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Abstract

This paper presents a methodology for empirically identifying the key player, whose

removal from the network leads to the optimal change in aggregate activity level in

equilibrium (Ballester et al., 2006), allowing the network links to rewire after the

removal of the key player. First, we propose an IV-based estimation strategy for

the social-interaction effect, which is needed to determine the equilibrium activity

level of a network, taking into account the potential network endogeneity. Next, to

simulate the network evolution process after the removal of the key player, we adopt

the general network formation model in Mele (2017) and extend it to incorporate

the unobserved individual heterogeneity in link formation decisions. We illustrate

the methodology by providing the key player rankings in juvenile delinquency using

information on friendship networks among U.S. teenagers. We find that the key player

is not necessarily the most active delinquent or the delinquent who ranks the highest

in standard (not microfounded) centrality measures. We also find that, compared

to a policy that removes the most active delinquent from the network, a key-player-

targeted policy leads to a much higher delinquency reduction.

Key words: linear social interaction models, network centrality measures, net-

work endogeneity, network formation, key player policies.
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1 Introduction

The increasing availability of social network data, computational power and statisti-

cal methods has stimulated a growing literature in different disciplines about social

network effects. A crucial aspect of social network analysis is the identification of the

key player, who hold a vital position in a network regarding to some criteria. The

majority of the existing empirical studies adopts a definition of the key player based

on the individual prominence in terms of network centrality measures, e.g., the most

connected individual or the individual with the highest eigenvector centrality (for a

review, see Zenou, 2016).

Ballester et al. (2006) present a theory that characterizes the key player as the

agent who, once removed from the network, leads to the optimal change in aggregate

activity level in equilibrium. This theory takes into account both the network topology

and the intensity of social interactions in determining the identity of the key player.

As the effect of a policy diffuses in a network through social interactions, targeting

the key player would significantly improve the effectiveness of policy interventions.

While this idea is appealing in theory, its empirical implementation is challenging

for two main reasons. First, it requires the estimation of the social-interaction effect,

that is the impact of an agent’s peers’ behavior on her own behavior, which is a

well-known diffi cult task (e.g., de Paula, 2017). The diffi culty is even greater when

there exists unobserved factors driving both individual behavior and the underlying

network formation process, so that the social network is endogenous. To estimate

the social-interaction effect, the conventional estimation strategy (e.g., Bramoullé

et al., 2009; Calvó-Armengol et al., 2009; Liu and Lee, 2010) uses the exogenous

characteristics of the friends’friends as instrumental variables (IVs) for the behavior

of the friends. However, when the social network is endogenous, this IV strategy is

1



clearly invalid because who the friends are becomes endogenous.

Second, it is debatable what the counterfactual should be after the key player is

hypothetically removed from the network. Under the assumption that the rest of

the network remains the same after the removal of a node (henceforth referred to as

the invariant network assumption), Ballester et al. (2006) and Ballester and Zenou

(2014) have shown that the key player is the agent with the highest (generalized)

intercentrality measure. The invariant network assumption is reasonable if the key

player analysis is considered as a short-run policy analysis, since it is unlikely for the

remaining agents to form new links in the short period of time after the removal of

the key player. In the long run, the invariant network assumption can be justified if

network links are pairwise independent since, in this case, the removal of a node and

its associated links would not affect the other links in the network. If the pairwise

independence assumption for network links does not hold, then one needs to estimate

a network formation model to produce meaningful counterfactuals for the long-run

key player analysis.

In this paper, we present a methodology to empirically implement the key player

analysis that tackles the challenges described above. We adopt the general network

formation model in Mele (2017) and extend it to incorporate the unobserved indi-

vidual heterogeneity in link formation decisions. Combining the network formation

model and the social interaction model, we are able to explicitly model the origin of

the network endogeneity as the correlation of unobserved individual heterogeneities

in these two models. Under this setup, we propose an IV-based estimation strategy

to estimate the social-interaction effect. To overcome the problem of network endo-

geneity, we first run a simple logistic regression to obtain predicted probabilities of

forming links between every pair of agents in the network based on exogenous dyadic

characteristics (i.e., whether the two agents are of the same age, gender, race, etc.).
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Then, we use the average exogenous characteristics of an agent’s peers, weighted

by the predicted probabilities of forming links, (or, roughly speaking, the exogenous

characteristics of the predicted friends) as IVs for the behavior of the agent’s friends.

By design, the IVs are valid even if the social network is endogenous. This IV-based

estimation strategy does not require the estimation of the full network formation

model and, thus, is computationally simple to implement. Furthermore, to alleviate

the potential weak IV problem when the exogenous dyadic characteristics are not very

informative in explaining the formation of network links, we introduce an additional

quadratic moment condition based on the correlation structure of the error term and

propose a generalized method of moments (GMM) estimator that utilizes both lin-

ear and quadratic moment conditions to improve estimation effi ciency. Finally, to

conduct the key player analysis, we estimate the general network formation model

with unobserved individual heterogeneities using the Bayesian double Metropolis-

Hastings (DMH) algorithm (Liang, 2010; Mele, 2017). The unobserved individual

heterogeneities are treated as unknown parameters and sampled together with other

model parameters from the joint posterior distribution following the Bayesian data

augmentation approach. With the estimated network formation model, we can sim-

ulate the network evolution process after an agent is removed from the network, and

conduct the key player analysis without imposing the restrictive invariant network

assumption. As a by-product, our framework allows us to test for the pairwise inde-

pendence of network links.

To illustrate our methodology, we provide the key-player rankings in juvenile delin-

quency using data from the National Longitudinal Study of Adolescent Health (Add

Health). We find that the key player is not necessarily the most active delinquent in

the network. We also find that it is not straightforward to determine which delin-

quent should be removed from a network based on other standard network centrality
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measures (which are not microfounded). Finally, we find that, compared to a policy

that removes the most active delinquent from the network, the key-player-targeted

policy is more effective in reducing the aggregate delinquent activity level as it takes

full advantage of the social interaction effect.

The rest of the paper unfolds as follows. In Section 2, we introduce the network

game, characterize the equilibrium, and define the key player. Our estimation strategy

is described in Section 3. Section 4 presents the empirical results. In Section 5, we

conduct the key player analysis. Finally, Section 6 concludes.

2 Microfoundation

2.1 Network and utility

Consider a finite set of agents N = {1, . . . , n} with each agent corresponding to a

node in a network g. We keep track of social connections in the network through an

n× n zero-diagonal adjacency matrix G = [gij], where gij = 1 if agent i forms a link

to agent j and gij = 0 otherwise.

Given the network structure, agents choose how much effort to exert in delinquent

activities. We denote by yi the effort level of agent i and by y = (y1, ..., yn)′ the

population effort profile in the network. Each agent i selects an effort yi ≥ 0 and

obtains a utility Ui(y) given by

Ui(y) = (πi + λ
∑n

j=1 gijyj)yi︸ ︷︷ ︸
payoff

− (ςyi + 1
2
y2i )︸ ︷︷ ︸

cost

. (1)

This utility has a standard cost-payoff structure as in Becker (1968). The payoff

increases in own effort yi with the marginal payoff given by πi + λ
∑n

j=1 gijyj. The

term πi reflects individual heterogeneity of “productivity” in delinquent activities,
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and is given by

πi = α +Xiβ1 + X̄iβ2 + ui. (2)

where Xi is a row vector of observable exogenous characteristics of agent i (e.g. age,

sex, race, parental education, etc.), X̄i =
∑n

j=1 gijXj/
∑n

j=1 gij is the average exoge-

nous characteristics of agent i’s connections, with the coeffi cient vector β2 capturing

contextual effects (Manski, 1993), and ui represents the unobservable (to the econo-

metrician) characteristics of agent i.

Compared to the standard crime model (Becker, 1968), the marginal payoff in the

utility function has a new component λ
∑n

j=1 gijyj, which reflects the impact of the

total effort of an agent’s connections on her own “productivity”. Indeed, an agent

may benefit directly from the effort of her connections if they are co-offenders in some

delinquent activity. An agent may also benefit indirectly through the form of know-

how sharing about delinquent behavior with her friends. We assume λ ≥ 0, which

implies the more delinquent connections an agent has and the more these connections

are involved in delinquent activities, the higher is the marginal payoff of the agent’s

own delinquent effort. We call λ the social-interaction coeffi cient.

The cost part of the utility function (1) has two components. The cost of being

caught, given by ςyi, is assumed to increase with the effort level yi, as the severity

of the punishment increases with one’s involvement in delinquent activities. Also,

individuals have a direct cost of exerting effort given by 1
2
y2i .

2.2 Equilibrium and key player

In equilibrium, each agent maximizes her utility and the best-response function is

given by:

yi = λ

n∑
j=1

gijyj + β0 +Xiβ1 + X̄iβ2 + ui, (3)
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where β0 = α− ς. Let ρ(A) denote the spectral radius of a square matrix A, and In

denote the n × n identity matrix. If |λ| < 1/ρ(G), then In − λG is nonsingular and

the network game has a unique interior Nash equilibrium in pure strategies with the

equilibrium effort vector y∗ = (y∗1, ..., y
∗
n)′ given by:

y∗ ≡ y∗(g) = (In − λG)−1(β0ιn +Xβ1 + X̄β2 + u), (4)

where ιn is an n × 1 vector of ones, X = (X ′1, · · · , X ′n)′, X̄ = (X̄ ′1, · · · , X̄ ′n)′, and

u = (u1, · · · , un)′.

The key player in a network is the agent whose removal from the network leads

to the largest reduction in the total equilibrium effort level (Ballester et al., 2006).

More formally, let g−i denote the network obtained by removing the ith node from

network g, and || · ||1 denote the L1 matrix norm. Then the key player is defined as

i∗ = arg maxi∈N (||y∗(g)||1 − ||y∗(g−i)||1) = arg mini∈N ||y∗(g−i)||1, (5)

where y∗(g) and y∗(g−i) are equilibrium effort vectors for the underlying networks g

and g−i, respectively, defined in Equation (4).

Let [A]ij denote the (i, j)th entry of a matrix A and [b]i denote the ith entry

of a vector b. Under the invariant network assumption, Ballester et al. (2006) and

Ballester and Zenou (2014) show that, in the case without contextual effects (i.e.,

β2 = 0), the key player is the agent with the highest intercentrality measure given by

[(In − λG)−1π]i
∑n

j=1[(In − λG)−1]ji

[(In − λG)−1]ii
,

where π denotes the vector of individual heterogeneity terms defined in Equation (2);

and, in the case with contextual effects (i.e., β2 6= 0), the key player is the agent with
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the highest generalized intercentrality measure given by

||(In − λG)−1(π − π[i])||1︸ ︷︷ ︸
contextual variable change effect

+
[(In − λG)−1π[i]]i

∑n
j=1[(In − λG)−1]ji

[(In − λG)−1]ii︸ ︷︷ ︸
network structure change effect

,

where π[i] is calculated based on the network consisting g−i and the isolated node

i. The generalized intercentrality highlights the fact that when an agent is removed

from a network, two effects are at work. The first one is the contextual variable

change effect, which is due to the change in π after the removal of an agent. The

second effect is the network structure change effect, which captures the change in

the adjacency matrix when an agent is removed. More generally, the generalized

intercentrality measure accounts for both one’s exposure to the rest of the group and

one’s contribution to every other exposure.

The invariant network assumption makes sense in the short run, since it is unlikely

for the remaining agents to form new links in the short period of time after the

removal of the key player. In the long run, the invariant network assumption can

be justified if network links are pairwise independent. In this paper, we consider a

general network formation model that allows us to test the pairwise independence

assumption of network links. Furthermore, we propose an estimation strategy for

Equation (3) taking into account the endogeneity of network links, and demonstrate

how to empirically identify the key player with and without the invariant network

assumption.
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3 2SLS and GMM Estimation with Endogenous Networks

3.1 Econometric model

In matrix form, the best-response function given by Equation (3) can be written as

y = λGy + β0ιn +Xβ1 + X̄β2 + u, (6)

where the error term u is assumed to be independently distributed but allowed to be

heteroskedastic with Σ ≡ E(uu′) = diag{σ2i } being a diagonal matrix. To model the

potential endogeneity of the adjacency matrix G, we follow Mele (2017) and assume

the corresponding network g is realized with the probability

Pr(g) =
exp[Q(g)]∑
g̃∈Gn exp[Q(g̃)]

, (7)

where Gn is the set of all networks with n nodes and Q(g) is the potential function

(Monderer and Shapley, 1996). The potential function aggregates individual incen-

tives to change the status-quo network and takes the form

Q(g) =
n∑
i=1

n∑
j=1

gij[δ0 +Wijδ1 +mij(g) + ηi + ηj], (8)

where Wij is a row vector of homophily measures reflecting the similarity in exoge-

nous characteristics between agents i and j, mij(g) collects terms that depend on

other links in the network (e.g., the number of common friends of agents i and j

given by
∑

k 6=i,j gjkgki), and ηi represents the unobserved individual heterogeneity.

Our estimation strategy does not rely on the parametric specification of mij(g). The

specification of mij(g) and more detailed discussion of the potential function can be

found in Section 5. In this setup, the endogeneity of G is captured by the correlation
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between the unobserved individual heterogeneity terms ui and ηi in delinquent activi-

ties and link formation decisions respectively. Our goal is to consistently estimate the

parameters θ = (λ, β0, β
′
1, β

′
2)
′ in Equation (6) taking into account this endogeneity

problem.

3.2 Linear moment condition and 2SLS

When the adjacency matrix G is exogenous, linear social interaction models in the

form of Equation (6) can be estimated by the 2SLS method based on the linear

moment condition Z ′u(θ) = 0, where Z is a matrix of IVs consisting of linearly

independent columns of [ιn, X, X̄,Gιn, GX,GX̄] and

u(θ) = y − λGy − β0ιn −Xβ1 − X̄β2.

The parameters in Equation (6) can be identified, provided that a certain level of

intransitivity exists in the network such that the usual rank condition of IV estimators

holds (Bramoullé et al., 2009; Liu and Lee, 2010).

However, if the unobserved individual heterogeneity terms ui and ηi in Equations

(6) and (8) are correlated, then G is endogenous and the IV matrix Z is no longer

valid. In this case, the 2SLS method can be remedied by replacing the observed

adjacency matrix G in the IV matrix by a predicted adjacency matrix Ĝ based on

exogenous covariates (Kelejian and Piras, 2014). To that end, we need to remove

ηi, ηj and mij(g) from Equation (8) as these terms are correlated with the error term

in Equation (6). The substitution of the remainder of Equation (8) into Equation (7)

yields

Pr(g) =
exp[

∑n
i=1

∑n
j=1 gij(δ0 +Wijδ1)]∑

g̃∈Gn exp[
∑n

i=1

∑n
j=1 g̃ij(δ0 +Wijδ1)]

=
n∏
i=1

n∏
j=1

exp[gij(δ0 +Wijδ1)]

1 + exp(δ0 +Wijδ1)
,
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which implies links are pairwise independent and each link is formed with probability

Pr(gij = 1) =
exp(δ0 +Wijδ1)

1 + exp(δ0 +Wijδ1)
. (9)

Based on Equation (9), we define

ĝij =
exp(δ̂0 +Wij δ̂1)

1 + exp(δ̂0 +Wij δ̂1)

where δ̂0 and δ̂1 are obtained from a logistic regression of gij on Wij. To make sure

the predicted adjacency matrix is uniformly bounded in row and column sums, we

normalize ĝij by dividing it by d̂ = max{maxi
∑n

j=1 ĝij,maxj
∑n

i=1 ĝij} (Kelejian and

Prucha, 2010), and define the (i, j)th element of the predicted adjacency matrix Ĝ as

ĝij/d̂ if i 6= j and zero otherwise.

The IV matrix based on the predicted adjacency matrix Ĝ is denoted by Ẑ

and includes linearly independent columns of [ιn, X,
̂̄X, Ĝιn, ĜX, Ĝ ̂̄X], where ̂̄X =

( ̂̄X ′1, · · · , ̂̄X ′n)′ with ̂̄X i =
∑n

j=1 ĝijXj/
∑n

j=1 ĝij. The corresponding 2SLS estimator

is given by

θ̂2sls = [X ′Ẑ(Ẑ ′Ẑ)−1Ẑ ′X]−1X ′Ẑ(Ẑ ′Ẑ)−1Ẑ ′y, (10)

where X = [Gy, ιn, X, X̄]. The consistency of the proposed 2SLS estimator does

not rely on the consistency of the estimator δ̂ = (δ̂0, δ̂
′
1)
′. Suppose δ̂ converges in

probability to a well defined limit δ∗ (not necessarily the true parameter value) such

that
√
n(δ̂ − δ∗) = Op(1). Let G∗ and X̄∗ be defined in the same way as Ĝ and ̂̄X

respectively, with ĝij in Ĝ and ̂̄X replaced by

g∗ij =
exp(δ∗0 +Wijδ

∗
1)

1 + exp(δ∗0 +Wijδ
∗
1)
.
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Then, the parameters in Equation (6) can be identified via the IV matrix Z∗ con-

sisting of linearly independent columns of [ιn, X, X̄
∗, G∗ιn, G

∗X,G∗X̄∗], as long as Xi

and Wij are exogenous and the usual rank condition of IV estimators holds (Kelejian

and Prucha, 1998; Lee, 2007). Under some regularity assumptions, we can show

that Ẑ ′u(θ) = 0 is asymptotically equivalent to the infeasible linear moment condi-

tion Z∗′u(θ) = 0, and hence θ̂2sls defined in Equation (10) is root-n consistent and

asymptotically normal. The asymptotic distribution of θ̂2sls is given in Appendix A.

3.3 Quadratic moment condition and GMM

The IVs based on the predicted adjacency matrices are likely to be weak if the dyadic

characteristics Wij are not very informative in explaining the formation of network

links. To alleviate the potential weak IV problem, we introduce a quadratic moment

condition for the estimation of Equation (6).

We maintain the same assumptions and notations as in the previous subsection.

As G∗ is exogenous with a zero diagonal, E(u′G∗u) = tr(G∗Σ) = tr(G∗diag{σ2i }) = 0,

which suggests an infeasible quadratic moment condition u(θ)′G∗u(θ) = 0. Under

some regularity assumptions, we can show that the feasible quadratic moment condi-

tion u(θ)′Ĝu(θ) = 0 is asymptotically equivalent to u(θ)′G∗u(θ) = 0.

Combining the linear and quadratic moment conditions, the GMM estimator is

given by

θ̂gmm = arg minh(θ)′Ω̂−1h(θ), (11)

where h(θ) = [u(θ)′Ẑ, u(θ)′Ĝu(θ)]′ and n−1Ω̂ is a consistent estimator of the variance-

covariance matrix of the moment function h(θ). As should be obvious following the

above discussion, the consistency of the proposed GMM estimator does not rely on the

consistency of the estimator δ̂. Indeed, it is suffi cient that δ̂ converges in probability

to a well defined limit δ∗ such that
√
n(δ̂ − δ∗) = Op(1). This would allow us to
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apply the results in the spatial econometrics literature (Kelejian and Prucha, 2010;

Lin and Lee, 2010) to establish the root-n consistency and asymptotic normality of

the proposed GMM estimator. The asymptotic distribution of the proposed GMM

estimator is given in Appendix A. In Appendix A, we also conduct some Monte Carlo

simulations to investigate the finite sample performance of the proposed 2SLS and

GMM estimators.

4 Empirical Illustration

4.1 Data

To demonstrate feasibility of the proposed method, we provide an illustrative example

using data from the Add Health survey. The survey collected data on the social

environment of students in grades 7-12 from roughly 130 private and public schools

in the Unites States in the academic year 1994-95. Every student attending the

sampled schools on the interview day completed a questionnaire (in-school survey)

asking questions on basic socio-demographic characteristics. In addition, students

were asked to identify their friends (up to five males and five females) from the school

roster. A subset of students selected from the rosters of the sampled schools, was

then asked to complete a longer questionnaire containing more sensitive individual

and household information (in-home survey).

To alleviate concerns of network misspecification and missing values in variables

of interest, we focus our analysis on schools where (i) more than 90% of the students

participated the in-school survey and all friendship nominations of the students taking

the in-school survey can be tracked, (ii) every student taking the in-school survey was

also interviewed at home (where parental information is properly recorded), and (iii)

less than 10% of the students have missing values in the variables of interest. One

school (school #7) satisfies these criteria. This is a midsize school with 181 students,
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where 100% of its students participated both the in-school and in-home surveys and

all friendship nominations are properly recorded. In this school, there are only 8

students with missing values in variables of interest (dropped from the sample). In

our final sample of 173 students, except for 4 isolated students (i.e., students who

did not nominate any friends and were not nominated by anyone as a friend), all

students are directly or indirectly connected in a friendship nomination network as

shown in Figure 1, where gij = 1 if student i nominated student j as a friend in the

in-school survey. On average, the students in our sample nominated 5.57 friends, with

a standard deviation of 2.82.

[Insert Figure 1 here]

The dependent variable of our analysis is constructed based on how often a student

participated in activities measuring the propensity to engage in delinquent behavior,

including smoking cigarettes, drinking alcohol, getting drunk, racing on a bike or

in a car, being in danger due to dare, lying to parents, and skipping school, during

the last 12 months. A student’s participation frequency in each of these activities is

coded using an ordinal scale ranging from 0 (i.e. never participate) to 6 (i.e. nearly

everyday). The dependent variable is the average participation frequency in these

activities. In the sample considered, only 11 students reported never participating

in any of the listed delinquent activities during the last 12 months and, thus, have

a value of zero in the dependent variable. The list of variables used in the empirical

analysis, with their definition and summary statistics, can be found in Table 1.

[Insert Table 1 here]

4.2 Estimation results

We consider the following estimators for Equation (6), namely, (a) “2SLS-1”, the

conventional 2SLS estimator with the IV matrix Z = [ιn, X, X̄,Gιn, GX,GX̄]; (b)
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“2SLS-2”, the 2SLS estimator defined in Equation (10) with the IV matrix Ẑ =

[ιn, X,
̂̄X, Ĝιn, ĜX, Ĝ ̂̄X]; and (c) “GMM”, the GMM estimator defined in Equation

(11).

To obtain the predicted adjacency matrix Ĝ, we run a logistic regression to pre-

dict link formation probabilities based on Equation (9). The estimation results are

reported in Table 2. We find strong evidence of homophily, i.e., students are more

likely to be friends if they are in the same grade, of the same age, gender and race.

The McFadden’s pseudo-R2 of the logistic regression is 0.15, suggesting that the above

dyadic characteristics are not very informative in predicting friendship formation and,

thus, the IV matrix Ẑ constructed using the predicted adjacency matrix Ĝ is likely

to be weak. In this case, the “GMM”estimator is more reliable than the “2SLS-2”

estimator as shown in the Monte Carlo experiments reported in Appendix A.

[Insert Table 2 here]

The estimation results for Equation (6) are reported in Table 3. For the “2SLS-

1”estimator, the p-value of the over-identifying restrictions (OIR) test is relatively

small, casting doubt on the “conventional”IVs. On the other hand, for the “2SLS-

2” and “GMM”estimators, the p-values of the OIR test are much higher, lending

us confidence in the estimation results. For the social-interaction coeffi cient λ, the

“2SLS-2”and “GMM”yield similar estimates, while the more effi cient “GMM”es-

timator produces a much smaller standard error. Thus, the “GMM”estimate of λ

is statistically significant. The uniqueness of our data where both respondents and

friends are interviewed allows us to control for friends’ characteristics, thus disen-

tangling the endogenous social-interaction effect from exogenous contextual effects

(Manski, 1993; see Table 1 for a complete list of contextual variables). Furthermore,

the “GMM”estimate of λ satisfies the condition |λ| < 1/ρ(G) for the existence of
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a unique Nash equilibrium of the underlying network game. Table 4 collects the es-

timation results with alternative sets of regressors. The last column of this table is

identical to the last column of Table 3. The “GMM”estimates of λ do not vary much

across columns, showing the robustness against potential model misspecifications.

[Insert Tables 3 and 4 here]

5 Key Player Analysis

The key player is the agent whose removal from the network reduces aggregate activ-

ity level the most in equilibrium (Ballester et al., 2006). Under the invariant network

assumption (i.e., the rest of the network remains the same after an agent is removed),

the key player is the agent with the highest generalized intercentrality measure de-

fined in Section 2.2. With the GMM estimates reported in Table 3, the generalized

intercentrality measure can be calculated for each agent and the key player can thus

be easily identified.

The invariant network assumption is reasonable in the short run. In the long

run, it can be justified if network links are pairwise independent, because in this case

the removal of a node and its associated links would not affect the other links in the

network. To test the pairwise independence of network links and develop a framework

for the key player analysis without imposing the invariant network assumption, we

consider a more general network formation model. In the same spirit as Mele (2017),

we assume agent i obtain utility from network g given by

Ui(g) =
n∑
j=1

gij(δ0 +Wijδ1 + δ2gji + δ3
∑
k 6=i,j

gik + δ4
∑
k 6=i,j

gjkgki + ηi + ηj). (12)

As in Section 3,Wij is a vector of exogenous variables capturing the similarity between

agents i and j, with the coeffi cient vector δ1 representing the homophily or heterophily
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effect. When agent i nominates agent j as a friend, she receives a utility δ2 if j also

nominates her as a friend (i.e., gji = 1). Therefore, δ2 represents the reciprocity effect.

We assume the marginal (dis)utility of adding a new link increases with the number

of existing links of agent i given by
∑

k 6=i,j gik, with the coeffi cient δ3 representing the

congestion effect. Finally, when agent i creates a link to agent j, she receives a utility

δ4 if j is indirectly linked to i through k (i.e., gjkgki = 1). Therefore, the coeffi cient δ4

represents the cyclic-triangle effect. The coeffi cients δ3 and δ4 reflect the externality

of the links between agents i and j on other links in the network. If δ3 6= 0 or δ4 6= 0,

then the network links are not pairwise independent.

The utility function defined in Equation (12) admits a potential function in the

form of Equation (8) with

mij(g) = δ2gji/2 + δ3
∑
k 6=i,j

gik + δ4
∑
k 6=i,j

gjkgki/3.

As

Ui(gij = 1, g−ij)− Ui(gij = 0, g−ij) = Q(gij = 1, g−ij)−Q(gij = 0, g−ij),

for all i and j, where g−ij denote the network including all links in g but gij, the

potential function aggregates the individual incentives to deviate from the status quo

and, thus, greatly simplifies the equilibrium analysis.

The network formation process follows stochastic best-response dynamics as in

Mele (2017). We assume time is discrete and, in time period t, a random chosen

agent i meets agent j with probability 0 < ρ < 1 (see Mele, 2017, for detailed

discussion on the meeting technology). Agent i creates a link to agent j, i.e., gtij = 1,
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if

Ui(gtij = 1, gt−1−ij ) + εtij,1 ≥ Ui(gtij = 0, gt−1−ij ) + εtij,0,

where gt denotes the realization of the network in period t, and εtij,1 and ε
t
ij,0 follow the

type 1 extreme value distribution. As shown in Mele (2017), the network formation

process is a Markov chain, and converges to a unique stationary distribution given by

the Gibbs measure

π(g|δ, η) = c(δ, η)−1 exp[Q(g|δ, η)], (13)

where c(δ, η) =
∑

g∈Gn exp[Q(g|δ, η)], with δ = (δ0, δ
′
1, δ2, δ3, δ4)

′ and η = (η1, · · · , ηn)′.

Given an observation on the network g from the stationary distribution defined

in Equation (13), we can estimate the model parameters based on the maximum

likelihood principle. However, the frequentist maximum likelihood method is imprac-

tical due to the computational diffi culty in evaluating the normalizing constant c(δ, η)

in Equation (13), and Bayesian methods, including the Markov Chain Monte Carlo

(MCMC) simulation-based Bayesian method using the Metropolis-Hastings (MH) al-

gorithm (Chib and Greenberg, 1995), would encounter the same problem because the

normalizing constant c(δ, η) appears in the posterior distribution of model parameters

and the acceptance probability of the MH algorithm. To overcome this computational

diffi culty, we adopt the DMH algorithm (Liang, 2010; Mele, 2017) to simulate the pos-

terior distribution of model parameters. In particular, we treat unobserved individual

heterogeneity terms ηi’s as unknown parameters and adopt the Bayesian data aug-

mentation approach to sample δ together with η from the joint posterior distribution.

The implementation details of the DMH algorithm are described in Appendix B.

We run the DMH algorithm for 50,000 iterations and drop the first 10,000 draws

for burn-in and keep every 20th of the remaining draws to conduct the posterior

analysis, i.e., to compute the posterior mean (as a point estimate) and posterior
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variance for each parameter. The estimation results are reported in Table 5. Similar

to the simple logistic regression estimated in Section 4.2, we find strong evidence

of homophily effects, though the magnitude of these effects are smaller than those

reported in Table 2. Furthermore, agent i is more likely to form a link to agent j,

if j has a direct link to i (i.e., the reciprocity effect δ2), or if j has an indirect link

to i through agent k (i.e., the cyclic-triangle effect δ4). Agent i is less likely to form

a link to agent j, if i has many existing links (i.e., the congestion effect δ3). As the

estimates of δ3 and δ4 are statistically significant, the network links are not pairwise

independent in our data.

[Insert Table 5 here]

To evaluate the goodness-of-fit of the general network formation model, we gener-

ate 1000 networks from the Gibbs measure defined in Equation (13) with the estimates

reported in Table 5. The model’s goodness-of-fit is examined by comparing the 1000

generated networks with the observed network in terms of three network statistics:

the outdegree (the number of links from a node), the indegree (the number of links to

a node), and the number of edge-wise shared partners (the number of shared partners

of two connected nodes). Figure 2 shows the distributions of these three network sta-

tistics of the observed network (in solid lines), the medians and the 95% confidence

intervals of these three network statistics of the 1000 generated networks (in dashed

lines). From Figure 2, we find that the generated networks and the observed network

display similar distributions over these three network statistics. This shows that

our estimated model is able to capture the main features of the underlying network

generating process.

[Insert Figure 2 here]
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To conduct the key player analysis without the invariant network assumption, we

remove the agents from the network one at a time and simulate the rewiring of the

network links among the remaining n− 1 agent according to the following algorithm

with the estimates reported in Table 5.

Algorithm 1 (Network Formation Simulations) Given δ and η, at each itera-

tion:

Step 1 Draw g̃ from a symmetric proposal distribution qg(g̃|g), where g denotes the

network at the current iteration.

Step 2 Accept g̃ according to the acceptance probability

αg = min

{
1,

exp[Q(g̃|δ, η)]

exp[Q(g|δ, η)]

}
. (14)

As shown in Mele (2017), Algorithm 1 generates a Markov chain of networks whose

unique invariant distribution is characterized by Equation (13). For each removed

student, we run Algorithm 1 for 10,000 iterations, and use the network generated

by the last iteration and the GMM estimates reported in Table 3 to calculate the

reduction in total delinquency level given by

||ŷ∗(g)||1 − ||ŷ∗(g−i)||1

where ŷ∗(g) = (In − λ̂G)−1(β̂0ιn +Xβ̂1 + X̄β̂2). We then repeat this procedure 1000

times and determine the key player rankings based on the average reduction in total

delinquency level. The main findings of the key player analysis are summarized as

follows.

19



• Based on the general network formation model, we find that removing the key

player reduces the total delinquency level by 7.41% while removing a random

agent reduces the total delinquency level by 1.30% on average. Therefore, the

key-player-targeted policy is more effective in reducing delinquent activities as

it takes full advantage of the social interaction effect.

• The key player rankings with and without the invariant network assumption

are highly correlated, with Spearman’s rank correlation coeffi cient being 0.9219.

Therefore, at least in this application, the generalized intercentrality measure

(Ballester and Zenou, 2014) is a good approximation of the key player ranking

without the invariant network assumption.

• The key player rankings are moderately correlated with the conventional net-

work centrality measures. The Spearman’s rank correlation coeffi cients are re-

ported in Table 6. As expected, the key player ranking depends on the position

of an agent in the network. However, using the network centrality measures

alone cannot correctly identify the key player.

• The key player rankings are not much correlated with the delinquent activity

involvement, with Spearman’s rank correlation coeffi cient being 0.0358. Based

on the general network formation model, we find that removing the most ac-

tive agent in delinquent activities reduces the total delinquency level by 1.48%.

Hence, the most active agent in delinquent activities is not necessary the one

whose removal leads to the largest reduction in total delinquency level.

• Finally, to see how the key player ranking is affected by inconsistent estimates

of Equation (6), we obtain a key player ranking based on the generalized inter-

centrality measure evaluated at the 2SLS-1 estimates reported in Table 3. We
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find that the key player rankings with 2SLS-1 and GMM estimates are mod-

erately correlated, with Spearman’s rank correlation coeffi cient being 0.3806.

We also find that removing the key player based on the 2SLS-1 estimates only

reduces the total delinquency level by 4.36%, and hence is much less effective

than removing the key player based on the GMM estimates.

[Insert Table 6 here]

6 Conclusion

This paper presents a methodology for empirically identifying key players in net-

works. This methodology has great scope for practical implementation given the in-

creasing availability of network data in various contexts, including financial networks

(Battiston et al., 2012; Cohen-Cole et al., 2014) and political networks (Battaglini

and Patacchini, 2018; Battaglini et al., 2019). Compared to a policy that targets the

most active agent in the network, the key-player-targeted policy is more effective in

reducing the aggregate activity level as it takes full advantage of social interaction

effects. In addition, targeting the key player has an advantage over targeting the most

active agent in that it is harder for the key player to hide her identity than the most

active agent, as the latter only needs to temporarily reduce her activity level in the

period of policy intervention (that is, temporarily stop being delinquent when there is

a crackdown going on). Given the aforementioned benefits of the key-player-targeted

policy, it makes sense to consider such a policy if its benefits outweigh the cost of

data collecting when network data is not readily available.

Some extensions of the current framework are possible. First, although we use

one network to showcase the key player analysis, the proposed methodology can be

readily extended to analyze multiple networks. Second, in the empirical illustration,

we focus on petty delinquent activities. If one is interested in identifying the key
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player in more serious offenses that a large fraction of the students do not participate

in, then the endogenous participation problem needs to be taken into account when

estimating social-interaction effects and conducting the key player analysis. We leave

this extension for future research.
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Figure 1: Friendship Nomination Network
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Figure 2: Goodness of Fit of the General Network Formation Model

Notes: The distributions of the observed network are in solid lines, while the medians and
the 95% confidence intervals of the 1000 generated networks are in dashed lines.
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Table 2: Logistic Regression of Link Formation
same grade 2.2602***

(0.0755)
same age 0.4075***

(0.0752)
same gender 0.2337***

(0.0680)
same race 0.2373**

(0.1204)
McFadden’s pseudo R2 0.150
Standard errors in parentheses.

Statistical significance: ***p<0.01; **p<0.05; *p<0.1.

Table 3: 2SLS and GMM Estimation Results
2SLS-1 2SLS-2 GMM

λ -0.0269 0.0934 0.0855**
(0.0262) (0.1114) (0.0429)

grade 0.1071 -0.0253 0.0659
(0.1273) (0.6807) (0.4211)

age 0.1133 -0.0400 -0.0179
(0.1075) (0.2638) (0.1961)

female -0.4303*** -1.2868** -1.0321**
(0.1641) (0.5987) (0.5244)

white -0.4810 -0.8562 -0.7164
(0.3158) (0.6220) (0.5427)

parent education: college -0.2792 -0.4626 -0.4785
(0.2288) (0.5347) (0.3545)

parent job: professional -0.0803 -0.4867 -0.1684
(0.2291) (0.5694) (0.4287)

contextual variables yes yes yes
Cragg-Donald Wald F statistic 27.329 0.272 -
OIR test p-value 0.236 0.854 0.867
Heteroskedasticity-robust standard errors in parentheses.

Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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Table 4: GMM Estimation Results with Alternative Model Specifications
λ 0.0771** 0.0665* 0.0823* 0.0855**

(0.0348) (0.0347) (0.0420) (0.0429)
grade -0.1135 -0.1208 0.3190 0.0659

(0.1500) (0.1491) (0.7517) (0.4211)
age 0.1807 0.1949 -0.0572 -0.0179

(0.1341) (0.1321) (0.2788) (0.1961)
female -0.3997*** -0.3863*** -1.0753 -1.0321**

(0.1485) (0.1480) (0.6549) (0.5244)
white -0.4172 -0.3515 -0.8429 -0.7164

(0.2883) (0.2759) (0.5589) (0.5427)
parent education: college -0.2590 -0.4785

(0.2234) (0.3545)
parent job: professional 0.0162 -0.1684

(0.1862) (0.4287)
contextual variables no no yes yes
OIR test p-value 0.277 0.253 0.972 0.867
Heteroskedasticity-robust standard errors in parentheses.

Statistical significance: ***p<0.01; **p<0.05; *p<0.1.

Table 5: Estimates of the General Network Formation Model
same grade 1.5420***

(0.0683)
same age 0.2531***

(0.0685)
same gender 0.2422***

(0.0585)
same race 0.1168

(0.1700)
the reciprocity effect δ2 2.4764***

(0.0935)
the congestion effect δ3 -0.0970***

(0.0118)
the cyclic-triangle effect δ4 0.4538***

(0.0446)
Unobserved individual heterogeneity yes
Standard errors in parentheses.

Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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Table 6: Spearman’s Rank Correlation Coeffi cients
key player rankings

outdegree centrality 0.2794
indegree centrality 0.2850
incloseness centrality 0.2644
outcloseness centrality 0.2229
betweenness centrality 0.3566
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Appendix for “Who is the Key Player?

A Network Analysis of Juvenile Delinquency”

Lung-Fei Lee, Xiaodong Liu, Eleonora Patacchini, and Yves Zenou

A 2SLS and GMM Estimation

A.1 Asymptotic properties

Under the maintained assumptions, it follows by similar arguments as in Kelejian and

Prucha (2010) that

√
n(θ̂2sls − θ)

d→ N(0, [plimn→∞n
−1(X ′P ∗X)−1X ′P ∗ΣP ∗X(X ′P ∗X)−1]−1),

where P ∗ = Z∗(Z∗′Z∗)−1Z∗′.

Furthermore, let

Ω =

 Z∗′ΣZ∗ 0

0 tr(ΣG∗ΣG∗) + tr(ΣG∗ΣG∗′)


and

D =

 Z∗′G(In − λG)−1(β0ιn +Xβ1 + X̄β2) Z∗′ιn Z∗′X Z∗′X̄

tr[(G∗ +G∗′)G(In − λG)−1Σ] 0 0 0


where S = In − λG. It follows by similar arguments as in Lin and Lee (2010) that

√
n(θ̂gmm − θ)

d→ N(0, (plimn→∞n
−1D′Ω−1D)−1).

A.2 Monte Carlo experiments

To investigate the finite sample performance of the proposed estimators, we conduct some

simulation experiments. In the experiments, the outcome equation is given by

y = λGy +Xβ + u,

1



and the corresponding network g is realized with the probability

Pr(g) =
exp[Q(g)]∑
g̃∈Gn exp[Q(g̃)]

.

The potential function Q(g) takes the form

Q(g) =
n∑
i=1

n∑
j=1

gij [δ0 +Wijδ1 + δ2
∑
k 6=i,j

gik + ηi + ηj ],

where Wij = 2 − (Xi −Xj)
2 measures the similarity between agents i and j in exogenous

characteristics. We generate Xi independently from the standard normal distribution. We

generate vi and ηi jointly from a bivariate normal distribution

 vi

ηi

 ∼ N


 0

0

 ,
 1 σ12

σ12 1


 ,

and ui = σivi, where σi takes the value of {1,
√

2,
√

3} with equal probability. In the data

generating process, we set λ = 0.1, β = 0.5, δ0 = 0, δ1 = 0.5 and δ2 = −0.5, and experiment

with different values for σ12.

Let

ĝij =
exp(δ̂0 +Wij δ̂1)

1 + exp(δ̂0 +Wij δ̂1)

where δ̂0 and δ̂1 are obtained from a logistic regression of gij on Wij , and let Ĝ = [ĝij/d̂],

where d̂ = max{maxi
∑n

j=1 ĝij ,maxj
∑n

i=1 ĝij}. The McFadden’s pseudo-R2 of the logistic

regression is about 0.04. We consider the following estimators: (a) “2SLS-1”, the conven-

tional 2SLS estimator with the IV matrix Q = [X,GX]; (b) “2SLS-2”, the 2SLS estimator

defined in Equation (10) with the IV matrix Q̂ = [X, ĜX]; and (c) “GMM”, the GMM

estimator defined in Equation (11). The estimation results are reported in Table A.1. We

use robust measures of central tendency and dispersion, namely, the median, the median of

the absolute deviations (Med. AD), the difference between the 0.1 and 0.9 quantile (Dec.

Rge) in the empirical distribution of the estimates from 1000 simulation replications. There
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are two main observations from the experiment. First, the conventional 2SLS estimator,

namely “2SLS-1”, is biased when the adjacency matrix is endogenous. The “2SLS-1” es-

timate of λ is upwards biased and the “2SLS-1” estimate of β is downwards biased. As

σ12 increases, the magnitude of the bias increases. By contrast, “2SLS-2” and “GMM”

estimates are essentially unbiased for all cases considered. Second, The “GMM”estimator

substantially reduces the dispersion (in terms of Med. AD and Dec. Rge) of the “2SLS-1”

and “2SLS-2”estimators.

B DMH Algorithm

We assign the prior distributions of model parameters and unknown variables as follows:

1. Individual latent variable: ηi ∼ N(0, σ2ηIn), with σ2η ∼ κInvχ2(α). The hyper-

parameters κ and α are to be specified by the user.

2. Parameters in the link formation: δ ∼ N(µδ, σ
2
δI).

The DMH algorithm takes the following steps:

Step I. Simulate η̃i from p(η̃i|g, δ, η−i) by the DMH algorithm, for i = 1, · · · , n.

I.1. Propose η̃i from a random walk proposal density qη(η̃i|ηi).

I.2. Simulate auxiliary data g̃ by R runs of Algorithm 1, starting from the observed

g.

I.3. Accept η̃i according to the acceptance probability

αη = min

{
1,
π(g|δ, η̃)

π(g|δ, η)
·
p(η̃i|σ2η)
p(ηi|σ2η)

· π(g̃|δ, η)

π(g̃|δ, η̃)

}

= min

{
1,

exp[Q(g|δ, η̃)]

exp[Q(g|δ, η)]
·
p(η̃i|σ2η)
p(ηi|σ2η)

· exp[Q(g̃|δ, η)]

exp[Q(g̃|δ, η̃)]

}
,

where p(ηi|σ2η) denotes the density function of N(0, σ2ηIn).
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Step II. Simulate σ̃2η from [κ+
∑n

i=1(η̃i)
2]Invχ2(α+ n) by a standard Gibbs sampler.

Step III. Simulate δ̃ from p(δ̃|g, Y, η̃) by the DMH algorithm.

III.1. Propose δ̃ from a random walk proposal density qδ(δ̃|δ).

III.2. Simulate auxiliary data g̃ by R runs of Algorithm 1, starting from the observed

g.

III.3. Accept δ̃ according to the acceptance probability

αδ = min

{
1,
π(g|δ̃, η̃)

π(g|δ, η̃)
· p(δ̃)
p(δ)

· π(g̃|δ, η̃)

π(g̃|δ̃, η̃)

}

= min

{
1,

exp[Q(g|δ̃, η̃)]

exp[Q(g|δ, η̃)]
· p(δ̃)
p(δ)

· exp[Q(g̃|δ, η̃)]

exp[Q(g̃|δ̃, η̃)]

}
.

References

Kelejian, H. H. and Prucha, I. R. (2010). Specification and estimation of spatial autoregres-

sive models with autoregressive and heteroskedastic disturbances, Journal of Econo-

metrics 157: 53—67.

Lin, X. and Lee, L. F. (2010). GMM estimation of spatial autoregressive models with

unknown heteroskedasticity, Journal of Econometrics 157: 34—52.

4



Table A.1: Monte Carlo Simulation Results
n = 200 n = 400

λ = 0.1 β = 0.5 λ = 0.1 β = 0.5

σ12 = 0.4
2SLS-1 0.113(0.053)[0.337] 0.479(0.113)[0.474] 0.108(0.035)[0.199] 0.483(0.095)[0.387]
2SLS-2 0.101(0.045)[0.271] 0.492(0.109)[0.525] 0.100(0.029)[0.180] 0.504(0.083)[0.402]
GMM 0.101(0.020)[0.074] 0.503(0.076)[0.311] 0.099(0.011)[0.040] 0.504(0.054)[0.204]

σ12 = 0.6
2SLS-1 0.112(0.046)[0.260] 0.477(0.104)[0.450] 0.110(0.027)[0.171] 0.483(0.078)[0.337]
2SLS-2 0.101(0.029)[0.173] 0.497(0.098)[0.410] 0.100(0.019)[0.113] 0.503(0.073)[0.294]
GMM 0.101(0.013)[0.047] 0.503(0.072)[0.290] 0.100(0.007)[0.026] 0.503(0.052)[0.193]

σ12 = 0.8
2SLS-1 0.117(0.040)[0.217] 0.482(0.107)[0.429] 0.112(0.025)[0.137] 0.483(0.078)[0.316]
2SLS-2 0.101(0.022)[0.122] 0.496(0.090)[0.349] 0.100(0.015)[0.085] 0.503(0.066)[0.263]
GMM 0.100(0.010)[0.035] 0.503(0.070)[0.278] 0.100(0.005)[0.019] 0.502(0.052)[0.192]

Median (Med. AD) [Dec. Rge]
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