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Abstract
Understanding plant-microbe relationships can be important for developing management

strategies for invasive plants, particularly when these relationships interact with underlying

variables, such as habitat type and seedbank density, to mediate control efforts. In a field

study located in California, USA, we investigated how soil microbial communities differ

across the invasion front of Taeniatherum caput-medusae (medusahead), an annual grass

that has rapidly invaded most of the western USA. Plots were installed in habitats where

medusahead invasion is typically successful (open grassland) and typically not successful

(oak woodland). Medusahead was seeded into plots at a range of densities (from 0–50,000

seeds/m2) to simulate different levels of invasion. We found that bacterial and fungal soil

community composition were significantly different between oak woodland and open grass-

land habitats. Specifically, ectomycorrhizal fungi were more abundant in oak woodlands

while arbuscular mycorrhizal fungi and plant pathogens were more abundant in open grass-

lands. We did not find a direct effect of medusahead density on soil microbial communities

across the simulated invasion front two seasons after medusahead were seeded into plots.

Our results suggest that future medusahead management initiatives might consider plant-

microbe interactions.

Introduction

Plant communities are typically composed of a combination of native and non-native species.
The majority of these non-native species are benign, demonstrating little to no negative effect
on neighboring organisms. However, a small fraction of these non-native plants are character-
ized as invasive because they are able to profoundly modify local plant and animal communi-
ties, nutrient cycling, hydrological regimes and fire frequency [1–2]. Not only do these impacts
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erode biodiversity and devalue ecosystem services, but they can also enhance further invasion
by con- and heterospecific exotics (e.g. [3]).

Soil microbial communities might mediate relationships between invasive plant species and
their ecosystem impacts [4–6]. Soil microbial communities, which are typically dominated by
fungi and bacteria, can be altered by invasive plants directly through growth facilitation or inhi-
bition near the root zone [7], and indirectly through changes in abiotic conditions (e.g. pH or
nutrient availability) that occur in tandem with weed establishment [8]. For example, species-
specific effects of non-native grasses on soil nutrients have been shown to subsequently modify
soil microbial community composition, biomass, and bacterial:fungal ratios [9]. In addition to
being vulnerable to impacts from aboveground plant dynamics, soil microbial communities
may also play an important role in mediating the success of plant invasions [4]. For example,
extant soil biota have been shown to enhance invasion success of some of the world’s most nox-
ious invasive plants, such as exotic knotweeds (Fallopia spp.) [10]. In general, it has been con-
cluded that invasive speciesmay be differentially affected by soil bacterial or fungal pathogens
as compared to native plant species [11, 8], but see [12], which could be important for develop-
ing reliable control strategies for invasive plants that demonstrate resistance to current man-
agement efforts.

The invasive annual winter grass medusahead (Taeniatherum caput-medusae [L.] Nevski)
has invaded much of the western USA and has been shown to decrease soil carbon stocks,
reduce native plant diversity, and enhance fire frequency [13]. A recent meta-analysis of medu-
sahead control outcomes in annual grassland and intermountain regions identified large
variance in the effectiveness of conventional approaches for managing medusahead [14], sug-
gesting that underlying variables, such as habitat type and seedbank density, might mediate
control efforts. Despite increasing recognition that bacterial and fungal communities can influ-
ence plant invasion dynamics, only two published studies have investigated the direct relation-
ship betweenmedusahead and soil microbial communities [15–16]. These studies have
conflicting results, suggesting both that the interaction betweenmedusahead and soil microor-
ganisms might or might not enhance its own invasion. Understanding medusahead effects on
the soil microbial community is critical for enhancing predictions of invasion effects and for
developing effectivemanagement strategies.

We investigated how soil microbial communities differ across the invasion front of medusa-
head in experimental plots in open grassland and oak woodland habitat in the Sierra Foothill
region of California, USA.We attempted to understand (1) if medusaheadmodifies soil micro-
bial communities across the invasion front (simulated by differences in seed density) within
systems; and (2) how soil microbial communities differ between areas where medusahead inva-
sion is successful (open grassland habitat) and not successful (oak woodland habitat), and the
factors that could be responsible for these differences.We hypothesized that medusahead
would modify the soil microbial communities within each habitat. We expected this for two
reasons. First, early work on this species [15], as well as more recent work on other invasive
annual grasses with similar invasion dynamics to medusahead, have demonstrated linkages
between the soil microbes and invasion success [17]. Second, plant-soil interactions are com-
mon in the savannah/oak woodlands of California [18], so we would expect strong effects from
the extant soil microorganisms.We also hypothesized that soil microbial communities (in par-
ticular symbiotic and pathogenic fungi) would differ between areas where medusahead inva-
sion is typically successful (open grasslands) and typically not successful (oak woodlands). In
California, invasion of winter annual grasses can be strongly limited within oak canopies [19],
possibly due to the different microbial communities associated with oak trees compared to
adjacent open grasslands [20–21]. Through shading, litter input, and hydraulic lift, Mediterra-
nean oak trees can also modify a wide variety of soil edaphic factors, such as pH and organic
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matter concentrations, which directly influence soil microbial communities (e.g. [22]). At pres-
ent, we do not know what role, if any, soil microbial communities play in mediating the likeli-
hood of successful medusahead invasions.

Materials and Methods

Study site and experiment

The study site was located on a research reserve in Yuba County, California (39°140N, 121°
180W), which experiences a Mediterranean climate of hot, dry summers and cool, wet winters.
Permission to perform this experiment was granted by the owner of the property, the Univer-
sity of CaliforniaDivision of Agriculture and Natural Resources. The field study did not
involve endangered or protected species.

Mean annual precipitation is 75cm and mean annual temperature is 17.8°C. Soils at the site
are fine-loamy, mixed, superactive Ultic Haploxeralfs and fine, mixed, superactive Typic Rho-
doxeralfs. Soil pH ranges between 5.7 and 6.2. The experiment is located in an annual grassland
system that is irregularly interrupted by small patches of winter-deciduous blue oak (Quercus
douglasii), and evergreen interior live oak (Q. wislizeni) that provide approximately 40% shade.
The area has experienced seasonal low intensity grazing by livestock since the 1960’s.

The experimental set-up is described fully in [19, 23]. Briefly, plots (1m2, separated by 2m)
were installed in open grassland habitat and paired oak woodland habitat. The two habitats dif-
fer in the identity of dominant herbaceous species and the presence of leaf litter [19]. Average
soil temperatures and soil moisture in the top 5cm of soil were also lower in oak woodland
plots (18.4°C and 1.6%, respectively) compared to open grassland plots (22.2°C and 6.4%,
respectively).

The experimental site was mowed, solarized to enhance seedbank germination and then
sprayed with glyphosate herbicide to kill existing and newly germinated plants. In September
2013, fully replicated (n = 4) plots were hand seededwith one of five densities of field-collected
medusahead (0, 100, 1000, 10000, and 50000 seeds/m2), mixed in with 500 grams of medusa-
head thatch. Immediately following the addition of medusahead seed, 6,000 seeds each of
neighboring grass species (annual rye, and Blando brome) and 4,000 seeds of a clover mix were
added—for a total of 16,000 neighbor seeds—tomaintain a realistic competitive environment.
Medusahead tiller density the following season reflected the seeding rate. This treatment was
expected to simulate differences in medusahead invasion intensity from low to high infestation
[24].

A defoliation treatment was applied to half the plots in April 2014. This treatment was
intended to simulate a mowing or grazing regime included in a typical management program.
Defoliation was applied when 75% of the medusahead tillers were in the ‘boot’ stage within a
plot. All standing biomass in treatment plots was clipped using electronic shears positioned
approximately 15cm above the soil surface.

To understand how factors associated with the oak woodland habitat might contribute to
medusahead invasion, an additional set of replicated 1m2 plots were installed in the open grass-
land sites. Treatments were deployed in order to simulate environmental factors associated
with the oak woodland habitat, and included the presence of shading, the presence of oak litter,
and the presence of both shading and litter. Shading was applied via 50% shade cloth sus-
pended over the plots, and litter was applied by collecting 500g of litter from under paired oak
canopies and distributing it evenly over treatment plots. Medusahead seeds (at a density of
50000 seeds/m2) were then introduced to these plots.
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Soil sampling

In April 2015, we collected surface soil cores (7cm depth), where the majority of fungal and
biomass is present [25] in four random locations in each plot. Soil from each plot was mixed
together in the field, sieved and placed in a plastic bag. Soil samples were frozen in the field and
transported at -20°C to the University of Colorado, Boulder for microbial analyses.

Molecular analyses

Microbial diversity was assessed using high-throughput sequencingmethods to describe the
composition of taxonomic marker gene sequences. For bacterial analyses, we sequenced the V4
hypervariable region of the 16S rRNA gene, using the 515-F (GTGCCAGCMGCCGCGGTAA) and
806-R (GGACTACHVGGGTWTCTAAT) primer pair [26]. For the fungal analyses, we sequenced
the first internal transcribed spacer (ITS1) region of the rRNA operon, using the ITS1-F
(CTTGGTCATTTAGAGGAAGTAA) and ITS2 (GCTGCGTTCTTCATCGATGC) primer pair [27].
The primers included Illumina adapters and an error-correcting 12-bp barcode unique to each
sample. PCR products were quantified using the PicoGreen dsDNA assay, and pooled together
in equimolar concentrations for sequencing on an IlluminaMiSeq instrument. All sequencing
runs were conducted at the University of ColoradoNext Generation Sequencing Facility.

Reads were demultiplexed using a custom Python script (https://github.com/leffj/helper-
code-for-uparse), with quality filtering and phylotype clustering conducted using UPARSE
[28]. For quality filtering, we used a maxee value of 0.5 (that is, a maximum of 0.5 nucleotides
incorrectly assigned in every sequence). Singleton sequences were removed prior to phylotype
clustering. Quality filtered sequence reads were then mapped to phylotypes at the 97% similar-
ity threshold. Phylotype taxonomy was assigned using the RibosomalDatabase Project (RDP)
classifier with a confidence threshold of 0.5 [29] trained on the 16S rRNA Greengenes database
[30] or the ITS rRNA UNITE database [31], for bacteria and fungi respectively. Sequences rep-
resenting any phylotypes unclassified at the domain level or classified as mitochondria, chloro-
plasts, archaea or protists were removed. Subsequently, we removed potential contaminants
(i.e. phylotypes with abundances greater than 1% in the blanks and no-template controls [32]),
and we normalized the sequence counts using a cumulative-sum scaling approach [33]. We
used FUNGuild to identify fungi functional guilds [34]. Soil sample information, phylotype
abundance tables, and bacterial and fungal representative sequences are publicly available in
FigShare (10.6084/m9.figshare.3113125).

Statistical analyses

Soil microbial community similarity patterns were represented by non-metricmultidimen-
sional scaling (NMDS) using the Bray-Curtis distance metric.We used nested analysis of vari-
ance (ANOVA) and permutational multivariate analysis of variance (PERMANOVA) based
on 1,000 permutations [35] to assess the explanatory power of the different treatments on soil
microbial richness and community similarity patterns, respectively. Differences in the propor-
tion of taxa and fungal functional guilds were tested using non-parametricWilcoxon tests after
false discovery rate (FDR) correction [36]. All multivariate statistical analyses were imple-
mented in the R environment (www.r-project.org) using the vegan package (vegan.r-forge.r-
project.org).

Results

The total number of phylotypes across all soil samples was 5604 and 4349, for bacteria and
fungi respectively (S1 Fig). The average number of phylotypes per soil sample was 1781 and
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687, for bacteria and fungi respectively. Oak woodland soil samples tended to harbor more bac-
terial and fungal phylotypes than open grassland samples (although the differences were not
statistically significant; ANOVA P> 0.05; Fig 1A and 1B respectively; see S2 Fig for Shannon
diversity). Both bacterial and fungal soil community composition were significantly different
between open grasslands and oak woodlands (PERMANOVA R2 = 0.24, P< 0.001, R2 = 0.28,
P< 0.001, respectively; Fig 1C and 1D respectively). Bacteria from the proteobacterial classes
alpha, beta, gamma and delta, and Acidobacteria subgroup 6 as well as fungi from the Pezizo-
mycetes, Agaricomycetes and Eurotiomycetes classes were more abundant in oak soils than
in grassland soils (Wilcoxon test P< 0.01 after FDR; S3 Fig; see S1 Table for results at the
genus level). Acidobacteria from the classes Solibacteres and Acidobacteriia, Spartobacteria,

Fig 1. Observed richness (number of different phylotypes per sample) for bacterial and fungal soil communities (A, B). Community similarity patterns for

bacterial and fungal soil communities using non-metric multidimensional scaling (C, D).

doi:10.1371/journal.pone.0163930.g001
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Planctomycetia and Phycisphaerae, and fungi from the classes Dothideomycetes, Sordariomy-
cetes and Glomeromycetes were more abundant in open grassland soils (Wilcoxon test
P< 0.01 after FDR; S3 Fig; see S1 Table for results at the genus level). As expected from the
contrasted fungal taxonomic composition, oak woodlandswere different from open grasslands
based on the overall abundance of fungal functional guilds (S4 Fig). Ectomycorrhizal fungi (in
particular, species from the Tuber and Tomentella genera) were significantlymore abundant in
oak woodlandswhile arbuscularmycorrhizal fungi and plant pathogens (in particular, Drech-
slera and Fusarium species) were more abundant in open grasslands (Wilcoxon test P< 0.01
after FDR; Fig 2).

We found no significant effects of seed density treatments or clipping treatments on soil
microbial richness (ANOVA P> 0.05 for both bacteria and fungi; Fig 1A and 1B) or microbial
community composition (PERMANOVA P> 0.05 for both bacteria and fungi; Fig 1C and 1D)
within each habitat type. Likewise, for those plots where we simulated the oak environment, we
observedno significant effects of the litter or shade treatments on the richness of soil bacterial
communities (Wilcoxon test P> 0.05; Fig 3A) or bacterial community composition (PERMA-
NOVA P> 0.05; Fig 3C). For fungi, we detectedweak significant effects of litter on richness

Fig 2. Significant differences (Wilcoxon test P < 0.01 after false discovery rate correction) in the abundance of fungal functional guilds

between oak woodland soil samples (green) and open grassland soil samples (blue).

doi:10.1371/journal.pone.0163930.g002
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(Wilcoxon test P< 0.01; Fig 3B) and on fungal community composition (PERMANOVA R2 =
0.09 P< 0.01; Fig 3D).

Discussion

Soil biota has been implicated in the facilitation of invasive plant dominance [5, 37]. However,
not all invasive species support plant-soil microbe feedbacks as a driver of invasion [38–39].
We attempted to identify how relationships between the weedy annual grass medusahead and
soil microorganismsmight mediate invasion success. Unexpectedly, we did not find evidence
for medusahead density effects on the soil microbial communities across a simulated invasion
front in either habitat. This supports other studies that have documented instances where soil
communities are unresponsive to the presence of invasive weeds in arid grasslands [40] and in
other systems [41]. However, several aspects of our experiment could hinder our ability to cap-
ture an existing relationship betweenmedusahead seed density and soil microbial communi-
ties. First, we assessed the relationship betweenmedusahead seed density and bulk soil

Fig 3. Observed richness (number of different phylotypes per sample) for bacterial and fungal soil communities (A, B). Community similarity patterns for

bacterial and fungal soil communities using non-metric multidimensional scaling (C, D).

doi:10.1371/journal.pone.0163930.g003
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microbial communities and not rhizosphere communities. Rhizospheremicrobial communi-
ties are different from bulk soil communities [42], so the potential effects of medusahead inva-
sion intensity on microbial communities may be observable at smaller spatial scales in the
rhizosphere (but see [43]). Second, although this study was conducted across two growing sea-
sons, there may have been insufficient time for soil microbial communities to respond to differ-
ent seed densities of medusahead [44]. Althoughmicrobial communities have been shown to
respond to changes in aboveground plant communities in as little as a month [45], these com-
munities could be especially slow to respond to the presence of weeds in environments where
soil edaphic factors are slow to change in response to invasion. Moreover, in California grass-
lands, soil appears to be particularly buffered from aboveground changes [40]. Third, extracel-
lular microbial DNA and DNA from dead cells can persist in soils for years and thus, obscure
DNA-based present estimates of soil microbial composition [46]. Finally, as this study only
assessed the composition of the microbial communities, we cannot eliminate the possibility
that medusahead seed density can influence the activity and function of belowground soil
communities.

Using reciprocal soil transplant experiments, [47] reported higher medusahead biomass in
introduced soil than in native soil, which suggests that medusahead success is partially due to
release from native soil pathogens [48–49]. In addition to escaping from soil pathogens, certain
plant invasive species have been shown to accumulate local pathogens [11, 49]. Although previ-
ous studies have reported that medusahead is sensitive to antagonistic fungi [50–51], we
observed important differences in bacterial and fungal community composition between open
grassland sites where medusahead is typically found in high densities and oak woodland sites
where medusahead is typically found in low densities. Specifically, we found significantly
higher abundances of fungal pathogens in open grasslands compared to oak woodland habitats.
Environmental conditions in the grassland habitat are likely more ideal for both soil and foliar
fugal pathogens, which can be important drivers of above ground plant dynamics (e.g. [52]).
Indeed, these pathogens have been documented in grasslands in other studies (e.g. [53]). These
results collectively highlight the potential contribution of microbial mechanisms (e.g., via path-
ogen accumulation) to medusahead dominance in California grasslands. Because the differ-
ences in bacterial and fungal communities exist in the absence of medusahead, it is more likely
that favorable grassland soil microbial communities facilitate medusahead establishment
instead of resulting from the invasion itself.

In addition to negative interactions, a large number of plant species establish symbiotic
associations with soil microorganisms (in particularwith mycorrhizal fungi and nitrogen-fix-
ing bacteria, [6, 54]). In this experiment we detected a higher proportion of ectomycorrhizal
fungi in soil samples from oak woodland habitats. This result is expected as ectomycorrhizal
fungi are important to oak trees for acquiring nutrients and for increasing root absorptive area
[18, 55]. Our results also show that oak litter (rather than shade) influence overall soil fungal
community composition and richness, but not soil bacterial community composition and
richness. Although plant litter inputs can change important environmental conditions for soil
bacteria such as pH and base cation content [42], soil fungi are key decomposers of plant
necromass and dependmore directly on leaf litter than bacteria [56]. We also observed a signif-
icantly higher proportion of arbuscular mycorrhizal fungi in open grasslands. Given the gener-
ally non-specific interactions with arbuscularmycorrhizal fungi, it has been proposed that
several invasive plants make use of these fungi to enhance their success [57–60]; but see [61].
Other invasive plants (for example, the garlic mustard Alliaria petiolata) inhibit mycorrhizal
fungi on which natives depend [62]. Collectively, this work suggests that biocontrol and man-
agement initiatives should consider the potentially beneficial plant-microbe interactions rather
than just focusing on antagonistic relationships.
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The context dependency associated with invasion success and weedmanagement efficiency
is well documented for both medusahead as well as other weedy species (e.g. [63]). The pres-
ence and abundance of bacterial and fungal groups potentially underlie this context depen-
dency in several instances. Environmental changes, such as exacerbated drought conditions,
might modify suitability of oak woodland habitat and perhaps enhance invasibility of previ-
ously resistant systems. Therefore, given the complex relationships between aboveground and
belowground biota [64], understanding the potential mechanisms mediating the association
between invasive plant species and soil microorganisms could provide practical information
for developing effectivemanagement strategies, as well as insight into the ecology of plant-soil
food webs and diversity.

Supporting Information

S1 Fig. Sample-basedphylotype accumulation curves for bacterial and fungal soil commu-
nities.
(EPS)

S2 Fig. Shannon diversity for bacterial and fungal soil communities (A, B).Differences
between open grassland samples and oak woodland samples were statistically significant
(ANOVA P< 0.05).
(EPS)

S3 Fig. Significant differences (Wilcoxon test P< 0.01 after false discovery rate correction)
in the abundance of bacterial and fungal classes between oak woodland soil samples
(green) and open grassland soil samples (blue).
(EPS)

S4 Fig. Abundance of fungal functional guilds between oak woodland soil samples (green)
and open grassland soil samples (blue).Note that the y axis is squared.
(PDF)

S1 Table. Significant differences (Wilcoxon test P< 0.01 after false discovery rate correc-
tion) in the abundance of bacterial and fungal genera between oak woodland soil samples
and open grassland soil samples.
(DOCX)
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