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As modern datasets continue to grow in size, they are also growing in complexity. Data are

more often being recorded using multiple sensors, creating large, multidimensional datasets that are

di�cult to analyze. In this thesis, we explore methods to accelerate low-rank recovery algorithms

for data analysis, with an emphasis on Robust Principal Component Analysis (RPCA). We also

develop a tensor-based approach to RPCA that preserves the inherent structure of multidimensional

datasets, allowing for improved analysis. Both of our approaches use nuclear-norm regularization

with Burer-Monteiro factorization (or higher-order generalizations thereof) to transform convex but

expensive programs into non-convex programs that can be solved e�ciently. We supplement our

non-convex programs with a certificate of optimality that can be used to bound the suboptimality

of each iterate. We demonstrate that both of these approaches allow for new applications of RPCA

in fields involving multidimensional datasets; for example, we show that our methods can be used

for real-time video processing as well as the analysis of fMRI brain-scans. Traditionally, these tasks

have been considered too demanding for low-rank recovery algorithms.
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Introduction

A single MRI scan of a patient’s brain produces over fifty-million data points, representing

four dimensions of neurological activity. These images contain a wealth of knowledge that could lead

to a diagnosis, improved treatments, or a better understanding of the human brain, but much of this

information is clouded by noise. Problems like these are ubiquitous, accompanying large-scale data

analysis in fields as diverse as machine learning, genome sequencing, and video processing. Low-rank

recovery algorithms attempt to extract patterns and detect outliers in these data sets; representing

the data as a matrix and using the well-studied tools of linear algebra to decompose the matrix into

meaningful components. Robust Principal Component Analysis (RPCA) is a famous example of

these matrix-decompositional algorithms, and since its introduction in 2009, it has become widely

used as a method for natural language processing, facial recognition, and background subtraction,

just to name a few of its numerous applications [17].

While matrix-based models are powerful tools for data analysis, they are being increasingly

challenged by the growing size and complexity of modern datasets. Less than a decade earlier, a

dataset would generally contain information from a single sensor, or a single spatial dimension, or

a single trial of an experiment [58]. Today, it is easy for researchers to collect and store datasets

from multiple sources on a single machine. A single fMRI scan, for example, records information for

three dimensions of space over time, yielding an enormous four-dimensional dataset. It is natural to

expect data-analytic algorithms to progress to be able to use the structure of these multidimensional

datasets to their advantage and discover deeper patterns in the data. However, this is currently

not the case.
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The size of these multidimensional datasets makes matrix-based methods, which are often

notoriously slow [27], impractical. Furthermore, all matrix-based algorithms inherently assume that

the data is best represented in a two-dimensional structure, which is often untrue. In this thesis, we

explore solutions to both of these problems. In Chapter 1, we present a general method for adapting

low-rank recovery algorithms, such as RPCA, to take advantage of parallelized computational

architectures. GPU and multiple-CPU architectures are becoming prolific and popular throughout

the data analysis community, and we show that their use can accelerate matrix-based models

enough to expand their domain of application. Specifically, we show how our approach can allow

algorithms like RPCA to be applied to decompose fMRI datasets and perform real-time background

subtraction in video streams. Before this work, matrix-based algorithms were often seen as too slow

to be applied to problems involving datasets as large as an fMRI brain scan, or problems requiring

such speed as real-time video processing.

In Chapter 2, we address the problem of data’s increasing dimensionality. The success of

matrices in data analysis has been largely due to their extensive theoretical support using results

from linear algebra. Higher-order matrices, or tensors, do not enjoy the same strong theoreti-

cal foundations, so many data scientists have been reluctant to generalize matrix models to work

with high-dimensional datasets. Instead, it is more common to “unwrap” the data, force it into a

two-dimensional structure, and use traditional matrix-based algorithms for analysis. We present a

tensor-based approach to RPCA, and supplement this approach with theoretical performance guar-

antees. This analysis generalizes many popular tools in matrix-based analysis to higher orders, in-

cluding nuclear-norm regularization, Burer-Monteiro factorization, and an alternating-minimization

algorithm to fit our factorized model. We provide both theoretical and experimental evidence to

show that tensor-based algorithms that preserve the structure of high-dimensional datasets are

much more e�ective than models that force the data into two-dimensional matrices.

Our results argue for the pursuit of several new directions of research. Matrices benefit

from a strong theoretical foundation in linear algebra, but tensors do not have this privilege. Most

theoretical support for tensors is obtained from studying their behavior after they are “unwrapped”
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into matrices. Our results demonstrate that the future of multidimensional algorithms relies on the

direct analysis of tensors as multidimensional structures.



Chapter 1

Adapting Regularized Low Rank Recovery Algorithms for Parallel

Architectures

Chapter Summary

We introduce two new methods to parallelize low rank recovery models in order to take

advantage of GPU, multiple CPU, and hybridized architectures. Using Burer-Monteiro splitting

and marginalization, we develop a smooth, non-convex formulation of regularized low rank recovery

models that can be solved with first-order optimizers. Using L-BFGS on the GPU, the resulting

non-convex programs o�er enormous speedup over existing methods.

Our second development is a communication-avoiding implementation of the randomized

singular value decomposition (rSVD) that ameliorates the heavy communication accompanying

tall-skinny matrix structures that arise in intermediate calculations of low rank recovery problems.

We demonstrate, using synthetic data, surveillance video, and data from fMRI brain scans, that

both algorithms o�er significant speedup over traditional low rank recovery models.

1.1 Introduction

Low rank matrix decompositions are an e�ective tool for large-scale data analytics. Back-

ground subtraction, facial recognition, document indexing, and collaborative filtering all use low

rank matrix recovery algorithms [17]. However, a low rank structure is only a part of the story —

signals often exhibit additional structure. Regularized low rank recovery models seek to decompose

a matrix X œ Rm◊n into the sum of a low rank component L œ Rm◊n and another well-structured
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matrix S œ Rm◊n, where S could be sparse, clustered, non-negative, or have some other useful

attribute (see e.g. [69]).

Searching for sparse and low rank models gives rise to combinatorial formulations, which are

intractable. Fortunately, relaxations often work well, and are amenable to modern optimization

techniques. Consider finding an approximate decomposition of a data matrix X into a sum X =

L + S, where S is sparse and L low rank. We are given partial linear measurements b = A(X). We

can formulate the problem

min
L,S

rank(L) + card(S), subject to: 1
2ÎA(L + S) ≠ bÎ2

2

Æ ‘, (1.1)

where the cardinality function card(·) counts the number of nonzero entries of S, and the parameter

‘ accounts for noise or model inconsistencies. Rank is analogous to sparsity, since it is precisely

the card(·) function applied to the singular values of the argument. Problem (1.1) is NP-hard [55]

and intractable for large problem sizes. However, both terms admit nonsmooth convex relaxations.

card(·) can be replaced with the ¸
1

-norm, and the rank function can be replaced with the nuclear

norm, Î · Îú, which is equal to the sum of the singular values of the argument:

min
L,S

ÎLÎú + ÎSÎ
1

, subject to: 1
2ÎA(L + S) ≠ bÎ2

2

Æ ‘ (1.2)

When the parameter ‘ is set to zero, (1.2) is called robust PCA (RPCA), and can recover the

lowest-rank L and the sparsest S under mild conditions. Setting ‘ > 0 in (1.2) is more suitable for

most applications, since it allows for noise in the measurements; the problem is then called stable

principal component pursuit (SPCP) [73, 77]. SPCP stably recovers L and S with error bounded

by ‘ [77]. Both RPCA and SPCP are convex problems, much easier to solve than the original

problem (1.1). While (1.2) is an important problem, it is just one example of regularized low rank

models.

Problem class. We are interested in general regularized low rank approaches:

min
L,S

ÎLÎú + L(b, A(L + S)) + r(S), (1.3)
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where L is a loss function and r is a convex regularizer. L, which can be infinite-valued, measures

how well L + S agrees with measured values of X. In RPCA, L(v) = ”
b

(v) is the indicator function

ensuring we match observed data, while in SPCP, L(v) = ”
2

Ô
‘B(v ≠ b) ensures we are close to b. L

can also be finite valued — for example, a modified SPCP is given by solving

min
L,S

⁄
L

ÎLÎú + 1
2ÎA(L + S) ≠ bÎ2

2

+ ⁄
S

ÎSÎ
1

, (1.4)

where ⁄
L

, ⁄
S

are tuning parameters, and L(·) = 1

2

Î · Î2

2

.

The regularizer r(S) is a convex penalty that promotes desired structure of S. The ¸
1

norm

r(S) = ÎSÎ
1

promotes sparsity in S; other important examples include the ordered-weighted ¸
1

norm (OWL norm) ([76, 25, 13], and the elastic net [78], which both enforce sparsely correlated ob-

servations (clusters) in S. Other convex regularizers promote known group-sparse and hierarchical

structures in S; see [7] for a survey.

Marginalization in S. In all of the applications we consider, r(S) is simple enough that

we can e�ciently minimize (1.3) in S for a given L. In the motivating SPCP example (1.4), we

have

min
S

;
⁄

L

ÎLÎú + 1
2ÎA(L + S) ≠ bÎ2

2

+ ⁄
S

ÎSÎ
1

<
= ⁄

L

ÎLÎú + fl
⁄S (A(L) ≠ b),

where fl
⁄S is the Huber function (for a detailed derivation, see e.g. [6]). This motivates the definition

Ï : L ‘æ min
S

{L(A(L + S) ≠ b) + ⁄
S

· r(S)} , (1.5)

where Ï is smooth (see section 1.3.2) with value and derivative either explicitly available as in the

case of SPCP, or e�ciently computable. After marginalizing out S, (1.3) becomes

min
L

⁄
L

ÎLÎú + Ï(L). (1.6)

Proximal gradient methods are applicable, but require computing the expensive singular value

decomposition (SVD) at each iteration. To avoid this bottleneck, we develop and compare two

alternatives for accelerating the method: parallelizing SVD computations using the tall-skinny

QR algorithm, and non-convex factorized representations that avoid the SVD entirely. The smooth
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structure of Ï allows a computable optimality certificate for the non-convex case, which is developed

and explored in section 1.3.

Accelerating SVD computation. The SVD is notoriously costly to compute, and its high

communication costs make it di�cult to parallelize. Making matters worse, in many applications

the data matrix has many more rows than columns, and these “tall-skinny” matrices make the

communication costs of a parallel SVD much higher.

To accelerate the SVD step, the randomized SVD (rSVD) [36] is often used to e�ciently

compute a partial SVD (see e.g. [4]). While the rSVD algorithm requires fewer operations than

traditional SVDs, intermediate steps of the algorithm exacerbate the tall-skinny problem, which

makes the rSVD even more di�cult to parallelize. In order to use parallelized architectures such as

the GPU to accelerate regularized low rank recovery, the communication cost of the SVD step must

be reduced. To do this, we use the tall-skinny QR algorithm (TSQR) of [26]. [3] explored using

TSQR to accelerate the SVD step of RPCA for tall-skinny matrices, but we address an inherent

communication problem in the rSVD algorithm that arises even for square matrices.

Non-convex reformulation. To avoid the SVD entirely, we consider non-convex refor-

mulations for regularized low rank recovery models, using the factorization L = UV T , where

U œ Rm◊k, V œ Rn◊k, and k π m, n. This factorization imposes the rank-constraint rank(L) Æ k.

In addition, we can further penalize rank using the representation (see e.g. [64, 59, 8])

ÎLÎú © inf
L=UV

T

1
2(ÎUÎ2

F

+ ÎV Î2

F

). (1.7)

This equivalence only holds if the ranks of U and V are high enough, and makes it possible to

maintain a low rank L = UV T without requiring SVDs. The non-convex analogue to (1.6) is given

by

arg min
U,V

Ï(UV T ) + ⁄
L

2 (ÎUÎ2

F

+ ÎV Î2

F

). (1.8)

Roadmap. We start with a survey of related work in section 1.2. We then consider

two theoretical issues related to the smooth reformulation (1.8) in section 1.3 . First, using the

factorization L = UV T gives a non-convex program that could potentially create new stationary



8

points and local minima. Second, it is important to understand the properties of the map Ï

obtained by marginalizing over S in the context of specific optimization algorithms. In section 1.4,

we study heuristic initialization methods, which are important for non-convex formulations. We

present detailed numerical studies, comparing the non-convex method with competing alternatives,

in section 1.5. The convex formulation (1.6) and TSQR method are presented in section 1.6, along

with additional numerical experiments, illustrating the parallelism of TSQR and comparing it to

the non-convex method. We end with final thoughts in section 1.7.

1.2 Prior Work and Contributions

Several authors have used alternating minimization to solve non-convex, factorized matrix

completion models [38, 45, 46, 47, 48, 35, 43]. This line of research is supported by the existence

of conditions that guarantee fast convergence to a globally optimal solution [38, 46, 48, 47, 35],

sometimes at a linear rate [43, 69]. These models are a special class of (1.8), when r(S) = 0.

In [69], the authors review the use of alternating minimization to solve regularized PCA

problems of the following form:

min
U,V

L(UV T , X) + r(U) + r̃(V ). (1.9)

Matrix completion models and RPCA can adopt the split-form in (1.9), but SPCP and other

regularized models cannot. Our analysis includes more general regularizers and o�ers an alternative

to alternating minimization.

[62] develop a split RPCA program and solve it using alternating minimization. While their

technique can be an order of magnitude faster than competitive convex solvers (such as the inexact

augmented Lagrangian method (IALM) from [51]), its performance su�ers when the magnitude of

the sparse component is large compared to the magnitude of the low rank component.

[67] follow techniques introduced in [18] and consider provable recovery of a low rank solution

to a system of linear equations using a non-convex, factorized program. In [74], the authors extend

these ideas to investigate a non-convex formulation of robust PCA that can be solved with gradient
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descent.

Another non-convex approach to RPCA is considered in [57]. In contrast to the research

discussed previously, their method does not use a low rank factorization of L. Instead, these

authors develop an algorithm of alternating projections, where each iteration sequentially projects

L onto a set of low rank matrices and thresholds the entries of S. Their technique also comes with

recovery and performance guarantees.

We develop a general non-convex formulation for regularized low rank recovery models that

can be solved with general first-order optimization algorithms. We address some problems associ-

ated with local minima and spurious stationary points that accompany non-convexity, by showing

that all local minima of our model have the same objective value, and by providing a certificate to

prove that a given solution is not a spurious stationary point. We also show that our method is

particularly well-suited for the GPU.

We also develop a communication-e�cient solver for convex models by limiting the commu-

nication costs in the rSVD, using TSQR to replace the orthogonalization step. [3] briefly discusses

using TSQR to accelerate the full SVD step in RPCA, but our rSVD algorithm o�ers greater

speedup and applies to general matrices, not just tall and skinny matrices. In [53], the authors

propose a blocked algorithm to accelerate the rSVD. Their blocking scheme reduces communica-

tion costs in a way similar to TSQR, but TSQR also o�ers additional parallelism. Both of our

approaches o�er significant speedup over existing methods, as illustrated in section 1.5.

1.3 Theoretical Considerations

We discuss three issues related to the approach (1.8). First, we study the convexity, smooth-

ness, and di�erentiability of the marginal function (1.6) in section 1.3.2. Next, moving from (1.6)

to (1.8) by factorizing L, we transform a convex problem into a non-convex one. This creates

two issues: an implicit rank constraint rank(L) Æ k that is not present in (1.8), and potential for

local minima and spurious stationary points in the non-convex variant that do not correspond to a

solution of the convex problem. We address these issues in section 1.3.3.



10

Section 1.3.4 introduces a computable certificate that can be used to check whether the non-

convex model has converged to a global solution. Using the smoothness of Ï, we derive a simple

optimality certificate that can be tracked while optimizing (1.8) to identify either when the implicit

rank of the factors is too small or when we have converged to a minimizer of (1.6).

1.3.1 Convexity of Ï

The convexity of the marginal function (1.6) is a well-known result in convex analysis [60, Propo-

sition 2.22]. We include a short, self-contained proof of this fact.

Lemma 1. Let f : Rm◊n ◊ Rm◊n æ R be a jointly convex function, and let L œ Rm◊n. The

function g : Rm◊n æ R : L ‘æ min
SœRm◊n f(L, S) is convex.

Proof. For all L
1

, L
2

, S
1

, S
2

œ Rm◊n and t œ (0, 1),

g(tL
1

+ (1 ≠ t)L
2

) = min
SœRm◊n

f(tL
1

+ (1 ≠ t)L
2

, S)

Æ f(tL
1

+ (1 ≠ t)L
2

, tS
1

+ (1 ≠ t)S
2

)

Æ tf(L
1

, S
1

) + (1 ≠ t)f(L
2

, S
2

).

As this inequality holds for arbitrary S
1

and S
2

, it holds for any minimizing Sı:

g(tL
1

+ (1 ≠ t)L
2

) Æ tf(L
1

, Sı) + (1 ≠ t)f(L
2

, Sı)

= tg(L
1

) + (1 ≠ t)g(L
2

).

It follows immediately that Ï as defined in (1.5) is convex when L and r are convex.

1.3.2 Smoothness of Ï

When L is the least-squares error and

A(L + S) = A
L

(L) + A
S

(S),
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with A
S

an injective linear operator, Lipschitz di�erentiability of Ï is immediate from the strong

convexity of L. Support for this claim is given, for example, in [9], where the relevant proposition

for the specific case where A
S

is a reshaping operator is as follows:

Proposition [9, Prop. 12.29]: Let r be a proper lower-semicontinuous convex function, and let

µr(A(L) ≠ vec(S) ≠ b) = inf
S

r(S) + 1

2µ

ÎA(L) ≠ vec(S) ≠ bÎ2

2

be the Moreau envelope of f with

parameter µ. Then µr is di�erentiable and its gradient is µ≠1-Lipschitz continuous.

More generally, Ï(L) is di�erentiable as long as r(S) has a unique minimizer and the loss

function L is convex and smooth. By [60, Theorem 10.58], we have

ˆÏ(·) = AúÒL (A(·) ≠ b ≠ A(Sı)) , (1.10)

where Sı is any minimizer of (1.4). The subdi�erential is a singleton if and only if the minimizing

Sı is unique, and a unique minimum is guaranteed if the sum L(A(L + S) ≠ b) + r(S) in (1.4) is

strictly convex.

Using SPCP as an example, we have

Ï(L) = min
S

;1
2ÎA(L) + vec(S) ≠ bÎ2

2

+ ⁄
S

ÎSÎ
1

<
,

where sparse outliers S are fully observed. The objective is strongly convex in S, and has the

unique minimizer

Sı = prox
⁄SÎ·Î

1

(A(L) ≠ b).

Therefore, Ï(L) is smooth, with

ÒÏ(L) = Aú (A(L) + vec(Sı) ≠ b) .

Note we used (1.10) rather than the parametric form of Ï(L) to obtain its value and gradient.

Using (1.7) to replace the nuclear norm and replacing the non-smooth regularizer with Ï, we have

created a smooth optimization problem amenable to first-order methods.

For minimizing smooth objectives, quasi-Newton methods are often faster than algorithms

that require only first-order smoothness, such as gradient-descent. The convergence rates of quasi-

Newton methods depend on second-order smoothness, which does not hold in problems such as
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SPCP, since e.g. the Huber function is only C1. However, empirical results (including those

presented in section 1.5) suggest that these methods are still e�ective.

1.3.3 Rank and Local Minima

The factorized problem (1.8) is not equivalent to (1.6) because of the implicit rank constraint.

However, we can show that (1.8) is equivalent to the rank-constrained problem

min
L

⁄
L

ÎLÎú + Ï(L) subject to: rank(L) Æ k. (1.11)

This follows immediately from (1.7). In order for the split problem to recover the solution to (1.1),

it must be initialized with a k larger than the rank of the minimizing L. However, a larger k slows

computation, so it must be chosen with care. This issue is considered in more depth in section 1.4.

We want to be sure that any local minimum of (1.8) corresponds to a (global) minimum

of (1.6). The following theorem combines ideas from [15] and [5] to show this holds provided that

k is larger than the rank of the minimizer for (1.6).

Theorem 1. Consider an optimization problem of the following form:

min
X≤0

f(X), such that rank(X) Æ k, (1.12)

where X œ Rn◊n is a positive semidefinite real matrix, and f is a lower semi-continuous function

mapping to [≠Œ, Œ] and has a non-empty domain over the set of positive semi-definite matrices.

Using the change of variable X = PP T , take P œ Rn◊k, and consider the problem

min
P

g(P ) def= f(PP T ). (1.13)

Let X̄ = P̄ P̄ T , where X̄ is feasible for (1.12). Then X̄ is a local minimizer of (1.12) if and only if

P̄ is a local minimizer of (1.13).

The proof of Theorem 1 is deferred to Appendix A. Using the SDP formulation of the nuclear

norm presented in [28], our problem can be recast as a semi-definite program so that we can apply
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Theorem 1. Define

Z =

S

WWU
U

V

T

XXV

S

WWU
U

V

T

XXV

T

=

S

WWU
UUT L

LT V V T

T

XXV . (1.14)

The matrix Z is positive semi-definite, and has form Z = PP T , with P =

S

WWU
U

V

T

XXV . Let R(·) be the

function that extracts the upper-right block of a matrix (so that R(Z) = L), and let

f(Z) = ⁄
L

2 trace(Z) + Ï(R(Z)). (1.15)

Using equation (3), we now see that the rank-constrained problem is equivalent to

min
Z≤0

f(Z), such that rank(Z) Æ k. (1.16)

Applying Theorem 1, we can now be assured that P is a local minimizer to the split program if and

only if Z is local minimizer of the original problem. This is equivalent to the statement that the

point (U, V ) is a local minimizer of the split problem if and only if L = U V
T is a local minimizer

of the original, rank-constrained program.

1.3.4 A Certificate for Convergence

Although Theorem 1 asserts that the split problem and the rank-constrained problem have

the same local minima, the rank-constrained problem is itself non-convex, so we have not guaranteed

that every stationary point of the split problem solves the convex program. Using an approach

building on work of [69], we can develop a certificate to check whether a recovered solution to

(6) corresponds to a spurious stationary point when Ï is convex (in particular when L and r are

convex). This technique can also be used on the convex formulation as a method to check the

distance to optimality.

We base our certificate on the following convex analysis. Let F be any proper convex function,

then Fermat’s rule states that the set of minimizers of F are points L such that 0 œ ˆF (L), where

ˆ(·) denotes the subdi�erential. One could take a candidate point L, evaluate F (L), and if this
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is zero, conclude that L is the minimizer, but such expectations are unrealistic in floating point

arithmetic, much less from an iterative method. Suppose instead we find

E œ ˆF (L) (1.17)

where E is small. Let Lı denote any minimizer of F , then from the definition of a subgradient,

F (Lı) Ø F (L) + ÈE , Lı ≠ LÍ. Then

F (L) ≠ F (Lı) Æ ÈE , L ≠ LıÍ Æ ÎEÎ
p

· ÎL ≠ LıÎ
d

(1.18)

for any pair of primal and dual norms Î · Î
p

and Î · Î
d

. We discuss bounding ÎEÎ
p

and ÎL ≠ LıÎ
d

in the next two subsections.

Finding an approximate zero E The key to the certificate is analyzing the marginalized

problem (1.6) in terms of L, rather than the problem (1.3) in terms of (L, S). The point L = UV T

is the optimal solution of (1.6) if and only if

0 œ ˆ
!ÎLÎú + Ï(L)

"
. (1.19)

We have set ⁄
L

= 1 for convenience, or alternatively one can absorb ⁄≠1

L

into Ï. Since both the

nuclear norm and Ï are proper lower semi-continuous and the intersection of the interior of their

domains is non-empty (in particular they are finite valued), then by [9, Cor. 16.38], we have that

0 œ ˆ
!ÎLÎú + Ï(L)

" … 0 œ !
ˆÎLÎú

"
+

!
ˆÏ(L)

"
.

Both of these subdi�erentials are computable. Let

L = ÂU� ÂV T =
5

U
1

U
2

6
S

WWU
�

1

0

0 0

T

XXV

S

WWU
V T

1

V T

2

T

XXV (1.20)

be the (full) SVD of L, where U
1

œ Rm◊r and V
1

œ Rn◊r. The subdi�erentials of the nuclear

norm at L comprises matrices of the form X = U
1

V T

1

+ W , where U
1

, V
1

contain the left and right

singular vectors of L that correspond to non-zero singular values,1 and W satisfies the conditions
1The orthogonal matrices U

1

and V
1

should not be confused with the variables U and V that are used as a
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UT

1

W = 0, WV
1

= 0 and ÎWÎ
2

Æ 1. Equivalently,

X œ ˆÎLÎú if and only if ÷W Õ œ Rm≠r◊n≠r s.t. ÂUT X ÂV =

S

WWU
I 0

0 W Õ

T

XXV , ÎW ÕÎ Æ 1. (1.21)

We can find an explicit matrix D œ ˆÏ(L) using (1.10), and it is unique under the smoothness

conditions described in Section 1.3.2.

Altogether, we can guarantee a point E œ ˆÎLÎú + ˆÏ(L) such that

ÎEÎ2

F

= min
XœˆÎLÎú

ÎX + DÎ2

F

= min
XœˆÎLÎú

Î ÂUT (X + D) ÂV Î2

F

= min
ÎW

ÕÎÆ1

........

S

WWU
I 0

0 W Õ

T

XXV + ÂUT D ÂV

........

2

F

= ÎI ≠ UT

1

DV
1

Î2

F

+ ÎUT

1

DV
2

Î2

F

+ ÎUT

2

DV
1

Î2

F

+ min
ÎW

ÕÎÆ1

ÎUT

2

DV
2

≠ WÎ2

F

. (1.22)

In the first equation, the minimum is achieved since the squared-norm is continuous and the set

is compact, and (1.21) is used in the third equation. Each term of the fourth equation can be

calculated explicitly, with the last term obtained via projection onto the unit spectral-norm ball,

which requires the SVD of the small matrix UT

2

DV
2

. This bound on ÎEÎ
F

can then be used in

(1.18).

Most terms above can be computed e�ciently, in the sense that U
2

and V
2

never need to be

explicitly computed (which is most important when r is small, since then U
2

and V
2

have m ≠ r

and n ≠ r columns, respectively), and therefore the computation consists only of matrix multiplies,

thin-QR factorizations, and an r ◊ r SVD, leading to a complexity of O(rmn + r2 · (m + n) + r3).

For example, we compute

ÎUT

1

DV
2

Î2

F

= ÎUT

1

DÎ2

F

≠ ÎUT

1

DV
1

Î2

F

factorization of L, as U and V are not necessarily orthogonal. In fact, U
1

and V
1

can be e�ciently computed from

the factorization L = UV T by taking the QR-decompositions U = QU RU and V = QV RV so L = QU (RU RT
V )QT

V .

Perform a SVD on the small inner matrix to write (RU RT
V ) = UR�V T

R , and hence � are the nonzero singular values

of L and U
1

= QU UR and V
1

= QV VR are the corresponding left and right singular vectors.
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and ÎUT

2

DV
1

Î2

F

is computed analogously. The final term requires an unavoidable (m ≠ r) ◊ (n ≠ r)

SVD factorization, so for large m, n this is not cheap, and in this case we suggest only computing

the certificate as a final check at the end rather than at every point to check convergence.

Bounding the distance to the feasible set We seek a bound on ÎL ≠ LıÎ
d

in an

appropriate norm, which we combine with the bound on ÎEÎ
F

in (1.18) to bound the error on the

objective function. Since the bound on E is in the Frobenius norm, ideally we set Î · Î
d

= Î · Î
F

,

but bounds in any norm will work using ÎLÎ
F

Æ 
rank(L)ÎLÎ and ÎLÎ

F

Æ ÎLÎú.

Letting F (L) = ÎLÎú +Ï(L), we first bound F (Lı) by computing F (L) for explicit choices of

L. To be concrete, in this section we assume r(S) = ÎSÎ
1

(and again choose ⁄
S

= 1 for simplicity)

and a squared-quadratic loss function. Choosing L such that A(L) = b means that S = 0 in the

definition of Ï (1.5), and hence F (L) = ÎLÎú. Another choice is L = 0, and then choosing S = 0

(which may be sub-optimal) leads to F (L) Æ 1

2

ÎbÎ2. A third choice is to explicitly compute F (L)

at the iterates in the algorithm and record the best.

Denoting F ı = min
L

F (L) and using F ı Æ F
bound

, non-negativity of Ï immediately implies

ÎLıÎú Æ F
bound

. Hence ÎL ≠ LıÎ
F

Æ ÎLÎ
F

+ ÎLıÎ
F

Æ ÎLÎ
F

+ ÎLıÎú Æ ÎLÎ
F

+ F
bound

, and ÎLÎ
F

is explicitly computable.

Results Figure 1.1 shows how the distance to the optimal subgradient decreases over time

for the convex solver LagQN, the non-convex Split-SPCP with a rank bound that is too strict, and

Split-SPCP with a rank bound large enough to reach the global optimum. When the rank bound

is too restrictive, Split-SPCP cannot recover the optimal L. Measuring the distance to the optimal

L reveals this. Figure 1.1 shows that the distance plateaus far from zero when the rank of L is

bounded above by 30, and the rank of the optimizing L is 58. In practice, this measure can be used

to indicate that the rank bound should be increased.

1.4 Initialization

The non-convex formulation (1.8) is sensitive to the point of initialization, and requires a

bound on the rank of L. The performance of this solver can vary greatly for di�erent initializations
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Figure 1.1: (Left): Distance from the optimal subgradient for the convex solver LagQN and the
non-convex Split-SPCP with di�erent rank bounds. The rank of the optimal L is 58. (Right):
Bounded distance from minimal objective value, as given by ÎEÎ

F

(ÎLÎ
F

+ F
bound

), with F
bound

given by the objective value at the current iterate. The actual distance from the minimal objective
value is shown for comparison. The rank bound for the Split-SPCP test is 80.

of these parameters. In this section, we present some heuristics for choosing a suitable initialization.

1.4.1 Dynamically Increasing k

Figure 1.2 demonstrates the sensitivity of the Split-SPCP program to the factor rank k. These

tests were performed on the surveillance video data described in section 1.5, where the true rank of

the low rank component is 58. We see that when k Æ rank(L), Split-SPCP does not converge to the

correct solution, but if k is much larger than the rank of the minimizing L, then the computation

is slowed significantly.

Because our solver is oblivious to the individual dimensions of U and V , columns can be

added to both matrices on the fly. Dynamically updating the rank bound can help when (1.8)

is initialized with a k that is too small. Suppose a solver reaches some convergence criterion at

iteration i. To see if this is a solution to (1.6), we add a single column to U and V :

5
U

i

u

6 5
V

i

v

6
T

= L
i

+ uvT , (1.23)

and observe whether this rank-one allows for a lower objective value or certificate value. Dynami-

cally increasing k, even aggressively, is still more e�cient than overestimating k from the start.
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Figure 1.2: Varying the rank bound k in Split-SPCP a�ects computation time and the accuracy of
the final solution. One marker represents 10 iterations.

1.4.2 Choosing U
0

and V
0

Choosing an initialization point (U
0

, V
0

) has received considerable attention in factorized low

rank recovery problems. Most of this work has centered around matrix completion using alternating

minimization, see, for example, [38, 46, 47, 48, 43, 69]. Provably good choices for U
0

and V
0

are

U
0

= U� 1

2 and V
0

= V � 1

2 , where U and V come from the SVD of A†X, where X is the data-matrix,

A is a linear operator, and † denotes the Moore-Penrose pseudo-inverse. [38] showed that these

initial points lie in the basin of attraction of globally optimal minima, yielding fast convergence to

an optimal solution.

As mentioned in [69], it is sometimes not necessary to perform a full SVD to form U
0

, V
0

.

Once k is chosen, only a partial SVD is necessary to calculate the first k singular values and vectors,

which can be done e�ciently using the randomized SVD (rSVD) [36]. Although using the rSVD

is significantly faster than a full SVD, the values and vectors it returns are not always accurate,

especially when the singular values of the underlying data do not decay rapidly.

Figure 1.3 shows the performance of Split-SPCP using various initial points. The tests were

performed on a 5,000 ◊ 5,000 matrix X = L + S, where rank(L) = 1000 and sparsity(S) = 9.43%.

The rank bound was k = 1,050. All 5,000 singular value and vector triples of X were calculated
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Figure 1.3: The performance of Split-SPCP with various initialization points. All tests were run
on a 5,000 ◊ 5,000 matrix X = L + S, where rank(L) = 1000 and sparsity(S) = 9.43%. The rank
bound was k = 1,050. One marker is 50 iterations.

for the SVD test, and U
0

and V
0

were formed from the first k = 1,050 triples. For the rSVD test,

only the first 1,050 triples were approximated, U
0

and V
0

were formed from these.

Figure 1.3 shows that initializing U
0

and V
0

with the first 1,050 singular value and vector

triples returned by the full SVD yields the smallest initial error, but the extra computational cost

is not worth the better start. The rSVD allows quicker convergence to a similar solution. The two

random initializations converge to a stationary point that is not globally optimal.

1.5 Numerical Experiments

In this section, we present numerical experiments that illustrate our SPCP accelerations.

Recall that the Split-SPCP program is given by

min
U,V

⁄
L

2 (ÎUÎ2

F

+ ÎV Î2

F

) + Ï(UV T ), (1.24)

where

Ï(UV T ) = min
S

1
2ÎUV T + S ≠ XÎ2

F

+ ⁄
S

ÎSÎ
1

. (1.25)

Since the objective of Split-SPCP is smooth, any first-order method can be used to solve it. Also,

since the communication-heavy SVD step is no longer a limitation, we are motivated to choose the

solver that is most suited for the GPU. To find this solver, we compared the performance of several

first-order methods as they solved a logistic regression problem on the GPU. The time it took for
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di�erent solvers to minimize a logistic loss with a Tikhonov regularization term for 104 labels is

shown in Table 1.1 below. The computation time is defined as the time it took the solver to come

within 10≠8 of the optimal objective value.

Solver Normalized Computation Time
Cyclic Steepest Descent 3.46

Barzilai-Borwein 1.24
Conjugate Gradient 1.44

Scaled Conjugate Gradient 1.53
Preconditioned Conjugate Gradient 3.20

L-BFGS (10 iterations in memory) 1
L-BFGS (50 iterations in memory) 1.82

BFGS 2.39
Hessian-Free Newton’s Method 3.05

Table 1.1: First-order methods solving logistic loss program with 104 labels on the GPU. All times
are reported as a ratio with respect to the fastest solver (L-BFGS with 10 iterations in memory).
Time is recorded when the solution is within 10≠8 of the optimal value.

From our analysis, we decided that the L-BFGS solver, storing a small number of iterations

in memory, yields the best performance. The times shown in 1.1 depend on the stopping tolerance

as well as the specific problem, but there is further evidence in the literature supporting L-BFGS

as a competitively e�cient solver [72]. To solve Split-SPCP, we use L-BFGS as implemented in

[61], with our own slight modifications so that it will run on the GPU.

The value of the objective is calculated by first computing the minimizing S in the definition

of Ï, which we call S
U,V

, using soft thresholding. Explicitly, the soft-thresholding (or shrinkage)

operator is defined so that

(shrink(Y, ⁄))
i,j

= sign(Y
i,j

)(|Y
i,j

| ≠ ⁄|)
+

,

where (·)
+

is the zero operator on negative reals and is the identity operator on non-negative reals.
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This shrinkage operator gives us a closed-form representation of S
U,V

and Ï(UV T ):

S
U,V

= shrink(X ≠ UV T , ⁄
S

),

Ï(UV T ) = 1
2ÎL + S

U,V

≠ XÎ2

F

+ ⁄
S

ÎS
U,V

Î
1

Once S
U,V

and Ï(UV T ) are found, we can compute the objective value, ⁄L
2

(ÎUÎ2

F

+ÎV Î2

F

)+Ï(UV T ).

We can also compute the gradients of the objective, which are given below. We let f(U, V ) denote

the objective for convenience.

Ò
U

f = ⁄
L

U + (UV T + S
U,V

≠ X)V,

Ò
V

f = ⁄
L

V + (UV T + S
U,V

≠ X)T U.

In [14] and [63], the authors provide a review of the fastest algorithms in the family of

robust PCA and principal component pursuit for background subtraction. We chose some of the

fastest of these to compare to our Split-SPCP algorithm. Each of these methods runs faster on

the GPU, so we ran all of them on the GPU for our comparisons. We found that our non-convex

solver is particularly well-suited for the GPU, and outperforms all other solvers in almost

every case. This is shown on data sets from applications in section 1.5.1 and synthetic data in

section 1.5.2. In section 1.5.3, we show that Split-SPCP on the GPU can be used for real-time

background subtraction, even for high-resolution videos. Finally, in section 1.5.4, we demonstrate

how marginalizing the sparse component in low rank models leads to an accelerated Frank-Wolfe

method for optimization. We also discuss how applying marginalization to the Frank-Wolfe problem

generalizes recent results published in [54].

1.5.1 SPCP for Background Subtraction

For our background subtraction tests, we use the escalator surveillance video provided by [50].

We want to identify the people in the video while ignoring the moving escalators and the stationary

background. This problem is particularly di�cult for many low rank recovery algorithms, such as

PCA, because the motion of the escalator is a confounder. SPCP is less sensitive to outliers, so
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it can overcome this challenge. Our SPCP method and several others are compared in Figure

1.4. We measured performance in terms of the objective value over time. All of the algorithms

were run on the GPU. To find a reference solution, we hand-tuned the parameters ⁄
L

and ⁄
S
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(a) Comparing SPCP solvers for background
subtraction. One marker corresponds to 40 it-
erations.

(b) References for the algorithms used in testing. Among
these are the fastest models for background subtraction, as
determined in [14] and [63].

Figure 1.4: A Comparison of SPCP Solvers

in the (convex) quasi-Newton Lagrangian SPCP algorithm (LagQN) until it found a qualitatively

accurate decomposition. The L we chose has rank 58, and the optimal S is 58.03% sparse. The

optimal parameters for both Split-SPCP and LagQN are ⁄
L

= 115 and ⁄
S

= 0.825. We tuned the

parameters in the other solvers to recover this solution as closely as possible. The error is measured

as the normalized di�erence between the objective and the objective at the optimal solution. Since

the solvers minimize di�erent objectives, we calculated the Split-SPCP objective value at each

iteration for every algorithm. We did not include these calculations in our time measurements. To

initialize Split-SPCP, we used the first 100 singular values and vectors from the randomized SVD

of the data matrix.

Several of the algorithms in Figure 1.4 did not converge to the same solution, despite con-

siderable e�ort in parameter tuning. These algorithms were designed to quickly find approximate

solutions to the SPCP problem, and might have su�ered from the large amount of noise present

in the data. The approximate solutions recovered by these algorithms are qualitatively di�erent

from the solution found by Split-SPCP, see Figure 1.5. We also found that a lower objective value

generally corresponds to a qualitatively superior solution.
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(a) X,L, and S matrices found by (from top to
bottom) Split-SPCP, LagQN, and GoDec.

(b) X,L, and S matrices found by (from top to
bottom) FPCP, IALM, and LMaFit.

Figure 1.5: Background subtraction using various SPCP solvers on surveillance video data from
[50] (frame 10 is shown). We see that Split-SPCP, LagQN, and IALM best locate the people while
ignoring the escalators.

We measured the quality of the solutions in terms of the Corrected Akaike Information Cri-

terion, or AICc. The AICc measures the fit of a statistical model to a certain data set. Given a

model with p parameters and a log-likelihood function ¸, the value of the AICc is

AICc = 2(p ≠ log(¸
max

)) + 2p(p + 1)
m · n ≠ p ≠ 1 ,

where m ·n is the size of the data set and ¸
max

is the maximum of ¸. The preferred statistical model

is the one that minimizes the AICc. The AICc does not only favor models that maximize the

likelihood function, but it also penalizes complex models with many parameters, guarding against

overfitting. Using AICc as a measure of quality avoids both overemphasis of objective values and

the inherent ambiguity of visual comparisons.

To compute the AICc value, we must formulate SPCP as a statistical model. It is well-known

that the least-squares loss term assumes that the data is of the form X = L + S + Z, where the

entries of Z are iid Gaussian random variables with µ = 0 and variance estimated using the sample

variance, ‡̂2 = ÎXÎ2

F
m·n . Similarly, the ¸

1

-regularizer assumes that the entries of S are drawn iid from

the Laplace distribution with mean 0 and variance estimated as b̂ = ÎSÎ
1

m·n . The nuclear norm of L

is the ¸
1

-norm of its singular values, so its corresponding prior assumes that the singular values of
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L follow the Laplace distribution. The log-likelihood function is then

¸(L, S, X) = ≠
3

m · n

2

4
log(2fi‡2) ≠ ÎL + S ≠ XÎ2

F

2‡2

≠ (m · n) log(2b) ≠ ÎSÎ
1

2b
≠ rank(L) log(2bú) ≠ ÎLÎú

2bú
, (1.26)

where ‡2, b and bú are computed according to their respective estimator. We must also define the

number of parameters of this model, which is equal to its degrees of freedom. Each term in SPCP

provides the following degrees of freedom:

rank(L) = k æ k(m + n ≠ k) degrees of freedom,

ÎSÎ
1

æ nnz(S) degrees of freedom,

1

2

ÎL + S ≠ XÎ2

F

æ
3

ÎL+S≠XÎ2

F
ÎXÎ2

F

4
(m · n) degrees of freedom.

Note that nnz(S) counts the number of non-zero entries in S. Finding the degrees of freedom in

a rank-k matrix or a sparse matrix are both standard calculations. For the loss term, we use the

residual e�ective degrees of freedom as an estimate of the flexibility that it introduces. This is

detailed further in [52]. The number of parameters p is equal to the total degrees of freedom.

The AICc values for the solutions shown in Figure 1.5 are listed in Table 1.2. The AICc value

for the reference solution is listed under “oracle.” Recall that the reference solution was found using

the LagQN solver with a tight tolerance. All the other values in the table correspond to solutions

that met comparable tolerances. Also, since the IALM model does not use an ¸
1

-norm regularizer,

many of the values in the returned S matrix were small but not exactly zero. To make accurate

comparisons, we applied the shrinkage operator to the S matrix returned by IALM to set small

values equal to zero before calculating the degrees of freedom. The values for IALM and LMaFit

are high because these solvers are not generally robust to large amounts of noise. With this metric

as well, we see that Split-SPCP discovers the best solution, and in a much shorter time compared

to the other algorithms.

Split-SPCP has an advantage because it parallelizes well on GPU architectures. This is due to

the relative simplicity of the L-BFGS algorithm, see also [29]. The algorithm avoids complex linear
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Solver AICc (◊106)
Oracle 7 .37

Split-SPCP 7.64
GoDec 10.95
LagQN 11.30
MaxQN 11.64
FPCP 15.70
IALM 2.43 ◊ 107

LMaFit 3.99 ◊ 109

Table 1.2: Degrees of freedom in solutions returned by various solvers.

algebraic decompositions that require heavy communication, such as the QR and SVD. Figure 1.6

shows that although Split-SPCP on the CPU is slower than LagQN on the CPU, Split-SPCP enjoys

enormous speedup when it is implemented on the GPU.
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Figure 1.6: Split-SPCP and LagQN on the CPU and the GPU. Tests were performed on the
synthetic data described in section 1.5.2

1.5.2 Synthetic Data

To test Split-SPCP further, we created a synthetic problem consisting of a noisy data-matrix

that can be represented as the sum of a low rank and a sparse component. We created two

1,000◊150 random matrices with each entry drawn from independently from the univariate normal

distribution, and defined our low rank reference matrix, L
ref

, as the product of these two matrices.

To form the sparse reference matrix, S
ref

, we filled 50% of a 1,000 ◊ 1,000 matrix with numbers
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drawn independently from the univariate normal distribution, and the other entries we set equal

to zero. We defined X to be the sum L
ref

+ S
ref

with added white Gaussian noise, so that
ÎLref +Sref ≠XÎF

ÎXÎF
= 8.12◊10≠5. Compared to data sets that are normally encountered in applications

of SPCP, the sparse component of S has a large number of non-zero entries, the rank of L is large,

and the noise in X is small.

We initialized Split-SPCP with the first 200 singular value and vector triples of X, so that

k was larger than the rank of L. These triples were found using the rSVD. The tuning parameters

were set to ⁄
L

= 2.95 and ⁄
S

= 0.1. As before, we measured performance based on the normalized

di�erence from the true Split-SPCP objective value. The results are shown in Figure 1.7.
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Figure 1.7: Performance of SPCP solvers on synthetic data. One marker represents six iterations.

We see that FPCP and GoDec discover approximate solutions quickly, but the approximations

are not within 10≠2 of the true objective. LMaFit exhibits poor performance. This could be due

to the fact that S is about 50% sparse, and LMaFit struggles with problems that have relatively

many non-zero entries [71]. Split-SPCP significantly outperforms all solvers in speed and accuracy,

except for LagQN. While Split-SPCP is much faster than LagQN initially, LagQN catches up in

later iterations.
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1.5.3 Dimensional Scaling and Real-Time Video Processing

One useful application of accelerated low rank recovery algorithms is real-time background

subtraction in video. The experiments in section 1.5.1 show that Split-SPCP is faster and more

accurate than the methods reviewed in [14] and [63] for background subtraction, and in this section,

we apply Split-SPCP to the real-time processing of high-resolution videos with standard frame rates.

We also explore how Split-SPCP scales as the resolution and number of frames increases.

To measure the performance of Split-SPCP on more diverse video datasets, we used videos

from the Background Model Challenge [70]. The experiments shown in Figure 1.8 used a video with

240 ◊ 320 pixels per frame and 32,964 frames, which is substantially larger than the low-resolution

escalator video with 130 ◊ 160 pixels per frame and only 200 frames. We unfolded the three-

dimensional video data into a matrix with each column containing a frame, and we partitioned the

matrix columnwise into blocks comprising a fixed number of frames. With the rank bound fixed

at 60, we then recorded the computation time required to perform 200 iterations of Split-SPCP

on one block as a function of the block size. Larger block sizes yield better solutions, but they

also require more time for SPCP to converge. We found that after 200 iterations, Split-SPCP had

converged to within 10≠3 of the optimal objective value for all block sizes, and the returned solution

was qualitatively no better than the optimal solution.

Figure 1.8 shows how Split-SPCP scales as the video resolution and the number of frames per

block increase. These two qualities correspond to the number of rows and the number of columns

of each block. We increased the resolution by rescaling each frame so that the aspect ratio stayed

close to constant, and we used interpolation to impute the missing pixel values. It is easy to discern

the O(n) scaling as the number of frames (columns) is increased. Increasing the resolution a�ected

the computation time linearly, but beyond a “critical resolution” of 332 ◊ 446 pixels per frame, the

slope of the linear scaling underwent a shift in regime. This linear scaling is expected because the

bottleneck of Split-SPCP is the matrix-matrix multiply UV T , which requires O(mnk) operations,

so with k fixed, the computation time of Split-SPCP grows linearly with the number of data points.
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The results of the background subtraction are shown in Figure 1.9.
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Figure 1.8: The scaling of Split-SPCP (left) as the number of columns (or frames) increases and
(right) as the number of rows (or pixels per frame) increases. Each point is the average of twenty
trials. For the column-scaling tests, the resolution was fixed at 240 ◊ 320 pixels per frame, and for
the row-scaling tests, the number of frames in a block was fixed at 100. The tuning parameters
were set to ⁄

L

= 200, ⁄
S

= 5.

These experiments suggest conditions under which Split-SPCP can decompose a video in real-

time. Assuming a resolution of 240◊320 pixels per frame and a frame rate of 24 frames-per-second,

which is standard in many applications of video processing, the video must be partitioned blocks

of about 600 frames or more. With this partitioning, the algorithm will have finished decomposing

the given block before the next block is recorded. This number increases linearly with resolution,

following the trend line given in the rightmost plot of Figure 1.8. Following these guidelines, Split-

SPCP can decompose the videos from [70] in real-time without sacrificing quality. An example is

shown in Figure 1.9.

1.5.4 Accelerating Frank-Wolfe

Our approach to accelerating low rank recovery models is closely connected to an approach

presented in [54] to accelerate the Frank-Wolfe method for RPCA. The Frank-Wolfe method, first

proposed in [30], has recently gained attention for its ability to yield scalable algorithms for opti-

mization problems involving structure-encouraging regularizers [41, 54]. Frank-Wolfe is a method

of optimizing a Lipschitz-di�erentiable function over a convex set by solving a sequence of linear
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Figure 1.9: Real-time background subtraction using Split-SPCP. Split-SPCP correctly identifies
(left) a car in the middle-ground, (center) a person in the foreground, and (right) a person in the
background. The resolution is 240◊320 pixels per frame, 600 frames were decomposed at one time,
and only 200 iterations were allowed.

subproblems. For example, if f is Lipschitz-di�erentiable and C is a convex set, Frank-Wolfe solves

the problem

min
xœC

f(x) (1.27)

by linearizing f about each iteration x
k

: f(y) ¥ f(x
k

) +
+Òf(x), y ≠ x

,
, minimizing the linear

problem to find a decent direction y
k

≠ x
k

, and then stepping in this direction with a step size

÷: x
k+1

= x
k

+ ÷(y
k

≠ x
k

). Traditionally, ÷ = 2

k+2

is fixed for convergence guarantees, but better

performance can be achieved with adjustable step sizes [54]. A summary of this process is shown

in Algorithm 1.

Algorithm 1 Using the Frank-Wolfe Method to Solve (1.27) (c.f. [30, 41, 54])
Input: x

0

œ C
1: while (Not Converged) do
2: y

k

Ω arg min
yœC

+
y, Òf(x

k

)
,

3: ÷ = 2

k+2

4: x
k+1

Ω x
k

+ ÷(y
k

≠ x
k

)
5: end while
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The Frank-Wolfe method has recently become popular in machine learning, statistics, image

processing, and related fields due to the simple form of the linear subproblem when handling

structure-inducing regularizers [41, 42, 37]. For example, for any optimization problem involving

the nuclear norm, we can write an equivalent problem where the nuclear norm term is represented

in the constraint [42, 54]:

min
X

f(X) + ⁄ÎXÎú … min
ÎXÎúÆt

f(X) + ⁄
L

t. (1.28)

When C in Algorithm 1 is the scaled nuclear norm unit ball, then the linear subproblem corresponds

to finding the leading eigenspace of the iterate L
k

. This is much cheaper than computing the full

SVD at each iteration, which is required by proximal methods.

However, it is often di�cult to scale the Frank-Wolfe method for problems involving ¸
1

regularization. For these problems, each Frank-Wolfe iteration updates iterate S
k

with only a

single non-zero element [54]. This makes Frank-Wolfe unfeasible when the sparse component of

the data-matrix has several thousand non-zero elements or more. The authors of [54] adapt the

Frank-Wolfe method to solve SPCP, using the traditional Frank-Wolfe update for the low rank

component and using a projected gradient update for the sparse component. Their adaptations

allow for significant speedup and better convergence compared to the traditional Frank-Wolfe.

The techniques used in [54] to accelerate the update of the sparse component can be seen

as a special case of the marginalization we present in this work. With the sparsely structured

component marginalized, the program depends only upon the low rank component, so the benefits

of the Frank-Wolfe scheme are preserved and its drawbacks are negated. Algorithm 2 shows how

marginalization can be used to extend the adaptations presented in Algorithms 5 and 6 of [54].

Algorithm 2 solves the following program, which is equivalent to SPCP:

min
ÎLÎúÆt

⁄
L

t + min
S

1
2ÎP

�

(L + S ≠ X)Î2

F

+ ⁄
S

ÎSÎ
1

. (1.29)

This problem is smooth, and as mentioned earlier, the constraint set is amenable to acceleration by

applying the linear subproblems introduced in the Frank-Wolfe scheme. Each iteration of Algorithm
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2, then, updates the low rank component and the nuclear norm bound, t, while the sparse component

remains only implicitly defined. More details on this approach can be found in [54].

Algorithm 2 Frank-Wolfe Method with Marginalization
Input: L0, ⁄

L

, ⁄
S

, t
0

= 0, U
0

= 1

2⁄L
ÎP

�

(L0 + S0 ≠ X)Î2

F

1: while Not Converged do
2: Sk Ω shrink(X ≠ Lk, ⁄

S

)
3: Yk Ω arg min

ÎYÎúÆ1

+P
�

(Lk + Sk ≠ X), Y
,

4: if ⁄
L

Ø ≠+P
�

(Lk + Sk ≠ X), Yk
,

then
5: Vk Ω 0
6: V

tk Ω 0
7: else
8: Vk Ω U

k

Yk
9: V

tk Ω U
k

10: end if
11: ÷ı Ω arg min

÷œ(0,1)

1

2

ÎP
�

((1 ≠ ÷)Lk + ÷Vk + Sk ≠ X)Î2

F

+ (1 ≠ ÷)⁄
L

t
k

+ ÷⁄
L

t
k

12: Lk+1 Ω (1 ≠ ÷ı)Lk + ÷ıVk
13: t

k+1

Ω (1 ≠ ÷ı)t
k

+ ÷ıV
tk

14: U
k+1

Ω 1

2⁄L
ÎP

�

(L0 + S0 ≠ X)Î2

F

+ t
k

15: end while

While Algorithm 2 is similar to the methodology in [54], fully marginalizing the sparse com-

ponent eliminates the linear subproblem required in [54] to update the iterate S
k

. We show the

performance of this adapted Frank-Wolfe scheme on SPCP in Figure 1.10. Although its perfor-

mance is better than the traditional Frank-Wolfe (see [54]), it is still much slower than quasi-Newton

methods applied to the smoothed problem.

1.6 Low Rank Recovery Models with a Parallel rSVD

In section 1.5, we saw that solving low rank recovery models without the SVD step required by

proximal methods allows the GPU to o�er greater acceleration. In this section, we explore whether

a communication-avoiding rSVD can provide the convex problem (1.3) with similar acceleration on

the GPU.

Many problems in data analysis involve matrices of a “tall-skinny” structure. Tall-skinny

matrices arising in applications could have twice as many rows as columns, or several-thousand-
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Figure 1.10: Comparing Frank-Wolfe with marginalization (denoted “FW”) with other SPCP
solvers for background subtraction on the escalator video of [50]. One marker corresponds to
40 iterations.

times more rows than columns [26]. In the psychometric data that we consider in section 1.6.4, the

matrices have about 230-times more rows than columns. The surveillance video from the previous

section has dimensions 20,800◊200, so it is also tall-skinny. The prevalence of this structure is due

to the fact that high-dimensional data sets must be “unwrapped” into a two-dimensional matrix

before matrix-based algorithms can analyze the data. Data from video are three-dimensional: there

are two dimensions of space, and one dimension of time. When applying a low rank recovery model

to this data, each frame of the video is stored as one column of the matrix, so a two-hundred

frame video with a resolution of 120 ◊ 160 pixels per frame produces a 20,800 ◊ 200 matrix for

decomposition. The problem is exacerbated when data is even higher dimensional, as it is for fMRI

data.

Unfortunately, tall-skinny matrices pose a challenge for matrix decompositions, especially on

computational architectures where communication is costly (such as a GPU) [26]. This is why

transferring low rank recovery models to the GPU is a challenge: to minimize the nuclear norm,

an SVD is computed at every step, and this is extremely costly on the GPU.

Even for problems involving matrices that are not originally tall-skinny, many popular al-

gorithms for data-analysis produce tall-skinny matrices during intermediate calculations, which

significantly slows computation. The randomized SVD [36] is one of these algorithms. The rSVD

creates a tall-skinny matrix structure that amplifies communication costs, even if the input matrix
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is square. The e�ect of this increased communication is notable: on the CPU, the rSVD step in

LagQN accounts for about 55% of the algorithm’s total running time, but when this solver is run on

the GPU, the rSVD accounts for about 90% of SPCP’s total running time. The following sections

demonstrate how the Tall-Skinny QR algorithm of [26] can provide a convex option for accelerated

low rank recovery models. While TSQR has been used to accelerate the SVD step in RPCA for

tall-skinny matrices [3], we extend this idea to the rSVD algorithm on general matrices.

1.6.1 Motivation

A basic description of the rSVD algorithm is presented in Algorithm 3. To decompose the

m ◊ n matrix X, the rSVD algorithm first multiplies X on the right by the n ◊ k random matrix

� to project X onto a low-dimensional subspace. This projection creates an m ◊ k matrix Y ,

where k π m, The orthogonalization steps (3 through 8) perform QR decompositions on these tall-

skinny matrices. If the singular values of X decay slowly (which is often the case in applications),

then several power iterations are performed, which increases the number of QR decompositions.

Regardless of input X, Y is always tall-skinny when the target rank k is small.

Algorithm 3 Randomized Singular Value Decomposition (rSVD) [36]
Input: Matrix X, rank estimate k, and power-parameter q

1: Form �, an n ◊ k Gaussian matrix
2: Y

0

Ω X�, so that Y is an m ◊ k tall-skinny matrix
3: Q

0

Ω qr(Y
0

)
4: for j Œ {1, 2, · · · q} do
5: Ỹ

j

Ω XT Q
j≠1

6: Q̃
j

Ω qr(Ỹ
j

)
7: Y

j

Ω XQ̃
j

8: Q
j

Ω qr(Y
j

)
9: end for

10: Q Ω Q
q

11: B Ω QT X, (where B is a small k ◊ n matrix)
12: [Û , �, V ] Ω svd(B)
13: U Ω QÛ

The tall-skinny structure notably slows the QR decomposition on the CPU, and when per-

forming this algorithm on the GPU, the sub-optimality of the tall-skinny structure is amplified [26].
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To avoid this problem, we replace the QR decompositions in the rSVD algorithm with a tall-skinny

QR decomposition developed in [26].

1.6.2 The TSQR Algorithm

It is important to see why tall-skinny matrix structures are so hazardous in the first place.

This analysis can be found in [26], but we include it here for completeness. Consider the Householder

QR decomposition on the tall-skinny matrix in Figure 1.11:

Orthogonalize columns
(Heavy Communication)

Y
____________]

____________[

Q

cccccccccccca

1 c2 · · · cn

0

AÕ
¸˚˙˝

Update the
Trailing Matrix

(Low Communication)

...

...

...
0

R

ddddddddddddb

Figure 1.11: The first iteration in the Householder QR Decomposition of a Tall-Skinny Matrix.

Orthogonalization of columns is a particularly communication-heavy task, especially when

compared to the matrix-update step that can be performed using BLAS3 matrix-matrix multiplies

that are easily parallelizable. As the columns of the matrix get taller, the Householder QR must

spend more time orthogonalizing columns and less time performing the matrix-update. This causes

deceleration in CPUs, and in GPUs, where communication between cores is even more time con-

suming, this causes significant ine�ciency. The TSQR decomposition reduces this ine�ciency. An

outline of the algorithm is presented on the following page.
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The TSQR Algorithm [26]:

(1) Divide the matrix vertically into 2n blocks, which we illustrate with n = 2:

A =

S

WWWWWWWWWWU

A
1,1

A
1,2

A
1,3

A
1,4

T

XXXXXXXXXXV

(2) Perform a QR decomposition on each block in parallel:
S

WWWWWWWWWWU

A
1,1

A
1,2

A
1,3

A
1,4

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

Q
1,1

Q
1,2

Q
1,3

Q
1,4

T

XXXXXXXXXXV

S

WWWWWWWWWWU

R
1,1

R
1,2

R
1,3

R
1,4

T

XXXXXXXXXXV

(3) Concatenate the matrix of R’s vertically, forming the matrices A
2,i

, for i = 1, 2, 3, · · · , 2n≠1:

S

WWU
A

2,1

A
2,2

T

XXV Ω

S

WWWWWWWWWWU

Q

cca
R

1,1

R
1,2

R

ddb

Q

cca
R

1,3

R
1,4

R

ddb

T

XXXXXXXXXXV

(4) Repeat steps 2 through 4 for the matrices A
2,i

. Do this process n ≠ 1 times. For n = 2, we

form the matrices Q
2,1

, Q
2,2

, R
2,1

, and R
2,2

:

S

WWWWWWWWWWU

A
1,1

A
1,2

A
1,3

A
1,4

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

Q
1,1

Q
1,2

Q
1,3

Q
1,4

T

XXXXXXXXXXV

S

WWU
Q

2,1

Q
2,2

T

XXV

S

WWU
R

2,1

R
2,2

T

XXV
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(5) Concatenate the matrix of R’s to form A
3,1

:

A
3,1

Ω

S

WWU

Q

cca
R

2,1

R
2,2

R

ddb

T

XXV

(6) Performing the final QR decomposition on A
3,1

we have

S

WWWWWWWWWWU

A
1,1

A
1,2

A
1,3

A
1,4

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

Q
1,1

Q
1,2

Q
1,3

Q
1,4

T

XXXXXXXXXXV

S

WWU
Q

2,1

Q
2,2

T

XXV Q
3,1

R
3,1

(7) The upper-triangular matrix R is equal to R
3,1

, and the orthogonal matrix Q is the product

Q =

S

WWWWWWWWWWU

Q
1,1

Q
1,2

Q
1,3

Q
1,4

T

XXXXXXXXXXV

S

WWU
Q

2,1

Q
2,2

T

XXV Q
3,1

,

but since R is upper-triangular, it is often more e�cient to calculate Q = AR≠1.

The QR decomposition in steps 2,4, and 6 is generally chosen to be Householder’s, but any method

could be used without changing the high-level flow of the algorithm. Figure 1.12 clearly summarizes

the binary-tree structure of TSQR. The optimal number of vertical partitions depends on the height-

to-width ratio of the input matrix and on the particular architecture that is used to execute the

algorithm.

It is easy to see the speedup in the early steps of the TSQR algorithm due to the vertical

partitioning and parallelization, but it is not obvious that the final steps of TSQR maintain the

algorithm’s e�ciency. In the first step, the vertical partitions ameliorate the tall-skinny communi-

cation problem, and the “short” QR decompositions can be performed in parallel, which is another
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Figure 1.12: The TSRQ algorithm’s binary tree structure. Figure from [26].

source of speedup. However, as we descend the TSQR tree, the matrices become taller and the

parallelization disappears, so these steps become more costly. As long as the input matrix has

su�ciently more rows than columns, then the intermediate R submatrices shrink, so that the final

QR performed without parallelization is smaller than the original matrix. This means that the

final QR is still inexpensive compared to performing a traditional QR on the original matrix.

To exhibit this shrinking, suppose we perform a two-split TSQR on a 64 ◊ 4 matrix. The

first step is to perform QR’s on the two 32 ◊ 4 matrices that result from the split. This produces

two 4 ◊ 4 matrices, R
1,1

and R
1,2

. The final step is to concatenate these two matrices and perform

a QR decomposition on the resulting 8 ◊ 4 matrix. In total, the number of operations required

to do this TSQR decomposition is equal to the number of operations required to find the QR of

one 32 ◊ 4 matrix and one 8 ◊ 4 matrix, and this costs less than performing a QR on the original

64 ◊ 4 matrix. In general, if the input matrix is size m ◊ n and the number of splits in the TSQR

algorithm is s, then the final QR will be less expensive than the initial QR if m Ø ns.

1.6.3 Numerical Experiments on rSVD

To test the ability of TSQR to accelerate rSVD, we built implementations of TSQR that run

on (1) multiple CPU cores and on (2) multiple blocks of a single GPU card. The multiple CPU

code uses MATLAB’s Parallel Computing Toolbox, while the GPU code uses Magma libraries [66].

Our code can also be used to run on multiple GPU cards, but due to limited resources, we exclude

this case from our tests.

We test four di�erent rSVD implementations: rSVD on the CPU, rSVD on the GPU, rSVD



38

Rank Estimate
64 128 256 512 1024

T
im

e
 (

s)

0

10

20

30

40

50

60

70

80

90
TSQR on GPU
GPU
TSQR on multi-CPU
CPU

Rank Estimate
64 128 256 512 1024

T
im

e
 (

s)

0

10

20

30

40

50

60

70

80

90
TSQR on GPU
GPU
TSQR on multi-CPU
CPU

Figure 1.13: Timing the rSVD algorithm for various rank estimates and matrix sizes: on the left,
the matrix is 65,536 ◊ 8,192. On the right, the matrix is 131,072 ◊ 4,096 (twice the number of rows
and half the number of columns).

on the GPU with a multi-CPU-core TSQR, and rSVD on the GPU with a single-GPU TSQR.

The matrices in our tests were randomly generated with each entry drawn independently from the

univariate normal distribution, so they were all of full rank. The rank estimate is the number

of columns that the matrix Y has at the time of the QR decomposition, so the speedup that

TSQR o�ers would be the same even if the test matrices were square. Both tests (and both the

multi-CPU and GPU TSQR algorithms) employed sixteen vertical partitions for the TSQR step,

which we determined to be near optimal through testing. We see from the tests that both TSQR

on the GPU and on multi-CPU architectures provide significant speedup. TSQR on the GPU is

most e�ective for extremely tall-skinny matrices, while TSQR on the CPU outperforms its GPU

counterpart when the matrix is closer to square.

1.6.4 Numerical Experiments on fMRI Brain Scan Data

Functional MRI brain scan data sets are inherently four-dimensional, so unwrapping the

dataset into a two-dimensional array creates a tall-skinny matrix with hundreds of times more

rows than columns. The data set used in the following experiments has 230-times more rows than

columns. Also, the enormity of these data sets makes low rank recovery models intractable without

parallelization. Figure 1.14 shows the total time spent performing SPCP on one of these data sets,
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as well as the total time spent performing rSVDs, performing the QR step of the rSVD, and moving

data (labeled as the “overhead” cost). The results of this test are included in Figures 1.15 and 1.16.
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T
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Figure 1.14: The total time spent performing various tasks during a run of SPCP on fMRI brain
scan data. The test “TSQR-CPU” uses a hybridized architecture, running TSQR on multiple
CPU’s but running the rest of SPCP on the GPU. Both tests “GPU-No TSQR” and “TSQR-GPU”
were run entirely on the GPU.

Figure 1.15: The results of SPCP on fMRI brain scan data. Activity is measured in Blood-oxygen-
level dependent (BOLD) signal. (From left to right: original image, low rank image recovered by
SPCP, and sparse image recovered by SPCP.)

The datasets used for testing were taken from a study of the human brain’s response to un-

comfortable stimuli, specifically, the feeling of submerging a hand in hot or cold water. Analyzing

these scans to find common neurological responses to these stimuli is di�cult due to the enormous

amount of error in the data. There is uniformly distributed noise due to constant ancillary physio-

logical activity, and there are also sparsely distributed groups representing neurological structures
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that should all exhibit the same behavior. The ventricles, for example, are filled with cerebrospinal

fluid (CSF), which does not contribute to neurological communication, so they should not be ac-

tive. All signals observed in the ventricles should be treated as sparsely structured outliers. SPCP

removes the uniform noise and, most remarkably, correctly identifies signals in the brain’s ventricles

as outliers. In Figure 1.15, the largest ventricles are the two structures in the center of the brain.

The rightmost image shows that the majority of the noise contained in S is from these ventricles.

The other two major components of the brain are white and gray matter. The activity we are

hoping to observe takes place in the gray matter, so ideally, SPCP would remove most signals from

the white matter regions. However, the regions of white matter are more di�cult to distinguish

than the regions of CSF, and SPCP removes about equal amounts of noise from the white matter

as it does from the gray. If we let S
gm

be the gray-matter component of S, and define S
wm

and

S
csf

similarly, Figure 1.16 shows the average BOLD signal in S
gm

, S
wm

, and S
csf

for each frame in

time. These data were normalized by the average original signal in the corresponding regions.
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Figure 1.16: The average BOLD signal in di�erent regions of S. The averages were normalized by
the average original signal in the corresponding regions.

It is clear that S
csf

contains more signal than the other two regions. For S
gm

, SPCP detects

noise in only the first 100 time slices. The removed signal from the white matter is more distributed

over time, and the total amount of noise in S
gm

and S
wm

is comparable. These results suggest that

SPCP correctly identifies outliers in the fMRI data, especially within the regions of CSF.

Because of the size and tall-skinny structure of fMRI brain scan data, this analysis using

SPCP is only feasible using parallel programming. Figure 1.14 shows how incorporating the TSQR
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algorithm into SPCP on the GPU more than doubles the speed of the algorithm. While the GPU

o�ers enormous speedup over the CPU implementation of SPCP, the rSVD step on the GPU is

about 90% of the algorithm by time, and it is only about 55% of the algorithm on the CPU. This

discrepancy is ameliorated by TSQR.

1.6.5 Comparing the Non-Convex and Communication-Avoiding Approaches

Although reducing communication in the low rank recovery algorithm provides noticeable

speedup, the non-convex approach is often even faster. In Figure 1.17, we compare our non-convex

SPCP algorithm to a convex solver using TSQR for the rSVD step. Both solvers were decomposing

the same 106,496 ◊ 462 brain-scan data-matrix used in section 6.4, and both were run on the GPU.
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Figure 1.17: Comparing Split-SPCP with the convex solver LagQN with TSQR and without TSQR.
Split-SPCP was initialized with the rank bound k = 462, the maximum possible rank of the low
rank component. One marker represents 35 iterations.

As with previous tests, a reference solution (L
ref

, S
ref

) was found by solving LagQN to

high accuracy, and the error is measured as the normalized distance from the reference objective

value. The rank of L
ref

was 423, and Split-SPCP was initialized with the rank bound k = 462.

Since X had 462 columns, this was the largest possible rank bound, and Split-SPCP still greatly

outperformed the convex solvers. Also, both solvers found solutions of similar quality. At an error

of 5 ◊ 10≠4, the low rank component found by LagQN had rank 427, and the low rank component



42

found by Split-SPCP had rank 425. Similarly, the sparse component of LagQN had sparsity 58.5%,

and the sparse component of Split-SPCP had sparsity 58.3%, while S
ref

was 58.5% sparse. Non-

convex SPCP recovered nearly the same solution as the parallelized convex algorithm at a much

smaller cost.

1.7 Conclusion

In this manuscript, we developed two new methods to accelerate regularized low rank recovery

models. Both of these methods o�er significant speedup over existing approaches, and both models

are amenable to further speedup using parallelized computational architectures.

For our first approach (Split-SPCP), we use the factorization L = UV T to induce an upper-

bound on the rank of L and eliminate the iterative SVDs normally required for nuclear norm

minimization. By marginalizing the regularized S variable, we create an objective that is Lipschitz-

di�erentiable when the loss function is strongly convex. Using L-BFGS on the GPU, we showed that

our non-convex SPCP model converges much faster than existing methods. We also developed a

certificate to determine whether our model had converged to a minimum or to a spurious stationary

point, showing empirically and theoretically that local minima do not pose a serious problem for

our non-convex model.

Our second approach (TSQR) maintained the convexity of the low rank recovery model and

accelerated the iterative SVDs by reducing the algorithm’s communication. Combining the tall-

skinny QR decomposition with the rSVD algorithm, we solved an inherent communication problem

that exists when running the rSVD on a GPU. This reduction in communication accelerated convex

SPCP solvers by 40% in our experiments. While the non-convex model outperformed TSQR, it

is an important contribution, showing how to better parallelize the original convex formulation on

GPU architectures.

Our accelerated solvers provide regularized low rank recovery models with new applications.

The non-convex SPCP approach can process video streams in real-time. Both of our models allow

for faster decomposition of extremely large data sets, such as fMRI brain scans, which makes the
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low rank recovery of these data sets feasible.



Chapter 2

Tensor RPCA Outperforms Matrix RPCA for High-Dimensional Data

Recovery

2.1 Chapter Summary

We derive performance guarantees for tensor-based RPCA using atomic-norm regularization.

These results improve upon existing guarantees and show that using tensor RPCA yields better

recovery of the low-rank and sparse components of a tensor than using a sum-of-nuclear-norms

approach or using matrix RPCA on the matricized tensor. We then present a non-convex relaxation

of the atomic norm using a higher-order generalization of Burer-Monteiro factorization that is

popular in matrix recovery. We provide several algorithms to solve this non-convex model, and we

supplement them with a certificate to bound the distance from a recovered solution to the global

optimum. The strong performance of our approach is demonstrated in numerical experiments,

where we show that our non-convex model can reliably recover tensors with ranks larger than all

of their side lengths.

2.2 Introduction

Tensors, or multidimensional arrays, are generalizations of matrices to higher order. A vector

is an order-1 tensor, a matrix is an order-2 tensor, and an order-K tensor contains K indices of

information. Tensors were first used as tools for data analysis in the psychometics community,

where researchers used tensor decompositions to study fMRI datasets, which are more naturally

represented as tensors rather than matrices [49, 68]. Since then, tensors have established a place in
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chemometrics, computer vision, compressed sensing, data mining, and higher-order statistics [49].

With modern datasets growing quickly in both size and complexity, tensor-based algorithms o�er

more natural approaches analyzing multidimensional data.

However, this is not to say that tensor-based methods only o�er convenience. Higher-order

tensors and their decompositions have many useful mathematical properties that their matrix

correlates do not. Matrix decompositions often enforce orthogonality constraints on their factors

(for example, the singular value decomposition), and these constraints are generally not present

in the information we would like to extract from the data matrix. Tensor decompositions have no

such constraints, and they also enjoy uniqueness under weak conditions [49]. These qualities are

what give higher-order tensors their advantage over matrices. As a particularly influential example,

researchers in machine learning have recently exploited these properties of tensor decompositions

to use them for parameter estimation in latent-variable models. This work has lead to advances

in Gaussian mixture models, hidden Markov models, and some of the most general guarantees for

neural-network performance [2, 44].

In this chapter, we will focus on low-rank tensor recovery through a new formulation of

tensor RPCA. Low-rank matrix recovery is a versatile tool used for collaborative filtering, dimension

reduction, and background subtraction; it is also supplemented with many mathematical guarantees

[17]. Low-rank tensor recovery can be used for the same applications, and, as we will show, tensor

recovery is often better suited for handling multidimensional datasets. Our tensor RPCA algorithm

can also be interpreted as computing a low-rank decomposition of a tensor with gross, sparsely

distributed errors.

The rest of this chapter is outlined as follows. In section 2.3, we will provide an overview

of some analytic and algebraic properties of tensors. This will include a description of existing

methods for tensor RPCA. In section 2.4, we will present recovery guarantees for our formulation

of tensor RPCA using atomic-norm regularization. We will also compare these guarantees to

existing guarantees for both tensor and matrix RPCA. Sections 2.4 through 2.6 contain the proof

for our main result.
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In section 2.7, we will develop a non-convex representation of the tensor atomic norm that

can be seen as a higher-order generalization of the Burer-Monteiro-factorization approach that is

popular in low-rank matrix recovery algorithms. We will develop three algorithms to fit our non-

convex model. These include an alternating minimization approach that provably converges to a

stationary point, as well as a smoothing technique that allows our model to be fit using first-order

methods. In section 2.8, we will provide a certificate for optimality for our model, which includes

a bound on the suboptimality of any point. Finally, we present numerical experiments in section

2.9 that demonstrate the superiority of our model.

Taken together, our results suggest that preserving the structure of multidimensional datasets

allows for significantly improved recovery. Hence, atomic-norm regularization outperforms existing

methods methods for RPCA involving matricization.

2.3 Tensor Preliminaries

This section introduces definitions and properties of tensors that we will use. All of this

information and more can be found in [31, 49, 75], for example.

Let X œ Rd

1

◊···◊dK be an order-K tensor with side lengths d
1

, · · · , d
K

. X can be described

in terms of its entries and indices: X := [[x
i

1

,··· ,iK ]], where the brackets [[·]] indicate that we are

considering the tensor defined by these entries. The fibres of X along its kth mode are the vectors

obtained by holding all but one of the indices of X fixed and varying the kth index. If X is an

order-2 tensor (or, matrix), the fibres of X along its first mode are the columns of X, and the fibres

along its second mode are its rows.

In some cases, it is useful to matricize a tensor, so that it is represented as a matrix. The

matricization of an order-K tensor X along its kth mode is denoted X
(k)

. X
(k)

is formed by taking

the mode-k fibres of X and making them the columns of X
(k)

.

There are several products that are useful when working with tensors. The outer product,
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which we will denote ¢, is the map

¢ : Rd

1 ◊ · · · ◊ RdK æ Rd

1

◊···◊dK : (u
1

, · · · u
K

) ‘æ [[(u
1

)
i

1

, (u
2

)
i

2

, · · · , (u
1

)
iK ]], (2.1)

where (u
1

)
i

1

is the ith

1

component of u
1

, for example. For a simple example, we see that for

u œ Rm, v œ Rn, u ¢ v is the m ◊ n matrix uvT . We will also use the Khatri-Rao product, which

we denote §. For two matrices A œ Rm◊n. B œ Rp◊n with the same number of columns, we have

A § B :=

Q

cccccca

a
1,1

b1 · · · a
1,n

bn
...

...
...

a
m,1

b1 · · · a
m,n

bn

R

ddddddb
œ Rm·p◊n, (2.2)

where bi is the ith column of B. A matricized tensor can be expressed neatly using the Khatri-Rao

product [49]. We will revisit this in section 2.7.

Every tensor X œ Rd

1

◊···dK admits a CP-decomposition of the form

X =
Rÿ

r=1

“
r

(u(1)

r

¢ u(2)

r

¢ · · · ¢ u(K)

r

),

=
Rÿ

r=1

(a(1)

r

¢ a(2)

r

¢ · · · ¢ a(K)

r

) (2.3)

where R is minimal. We call R the CP-rank of X. Here u
(k)

r

are unit vectors with respect to

the Euclidean norm, and “
r

=
r

K

k=1

Îa
(k)

r

Î. The factor matrices of X are then the matrices

A(1), · · · , A(K) that have a
(1)

r

, · · · , a
(K)

r

as their columns, respectively. It is also sometimes conve-

nient to write X = [[A(1), · · · , A(K)]] when the factor matrices of X are known; this representation

of X is using Kruskal’s notation.

The tensor atomic norm, which we will denote as Î · Îú is defined as follows:

ÎXÎú = inf
I

Rÿ

r=1

|“
r

| : X =
Rÿ

r=1

“
r

(w(1)

r

¢ · · · ¢ w(K)

r

), Îw(1)

r

Î = · · · = Îw(K)

r

Î = 1
J

.

This norm is also known as the higher-order nuclear norm [75], but we will follow the convention

of [23], where Î · Îú is the norm induced by the Minkowski functional (or gauge) on the convex hull

of the set of rank-1 tensors with unit-Euclidean norm. In the case K = 2, the atomic norm is the
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matrix nuclear norm (also known as the trace norm), which is equal to the sum of the singular

values of a matrix. In section 2.4, we will show that atomic-norm regularization encourages low-rank

structure.

The dual to the nuclear norm is the spectral norm, Î · Î, which is defined as [31, 75]:

ÎXÎ = max
Îw

(1)

r Î=···=Îw

(K)

r Î=1

+
X, w(1)

r

¢ · · · ¢ w(K)

r

,
. (2.4)

There are two interesting qualities of this norm that we will use. First, there exists a rank-1, unit-

Euclidean-norm tensor that maximizes this inner-product, so the maximum is well-defined [75].

Throughout this paper, we will denote this maximizing tensor as W . Next, suppose a third-order

tensor X = [[A, B, C]] (using Kruskal’s notation). If we let W = w
1

¢ w
2

¢ w
3

be the tensor that

maximizes the above inner product, then w
1

lies in the columnspace of A, and the analogous results

holds true for w
2

and w
3

as well [75]. We will be working with the columnspaces of factor matrices

often, so we will define projection operators onto these spaces in the sequel.

2.3.1 Projection Operators and the Tucker-Rank

Let X = [[U, V, W ]], and let Z = [[A, B, C]] be order-3 tensors. Define the projection oper-

ator P
U,V,W

: Z ‘æ [[P
U

(A), P
V

(B), P
W

(C)]], where P
U

, for example, projects matrices onto the

columnspace of U . We will use operators of this form often. For convenience, we will use the

notation of [75] to define the following projections:

P
X

0 := P
U,V,W

P
X

:= P
U,V,W

+ P
U

‹
,V,W

+ P
U,V

‹
,W

+ P
U,V,W

‹

P
X

1

:= P
U

‹
,V

‹
,W

P
X

2

:= P
U

‹
,V,W

‹

P
X

3

:= P
U,V

‹
,W

‹

P
X

4

:= P
U

‹
,V

‹
,W

‹

P
X

‹ := P
X

1

+ P
X

2

+ P
X

3

+ P
X

4

.
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Analogous projections exist for tensors of higher order, but they will not be useful to us.

We will also need to define the Tucker-rank of a tensor. Suppose we have tensor X =

[[U (1), · · · , U (K)]] œ Rd

1

◊···◊dK . The Tucker rank of X is the tuple (rank(U (1)), · · · , rank(U (K))) =:

(r
1

, · · · , r
K

). It follows that r
k

is the dimension of the range of P
U

(k)

. Another useful measure of

am order-3 tensor’s complexity is the weighted average of its Tucker ranks:

r(T ) :=
Û

r
1

r
2

d
3

+ r
1

r
3

d
2

+ r
2

r
3

d
1

d
1

+ d
2

+ d
3

.

2.3.2 Norms for Tensors and Operators on Tensors

We will be working with linear operators that act on tensors, and we will need to define a

norm for these operators. Let Q : Rd

1

◊d

2

◊d

3 æ Rd

Õ
1

◊d

Õ
2

◊d

Õ
3 be an operator mapping one tensor

product of vector spaces to another. We will define the norm of Q as

ÎQÎ := sup
XœRd

1

◊d
2

◊d
3

ÎXÎF Æ1

ÎQXÎ
F

. (2.5)

This definition is a trivial generalization of the commonly used norm for operators acting on ma-

trices.

Finally, we will need higher-dimensional generalizations of the matrix ¸
1

and ¸Œ norms. For

tensor X œ Rd

1

◊d

2

◊d

3 , we can define the useful norms

ÎXÎ
sum

=
ÿ

(i,j,k)œ[d

1

]◊[d

2

]◊[d

3

]

|X
i,j,k

|, (2.6)

and

ÎXÎ
max

= max
(i,j,k)œ[d

1

]◊[d

2

]◊[d

3

]

|X
i,j,k

|. (2.7)

Because these tensor-norms are not induced by the topologies of the ¸
1

or ¸Œ spaces, it is more

appropriate to use the notation above rather than denote the norms as Î ·Î
1

and Î ·ÎŒ, respectively.

2.3.3 Coherence

Exact recovery of a tensor through our RPCA model relies on the tensor having low coherence.

For our proofs, we will adopt the measures of tensor coherence introduced in [75]. Recall that the
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coherence of an r-dimensional linear subspace U of Rk is defined to be [19, 75]

µ(U) := k

r
max
1ÆiÆk

ÎP
U

e
i

Î2 = max
1ÆiÆk

ÎP
U

e
i

Î2

k≠1

q
k

i=1

ÎP
U

e
i

Î2

. (2.8)

For tensor X = [[U, V, W ]] œ Rd

1

◊d

2

◊d

3 , we can define one measure of coherence as

µ(X) := max{µ(range(P
U

)), µ(range(P
V

)), µ(range(P
W

))}, (2.9)

where P
U

, for example, is the projection onto the column space of U . The following lemma will be

used in the sequel:

Lemma 2. (Lemma 2 in [75]): Let X œ Rd

1

◊d

2

◊d

3 be a third-order tensor, let d
+

:= d
1

+d
2

+d
3

,

and let r(X) :=


(r
1

(X)r
2

(X)d
3

+ r
1

(X)r
3

(X)d
2

+ r
2

(X)r
3

(X)d
1

)/d
+

. Then

max
i,j,k

ÎP
X

(e
i

¢ e
j

¢ e
k

)Î2

F

Æ r(X)d
+

d
1

d
2

d
3

µ(X)2. (2.10)

The other measure of coherence introduced in [75] is

–(X) :=
Ò

d
1

d
2

d
3

/r(X)ÎWÎ
max

, (2.11)

where W is the one define by the spectral norm of X, as described in (2.4), so W = P0

X

W ,

ÎWÎ = 1, and
+
X, W

,
= ÎXÎú. For our recovery results, we will assume that the low-rank

component X œ Rd

1

◊d

2

◊d

3 has low coherence, so it satisfies µ(X) Æ µ
0

and –(X) Æ –
0

.

2.3.4 Further Notation

We will often use the notation a · b to mean min(a, b), and a ‚ b := max(a, b) for scalars a

and b. Also, we will let d
+

:= d
1

+ d
2

+ d
3

.

Furthermore, our main result involves the Lambert-W function of large inputs, so we will

describe the asymptotic behavior of W (x) for large x. Let f(x) := xex. The Lambert-W function

is defined as f≠1. It has the following asymptotic behavior [16]:

For x ∫ 1 : W (x) ≥ log(x)
3

1 ≠ log(log(x))
log(x) + 1

4
. (2.12)

We are now prepared to state our results.
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2.4 Tensor RPCA

We will show that the existence of a approximate dual certificate is enough to ensure that

the following program

min
X,S

ÎXÎú + ⁄ÎSÎ
sum

subject to: X + S = Z (2.13)

recovers X and S exactly. Our main result is Theorem 2.

Theorem 2. Suppose tensor X œ Rd

1

◊d

2

◊d

3 satisfies µ(X) Æ µ
0

, –(X) Æ –
0

, and r(X) = r,

and let tensor S œ Rd

1

◊d

2

◊d

3 have a support set � that is uniformly distributed among all sets of

cardinality m. There then exists a positive constant — so that (2.13) with ⁄ = (d
+

)≠1/2 exactly

recovers X and S with probability 1 ≠ (d
+

)≠1≠—, provided that

r(X) Æ fl
r

3
d

1

d
2

d
3

≠ m

(d
1

+ d
2

+ d
3

)W (d
1

d
2

d
3

≠ m)µ2

4
1/2

and m Æ
3

fl
s

d
1

d
2

d
3

·
Ô

flr log(n)W (n)+W (n)

flr log(n)

.

4

(2.14)

Here, fl
r

, fl
s

are numerical constants, and W (·) is the Lambert-W function.

These are the best guarantees that have been proven for a tensor RPCA, and they are near

optimal. For large d
1

, d
2

, and d
3

, (2.12) implies that removing a factor of log(d
1

d
2

d
3

)≠(1/2≠‘) for

some small ‘ > 0 would imply that tensors of all Tucker-ranks could be exactly recovered using the

suggested program. In fact, our numerical experiments in section 2.9 indicate that our non-convex

reformulation of (2.13) reliably recovers tensors of arbitrarily large Tucker-ranks. While this does

indicate the strength of our approach to tensor RPCA, this also implies that the Tucker-rank is a

poor measure of the complexity of high-rank tensors. For more precise performance guarantees, we

must formulate bounds on the CP-rank of recoverable tensors, which will require new theoretical

tools.

Outside of this work, the best guarantees for a tensor RPCA are from [40]. The relevant

theorem from this paper is listed below.
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Theorem 3. (Theorem 1 from [40]): Consider the following sum-of-nuclear-norms model for

tensor RPCA:

min
X,S

Kÿ

i=1

⁄
i

ÎX
(i)

Îú + ÎSÎ
1

, (2.15)

subject to: X + S = Z, (2.16)

where X
(i)

is the unfolding of tensor X along its ith dimension. Let X = [[U
1

, U
2

, · · · , U
K

]], and

define r
k

to be the rank of the linear space spanned by the columns of U
k

(so that r
k

is the kth

component of the Tucker rank of X). Let d
(1)

i

= max(d
i

, �
j ”=i

d
j

), and d
(2)

i

= min(d
i

, �
j ”=i

d
j

). For

some constant C, and with ⁄
i

=
Ò

d
(1)

i

, (2.15) exactly recovers X and S with probability 1 ≠ Cd≠3

1

as long as

r
k

Æ C
r

K≠2

µ
Õ≠1d

(2)

k

log2 d
(1)

k

, and |�| Æ fld
(1)

k

d
(2)

k

, (2.17)

for some constants C
r

and fl, and incoherence parameter µÕ.

For a direct comparison of the rank bounds required by these two theorems, consider the case

where T is an order-3 tensor with d
1

= d
2

= d
3

= d. Our result says that exact recovery is likely

when

r
1

r
2

+ r
1

r
3

+ r
2

r
3

Æ fl
r

A
d3 ≠ m

3dW (d3 ≠ m)µ2

B

, (2.18)

and the result from [40] says that exact recovery is likely when

r
k

. C
r

A
d

log2(d)µÕ

B

. (2.19)

It should be noted that for an order-3 tensor with d
1

= d
2

= d
3

= d, the maximum possible Tucker

rank is r
1

= r
2

= r
3

= d, so our program allows for exact recovery of a tensor with arbitrary Tucker

rank to within a factor of less than log(d)≠1/2. This means that we have exhausted the utility of

the Tucker-rank approximation to a tensor’s CP-rank, and future work should investigate tighter

bounds using the CP-rank of a tensor.

Now suppose further that r
1

= r
2

= r
3

= r, m is small, and d is large. Our guarantees

require that

r . fl1/2

r

3
d

(log(d) ≠ log(log(d)))1/2

4
. (2.20)
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This is only a factor of log(d)3/2 better than (2.17) (and, because (2.17) agrees with the guarantees

for matrix RPCA on the matricized tensor, we are a factor or log(d)3/2 better than matrix RPCA

as well). However, this is because a rank bound of r . d is the best we can possibly prove using

the Tucker-rank measure. In section 2.9, we show that our model for tensor RPCA can reliably

recover tensors of arbitrarily large Tucker-rank.

To prove Theorem 2, we follow a strategy similar to the one used in [17]. In Lemma 3, we will

show that Theorem 2 holds provided that a certain dual certificate exists. In sections 2.5 and 2.6,

we will show that the dual certificate given by Lemma 3 can be constructed with high probability.

Lemma 3. Suppose ÎP
�

P
X

Î < 1

2

and ⁄ œ (0, 1). Then (X, S) is the unique (and exact) solution

to (2.13) if there exists tensors W ‹ and F satisfying

W + P
X

‹W ‹ = ⁄(sgn(S) + F + P
�

D)

subject to: M = X + S

where ÎW ‹Î Æ 1

4

, P
�

F = 0, ÎFÎ
max

Æ 1

4

, and ÎP
�

DÎ
F

Æ 1

8

. (As before and throughout this paper,

W satisfies P0

X

W = W , ÎWÎ = 1, and
+
W, X

,
= ÎXÎú. Such a W always exists, so we do not

need to prove its existence for our certificate.)

Proof. Let � be a perturbation away from the supposed optimal point (X, S). Let W + P
X

‹W
Õ‹

be an (arbitrary) element of the subdi�erential of the nuclear norm at L, and let sgn(S) + F Õ be an

element of the subdi�erential of the ¸
1

-norm at S. We then have that (X + �, S ≠ �) is a feasible

point of (2.13), and

ÎX + �Îú + ⁄ÎS ≠ �Î
sum

Ø ÎXÎú + È�, W + P
X

‹W
Õ‹,

+ ⁄
!ÎSÎ

sum

≠ È�, sgn(S) + F Õ,"
(2.21)

The projection P
X

‹ is orthogonal, so
+
�, P

X

‹W ‹,
=

+P
X

‹�, W ‹,
, and by the duality of the

tensor nuclear and spectral norms, there exists a W
Õ‹ satisfying ÎW

Õ‹Î = 1

4

and
+P

X

‹�, W ‹,
=

1

4

ÎP
X

‹�Îú. Similarly, we can choose F Õ so that
+
F Õ, �

,
= 1

4

ÎP
�

‹�Î
sum

. Hence,

ÎX + �Îú ≠ ÎXÎú + ⁄(ÎS ≠ �Î
sum

≠ ÎSÎ
sum

) Ø 1
4 (ÎP

X

‹�Îú + ⁄ÎP
�

‹�Î
sum

) + È�, W ≠ sgn(S)
,

(2.22)
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We would like to show that the right side of this inequality is positive unless � = 0. To this end,

we can bound the magnitude of the last term.

--È�, W ≠ sgn(S)
,-- = |+⁄F + ⁄P

�

D ≠ P
T

‹W ‹,| (2.23)

Æ |+F, �
,| + |+P

�

D, �
,| + |+P

X

‹W ‹, �
,| (2.24)

<
1
4 (ÎP

X

‹�Îú + ⁄ÎP
�

‹�Î
sum

) + ⁄

8 ÎP
�

�Î
F

, (2.25)

where we used the fact that P
�

is self-adjoint. This yields

ÎX + �Îú ≠ ÎXÎú + ⁄(ÎS ≠ �Î
sum

≠ ÎSÎ
sum

) Ø 1
4 (ÎP

X

‹�Îú + ⁄ÎP
�

‹�Î
sum

) ≠ ⁄

8 ÎP
�

�Î
F

(2.26)

The last term can be bounded.

ÎP
�

�Î
F

= ÎP
�

(P
X

+ P
X

‹)�Î
F

(2.27)

Æ ÎP
�

P
X

�Î
F

+ ÎP
X

‹�Î
F

(2.28)

Æ 1
2Î�Î

F

+ ÎP
X

‹�Î
F

(2.29)

Æ 1
2ÎP

�

�Î
F

+ 1
2ÎP

�

‹�Î
F

+ ÎP
X

‹�Î
F

, (2.30)

where we have used the fact that ÎP
�

P
X

Î Æ 1

2

ÎP
�

�Î
F

Æ ÎP
�

‹�Î
F

+ 2ÎP
X

‹�Î
F

. (2.31)

We now have

ÎX + �Îú ≠ ÎXÎú+⁄(ÎS ≠ �Î
sum

≠ ÎSÎ
sum

) (2.32)

Ø 1
4 (ÎP

X

‹�Îú + ⁄ÎP
�

‹�Î
sum

) ≠ ⁄

8 (ÎP
�

‹�Î
F

+ 2ÎP
X

‹�Î
F

) (2.33)

Ø 1
4 (1 ≠ ⁄) ÎP

X

‹�Îú + 3⁄

8 ÎP
�

‹�Î
sum

. (2.34)

This shows that the perturbation � leads to a strict increase in the objective, unless � = 0.
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To summarize, to ensure exact recovery, it su�ces to find a tensor W ‹ satisfying
Y
_____________]

_____________[

W ‹ œ range(X‹),

ÎW ‹Î < 1

4

,

ÎP
�

(W ≠ ⁄sgn(S) + W ‹)Î
F

Æ ⁄

8

,

ÎP
�

‹(W + W ‹)Î
max

< ⁄

4

.

(2.35)

Equivalently, we will find tensors W L and W S satisfying W L+W S œ range(P
X

‹) and the following:

Y
________]

________[

(a) ÎW LÎ < 1

8

,

(b) ÎP
�

(W + W L)Î
F

Æ ⁄

8

,

(c) ÎP
�

‹(W + W L)Î
max

< ⁄

8

,

(2.36)

Y
___]

___[

(d) ÎW SÎ < 1

8

,

(e) ÎP
�

‹W SÎ
max

< ⁄

8

.

(2.37)

Similarly to the argument in [17], we will construct W L using a golfing scheme described in section

2.5, and we will construct W S as a the solution to a certain least-squares problem which is outlined

in section 2.6.

2.5 Constructing W L

Our construction of W L uses a variation of the golfing scheme developed in [33, 34], and

mirrors the adaptations used in [17, 19, 75]. Let n := |�c| = d
1

d
2

d
3

≠ m. We will create an i.i.d.

uniformly distributed ordered set of triples in [d
1

] ◊ [d
2

] ◊ [d
3

], call it {(a
i

, b
i

, c
i

) : 1 Æ i Æ n}. This

set is created by sampling with replacement from �c using the following process:

(1) Initialize S
0

= ÿ.

(2) For i = 1, 2, · · · , n, sample the triple (a
i

, b
i

, c
i

) from S
i≠1

uniformly with probability

|S
i≠1

|/d
1

d
2

d
3

, and sample (a
i

, b
i

, c
i

) uniformly from �c\S
i≠1

with probability 1≠|S
i≠1

|/d
1

d
2

d
3

.
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(3) Set S
i

= S
i≠1

fi {(a
i

, b
i

, c
i

)}.

The same scheme is used to construct a dual certificate for the tensor completion problem in [75],

but in our case, we are sampling from �c to analyze the support of S.

The utility of the golfing scheme comes from the fact that P((a
i

, b
i

, c
i

) œ S
i≠1

|S
i≠1

) is equal

to the probability of the same event when the triples (a
i

, b
i

, c
i

) are drawn as i.i.d. random variables.

Also, the conditional distribution of (a
i

, b
i

, c
i

) given S
i≠1

and the event (a
i

, b
i

, c
i

) œ Sc

i≠1

is uniform.

Together, these properties imply that the points (a
i

, b
i

, c
i

) are drawn unifromly from [d
1

]◊[d
2

]◊[d
3

]

as i.i.d. random variables [75].

We split this set into n
2

subsets of cardinality n
1

, creating a partition of the set �c =
t

n

2

k=1

�
k

,

where |�
k

| = n
1

. Notice that n
1

n
2

Æ n due to non-empty intersections among the �
k

. The

constants n
1

and n
2

must be chosen appropriately; this is addressed in later subsections.

With the sets �
k

defined, we can define the corresponding projections P
�k . Finally, with

Y
0

= 0, define the recursion

Y
j

= Y
j≠1

+ d
1

d
2

d
3

n
1

P
�j P

X

(W ≠ Y
j≠1

), (2.38)

where here and throughout, W is a tensor satisfying P0

X

W = W , ÎWÎ Æ 1, and ÈW, XÍ = ÎXÎú.

We will set W L = P
X

‹Y
n

2

, and prove that this choice of W L satisfies conditions (a), (b), and (c)

in (2.36).

2.5.1 Proof of (a)

Fortunately, the authors of [75] have already provided the deviation bounds necessary to prove

that the W L defined above has low spectral norm with high probability. This section consists of

an adaptation of their proof. The following two lemmas will be used:

Lemma 4. (Lemma 6 in [75]): Let {(a
i

, b
i

, c
i

)} be an ordered set of independently and uniformly

distributed samples from [d
1

] ◊ [d
2

] ◊ [d
3

]. Assume that µ(X) Æ µ
0

. Define r := r(X) and d
+

:=
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d
1

+ d
2

+ d
3

for convenience. Then for any fixed k œ {1, 2, · · · , n
2

} and for all · > 0,

P
;....P

X

≠ d
1

d
2

d
3

n
1

P
X

P
�j P

X

.... Ø ·

<
Æ 2r2d

+

exp
A

≠ n
1

(·2/2)
(1 + 2·/3)(µ2

0

r2d
+

)

B

. (2.39)

Also,

max
ÎXÎ

max

=1

P
;....

3
P

X

≠ d
1

d
2

d
3

n
1

P
X

P
�j P

X

4
X

....
max

Ø ·

<
Æ 2d

1

d
2

d
3

exp
A

≠ n
1

(·2/2)
(1 + 2·/3)µ2

0

r2d
+

B

(2.40)

Lemma 5. (Lemma 7 in [75]): Let –(X) Æ –
0

, r := r(X), d
+

= d
1

+ d
2

+ d
3

, and qú
1

=

(— + log(d
+

))2–2

0

r log(d
+

). There exists a positive constant c
1

so that for any constants — > 0 and

”
1

œ [1/(log(d
+

)), 1),

n
1

Ø c
1

5
qú

1

d1+”

1

+

+
Ò

qú
1

(1 + —)”≠1

1

d
1

d
2

d
3

6
(2.41)

implies

max
X:X=PXX

ÎXÎ
max

ÆÎW Î
max

P
3....(P

X

≠ d
1

d
2

d
3

n
1

P
X

P
�

1

P
X

)X
.... Ø 1

16

4
Æ d≠—≠1

+

, (2.42)

where W satisfies W = P0

X

W , ÎWÎ = 1, and
+
X, W

,
= ÎXÎú.

Notice that Lemma 5 puts a lower bound on n
1

, and because n
1

n
2

Æ n, this also puts an upper

bound on n
2

.

Instead of working directly with the sequence {Y
j

}, it will be easier to work with the recursive

sequence

Z
j

:= W ≠ P
X

Y
j

(2.43)

instead. Notice that for a fixed j, this recursion satisfies

Z
j

=
3

P
X

(I ≠ d
1

d
2

d
3

n
1

P
�j )P

X

4
Z

j≠1

,

=
3

P
X

(I ≠ d
1

d
2

d
3

n
1

P
�j )P

X

4 3
P

X

(I ≠ d
1

d
2

d
3

n
1

P
�j≠1

)P
X

4
· · ·

3
P

X

(I ≠ d
1

d
2

d
3

n
1

P
�

0

)P
X

4
W.

We see that Y
n

2

=
q
j

d

1

d

2

d

3

n

1

P
�j Z

j≠1

and Z
j

œ range(P
X

) for all j. This implies

W L = P
X

‹Y
n

2

= P
X

‹
ÿ

j

(I ≠ d
1

d
2

d
3

n
1

P
�j )Z

j

. (2.44)
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We would like to show that ÎW LÎ < 1

8

. For convenience, let R
j

= P
X

(I ≠ d

1

d

2

d

3

n

1

P
�j )P

X

. Using

an adaptation of the argument presented in [75], section 3.3,

P
3

ÎP
X

‹Y
n

2

Î Ø 1
8

4
Æ P

Q

a

......

ÿ

j

R
j

Z
j≠1

......
Ø 1

8

R

b (2.45)

Æ P
3

ÎR
1

WÎ Ø 1
16

4
+ P (ÎZ

1

Î
max

Ø ÎWÎ
max

/4) (2.46)

+ P

Q

a

......

n

2ÿ

j=2

R
j

Z
j≠1

......
Ø 1

16 , ÎZ
1

Î
max

< ÎWÎ
max

/4

R

b (2.47)

Æ P
3

ÎR
1

WÎ Ø 1
16

4
+ P (ÎZ

1

Î
max

Ø ÎWÎ
max

/4) (2.48)

+ P
3

ÎR
2

Z
1

Î Ø 1
32 , ÎZ

1

Î
max

< ÎWÎ
max

/4
4

(2.49)

+ P (ÎZ
2

Î
max

Ø ÎWÎ
max

/8, ÎZ
1

Î
max

< ÎWÎ/4) (2.50)

+ P

Q

a

......

n

2ÿ

j=3

R
j

Z
j≠1

......
Ø 1

32 , ÎZ
2

Î
max

< ÎWÎ
max

/8

R

b (2.51)

Æ
n

2

≠1ÿ

j=1

P
1
ÎP

X

R
j

P
X

Z
j≠1

Î
max

Ø ÎWÎ
max

/2j+1, ÎZ
j≠1

Î
max

Æ ÎWÎ
max

/2j

2

(2.52)

+
n

2ÿ

j=1

P
1
ÎR

j

Z
j≠1

Î Ø 2≠3≠j , ÎZ
j≠1

Î
max

Æ ÎWÎ
max

/2j

2
(2.53)

Using the fact that R
j

and Z
j

are i.i.d., Lemma 4 with the maximizing X = Z
j≠1

/ÎZ
j≠1

Î
max

and

· = 1

8

gives the bound

P
3

ÎP
X

‹Y
n

2

Î Ø 1
8

4
Æ n

2

max
X:X=PXX

ÎXÎ
max

Æ1

P
3

ÎP
X

R
1

P
X

XÎ
max

>
1
4

4
+ P

3
ÎR

1

XÎ >
1

16ÎWÎ
max

4

(2.54)

Æ 2n
2

d
1

d
2

d
3

exp
3

≠(3/112)n
1

µ2

0

r2d

4
+ n

2

max
X:X=PXX

ÎXÎ
max

ÆÎW Î
max

P
3

ÎR
1

XÎ >
1
16

4
.

(2.55)

Applying Lemma 5, to bound the rightmost term with probability no more than (d
1

+d
2

+d
3

)≠1≠—

for some positive constant —, we are finished.
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2.5.2 Proof of (b)

We would like to prove that ÎP
�

(W + W L)Î
F

< ⁄

8

. By the definition of the operator norm

(2.5), Lemma 4 implies
....Z ≠ d

1

d
2

d
3

n
1

P
X

P
�j Z

....
F

Æ ·ÎZÎ
F

(2.56)

and
....Z ≠ d

1

d
2

d
3

n
1

P
X

P
�j Z

....
max

Æ ·ÎZÎ
max

(2.57)

with high probability for all Z œ range(P
X

). Consequentially, using the independence of �
j

and

Z
j≠1

, we have

ÎZ
j

Î
F

Æ ·ÎZ
j≠1

Î
F

=∆ ÎZ
n

2

Î
F

Æ ·n

2ÎWÎ
F

(2.58)

and, using our bound on the coherence of X,

ÎWÎ
max

Æ –
0

3
r

d
1

d
2

d
3

4
1/2

(2.59)

and

ÎZ
n

2

Î
F

Æ ·n

2–
0

Ô
r. (2.60)

Hence,

ÎP
�

(W + W L)Î
F

= ÎP
�

(W + (I ≠ P
X

)Y
n

2

)Î
F

(2.61)

= ÎP
�

Z
n

2

Î
F

(2.62)

Æ ·n

2–
0

Ô
r, (2.63)

where we used the fact that P
�

Y
n

2

= 0. Choosing · = O
1

rd

+

n

1

2 1

2 and n
2

= log(d
+

), we are assured

that our bound on r allows the quantity above to be less than ⁄

8

as long as fl
r

and fl
s

are su�ciently

small. In fact, for the sequel, we will actually require that ÎP
�

(W + W L)Î
F

< ⁄

16

, and it is clear

that this bound also holds with high probability.

2.5.3 Proof of (c)

We would like to prove that ÎP
�

‹(W + W L)Î
max

< ⁄

8

. We have that W + W L = Y
n

2

+ Z
n

2

,

so ÎP
�

‹(W + W L)Î
max

Æ ÎY
n

2

Î
max

+ ÎZ
n

2

Î
max

. From the previous section we have already the
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bound ÎZ
n

2

Î
max

Æ ÎZ
n

2

Î
F

Æ ⁄

16

, so we must only bound ÎY
n

2

Î
max

.

ÎY
n

2

Î
max

=
3

d
1

d
2

d
3

n
1

4 ......

ÿ

j

P
�j Z

j≠1

......
max

(2.64)

Æ
3

d
1

d
2

d
3

n
1

4 ÿ

j

...P
�j Z

j≠1

...
max

(2.65)

Æ
3

d
1

d
2

d
3

n
1

4 ÿ

j

ÎZ
j≠1

Î
max

(2.66)

Æ
3

d
1

d
2

d
3

n
1

4 ÿ

j

· j ÎWÎ
max

(2.67)

Æ
3

d
1

d
2

d
3

n
1

4 ÿ

j

· j–
0

3
r

d
1

d
2

d
3

4
1/2

(2.68)

Æ
A

–
0

Ô
rd

1

d
2

d
3

n
1

B
ÿ

j

· j (2.69)

=
A

–
0

Ô
rd

1

d
2

d
3

n
1

B 3
·(1 ≠ ·n

2)
1 ≠ ·

4
(2.70)

Because we have used Lemma 5, we must choose n
1

Ø O(
Ô

d
1

d
2

d
3

). We will use n
1

= O
1

n

log(d

+

)

2
.

With

r Æ O
3

n

(d
+

)W (n)–2

0

µ2

0

4
1/2

, · = O
A

µ2r2d
+

n
1

B 1

2

we have that ÎY
n

2

Î Æ ⁄

16

when fl
r

and fl
s

are small enough, so the desired result holds.

2.6 Constructing W S

Following the construction of the dual certificate for matrix RPCA [17], we will let

W S = ⁄P
X

‹(P
�

≠ P
�

P
X

P
�

)≠1sgn(S). (2.71)

Notice that P
�

W S = ⁄P
�

(I ≠ P
X

)(P
�

≠ P
�

P
X

P
�

)≠1sgn(S) = ⁄sgn(S). As in the matrix

case, W S can be interpreted as the tensor with minimum Frobenius norm in the set {T : T œ

range(P
X

‹), P
�

W S = ⁄sgn(S)}.



61

2.6.1 Proof of (d)

With W S = ⁄P
T

‹(P
�

≠ P
�

P
T

P
�

)≠1sgn(S), we would like to show that ÎW SÎ < 1

8

. Let

G = sgn(S) for convenience. The elements of G follow the distribution

G
i,j

=

Y
________]

________[

1 with probability flS
2

,

0 with probability 1 ≠ fl
S

,

≠1 with probability flS
2

.

(2.72)

We can then write

ÎW SÎ = ⁄
...P

X

‹(P
�

≠ P
�

P
X

P
�

)≠1G
... (2.73)

= ⁄

.....P
X

‹

Œÿ

k=0

(P
�

P
X

P
�

)kG

..... (2.74)

Æ ⁄ ÎP
X

‹GÎ + ⁄

.....

Œÿ

k=1

(P
�

P
X

P
�

)kG

..... , (2.75)

where we have used the Neumann series expansion of the operator (P
�

≠ P
�

P
X

P
�

)≠1 (viewing the

operator as a map from range(P
�

) to itself, so that P
�

is the identity map).

The first term can be bounded using existing tail bounds on the spectral norm of random

tensors. The distribution of G is subgaussian (with parameter 1), and applying the result from [65]

is su�cient for our purposes, although a much tighter bound is likely to exist.

Lemma 6. (Theorem 1, Tamoika): The following holds with probability at least 1 ≠ ”:

ÎGÎ Æ
Ò

8 log(fl
S

) (d
1

+ d
2

+ d
3

) log(6/ log(3/2)) + log(2/”) (2.76)

With ⁄ = (d
+

)≠ 1

2 and fl
s

su�ciently small, Lemma 6 bounds the first term of (2.75) with large

probability. To bound the second term, we will use an ‘-net covering argument and some results

from [75]. Define the following set of “digitalized” vectors:

B
mj ,dj = {0, ±1, ±2≠1/2, · · · , ±2≠mj/2}dj fl {u œ Rdj : ÎuÎ Æ 1}. (2.77)

Let Q be the operator
qŒ

k=1

(P
�

P
X

P
�

)k. By Lemma 9 in [75],

ÎQ(G)Î = max
ujœSdj

ÈQ(G), u
1

¢ u
2

¢ u
3

Í Æ 8 max
ujœBmj ,dj

ÈQ(G), u
1

¢ u
2

¢ u
3

Í , (2.78)
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where m
j

= Álog
2

(d
j

)Ë. (A similar result holds for the matrix spectral norm, where the set cor-

responding to B
m,D

is an ‘-net for the unit sphere.) Because Q is self-adjoint, this also implies

ÎQ(G)Î = max
ujœSdj

+
Q(u

1

¢ u
2

¢ u
3

), G
, Æ 8 max

ujœBmj ,dj

ÈQ(u
1

¢ u
2

¢ u
3

), GÍ . (2.79)

Let X(u, v, w) :=
+
Q(u

1

¢u
2

¢u
3

), G
,

for convenience. Because the signs of G are i.i.d. symmetric,

we can apply Hoe�ding’s inequality, conditional on the event that the support of G is exactly �:

P(|X(u
1

, u
2

, u
3

)| > t
-- �) Æ 2 exp

A

≠ 2t2

ÎQ(u
1

¢ u
2

¢ u
3

)Î2

F

B

. (2.80)

Because ÎQ(u
1

¢ u
2

¢ u
3

)Î2

F

Æ ÎQÎ2 · Î(u
1

¢ u
2

¢ u
3

)Î2

F

= ÎQÎ2,

P(|X(u
1

, u
2

, u
3

)| > t
-- �) Æ 2 exp

A

≠ 2t2

ÎQÎ2

B

, (2.81)

and

P
A

max
ujœBmj ,dj

|X(u
1

, u
2

, u
3

)| > t
-- �

B

Æ 2

Q

a
Ÿ

j=1,2,3

|B
mj ,dj |

R

b exp
A

≠ 2t2

ÎQÎ2

B

, (2.82)

P(ÎQ(E)Î > t
-- �) Æ

Q

a
Ÿ

j=1,2,3

|B
mj ,dj |

R

b exp
A

≠ t2

32ÎQÎ2

B

. (2.83)

We can easily bound ÎQÎ conditional on the event that ÎP
�

P
X

Î Æ ‡. (See section 2.6.3 for a proof

that this event holds with high probability.) Recall that

ÎQÎ =
.....

Œÿ

k=1

(P
�

P
X

P
�

)k

..... =
.....

Œÿ

k=1

((P
�

P
X

)(P
�

P
X

)ú)k

..... Æ
Œÿ

k=1

...((P
�

P
X

)(P
�

P
X

)ú)k

... Æ ‡2

1 ≠ ‡2

.

(2.84)

We finally have the unconditional bound

P(⁄ÎQ(E)Î > t) Æ 2

Q

a
Ÿ

j=1,2,3

|B
mj ,dj |

R

b exp
A

≠ t2(1 ≠ ‡2)2

32‡4⁄2

B

+ P(ÎP
�

P
X

Î > ‡) (2.85)

= 2
3

e
21d

+

4

4
exp

A

≠ t2(1 ≠ ‡2)2

32‡4⁄2

B

+ P(ÎP
�

P
X

Î > ‡) (2.86)

= 2 exp
A

≠ t2(1 ≠ ‡2)2

32‡4⁄2

+ 21d
+

4

B

+ P(ÎP
�

P
X

Î > ‡). (2.87)

Here, we used a bound on the cardinality of B
mj ,dj given in equation (21) of [75]. This shows that

if ⁄ is chosen to be on the order of (d
+

)≠1/2, and if ‡ is small enough (order-unity), then ÎW SÎ < 1

8

with high probability.
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Remark 1. We would like to note that we can derive a similar bound using a more traditional

covering argument (see, for example, [65]) instead of using the set of “digitalized” vectors B
mj ,dj .

2.6.2 Proof of (e)

We would like to show that ÎP
�

‹W SÎ
max

< ⁄

8

. To do so, we will use an adaptation of Lemma

5, the proof of which will parallel the argument outlined in section 5 of [75] to a large extent.

Define the set

U(÷) := {X œ Rd

1

◊d

2

◊d

3 : X œ range(P
X

‹), ÎXÎ
max

Æ ÷/


d
1

d
2

d
3

}. (2.88)

We will eventually take ÷ = ⁄
1Ô

1+4m≠1

2m

2
for reasons that will become apparent later. We are

interested in bounding

max
XœU(÷)

ÎP
�

‹XÎ
max

= max
XœU(÷)

Î(P
�

≠ I)XÎ
max

. (2.89)

To do so, we will first determine the set U(÷) by bounding ÎXÎ
max

. Notice that

W S = ≠⁄P
X

‹(P
�

≠ P
�

P
X

P
�

)≠1G (2.90)

= ⁄(I ≠ P
X

)(P
�

≠ P
�

P
X

P
�

)≠1G (2.91)

= ≠⁄P
X

(P
�

≠ P
�

P
X

P
�

)≠1G (2.92)

Choosing (i, j, k) œ [d
1

] ◊ [d
2

] ◊ [d
3

], we have

W S

i,j,k

=
e
W S , e

i

¢ e
j

¢ e
k

f
(2.93)

= ⁄
e
(I ≠ P

X

)(P
�

≠ P
�

P
T

P
�

)≠1G, e
i

¢ e
j

¢ e
k

f
(2.94)

= ⁄
e
(I ≠ P

X

)(P
�

≠ P
�

P
X

P
�

)≠1P
�

G, e
i

¢ e
j

¢ e
k

f
(2.95)

= ≠⁄
e
(P

�

≠ P
�

P
X

P
�

)≠1P
�

P
X

(e
i

¢ e
j

¢ e
k

), G
f

, (2.96)

where we used the fact that P
�

, P
X

, and (P
�

≠ P
�

P
X

P
�

)≠1 are all self-adjoint. For convenience,

let

R(i, j, k) = (P
�

≠ P
�

P
X

P
�

)≠1P
�

P
X

(e
i

¢ e
j

¢ e
k

). (2.97)
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Now we will bound the maximum entry of W S with high probability conditional on the event that

the support of G (denoted supp(G)) is exactly �, and that ÎP
�

P
X

Î Æ ‡ (again, we refer the reader

to section 2.6.3 for a proof that this holds with high probability). Because the entries of G are i.i.d.

symmetric, Hoe�ding’s inequality gives

P
1---W S

i,j,k

--- Ø ÷
-- �

2
Æ 2 exp

A

≠ 2÷2

⁄2ÎR(i, j, k)Î2

F

B

, (2.98)

so

P
3

max
i,j,k

---W S

i,j,k

--- Ø ÷
-- �

4
Æ 2d

1

d
2

d
3

exp

Q

ca≠ 2÷2

⁄2 max
i,j,k

ÎR(i, j, k)Î2

F

R

db . (2.99)

Now we will bound the operator norm of (P
�

≠ P
�

P
X

P
�

)≠1P
�

P
X

. First, by Lemma 2,

ÎP
T

(e
i

¢ e
j

¢ e
k

)Î
F

Æ µ
0

r

3
d

1

+ d
2

+ d
3

d
1

d
2

d
3

4
1/2

. (2.100)

Hence,

ÎP
�

P
T

(e
i

¢ e
j

¢ e
k

)Î
F

= ÎP
�

P
X

ÎÎP
X

(e
i

¢ e
j

¢ e
k

)Î
F

(2.101)

Æ ‡µ
0

r

3
d

1

+ d
2

+ d
3

d
1

d
2

d
3

4
1/2

(2.102)

Furthermore, using the Neumann series representation of (P
�

≠ P
�

P
X

P
�

)≠1, we have

Î(P
�

≠ P
�

P
X

P
�

)≠1Î = Î(P
�

≠ (P
�

P
X

)(P
�

P
X

)ú)≠1Î (2.103)

Æ (1 ≠ ‡2)≠1, (2.104)

so

ÎR(i, j, k)Î2

F

= Î(P
�

≠ P
�

P
X

P
�

)≠1P
�

P
X

(e
i

¢ e
j

¢ e
k

)Î2

F

(2.105)

Æ
3

‡µ
0

r

1 ≠ ‡2

4
2

3
d

1

+ d
2

+ d
3

d
1

d
2

d
3

4
. (2.106)

Finally, we have derived that

P
3

max
i,j,k

---W S

i,j,k

--- Ø ÷

4
Æ 2d

1

d
2

d
3

exp
A

≠ 2÷2(1 ≠ ‡2)2d
1

d
2

d
3

(‡⁄µ
0

r)2(d
1

+ d
2

+ d
3

)

B

+ P (ÎP
�

P
X

Î > ‡) . (2.107)

With this bound in place, we can now develop a bound on max
XœU(÷)

Î(P
�

≠ I)XÎ
max

by adapting

some results from [75]. The following lemma simplifies our problem using a standard symmetrization

argument.



65

Lemma 7. (Adapted from Lemma 8 from [75]): Let ‘
i

be a Rademacher sequence. Then, for

� = {(a
i

, b
i

, c
i

) œ [d
1

] ◊ [d
2

] ◊ [d
3

] : i = 1, 2, · · · , m},

max
XœU(÷)

P {ÎP
�

X ≠ XÎ Ø t} (2.108)

Æ max
XœU(÷)

P
I.....

mÿ

i=1

‘
i

P
(ai,bi,ci)

X

..... Ø t

2

J

+ 4 exp
A

≠ t2/8
m÷2 + 2÷t/3

B

(2.109)

Proof. Using symmetrization,

max
XœU(÷)

P {ÎP
�

X ≠ XÎ Ø t} (2.110)

Æ 4 max
XœU(÷)

P
I.....

mÿ

i=1

‘
i

P
(ai,bi,ci)

X

..... Ø t

2

J

(2.111)

2 max
XœU(÷)

max
ÎuÎ=ÎvÎ=ÎwÎ=1

P
IK

u ¢ v ¢ w,
mÿ

i=1

P
(ai,bi,ci)

X ≠ X

L

>
t

2

J

. (2.112)

To bound the rightmost quantity, let

›
i

=
e
u ¢ v ¢ w, P

(ai,bi,ci)
X ≠ X

f
, ÎuÎ = ÎvÎ = ÎwÎ = 1, X œ U(÷). (2.113)

It is clear that the ›
i

are i.i.d. random variables satisfying

E[›
i

] = 0, |›
i

| Æ 2


d
1

d
2

d
3

ÎXÎ
max

Æ 2÷, E[›2

i

] Æ (d
1

d
2

d
3

)ÎXÎ2

max

Æ ÷2, (2.114)

where we used the fact that ÎXÎ Æ Ô
d

1

d
2

d
3

ÎXÎ
max

. The desired result is then an application of

Bernstein’s inequality.

The next lemma we take directly from [75].

Lemma 8. (Lemma 13 in [75]): For some constant — and ” œ [1/ log(d
+

), 1], define the follow-

ing:

pú = max(d
1

, d
2

, d
3

)/(d
1

d
2

d
3

), ‹
1

= (ed”

1

+

mpú) · (3 + —)/”
1

J(a, b, c) := (b + 2)
Ô

a2c≠1L(
Ô

a2c≠1, (b + 2)d
+

), L
0

= 1 ‚ log(ed
+

(mú + 2)/


‹
1

2≠1,

mú = min{x : x Ø mú or J(‹
1

, x, x) Ø d
+

}, L(aÕ, bÕ) := max{1, log(ebÕ/aÕ)}.
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Choose x and t
1

to satisfy

x Ø 1, mt
1

Ø 24÷(mú + 1)
3

2


‹

1

d
1

d
2

d
3

, mxt2

1

(2 log(2) ≠ 1) Ø 12÷2(mú + 2)2

Ô
e(d

1

+ d
2

+ d
3

)L
0

.

Then,

max
XœU(÷)

P
A.....

mÿ

i=1

‘
i

P
(ai,bi,ci)

X

..... Ø xt
1

m

d
1

d
2

d
3

B

(2.115)

Æ
CA

mú + 1
2

B

+ mú ≠ mú

D

[ed
+

(mú + 2)](≠6x≠21/4)(mú+2) + d≠—≠1

+

/3. (2.116)

The conditions on x and t
1

listed in Lemma 8 can be interpreted as upper bounds on ÷ and

m. With xt
1

Æ ⁄d

1

d

2

d

3

16m

, and taking x = 1, the first inequality implies

m Ø 24÷(mú + 2)3/2

A
16m

Ô
‹

1

d
1

d
2

d
3

⁄d
1

d
2

d
3

B

(2.117)

=∆ ÷ Æ 1
384(mú + 2)≠3/2

A
⁄

Ô
d

1

d
2

d
3Ô

‹
1

B

(2.118)

The second inequality implies

m Ø 12÷2(mú + 2)2

Ô
ed

+

L
0

A
16m

⁄d
1

d
2

d
3


2 log(2) ≠ 1

B
2

(2.119)

=∆ m Æ
1
12(mú + 2)2

Ô
ed

+

L
0

2≠1

A
⁄d

1

d
2

d
3


2 log(2) ≠ 1

16÷

B
2

. (2.120)

Lemma 9. With fl
r

su�ciently small, m and ÷ satisfying

m Æ


fl
r

log(n)W (n) + W (n)
fl

r

log(n) , ÷ = ⁄

AÔ
1 + 4m ≠ 1

2m

B

,

and the other parameters defined as above,

P
Ó

ÎP
�

X ≠ XÎ
max

Ø ⁄

8

Ô
Æ d≠1≠—

+

. (2.121)

Proof. With m and ÷ chosen in this way, the probability in (2.107) is su�ciently small. Also, as

outlined in section 5.6 of [75], the choice of the parameters in Lemma 8 ensures that the probability

in Lemma 8 is of order d≠—≠1

+

.

In light of Lemma 9, we are assured that Î(P
�

X ≠ X)Î = Î(P
�

≠ I)XÎ < ⁄

8

with probability at

most d≠1≠—

+

. Hence, we have proven the desired result, and completed our proof of Theorem 2.
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2.6.3 Bounding the Operator Norm of P
�

P
X

The past two results were conditional on the event that ÎP
�

P
X

Î Æ ‡ with high probability.

Here, we will show that this assumption is justified.

Lemma 10. (Lemma 5 in [75]): Let µ(X) Æ µ
0

, r(X) = r, and � with |�| = m be uniformly

sampled from [d
1

] ◊ [d
2

] ◊ [d
3

] without replacement. Then, for any · > 0

P
1
ÎP

X

(d

1

d

2

d

3

m

P
�

≠ I)P
X

Î Ø ‡
2

Æ 2r2(d
1

+ d
2

+ d
3

) exp
A

≠ m‡2/2
(1 + 2‡/3)µ2

0

r2(d
1

+ d
2

+ d
3

)

B

.

(2.122)

We have that r = O
31

n

d

+

W (n)µ

2

2 1

2

4
, so with ‡ = 1

2

, Lemma 10 shows that as an operator in the

range of P
X

, d

1

d

2

d

3

m

ÎP
X

P
�

P
X

Î œ [1/2, 3/2]. Using the fact that ÎP
�

P
X

Î2 = Î(P
�

P
X

)ú(P
�

P
X

)Î =

ÎP
X

P
�

P
X

Î, we have also bounded ÎP
�

P
X

Î with high probability.

2.7 A Non-Convex Approach to Atomic Norm Minimization

Although we have proven that the program (2.13) can exactly recover a low Tucker-rank

tensor and a sparse tensor from their superposition, (2.13) is NP-hard to solve in general due

to the intractability of the atomic norm [39]. For low-rank matrix recovery using nuclear norm

regularization, it is common to accelerate computation by replacing the nuclear norm with a non-

convex surrogate based on a factorization of X. Specifically, it can be shown that [19, 27, 28, 64]

ÎXÎú = inf
UV

T
=X

1

2

(ÎUÎ2

F

+ ÎV Î2

F

). (2.123)

We will derive a similar non-convex, factorized formulation of the tensor atomic norm that can be

used to develop a tractable program that is equivalent to (2.13).

Our development builds on previous work on tensor completion using various extensions of

the nuclear norm to a higher-order setting. In [10], the authors present a non-convex algorithm for

tensor completion based on a higher-order generalization of the Schatten-2/3 norm. We will extend

this idea to develop a non-convex program that is equivalent to (2.13) and o�er several algorithms
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that provably converge to a stationary point of the non-convex program. Of course, the results of

Theorem 2 apply only to the global minimizer of (2.13), which is NP-hard to find. However, in

section 2.8, we provide a certificate that bounds the suboptimality of a recovered solution to our

non-convex program. In section 2.9, we demonstrate the superior performance of our non-convex

program. Most importantly, we will see that our tensor RPCA can recover tensors whose low-

rank component has a CP-rank that is larger than each of its side lengths. These experiments

demonstrate that unfolding tensors for low-rank recovery leads to sub-optimal performance, and

that the complexity of a high-dimensional dataset is better measured by its CP-rank rather than

its Tucker-rank.

2.7.1 Burer-Monteiro Factorization in Higher-Orders

Contrary to the previous sections, we will now explicitly work with tensors of order-K, with

K Ø 3. We will write the CP-decomposition of a rank-R tensor X œ Rd

1

◊···◊dK as

X =
Rÿ

r=1

“
r

(a(1)

r

¢ · · · ¢ a(K)

r

), (2.124)

= [[A(1), · · · , A(K)]], (2.125)

using Kruskal’s notation with the factor matrices A(1), · · · , A(k), · · · , A(K) œ Rdk◊R.

Instead of establishing equivalence to the program (2.13) directly, we will work with its

Lagrangian formulation:

min
X,S

1
2ÎX + S ≠ ZÎ2

F

+ µÎXÎú + ⁄ÎSÎ
sum

. (2.126)

As in the matrix case [77], this formulation can be used to adjust the amount of noise we expect to

observe in our data. When µ and ⁄ are small, the solution of (2.126) is the same as the solution to

(2.13), with ÎX + S ≠ ZÎ
F

= 0. If we expect our observed data Z to contain noise, we can increase

µ and ⁄ to allow a disparity between Z and X + S.

Using a Burer-Monteiro factorization approach to develop a non-convex program equivalent
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to (2.126), we will implicitly introduce a bound on the rank of X, yielding the constrained problem

min
X,S

1
2ÎX + S ≠ ZÎ2

F

+ µÎXÎú + ⁄ÎSÎ
sum

.

s.t. rank
CP

(X) Æ R. (2.127)

Although (2.126) is non-convex, it has the same global optima as the convex program (2.13) as long

as the rank-bound R is non-restrictive at the solution [27, 69]. The derivation of our non-convex

model begins with the following proposition:

Proposition 1. Suppose “ú, {u
ú(1)

r

}, · · · , {u
ú(K)

r

}, Sú are optimal for the non-convex program

min
“,{u

(1)

r },··· ,{u

(K)

r }

1
2

.....

Rÿ

r=1

“
r

(u(1)

r

¢ · · · ¢ u(K)

r

) + S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

+ µ

K
Î“Î

1

, (2.128)

s.t. Îu(1)

r

Î, · · · , Îu(K)

r

Î Æ 1, (2.129)

Let Xú =
q

R

r=1

“ú
r

(uú
r

¢ vú
r

¢ wú
r

). Then the point (Xú, Sú) is optimal for the problem (2.126).

Conversely, if (Xú, Sú) is the minimizer of (2.126), then the terms “ú, {uú
r

}, {vú
r

}, {wú
r

} from a

CP-decomposition of Xú are optimal for (2.128).

Proof. Using the definition of the atomic norm, we can rewrite (2.13) as

min
X

1
2 ÎX + S ≠ ZÎ2

F

+ ⁄ÎSÎ
sum

+ min
“,{u

(1)

r },··· ,{u

(K)

r }
µÎ“Î

1

, (2.130)

s.t. X =
Rÿ

r=1

“
r

(u(1)

r

¢ · · · ¢ u(K)

r

), (2.131)

Îu(1)

r

Î = · · · = Îu(K)

r

Î = 1. (2.132)

Due to the coerciveness of norms, replacing the norm constraints with inequalities does not change

the global optima. This adjustment yields (2.128).

If R is chosen large enough, then the program (2.128) is a tractable, non-convex reformulation of

(2.13). However, instead of replacing the atomic norm with a smooth, non-convex regularizer as

we would in the matrix case, we have introduced a non-smooth term and multiple constraints. We

would like a non-convex representation of the atomic norm that more closely generalizes (2.123).

Proposition 2 provides this.
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Proposition 2. Consider the non-convex program

min
{a

(1)

r },··· ,{a

(K)

r }

1
2

.....

Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

) + S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK . (2.133)

Let (Xú, Sú) be the solution to (2.13).The program (2.133) and (2.13) are equivalent, in that they

share the same set of global optima.

Proof. We will use an argument similar to the proof in Appendix II of [10]. We can rewrite (2.133)

as

min
“,{a

(1)

r },··· ,{a

(K)

r },{u

(1)

r },··· ,{u

(K)

r }

1
2 ÎX + S ≠ ZÎ2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK (2.134)

s.t. X =
Rÿ

r=1

“
r

(u(1)

r

¢ · · · ¢ u(K)

r

), (2.135)

“
r

= Îa(1)

r

Î · · · Îa(K)

r

Î. (2.136)

Minimizing over “, {a
r

}, {b
r

}, and {c
r

} first, we must solve

min
“

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK (2.137)

s.t. “
r

= Îa(1)

r

Î · · · Îa(K)

r

Î. (2.138)

The AM-GM inequality tells us

(Îa(1)

r

ÎK · · · Îa(K)

r

ÎK)
1

K Æ 1

K

(Îa(1)

r

ÎK + · · · + Îa(K)

r

ÎK), (2.139)

with equality when Îa
(1)

r

Î = · · · = Îa
(K)

r

Î = “
1

K , so the optimal “ satisfies

Î“Î
1

= 1
K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK . (2.140)

Using these optimal values in (2.134), we see that (2.134) is equivalent to

min
“,{u

(1)

r },··· ,{u

(K)

r }

1
2

.....

Rÿ

r=1

“
r

(u(1)

r

¢ · · · ¢ u(K)

r

) + S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

+ µ

K
Î“Î

1

, (2.141)

s.t. Îu(1)

r

Î, · · · , Îu(K)

r

Î Æ 1, (2.142)

which is equivalent to (2.13) by Proposition 1.
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The program (2.133) can be seen as a higher-order generalization of Burer-Monteiro factor-

ization, which is popular in low-rank matrix recovery [19, 27, 28, 64, 69]. Notice for K = 2, the

low-rank regularizing term of (2.133) reduces to µ

2

(ÎAÎ2

F

+ ÎBÎ2

F

), which is equivalent to standard

nuclear-norm regularization (2.123). We will compare a number of algorithms that solve (2.128)

and (2.133).

Remark 2. For matrices, this type of factorization carries with it a useful classification of the sta-

tionary points of the resulting non-convex program. We do not claim that these properties generalize

to higher-orders, but this would be an interesting direction for future research.

For low-rank matrix recovery, it is popular to use alternating minimization to solve the

factorized problem (2.133) [38, 69]. There are many techniques, both heuristic and theoretically

supported, to improve the rate of convergence and the quality of the solution for this well-studied

approach. We will show that alternating minimization is guaranteed to converge to a stationary

point of (2.133). We will also briefly analyze the performance of various implementations of FISTA

and quasi-Newton methods with smoothing, as presented in [27]. In section 2.9, we show that even

though the performance of quasi-Newton methods is not guaranteed in this setting, they have the

strongest performance in application.

2.7.2 Alternating Minimization

Alternating minimization is a workhorse for fitting low-rank matrix models due to its ef-

ficiency and easy of implementation [38, 69]. In this section, we will develop an alternating-

minimization approach to solving (2.133), and prove that our algorithm converges to a stationary

point.

2.7.2.1 Simplifying the Subproblems

We would like to solve the problem

min
{a

(1)

r },··· ,{a

(K)

r }

1
2

.....

Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

) + S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK , (2.143)
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by sequentially updating each vector a
(k)

r

and holding the other vectors fixed. In the matrix case

(where K = 2), the low-rank regularizing term is µ

2

(ÎAÎ2

F

+ ÎBÎ2

F

), and optimizing one factor

matrix, say, A, with B fixed is a convex problem that can be solved for (at most) the cost of

an SVD. For K Ø 3, there are several problems. Most importantly, the objective is columnwise

seperable for each factor matrix, but it is not separable by row. This means that we must update

each factor matrix columnwise, rather than all at once, contrary to the matrix case. Also, although

the subproblem is convex, more theoretical work is required to show that we attain the optimum

e�ciently. Despite these problems, we show that each subproblem of our alternating minimization

scheme for K Ø 3 recovers the unique, optimal factor matrix A(k) for roughly the cost of an SVD,

just as in the matrix case. Furthermore, we prove that our alternating minimization algorithm

converges to a stationary point of (2.143).

For the kth alternating minimization step, we solve for a factor matrix A(k) columnwise, so

we iteratively compute the optimal vectors a
(k)

r

. We use matricization to isolate a single factor

matrix. Notice that (2.128) is equivalent to

min
{a

(1)

r },··· ,{a

(K)

r }

1
2

......

A
Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

)
B

(k)

+ S
(k)

≠ Z
(k)

......

2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK ,

(2.144)

where the subscript Z
(k)

denotes the unfolding of the tensor Z along the kth mode. We can rewrite

these unfoldings in a more illuminating form to obtain the following equivalent problem [1]:

min
{a

(1)

r },··· ,{a

(K)

r }

1
2

...
1
A(K) § · · · § A(k+1) § A(k≠1) § · · · § A(1)

2
(A(k))T + ST

(k)

≠ ZT

(k)

...
2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK . (2.145)

where § denotes the Khatri-Rao product (c.f. (2.2)). For convenience, define

C :=
1
A(K) § · · · § A(k+1) § A(k≠1) § · · · § A(1)

2
. (2.146)

To make the objective in (2.145) columnwise separable in A(k), we need to invert the transpose

operator acting on it. To do this, we vectorize (A(k))T , ST

(k)

and ZT

(k)

in the loss term. We also must
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define the matrix

L :=

Q

ccccccccccccccca

di≠blocks˙ ˝¸ ˚

C 0r
i”=k

di◊R

· · · 0r
i”=k

di◊R

0r
i”=k

di◊R

C · · · 0r
i”=k

di◊R

...
... . . . ...

0r
i”=k

di◊R

0r
i”=k

di◊R

· · · C

R

dddddddddddddddb

Z
_______________̂

_______________\

d
i

≠ blocks, (2.147)

where 0
m◊n

is an m ◊ n matrix of zeros. This yields the equivalent problem

min
{a

(1)

r },··· ,{a

(K)

r }

1
2 ÎLy

T

+ s
T

≠ z
T

Î2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK , (2.148)

where y
T

= vec
1
(A(k))T

2
, and s

T

, z
T

are defined analogously. Finally, define the linear operator

T : Rdk·R æ Rdk·R : vec(M) ‘æ vec(MT ) for all matrices M œ Rdk◊R. This operator has a simple

structure:

T =

Q

cccccccccccccccccccccccccccccccccccccccccccccca

n˙ ˝¸ ˚
1 0 · · · 0

1 0 · · · 0
. . .

1 0 · · · 0

0 1 · · · 0

0 1 · · · 0
. . .

0 1 · · · 0
...

...
...

0 · · · 0 1

0 · · · 0 1
. . .

0 · · · 0 1

R

ddddddddddddddddddddddddddddddddddddddddddddddb

. (2.149)

Our problem now has the form

min
{a

(1)

r },··· ,{a

(K)

r }

1
2 Î(LT)y + s

T

≠ z
T

Î2

F

+ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK , (2.150)
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where

y = T(y
T

) =

Q

cccccca

a
(k)

1

...

a
(k)

R

R

ddddddb
. (2.151)

We would like to solve (2.150) for a
(k)

r

, with all other variables fixed. Without loss of generality,

suppose we are optimizing over a
(k)

1

. Define

yÕ =

Q

cccccccccca

0
d

1

◊1

a
(k)

2

...

a
(k)

R

R

ddddddddddb

, xÕ =

Q

cccccccccca

a
(k)

1

0
d

2

◊1

...

0
dK◊1

R

ddddddddddb

, (2.152)

so that y = yÕ + xÕ. We have now reduced our problem to the much simpler form

min
x

Õ

1
2Î(LT)xÕ ≠ bÎ2 + µ

K
ÎxÕÎK , (2.153)

where b := z
T

≠ s
T

≠ (LT)yÕ. To reduce the problem size, we can ignore the zero entries of xÕ and

replace the operator (LT) with the block of size
1r

K

i=1

d
i

2
◊ d

k

that multiplies the non-zero entries

of xÕ. Call this block A, and define x := a
(k)

1

. We now have the smaller problem

min
x

1
2ÎAx ≠ bÎ2 + µ

K
ÎxÎK . (2.154)

Notice that this problem is convex because z ‘æ zK is increasing on R
+

, and composition with

an increasing function preserves convexity. However, the fact that (2.154) is convex does not

necessarily mean that it can be solved e�ciently.

With K = 3, this is a cubic-regularized least-squares problem. Similar problems have been

considered previously in, for example, [20, 21, 22, 56]. We will generalize results from [56] to show

that the minimizer of (2.154) can be found as the solution of a one-dimensional equation.

2.7.2.2 Solving (2.154)

We will solve (2.154) using a dual program. Before formally presenting the dual, we will

provide some motivating intuition. For the rest of this section, we will assume that the minimizer
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of (2.154) is bounded away from zero. We will relax this requirement when we give a more formal

treatment of the problem in section 2.7.2.3.

Let f(x) be the objective of (2.154), and enforce that µ > 0. The critical point can be found

by solving

Òf(x) = AT (Ax ≠ b) + µÎxÎK≠2x = 0, i.e.
Y
___]

___[

(AT A + µ
x

I)x = AT b

µ
x

= µÎxÎK≠2

(2.155)

We examine the first equation in detail. Let A = U�V T be the SVD of A so that AT A = V �2V T .

Then

(AT A + µ
x

I) = V (�2 + µ
x

I)V T . (2.156)

Under the constraint that (AT A + µ
x

I) is invertible (which is always true if µ
x

> 0 because AT A

is PSD), we have

x = (AT A + µ
x

)≠1AT b = V (�2 + µ
x

I)≠1V T AT b,

= V (�2 + µ
x

I)≠1Âb. (2.157)

where Âb = V T AT b = �UT b. We see now that the constraint that AT A+µ
x

is invertible is equivalent

to the constraint (�2 + µ
x

I) º 0. We now have that ÎxÎ = ÎV (�2 + µ
x

I)≠1ÂbÎ = Î(�2 + µ
x

I)≠1ÂbÎ

(since V is orthogonal). Because the inverse is of a diagonal matrix, we can simplify this to

ÎxÎ2 =
nÿ

i=1

A Âb
i

‡2

i

+ µÎxÎK≠2

B
2

, (2.158)

where ‡
i

are the singular values of A. We also used the definition µ
x

= µÎxÎK≠2. If we let – = ÎxÎ,

then we see that we must satisfy the one-dimensional equation

nÿ

i=1

A Âb
i

‡2

i

+ µ–K≠2

B
2

≠ –2 = 0, (2.159)

Thus the optimal x for (2.154) is given by (2.157) using µ
x

= µ–ú, where –ú is a solution of (2.159).
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This analysis is su�cient when the optimal x ”= 0, but it does not explain why our problem

can be transformed into a one-dimensional, constrained program. As we will prove in the next

section, this one-dimensional program and (2.154) are actually dual problems, and this procedure

will yield the solution to (2.154) even when it is not bounded away from zero.

2.7.2.3 Constructing the Dual and Proving Strong Duality

This section will use some arguments from [20], and especially Theorem 10 in [56]. Let us

rewrite the objective of (2.154) as the following function:

g(x) := 1
2ÈAT Ax, xÍ ≠ ÈAT b, xÍ + µ

K
ÎxÎK . (2.160)

We will define h : R æ R to be the function

h(–) := ≠1
2

e
(AT A + µ–

K≠2

2

I)≠1AT b, AT b
f

+ (2 ≠ K)µ
2K

–K , (2.161)

and define a feasible set as

C := {– œ R
+

: AT A + µ–

K≠2

2

I º 0}. (2.162)

The following theorem states that minimizing g and maximizing h are dual problems. Furthermore,

strong duality holds, and the solution to the primal problem can be solved in closed-form given a

non-trivial solution to the dual.

Theorem 4. Let µ > 0 and K Ø 3. The two programs

(P ) min
xœRn

g(x), and (D) sup
–œC

h(–). (2.163)

are dual problems, and strong duality holds. Furthermore, define the direction

x(–) = (AT A + µ–

K≠2

2

I)≠1AT b. (2.164)

For any – œ C, we have that

0 Æ g(x(–)) ≠ h(–) =
A

≠2–3(K ≠ 2) ≠ –KÎx(–)Î2 + 4–3≠KÎx(–)ÎK

2K(–K≠1(2 ≠ K) + (K ≠ 2)Îx(–)Î2)

B

hÕ(–). (2.165)
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Hence, if the solution to the dual problem (D) is non-trivial, then x(–) is the solution to the primal

(P ).

Proof. This argument uses ideas from the proof of Theorem 10 in [56]. Let gú be the optimal value

of (2.160).

gú = min
x

1
2ÈAT Ax, xÍ ≠ ÈAT b, xÍ + µ

K
ÎxÎK (2.166)

= min
x

·=ÎxÎ2

1
2ÈAT Ax, xÍ ≠ ÈAT b, xÍ + µ

K
(·K/2)

+

(2.167)

= min
x

·œR
sup
–œR

1
2ÈAT Ax, xÍ ≠ ÈAT b, xÍ + µ

K
(·K/2)

+

+ µ

2 –K≠2

1
ÎxÎ2 ≠ ·

2
. (2.168)

We see that this last equality holds because if · ”= ÎxÎ2, then the objective can be made arbitrarily

large by taking – æ ±Œ. Continuing with the saddle-point inequality,

Ø sup
–œC

min
x

·œR

1
2ÈAT Ax, xÍ ≠ ÈAT b, xÍ + µ

K
(·K/2)

+

+ µ

2 –K≠2

1
ÎxÎ2 ≠ ·

2
(2.169)

= hú, (2.170)

where hú is the minimum of (2.161). The final step deserves more attention. Let Ò
·

denote

the gradient of the objective with respect to · , and let Ò
x

be defined analogously. The inner-

minimization problem can then be solved analytically:

Ò
·

: µ

2 ·K/2≠1 ≠ µ

2 –K≠2 = 0 =∆ · = –2, (2.171)

Ò
x

: AT Ax ≠ AT b + µ

2 –x = 0 =∆ x = (AT A + µ–

K≠2

2

I)≠1AT b. (2.172)

Hence, (2.169) reduces to

sup
–œC

≠ 1
2

e
(AT A + µ–

K≠2

2

I)≠1AT b, AT b
f

+ (2 ≠ K)µ
2K

–K , (2.173)

= hú. (2.174)

Now we must show that equality holds. For an arbitrary –, denote the direction

x(–) = (AT A + µ–

K≠2

2

)≠1AT b. (2.175)
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as in (2.164). Hence,

AT b = ≠(AT A + µ–

K≠2

2

)x(–). (2.176)

We now have

g(x(–)) = ÈAT b, x(–)Í + 1

2

ÈAT Ax(–), x(–)Í + µ

K

Îx(–)ÎK (2.177)

= ≠1

2

ÈAT Ax(–), x(–)Í ≠ µ–

K≠2

2

Îx(–)Î2 + µ

K

Îx(–)ÎK (2.178)

= ≠1
2

K

(AT A + µ–K≠2

2 )x(–), x(–)
L

≠ µ–

K≠2

4

Îx(–)Î2 + µ

K

Îx(–)ÎK (2.179)

= ≠1
2

K

(AT A + µ–K≠2

2 )x(–), x(–)
L

≠ µ–

K≠2

4

Îx(–)Î2 + µ

K

Îx(–)ÎK (2.180)

= h(–) ≠ (2 ≠ K)µ–K

2K
≠ µ–

K≠2

4

Îx(–)Î2 + µ

K

Îx(–)ÎK (2.181)

= h(–) +
A

≠2–3(K ≠ 2) ≠ –KÎx(–)Î2 + 4–3≠KÎx(–)ÎK

2K(–K≠1(2 ≠ K) + (K ≠ 2)Îx(–)Î2)

B

hÕ(–), (2.182)

where

hÕ(–) = µ–

K≠3

(K≠2)

2

1
Îx(–)Î2 ≠ –2

2
. (2.183)

Therefore,

g(x(–)) ≠ h(–) =
A

≠2–3(K ≠ 2) ≠ –KÎx(–)Î2 + 4–3≠KÎx(–)ÎK

2K(–K≠1(2 ≠ K) + (K ≠ 2)Îx(–)Î2)

B

hÕ(–). (2.184)

The derivative in (2.183) clearly shows that if hÕ(–) = 0 for some – > 0, then strong duality holds,

and we have recovered a globally optimal solution. If the optimal –ú of the dual problem occurs at

–ú = 0, then strong duality holds as a consequence of the continuity of g [56].

Theorem 4 reduces (2.154) to finding a solution to

– = Î(AT A + µ–

K≠2

2

)≠1AT bÎ, – Ø ≠ 2
µ

‡2

n

, (2.185)

where ‡
n

is the smallest singular value of A. Problems of this form arise often in applications of

trust region methods (see, for example, [56] or Chapter 7 of [24]) In fact, this problem is equivalent

to finding an – that satisfies

nÿ

i=1

A Âb
i

‡2

i

+ µ–K≠2

B
2

≠ –2 = 0, – Ø ≠‡2

n

µ
(2.186)
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giving more theoretical support for (2.159).

As explained in [56], the solution to this problem is undefined when Âb
n

= 0, because this

would imply that – = ≠2‡

2

n
µ

= 0. In this case, the continuity of g(x(–); –) allows us to approximate

the optimal – arbitrarily well, and we refer the reader to [56], and Chapter 7 of [24] for more

information on this case.

Suppose Âb
i

”= 0 for all i < k, and Âb
i

= 0 for i Ø k. Once the optimal –ú is found, the solution

to (2.154) is then

xú =
k≠1ÿ

i=1

Âb
i

v
i

‡2

i

+ µ–ú + cv
n

, (2.187)

where v
i

is the ith eigenvector of AT A (corresponding to the eigenvalue ‡2

i

), and the constant c is

chosen so that ÎxúÎ = –ú. Because the subproblem (2.154) is convex, the optimal solution we find

for the subproblem is unique.

We can now prove that our alternating minimization scheme converges to a stationary point

of (2.133) using the following result:

Proposition 3. Proposition 2.7.1 from [12] Consider a block coordinate descent approach to

solving min
x

f(x), where f is not necessarily convex. If the minimizer of each block is unique, then

the algorithm converges to a stationary point of f .

An application of Proposition 3 to our problem proves our claim. Despite these performance

guarantees, we have found that the first-order methods developed in section 2.7.3 significantly

outperform alternating minimization in practice.
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2.7.3 First-Order Methods

One of the drawbacks of (2.133) is that the non-smooth ¸
1

-regularizer prevents the use of

gradient-based solvers. However, as suggested in [27], the structure of the program allows us to

smooth the problem through marginalization. Define

Ï : X ‘æ min
S

1
2ÎX + S ≠ ZÎ2

F

+ ⁄ÎSÎ
sum

. (2.188)

Because we are using the least-squares loss and ¸
1

-regularization, Ï is the (shifted) Moreau envelope

of the ¸
1

-norm, also known as the Huber loss [6, 27]. The objective in (2.188) is strongly convex,

so the minimum exists and is unique. In fact, it can be written in closed-form using the shrinkage

operator:

(shrink(Y, ⁄))
i

1

,··· ,iK := sign(Y
i

1

,··· ,iK )(|Y
i

1

,··· ,iK | ≠ ⁄|)
+

,

(where (a)
+

denotes the non-negative part of a), so that

arg min
S

1
2ÎX + S ≠ ZÎ2

F

+ ⁄ÎSÎ
sum

= shrink(S, ⁄). (2.189)

Incorporating Ï into the convex program (2.13) preserves convexity and introduces di�erentiabil-

ity. Combining Ï with the non-convex program (2.133) yields a tractable, Lipschitz-di�erentiable

problem that is susceptible to first-order solvers. Formally, consider the program

min
{a

(1)

r },··· ,{a

(K)

r }

µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK + Ï
1
a

(1)

1

, · · · , a
(1)

R

, a
(2)

1

, · · · , a
(K)

R

2
, (2.190)

where

Ï
1
a

(1)

1

, · · · , a
(K)

R

2
= min

S

1
2

.....

A
Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

)
B

+ S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

. (2.191)

Let f(a(1)

1

, · · · , a
(K)

R

) be the objective in (2.190), and let Sı be the minimizer in (2.191). Then f is

di�erentiable with gradient given by

Ò
a

(k)

r
f = (µÎa(k)

r

ÎK≠2)a(k)

r

+ Ò
a

(k)

r
Ï

1
a

(1)

1

, · · · , a
(K)

R

2 ---
S

ı
(2.192)

= (µÎa(k)

r

ÎK≠2)a(k)

r

+
1
a(k)

r

CT + Sı ≠ Z
2

C, (2.193)
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where C =
1
A(K) § · · · § A(k+1) § A(k≠1) § · · · § A(1)

2
. We direct the reader to [60], Theorem

10.58, for proof of the first equality and to [1] for a derivation of the second. The smoothed

problem (2.190) is not only easier to solve, it also has theoretical properties that the non-smoothed

problem does not, making (2.190) easier to analyze. In section 2.8, we will use (2.190) to develop

a certificate of optimality for (2.133).

For minimizing smooth objectives, quasi-Newton methods are often faster than algorithms

that require only first-order smoothness, such as gradient-descent. The provable convergence rates

of quasi-Newton methods rely on second-order smoothness, which does not hold for (2.190) because,

for example, the Huber loss is in C1 and not in C2. However, numerical experiments (including those

presented in section 2.9) suggest that quasi-Newton methods perform well even when only first-

order smoothness is guaranteed. In section 2.9, we will see that L-BFGS solves (2.190) particularly

quickly and reliably.

2.7.4 FISTA Solvers

There are many parallels between the procedure presented in the previous section and iter-

ative thresholding algorithms. In this section, we explore several ways that FISTA can be applied

to solve (2.133). FISTA was introduced in [11] as an accelerated solver for optimization problems

of the form

min
x

f(x) + g(x), (2.194)

where f is first-order di�erentiable with an L-Lipschitz continuous gradient, and g is possibly non-

smooth. The FISTA algorithm is often used in machine learning and compressed sensing to solve

¸
1

-regularized problems, and our problem (2.143) is of this form.

It is often the case with FISTA-like methods that some terms in the objective can be grouped

into either the di�erentiable f or the non-smooth g, and di�erent partitions can lead to di�erent

convergence behavior [11]. We will present two di�erent applications of FISTA and briefly comment
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on their di�erences. For the first, we define

f :
1
a

(1)

1

, · · · , a
(K)

R

2
‘æ 1

2

.....

Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

) + S ≠ Z
.....

2

F

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK

g : S ‘æ ⁄ÎSÎ
sum

(2.195)

Notice that we could transfer either of the smooth terms in f to g and still have a problem

definition that is consistent with the requirements of FISTA, but this partition is the most natural.

An application of FISTA to minimize f
1
a

(1)

1

, · · · , a
(K)

R

2
+ g(S) as they are defined in (2.195) is

outlined in Algorithm 4.

Algorithm 4 FISTA: Using the Function Definitions Given in (2.195)
Input: Lipschitz constant L, maximum iterations m, parameters ⁄, µ, tensor Z, and initial points

A
(1)

0

, · · · , A
(K)

0

, S
0

, and t
0

= 1
1: while i < m do
2: t

i+1

Ω 1+

Ô
1+4t

2

i
2

3: for (r, k) œ [R] ◊ [K] do
4: C Ω

1
A(K) § · · · § A(k+1) § A(k≠1) § · · · § A(1)

2

5: (x(k)

r

)
i

Ω (a(k)

r

)
i

≠ 1

L

Ë1
µÎ(a(k)

r

)
i

ÎK≠2

2
(a(k)

r

)
i

+
1
(a(k)

r

)
i

CT + S
(k)

≠ Z
(k)

2
C

È

6: (a(k)

r

)
i+1

Ω (x(k)

r

)
i

+ ti≠1

ti+1

Ë
(x(k)

r

)
i

≠ (x(k)

r

)
i≠1

È

7: end for
8: SÕ

i

Ω soft_thresh(S
i

, 2⁄

L

)
9: S

i+1

Ω SÕ
i

+ ti≠1

ti+1

#
SÕ

i

≠ SÕ
i≠1

$

10: end while

The terms can also be grouped so that

f̃ :
1
a

(1)

1

, · · · , a
(K)

R

2
‘æ 1

2

.....

Rÿ

r=1

(a(1)

r

¢ · · · ¢ a(K)

r

) + S ≠ Z
.....

2

F

g̃ : S ‘æ ⁄ÎSÎ
sum

+ µ

K

Rÿ

r=1

Kÿ

k=1

Îa(k)

r

ÎK . (2.196)

In this form, applying FISTA requires iteratively solving the subproblem

min
x

µ

K
ÎxÎK + L

2

5
x ≠

3
y ≠ 1

L

1
xCT + Sı ≠ Z

2
C

46
. (2.197)

Finding a minimizing x would replace step (5) in Algorithm 4. While this subproblem can be solved
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using the techniques presented in section 2.7.2, we have found that FISTA in this form is inferior

to Algorithm 4.

2.8 Bounding Sub-Optimality

Although the program (2.133) is non-convex, we can provide a certificate that bounds the

suboptimality of any stationary point. For simplicity, we will derive this certificate for only the

case where K = 3, but it is clear that this analysis immediately extends to tensors of arbitrary

order. Recall that our non-convex program for tensor RPCA is the following:

min
{ar},{br},{cr}

µ

3

Rÿ

r=1

Îa
r

Î3 + Îb
r

Î3 + Îc
r

Î3 + Ï (a
1

, · · · , c
R

) , (2.198)

where

Ï (a
1

, · · · , c
R

) = min
S

1
2

.....

A
Rÿ

r=1

(a
r

¢ b
r

¢ c
r

B

+ S ≠ Z
.....

2

F

+ ⁄ÎSÎ
sum

. (2.199)

For the matrix completion problem, it has been shown that a stationary point of a similar non-

convex algorithm exists whenever the spectral norm of a certain matrix is small enough [10]. The

following lemma extends this result to the RPCA problem, for matrices and higher-order tensors.

Lemma 11. Let {aú
r

}, {bú
r

}, {cú
r

} be stationary points of (2.198), let Xú =
q

R

r=1

(aú
r

¢ bú
r

¢ cú
r

), and

let Sú be the optimal S given by the function Ï. If ÎP
X

ú‹ (Sú ≠ Z) Î Æ µ

2

, then Xú is the solution

to the convex problem (2.126).

Proof. The point (Xú, Sú) is the solution to (2.126) if and only if zero is in the subdi�erential of

the objective. Using the (partial) characterization of the subdi�erential of the tensor atomic norm

given in [75], we know that (Xú, Sú) is the global optimum of (2.126) if there exists a matrix W ‹

satisfying

(Xú + Sú ≠ Z) + µ(W + P
X

‹W ‹) = 0,

and ÎW ‹Î Æ 1

2

. (Here, W is the unique tensor P0

X

úW = W , ÎWÎ = 1, and
+
Xú, W

,
= ÎXúÎú;
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recall (2.4)). We have that

P
X

ú‹W ‹ = P2

X

ú‹W ‹ (2.200)

= ≠ 1

⁄

P
X

ú‹ ((Xú + Sú ≠ Z) + ⁄W ) (2.201)

= ≠ 1

⁄

P
X

ú‹(Sú ≠ Z). (2.202)

Hence, both conditions on W ‹ are satisfied if ÎP
X

ú‹ (Sú ≠ Z) Î Æ µ

2

.

Although this provides a foundation for the development of a certificate of optimality, Lemma

11 is limited in several respects. The conditions of Lemma 11 could be unnecessarily strong because

we only have access to a partial characterization of the subdi�erential of the tensor atomic norm,

namely, the subdi�erential derived in [75].

However, the most important drawback of Lemma 11 is that ÎP
X

ú‹ (Sú ≠ Z) Î is NP-hard to

compute in general, so once a stationary point (Xú, Sú) is recovered, there is no clear way to prove

that ÎP
X

ú‹ (Sú ≠ Z) Î is bounded above. The following results will uncover a computationally

feasible method to check whether the non-convex program has recovered the global optimum.

Lemma 12. Let ({aú
r

}, {bú
r

}, {cú
r

}) be a stationary point of (2.198), and let a‹
r

be any vector or-

thogonal to aú
r

. Then
KA

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B

, (a‹
r

¢ bú
r

¢ cú
r

)
L

= 0.

The same can be said for vectors b‹
r

and c‹
r

defined analogously.

Proof. Let f(a
1

, · · · , c
R

) be the objective of (2.198). The point ({aú
r

}, {bú
r

}, {cú
r

}) is a stationary

point of (2.198) if and only if it nulls the gradient

(Ò
ar f)

i

=
KA

Rÿ

r=1

(a
r

¢ b
r

¢ c
r

) + S ≠ Z
B

, (e
i

¢ b
r

¢ c
r

)
L

+ 3Îa
r

Î(a
r

)
i

= 0.

Here, e
i

is the ith canonical basis vector, and (a
r

)
i

denotes the ith component of a
r

. Multiplying
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(Ò
ar f)

i

by (a‹
r

)
i

and summing over the index i, we then have
KA

Rÿ

r=1

(a
r

¢ b
r

¢ c
r

)
B

, (a‹
r

¢ b
r

¢ c
r

)
L

= ≠3Îa
r

Î+
a‹

r

, a
r

,
,

= 0.

An analogous result holds for vectors b‹
r

and c‹
r

.

With this result established, we can now demonstrate how to e�ciently compute a bound for

ÎP
X

ú‹ (Xú + Sú ≠ Z) Î.

Lemma 13. Let ({aú
r

}, {bú
r

}, {cú
r

}) be a stationary point of (2.198), let Xú =
q

R

r=1

(aú
r

¢ bú
r

¢ cú
r

),

and let Sú be the optimal S given by the function Ï. The following inequality holds:

ÎP
X

ú‹(Sú ≠ Z)Î Æ
.....

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
.....

F

≠
.....P0

X

ú

A
Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B..... (2.203)

Proof. Because I = P
X

ú‹ + P
X

ú and (P
X

ú‹)(P
X

ú) = 0, we have that

ÎP
X

ú‹(Sú ≠ Z)Î =
.....

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
..... ≠

.....P
X

ú

A
Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B..... . (2.204)

Using Lemma 12, we can reduce the rightmost term. Recall that P
X

ú = P
U,V,W

+ P
U

‹
,V,W

+

P
U,V

‹
,W

+ P
U,V,W

‹ , where U, V , and W are the linear spaces spanned by the vectors {a
r

}, {b
r

},

and {c
r

}, respectively. Also, for arbitrary vectors q, r, s, we have, for example,
K

P
U

‹
,V,W

A
Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B

, q ¢ r ¢ s

L

(2.205)

=
K

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z, P
U

‹
,V,W

(q ¢ r ¢ s)
L

(2.206)

=
K

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z, a‹
r

¢ r ¢ s

L

(2.207)

= 0 (2.208)

by Lemma 12. The same holds for the operators P
U,V

‹
,W

and P
U,V,W

‹ . Therefore, we can replace

the projection P
X

ú in the rightmost term with P0

X

ú . The desired inequality follows from the fact

that ÎT Î Æ ÎT Î
F

for any tensor T .
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To use this bound in practice, one would first find a stationary point ({a
r

}ú, {b
r

}ú, {c
r

}ú),

and then use, for example, alternating minimization on q, r and s to find a large value for
K

P0

X

A
Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B

, (q ¢ r ¢ s)
L

(2.209)

=
K A

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B

, P0

X

(q ¢ r ¢ s)
L

. (2.210)

We only have to search over tensors q ¢ r ¢ s in the range of P0

X

, and we have a basis for this

space given by our stationary point ({a
r

}ú, {b
r

}ú, {c
r

}ú). If it is possible to make this quantity large

enough so that
.....

Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
.....

F

≠
.....P0

X

ú

A
Rÿ

r=1

(aú
r

¢ bú
r

¢ cú
r

) + Sú ≠ Z
B..... Æ µ

2 , (2.211)

then this stationary point is globally optimal. To be clear, it is possible for a stationary point to

be globally optimal but fail to satisfy this certificate.

Just as in [27], we can extend this certificate to provide a bound on the distance to optimality.

Let X =
q

R

r=1

(a
r

¢b
r

¢c
r

), let Xı be a globally optimal point, and let f(a
1

, · · · , c
R

) be the objective

in (2.198). Following the analysis in [27], we would like to find an element of the subdi�erential

E œ ˆf(X) (2.212)

that is close to zero. We can bound ÎEÎ2

F

with the following:

ÎEÎ2

F

= min
YœˆÎXÎú

ÎY + 1

µ

(X + S ≠ Z)Î2

F

= min
ÎW

‹ÎÆ 1

2

ÎW + P
X

‹(W ‹) + 1

µ

(X + S ≠ Z)Î2

F

Æ 1 + 1

µ

ÎX + S ≠ ZÎ2

F

.

We can also use the bound

ÎX ≠ XúÎ
F

Æ ÎXÎ
F

+ ÎXúÎ
F

Æ ÎXÎ
F

+ ÎXúÎú

Æ ÎXÎ
F

+ f(a
1

, · · · , c
R

).
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Combining these bounds with the process outlined in [27], we have the following bound on the

sub-optimality of the point X:

f(X) ≠ f(Xú) Æ ÈE , X ≠ XúÍ (2.213)

Æ ÎEÎ
F

· ÎX ≠ XúÎ
F

(2.214)

Æ (1 + 1

µ

ÎX + S ≠ ZÎ2

F

)(ÎXÎ
F

+ f(a
1

, · · · , c
R

)). (2.215)

While a bit crude, this bound allows us to measure the convergence of our non-convex model with

respect to the global minimum.

2.9 Numerical Experiments

We compare our model to existing methods for tensor and matrix RPCA on synthetic data

and the escalator-video dataset of [50]. Our experiments demonstrate that our model significantly

outperforms all existing methods for tensor- and matrix-based RPCA. We also see that we perform

much better than the guarantees given in Theorem 2. Most remarkably, our model is able to

recover tensors whose rank is much larger than its side lengths. In this regime, the Tucker-rank

of the tensor is no longer an appropriate measure of the complexity of the data, and all existing

methods for tensor RPCA are ine�ective. These results suggest that algorithms designed to recover

low Tucker-rank tensors are suboptimal, and that new theoretical tools must be developed to better

understand tensor-based algorithms involving a tensor’s CP-rank.

2.9.1 Experiments on Synthetic Data

For each trial of our synthetic-data tests, we created an order-3, cubic dataset that could be

represented as the sum of a low-rank tensor and a sparse tensor. To form the low-rank component,

we randomly generated three factor matrices A, B, C œ R20◊R, with each entry drawn i.i.d. from the

univariate Gaussian distribution with mean zero and variance one. We then formed the low-rank

component as

Xú =
Rÿ

r=1

(a
r

¢ b
r

¢ c
r

). (2.216)
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For each trial, we set the rank bound to be R + 10.

To form the sparse component, we generated 20 matrices with sparsity flS
20

and non-zero

entries drawn i.i.d. from the standard univariate Gaussian distribution. We concatenated each of

these matrices along the tubular dimension to form the tensor Sú. Our “observed” dataset was

then Z = Xú + Sú. Both the rank R and the sparsity fl
S

were varied.

For each test, we performed 16 trials in parallel and measured the error between the recovered

low-rank component X and the actual low-rank component Xú using the relative least-squares loss:
ÎX≠X

úÎF
ÎX

úÎF
. If the error was below 10≠3, we called the recovery exact. We fit our model using L-

BFGS [61], maintaining 10 iterations in memory, and we stopped each trial after 1,000 iterations.

For our parameters, we set µ = 10≠5 and ⁄ = 10≠3. Both are small because we do not expect

there to be any noise in Z. Our results are shown in Figure 2.1, along with the results of the same

experiment using matrix RPCA and two existing tensor RPCA methods.

The ranks reported in the figure are upper bounds, as it is possible for a certain X =
q

R

r=1

(a
r

¢ b
r

¢ c
r

) to admit a lower-rank CP-decomposition. However, this is only a concern

for R Ø 30, as it has been shown that if rank(A) + rank(B) + rank(C) Ø 2(R + 1), then the CP-

decomposition is unique [49]. Furthermore, the Tucker-rank of the low-rank component is (R, R, R)

for R Æ 20, and it is (20, 20, 20) for R Ø 20. This was explicitly checked for each trial.

The two other tensor-based models, HoRPCA-C [32] and HoRPCA-S [32, 40], use the sum-

of-nuclear-norms (SNN) regularizer, and HoRPCA-S [40] is one of the only provable method for

recovering low-rank tensors outside of this work [40]. HoRPCA-S has the form

min
X,S

Kÿ

i=1

⁄
i

ÎX
(i)

Îú + ÎSÎ
sum

,

subject to: X + S = Z, (2.217)

where X
(i)

is the unfolding of tensor X along its ith mode. In [40], the authors prove that with

d
(1)

i

= max(d
i

, �
j ”=i

d
j

), d
(2)

i

= min(d
i

, �
j ”=i

d
j

), and ⁄
i

=
Ò

d
(1)

i

, this program exactly recovers X



89

10 20
0

10

20

30

40

50

60

70

80

(a) This Work
10 20

0

10

20

30

40

50

60

70

80

(b) HoRPCA-S
10 20

0

10

20

30

40

50

60

70

80

(c) HoRPCA-C
10 20

0

10

20

30

40

50

60

70

80

(d) Matrix
RPCA

Percent Sparsity of S

C
P-

ra
nk

of
X

Figure 2.1: A comparison of RPCA methods for recovering the decomposition Z = X + S with
Z œ R20◊20◊20. A pixel is colored white if X is recovered exactly. Each pixel represents the average
of 16 trials. Matrix RPCA was applied to X

(1)

. Algorithms (b), (c), and (d) are ill-posed when the
CP-rank is greater than 20.

and S with probability 1 ≠ Cd≠3

1

as long as

r
k

Æ C
r

K≠2

flµ
Õ≠1d

(2)

k

log2 d
(1)

k

, and |�| Æ fld
(1)

k

d
(2)

k

, (2.218)

for some constants C, C
r

, and fl, and incoherence parameter µÕ. Here, r
k

is the kth component of

the Tucker-rank of X. These results mirror the performance guarantees for matrix RPCA applied to

the matricized tensor X
(1)

. Our implementation of HoRPCA-S uses the parameters ⁄
i

=
Ô

d
i

=
Ô

20

for all i. In our experiments, we see that HoRPCA-S performs better than matrix RPCA, but only

marginally. When R Ø 20, HoRPCA-S is an ill-posed problem, because each matricization of X has

full rank. The poor performance of HoRPCA-S in this regime is predicted by its guarantees (2.218).
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HoRPCA-C faces similar problems. This program is defined as

min
X,S

ÎSÎ
sum

subject to: X + S = Z,

rank(X
(i)

) Æ r
i

. (2.219)

Although non-convex, it has been shown to outperform other methods for tensor RPCA, including

HoRPCA-S [32]. However, this model still su�ers from the e�ects of tensor matricization. For

R Ø 20 in our experiments, HoRPCA-C is an ill-posed problem. Using atomic-norm regularization

makes it possible to recover tensors with large rank, and Figure 2.1 demonstrates this. For our

implementation of HoRPCA-C, we set r
i

= R + 1 for all i. These rank bounds are much tighter than

the rank bound (R + 10) we used for our model, but because r
i

cannot be larger than 20, it would

not make sense to use the rank bound R + 10 for the components of the Tucker-rank.

For the matrix RPCA in our experiments, we used the variational approach developed in [4].

The program we solve is

min
X,S

max(ÎX
(1)

Îú, ⁄S
(1)

) (2.220)

s.t. 1
2ÎX

(1)

+ S
(1)

≠ Z
(1)

Î2

F

Æ ‘. (2.221)

One of the benefits of this approach is that we can choose ⁄ optimally because we know the matrices

we would like to recover. We set ⁄ =
ÎX

ú
(1)

Îú

ÎS

ú
(1)

Î
1

, and because we do not expect there to be any noise

in Z, we chose ‘ = 10≠5.

2.9.2 Tensor RPCA for Background Subtraction

One of the most natural applications for RPCA is in background subtraction. In this section,

we will use our model to identify subjects in the “escalator-video” dataset provided by [50]. Com-

paring its performance to matrix RPCA, we see that our tensor RPCA more accurately separates

the subjects from the background.
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Figure 2.2: The results of using (top) matrix RPCA and (bottom) tensor RPCA for background
subtraction. From left to right: original image, low-rank component (X), and sparse component
(S). We see that tensor RPCA can more precisely extract the subjects into the sparse component
and leave the moving escalator in the low-rank component. This dataset is taken from [50], and
frame 5 is shown.

The escalator-video dataset is challenging for background-subtraction models because it con-

tains three moving parts: a time-stamp, escalators, and the subjects. A strong model would be

able to recognize that the motion of the escalators and the time-stamp is periodic, so these features

belong to the low-rank component of the dataset, and the unpredictable motion of the subjects

should be extracted into the sparse component. Using a matrix-based approach to this problem,

the video is usually matricized along the temporal mode, so each column of the resulting matrix

represents one frame of the original video. It makes intuitive sense that unraveling the dataset in

this way would make it more di�cult to distinguish temporal patterns, so the periodic motion of

the escalators and the time-stamp would not be recognized.

In Figure 2.2, we compare the performance of our tensor RPCA model and matrix RPCA for

identifying the background in surveillance video. For tensor RPCA, we set chose the parameters
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µ = 30, ⁄ = 0.1, and the rank-bound R = 50. For matrix RPCA, we chose ⁄ = 0.02 and ‘ = 104.

All of these parameters were chosen after careful tuning. We see in Figure 2.2 that tensor RPCA

recovers a qualitatively superior decomposition, with the sparse component containing the subjects

and very little of the stairs, and the low-rank component su�ciently “sharp.” In contrast, the

low-rank component found by matrix RPCA appears more smoothed and has “ghosts” where the

subjects should be removed, while the sparse component contains a significant amount of the stairs.

Even more impressive is the quantitative di�erence between the decompositions. The nu-

merical rank of the low-rank component found using tensor RPCA is 48, and the sparse com-

ponent is 5.5%-sparse. For matrix RPCA, the recovered low-rank component has rank 58, and

the sparse component is 53%-sparse. Tensor RPCA also extracts more noise from the data, with

ÎXú + Sú ≠ ZÎ
F

= 2.50 ◊ 104 in the tensor case and ÎXú + Sú ≠ ZÎ
F

= 1.34 ◊ 103 for in the matrix

case. These di�erences, especially between the sparse components, are substantial.

2.10 Conclusion

We have provided theoretical and empirical support showing that using atomic-norm regular-

ization for low-rank tensor recovery is superior to using matrix-based regularizers, like the nuclear

norm. Although the atomic norm is generally intractable, our development of a higher-order gener-

alization of Burer-Monteiro factorization allows us to derive a non-convex representation of atomic

norm. We have described several algorithms to fit our non-convex model including first-order

methods and an alternating-minimization procedure with guaranteed convergence to a stationary

point.

In practice, our tensor RPCA significantly outperforms matrix-based RPCA as well as ex-

isting implementations of RPCA that use sum-of-nuclear-norm regularization. Most remarkably,

our approach to tensor RPCA is able to recover tensors whose CP-rank greatly exceeds all of its

side lengths. Our results show that matricization approaches to tensor-based problems do not per-

form well, and new theoretical tools must be developed to analyze the performance of tensor-based

algorithms with respect to their CP-rank, not their Tucker-rank.
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As datasets continue to grow in size and complexity, it is necessary for data-analytic al-

gorithms to evolve with them. When high-dimensional datasets are forced into two-dimensional

matrix representations, much of the data’s structure is lost. It is di�cult to abandon matrix-based

methods for high-order generalizations because the theoretical foundations of multilinear algebra

are extremely underdeveloped, especially compared to the well-studied theory of linear algebra.

In order to fully understand the performance benefits that tensor-based methods o�er over their

order-2 correlates, we must continue to investigate performance guarantees for algorithms that do

not rely on matricizing datasets.
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Appendix A

Factorization Theorem Details

Both problems share the same set of local minimizers. This was first observed in the case of

SDP in [15] and later generalized in [5].

Our variant of the theorem:

Theorem 5. Consider an optimization problem of the following form

min
X≤0

f(X), such that rank(X) Æ k (A.1)

where X œ Rn◊n is a positive semidefinite real matrix, and f is a lower semi-continuous (lsc)

function mapping to [≠Œ, Œ] and has a non-empty domain over the positive semi-definite matrices.

Using the change of variable X = PP T , take P œ Rn◊k, and consider the problem

min
P

g(P ) def= f(PP T ) (A.2)

Let X̄ = P̄ P̄ T , where X̄ is feasible for (A.1). Then X̄ is a local minimizer of (A.1) if and only if

P̄ is a local minimizer of (A.2).

Proof. We follow ideas from both [15] and [5]. From Lemma 2.1 in [15], if both P and K are n ◊ k

matrices, then PP T = KKT if and only if P = QK for some orthogonal matrix Q œ Rk◊k. The

objective in (A.2) depends only on PP T , so it is clear that P is a local minimizer of (A.2) if and

only if PQ is a local minimizer for all orthogonal Q.

Note that g defined by P ‘æ f(PP T ) is also lsc since it is the composition of f with the

continuous function P ‘æ PP T . We require the functions to be lsc so that the notion of “local

minimizer” is well-defined.
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Suppose X̄ is a local minimizer of (A.1), i.e., for some ‘ > 0 there is no better feasible point,

and factor it as X̄ = P̄ P̄ T for some n ◊ k matrix P̄ . Then we claim P̄ is a local minimizer of (A.2).

If it is not, then there exists a sequence P
n

æ P̄ with g(P
n

) < g(P̄ ) for all n. By continuity of

the map P ‘æ PP T , there is some n large enough such that X
n

def= P
n

P T

n

is within ‘ of X̄, with

f(X
n

) < f(X̄), contradicting the local optimality of X̄.

We prove the other direction using contrapositive. Suppose X̄ is not a local minimizer of

(A.1), so there is a sequence X
n

æ X̄ with f(X
n

) < f(X̄). Factor each X
n

as X
n

= P
n

P T

n

, and

observe that it is not true that P
n

converges. However, (X
n

) converges and hence is bounded, thus

(P
n

) is bounded as well (for the spectral norm, ÎX
n

Î = ÎP
n

Î2, and over the space of matrices,

all norms are equivalent). Since P
n

are in a finite dimensional space, so the Bolzano-Weierstrass

theorem guarantees that there is a sub-sequence of (P
n

) that converges. Let the limit of the sub-

sequence be P̄ = lim
kæŒ P

nk , and note P̄ P̄ T = X̄ since X
nk æ X̄. Then g(P

nk) = f(X
nk) <

f(X̄) = g(P̄ ), so P̄ is not a local solution. It also follows from the first paragraph of the proof that

there can not be another local solution P̃ that also satisfies P̃ P̃ T = X̄.

Remark 3. We recover the settings of both [5, Thm. 4.1] and [15], since allowing f to be extended

valued and lsc encompasses constraints.

Remark 4. [5, Cor. 4.2] can be clarified to state that the two problems listed there are “equivalent”

in the sense that they share the same local minimizers (as well as global), using similar continuity

arguments on the mapping R and its adjoint. Furthermore, since the constraints are compact,

solutions exist in both formulations.


