [Ferguson et al., 2003]. 

The left tibia was cleaned of non-osseous tissue and simultaneously histologically dehydrated and 

stained with 1% basic fuchsin [Burr & Hooser, 1995]. Tibias were then cleared with acetone and embedded 

in PMMA. Embedded samples were transversely sectioned 1 mm proximal to the tibia-fibula junction with 

a low-speed saw (Buehler Isomet, Buehler, Lake Bluff, IL). A ground section was prepared from the distal 

section with target thickness of 200 µm (Exakt 400 CS, Exakt Technologies Inc, Oklahoma City, OK). 

Final sections had thicknesses of 195 µm ± 3 µm.  Additional samples were prepared with a variety of 

thicknesses in order to assess the dependence of measures on specimen thickness and number of visualized 

osteocyte lacunae. 
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Confocal imaging of ground sections was performed in transmission with a Zeiss LSM 710 

confocal laser scanning microscope, with 555 nm excitation, 568-1000 nm bandpass filter, and 40x oil-

immersion objective. Stacks were obtained through the visible range of osteocyte lacunae (~50-100 µm of 

imaging depth) with 0.484 µm between slices. All imaging was performed blinded to specimen age. 

5.2.2.2 Comparison of 2D and 3D osteocyte lacunar geometries 

Three-dimensional osteocyte lacunar geometries were analyzed as described in 5.2.1. In addition, 

2D osteocyte lacunar geometries were evaluated from a single slice of the same z-stack for each mouse. 

The fifth image from the top surface was chosen to take advantage of high contrast lacunae while 

minimizing effects of surface roughness. The 2D images were saved in .tif format and analyzed with custom 

Matlab code. The Gaussian blur was the same as for the 3D analysis. An area filter excluded objects less 

than 10 pixels and greater than 1000 pixels. The erosion-dilation scheme was modified such that the 

structuring object was a disk instead of a sphere. Lastly, objects that were not osteocytes (e.g., bone marrow) 

were excluded by user specification. From each image, the following 2D geometric parameters were 

obtained: lacunar area, lacunar perimeter, circularity (ratio of smallest to largest radii), closest center of 

mass, lacunar density (number of lacunae / image area), and span theta. In 2D, the interpretation of span 

theta is the difference in angle between the direction of the major axis for each osteocyte and the average 

direction of all lacunae major axes.  

5.2.2.3  Data analysis 

The effect of age on 3D and 2D osteocyte lacunar parameters was evaluated using one-way 

ANOVA (Minitab v.17). Residuals were checked for normality and heteroscedasticity; the dependent 

variable was transformed when necessary to satisfy ANOVA model assumptions. The Tukey post-hoc 

procedure was utilized to compare means between ages. For all analyses, alpha was set a priori to p = 0.05. 

In addition, correlations for image depth vs number of lacunae, ellipsoidal vs lacunar metrics, and 3D vs 2D 

metrics were performed with OriginPro 2016. 

5.3. Results 

5.3.1 Validation 



106 

 

The program succeeded in evaluating expected geometries for phantom ellipsoids using the 

approach outlined in 5.2.1.3. A comparison of manual segmentation (ScanIP) and automatic segmentation 

(3D Osteocyte Lacunae program) demonstrates that 77.1 – 97.8% of the lacunae that are manually 

segmented are captured with the automatic approach described herein (Table 5-1). 

Table 5-1: Comparison of osteocyte lacunar geometries between manually and automatically segmented 

lacunae. 

Age 6 mo 18 mo 24 mo 

Segmentation 

procedure 
Manual Automatic Manual Automatic Manual Automatic  

Lacunar 

Volume 

(µm3)              

265.90 ± 

88.50 

416.83 ± 

193.23 

268.42 ± 

139.62 

433.10 ±  

233.61 

242.04 ±  

107.94 

320.86 ± 

121.72 

Lacunar 

surface area 

(µm2)                   

323.87 ± 

90.95 

339.10 ± 

124.23  

343.19 ± 

102.16 

330.81 ± 

186.72  
274.96 ± 

79.11 

279.32 ± 

74.21 

Sphericity                     
0.13 ± 

0.06 

0.23 ± 

0.06 

0.14 ± 

0.05 
0.25 ± 0.07 

0.19 ± 

0.06 
0.25 ± 0.06 

Closest 

Center of 

Mass (µm)                   

18.88 ± 

4.00 

19.08 ± 

5.39 

20.23 ± 

4.19 

21.61 ± 

4.68 

19.36 ± 

3.92 
19.71 ± 3.71 

Span theta 

(degrees) 

11.13 ± 

22.08 

11.56 ± 

23.93  

5.50 ± 

34.81 

11.98 ± 

35.69 

11.52 ± 

31.32 
8.22 ± 36.08 

Number of 

lacunae 
126 107 105 81 90 88 

Lacunar 

density 

(µm3 x 10-5) 

 

3.11 2.64 2.16 1.66 2.23 2.18 

Osteocyte lacunae geometries were calculated from manual (ScanIP) and automatic (3D Osteocyte 

Lacunar Analysis) procedures for a randomly-selected bone from each age group. Data represent the 

mean and standard deviation of each sample’s lacunar geometries.  
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5.3.2. Stability of osteocyte lacunae geometries with respect to number of osteocytes 

3D osteocyte lacunar geometries were observed to depend on number of osteocyte lacunae for small 

numbers of segmented lacunae (Figure 5-5). Lacunar surface area and lacunar volume (Figures 5-5a and 

5-5b) only weakly depend on number of osteocyte lacunae. Closest center of mass appears to be biased 

towards larger values when measuring small numbers of lacunae. However, this bias is minimized when 

measuring larger numbers of lacunae (i.e., greater than 50 per 3D image). This observation is not 

unexpected. Lacunae are heterogeneous with regards to size and spatial arrangement. Small volumes of 

bone would not be expected to capture as many unusually close or distant lacunae as larger volumes of 

bone. Sphericity (Figure 5-5c) may also be higher for small numbers of lacunae, suggesting that oblong 

lacunae can be prone to undersampling. We chose to analyze samples with 50 or more lacunae to ensure 

adequate sampling of lacunae size, shape, and orientation. The necessary imaging depth (the depth of the 

z-stack from CLSM imaging) to obtain 50 or more segmented lacunae was approximately 60 µm (Figure 

5-6). 
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Figure 5-5: Stability of 3D osteocyte lacunar geometries with respect to number of lacunae. 3D measures 

of osteocyte lacunar geometries, especially sphericity (C) and closest center of mass (D), may be sensitive 

to number of lacunae for approximately 50 or fewer osteocytes.  
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Figure 5-6: Number of osteocyte lacunae versus image depth. Image depth from CLSM of approximately 

60 micrometers or greater is adequate for achieving 50 or greater lacunae. 

5.3.3 Comparison of ellipsoidal and lacunar metrics 

Ellipsoidal and lacunar metrics demonstrated excellent agreement (Figure 5-7), with the correlation 

coefficient r2 approaching 1 for both volume and surface area. We proceeded with lacunar definitions of 

volume and surface area for the study of aging on osteocyte lacunar geometries, but this choice was arbitrary 

(Figure 5-2). 



110 

 

0 200 400 600 800

0

200

400

600

B

y = 1.04x + 14.92

r
2
 = 0.999

E
lli

p
s
o
d

ia
l 
V

o
lu

m
e

Lacunar volume (m
3
)

y = 0.984x + 11.74

r
2
 = 0.999

0 200 300 400

0

200

300

400

E
lli

p
s
o
id

a
l 
S

u
rf

a
c
e

 A
re

a
Lacunar surface area (m

2
)

A

 

Figure 5-7: Ellipsoidal versus lacunar geometries. Ellipsoidal and lacunar calculations demonstrate 

excellent agreement for A) volume and B) surface area, with correlation coefficients approaching 1. Best-

fit ellipsoids have been employed to describe osteocyte lacunar geometries in previous efforts [Lai et al., 

2015; McCreadie et al., 2004], but yield essentially equivalent information as a pixel-fill lacunar 

approach. 

5.3.4 Comparison of 2D and 3D osteocyte lacunar geometries  

3D geometric measures were regressed against 2D analogous generated from an in-focus slice of 

the same z-stack (Figure 5-8). In general, 2D measurements poorly predict 3D outcomes from the same 

lacunae. Lacunar area (2D) was modestly predictive of lacunar (3D) volume, with r2 = 0.264. Lacunar 

perimeter (2D) was poorly predictive of lacunar surface area (3D), with r2 = 0.0883.  Closest center of 

mass (2D) was also poorly predictive of closest center of mass (3D), with r2 = 0.197. Circularity was not 

predictive of sphericity, with r2 = 0.0154. Span theta (2D) was not predictive of span theta (3D), with r2 = 

0.0469. 
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Figure 5-8: 3D versus 2D lacunar geometries. 3D parameters of osteocyte lacunae are poorly predicted 

by 2D analogs measured from a single in-focus slice of the same z-stack. 

 

5.3.5 Effect of age on osteocyte lacunar geometries 

Age was seen to influence 3D lacunar volume, lacunar surface area, and sphericity, with p < 0.05 

for the main effect of age (Table 5-2, Figures 5-9 and 5-10). The following post-hoc comparisons between 

ages are adjusted by the Tukey procedure for family-wise error. Lacunar volume and lacunar surface area 

were reduced by -40.7% (p = 0.028) and -31.2% (p = 0.022), respectively, in old mice compared with young 

mice. Sphericity was +14.8% higher (p = 0.013) for old mice than young mice. Properties from middle-age 

(18 month) mice were intermediate between those of old and young mice, and not significantly different 

from either group. Age did not affect 3D center of mass or span theta. The lacunar number density, the 

number of osteocytes per volume of segmented bone, was reduced by -37.7% (p = 0.010) for old mice 

compared with young mice. 
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Figure 5-9: 3D osteocyte lacunar geometries change with age for cortical mouse bone. 3D osteocyte 

lacunar geometries change with age. Compared with young mice, lacunae from old mice have A) smaller 

surface area, B) smaller volume, and c) higher sphericity. The distance between lacunae, given by D) 

closest center of mass, does not change with age. 
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Figure 5-10: Osteocyte lacunae become smaller, more spherical, and sparser with age. 3D 

osteocyte lacunar geometries change with age. Compared with young mice (A), old mice (B) have 

smaller, more spherical, and sparser lacunae.  
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Table 5-2: Comparison of osteocyte lacunar geometries in 3D and 2D for cortical bone from young 

through old mice 

  3D metrics   2D metrics 

  6 mo 18 mo 24 mo   6 mo 18 mo 24 mo 

Lacunar 

Volume 

(µm3)             

p = 0.035 

454.94  

± 34.21 

365.12 

±  66.74 

269.67  

±   

26.25* 
Lacunar Area (µm2)             

p > 0.05 

51.87 ±  

3.45 

44.61 ± 

3.26 

43.70 ±     

3.39  

Lacunar 

surface area 

(µm2)                  
p = 0.028 

353.72 

± 15.18 

 293.46 

± 36.20 

243.27 

± 

18.57* 

Lacunar perimeter 

(µm)         

p > 0.05 

17.47 ± 

0.51 

16.40 ± 

0.75 

16.52 ± 

0.98 

Sphericity                    
p = 0.015 

 0.23 ± 

0.00 

0.25 ± 

0.01 

 0.26 ± 

0.01* 
Circularity                                 

p > 0.05 

0.57 ± 

0.02 

0.56 ± 

0.02 

0.54 ± 

0.03 

Closest 

center of 

mass (µm)                  
p > 0.05 

 19.86 ± 

0.37 

20.00 ± 

0.50 

21.23 ± 

0.54  

Closest center of mass 

(µm)                                          

p = 0.012 

21.02 ± 

1.40 

24.75 ± 

1.62 

28.70 ± 

1.53 

Span theta 

(degrees) 

p > 0.05 

11.18 ± 

0.65 

 12.01 ± 

0.80 

11.71 ± 

0.97 

Span theta  

(degrees)   

p =  0.055                       

21.33     

4.52 

15.72     

3.09 

8.52     

1.07* 

Lacunar 

density 

(1/µm3 x10-5) 

p = 0.012 

3.06  

±   0.28 

 

2.30 ±    

0.24 

 

1.91 ±    

0.16* 

Lacunar density  

(1/µm2 x10-4) 

p = 0.011 

6.36 ±  

0.96    

 

4.20 ± 

0.46     

 

3.25 ±     

0.39* 

Data are presented as mean ± standard error. For each geometric parameter, the p-value for the main 

effect of age is reported. *Indicates p < 0.05 in Tukey post-hoc comparison between young and old mice. 

 

Meanwhile, age did not significantly affect 2D lacunar area, lacunar perimeter, or circularity 

(Table 2). In two-dimensions, closest center of mass changed with age. Old mice had +36.6% greater (p = 

0.009) closest center of mass than young mice. By contrast, closest center of mass did not change with age 

in 3D (p = 0.134).  2D span theta did not show a significant main effect of age (p = 0.055), but lacunae 

from old mice did have significantly smaller angular difference from mean osteocyte orientation than 

younger mice (-60.1%, p = 0.045). As with closest center of mass, differences in span theta with age were 

not seen in 3D. Lacunar density was the one measure significantly affected by aging in both 3D and 2D. In 

2D, lacunar density was significantly reduced from old to young mice (-49.0%, p = 0.010). 
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5.4. Discussion 

We sought to characterize changes to osteocyte lacunae occurring with aging. In order to analyze 

osteocyte lacunar geometries in 3D, we developed a facile and open-source method segmentation and 

analysis method based on confocal laser scanning microscopy (CLSM). In this method, depth-stacks of 2D 

images acquired with CLSM are first segmented into 3D osteocyte lacunae and then analyzed for lacunar 

geometries using the open-source, Matlab-based ‘3D Osteocyte Lacunae Analysis’ program described here. 

This method pairs common CLSM imaging with time-efficient segmentation and analysis procedure, while 

avoiding the bias and user error intrinsic to manual segmentation. Our approach avoids pitfalls inherently 

associated with 2D imaging including difficulty distinguishing osteocytes from non-osteocyte objects and 

variance in geometries due to sectioning planes that lie off of the major ellipsoid axes.   

Two aspects of our method were validated. First, we analyzed geometries of ellipsoidal “phantoms” 

and achieved agreement between measured and expected dimensions. Next, we compared the number of 

segmented lacunae for automatic and manual segmentation for one randomly-selected sample from each 

age group. The time-intensive nature of manual segmentation (approximately 10 hours per sample) 

precluded a comparison of manual and automatic segmentation for every specimen. It was found that 77-

98% of manually segmented lacunae were automatically segmented with the 3D Osteocyte Lacunae 

Analysis program. It was expected that inhomogeneity in stain penetration and contrast from bone marrow 

would preclude 100% automatic segmentation of lacunae. While ideal to segment and analyze all lacunae, 

the limitations of automatic segmentation are expected to similarly affect all samples in the present study. 

Automatic and manual segmentation yielded somewhat different osteocyte lacunar geometries. Lacunae 

were larger and more spherical from automatic than from manual segmentation (Table 5-1). Manual 

segmentation is prone to user error and bias, and in our experience may be particularly prone to exclusion 

of low-contrast pixels on the edge of lacunar cross-sections. Additionally, the manually segmented lacunar 

objects were not subjected to the erosion and dilation procedures that are present in the automatic procedure. 

Erosion and dilation would be expected to result in somewhat smoother and more spherical lacunar objects. 
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Nonetheless, for both segmentation strategies, cortical bone from the 24-month mouse bone had smaller 

and more spherical lacunae than from the 6-month mouse.  

We applied the automatic segmentation and analysis method introduced herein to study the effects 

of age on osteocyte lacunar geometries from cortical mouse bone. Lacunae were seen to become smaller 

with age and also more spherical (Figures 5-9 and 5-10). These effects were large; from 6-24 months 

osteocyte lacunae decrease in volume by 40.7% and become 14.8% more spherical. Consistent with reports 

from other studies, aging also reduced the number density of lacunae [Busse et al., 2010; Vashishth et al., 

2000; Lai et al., 2015]. In our study, old mice had 37.7% fewer lacunae per volume than young mice. 

The effects of aging were largely not discernable from 2D analyses of the same images. In 2D, the 

mean lacunar area and lacunar perimeter decreased from young to old mice, but these changes were not 

significant. Circularity, the 2D analog of sphericity, also did not reproduce the age dependence seen in 3D. 

The only measure demonstrating a significant effect of age for both 2D and 3D was lacunar number density, 

which was reduced with age. Lacunar number density is not sensitive to the size, shape, or alignment of 

lacunae. It is therefore not surprising that our study and others, spanning 2D and 3D metrics and several 

imaging modalities, have found agreement of decreasing number density of lacunae with aging. 

Interestingly, 2D imaging may also generate misleading results. In 2D, osteocyte lacunae appeared to be 

farther apart and more similarly oriented for old compared with young mice. Notably, with the addition of 

the z (depth) direction, closest center of mass (3D) and span theta (3D) do not differ with age. Osteocyte 

lacunae are anisotropic, with their major axis generally aligned along the long axis of the tibia. Thus, a 2D 

analysis, particularly for transverse sections, does not adequately survey anisotropy and cannot be relied on 

to discern osteocyte spatial arrangement.  

Our observations highlight the limitations of 2D analysis and also reveal instances where 2D 

metrics could be misleading. Specifically, 2D analysis of osteocyte lacunae is inherently limited by 

assuming that cross-sectional geometries represent the complex ellipsoidal shapes of lacunae. A 2D section 

cannot reliably capture the largest dimensions of a network of lacunae, or their true orientations in space. 

Variance in 2D sample cutting and preparation could potentially yield quite different results for the same 
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samples. In addition, 2D analyses may include cross-sections of non-osteocyte objects, such as vasculature, 

that are difficult to distinguish from osteocyte lacunae unless visualized in 3D. Further, as demonstrated by 

the closest center of mass and span theta measurements in this study, changes to osteocyte spatial 

arrangement observed in 2D do not necessarily extend into the third dimension and could be misleading. 

For the above reasons, we recommend that 3D analyses are employed to assess the geometries and 

orientations of osteocyte lacunae.  

It is important to consider whether our findings of changing osteocyte lacunar geometries with age 

could be confounded with age-related differences in bone tissue organization or stain penetration. Mouse 

cortical bone is known to have an increasing proportion of lamellar bone, as opposed to less-organized 

central or woven bone, with increasing age [Ferguson et al., 2003]. However, in a 3D synchrotron-radiation 

study of osteocyte lacunae in cortical rat bone, lamellar lacunae were significantly more oblong (i.e., less 

spherical) than lacunae from less-organized central bone [Bach-Gansmo et al., 2015]. Lacunar volumes 

may be higher in lamellar versus non-lamellar bone, but these differences were not significant [Bach-

Gansmo et al., 2015]. Therefore, an increasing proportion of lamellar bone in cortical mouse bone, as would 

occur with aging, is not expected to explain our results of smaller and more spherical lacunae in older mice. 

Another possibility is that age-dependent changes to osteocyte lacunar geometry could be explained by 

older animals having more mineral-dense bone that decreases penetration of histological stain. In this case, 

the autofluorescence of cell nuclei, which are smaller and more spherical than lacunae, could dominate the 

contrast and lead to segmentation of nuclei instead of lacunae. However, this effect is unlikely for the 

current study. Bone from older mice typically stained with similar brightness as younger mice. Furthermore, 

the lower limit of the volume filter during segmentation (100 µm3) would exclude nuclei. Thus, age-related 

changes to osteocyte lacunae observed in this study are not expected to be trivially explained by differences 

in bone composition or staining that may occur with age. 

The decreasing lacunar volume and increasing lacunar sphericity with age likely represents bone 

infilling. Osteocytes are long-lived cells, and originate as osteoblasts that become trapped within forming 

bone matrix. Therefore, it is unlikely that aging causes new, smaller and more spherical lacunae to form, 
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and more plausible that existing lacunae infill with changes to perilacunar remodeling activity. However, 

we are unable to determine from this study whether perilacunar remodeling rate is decreased or increased, 

and note that a change in activity in either direction could result in the observed infilling.  

This study had several limitations. The automatic segmentation process identified many but not all 

lacunae, due to inhomogeneity in lacunar contrast and also bright bone marrow influencing thresholding. 

Additionally, we did not assess changes to perilacunar remodeling activity with age. We also did not survey 

changes to bone quality near osteocyte lacunae. These data will be important for understanding how 

changes to osteocyte lacunar geometries observed with increased age influence bone strength and 

toughness. 

The changing osteocyte lacunar geometries with aging observed in this study are novel. Though 

others have observed non-significant trends of decreased lacunar size with aging, 2D assessment or small 

sample sizes potentially obscured the effects of age on lacunar geometries [Mullender et al., 1996; Lai et 

al., 2015]. This is potentially the first description of age-related changes to lacunar spatial arrangement. 

Our findings fit into an emerging story where aging changes mineral metabolism, and altered mineral 

metabolism changes perilacunar remodeling and therefore osteocyte lacunar geometries. In support of this 

claim, we note that Busse and coworkers studied 3D osteocyte lacunae using synchrotron-radiation CT 

from iliac crest biopsies of patients who were either vitamin D sufficient or deficient [Busse et al., 2013]. 

Lacunae were larger with vitamin D deficiency, and perilacunar material chemistry assessed by Fourier-

transformed infrared spectroscopy had elevated measures of bone maturity. These data are consistent with 

a reduction of osteoclastic bone resorption in vitamin D, and an increased burden on osteocyte lacunae to 

participate in systemic mineral homeostasis. Though vitamin D deficiency does frequently occur with 

aging, it is not necessarily the cause of age-related changes to osteocyte lacunae reported here. The 

combination of 3D analysis of osteocyte lacunae and mechanistic studies may elucidate the reasons for age-

related changes to osteocyte lacunae.  

Our work points to the exciting possibility that osteocyte geometries may change in aging bone. In 

addition to aging, changes to osteocyte lacunae may occur with metabolic diseases [Bonucci et al., 1977; 
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Busse et al., 2013], osteoporosis [Mullender et al., 1996], drug therapies (e.g., glucorticoid therapy) [Lane 

et al., 2004; Yao et al., 2008; Fowler et al., 2016], exercise [Gardinier et al., 2016], and microgravity 

[Burger & Klein-Nulend, 1998; Blaber et al., 2013]. Thus, measuring 3D osteocyte lacunar geometries is 

important for understanding the effects of age, disease, and therapeutic interventions. It is anticipated that 

the efficiency and accessibility of our 3D Osteocyte Lacunae Analysis method will assist with these 

investigations. 
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Abstract 

Chronic kidney disease (CKD) increases fracture risk and is most prevalent in the elderly. Yet the changes 

to fracture-resistance determining bone quality with aging together with CKD are unknown. We compared 

bone quality from the whole bone to the microscale for young (6 month), middle-age (18 month), and old 

(24 month) male C57Bl/6 mice with CKD induced via 5/6th nephrectomy or sham surgeries. Deleterious 

changes to bone quality with CKD emerged with increased age such that old mice with CKD had the worst 

bone quality by most measures. CKD affected both collagen and mineral, and diminished bone quality from 

the whole bone to the microscale. CKD also lowered tissue-scale material properties, including 

heterogeneity of modulus from nanoindentation and crystallinity from Raman spectroscopy. These 

reductions to bone quality with CKD, which especially occur in middle-age and old mice, may help explain 

clinically-observed bone fragility. 

6.1 Introduction 

Chronic kidney disease (CKD) increases clinically-observed fracture risk and is most prevalent in 

the elderly [Nickolas et al., 2008]. Age also increases the fragility associated with CKD. Older patients are 

more likely to fracture than younger patients with the same stage of kidney disease [Naylor et al., 2014]. 

Yet the bone quality changes underlying this loss of fracture resistance with CKD together with advanced 

age are not understood.  

Previous work in rodent models, all of which involve young adult animals, have found loss of bone 

material quality in CKD. Specifically, CKD has been observed to lower mineral content, tissue-scale 
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modulus, mineral chemistry, and collagen crosslinking [Heveran et al., 2016; Iwasaki et al., 2015; Allen et 

al., 2015]. Whether CKD diminishes bone microarchitecture is uncertain, with one study finding 

progressive loss of trabecular microarchitecture at 16 weeks following 5/6th nephrectomy (5/6 Nx) in male 

Crlj:CD1 mice [Kadokawa et al., 2011], and another reporting no loss of cortical or trabecular 

microarchitecture at 11 weeks following 5/6 Nx in male C57Bl/6 mice [Heveran et al., 2016]. Meanwhile, 

the loss of bone quality with aging and without CKD has been relatively well described. Bone material is 

worsened with aging. Older bone is more mineralized and has altered mineral chemistry [Boskey et al., 

2002; Boskey et al., 2010; Akkus et al., 2003], increased microdamage [Schaffler et al., 1995], and 

increased non-enzymatic collagen crosslinking [Wang et al., 2002]. Aging worsens bone trabecular and 

cortical microarchitecture. Older bone has fewer and thinner trabeculae, as well as thinner and more porous 

cortical bone [Riggs et al., 2004]. It is not known how CKD and aging together influence bone quality, 

including bone material and also microarchitecture. 

An intriguing question is whether aging and CKD alter bone material heterogeneity, and whether 

changes to microscale material property heterogeneity correspond with whole bone structural integrity (e.g., 

toughness). Heterogeneity of mineral content from quantitative backscattered SEM techniques has been 

shown to be altered (i.e., either too low or too high) in bone from patients with fragility fractures [Roschger 

et al., 2008]. Additionally, computational works have reported that increased heterogeneity of tissue-scale 

modulus and plastic work from AFM and nanoindentation may correspond with increased energy 

dissipation [Tai et al., 2005; Yao et al., 2011]. Lowered variance in nanoindentation modulus was observed 

in bone formed during CKD following 5/6 Nx [Heveran et al., 2016]. Yet it is not known whether aging 

and CKD individually or together reduce cortical bone heterogeneity of mechanical (e.g., modulus) or 

chemical (e.g., mineral:matrix, crystallinity) parameters, and whether these changes would correspond to 

changes in whole bone toughness. This is a relevant question in part because bisphosphonate therapies, 

which are sometimes administered to patients with CKD, can result in adynamic bone disease and worsened 

material properties [Gourion-Arsiquaud et al., 2010; Allen et al., 2008, Mashiba et al., 2000].  
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The purpose of this study was to investigate how CKD and aging together reduce fracture 

resistance-determining bone quality. To consider the influences of CKD and aging on bone quality, we 

employed a model of CKD induced via 5/6 Nx in young (6 mo), middle-age (18 mo), and old (24 mo) male 

C57Bl/6 mice. Bone quality was evaluated from the whole bone to the nanoscale in order to ascertain the 

influences of aging and CKD on bone mineral, collagen, and structural integrity. Site-matched microscale 

mapping of material properties allowed assessment of microscale material heterogeneity. The hypothesis 

of this study was that bone quality is worsened by CKD and aging together such that the worst bone quality 

occurs in advanced age and CKD. It was further hypothesized that altered bone material heterogeneity 

would occur in CKD and correspond with diminished whole bone toughness. 

6.2 Methods 

6.2.1 Animal model and sample preparation 

Male C57Bl/6J mice were obtained from Jackson Laboratories at the ages of 3, 15, and 21 months. 

Mice were maintained on a 12-h light / 12-h dark cycle and housed individually in polycarbonate cages 

with standard bedding. Mice were fed Harlan Teklad 2920X chow and allowed free access to water. We 

randomly assigned mice to CKD or sham groups within each age. The CKD group underwent two-stage 

nephrectomy. At 3 months of age, the left kidney was removed, followed by resection of 2/3 of the right 

kidney one week later. The control group received sham operations with the same timeframe. Mice were 

anesthetized using 1.5% isoflurane during procedures. A post-operative dose of buprenorphine (0.5 mg/kg) 

was administered after surgeries and prior to recovery, as well as every 12 hours for the next two days. 

Mice were killed three months after study surgeries via CO2 and cervical dislocation. At the study endpoint, 

mice were 6 (young; sham: n = 6, CKD: n = 7), 18 (middle-age; sham: n = 8; CKD: n = 10), and 24 (old; 

sham: n = 8; CKD: n = 9) months of age. All animal procedures were approved by the Institutional Animal 

Use and Care Committee at the University of Colorado Denver. 

The left femur, tibia, humerus, and ulnae were reserved for bone quality analyses. The left tibia 

was preserved in 70% ethanol at stored at 4̊ C. All other bones were wrapped with phosphate-dampened 

gauze and stored at -20̊ C until analysis. 
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6.2.2. Serum and urine chemistries 

Serum biochemistry analyses were performed on blood drawn three times at one-month intervals 

following study surgeries for all mice. Urine was also collected at euthanasia. Blood urea nitrogen (BUN), 

phosphate (Pi) concentration, and calcium (Ca) concentration were measured with kits from Stanbio 

Laboratory (Boerne, TX).  

6.2.3 microCT 

Microarchitecture was assessed for the cortical bone of the midshaft femur and trabecular bone of 

the proximal tibia using microCT for all study mice (µCT, Scanco 80, Scanco AG, Basserdorf, 

Switzerland). Femurs were defrosted overnight at 4 ̊ C before scanning. Scanning was performed with 10 

µm voxel size, following acquisition and analysis methods described previously [Heveran et al., 2016]. 

Cortical parameters included bone volume / total volume (BV/TV), bone area / total area (BA/TA), cortical 

porosity (Ct.Po), cortical thickness (Ct.Th), total mineral density (TMD), moment of inertia about the 

medial-lateral axis (IML), distance between the centroid and bone surface in the anterior-posterior direction 

(C), and polar moment of inertia (pMOI) [Bouxsein et al., 2010].  Trabecular parameters included trabecular 

number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), bone volume (BV), total volume 

(TV), bone volume / total volume (BV/TV), volumetric bone mineral density (vBMD), and connectivity 

density (Conn.D). Following microCT, femurs were again wrapped in phosphate-dampened gauzed and 

stored at -20 C for subsequent whole bone mechanical characterization. 

6.2.4   Whole bone mechanical and material properties 

Following microCT, left femurs underwent three-point bending (Insight II Material Testing 

System, 250 N load cell, MTS Systems Corporation, Eden Prairie MN) (6 mo / sham: n = 5 ; 6 mo / CKD: 

n = 7; 18 mo / sham: n = 8; 18 mo / CKD: n = 9; 24 mo / sham: n = 8; 24 mo / CKD: n = 8). Femurs were 

removed from PBS-soaked gauze and placed on fixtures for mechanical testing while taking care to 

maintain their hydration levels. Femurs were tested to failure using a deflection rate of 5 mm/min on a 

custom anvil with an 8-mm span.  Load-displacement curves were analyzed for mechanical properties 

including stiffness, maximum load, displacement at maximum load, energy at maximum load, load at yield, 
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displacement at yield, energy at yield, post-yield displacement, load at fracture, displacement at fracture, 

and energy at fracture. The yield point was defined as the intersection of a secant line drawn with a 10% 

reduction in slope from the initial tangent stiffness and the load-displacement curve [Jepsen et al., 1996]. 

Using IML and C from µCT, we estimated material properties including bending modulus, yield 

stress, ultimate stress, and toughness from the three-point bending data using standard beam bending 

equations as applied to the mouse femur [Turner & Burr, 1993]. 

6.2.6     3D osteocyte lacunar geometries 

The left tibia was histologically dehydrated in a graded series of ethanol and stained with 1% basic 

fuchsin [Burr & Hooser, 1995] (6 mo / sham: n = 6 ; 6 mo / CKD: n = 5; 18 mo / sham: n = 7; 18 mo / 

CKD: n = 6; 24 mo / sham: n = 6; 24 mo / CKD: n = 5). Tibias were then cleared with acetone and embedded 

in poly(methyl)methacrylate (PMMA). Embedded samples were transversely sectioned 1 mm proximal to 

the tibia-fibula junction with a low-speed saw (Buehler Isomet, Buehler, Lake Bluff, IL). A ground section 

was prepared from the distal section with target thickness of 200 um (Exakt 400 CS, Exakt Technologies 

Inc, Oklahoma City, OK).  

Imaging of ground sections was performed in transmission with a Zeiss LSM 710 confocal laser 

scanning microscope, with 555 nm excitation, 568-1000 nm bandpass filter, and 40x oil-immersion 

objective. Resolution in x-y and z was 0.447 and 0.493 µm, respectively. Depth stacks (z-stacks) were 

obtained through the visible range of osteocyte lacunae (60-100 µm of imaging depth).  

3D images of osteocyte lacunae were constructed and analyzed for lacunar geometries using the 

open-source 3D Osteocyte Lacunae Analysis program and Matlab v17 [Heveran et al., in preparation]. 

Briefly, each 2D image within a z-stack was automatically segmented to define lacunae. These lacunae 

were reconstructed in 3D. A graphical user interface allowed the user to exclude non-lacunae objects (e.g., 

vasculature). The 3D osteocyte lacunar network was analyzed for lacunar volume, lacunar surface area, 

closest center of mass, sphericity (ratio of smallest to largest lacunar radii, where 1 = sphere), span theta 

(the difference of the 3D vector describing the major axis direction from the average direction of all 

lacunae), and lacunar density (number of osteocytes / image volume). 
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6.2.7     Site-matched assessment of microscale bone chemistry and modulus 

Following three-point bending, femurs were histologically dehydrated in a graded series of ethanol, 

cleared in acetone, and embedded in PMMA. Embedded bones were sectioned at the femoral midshaft 

using a low speed diamond saw (Isomet, Buehler, Lake Bluff, IL). Specimens were ground using wet silicon 

carbide paper (600 and 1200 grit), and then polished with alumina pastes (9, 5, 3, 1, 0.1, 0.05 µm) and 

Rayon fine clothes (South Bay Technologies, San Clemente, CA) to a final finish of 0.05 µm. Samples 

were sonicated between each polishing step. 

Raman spectroscopy was performed in maps spanning the cortical thickness with a Renishaw inVia 

(Renishaw, Wotton-under-Edge, Gloucestershire, UK) with 785 nm wavelength laser light routed through 

fiberoptics to a nanoindenter stage (TI 950, Hysitron, Minneapolis, MN). Rows of three indents spaced 15 

µm apart extended every 10 µm through the cortical thickness (Figure 6-1).  

 

Figure 6-1: Site-matched mapping of microscale material properties. Microscale material properties are 

evaluated at matched sites for bone chemistry (Raman spectroscopy) and modulus (nanoindentation). 

The fluorescent baseline was subtracted using Renishaw WIRE software. A reference PMMA 

sample was subtracted from each point, using custom Matlab code. These corrected spectra were then 
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analyzed for mineral:matrix (ν1 phosphate:proline), carbonate:phosphate, and crystallinity (inverse of half-

width at full maximum height of the v1 phosphate peak). 

Nanoindentation was then performed at the same locations as Raman maps using the shared stage. 

A 5 µm spherical tip indented the bone at 30 nm/s until a max depth of 500 nm was obtained. Max depth 

was maintained for 120 s to allow dissipation of viscoelastic energy. Reduced modulus (Er) was calculated 

using Oliver-Pharr analysis, considering the first 45% of the unloading curve [Bushby et al., 2004]. 

6.2.8     High-performance liquid chromatography  

The humerus was dissected of all non-osseous tissue and bone marrow was flushed (6 mo / sham: 

n = 4 ; 6 mo / CKD: n = 7; 18 mo / sham: n = 6; 18 mo / CKD: n = 9; 24 mo / sham: n = 7; 24 mo / CKD: 

n = 8). Humeri were then hydrolyzed in 6N HCl for 18 h at 110̊ C, and then centrifuged to evaporate excess 

HCl. Filtered samples were diluted 1:5 in 10 percent acetonitrile and 0.05 percent heptafluorobutyric acid 

(HFBA), loaded into a reverse-phase Gemini-NX C-18 column (Phenomenex, Torrance, CA) and analyzed 

for crosslinks hydryoxylysylpyridinoline (HP), lysyl pyridinoline (LP), and pentosidine consistent with 

methods described by Bank et al [Bank et al., 1997]. Details of the HPLC system (model 126, Beckman-

Coulter, Fullerton, CA) are described at length in Oren et al [Oren et al., 2011]. Separation of collagen 

crosslinks involved the following protocol: 15 minutes of solvent containing 24% methanol and 0.15% 

HFBA, 10 minutes of solvent containing 40% methanol and 0.05% HFBA, and 10 minutes of solvent 

containing 75% acetonitrile and 0.1% HFBA. The column was equilibrated in 24% methanol and 0.15% 

HFBA for at least 10 minutes between sample runs. Collagen crosslink peaks were measured with a 

fluorescence detector (FP1520, JASCO; Easton, ML). Excitation and emission wavelengths were 295 nm 

and 400 nm, respectively, for HP and LP. Pentosidine was detected with 328 nm excitation and 378 nm 

emission. Calibration curves were generated from the measured intensities of five dilutions of a calibrator 

containing purified HP and LP (Quidel Corportation) and pentosidine (L. Sayre, Case Western Reserve 

University, Cleveland, OH). 

Crosslink concentrations were then normalized to concentration of concentration. Collagen was 

estimated from the concentration of hydroxyproline within the sample analyzed for crosslinks. An aliquot 
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of the sample analyzed for crosslinks was diluted 1:50 and derivatized with 9-fluoronylmethyl 

chloroformate [Bank et al., 1996]. The following solutions were used for the amino acid protocol (1) 20 

mM citric acid, 5 mM tetramethylammonium chloride, and 0.01% sodium azide, pH 2.85; (2) 20 mM 

sodium acetate, 5 mM tetramethylammonium chloride, and 0.01% sodium azide, pH 4.5, and (3) 100% 

acetonitrile. The gradient elution profile follows: from 0-11.5 minutes a gradient of 75% (1) / 25 % (3) to 

60% (1)/40% (3), at 13 minutes switch to 64% (2) / 36% (1), from 13.1 -18 minutes a gradient of 64% (2) 

/ 36% (3) to 62% (2) / 38%(3), then at 18 minutes a switch to 25% (2) / 75% (3) until the end of the run at 

23 minutes. The column was equilibrated in 75% (1) / 25% (3) for at least 10 minutes between sample runs. 

Amino acid peaks were monitored at 254 nm excitation and 630 nm emission. A calibration curve was 

generated from five dilutions of an amino acid standard prepared from collagen hydrolysate (Sigma-Aldrich 

#A9531, St. Louis, Missouri). Collagen has a constant concentration of hydroxyproline, thus 

hydroxyproline concentration was converted to concentration of collagen (285 mol hydroxyproline per mol 

collagen). 

6.2.10     Data analysis 

The effects of aging and CKD, as well as their interaction, were tested with two-way ANOVA for 

all parameters. The dependent variable was transformed if necessary to satisfy assumptions of residual 

normality and homoscedasticity. Family-wise error was controlled for these analyses using Bonferroni-

adjusted alpha. For most analysis, post-hoc testing was restrained to the interaction of CKD and age (i.e., 

testing effects of CKD within each age), which resulted in a critical alpha of 0.05 / 3 = 0.017. For analyses 

involving osteocyte lacunae, where the effect of aging on osteocyte morphology is generally not 

understood, post-hoc testing was applied to within-age and within-treatment comparisons. For these 

analyses, critical alpha was set as 0.05 / 9 = 0.006. 

Multiple linear regression was performed with the dependent variables as whole bone material 

properties (toughness, modulus, ultimate stress), and the independent variables as means and standard 

deviations from nanoindentation modulus and Raman chemistry from maps generated for each bone. The 

interactions between these microscale measures and both age and CKD status were also included. Site-
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matched measures were first checked for correlations using Spearman’s rank-order correlation. To avoid 

multicollinearity, only measures with correlations less than r = 0.5 were included in multiple linear 

regression models. Backward elimination was employed to select to model terms. Minitab (v17) was used 

for all analyses. 

6.3 Results 

6.3.1     Confirmation of kidney disease 

CKD status was confirmed with measurement of serum blood urea nitrogen (BUN), calcium, and 

phosphate three times at one-month intervals following 5/6 Nx or sham surgeries, and also urine collected 

at euthanasia. For simple effects comparisons, the critical alpha was set as 0.05 / 9 = 0.006 (comparisons 

for three ages at three time points) for serum measurements, and 0.05 / 3 = 0.017 (comparisons for three 

ages at one time point) for urine measurements.  BUN was significantly increased with the main effects of 

CKD status (p < 0.001) and time from surgery (p < 0.001). There was a significant interaction between 

CKD status and time from surgery (p = 0.001) such that mice with 5/6 Nx had increasing BUN with time 

from surgery, but sham mice did not. BUN status was not significantly different between 5/6 Nx and sham 

at one month after surgery. There was a trend towards increased BUN for 5/6 Nx compared with sham at 

two months from surgery for middle-age (+108.2%, p = 0.035) and old (+101.3%, p = 0.019) mice. At three 

months from surgery, mice with 5/6 Nx all had significantly elevated BUN (young: +152.0%, p = 0.004; 

middle-age: +177.2%, p < 0.001; old: +102.3%, p = 0.003). BUN measured from urine at the study endpoint 

was significantly lower with the main effect of CKD (p < 0.001). Urine BUN was lower for 5/6 Nx vs sham 

at every age (young: -50.5%, p = 0.003, middle-age: -52.1%, p < 0.001; old: -56.2%, p < 0.001), consistent 

with impaired kidney function. Serum calcium was not significantly affected by age, CKD, or time from 

surgeries, and there were no differences between CKD and sham at any age. Meanwhile, calcium in urine 

was significantly reduced with the main effect of CKD (p = 0.012). Urine calcium was significantly reduced 

for CKD vs sham for middle-age (-58.5%, p = 0.004) and old mice (-67.3%, p = 0.007). Serum phosphate 

was increased with time from surgery (p = 0.003), and there was a significant interaction between CKD 

status and time from surgery (p = 0.008). One serum phosphate outlier (values greater than mean + three 
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standard deviations) was excluded from measurements. There was a trend of significantly increased serum 

phosphate for CKD vs sham at 3 post surgeries for young (+37.9%, p = 0.017), middle-age (+25.9%, p = 

0.041), and old mice (+25.0%, p = 0.079).  Urine phosphate was not different with main effects of CKD 

status or age, and was not different for CKD vs sham at any age. 

6.3.2     microCT 

One outlier (value greater than 3 standard deviations of the mean) was excluded from 24 month old 

sham and 24 month old CKD groups for all cortical microarchitecture analysis. Aging reduced cortical 

(Table 6-1, Figure 6-2) and trabecular microarchitecture (Table 6-2, Figure 6-3). For cortical bone, aging 

significantly decreased BV/TV, BA/TA, and Ct.Th, and increased Ct.Po, TMD, IML, and pMOI. Aging also 

significantly reduced trabecular BV/TV, Conn.D, Tb.N., Tb.Th, vBMD, and increased Tb.Sp. 
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Figure 6-2: Cortical microarchitecture is diminished by aging and CKD. Cortical microarchitecture is 

reduced by aging and also with CKD. All measures are diminished for CKD vs sham beginning at either 6 

months or 18 months. 
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Table 6-1: Cortical microarchitecture from microCT 

 6 mo 18 mo 

 

24 mo 

 Sham CKD Sham CKD Sham CKD 
BV/TV (%) 

Age: p < 0.001 

CKD: p < 0.001 

Age x CKD: p > 0.05 

0.92 ± 

0.0019   

 

0.91± 

0.0043   

0.91 ± 

0.0019  

0.90 ± 0.0038 

 

 

p = 0.017 

0.90 ± 0.0056    0.89 ± 

0.0047 

BA/TA (%) 

Age: p < 0.001 

CKD: p < 0.001 

Age x CKD: p > 0.05 

0.47± 

0.0082   

0.45 ± 

0.0056   

 

 

p = 0.034 

0.41 ± 

0.0075 

0.37 ± 0.0087  

 

 

 

p = 0.004 

0.39 ± 0.0094   0.33 ± 

0.0074  

 

 

p < 0.001 

Ct.Po (%) 

Age: p < 0.001 

CKD: p < 0.01 

Age x CKD: p > 0.05 

8.05 ± 0.19  9.21 ± 

0.43 

 

p = 0.006  

8.44 ± 0.19   9.72 ± 0.38 

 

 

p = 0.004   

9.98 ± 0.56 11.00 ± 

0.472   

 

Ct. Th (mm) 

Age: p < 0.01 

CKD: p < 0.001 
Age x CKD: p > 0.05 

0.20 ± 

0.0019   

 

0.19 ± 

0.0053   

 

p = 0.043 

0.19 ± 

0.0039     

0.17 ± 0.0047  

 

 

p = 0.001 

0.20 ± 0.0061   0.16 ± 

0.0043  

 

p < 0.001 

TMD (mg HA /cm3) 

Age: p < 0.01 

CKD: p < 0.001 

Age x CKD: p > 0.05 

 

1040.40 ± 

9.13    

1015.90 ± 

4.08  

 

 

p = 0.013       

1056.01 ± 

6.58    

1037.70 ± 

6.16 

 

 

p = 0.027  

1064.30 ± 2.82    1041.80 ± 

6.42 

 

 

p = 0.017 

IML(mm4) 

Age: p < 0.001 

CKD: p < 0.001 

Age x CKD: p < 0.05 

 

0.13 ± 0.01 0.13 ± 

0.01 

0.18 ± 0.01 0.14 ± 0.01 

 

 

 

p = 0.004 

0.24 ± 0.01 0.17 ± 

0.01 

 

 

p = 0.001 

C 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

 

0.66 ± 0.02 

 

0.67 ± 

0.01 

 

0.73 ± 0.01 

 

0.72 ± 0.01 

 

0.81 ± 0.01 

 

0.79 ± 

0.02 

 

pMOI 

Age: p < 0.001 

CKD: p < 0.001 

Age x CKD: p > 0.05 

0.45 ± 0.02    0.40  ± 

0.02  

0.54 ± 0.04  0.43 ± 0.02 

 

 

p = 0.004 

0.68 ± 0.03   0.53 ± 

0.04  

 

p = 0.001 

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 
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Figure 6-3: Trabecular microarchitecture is diminished by aging and CKD. Trabecular microarchitecture 

is diminished by both aging and CKD. Reduced trabecular microarchitecture with CKD compared with 

sham emerges in middle-age or old age for all measures. 
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Table 6-2: Trabecular microarchitecture from microCT 

 6 mo 18 mo 24 mo 

 

 Sham CKD Sham CKD Sham CKD 
BV/TV (%) 

Age: p < 0.001 

CKD: p = 0.001 

Age x CKD: p > 0.05 

0.10 ± 

0.0068  

0.096 ± 

0.011    

0.060 ± 

0.0047   

0.046 ± 

0.0051   

 

p = 0.034 

0.064 ± 0.0065   0.038 ± 

0.0027 

 

p = 0.002 

Conn.D (1/mm3) 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

54.24 ± 

6.14   

69.3 ± 13.1    20.35 ± 4.11   17.65 ± 6.23   28.36 ± 5.48   22.98 ± 

2.49    

Tb.N (1/mm) 

Age: p < 0.001 

CKD: p = 0.025 

Age x CKD: p > 0.05 

4.02 ± 

0.12   

3.84 ± 0.22   2.96 ± 0.074  2.88 ± 0.11    2.74 ± 0.13   2.33 ± 

0.11 

 

p = 0.012 

Tb.Sp (mm) 

Age: p < 0.001 

CKD: p = 0.017 

Age x CKD: p > 0.05 

0.24 ± 

0.0083   

0.26 ± 0.017    0.34 ± 

0.0090   

0.35 ± 0.013    0.37 ± 0.020   0.44 ± 

0.022 

 

p = 0.009 

Tb.Th (mm) 

Age: p = 0.049 

CKD: p = 0.001 

Age x CKD: p > 0.05 

0.049 ± 

0.0012   

 

 

0.043 ± 

0.0013  

 

p = 0.018 

0.049 ± 

0.001   

0.046 ± 

0.0019   

0.046 ± 0.0019   0.040 ± 

0.0015   

 

p = 0.010 

vBMD (mg HA/cm3) 

Age: p < 0.001 

CKD: p < 0.001 

Age x CKD: p > 0.05 

126.19  ± 

7.79   

117.00 ± 

13.01  

77.61 ± 5.16   57.67 ± 6.75 

 

 

p = 0.013 

75.97 ± 7.58   42.71 ± 

3.03 

 

p < 0.001 

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 

 

CKD also affected cortical and trabecular microarchitecture. CKD significantly decreased cortical 

BV/TV, BA/TA, Ct.Th, TMD, ImL, and pMOI, and increased Ct.Po. Of all cortical microarchitecture 

measures, only ImL had a significant interaction between CKD and aging. CKD significantly decreased 

trabecular BV/TV, Tb.N, Tb.Th, vBMD, and increased Tb.Sp. 

Microarchitecture was compared between CKD and sham at each age. We report comparisons that 

were smaller than the adjusted alpha of p = 0.05/3 = 0.017, but all p-values lower than 0.05 are shown in 

Tables 6-1 and 6-2. Changes to cortical microarchitecture emerged at either 6 months or 18 months for each 

measure. BA/TA was lower for CKD vs sham at 18 months (-8.79%, p = 0.004) and 24 months (-13.6%, p 

< 0.001). Ct.Th was also lower for CKD vs sham at 18 months (-11.47%, p = 0.001) and 24 months (-
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17.9%, p < 0.001). TMD was reduced for CKD vs sham at 6 months (-2.35%, p = 0.013) and 24 months (-

2.11%, p = 0.017). Ct.Po increased for CKD vs sham at 6 months (+14.49%, p = 0.006) and 18 months 

(+15.2%, p = 0.004). Femurs had smaller IML and pMOI for CKD vs sham at 18 months and 24 months. ImL 

decreased in CKD vs sham at 18 months (-22.48%, p = 0.004) and 24 months (-27.18%, p = 0.001 ). pMOI 

was also lower for CKD vs sham at 18 months (-20.01%, p = 0.004) and 24 months (-21.67%, p = 0.001). 

Trabecular microarchitecture was mostly diminished in old mice. BV/TV was reduced by 40.9% (p = 0.001) 

at 24 months for CKD vs sham. Tb.N and Tb.Th were also lower at 24 months for CKD vs sham, by 15.0% 

(p = 0.012) and 13.1% (p = 0.010), respectively. Tb.Sp increased for CKD vs sham at 24 months (+19.1%, 

p = 0.009). vBMD was the only measure to significantly affect trabecular properties for both middle-age 

and old mice with CKD. At 18 months and 24 months, vBMD was decreased by 25.7% (p = 0.013) and 

44.4% (p < 0.001) for CKD vs sham, respectively. 

6.3.3 Whole bone mechanical and material properties 

Whole bone properties were affected by aging and CKD (Table 6-3, Figure 6-4). Aging 

significantly reduced stiffness, yield load, displacement at yield, energy at yield, maximum load, energy at 

maximum load, and fracture load. Aging also significantly reduced modulus, yield stress, and ultimate 

stress, but did not affect toughness.  



137 

 

6 18 24

0

5

10

15

20

DC

B

W
o
rk

 t
o
 F

ra
c
tu

re
 (

m
J
)

  Sham       5/6 Nx

*

6 18 24

0

10

20

T
o
u
g
h
n
e
s
s
 (

M
J
 /

 m
3
)

 Sham      5/6 Nx

**

3 15 21

131
S

ti
ff

n
e
s
s
 (

N
/m

m
)

 Sham      5/6 Nx

A
6 18 24

2

4

6

8

10

Age (months) Age (months)

Age (months)

B
e
n
d
in

g
 m

o
d
u
lu

s
 (

G
P

a
)

 Sham      5/6 Nx

Age (months)

 

Figure 6-4: Whole bone mechanical and material properties are diminished by aging and CKD. Stiffness 

(A) from three-point bending is significantly reduced with aging and CKD, but modulus (B) is only 

diminished with aging. There is a trend of lower modulus at middle-age for CKD vs sham (p = 0.091). 

However, work to fracture and toughness (C-D) are more influenced by CKD than aging. Both work to 

fracture and toughness are significantly reduced at middle-age for CKD vs sham. 

 

  



138 

 

Table 6-3: Whole-bone mechanical and material properties from three-point bending 

 6 mo 18 mo 24 mo 

 
 Sham CKD Sham CKD Sham CKD 
Modulus (GPa) 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

7.44 ± 2.37   7.22 ± 

0.26   

5.606 ± 

0.316    

4.938 ± 0.355 

 

    

3.841 ± 

0.261    

3.70 ± 

0.185    

Yield Stress (MPa) 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

132.10 ± 

10.70    

127.04 ± 

4.74   

82.12 ± 6.55   76.20 ± 10.10   66.96 ± 7.20  65.87 ± 

4.83   

Ultimate Stress 

(MPa) 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

163.12 ± 

3.55    

154.31 ± 

3.88   

110.23 ± 

3.62   

111.98 ± 6.53   97.41 ± 5.99   90.50 ± 

4.81   

Toughness (MJ/m3) 

Age: p > 0.05 

CKD: p = 0.053 

Age x CKD: p > 0.05 

7.54 ± 1.86     5.72 ± 

0.99  

10.97 ± 1.29     5.51 ± 1.73    

 

 

p = 0.013  

6.45 ± 2.09   5.86 ± 

1.10     

Stiffness (N/mm) 

Age: p < 0.01 

CKD: p < 0.001 

Age x CKD: p > 0.05  

99.21 ± 

5.11   

88.54 ± 

4.68  

91.90 ± 6.04  64.28 ± 6.32 

 

 

p = 0.002 

83.19 ± 6.86  

 

62.88 ± 

6.25 

 

p = 0.021   

Yield Load (N) 

Age: p < 0.001 

CKD: p < 0.05 

Age x CKD: p > 0.05 

14.26 ± 

1.50    

12.54 ± 

0.93   

9.72 ± 0.66    7.26 ± 1.02    9.50 ± 1.21     7.60 ± 

0.89     

Displacement at 

Yield (mm) 

 Age: p < 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.16 ± 0.01  0.15 ± 

0.01    

0.12 ± 0.01  0.12 ± 0.02     0.13 ± 0.01   0.13 ± 

0.01   

Energy at Yield (mJ) 

Age: p < 0.001 

CKD: p > 0.05 

Age x CKD: p > 0.05 

1.25 ± 0.21   1.08 ± 

0.12    

0.65 ± 0.08   0.55 ± 0.11    0.71 ± 0.15    0.60 ± 

0.12  

Post-Yield 

Displacement (mm) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

 

0.34 ± 0.10    0.26 ± 

0.06   

1.04 ± 0.20   0.54 ± 0.23 

 

 

 

p = 0.006    

0.48 ± 0.12  0.51 ± 

0.19 

 

 

Max Load (N) 

Age: p < 0.001 

CKD: p < 0.01 

Age x CKD: p > 0.05 

17.46 ± 

0.54   

15.16 ± 

0.80   

13.26 ± 0.82   10.71 ± 0.82  

 

 

p = 0.048  

13.99 ± 1.42    10.23± 

0.67 

 

p = 0.006  

Displacement at Max 

Load (mm) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.27 ± 

0.013     

0.26 ± 

0.0063    

0.31 ± 0.027  0.24 ± 0.019   0.31 ± 0.029   0.30 ± 

0.036    
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Energy at Max Load 

(mJ) 

Age: p > 0.05 

CKD: p < 0.01 

Age x CKD: p > 0.05 

3.14 ± 0.20    2.61 ± 

0.23   

2.88 ± 0.32   1.58  ± 0.20 

 

 

 

p = 0.003   

2.91 ± 0.45    2.05  ± 

0.30 

 

 

p = 0.050  

Fracture Load (N) 

Age: p < 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

 

13.59 ± 

1.80    

12.84 ± 

1.10   

6.97 ± 1.00   8.48 ± 1.35    10.63 ± 1.86    8.12 ± 

0.93 

 

Displacement at 

Fracture (mm) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.50 ± 0.10    0.41 ±  

0.07   

1.16 ± 0.20     0.66± 0.23 

 

 

 

p = 0.010    

0.64 ± 0.19    0.62 ± 

0.12  

Work to Fracture 

(mJ) 

Age: p > 0.05 

CKD: p < 0.01 

Age x CKD: p > 0.05 

6.40 ± 1.48     4.47 ± 

0.74    

9.45 ± 1.04    3.87 ± 1.22 

 

 

p = 0.003    

6.02 ± 1.96   4.53 ± 

1.03    

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 

 

CKD significantly reduced stiffness, yield load, maximum load, energy at maximum load, and work 

to fracture. The effect of CKD on toughness was borderline significant, with p = 0.053. CKD and aging did 

not have significant interactions for any measures. 

Comparisons between sham and CKD at each age (critical alpha = 0.05 / 3 = 0.0167) show that 

many measures are diminished with CKD at 18 months of age. Stiffness was reduced by 30.1% (p = 0.002) 

for CKD vs sham. Modulus, the geometry-independent analog of stiffness, was not significantly reduced 

with CKD at any age, but demonstrated a trend towards lower modulus for CKD vs sham at 18 months (-

11.9%, p = 0.091). Post-yield displacement and displacement at fracture were also reduced at 18 months 

for CKD vs sham by 48.8% (p = 0.006) and 43.5% (p = 0.003), respectively. Work to fracture was lower at 

18 months for CKD vs sham (-59.0%, p = 0.003). Toughness, the geometry-independent analog of work to 

fracture, was also significantly reduced at 18 months for CKD vs sham (-9.1%, p = 0.013). The only 

measure decreased for CKD vs sham at 24 months was maximum load, which was decreased by 26.9% (p 

= 0.006). 

6.3.4 3D osteocyte lacunar geometries 
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Osteocyte lacunar geometries were segmented from 2D confocal z-stacks and reconstructed into 

3D lacunae. Images included 53 – 194 lacunae. Osteocyte lacunar geometries changed with aging (Table 

6-4, Figure 6-5). The main effect of age reduced lacunar volume and surface area, and increased lacunar 

sphericity. Closest center of mass and span theta did not change with age. There was not a main effect of 

CKD for any osteocyte lacunar geometric measure. However, aging and CKD had a significant interaction 

for lacunar sphericity. 
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Figure 6-5: 3D osteocyte lacunar geometries change with age in sham but not CKD for mouse cortical 

bone. Osteocyte lacunae become smaller (A-B), more spherical (C), and sparser (D) with increasing age 

for sham mice. These age-related changes are not seen in CKD. 
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Table 6-4: 3D osteocyte lacunar geometries from confocal laser scanning microscopy 

 6 mo 18 mo 24 mo 

 

 Sham CKD Sham CKD Sham CKD 
Lacunar volume (µm3) 

Age: p = 0.023 

CKD: p > 0.001 

Age x CKD: p > 0.05 

454.9 ± 

34.2  

405.5 ± 

55.2  

365.1 ± 66.1  272.7 ± 33.4 

 

p = 0.046a  

269.7 ± 26.2   

 

p = 0.007a 

357.5 ± 

54.9 

 

 

Lacunar surface area 

(µm2) 

Age: p = 0.016 

CKD: p > 0.05 

Age x CKD: p > 0.05 

353.7 ± 

15.2   

327.5 ± 

32.6    

293.5 ± 36.2 

 

p = 0.033a   

241.4 ± 19.2   243.3 ± 18.6 

 

p = 0.006a  

299.7 ± 

39.4    

 

 

Lacunar sphericity 

Age: p = 0.008 

CKD: p > 0.05 

Age x CKD: p = 0.046 

0.23 ± 

0.00   

0.24 ± 0.00   0.25 ± 0.01  

 

 

p = 0.024a 

0.26 ± 0.01 

 

   

0.26 ± 0.01   

 

 

p = 0.004a 

p = 0.022c 

0.24 ± 

0.01 

 

p = 

0.036b 

Closest center of mass 

(µm) 

Age: p > 0.05 

CKD: p >  0.05 

Age x CKD: p > 0.05 

19.89 ± 

0.37   

20.27 ± 

0.48 

 

    

20.00 ± 0.50   20.02 ± 0.42    21.23 ± 0.54 

 

 

p = 0.049a  

20.52 ± 

0.52 

 

 

Span theta (degrees) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

11.51 ± 

1.73   

 

 

11.18 ± 

0.65  

 

 

12.95 ± 1.43   12.00 ± 0.80  11.71 ± 0.97   13.84 ± 

1.86   

 

Lacunar number 

density (1/µm3)  

Age:  p = 0.022 

CKD: p > 0.05 

Age x CKD: p > 0.05 

3.06E-5 ± 

0.28E-5   

 

 

2.50E-5 ± 

0.31E-5  

 

 

2.32E-5 ± 

0.24E-5 

 

 

1.97E-5 ± 

0.19E-5   

1.92E-5 ± 

0.16E-5  

 

p = 0.002a 

2.40E-5 

± 0.26E-

5   

 

 

Data are presented as mean +/- standard error of the mean. P-values with a subscript are for comparisons 

with 6 months within the same sham or CKD condition. P-values with a b subscript are between the sham 

and CKD at the same age. P-values with a c subscript are for comparisons with 18 months within the same 

sham or CKD or condition. 

 

Simple effects comparisons were made between sham and CKD mice at the same age, and between 

ages within sham and CKD (critical alpha = 0.05/9 = 0.006). Sham mice had increasingly smaller and more 

spherical lacunae with age. Compared with 6 month sham mice, 24 month sham mice had decreased surface 

area (-31.2%, p = 0.006), decreased lacunar density (-37.7%, p =0.002), and increased sphericity (+14.8%, 

p = 0.004). There was also trend of decreased lacunar volume from 6 month sham to 24 month sham (-

40.7%, p = 0.007). No comparisons between ages within CKD, or between sham and CKD within each age 
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were significant at less than p = 0.01. However, there was a trend of reduced lacunar volume from 6 months 

to 18 months for mice with CKD (-32.7%, p = 0.046). There was also a trend towards less sphericity (i.e., 

more oblong shape) for 24 month old mice with CKD vs sham (-7.7%, p = 0.049). 

6.3.5     Site-matched assessment of Raman chemistry and nanoindentation modulus  

Reduced modulus from nanoindentation decreased with advancing age, but was not significantly 

different with CKD (Table 6-5, Figure 6-6). However, a trend was observed of reduced Er in middle-age 

mice (-6.85%, p = 0.062). Microscale bone chemistry from Raman spectroscopy (mineral:matrix, 

carbonate:phosphate, crystallinity) did not significantly change with either age or CKD. While mean 

mineral:matrix is higher in CKD than sham at 18 months, and lower in CKD compared with sham at 24 

months, fitted means from ANOVA models for these groups do not show significant differences between 

sham and CKD at either age.  

 

Table 6-5: Mean microscale material properties from nanoindentation and Raman spectroscopy 

 6 mo 18 mo 24 mo 

 

 Sham CKD Sham CKD Sham CKD 

Er (GPa) 

Age: p = 0.006 

CKD: p > 0.05 

Age x CKD: p > 0.05 

29.16 ±    

0.59 

 

29.30 ±    

0.58 

 

28.99 ±    

0.49 

 

27.00 ±    

0.87 

 

26.46 ± 0.92 

 

26.70 ±   

0.96 

 

v1 phosphate: 

(proline+hydroxyproline) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

19.17 ±     

3.69 

 

17.04 ±     

2.96 

 

20.21 ±     

1.74 

 

28.04 ±     

6.69 

 

21.34 ± 3.71 

 

14.38 ±     

1.45 

 

Carbonate:phosphate 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.09 ± 

0.01 

 

0.10 ± 0.01 

 

0.10 ± 0.01 

 

0.10 ± 0.01 

 

0.11 ± 0.01 

 

0.10 ± 

0.01 

 

Crystallinity 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.058 ± 

0.001 

 

0.058 ± 

0.001 

 

0.057 ± 

0.000 

 

0.058 ± 

0.001 

 

0.056 ± 

0.000 

 

0.058 ± 

0.001 

 

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 
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Microscale bone heterogeneity, as measured by standard deviation from each sample, changed with 

age and also CKD (Table 6-6, Figure 6-6). Heterogeneity of Er was significantly increased with age. While 

there was not a significant main effect of CKD on Er, 18 month old mice with CKD had significantly lower 

standard deviation of nanoindentation modulus (-19.7%, p = 0.013) compared with their sham counterparts. 

There was also a trend of diminished heterogeneity in crystallinity for 18 month old mice with CKD 

compared with sham (-28.1%, p = 0.040). 
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Figure 6-6: Microscale bone material changes in CKD. Microscale bone material properties change in 

CKD. A) Reduced modulus from nanoindentation may be lower in middle-age mice with CKD vs sham 

(p = 0.062). B) The heterogeneity of reduced modulus is significantly lower for middle-age mice with 

CKD vs sham. C) Mean crystallinity from Raman spectroscopy is not different between CKD and sham at 

any age, but D) heterogeneity of crystallinity may be reduced at middle-age for CKD vs sham (p = 0.040). 
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Table 6-6: Standard deviations of microscale material properties from nanoindentation and Raman 

spectroscopy 

 6 mo 18 mo 24 mo 

 

 Sham CKD Sham CKD Sham CKD 
Er (GPa) 

Age: p = 0.025 

CKD: p > 0.05 

Age x CKD: p > 0.05 

3.474 ±    

0.108 

 

3.395 ±    

0.128 

 

 

4.334 ±    

0.252 

 

3.482 ±    

0.278 

 

p = 0.014 

 

4.235 ± 0.258 

 

4.121 ±    

0.359 

 

v1 phosphate: 

(proline+hydroxyproline) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

10.79 ±     

2.83 

 

11.04 ±    

3.38 

 

8.87 ±     

1.05 

 

19.53 ±     

6.73 

 

15.46 ± 5.12 

 

5.183 ±   

0.819 

 

Carbonate:phosphate 

Age: p > 0.05 

CKD: p = 0.046 

Age x CKD: p > 0.05 

0.011 ± 

0.001 

 

0.012 ± 

0.001 

 

0.009 ± 

0.001 

 

0.011 ± 

0.002 

 

0.0102± 0.001 

 

0.013 ± 

0.002 

 

Crystallinity 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

0.0015 

±  

0.0002 

 

0.0012 ±  

0.0001 

 

0.0015 ±  

0.0002 

 

0.0011 ± 

0.0002 

 

p = 0.040 

 

0.0011 ±  

0.0001 

 

0.0015 ± 

0.0003 

 

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 

 

Multiple linear regression (MLR) was performed to assess whether changes to microscale material 

properties influence whole bone material properties (toughness, modulus, ultimate stress from three-point 

bending). The best-fit MLR model for toughness included nanoindentation modulus, standard deviation of 

crystallinity, CKD status, and the interaction of crystallinity and CKD status (r2 adjusted = 30.4%; CKD: 

Toughness = 28.70 – 0.804*Er – 517*stdev(crystallinity); Sham: Toughness = 22.10 – 0.805*Er + 

6872*stdev(crystallinity)). The best-fit MLR model for modulus included the terms of age, 

carbonate:phosphate, and the interaction of mineral:matrix and CKD (r2 adjusted = 86.75%, CKD: Modulus 

= 7.530 – 0.1983*Age + 11.38*carbonate:phosphate – 0.00901*mineral:matrix; Sham: Modulus = 7.530 – 

0.1983*Age + 11.38*carbonate:phosphate + 0.00901*mineral:matrix). The best-fit MLR model for 

ultimate stress included just age and crystallinity (r2 adjusted = 84.0%, Ultimate stress = 43.8 – 3.685*Age 

+ 2366*crystallinity). 
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6.3.6    High performance liquid chromatography      

One outlier (value greater than 3 standard deviations of the mean) was excluded from the 24 month 

old CKD group for the LP analysis. The crosslinks HP, LP, and pentosidine had higher means with 

increasing age (Table 6-7, Figure 6-7). However, the main effects of age and CKD were not significant for 

HP, LP, or pentosidine.  

In comparing crosslink concentrations between sham and CKD at each age, there were no 

significant differences defined by a critical alpha of 0.0167. However, there were trends towards reduced 

HP for CKD vs sham at 24 months (-22.9%, p = 0.049), and reduced LP for CKD vs sham at 6 months (-

20.7%, p = 0.056). 

 

Figure 6-7: Enzymatic and non-enzymatic crosslinks are not significantly reduced by aging or CKD. 

Mature enzymatic crosslinks (HP and LP, A-B) and pentosidine (C) are not significantly altered by aging 

or CKD. However, there was a trend of lowered HP for 24 month old CKD vs sham (p = 0.049), as well 

as a trend of lowered LP for 6 month old CKD vs sham (p = 0.056).  
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Table 6-7: Collagen crosslinks from high performance liquid chromatography 

 6 mo 18 mo 24 mo 

 

 Sham CKD Sham CKD Sham CKD 
HP (mol / mol 

collagen) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

2.17 ± 0.39 2.15 ± 0.28  2.44 ± 0.25   2.57 ± 0.19  

 

 

2.97 ± 0.25   2.29 ± 0.25 

 

p = 0.049 

LP (mol / mol 

collagen) 

Age: p > 0.05 

CKD: p = 0.056 

Age x CKD: p > 0.05 

0.29 ± 0.02 

 

  

0.23 ± 0.02    0.30 ± 0.02   0.30 ± 0.02   0.31 ± 0.01   0.28 ± 0.01    

 

 

Pentosidine (mol / 

mol collagen) 

Age: p > 0.05 

CKD: p > 0.05 

Age x CKD: p > 0.05 

1.39 ± 0.43   1.57 ± 0.26   2.42 ± 0.75  2.11 ± 0.53    2.59 ± 0.59   2.62 ± 0.35 

 

 

Data are presented as mean +/- standard error of the mean. P-values for main effects of age and CKD as 

well as their interaction are reported in the left column. P-values elsewhere are for comparisons between 

CKD and sham at the same age. 

 

6.4 Discussion 

The purpose of this study was to evaluate how bone quality changes in CKD via 5/6 Nx alongside 

aging. We assessed changes to bone quality from the microscale to the whole bone. We also considered the 

effects of aging and CKD on mineral and collagen, as well as on the spatial heterogeneity of tissue-scale 

material properties. Our results demonstrate that bone quality is reduced with aging and also CKD, and that 

for most measures bone quality is lowest for the combination of old age and CKD. 

Aging was expected to reduce cortical and trabecular microarchitecture, whole bone mechanical 

and material properties, and microscale material properties. The decreased cortical and trabecular 

microarchitecture with age was consistent with previous work characterizing bone loss with age in male 

C57Bl/6 mice [Halloran et al., 2002]. Diminished whole-bone mechanical properties (e.g., stiffness) with 

age were somewhat inconsistent with prior work [Ferguson et al., 2003]. While both studies had similar 

results with respect to age for yield properties (e.g., load at yield, energy at yield), there were discrepancies 

between the two studies with respect to properties at the maximum and fracture loads. In our study, 

maximum load, energy to maximum load, and stiffness were highest in 6 month old mice and decreased 
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with increasing age. Work to fracture was highest in 18 month old mice. In the earlier work, properties at 

max load and stiffness peaked at 12 months of age and decreased thereafter. Work to fracture was highest 

at approximately 6 months of age and then decreased [Ferguson et al., 2003]. There are several possible 

reasons for discrepancies between these cohorts of mice. More than a decade of genetic drift could change 

bone properties for C57Bl/6 mice. More likely, however, is that the current study subjected mice to two 

sham surgeries, which would be expected to increase physiologic stress and lower physical activity. Thus, 

the peak bone properties reported in the earlier study with healthy mice that did not undergo experimental 

procedures may not correspond with our observations. 

Our results for aging mice without CKD from microscale material assessments were in partial 

agreement with an earlier study of 5 month and 19 month male C57Bl/6 mice [Raghavan et al., 2012]. 

Raghavan and coworkers reported that 19 month mice had higher mineral:matrix, carbonate:phosphate, and 

crystallinity than 5 month mice, but did not have changes to modulus from nanoindentation [Raghavan et 

al., 2008]. In our study, we found that mean mineral:matrix and carbonate:phosphate increased with aging 

in sham mice, but we did not see increased crystallinity with age. We also found that reduced modulus from 

nanoindentation was lower with increased age. There were important differences between the two studies. 

Raghavan et al studied the surface of the mouse femur at five locations longitudinally, while our study 

performed maps spanning the midshaft cortical femur from endocortical to periosteal surfaces, surveying 

both mature and newly formed tissue. Lastly, we did not see changes to either enzymatic or non-enzymatic 

(pentosidine) crosslinking with age, as have been reported in other studies [Nyman et al., 2006; Wang et 

al., 2002]. Despite some differences from our work and previous studies, our results are generally in 

agreement with those of earlier efforts that bone quality at the whole bone and microscale are reduced with 

aging. 

CKD was confirmed with increased serum BUN and phosphate, and decreased urine BUN and 

calcium. CKD was also seen to reduce bone quality. Cortical microarchitecture was diminished with CKD 

at either 6 months or 18 months for all measures. Meanwhile, most trabecular bone changes emerged at 24 

months of age, with the exception of trabecular bone mineral density (vBMD), which was markedly 
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diminished at 18 months and 24 months. Our observation that bone microarchitecture was more affected in 

middle-age and old mice with CKD compared with young adult mice may reveal why previous work with 

young rodents do not consistently find diminished bone microarchitecture in CKD [Heveran et al., 2016; 

Kadokawa et al., 2011]. Specifically, the young study animals in the present study as well as previous works 

underwent skeletal maturation in the course of the study. Thus, the deleterious effects of CKD on 

microarchitecture may be masked by skeletal growth. It is possible that young mice experience CKD 

differently than middle-age or old mice. However, serum and urine indicators of kidney function were 

similar for all three ages, suggesting that the differences in microarchitecture for young mice are not 

explained by differences in disease severity. 

CKD also affected whole bone mechanical and material properties from three-point bending. CKD 

reduced stiffness, max load, yield properties, and work to fracture. While whole bone material properties 

of modulus and ultimate stress did not change with CKD, there was a near-significant (p = 0.053) reduction 

in toughness as a main effect of CKD. Middle-age mice with CKD had significantly lower toughness than 

their sham counterparts. Reductions to microarchitecture and whole bone mechanical and material 

properties with aging and CKD were generally additive as opposed to interactive, such that old mice with 

CKD had the worst outcomes. 

CKD was found to alter collagen as well as mineral. HP and LP, which are indicative of mature 

skeletal crosslinks, may be lower for 24 month old mice with CKD compared with sham. Pentosidine and 

was not seen to change with CKD. These findings contrast findings by Allen and coworkers that pentosidine 

is increased with CKD; however, their model involved a polycystic model of CKD in rats with severe 

disease [Allen et al., 2008]. CKD was seen to alter mineral properties from microCT. Significantly 

diminished mineral was observed for middle age and old mice for both cortical and trabecular 

compartments.  

At the microscale, CKD diminished modulus from nanoindentation for middle-age mice compared 

with sham. Mineral:matrix was not significantly different. However, it was observed for middle-age and 

old rats that the proline and hydroxyproline matrix peaks were often extremely small, leading to a number 
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of observations with very high mineral:matrix. Greater changes were observed with CKD in regards to 

material heterogeneity. Middle-age mice with CKD had less variable modulus and potentially less variable 

crystallinity compared with their sham counterparts. Multiple linear regression models were employed to 

test the dependence of whole bone outcomes on microscale material means and variance to whole-bone 

outcomes. It was observed that modulus depended predominantly on age, carbonate:phosphate, and the 

interaction of mineral:matrix and CKD. This model suggests that increased mineral:matrix leads to higher 

modulus for sham mice, and lower modulus for mice with CKD. This is consistent with mineral:matrix 

predominantly increasing with mineral content in sham animals, but responding to diminished collagen in 

CKD. Ultimate stress was explained by age and crystallinity, and was not affected by CKD. Meanwhile, 

the best-fit model for toughness revealed dependency on reduced modulus, the standard deviation of 

crystallinity, CKD status, and the interaction of CKD and standard deviation of crystallinity. Model results 

indicate that bone toughness is increased with increased standard deviation of heterogeneity for sham mice, 

but that too high of heterogeneity is detrimental for toughness for CKD. Interestingly, even though bone 

from middle-age mice with CKD was less tough and also had diminished heterogeneity of both reduced 

modulus and crystallinity, toughness was only significantly influenced by the heterogeneity of crystallinity. 

In this study, reduced modulus and crystallinity were poorly correlated, such that the lack of dependence 

of toughness on modulus was not trivially produced by multicollinearity. Importantly, as the v1 phosphate 

peak that crystallinity is measured from depends on tissue orientation for Raman systems without 

depolarizing optics such as ours, heterogeneity of crystallinity could correspond to both variance in 

crystallite size and orientation. Nonetheless, these results suggest that the bone-tissue composite may derive 

toughness in part from the spatial arrangement and size of mineral, which are in turn potentially disrupted 

in CKD. 

We also evaluated osteocyte lacunar morphologies in 3D in this study. For sham mice, osteocyte 

lacunae became smaller and more spherical with age. Lacunar number density also decreased with age, 

consistent with previous reports [Lai et al., 2015; Vashishth et al., 2000]. These age-related changes were 

less present with CKD. Lacunar volume may be lower in 18 month old mice with CKD compared with 6 
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month old mice with CKD, but mean volume was not decreased from 18 to 24 months. At 24 months, 

lacunae may be less spherical for CKD vs sham. Osteocyte lacunae number densities also did not decreased 

with age in CKD, though there was not significantly greater density of lacunae at 24 months for CKD vs 

sham. Our results suggest that perilacunar remodeling may change with aging, and that relationships 

between aging and perilacunar remodeling could be altered in CKD. Perilacunar remodeling has been 

shown to contribute to maintenance of bone quality and fracture resistance through replacement of bone 

tissue local to osteocytes [Tang et al., 2012; Gardinier et al., 2016]. This mechanism is also important for 

systemic calcium homeostasis, as the surface area of bone accessible for calcium resorption through the 

lacunar-canalicular system is immense in comparison to the periosteal and endocortical surfaces [Schaffler 

et al., 2014]. Changes in PLR with aging could occur for a number of reasons, including changing mineral 

metabolism with aging [Orwoll et al., 2009, Tsai et al., 1984], compensation for decreased structural 

competence of bone, or potentially osteocyte senescence, which increases prevalence with age and is 

associated with osteocytic expression of toxic factors [Farr et al., 2016]. The similar osteocyte lacunae 

across ages in CKD suggests that systemic demand for calcium may influence perilacunar remodeling more 

than aging alone. The osteocyte is known to participate in the pathophysiology of CKD through FGF23 

expression, which interacts with vitamin D and PTH to influence bone turnover and systemic mineral 

homeostasis [Stubbs et al., 2014; Komaba et al., 2010]. Thus, an active role for osteocytes in liberating 

local mineral in CKD and consequently changing bone material is plausible. Determination of why 

osteocyte lacunar geometries change differently in aging with and without CKD is beyond the scope of the 

present work, and requires additional mechanistic study. However, these results suggest that the osteocyte 

is differently participating in local bone quality regulation in health and CKD. Bone material changes 

occurring along the expansive lacunar-canalicular system can impact whole-bone structural integrity and 

fracture resistance, thus changes to perilacunar bone quality in CKD merits further investigation [Fowler et 

al., 2016; Tang et al., 2012]. 

There were several limitations to this study. Mice from this study did not receive fluorochrome 

labels and thus measurement of mineral apposition rate through quantitative histomorphometry was not 
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possible. Additionally, the systemic effects of 5/6 Nx at different ages in C57Bl/6 mice have not been fully 

described. Another limitation is that toughness was evaluated from unnotched femurs in three-point bending 

as the geometry-independent analog of work to fracture. Notched fracture testing prescribes the location of 

fracture, which reduces experimental variance, and provides an analytic solution for a fracture toughness 

value [Ritchie et al., 2008]. However, unlike notched fracture toughness testing, where compliance is 

directly influenced by the notch geometry, conventional three-point bending allows calculation of elastic 

and yield properties.  

In summary, we observed that aging and CKD together lower bone quality from the whole bone 

scale to the microscale, affecting both collagen and mineral. We also observed that changes to bone tissue 

heterogeneity at the microscale were predictive of changes to whole bone toughness. These observed 

changes with aging and CKD have implications for therapeutic interventions. Antiresorptive 

bisphosphonate therapies have been considered for use in CKD to potentially mitigate bone loss through 

reduction of osteoclast resorption [Allen et al., 2017]. The diminished cortical and trabecular 

microarchitecture, decreased mature collagen crosslinks, lower cortical and trabecular mineral densities, 

and lowered tissue-scale material heterogeneity observed with CKD in this study are consistent with 

abnormalities caused by high-turnover renal osteodystrophy, and could plausible improve by reducing 

osteoclast-mediated turnover with bisphosphonate therapy. However, there are several potentially serious 

problems with administering bisphosphonates for treatment of bone quality loss in CKD. First, 

bisphosphonates can alter bone tissue composition and lower heterogeneity, potentially contributing to 

fracture-prone adynamic bone [Gourion-Arsiquaud et al., 2010; Allen et al., 2008; Mashiba et al., 2000]. 

Second, bisphosphonates may not be able to correct loss of bone fracture resistance attributed to altered 

perilacunar remodeling in CKD. Previous work evaluated the ability of bisphosphonates to improve bone 

quality. Rats with high-turnover genetic polycystic kidney disease responded to treatment with zoledronic 

acid with lowered bone turnover and improved trabecular microarchitecture, consistent with the expected 

effects of an antiresorptive therapy [Moe et al., 2014; Allen et al., 2017]. However, cortical bone 

mechanical properties assessed by three-point bending were only partially improved with bisphosphonate 
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therapy [Moe et al., 2014]. It is possible that cortical bone material experiences disruptions to perilacunar 

remodeling with CKD that diminishes material properties. These osteocyte-mediated bone quality changes 

would not be expected to change with bisphosphonate therapies, which primarily target the osteocyte. The 

role of the osteocyte in mediating bone quality changes in CKD is intriguing, as the osteocyte may provide 

new targets for therapeutic interventions aimed at maintaining fracture resistance. 
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7. The role of cortical bone microscale material heterogeneity in determining bone fracture toughness 

Abstract 

Bone fracture resistance depends on tissue-scale toughening mechanisms that resist crack formation and 

propagation. Bone toughness has been shown to be influenced by structural features, but the material 

contributions to toughness are not fully understood. Notably, observational studies report altered microscale 

bone tissue heterogeneity in biopsies from patients with fragility fractures compared with age-matched 

controls. Yet experimental evidence for relationships between whole bone fracture toughness and 

microscale material heterogeneity is lacking. The purpose of this study was to evaluate whether microscale 

heterogeneity in mechanical properties and bone chemistry is predictive of fracture toughness in a rat model 

of exercise and obesity. Male rats were fed a high fat diet and stratified into lean and obese groups. Within 

these groups, rats were randomized to exercised or sedentary conditions. Fracture toughness was evaluated 

for the femur. Microscale material properties, including bone chemistry from Raman spectroscopy, and 

reduced modulus from nanoindentation, were assessed for both lamellar and woven bone for each 

previously-fractured femur. Exercised rats had significantly higher fracture toughness values than sedentary 

rats, but obese and lean rats had similar fracture toughness values. Multiple linear regression revealed that 

the heterogeneity of reduced modulus from nanoindentation and mean mineral:matrix from Raman 

spectroscopy contribute to fracture toughness regardless of exercise or obesity status. Importantly, both of 

these predictive relationships with fracture toughness have a negative quadratic form, implying that 

moderate mineral content and moderate variance in microscale modulus are beneficial for fracture 

toughness. 

7.1 Introduction 

Bone is hierarchically structured and dynamically remodels, leading to a characteristically 

heterogeneous bone tissue composite. Bone structure at the microscale is known to be important to bone 

fracture toughness; a known toughening mechanism in bone is for cracks to deflect along relatively 

compliant osteonal cement lines [Koester et al., 2008]. Bone material properties and their microscale spatial 

heterogeneity are widely thought to also be important to bone toughness, but the work supporting this theory 
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has been largely observational [Lloyd et al., 2016]. Backscatter scanning electron microscopy studies 

comparing bone samples with and without fragility fractures have reported that fragile bone can have 

abnormal mean or variance in mineral content. Interestingly, fragile bone can have either too-low or too-

high variance in microscale mineral content compared with controls. For instance, the coefficient of 

variance of bone mineralization was lower in iliac crest biopsies from women with vertebral fractures 

compared with healthy cadaveric controls [Ciarelli et al., 2009]. Yet in another study of bone mineralization 

at the iliac crest, cadaveric trabeculae from women with osteoporotic vertebral fractures had a widen 

distribution of bone mineral content than healthy trabeculae [Busse et al., 2009]. Increased heterogeneity 

in mineralization has also been reported in both trabecular and cortical bone for fracture-prone children 

[Tamminen et al., 2014]. Though these observations suggest intriguing dependencies of bone fracture 

resistance on microscale material heterogeneity, the specific relationships linking tissue-scale bone variance 

and whole bone fracture toughness are not understood. 

Limited work has evaluated how fracture toughness may depend on microscale bone material 

properties. Makowski and coworkers considered how bone chemistry measured from Raman spectroscopy 

contributes to fracture toughness in human cortical bone spanning a range of ages [Makowski et al., 2015]. 

Heterogeneity of bone chemistry measures (e.g., mineral:matrix and crystallinity) had poor correlations 

with fracture toughness, though principal component analysis revealed components from whole spectra that 

moderately predicted fracture toughness. However, fracture toughness may also depend on heterogeneity 

in microscale material response to loading (e.g., modulus and plastic work from nanoindentation). Finite 

element models suggest that variance in microscale bone tissue modulus encourages energy dissipation and 

potentially promotes fracture toughness [Tai et al., 2007; Yao et al., 2011]. Yet it is not known how 

microscale bone mechanical properties and chemistry together influence fracture toughness. Thus, it is 

currently difficult to interpret how altered heterogeneity in material properties that can occur in response to 

age, disease, or interventions may be expected to influence bone fracture properties. The purpose of this 

study was to experimentally assess how fracture toughness depends on microscale bone material properties 

for cortical rat bone. 
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7.2 Methods 

7.2.1 Animal model 

To evaluate the contributions of material heterogeneity on fracture toughness, notched fracture 

toughness testing was conducted on rat femurs from a study of obesity and exercise [Song et al., 2016]. 

Male Wistar rats were fed an ad libitum high fat diet (HFD) for 10 weeks, starting at 5 weeks of age. Within 

sex, obese and lean groups were defined as the highest and lowest tertiles of weight and fat gain. Obese and 

lean rats were randomized to exercise or sedentary controls for the last 4 weeks of HFD (n = 8 / group; N 

= 32). Exercised rats were treadmill running at 15 m/min, 60 min/day for 5 days/week.  

7.2.2 Fracture toughness 

Fracture toughness (Kc) was evaluated for notched femurs in three-point bending [Ritchie et al., 

2008]. Briefly, femurs were cleaned of non-osseous tissue, and both the condyles and bone proximal to the 

lesser trochanter were trimmed off to ensure consistent notching conditions for all bones. A custom 

apparatus was used to notch femurs on the posterior aspect to nominally 30% of the anterior-posterior width 

at the cortical midshaft. A single pass with a feather blade lubricated with 1 µm alumina slurry polish 

sharpened the notch. Notched femurs were sonicated to remove polishing media and then maintained in 

phosphate buffered saline – dampened gauze before testing. 

Notched femurs were placed on a span for three-point bending such that the anterior aspect of the 

femur was placed up (in compression) and the notched posterior surface was placed down (in tension). The 

span for notched fracture testing in three-point bending should be four times the anterior-posterior width. 

Femur widths for this study were stratified into quintiles, and the mean of each quintile used for span length 

determination. Consistent with the protocol described by Ritchie et al, femurs were loaded at a rate of 0.001 

mm/s until fracture [Ritchie et al., 2008]. Following testing, the proximal half of the fractured femur was 

air dried and imaged via variable pressure SEM to identify the notch angle (Figure 7-1). The max load and 

initial notch angle were used to calculate the max fracture toughness [Ritchie et al., 2008]. 
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Figure 7-1: Evaluation of notch and instability angles from SEM. The SEM image on right collected by 

Chelsea Heveran. Figure adapted from Ritchie et al., Bone, 2008 

7.2.3.  Assessment of microscale bone heterogeneity 

Following notched fracture testing, the distal half of the fractured femurs were histologically 

dehydrated and embedded in poly(methyl)methacrylate. The embedded transverse sections were polished 

to 0.1 µm finish, taking care to polish just beyond the relief of the notched surface. Samples were sonicated 

between polishing steps, and again after the final polishing step. 

Material property heterogeneity was assessed with maps of microscale modulus from 

nanoindentation (Hysitron TI950). Maps of 25 points (spacing: 20 µm in x and y directions) were placed in 

lamellar bone and also woven bone on the medial aspect of each sample. Bone type was identified with 

indentation optics before mechanical testing; for each sample, lamellar bone was found on the endocortical 

surface while woven bone was located midway between the endocortical and periosteal surfaces.  An initial 

parameter study revealed that variability in nanoindentation modulus was highest for indents of 300 nm in 

depth or less. As the root mean square error of surface roughness of a representative final polished surface 

was measured to be 31 nm, 300 nm was chosen as an indentation depth that both avoids surface roughness 

and minimizes volume averaging the measured modulus [Greenwood et al., 1984]. A 5 µm radius tip was 

thus employed to indent bone to 300 nm in depth-controlled tests, with a load function of 30s loading, 120s 

hold to dissipate viscoelastic energy, and 30s unload. 
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Bone chemistry heterogeneity was evaluated via Raman spectroscopy (Renishaw inVia, 785 nm 

laser). As with nanoindentation, maps of 25 points (spacing: 20 µm in x and y directions) were placed in 

lamellar and also woven bone. Raman maps were placed adjacent to previous arrays from nanoindentation, 

but did not spatially overlap. Raman spectra were analyzed for peak areas of v1 phosphate (920 – 990 cm-

1), v2 phosphate (410 – 480 cm-1), amide III (1220 – 1295 cm-1), and carbonate (1045-1110 cm-1) using 

custom Matlab code. Mineral:matrix was evaluated as v2 phosphate / amide III, which has been 

demonstrated by others to be phase-matched and thus polarization insensitive [Gamsjaeger et al., 2010]. 

Carbonate:phosphate was assessed from carbonate / v1 phosphate. Crystallinity, which relates to crystal 

size, was defined as the inverse of the full width at half-maximum intensity of the v1 phosphate peak. 

7.2.4  Data analysis 

Differences between means and standard deviations of microscale properties from nanoindentation 

and Raman spectroscopy were evaluated with respect to the factors of bone type, obesity status, exercise 

status, as well as all interactions between these factors, were evaluated with ANOVA. Residuals were 

checked for normality and homoscedasticity. ANOVA was also employed to evaluate the effect of obesity 

and exercise status, as well as the interaction of obesity and exercise, on fracture toughness. 

Multiple linear regression was used to assess the contributions of microscale bone properties on 

fracture toughness. Separate models were established for lamellar and woven bone types. Pearson’s R was 

first checked for all variables such that highly intercorrelated terms (R > 0.6) were not both entered into the 

model. Models included second order terms of each proposed explanatory variable, as well as the 

interactions of each term with exercise and obesity factors. Term elimination was accomplished with a 

stepwise procedure. Terms were introduced back into the final model to ensure hierarchical structure. Final 

models were evaluated using criteria of highest adjusted correlation coefficient and lowest error.  

7.3 Results 

Fracture toughness (Kc) for rats fed a high-fat diet was highly variable, ranging from 5.34 MPa √m 

to 9.88 MPa √m. There was a significant main effect of exercise but not obesity on fracture toughness 
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(Table 7-1).  Exercised rats had +12.0% tougher femurs than sedentary rats (p = 0.046). There was not a 

significant interaction between the factors of exercise and obesity. 

 

Table 7.1: Fracture toughness from notched fracture testing. 

               Lean Obese 

 

Exercise Sedentary Exercise Sedentary 

Fracture toughness (Kc) 

(MPa √m)  
 

ObS: p > 0.05 

ExS: p = 0.046 

ObS x ExS: p > 0.05 

7.43 ± 0.36 6.71 ± 0.39 7.97 ± 0.43 7.05 ± 0.40 

Data are presented as mean +/- standard error of the mean. P-values for main effects of obesity status 

(ObS), exercise status (ExS), as well as their interaction (OSb x ExS) are reported in the left column.   

 

Mean microscale material properties from Raman spectroscopy and nanoindentation were all 

significantly affected by bone type (i.e., lamellar vs woven) (Table 7-2). Mineral:matrix was +14.4% higher  

(p < 0.001) for woven than lamellar bone. Carbonate:phosphate and crystallinity were +6.2% (p < 0.001) 

and +2.0% (p < 0.001) higher for lamellar compared to woven bone, respectively. Reduced modulus and 

plastic work were not significantly different between bone types.  
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Table 7.2: Mean microscale material properties for lamellar and woven bone. 

 Lamellar Woven 

               Lean Obese Lean Obese 

 
Ex Sed Ex Sed Ex Sed Ex 

Sed 

v2 phosphate : 

amide III  

Type: p < 0.001 

ObS: p = 0.004 

ExS: p > 0.05 

Type x ObS:  

p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

1.11 

±  

0.04  

 

1.06 ± 

0.04   

1.01 ±  

0.05 

0.99 ± 

0.04 

 

 

1.26 ± 

0.03    

 

1.22 ±  

0.04 

 1.13 ± 

0.06 

 1.15 ± 

0.04 

 

 

Carbonate : 

phosphate (x 10-2) 

Type: p < 0.001 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS:            

p = 0.014 

Type x ExS: p > 0.05 

Ob x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

17.78 

± 

0.23 

 

18.02 

± 0.35 

17.33 ± 

0.14  

17.53 ± 

0.38 

 

 

16.36 ±   

0.20 

 

16.46 ±  

0.25 

 16.98 

± 0.17  

16.70 ± 

0.20 

 

 

Crystallinity (x 10-2) 

Type: p < 0.001 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05  

5.74 

± 

0.02   

 

5.78 ± 

0.02  

 5.77 ±  

0.03 

5.76 ± 

0.02 

 

 

 5.66 ± 

0.02    

 

5.61 ± 

0.02  

5.66 ± 

0.04 

5.66 ± 

0.02 

 

 

Reduced modulus 

(GPa) 

Type: p > 0.05 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p = .081 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

31.47 

± 

1.70    

 

34.15 

± 1.72   

32.67 ± 

1.15   

31.54 ± 

1.51 

 

 

33.65 ± 

1.98    

 

31.10 ± 

1.64 

 36.14 

± 1.72   

32.28 ± 

1.01 

 

 

Plastic work 

(J x 10-11) 

Type: p > 0.05 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

16.16 

± 

1.45   

 

15.55 

± 0.67   

15.99 ± 

1.31   

16.45 ± 

1.32  

 

 

15.24 ± 

1.66    

 

13.77 ± 

0.87   

15.33 

± 1.37   

14.09 ± 

1.60  
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Type x ObS x ExS:   

p > 0.05 

Data are presented as mean +/- standard error of the mean. P-values for main effects of bone type, obesity 

status (ObS), exercise status (ExS), as well as their interactions are reported in the left column.  

 

Standard deviations were also affected by type of bone (Table 7-3). The standard deviation of 

mineral:matrix was +53.0% higher (p < 0.001) for woven versus lamellar bone. Standard deviations of 

carbonate:phosphate and crystallinity were +32.7% (p < 0.001) and +68.9% (p < 0.001) higher for woven 

versus lamellar bone, respectively. The standard deviations of reduced modulus and plastic work also 

significantly differed for bone type. The standard deviations of reduced modulus and plastic work were 

+16.3% (p = 0.044) and +13.4% (p = 0.046) more variable for woven than lamellar bone. 
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Table 7.3: Standard deviation in microscale material properties for lamellar and woven bone. 

 Lamellar Woven 

               Lean Obese Lean Obese 

 
Ex Sed Ex Sed Ex Sed Ex Sed 

v2 phosphate : 

amide III  (x 10-2)  

Type: p < 0.001 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

13.97 ± 

1.44 

 

11.49 ± 

1.28 

10.98 ± 

0.85 

19.36 ± 

8.37 

 

 

18.97 ± 

1.33 

 

23.00 ± 

2.44  

17.34 ± 

2.94   

 19.12 ± 3.22 

 

 

Carbonate : 

phosphate (x 10-4) 

Type: p < 0.001  

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p = 0.070 

83.31 ± 

7.69    

 

71.82 ± 

5.96   

78.62 ± 

4.55 

 146.20 

± 61.90  

 

 

109.7 ± 

10.5 

 

113.0 ± 

9.7  

112.6 ± 

7.0 

 100.5 ± 9.8 

 

 

Crystallinity (x 10-4) 

Type: p < 0.001 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

8.23 ± 

0.83  

 

5.37 ± 

0.83  

9.37 ± 

2.09   

9.47 ± 

1.94 

 

 

13.62 ± 

1.26 

 

13.21 ± 

1.05   

13.16 ± 

1.46   

 12.34 ± 1.86 

 

 

Reduced modulus 

(GPa) 

Type: p = 0.044 

ObS: p > 0.05  

ExS: p > 0.05 

Type x ObS: p > 0.05  

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

Type x ObS x ExS:     

p > 0.05 

4.10 ± 

0.62    

 

4.53 ± 

0.36 

4.81 ± 

0.45   

3.90 ± 

0.53  

 

 

5.28 ± 

0.62    

 

5.17 ± 

0.33   

4.73 ± 

0.35   

 4.99 ± 0.52 

 

 

Plastic work  

(J x 10-12) 

Type: p = 0.046 

ObS: p > 0.05 

ExS: p > 0.05 

Type x ObS: p > 0.05 

Type x ExS: p > 0.05 

ObS x ExS: p > 0.05 

22.45 ± 

1.22   

25.21 ± 

2.66   

22.35 ± 

2.02   

24.58 ± 

2.23  

 

27.36 ± 

2.65    

 

27.39 ± 

1.28 

24.28 ± 

1.57   

 28.22 ± 3.13 
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Type x ObS x ExS:     

p > 0.05 

Data are presented as mean +/- standard error of the mean. P-values for main effects of bone type, obesity 

status (ObS), exercise status (ExS), as well as their interactions are reported in the left column.  

 

Exercise did not significantly affect mean or standard deviation of microscale material properties. 

Obesity affected some measures. Mineral:matrix was +10.3% higher (p = 0.004) for lean compared with 

obese bone. There was a significant interaction between bone type and obesity for carbonate:phosphate (p 

= 0.014). Obese rats had +3.5% greater carbonate:phosphate (p = 0.024) in lamellar as compared to woven 

bone while for lean rats this difference was +9.1% (p < 0.001). 

Multiple linear regression models were generated for lamellar and woven bone types (Table 7-4). 

For lamellar bone, Kc was significantly affected by exercise, obesity, mineral:matrix (first and second order 

terms from regression analysis), carbonate:phosphate (second order term), standard deviation of 

carbonate:phosphate, standard deviation of crystallinity, standard deviation of Er (first and second order 

terms), as well as the interactions of crystallinity and exercise, standard deviation of carbonate:phosphate 

and exercise, and the standard deviation of crystallinity and exercise. For woven bone, Kc was significantly 

affected by exercise, as well as the interactions of crystallinity and exercise, standard deviation of 

crystallinity and exercise, plastic work and exercise, plastic work and obesity, standard deviation of plastic 

work and obesity, and exercise and obesity.  
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Table 7.4: Best-fit multiple linear regression models. 

 
              Lean Obese 

 

Ex Sed Ex Sed 

Lamellar 

r2a = 65.3% 

parameter                    p value 

min:mat                           0 .001 

crystallinity                  > 0.05 

stdev(carb:phos)             0.003 

stdev(Er)                         0.001 

ExS                                  0.003 

ObS                                 0.001 

min:mat2                          0.001 

carb:phos2                       0.022 

stdev(Er2)                        0.001 

crystallinity x ExS           0.003 

stdev(carb:phos) x ExS   0.001 

stdev(crystallinity)*ExS  0.001 

 

 

 

 

 

Kc = 37.4 + 

62.1*min:mat – 

27.5*carb:phos – 

1115 crystallinity 

+ 373 stdev 

(carb:phos) - 2844 

stdev(crystallinity) 

+ 2.933 * Er – 

29.56 (min:mat2) – 

0.3154 (Er2) 

 

 

 

Kc = -91.9 + 

62.1*min:mat + 

55.7*carb:phos 

+858 crystallinity 

– 50.6 stdev 

(carb:phos) + 1224 

stdev(crystallinity) 

+ 2.933 * Er – 

29.56 (min:mat2) – 

0.3154 (Er2) 

 

 

 

Kc = 38.6 + 

62.1*min:mat – 

27.5*carb:phos – 

1115 crystallinity 

+ 373 stdev 

(carb:phos) - 

2844 

stdev(crystallinity

) + 2.933 * Er – 

29.56 (min:mat2) 

– 0.3154 (Er2) 

 

 

 

Kc = -90.9 + 

62.1*min:mat + 

55.7*carb:phos 

+858 crystallinity 

– 50.6 stdev 

(carb:phos) + 

1224 

stdev(crystallinity

) + 2.933 * Er – 

29.56 (min:mat2) 

– 0.3154 (Er2) 

Woven 

r2a = 61.87% 

parameter                       p value 

ExS                                      0.012 

crystallinity x ExS               0.009            

stdev(crystallinity) x ObS   0.016 

PW x ExS                            0.001 

PW x ObS                            0.002 

stdev(PW) x ObS                 0.001 

ExS x ObS                               

0.019 

 

 

 

 

Kc = 40.1 – 

626*crystallinity + 

726 

stdev(crystallinity) 

– 

0.000112*stdev(P

W) + 

0.000031*PW 

 

 

 

 

Kc = -25.5+ 

626*crystallinity + 

726 

stdev(crystallinity) 

– 

0.000112*stdev(P

W) - 0.000005*PW 

 

 

 

 

Kc = 40.8 – 

626*crystallinity 

- 726 

stdev(crystallinity

) + 

0.000112*stdev(

PW) + 

0.000005*PW 

 

 

 

Kc = -26.2+– 

626*crystallinity 

- 726 

stdev(crystallinity

) + 

0.000112*stdev(

PW) + 

0.000031*PW 

Multiple linear regression model parameters and associated p-values for models including the factors of exercise 

status (ExS), obesity status (ObS), and means and standard deviations of microscale material properties: plastic work 

(PW), reduced modulus (Er), mineral:matrix (min:mat), carbonate:phosphate (carb:phos), and crystallinity. 
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7.4 Discussion 

The purpose of this study was to evaluate how fracture toughness depends on microscale cortical 

bone material heterogeneity, including bone chemistry and mechanical properties. Our rat model, which 

utilized outbred male rats fed a high-fat diet and included factors of exercise and obesity, achieved wide 

variability in fracture toughness. 

Fracture toughness of the femur depended on exercise such that rats who were exercised had 

tougher bone than those who were sedentary. There was not an interaction with obesity, suggesting that 

exercise increases fracture toughness similarly for both lean and obese rats. 

Microscale material properties were evaluated for lamellar and woven cortical bone for each 

fractured rat femur. Material properties different with bone type. Compared with lamellar bone, woven 

bone had greater mineral:matrix and otherwise had smaller bone crystal, less carbonate:phosphate, and 

higher variability in all bone chemistry parameters. These observations are consistent with woven bone 

having less organization and maturity than lamellar bone. The higher mineral:matrix of woven bone is not 

inconsistent with this general observation, as this ratio increases with immature collagen. Microscale 

material properties were not different with exercise, but did differ with obesity. Obese rats had lower 

mineral:matrix and had less difference in carbonate:phosphate between lamellar and woven bone compared 

with their lean rat counterparts.  

Multiple linear regression (MLR) models suggest that fracture toughness depends on several 

microscale material properties, including heterogeneity. The best-fit MLR model for lamellar bone featured 

standard deviations of carbonate:phosphate, crystallinity, and reduced modulus from nanoindentation. 

Interestingly, Kc had a significant dependence on the square of several terms, including the standard 

deviation of reduced modulus. This implies a non-linear relationship between fracture toughness and 

variation in microscale mechanical properties. Indeed, the negative quadratic fit indicates that there is a 

“sweet spot” of variability in modulus, where too-low and too-high variability have deleterious effects on 

fracture toughness. Fracture toughness for woven bone also depends on heterogeneity, notably on the 

standard deviations of crystallinity and plastic work. Second-order terms were not featured in the woven 
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bone MLR model, suggesting that predominantly linear relationships exist between microscale measures 

and fracture toughness. 

MLR models demonstrate significant interactions with exercise (lamellar bone) and both exercise 

and obesity (woven bone), implying that the influence of microscale bone characteristics on fracture 

toughness depends considerably on the context of these experimental factors. For instance, in lamellar bone, 

fracture toughness for sedentary rats is improved when bone is more mature (increased crystallinity, 

decreased standard deviation of carbonate:phosphate), while the reverse is observed for exercised rats. One 

possible interpretation of this effect may be that sedentary rats benefit from bone tissue maturity, while 

exercised rats benefit from newer tissue that possesses less microdamage. However, this explanation for 

the interactive nature of bone maturity and exercise for lamellar bone in this study is speculative and 

requires further confirmation. Notably, both sedentary and exercised rats have the same quadratic 

relationships between fracture toughness and lamellar bone mineral:matrix and standard deviation of 

reduced modulus, suggesting that a “sweet spot” for mineral content and variability in modulus is 

generalizable across the experimental factors of exercise and obesity. The MLR model for woven bone is 

characterized by many interactions between exercise and obesity and material properties and is therefore 

especially challenging to interpret. No one factor was generalizable across exercise and obesity conditions. 

Increased standard deviation of reduced modulus for lamellar bone was found to contribute to 

fracture toughness regardless of exercise or obesity status. The tissue-scale stiffness of bone in part depends 

on bone chemistry, and so correlations were assessed between standard deviation of reduced modulus and 

parameters measured from Raman spectroscopy (Table 7-5). Correlations were generally poor between 

means and standard deviations of Raman measures and the standard deviation of reduced modulus. The 

strongest correlation was with mean mineral:matrix (+0.210). Though mineral:matrix and other aspects of 

bone chemistry contribute to tissue-scale stiffness and its variability, other measures, such as microdamage 

and collagen crosslinks, are also important and were not assessed in this study. 
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Table 7.5: Correlations between standard deviation of reduced modulus from nanoindentation and 

measures of microscale bone chemistry from Raman spectroscopy. 

 

Measures from Raman spectroscopy 

Correlation with 

standard deviation 

of reduced modulus 

Mineral:matrix +0.210 

Carbonate:phosphate +0.155 

Crystallinity +0.108 

Standard deviation (mineral:matrix) 

 

-0.114 

 

Standard deviation (carbonate:phosphate) 

 

-0.078 

 

Standard deviation (crystallinity) -0.035 

 

We report herein that heterogeneity of microscale cortical bone material properties affects fracture 

toughness of the whole bone. Though relationships between fracture toughness and microscale material 

properties are complex and depend at least on bone type, exercise status, and, for woven bone, obesity, 

there are several ways that the current data contribute to knowledge about determinants of bone fragility. 

First, negative quadratic relationships are observed between fracture toughness and both standard deviation 

of reduced modulus and mean mineral:matrix for lamellar bone. Our findings are consistent with 

observations from backscattered SEM studies of biopsied bone from patients with fragility fractures, where 

mean and standard deviation of mineral content are disrupted by disease to values either higher or lower 

than those from healthy bone tissue [Ciarelli et al., 2009; Busse et al., 2009; Tamminen et al., 2014]. Yet 

these observational works have not directly addressed whether disrupted mineral content or heterogeneity 

deleteriously affect fracture toughness. Indeed, we do not find a strong relationship between fracture 

toughness and standard deviation of mineral:matrix. However, we find that standard deviation of bone 

chemistry (crystallinity and carbonate:phosphate) and particularly standard deviation of microscale 

mechanical properties have a significant influence on fracture toughness. Our finding that standard 

deviation of reduced modulus (lamellar bone) and standard deviation of plastic work (woven bone) 

influence fracture toughness also lends experimental support to computational works by Tai et al. and Yao 
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et al., although the present work is the first to suggest a non-linear relationship between fracture toughness 

and variance in mechanical properties [Tai et al., 2007, Yao et al., 2011]. 

This work has several limitations. All rats in this study were fed a high-fat diet, and thus further 

work is required to confirm relationships between fracture toughness and microscale bone material 

properties for rodents receiving standard diets. Next, our survey of microscale bone quality is by no means 

exhaustive. Collagen crosslinking, microdamage, bound and free water, and other parameters that were not 

assessed in the current work may contribute to fracture toughness. Additionally, although mineral:matrix 

from Raman spectroscopy is sensitive to mineral content, the ratio is sensitive to collagen content and 

integrity and therefore delivers different information than a mineral content from SEM. Nonetheless, 

findings from this study provides experimental confirmation that fracture toughness indeed depends on 

microscale bone material heterogeneity, and that these relationships are often non-linear. This knowledge 

may aid efforts in determining how age, disease, and interventions may disrupt bone fracture resistance. 
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8. Discussion of changes to fracture resistance-determining bone quality in CKD 

8.1 Summary of dissertation findings 

The primary question motivating this dissertation research was how CKD produces clinically-

observed bone fragility. In this work, bone quality measurements were employed from the whole bone to 

the microscale to assess how fracture resistance-determining bone quality is diminished with CKD. Chapter 

4 established that microscale bone material quality is diminished for bone formed during moderate, high-

turnover CKD for young, skeletally mature mice. Chapter 5 demonstrated that osteocyte lacunae can be 

conveniently and efficiently visualized and analyzed in 3D from images generated by confocal laser 

scanning microscopy. 3D analyses showed that osteocyte lacunae become smaller, more spherical, and 

more sparsely populated with increasing mouse age. Chapter 6 described how aging and CKD together 

reduce bone quality. Deleterious changes to bone microarchitecture as well as whole bone and microscale 

material properties occurred with CKD and generally emerged with increasing age. Chapter 7 explored how 

fracture toughness of the whole bone depends on heterogeneity of microscale cortical bone material 

properties. It was observed that fracture toughness depends on heterogeneity of microscale properties most 

generally including reduced modulus from nanoindentation, and that this negative quadratic relationship 

has a fracture toughness maximum at mid-range values of variability for reduced modulus. 

8.2 Major conclusions 

• Bone material properties are diminished in CKD. In Chapter 4, it was found that microscale bone 

material properties are reduced in bone formed during high-turnover moderate CKD. Specifically, 

nanoindentation modulus and mineral volume fraction were diminished for mice with CKD 

induced via 5/6 Nx compared with sham. In Chapter 6, microscale modulus measured from maps 

spanning the cortical thickness of the femur was lower with CKD from 5/6 Nx in middle-age mice 

compared with sham. Whole bone toughness was also lower in middle-age mice with CKD vs 

sham. Thus, changes to bone material properties with CKD potentially contribute to fragility. 
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• Aging and CKD together deleteriously affect bone quality. As seen in Chapter 4, microscale 

material properties were diminished in young adult mice for bone formed during CKD, while 

cortical and trabecular microarchitecture and whole bone properties were not affected. In Chapter 

6, it was found that the influence of CKD on bone quality increases with advanced age. Changes to 

bone in young adult mice were constrained to few changes in cortical microarchitecture. By middle-

age, mice with CKD had diminished cortical microarchitecture, whole bone mechanical and 

material properties, and microscale material properties. At old age, mice with CKD had diminished 

trabecular and cortical microarchitecture, whole bone mechanical properties, and collagen 

crosslinks. These results suggest that aging and CKD together diminish bone quality such that 

fracture-resistance determining bone quality is worst in old mice with CKD. 

• CKD deleteriously affects both collagen and mineral. In Chapter 4, mineral volume fraction was 

reduced for bone formed during CKD, and cortical total mineral density was lower for CKD vs 

sham. In Chapter 6, cortical total mineral density was reduced in young, middle-age, and old mice, 

while trabecular volumetric mineral density was diminished for CKD vs sham in middle-age and 

old mice. Crystallinity was potentially less variable in middle-age mice with CKD compared with 

sham. Mature skeletal crosslinks were reduced for old mice with CKD vs sham. These changes to 

both collagen and mineral components of bone quality potentially contribute to increased fragility 

in CKD. 

• 3D analysis of osteocyte lacunae does not deliver the same information as 2D geometries from 

images acquired via confocal laser scanning microscopy. Chapter 5 presents a facile, open-source 

method to automatically segment and analyze geometries of osteocyte lacunae from confocal laser 

scanning microscopy z-stacks. Unlike 2D, the 3D measurements allow determination of the size 

and orientation of lacunae regardless of sectioning plane, and also permit exclusion of non-

osteocyte objects (e.g., vasculature). 
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• Osteocyte geometries change with aging in sham mice to become smaller, more spherical, and more 

sparsely populated (Chapter 5). These age-dependent changes to osteocyte geometries are not 

present in CKD, suggesting that altered perilacunar remodeling may have a role in bone quality 

changes in CKD (Chapter 6).  

• CKD alters bone material heterogeneity. These changes to bone tissue heterogeneity may 

deleteriously affect whole bone toughness. In Chapter 4, new bone formed during CKD had less 

variable nanoindentation modulus and more variable mineral volume fraction than sham. In 

Chapter 6, middle-age mice with CKD had less variable nanoindentation modulus and potentially 

less variable crystallinity compared with sham. Heterogeneity of crystallinity was observed from 

multiple linear regression modeling to predict toughness from three-point bending. Thus, changes 

with CKD to bone tissue heterogeneity may diminish bone fracture resistance. 

• Whole bone fracture toughness may depend on heterogeneity of microscale material properties. In 

Chapter 7, fracture toughness was found to depend on microscale material properties and their 

spatial variation in a model of male rats fed a high-fat diet with factors of obesity and exercise. In 

particular, mean mineral:matrix and standard deviation of reduced modulus in lamellar bone were 

predictive of fracture toughness across the model. It was also observed that some aspects of bone 

heterogeneity can have differing meaning depending on other factors. For example, and increase in 

standard deviation of crystallinity in lamellar bone predicts an increase in fracture toughness for an 

exercised rat and yet predicts a decrease in fracture toughness for a sedentary rat.  

8.3 Significance of work  

The body of work described in this dissertation provides evidence that CKD alters bone material 

from the whole bone to the tissue-scale, including material properties and heterogeneity. Previous efforts 

to characterize skeletal outcomes in CKD have inconsistent findings about whether bone material is 

diminished with kidney dysfunction [Iwasaki et al., 2011; Kadokawa et al., 2012; Iwasaki et al., 2015; 

Newman et al., 2014]. The uncertainty about whether material properties are affected by CKD was likely 
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a consequence of measurement methods as well as study animal age. Other studies typically surveyed 

microscale material quality with a smaller number of measurements, either on the periosteal surface or in 

the center of transversely sectioned cortical bone. These studies also involved young adult mice or rats 

[Iwasaki et al., 2011; Kadokawa et al., 2012; Iwasaki et al., 2015; Newman et al., 2014]. The work 

described in this dissertation was unique in mapping the cortical thickness from endocortical to periosteal 

surfaces, and was therefore more likely to detect bone material changes in tissue accrued during CKD. It 

was also found that changes to bone quality with CKD, including material properties, were more 

pronounced for middle-age than young mice.  

Work presented in this dissertation adds to the knowledge of how CKD affects bone quality. In 

addition to demonstrating that material properties are diminished in CKD, it was shown here that both 

collagen and mineral are deleteriously affected by kidney dysfunction. Contrasting other work, we found 

that levels of mature collagen crosslinks were reduced in CKD, but non-enzymatic crosslinks (pentosidine) 

were not affected [Allen et al., 2008]. However, there may be differences between our studies because of 

disease severity. Specifically, the 5/6 Nx model produces moderate CKD while rats studied by Allen et al. 

had relatively severe disease induced by genetic polycystic kidney disease. In earlier work with the same 

rat model, younger rats with less severe disease did not have changes to non-enzymatic crosslinks compared 

with wild type littermates [Newman et al., 2014]. Meanwhile, the mineral changes that we have observed 

are consistent with findings by Iwasaki and coworkers, where mineral:matrix and crystallinity were 

diminished in 16 week old male Sprague-Dawley rats that underwent 5/6 Nx at 12 weeks [Iwasaki et al., 

2015]. The mineral and collagen changes seen in this work and the work of others is consistent with high-

turnover renal osteodystrophy, where the average tissue age and maturation are lower from abnormally high 

rate of bone tissue resorption and deposition. Indeed, in low-turnover CKD, such as produced with 5/6 Nx 

and thyro-parathyroidectomy, mineral:matrix is abnormally high [Iwasaki et al., 2011; Iwasaki et al., 2015]. 

The altered heterogeneity observed in the current work for CKD is also consistent with abnormally 

immature tissue. Specifically, less variable nanoindentation modulus and more variable crystallinity would 

be expected in newly deposited, maturing tissue. Because bone material quality changes occurring with 
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CKD appear well-aligned with bone turnover abnormality, it is clinically-relevant to question if anti-

resorptive medications (i.e., bisphosphonates) might have a role in the management of bone fragility in 

CKD.  However, as discussed in 8.3 and 8.4, anti-resorptive therapies may have serious limitations for 

treatment of CKD, and additional therapeutic interventions, such as those that target the osteocyte, should 

also be evaluated. 

This dissertation also contributes to the field by describing differences to bone quality with CKD 

together with aging. Though most individuals with CKD are elderly, previous studies of rodent models of 

CKD have only involved young rats or mice [Iwasaki et al., 2011; Iwasaki et al., 2015; Kadokawa et al., 

2011; Moe et al., 2014; Allen et al, 2008; Newman et al., 2014]. In Chapter 6, it was found that the influence 

of CKD on bone quality increases with age. Young mice with CKD had few changes to cortical 

microarchitecture. Middle-age mice with CKD had diminished cortical microarchitecture, whole bone 

mechanical and material properties, and microscale material properties. At old age, mice with CKD had 

diminished trabecular and cortical microarchitecture, whole bone mechanical properties, and collagen 

crosslinks. The combined influences of aging and CKD are important for understanding loss of bone 

fracture resistance with kidney dysfunction. Studies in young mice, including the work presented in Chapter 

4, do not consistently observe changes to bone microarchitecture and, not surprisingly, draw disparate 

conclusions about whether changes to bone material or microarchitecture drive bone fragility in CKD 

[Kadokawa et al., 2011; Iwasaki et al., 2015; Newman et al., 2014]. Measurement of bone 

microarchitecture in CKD for young rodents is likely confounded by study animals undergoing skeletal 

maturation during the course of the study. It is possible that skeletal growth may mask loss of bone 

microarchitecture from CKD. The findings for mice that were skeletally mature throughout the study that 

bone material and microarchitecture are both affected by CKD suggests that high-turnover CKD broadly 

reduces bone quality. Further, there were aging-related differences in when particular aspects of bone 

quality were diminished with CKD. For instance, bone material properties were most reduced in CKD for 

middle-age mice, while trabecular microarchitecture and collagen crosslinks were diminished by CKD in 

old mice. There may be differences in disease severity resulting from how young, middle-age, and old mice 
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respond to 5/6 Nx. However, aging is also seen to reduce bone material and microarchitecture, and thus the 

effects of aging and CKD appear to be additive. These findings may be important for understanding why 

patients with CKD demonstrate increasing prevalence of bone fragility with age [Naylor et al., 2014].  

This work provides the first description that aging changes osteocyte geometries in cortical bone. 

Previous work has suggested that 2D osteocyte lacunae may become smaller with aging in trabecular but 

not cortical bone for C57Bl/6 mice [Lai et al., 2015]. The results of Chapter 5 demonstrate that osteocyte 

lacunae become smaller, more spherical, and less populated in aging for cortical bone from C57Bl/6 mice. 

Importantly, we observe these changes in 3D and not in 2D, potentially explaining why these results have 

not been previously observed by other researchers. Findings that age-related changes to osteocyte lacunae 

do not occur in CKD are also novel, suggesting that perilacunar remodeling may have a role in bone quality 

changes in CKD. As considered in the following ‘Future Directions’, the role of the osteocyte in mediating 

local bone quality changes in aging and CKD is intriguing. A number of therapeutic agents (e.g., TGF-β 

inhibitors, PTH, glucocorticoids) act on the osteocyte and can regulate perilacunar remodeling to affect 

bone material quality.  

Another purpose of Chapter 5 was to share a method with the orthopaedic research community to 

conveniently and efficiently assess 3D osteocyte lacunae. This method allows use of common confocal 

laser scanning microscopy and Matlab-based segmentation to visualize and analyze 3D osteocyte lacunar 

geometries. This work demonstrated that 3D metrics are not well approximated by 2D analogs. It is 

anticipated that this method will be useful for understanding the role of the osteocyte and perilacunar 

remodeling for many physiological states (e.g., lactation, hibernation), diseases (e.g., CKD and other 

metabolic diseases), and therapeutic interventions (e.g., glucocorticoid therapy, TGF-β inhibitors). 

This dissertation work has a substantial focus on bone material heterogeneity. The work is unique 

in exploring whether heterogeneity in material is affected by CKD. Site-matched microscale material 

property assessment in arrays spanning the cortical thickness allowed evaluation of heterogeneity of 

microscale material properties in Chapter 4 and Chapter 6. It was observed in both studies that CKD altered 

bone microscale material heterogeneity. Furthermore, in Chapter 6, toughness of the whole bone depended 
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on heterogeneity of crystallinity. This altered heterogeneity is part of the constellation of bone quality 

effects from CKD. Therefore, restoring normal heterogeneity may be considered a therapeutic outcome. 

This work is not alone in considering that properties related to toughness may be influenced by 

heterogeneity. Makowski and coworkers evaluated how heterogeneity in Raman chemistry explained 

fracture toughness in aging human cortical bone [Makowski et al., 2015]. However, heterogeneity in 

individual measures (e.g., mineral:matrix, carbonate:phosphate, crystallinity) did not explain more than 

11% of the variance in fracture toughness. Principal components analysis from whole spectra provided a 

somewhat better prediction of fracture toughness [Makowski et al., 2015]. Granke and coworkers used 

NMR and reference point indentation (RPI) to search for meaningful predictors of fracture toughness 

[Granke et al., 2015]. Multiple linear regression models including pore water and RPI stiffness were most 

predictive of crack initiation toughness. Another model, including total mineral density from microCT, 

pentosidine measured by HPLC, and cortical porosity was also predictive of fracture toughness [Granke et 

al., 2015]. Importantly, neither of these efforts extended measurements of microscale heterogeneity to both 

bone chemistry (e.g., Raman mineral:matrix, crystallinity) and material response to mechanical loading 

(e.g., nanoindentation modulus). This gap in the knowledge is critical because the tissue-scale bone 

toughening mechanisms could be affected by size, organization, structure, and content of mineral, as well 

as domains of differing modulus that are determined in part by these chemical and compositional features. 

The current work approached these questions through mapping measures of microscale material 

heterogeneity including bone chemistry and nanoindentation modulus on femurs for which notched fracture 

toughness values were obtained. The negative quadratic relationships seen between the standard deviation 

of reduced modulus and mean mineral:matrix with fracture toughness in lamellar bone suggests that tough 

bone has a “sweet spot” of microscale material properties that can be potentially be disrupted by age, 

disease, or interventions. Interestingly, heterogeneity of other measures, such as crystallinity, were 

predictive of fracture toughness but the direction of the effect depended on whether rats were exercised or 

sedentary. These findings support previous observational and computational efforts that suggested fracture 

toughness depends on microscale heterogeneity, and adds to this understanding through describing 
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relationships between fracture toughness and specific material properties as well as their dependencies on 

exercise and obesity. 

8.4 Future directions 

8.4.1 Treatment of bone quality loss in CKD 

An important future direction is to assess how bone quality loss in CKD responds to therapeutic 

treatment. In Chapter 4, it was observed that young mice with CKD induced via 5/6 Nx have loss of bone 

material quality (lower nanoindentation modulus and mineral content) in bone formed during CKD. Then, 

in Chapter 6, it was observed that diminished cortical and trabecular microarchitecture, microscale material 

properties, and collagen crosslinking emerge with advancing age. Altered microscale bone material 

heterogeneity was also observed for young mice in Chapter 4 and middle-age mice in Chapter 6. 

Bisphosphonate treatment has been considered for patients with CKD [Allen et al., 2017]. This treatment 

is conventionally used for management of loss of bone mass in osteoporosis through reduction of osteoclast-

mediated bone turnover. It is possible that the diminished microarchitecture observed with high turnover 

CKD in the work presented herein could benefit from reduction of turnover with bisphosphonate therapy. 

However, by reducing bone turnover, bisphosphonates can also lead to adynamic bone and associated bone 

fragility [Gourion-Arsiquaud et al., 2010; Allen et al., 2008; Mashiba et al., 2000]. Some work has been 

conducted on the efficacy of bisphosphonates in preventing bone quality loss in CKD. In a polycystic model 

of CKD in rats, bisphosphonate therapy restored trabecular microarchitecture, but did not restore whole 

bone mechanical properties of cortical bone [Moe et al., 2014]. Given that bisphosphonates may have 

consequences to systemic mineral homeostasis and may burden failing kidneys, further evaluation of 

bisphosphonates on short- and longer-term bone outcomes including bone material quality is necessary. 

Other therapeutic interventions, such as may target the osteocyte and are discussed in the next points, should 

also be considered. 

8.4.2  Influence of aging on osteocyte perilacunar remodeling 

In Chapter 5, it was observed that osteocyte lacunae become smaller, more spherical, and more 

sparsely populated with increased age in male C57Bl/6 mice. This observation suggests that osteocyte 
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perilacunar remodeling may change in the aging process. It is not clear why osteocyte morphologies change 

with aging. Candidate explanations include compensation for loss of bone structural integrity with aging, 

response to changing in aging to mineral homeostasis, or perhaps consequence of osteocyte senescence. In 

these possibilities, changes to perilacunar remodeling could be compensatory and improve bone quality 

local to the osteocyte, or deleterious and worsen local bone quality.  Further work is necessary to identify 

how changes in osteocyte lacunar geometries with age correspond with bone material quality and whole 

bone fracture toughness. Perilacunar remodeling requires TGF-β and downstream targets (e.g., MMP13), 

and has been seen to be mediated by PTH signaling in exercise [Alliston et al., 2004; Gardinier et al., 2016]. 

Thus, in identifying the role of perilacunar remodeling in bone quality changes in aging, new therapeutic 

targets that act on the osteocyte may be revealed. 

8.4.3 Influence of CKD on osteocyte perilacunar remodeling 

The changes to 3D osteocyte lacunar geometries with increasing age in sham mice were not 

observed for aging mice with CKD. Accordingly, it is of interest whether perilacunar remodeling is affected 

by CKD. The osteocyte is known to participate in systemic mineral homeostasis in CKD through elevated 

expression of FGF-23 [Stubbs et al., 2006]. If the osteocyte participates directly in liberating mineral from 

surrounding bone matrix, high-turnover type changes to bone quality (e.g., immature, hypomineralized, and 

less stiff tissue) could occur outside of osteoclast - and osteoblast - mediated remodeling. This hypothesis 

is consistent with the observation of Moe and coworkers that cortical bone properties were not restored 

with bisphosphonate treatment in a rat model of CKD [Moe et al., 2014]. Further work is needed to identify 

how material properties local to osteocyte lacunae change in CKD. As discussed in 8.4.2, osteocytic 

perilacunar remodeling is sensitive to TGF-β, the availability of MMP-family proteases, and PTH, which 

could serve as attractive targets. 

8.4.4 Mechanistic determination material heterogeneity contributions to bone toughening mechanisms 

In work presented in this dissertation, heterogeneity of bone material was seen to influence whole-

bone measures of toughness. In Chapter 4, newly formed bone in CKD had lower standard deviation of 

microscale modulus from nanoindentation and higher standard deviation of mineral volume fraction 
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compared with the same regions in sham mice. In Chapter 6, middle-age mice with CKD had lower whole-

bone toughness from three-point bending, and also had lower standard deviation of microscale modulus 

and possible less variable crystallinity. In multiple linear regression modeling, heterogeneity of crystallinity 

was predictive of whole-bone toughness. Then, in Chapter 7, heterogeneity of reduced modulus from 

lamellar bone was generally predictive of fracture toughness, while heterogeneity of other terms (e.g., 

crystallinity) depended on experimental factors such as exercise. A compelling next question is how small-

scale toughening mechanisms are specifically affected by heterogeneity of material. Bone is known to have 

a rising r-curve; cracks propagate with lower resistance before ~ 100 µm in size, and then encountering 

structural features (e.g., osteons, lamellar boundaries, and vasculature) that cause crack deflection and 

toughen bone [Koester et al., 2008]. Yet it is not known at the micrometer to nanometer length scales how 

heterogeneity of mineralized collagen fibrils (i.e., variance in mineral size and orientation, as well as 

collagen crosslinking) influences energy dissipation at the crack tip or crack wake. This question may be 

best explored with computational methods, where collagen and mineral components are systematically 

varied. Experimental work may allow high resolution imaging of cracks within the mineralized tissue 

composite, but it is challenging to obtain appropriately high resolutions in environmental SEMs to measure 

mineralized collagen fibrils without dehydrating bone and potentially altering crack morphologies. The 

impact of this question is to further understand how heterogeneity specifically affects fracture toughness so 

that the roles of aging, disease, exercise, and therapeutics on bone quality can be more completely 

understood. 
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