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Observation of Vortex Pinning in Bose-Einstein Condensates
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We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates (BEC).
Vortices are pinned to columnar pinning sites created by a co-rotating optical lattice superimposed
on the rotating BEC. We study the effects of two types of optical lattice, triangular and square.
In both geometries we see an orientation locking between the vortex and the optical lattices. At
sufficient intensity the square optical lattice induces a structural cross-over in the vortex lattice.

PACS numbers: 03.75.Lm,74.25.Qt

Some of the most appealing results from recent work
in superfluid gases have had to do with lattices, either
optical lattices [1, 2, 3] or vortex lattices [4, 5, 6]. These
two kinds of lattices could hardly be more different. The
former is an externally imposed periodic potential aris-
ing from the interference of laser beams, while the latter
is the self-organized natural response of a superfluid to
rotation. As distinct as these two periodic structures
may be, there are reasons for trying to marry them in
the same experiment. For one thing, the extreme limits
of rapid rotation (in the case of vortex lattices) [7] and
deep potentials (in the case of optical lattices) [8] both
lead to the same thing: correlated many-body states. For
another, there is considerable precedent, from various
subdisciplines of physics, for interesting effects arising
from the interplay between competing lattices [9, 10, 11].
Moreover, the pinning of superconducting flux vortices
to an array of pinning sites in solids is an area of very
active research as well [12]. With these considerations in
mind, we undertook a preliminary experimental study of
the effects of a rotating optical lattice on a vortex lat-
tice in a Bose-condensed sample of 87Rb. The density of
the superfluid is suppressed at the antinodes of the two-
dimensional standing wave pattern of the optical lattice.
These antinodes then become pinning sites, regions of low
potential energy, for the superfluid vortices. Vortices can
lower their interaction energy by arranging themselves to
be as far apart as possible from one another. The compe-
tition between these effects has been examined in several
theoretical works [13, 14]. Also [15, 16] discuss similar
systems in the strong interacting regime

The setup for creating a rotating optical lattice is
shown in Fig. 1(a). A mask with a set of holes is mounted
onto a motor-driven rotary stage, and a laser beam (532
nm) is expanded, collimated, and passed through the
mask. After the mask the resulting three beams are fo-
cused onto the Bose-Einstein condensates (BEC). The
interference pattern at the focus constructs a quasi-2D
optical lattice. The geometry and spatial extent of the
triangular or the square optical lattice is determined by
the size and layout of the holes and the focal length of
the second lens. For the pinning sites to appear static
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FIG. 1: (a) Schematic diagram of our setup for the rotating
quasi-2D optical lattice. Layouts of the masks for a triangular
(b) and square (c) optical lattices. (d) and (e) are pictures of
triangular and square optical lattices, respectively. For details
of the layouts see [17].

in the frame of a rotating BEC, the rotation of the two
lattices must be concentric, and mechanical instabilities
and optical aberrations (which lead to epicyclic motion of
the pinning sites) must be particularly minimized. Even
so, residual undesired motion is such that the strength of
the optical lattice must be kept at less than 30% of the
condensate’s chemical potential or unacceptable heating
results over the experiment duration of tens of seconds.
We work perforce in the weak pinning regime.

The experiments begin with condensates containing
∼ 3 × 106 87Rb atoms, held in the Zeeman state |F =
1, mf = −1〉 by an axial symmetric magnetic trap with
trapping frequencies {ωr, ωz} = 2π{8.5, 5.5}Hz. Before
the optical lattice, rotating at angular frequency ΩOL, is
ramped on, the BEC is spun up [5] close to ΩOL. This
leads, before application of an optical lattice, to the for-
mation of a near perfect triangular vortex lattice with
a random initial angular orientation in inertial space.
Through dissipation a vortex lattice can come to equi-
librium with an optical lattice, with their rotation rates
and angular orientations locked. In the absence of pin-
ning sites, a vortex lattice with areal density of vortices
nv will rotate at (approximately [18, 19]) Ω = (~π

m
)nv.

http://arXiv.org/abs/cond-mat/0607697v2
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FIG. 2: (a) Triangular optical lattice and (b) vortex lat-
tice in reciprocal space. Each inset shows the correspond-
ing original real-space CCD-camera images. (c) The differ-
ence in orientation θOL − θV L versus the strength of pin-
ning Upin/µ ( the peak of the optical potential normalized
by the condensate’s chemical potential) for the rotation rates
ΩOL = 1.133Ωc = 0.913ωr . With increasing pinning strength,
θOL − θV L tends towards its locked value [20]. (d) Minimum
pinning strength needed for orientation locking between two
lattices as a function of the rotation rate of the optical lattice.
The dashed and dotted lines are discussed in the text.

This suggests that for an optical lattice with an areal
density of pinning sites nOL, locking between the two
lattices will be facilitated if the optical lattice rotates at
the commensurate frequency Ωc ≡ (~π

m
)nOL.

We measure the angular difference θOL − θV L between
the orientation of the optical and vortex lattice in re-
ciprocal space (see Figs. 2(a)–2(b)). Fig. 2(c) shows
θOL − θV L as a function of the pinning strength with an
optical lattice rotation rate ΩOL = 1.133Ωc = 0.913ωr.
The strength of pinning is characterized by the ratio
Upin/µ (µ is the chemical potential of the condensate
[21]), which gives the relative suppression of the super-
fluid density at pinning sites. We can see the initially
random angular difference between the two lattices be-
comes smaller as the pinning strength Upin/µ increases.
For Upin/µ & 0.08 , the angular differences become very
close to the locked value. Figure 2(d) shows the phase
diagram. The data points and error bars mark the mini-

mum pinning strength (Upin/µ)min above which the lat-
tices lock. We observe two distinct regimes. First, for
small rotation-rate mismatch, (Upin/µ)min is rather in-
dependent of the rotation-rate mismatch. Second, for
rotation-rate mismatch beyond the range indicated by
the dashed line in Fig. 2(d), angular orientation locking
becomes very difficult for any Upin/µ in our experiment.
Instead, an ordered vortex lattice with random overall
angular orientation observed at low Upin/µ transforms
into a disordered vortex arrangement at high Upin/µ.

This box–like shape of the locked region in Upin−ΩOL

space is worth considering. In a simple model, vor-
tex motion in our system is governed by a balance of
the pinning force and the Magnus force. The pinning

force is
−→
F pin(x) ∝ Upin/d, where Upin and d are the

strength of the pinning potential and its period, re-
spectively. The Magnus force, acting on a vortex mov-
ing with velocity −→v vortex in a superfluid with veloc-

ity −→v fluid is
−→
F mag(x) ∝ n(x) (−→v vortex − −→v fluid) × −→κ

where −→κ = ( h
m

)ẑ, and n(x) is the superfluid density.
A locked vortex lattice will co-rotate with the pinning

potential, giving −→v vortex(r) = −→v OL(r) =
−→
ΩOL × −→r ,

whereas the superfluid velocity in a solid-body approx-

imation is −→v fluid(r) = ~π
m

nvrθ̂ =
−→
Ω fluid × −→r . Com-

paring the magnitudes of both forces at r = R(Ω)/2,
where R(Ω) is the centrifugal-force modified Thomas-
Fermi radius, we obtain a minimum strength for pinning
(Upin/µ)min ≈ ( 1

2
√

3
R(Ω)/d) × (ΩOL − Ωfluid)/Ωc.

What will be the fluid rotation rate Ωfluid in the pres-
ence of the pinning potential? On the one hand, if vor-
tices are tightly locked to the optical lattice sites, we
have Ωfluid = Ωc. The minimum strength (Upin/µ)min

resulting from this assumption is plotted as solid line in
Fig. 2(d). The lack of predicted decrease of (Upin/µ)min

to zero around Ωc may be due to long equilibration times
in a very shallow pinning potential, as well as slight mis-
matches in alignment and initial rotation rate of the BEC
and the pinning potential. The ease of orientation lock-
ing with increasing rotation rate mismatch is less easy to
explain in this model. On the other hand, in the weak-
pinning regime, the vortex lattice can accommodate a
rotation rate mismatch by stretching/compressing away
from the pinning sites. This allows the fluid to co-rotate
with the optical lattice (Ωfluid ≈ ΩOL) and reduce the
Magnus force. This leads to a very low minimum pinning
strength, as suggested by our data. However, the vortex
lattice’s gain in pinning energy decreases rapidly in the
locked orientation when the mismatch between vortex
spacing and optical lattice constant increases to the point
where the outermost vortices fall radially in between two
pinning sites. Then the preference for the locked angular
orientation vanishes. This predicted limit is indicated by
the vertical dotted lines in Fig. 2(d).

In the absence of a pinning potential, the interaction
energy of a square vortex lattice is calculated to exceed
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FIG. 3: Images of rotating condensates pinned to an opti-
cal lattice at ΩOL = Ωc = 0.866ωr with pinning strength
Upin/µ=(a) 0.049 (b) 0.084 (c) 0.143, showing the structural
cross-over of the vortex lattice. (a)–(c) are the absorption
images of the vortex lattices after expansion. (d)–(f) are the
Fourier transforms of the images in (a)–(c). ko is taken by
convention to be the strongest peak; ktr1, ksq, and ktr2 are at
60◦, 90◦, and 120◦, respectively, from ko.

that of a triangular lattice by less than 1% [22], thus
it is predicted [13, 14] that the influence of even a rel-
atively weak square optical lattice will be sufficient to
induce a structural transition in the vortex lattice. This
structural cross-over of a vortex lattice is observed in
our experiment. Figure 3 shows how the vortex lattice
evolves from triangular to square as the pinning strength
increases. Over a wide range of pinning strengths, we
observe that there is always at least one lattice peak in
reciprocal space that remains very strong. We define this
peak to be ko. Lattice peaks at 60◦ and 120◦ from ko are
referred to as ktr, and, together with ko, their strength is
a measure of the continued presence of a triangular lat-
tice. A peak at 90◦, referred to as ksq, is instead a signal
for the squareness of the vortex lattice. With increasing
pinning strength (Fig. 3(a–c), or (d–f)), we see the trian-
gle to square crossover evolve. At intermediate strengths
(Upin/µ = 0.084), a family of zigzag vortex rows emerges,
indicated by the dotted lines in Fig. 3(b); in reciprocal
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FIG. 4: Structure factors (a) |S(ksq)| (�), (b) |S(ktr)| (N)
(average of |S(ktr1)| and |S(ktr2)|), and (c) |S(ko)| (⋆) ver-
sus the strength of the pinning lattice at the commensurate
rotation rate Ωc. |S(ksq)| is fitted by [23]. The fitting leads
to a maximum value 0.707 of |S(ksq)|. An ideal square vortex
lattice would have |S(ksq)|=1.

space we see the presence of structure at ktr and ksq.

We quantify the crossover by means of an image-
processing routine that locates each vortex core, replaces
it with a point with unit strength, Fourier transforms
the resultant pattern, and calculates structure factors |S|
[14] based on the strength of the images at lattice vec-
tors ksq, ktr, and ko. In Fig. 4, we see with increasing
optical potential the turn-on of |S(ksq)| balanced by the
turn-off of |S(ktr)|. We use a fitting function to smooth
the noisy data of |S(ksq)|. The structure crossover takes
place around Upin/µ ≈ 8%, in rough agreement with pre-
dictions of Upin/µ ≈ 5% from numerical simulations [14]
and Upin/µ ≈ 1% from analytic theory for infinite lattices
[13]. The fact that one lattice peak remains strong for all
pinning strengths (the stars (⋆) in Fig. 4) suggests that
as the pinning strength is increased, one family of vor-
tex rows represented by ko in Fourier space locks to the
square pinning lattice and remains locked as the shape
cross-over distorts the other two families of vortex rows
into a square geometry. The effects of various rotation
rates and optical potential strengths on the squareness of
the vortex lattice is summarized in Fig. 5. We surmise
that there are a number of effects at play. When ΩOL

differs from Ωc, pinning strength is required not only to
deform the shape of the vortex lattice from triangular
to square, but also to compress or expand it to match
the density of the optical lattice sites. At higher optical
intensities, we know from separate observations that im-
perfections in the rotation of the optical lattice lead to
heating of the condensate, which may limit the obtain-
able strength of the square lattice.

A dumbbell-shape lattice defect (Fig. 6) is sometimes
observed in the early stages of the square vortex lattice
formation when ΩOL > Ωc. In the weak-pinning regime,
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FIG. 5: Effect of square pinning lattice. (a) Contours of
|S(ksq)| are plotted, showing the effect of the rotation rate
and pinning strength on the squareness of the vortex lattice.
(b) The maximum observed squareness. In (a) and (b), for
each rotation rate, the data points are extracted from fits such
as that shown in Fig. 4 for ΩOL = Ωc. The vertical dotted
line plus arrow shows the possible range of Ωc consistent with
the uncertainty in nOL.

the defect will relax towards the equilibrium configura-
tion by pushing extra vortices at the edge of the conden-
sate outside the system. Defects of this nature, involving
extra (or missing) vortices, are the exception and not
the rule in our observations, even for ΩOL 6= Ωc. In an
infinite system, the physics of the lattice-lattice interac-
tion would likely be dominated by these point defects. In
our finite system, would-be incommensurate lattices can
accommodate by stretching or compressing.
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