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Abstract. Buildings account for over 70% of the electricity use in the US. As cities
grow, high peaks of electricity consumption are becoming more frequent, which leads
to higher prices for electricity. Demand response is the coordination of electrical loads
such that they react to price signals and coordinate with each other to shave the peaks
of electricity consumption. We explore the use of multi-agent deep deterministic policy
gradient (DDPG), an adaptive and model-free reinforcement learning control algorithm,
for coordination of several buildings in a demand response scenario. We conduct our
experiment in a simulated environment with 10 buildings.

1. Introduction

Buildings account for over 70% of the electricity use in the US [1], and increasing the degree of
electrification in urban areas can help decrease carbon emissions [2]. Renewable energy resources can
help reduce our need for fossil fuels, and distributed generation has the potential to make buildings less
dependent on the electrical grid. However, integration of renewable energy resources has certain
challenges regarding grid stability and security of supply. Demand response can help buildings play an
active role in the generation and storage of electricity by increasing demand flexibility. Demand
response programs must also allow the coordination of multiple buildings such that the net energy peaks
are not only shaved but shifted. Model-based control approaches, such as Model-Predictive Control
(MPC), can achieve good performance at the cost of investing resources to develop the models.
However, buildings are dynamic energy systems, in constant change due to diverse factors, e.g.,
refurbishment measures, installation of PV panels, changes in the energy supply, or variations in
consumption patterns. Furthermore, wholesale electricity prices depend on a wide variety of factors,
many of which change over time and are difficult to model and predict accurately. Also, it may not be
feasible to model many systems due to their level of complexity.

Adaptive model-free control approaches, such as reinforcement learning, have the potential to
overcome these challenges, as they can constantly learn from, and adapt to, their changing environment.
These control approaches minimize any biases that may occur at the model-development stage and can
directly learn from historical data and be better suited to control complex environments for which a
model would be too expensive to develop. Reinforcement learning (RL) has been used in the past to
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control building energy systems [3] and other urban energy systems. However, the use of multi-agent
RL in urban energy systems for demand response purposes is still widely unexplored [4].
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Figure 1: Dynamic coordination among buildings in demand response.

In this research, we explore the use of reinforcement learning (RL), an adaptive and potentially
model-free control algorithm, for multi-agent coordination of several buildings in a demand response
scenario. Specifically, we implement the multi-agent deep deterministic policy gradient (MADPG) [5],
a state-of-the-art RL algorithm, which is superior to standard Q-learning RL, and has the advantages of
being model-free and the ability to learn from historical data. Building on our previous work [6][7], we
implement this controller in a simulated case study of 10 buildings with storage devices, and variable
demand-dependent electricity prices. Outdoor temperatures, state of the charge, hour of the day, prices
of electricity are used as states by the controllers.

2. Methodology

Reinforcement learning (RL) is formalized using a Markov Decision Process (MDP). MDPs contain: a
set of states S, a set of actions A, a reward function R: S X A and transition probabilities between the
states P: S X A X S €[0,1]. The policy 7 represents a mapping between states and actions, w: S A4,
and the value function V™(s) is the expected return for the agent when starting in the state s and
following the policy 7, i.e.,

V() = ) m(s,0) ) B[Ry +yV(s)] )

a

where R¢,, which can be denoted as r (s, a), is the reward obtained after taking an action a = m(sy),
and transitioning from the current state s to the next state s’, and y € [0,1] is a discount factor for future
rewards. An agent that uses y = 1 will consider future rewards as important as current rewards, whereas
for y = 0, greater values are assigned to states that lead to high immediate rewards. RL is particularly
useful when the model dynamics (P and R) are unknown and must be estimated through interaction of
the agent with the environment (as depicted in Figure 2). There are two approaches that can be used to
determine the values V7 of every state:

e A model-based approach, in which the rewards and transition probabilities of the model are first
learned, and then used to find the values by solving iteratively the system of equations
represented by Equation (1).

e A model-free approach, the agent learns the values associated to every (s,a) pair without
explicitly calculating the transition probabilities or the expected rewards [8][9].

Q-learning is the most widely used model-free RL technique due to its simplicity [10]. For tasks

with small finite state sets, all the different transitions can be represented with a table that stores the
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state—action values, or Q-values. Each entry in the table represents a state—action tuple (s, a), and the
Q-values are updated as

Q(s,a) < Q(s,a) + a[r(s,a) + y max, Q(s',a) — Q(s, a)] (2)

where s’ is the next state, and a € (0,1) is the learning rate, which explicitly defines to what degree
new knowledge overrides old knowledge. For & = 0, no learning happens, while for ¢« = 1, prior Q-
values are completely overridden by the new Q-values in every iteration.

2.1. Deep deterministic policy gradient

In order to control complex environments that have many continuous states and actions, tabular Q-
learning is not useful, as it faces a problem that becomes non-tractable due to the curse of dimensionality.
Other RL algorithms, such as the deep deterministic policy gradient (DDPG), are better suited for these
types of problems. DDPG is an actor-critic method, which uses two deep artificial neural networks
(DNN) to generalize across the state-action space. The actor network maps the current states to the
actions that it estimates to be optimal. Then, the critic network evaluates those actions by mapping them,
together with the states under which they were taken, to the Q-values, as Figure 2 illustrates. The Q-
values represent the expected cumulated sum of the discounted rewards after taking an action under a
certain state and following the greedy policy thereafter.

Critic network Actor network

St+1

rt+1

Figure 2: Agent-environment interaction, and actor and critic networks in reinforcement learning.

The critic network is updated by fitting the Q-values calculated from Eq. 2 with ¢ = 1, and
minimizing the loss between the Q-values and their predictions (Eq. 3). While the actor network is
updated using the gradient of the Q-function with respect to the parameters of the actor network as Eq.
4 represents.

L(6%) = 7Y (Q(s:, alf?) - y? 3)

Vep,] = %ZVaQ(S, aleQ)Is=si, a= M(S{+])|6Q = %ZVaQ(S, aleQ)Iszsi,az].L(si) VGPM(Sleu)lsi (4)

2.2. Multi-agent coordination

Every building has its own chilled water tank and heat pump, as depicted in Figure 3. The heat pumps
provide cooling energy to the water tanks, which satisfy the cooling loads of the buildings. If the tank
cannot meet the cooling load of the building, the heat pump provides the extra cooling energy to ensure
that the temperature set point of the building is always met. The temperature set points of the buildings
are assumed to be constant. The heat pumps consume electricity from the power grid, and the price of
electricity increases linearly with the total electricity demand of all the buildings. Therefore, the
objective of the controllers is to reduce their cost of electricity by avoiding consuming too much
electricity simultaneously and consuming less energy.
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Every building has its own RL-DDPG controller, and there are as many agents or controller as
number of buildings (10 of them in this case). Two different RL controllers were simulated: a DDPG
controller, and its multi-agent variant MADPG. In DDPG, every agent only knows its own states and
actions, while in MADPG, every agent also knows the states of all the other agents. As states we used
the hour of the day, the outdoor temperature, and the state of charge in every chilled water tank.
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Figure 3: Implementation of MADPG in a simulated demand response scenario.

Space cooling is generally done by consuming electricity and in hot climates such as Austin, TX,
cooling causes the highest annual peaks in electricity use and prices. Therefore, in this study we have
focused on controlling only the cooling devices of 10 buildings in Austin, TX, over the summer period
(June-August), and with no prior knowledge of the system for the controller. Regarding the
computational load, the simulation with the reinforcement learning controller lasted about 40 minutes
(CPU: i7-6700 K 4.0 GHz, RAM: 64.0 GB).

The actions of the controller are the energy they store or release in every hourly interval. The energy
demand of the buildings is simulated with CitySim, a building energy simulator for urban scale analysis,
while the electricity prices increase linearly with the total electricity demand. Buildings have diverse
characteristics, energy consumption patterns, and diverse generation or storage devices such as heat
pumps, and water tanks. Furthermore, we have developed our simulation environment as an OpenAl
Gym Environment [11], which increases standardization, reproducibility of the results, and makes RL
algorithms easier to implement. Many environments in which RL algorithms are tested for
benchmarking purposes use this format.

3. Results

We used the total cost of cooling as the performance metric to evaluate the controllers. As Figure 4
illustrates, we compare the DDPG and MADPG controllers with two rule-based controllers (RBC). One
is a standard rule-based controller that cools the water in the tank once it reaches a maximum temperature
threshold, while the other RBC has been manually tuned to minimize the total cost of electricity. Both
the DDPG and the MADPG outperformed the standard RBC. This improvement in performance
happened without the need for modelling any of the systems being controlled and maintaining the
adaptive potential of RL. The manually optimized RBC performed better than both the DDPG and the
MADPG controllers, although it was relatively easy to tune because all the buildings had very similar
energy systems. As the complexity of these environment increases, with the addition of PV panels,
batteries, use of appliances, and energy storage in the thermal mass of the buildings, we expect that the
DDPG and MADPG would outperform any RBC [7]. More complex systems would require a more
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detailed understanding of their behavior, and possibly modelling them, which could be avoided by using
RL.

As Figure 4 shows, in this environment the MADPG controller did not seem to have any advantage
over the DDPG controller. Therefore, sharing information among the agents did not led to any
improvements in performance. This would mean that no attempt for coordination needs to be made,
while similar savings can be realized. It remains to be researched further whether this is also the case in
a more complex environment with more diverse energy systems to control, and in which buildings may
have very different optimal policies.
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Figure 4: Total cost of cooling for 10 buildings under the weather conditions of Austin, TX.

The 10 buildings were simulated for the Summer period (June-August), and Figure 4 illustrates the
results of the last month of this period, after the algorithm had spent 2 months learning by interacting
with its environment using a tradeoff between taking exploratory actions and exploiting the actions that
it considers to be optimal. We observed that after learning for a month, the RL controllers were already
able to improve their performance significantly over the RBC.

4. Conclusion

Demand response enables buildings and other urban energy systems to respond to price signals when
they consume electricity from the power grid. As a result, urban energy systems can coordinate with
each other to consume energy more efficiently and avoiding consuming it simultaneously.
Reinforcement learning control methods, such as DDPG and its multi-agent variant MADPG, can
effectively coordinate urban energy systems in an adaptive way and without the need for developing
any models. Its model-free nature and adaptive capabilities makes RL-based control methods
particularly advantageous to control systems that are in constant change, such as buildings, or for which
developing a model is too costly or difficult.

In this research, we have shown how ten RL controllers were able to learn from their respective
buildings and their surrounding neighbors and achieve successful coordination to reduce their cost of
electricity for cooling. Our future research will focus on increasing the complexity of these urban energy
systems, by adding PV panels, batteries and energy storage in the thermal mass of the buildings, in order
to prove how RL is most advantageous in more complex environments.
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Finally, we are currently working on publicly releasing the OpenAl Gym environment of these urban
energy systems with the aim of increasing standardization, reproducibility of the results, and
encouraging other researchers to design their RL controllers for demand response applications.
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