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Pose estimation of a moving camera rig from the images alone has been investigated by the

computer vision community for decades, because the location and direction information of the

cameras are the basis for more advanced applications, such as 3D reconstruction and Simultaneous

Localization and Mapping (SLAM). Visual Odometry (VO) is the accumulation of the relative pose

estimation while the camera rig moves. There are some visual odometry methods for mono view,

stereo, omnidirectional and multi-cameras that require additional sensor input(odometry, compass,

e.g,) and/or synchronized cameras. However, in our Virtual Exercise Environment (VEE) system,

and other low-cost multi-camera setups, none of the above methods can be applied. The Bundle

Adjustment(BA) is the general approach for a non-regular case like the VEE system. BA puts all

the known variables in one huge matrix and solves the unknowns at once with Levenberg-Marquardt

iterations. Thus, the BA is computationally expensive in nature with the complexity of O(n3), and

sometimes infeasible. In this thesis, I propose a ‘divide and conquer’ approach that generates

additional observations from consecutive images in neighboring camera pairs. I show this approach

to solve the critical condition and drastically speed up pose estimation when compared to BA. The

performance with different conditions and sub-algorithms are also tested and discussed.
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Chapter 1

Introduction

Since the industrial revolution, machines have replaced manual labour. Mass production

has been supported by machines and their operators. Although machines contributed to the de-

velopment of civilization, the industrial age still needs help from human beings to complete the

production of products. Robot arms increased their share in the industry assembly line with better

performance than people conducting jobs. People want to train robots for complex works. An

autonomous robot should do the job just with a command from a user. An autonomous robot

need to understand what task need to be done, and some basic information. To understand the

task and the environment, a robot may use many sensors and have advantages over human since

they can use some sensors such as ultrasound, thermal image, and LIDAR, which human beings do

not have. For an autonomous mobile robot, the location and the pose of the robot are important

information, and many mechanisms are developed on that purpose.

There are many methods to find out the current location of robots. Some of them are

listed on Table 1. Line tracers read the signs on the floor, like drivers read signs on the road.

Infrared markers for indoor robots work as Polaris and constellations for navigators in the age of

discovery. Beacons are good landmarks of specific location such as lighthouses. Global Positioning

System(GPS) is using the signals from the artificial satellites on the stationary orbits. These

methods are able to be used only with the infrastructure already made. Dead Reckoning(DR)

just uses the agent’s own information like the previous location and speed to estimate the current

position. Dead Reckoning(DR) is used in the same way that the navigators use a compass and the
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Method Data for computing

Global Positioning System(GPS) Signals from satellites
Line Tracer Line Maps on the ground

Infrared Marker Patterns on the ceiling
Beacons Radio, Acoustic, or RADAR signals from the beacons

Inertia Measure Unit(IMU) Signals from gyro and accelerometer
Visual Odometry Images from cameras

Table 1.1: Odometry Methods

speed of the ship in the age of discovery. Visual Odometry(VO) is the technology for estimating

the changes of position and orientation from the images of a camera on a moving agent over time.

Usually, odometry can be calculated with the composition of various sensors such as a

speedometer, an accelerometer, a gyroscope, or a Global Positioning System(GPS). Each sensor has

its advantages and drawbacks in their ability to find specific locations. Speedometers measure the

signals of rotations from the wheels. However, slipping wheels make errors, and a legged robot does

not have wheels. Accelerometers and gyroscopes, typically called an Inertia Measure Unit(IMU),

have been used in airplanes for years, but there are accumulated error problems. GPS mechanisms

provide current position through satellite signals, but cannot reach underground structures. Visual

Odometry(VO) is based on images from one or more cameras, and a camera is one of the most

popular forms of equipment on robots. One of the advantages of visual odometry is that the camera

is so common on contemporary robots. Images provided by the robots help the supervisor of the

robot help to understand the surroundings, and the environment information can be extracted while

computing the current location through the Visual Odometry(VO). The disadvantages rest with the

accumulated errors, and drifts in Visual Odometry(VO). The same disadvantages of accumulated

problems are formed on Visual Odometry(VO) and Inertia Measure Unit(IMU). In Inertia Measure

Unit(IMU), there is no way to take care of the problem itself. However, in Visual Odometry(VO)

the environment can be used as a landmark to fix the drift. To recognize the landmark, the agent
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should visit the same place at least twice.

Since it is simple to reconstruct depth images, typical Visual Odometry(VO) comes with a

set of stereo camera. With depth images, each tracking point can be registered to a map, and

the clouds of matched points between the movement give the relative camera position through the

Iterative Closest Point(ICP)[111]. The Iterative Closest Point(ICP) algorithm can be used as the

tracking and mapping method for the robots[63]. Figure 1.1 shows the Spirit Mars Rover and

its Visual Odometry(VO) track on planet mars[17]. The Mars Rover is designed to have several

cameras which have their own examination purpose. For the VO, the stereo navigation cameras are

installed. Using only one camera, it is impossible to get a real world distant measurement, which

is called the scale factor. Thus, additional sensors or some initial information is necessary for the

scale factor in one-camera systems. In multi-camera systems, which do not have enough overlapped

portions for a depth image by stereo, there is a different problem. The motions of a bunch of cameras

fixed on one camera rig can be regarded as just one motion of the camera rig by the combination of

each movement of cameras. However, under degeneracy conditions, such as zero rotation or pure

rotation, the system of equations goes trivial and fails. The Bundle Adjustment(BA)[103], which

computes the camera positions and 3D locations of feature points together iteratively, seems to be

the only option for these degeneracy cases. However, BA is computationally expensive due to the

Levenberg-Marquardt iterations in it.

For the purpose of visual odometry, multi-camera without stereo is not a good setup. How-

ever, the setup appears in our daily life for information of the surroundings, for example, an around

view of an automobile as seen in Figure 1.2. The recording setup for the Virtual Exercise Envi-

ronment(VEE) project also has the purpose of larger viewing angle and thus does not have enough

overlapped area for the stereo visual odometry. Figure 1.3 shows a user experiment of VEE. Note

that there is three screens playing three videos, those are recorded from three camcorders. In the

VEE project, tagging distance for each frame of the stitched image has been an issue. If the dis-

tance tags of the images are not smooth, the playing speed of image for the user changes in rough.

An improvised speed meter was used at first. Moving on the Global Positioning System(GPS) was
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not successful. The GPS did not get enough resolution in time and the tolerance in space was

too large. For example, on a corner of a trail, the distance tags interpolated with GPS data have

less distance values than the ground truth, and they lose smoothness on showing the corner. For

distance tags problems, Visual Odometry(VO) is a good alternative to distance sensors and VO

can take an advantage from the many images from the multi-cameras which are already set up for

the good user experience in VEE project.

In next chapter, I start with the VEE project. Then, the basic information about the geom-

etry with two cameras is explained in the next chapter. After that, I propose a novel solution for

the visual odometry for a multi-camera system which does not have enough overlapped area for the

stereo visual odometry. A ‘divide and conquer’ approach that generates additional observations

from consecutive images in neighboring camera pairs is presented and its geometrical binding is

suggested. I show this approach to solve the critical condition and drastically speed up pose esti-

mation when compared to BA. The performance with different conditions and sub-algorithms are

also tested and discussed.
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(a) Mars Rover, Spirit, Courtesy of NASA

(b) Plot of Spirit’s traverse history using Visual Odometry

Figure 1.1: Example of Visual Odometry, Spirit traverse on Mars [17]
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(a) Cameras on Automobile for Around View

(b) Aroundview Display on a Screen

Figure 1.2: Around View of an Automobile, as an example of multi-camera system for wide angle
of view, Courtesy of Nissan[98]
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Figure 1.3: A Multi-screen Virtual Exercise Environment in Use



Chapter 2

Virtual Exercise Environment(VEE)

The Virtual Exercise Environment(VEE) project was sponsored by the National Institute on

Disability and Rehabilitation Research (NIDRR) through the Rehabilitation Engineering Research

Center on Recreational Technologies(RERC Rec-Tech). People who do not have enough cardiac

exercise have high risk of cardiac diseases, especially who can not go outside easily. People in

wheelchairs have a higher possibility on cardiovascular disease than walking people since they do

not use muscles in their legs. The only cardiac exercise equipment they can use is the ergometer

while people who are able-bodied may choose one among a treadmill, a stationary bike, an elliptic,

a stair climber, and so on. Thus, cardiac exercise only with an ergometer is easily boring. Adhering

to an exercise program using stationary exercise machine at home or gym is the main task for the

VEE project.

In this chapter, we introduce VEE systems, the first and second generations with the charac-

teristic points of each generation. Each generation consists of a recording system to capture video,

distance and incline data about real trails, and a playback system which displays both video and

terrain data in the form of video speed and resistance. The first generation has 360 degrees of view

while the second generation has full HD quality images of the scene and supports the communica-

tion with other users. Trails are played back according to the speed, which the user generates on

the stationary exercise equipment. The system uses commodity capture and display devices and

supports standard interfaces for existing exercise equipment. Finally, we discuss the challenges on

developing the VEE systems.
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Figure 2.1: VEE System Overview
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2.1 VEE, First Generation

In this section, we explain how 360 degree panoramic video is made and the way how interact

with users to make them feel like they are on a real exercising trail. The VEE consists of a recording

system to capture video, distance and incline data about real trails, and a playback system. The

playback system displays both video and terrain data in the form of video speed and resistance,

according to the speed, which the user generates on the stationary exercise equipment. The system

also supports standard interfaces for existing exercise equipment.

2.1.1 Cameras and Sensors

To get a 360 degrees of panoramic view, five cameras are placed on the camera header as

Figure 2.2. The Fire-i digital camera from the Unibrain[40] has a lens for 107 degrees of horizontal

viewing angle and 400Mbps IEEE 1394a port for data transfer through CMU 1394 digital camera

driver[23]. Those cameras are powered by two 7.2V, 2000mA batteries for outdoor environment.

The maximum frame rate on recording is 30fps, but it was dropped down to 10 fps when five

cameras are all connected to one firewire port on a laptop. The fps is dropped down to around

7 fps while recording since the voltage of the laptop’s battery dropped down and the hard disk

drive slows down with the accumulation of images data. The distance meter is devised with a hall

sensor and three magnets on a rear wheel of a trike. An incline meter is also equipped to take a

note of the grade in slopes. The data from the incline meter and hall sensor is sent to the serial

port of the laptop through an AVR board. All the equipments, the camera head, sensors with a

communication board, batteries, and a laptop, are set on a trike as seen in Figure 2.3.

2.1.2 Panorama Stitching

The homography between images are computed with SIFT[58] points through the first several

frames. Then, the five images for one frame are stitched to one panorama image. On each frame, the

overlapped area of the images are blended by the scheme of scaled images[11]. The four pyramids of
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Name Category Manufacture Property Interface

FlexDeck Treadmill LifeFitness slope CSAFE
LifeCycle Exercise Bike LifeFitness Resistance Level CSAFE

SciFit Pro I Arm Ergometer SciFit Resistance Level CSAFE
PCGamerbike Arm Ergometer SciFit Virtual Gear FitFx
Crankcycle Ergometer Matrix Virtual Gear Arduino

Table 2.1: List of Compatible Exercise Machines

the images are enough for the blending. In addition, the distance from the edge of each overlapped

area is used as weight for the blending. Before the blending, the correction of the brightness should

be done with the relative brightness on the overlapping areas, since the brightness of each cameras

are different due the different direction of the sunshine on each camera. The brightness correction

with the gain compensation method[9] does not remove the seam clearly, but it is enough for the

VEE since only part of the panorama image can be seen on the HMD. After five images in 320 by

240 pixel resolution are stitched, the resolution of the panoramic image is 1431 by 261.

2.1.3 Video Playback

The Z800 3DVisor manufactured by eMagin[26] is introduced to the system as a Head Mount

Display(HMD) as seen in Figure 2.6. The HMD has an accelerometer, a magnetometer, and a

rate gyroscope for the head movement. Yaw and pitch values are used in our playback system to

determine to show which part of the panoramic image appears on the display.

The HMD is good to show the part of panoramic image with the head movement, but has

some problems. First, it can not be used with a treadmill due to a safety issue. A user with HMD

on the treadmill is actually blind, because he/she can not see where his/her feet step. Thus, the

user may step on the sides of the treadmill, and fall down. Second, the HMD costs more than one

thousand USD and is not affordable for every user. Third, only one part of the panoramic images

are able to be seen and is crude pixel resolution. Even though the HMD supports 800 by 600 pixels

of resolution, the panoramic images are not big enough to cover up the full resolution of the HMD.
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Last, the yaw sensor of the HMD has an accumulation of errors. Though the HMD has a compass

in it, the compass was used only once at the start and ignored while it is on the move and the yaw

value has drifted with noises. In this case, even if the user want to see the forward direction, but

need to keep the head direction on a little left and more.

2.1.4 Communication with Stationary Exercise Machine

The protocol, Communications Specification for Fitness Equipment(CSAFE)[30], is used in

the VEE project. The protocol is agreed by eight major exercise equipment manufacturers in the

market. Treadmills, stationary bikes from Lifefitness, and ergometer from SciFit are tested and

used for the VEE project through the CSAFE protocol. The incline data from the terrain recorded

are applied to each machine, for example, inclining of the treadmill and the resistance change for

the stationary bike and the ergometer.

When we exhibit our system on the Rehabilitation Engineering and Assistive Technology

Society of North America(RESNA) conference, people ask that more equipment can be worked

with the VEE system. Thus, an affordable PCGamingBike has been included. The PCGamerBike

is connected with USB 2.0 cable. It just provides the speed of the equipment, and it does not allow

the playback program to change the resistance level. A concept of changing gears while going up

the hill and the incline data are compensated into the distance in the software.

2.2 VEE, Second Generation

The first generation of VEE is successful, but still has some problems. The stitched images

take too much disk space. The image resolution on the HMD is not good enough. The HMD is

somewhat expensive and not affordable for some users. It is dangerous to use the HMD on the

treadmill and needs a separate version of playback system for non-HMD. The recording equipment

is not simple to recreate another to record more exercising trails, but is necessary to record more

trails somewhere else. Thus, we move onto the second generation of VEE system. For the disk

space, camcorders are introduced to use the mpeg compression. Instead of HMD, three big screen
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TVs are introduced for the gym version, and also one screen version for the home users. In addition,

an Arduino board with hall sensor with magnets are devised for regular exercise equipment with

out CSAFE protocol. The Matrix Bike without any electric equipment, was tested with the novel

arduino rpm meter on the second generation.

2.2.1 Recording Equipment

Three camcorders are equipped on a stroller with a GPS tracker. The camcorder from JVC

has 1920 by 1080 pixels of resolution. We tested with various formations of a triangle for better

panoramic images, and concluded that the forward looking camera should be 15 centimeters in

front of the side camcorders, and the side cameras should be 17 centimeters away from the center

axis and about 45 degrees turned to outsides. Thus, the distance between center and a side camera

is about 20.8 centimeters.

A GPS tracker for hikers records for the trail as seen in Figure 2.8, but it records only one

position for a minute. It means just one position tag for 1800 frames. Figure 2.9 is an iPhone

app from MotionX[32], which can notate a GPS data. However, the recorded marks are only two

times for a minute. In addition, there is no time synchronization method among a GPS recorder

and recording cameras at all. Therefore, a Visual Odometry(VO) algorithm is necessary for better

resolution in position on the second generation VEE system.

2.2.2 Panorama Stitching

Since the off-the-shelf camcorders do not have any equipment for the shutter synchronization,

the panoramic stitching is quite a challenging problem. The brightness problem still exists due to

the sunshine. The HD quality videos take lots of time to stitch. Panoramic stitching of there three

videos are part of Wei’s research[106] and is not in the range of this thesis. After stitching, the

images are divided and enlarged to a full HD resolution and encoded to three full HD videos for

playing.
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2.2.3 Video Playback

Playing three videos on three screens with synced frame is quite challenging since the multi-

threaded players do not decode each videos at the same time. One thread decodes faster and the

others are slow. Thus, to meet the speed, the faster thread was forced to slow down. For the

productivity in implementation, Microsoft’s Multimedia Foundation API’s [56] are used as mpeg

decoder and it just supports four times of regular speed in theory. It means that it plays only

four times faster than the recording speed, even if the user runs faster than four times of recording

speed. The 4x speed limitation may from the the decoding speed of the MF APIs. In addition,

there was a bottleneck with the video cards in PC. Two screens are connected to one video card,

and the other screen is connected to another video card. Without the forcing the speed that the

videos play down to the slowest speed, the screen which occupies the whole video card goes faster.

Thus, the playing speed was not fast, but is enough to attract the users.

2.2.4 Multi-user Communication

The exercising buddy is a good motivator to keep the users exercising. A communication

through the internet for two users is introduced. The connection is through the TCP/IP protocol.

Two users can share and collaborate the same exercise trails whatever the exercise setup is. The

speed of each user on the equipment is shared through the network and the playing speed of the

video is set to the average of speeds for the two users to see same scene of the trail at the same time.

Thus, the compensation for the different speed due to the other equipments matters and has been

dealt with. The Voice over IP(VoIP) could be included in the playback system, but was too heavy

to handle in the program. Thus, commercial VoIP services such as Skype[61] are recommended for

the voice communication between the exercising buddies.

2.2.5 More Exercising Machines

There are many exercise machines which do not support the CSAFE protocol. A Crank Cycle

manufactured by Matrix does not have any electronic parts and thus does not support the CSAFE
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protocol. For the VEE system, at least one information, the speed of the exercising equipment is

necessary. A speed meter is devised with a hall sensor, three magnets and an Arduino board[2].

The Arduino board has an USB port and is connected to the computer. The communication is set

up like an additional serial port. Like the CSAFE machines, the serial port is fast enough in 9600

bps. Figure2.14 shows a Matrix’s crank cycle with an Arduino speedometer in exhibition at the

State of Science Conference. Some equipment those only provide the speed of the equipment and

does not have any method to change the level of resistance for the exercise need another method to

apply the terrestrial condition of the trails. Thus, a virtual gear system is introduced. The speed

of exercising equipment is adjusted in the VEE playback system along the slope of the trails.

2.2.6 Focus Group

The VEE systems have been tested by a group of people, called focus group. The second

generation of VEE system, which has three full HD screens has good response from the group. One

person by one, they had workouts with the exercise machine they chose, and easily concentrated in

exercising as they had been in the trail. To feel like in the trail, most member of the focus group

wanted turn the light off. They also enjoyed the breeze of winds by a fan in the room. Maybe,

the status of wind when recording can be helpful data if we can add fan control method in VEE

systems. However, they pointed that the playing speed of the video was somewhat slow, which can

be fast as the VEE program decodes the videos quickly.

2.3 Summary

Since the project started, the VEE system has been upgraded yearly for the better user

experience. The three stages, which are recording the trails, processing the data, and playing the

video with user’s response, have been set up in clear. In near future, most of the exercise machine

may support new protocol such as Message Queuing Telemetry Transport(MQTT) protocol for

the machine-to-machine connectivity, and the VEE system may provide better environment. In

addition, adding new feature such as the wind by a electric fan, will help more realistic user
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experiences, and make people exercise more and healthy, which is the goal of the VEE project. An

online demo of the VEE system can be found at Youtube: http://www.youtube.com/watch?v=

4gEAfuAbntk. In addition, the VEE project motivated us to develop a novel method for multi-

camera visual odometry when stereo VO can not be applied due to the lack of overlapped areas.

In conclusion, in the middle of the data process, the tagging distance for the each image

frame is very important for the reality, and a VO algorithm is required.
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Figure 2.2: Camera Header with Five Unibrain Cameras



18

Figure 2.3: Equipments on the Recording Trike

Figure 2.4: Trike on Recording



19

Figure 2.5: A Stitched Panorama Image from Five Cameras

Figure 2.6: eMagin Z800 Head Mount Display(HMD)
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(a) Recorded surround video and terrain
features are played back on synchronized
HMD and exercise bike.

(b) Playback using synchronized computer moni-
tor and treadmill.

Figure 2.7: VEE system, First Generation
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Figure 2.8: A Tested GPS Tracker, Garmin eTrex Vista HCx for Hikers

Figure 2.9: A Tested iPhone App, MotionX GPS
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Figure 2.10: Recording Stroller for the Second Generation VEE

Figure 2.11: A Panorama Stitched Image for the Second Generation VEE
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Figure 2.12: One Screen Setup of the Second Generation VEE Playback System with a Desktop
Ergometer

Figure 2.13: Overview of Multi-user Communication
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Figure 2.14: Three Screen Gymnasium Setup of Second Generation VEE System with Matrix
Crankcycle at SOS Conference

Figure 2.15: Three Screen VEE playback System with an Ergometer at the Focus Group



Chapter 3

Camera Model and Epipolar Geometry

A camera model is necessary to write a real world phenomena of a camera into equations.

Starting with the structure of an eyeball, we are going to set up the geometric camera model. There

are two types of the camera parameters which explain the status of a camera. The intrinsic camera

parameters express the internal information of a camera. The extrinsic camera parameters are

about the pose of a camera. To explain the relative poses of two cameras, the epipolar geometry

is going to be discussed. Then, the methods to get the relative pose from the images, such as the

eight point algorithm for the fundamental matrix and RANSAC, will be discussed in this chapter.

3.1 Camera Model

An object is projected to retina in an eye through the cornea, pupil, lens, and vitreous as

seen in Figure3.1. A simple pin hole camera has the similar structure with the eyeball. Figure3.2

shows the structure of pin hole camera. The pin hole camera has a pin hole instead of the lens in

the eyeball, and the size of pinhole is the aperture that the pupil changes in the eye. The object is

projected onto an image plane in a pin hole camera, as projected onto the retina in the eye. The

difference between the retina and the image plane is that the retina is curved but the image plane

on the camera is a flat plane, where the radial distortions arise. As seen in Figure3.3, the geometric

camera model is similar with the pin hole camera, but it is different that the image plane is placed

between the object and the center of the camera in the geometric camera model. By locating the

center of projection, the image plane, and the object in order, it is more intuitive to understand
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Figure 3.1: Structure of an Eyeball, courtesy of National Eye Institute

the image coordinate since the direction of U and V axes has the same direction with the object,

while the image of the object is reflective in the pin hole camera.

In general, the origin of an image is on the left-top corner of the image and U axis increases

to right direction and V axis increases to down. We are going to use the same direction of the axis

in the image to the camera. Thus, the X and Y axes of the camera point the same directions of

U and V , respectively. In addition, the direction of the Z axis always points to the object by the

right-hand law. The pixel on the image plane is expressed by two integers. Thus, there exists a

transform matrix between two coordinates.

In the camera, there is an image sensor, which converts an optical image to electrical signals,

and the signals are turned to digital data by the image processor in the camera. There are two

types of the image sensors, which are most common in the market. They are Charge-Coupled

Device (CCD) and Complementary Metal-Oxide-Semiconductor(CMOS) active pixel sensors. Both

sensors have their own advantages and disadvantages. CMOS has less static power consumption,

but high noises in a dark surroundings. CCD has better sensitivity in the dark than CMOS but

has vertical smears. The sensor parameter we are interested in is the size of the sensor and pixel
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Figure 3.2: Pinhole Camera

Figure 3.3: Geometric Camera Model
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resolutions. In these days, one cell for a pixel is just a few micrometers on the image sensor. Thus,

the scaling parameter and the parameter for the principal point has larger values in the intrinsic

camera parameter matrix, K.

K =















αx γ u0

0 αy v0

0 0 1















(3.1)

where,

αx = f ·mxαy = f ·my (3.2)

where, γ is skew coefficient, f is the focal length of the camera, and mx and my are scale factors

relating the pixels to distance on the image sensor. u0 and v0 represents the principal point, which

is in the center of the image, but not exactly on the center of image sensor in practically.

The intrinsic camera parameters in K are usually set in the factory of the camera manu-

factures and the focal length only can be changed by users sometimes. By the process, called as

camera calibration, the intrinsic camera parameters can be computed.

The extrinsic camera parameters are defined with the respect to the reference of the world

reference coordinates, by the camera location and direction where the camera sees. Euler angles

with roll, pitch, and yaw are usually used to express the angle of rotation. However, the order of the

rotation is confusing in certain conditions. The alternatives of Euler angle are the rotation matrix

and the quaternions. A rotation matrix is orthogonal, and its determinant is one. We are going to

use the rotation matrix, R, as the way to express a rotation in this thesis. The rotation matrix, R,

and the translation vector t are unique to express where the camera is located and which direction

the camera sees. In addition, it is easy to handle the points in the reference coordinate along the

change of the camera poses.

When the pose of the camera is determined, the points in the world also can be transferred

to the camera coordinate to be projected into the image plane. In homogeneous coordinate, the

transform matrix, T , can be easily composed with camera poses, R and t. For the transfer, the

inverse of the rotation matrix, RT, and the −RTt is used for the points transfer, and the transferred
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point, Pc is defined as

Pc =







RT −RTt

03 1






P = TP, (3.3)

where 03 is

[

0 0 0

]

. Since the rotation from the world coordinate to the camera coordinate is

R and the translation is t, the point, P , in world coordinate need to be transferred to camera

coordinate through the transfer matrix, T .

3.2 Epipolar geometry

Epipolar geometry is known as the geometry of two scenes of one object. An epipole is the

projection of the other camera center. The camera coordinate locates on O1 and O2. An epipolar

plane is defined by two camera centers and one point, P , on an object. As seen in Figure 3.4, two

cameras see a point P on an object in the three dimensional world. The point, P , and two camera

centers, O1 and O2, make the epipolar plane, π. Two epipoles, e1 and e2, are on the epipolar plane.

Two cameras have their own image planes, π1 and π2. The point, P , is projected onto the image

planes, π1 and π2. Let p1 and p2 be the projected images of P on the image planes, π1 and π2,

respectively. While P moves on the line O1P and gets new position P ′, the projected image, p1 on

the image plane, π1, does not move, but the p2 moves along the line of intersection of two planes,

π and π2, and get new projection at p2
′ . The line on the image plane, during the movement of P

along the line O1P , is called an epipolar line, l2. In the same way, l1 is an epipolar line from the

movement of P along the line O2P . Thus, there is a relationship between a projected point, p1 and

an epipolar line, l2. The transformation from the point, p1, to the epipolar line, l2 is the essential

matrix, E, and we have

l2 = Ep1, (3.4)

where, p1 =

[

x1 y1 1

]T

and l2 =

[

a2 b2 c2

]T

and it satisfies
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Figure 3.4: Epipolar geometry, two cameras locate at O1 and O2 and the point P is projected onto
the image planes. A projected point of the other camera on the image plane is an epipole.

a2x+ b2y + c2 = 0 (3.5)

on the image plane, π2. There is also the other relationship between p2 and l1 and it is E−1.

The line, which connects two camera centers, O1 and O2, is called the baseline. When we set the

reference coordinate on the camera coordinate on O1, the pose of camera 2 can be explained with

two parameters, the translation vector, ~t, and the rotation matrix, R. We now construct vector

equations from the relationship of points, images of points, and image planes with the translation

vector and rotation matrix as follows,

~t =
−−−→
O1O2, (3.6)

−−→
O2P =

−−→
O1P − ~t, (3.7)

−−→
O2P = sR

−−→
O1P , (3.8)

−−→
O1P =

1

s
RT−−→O2P , (3.9)
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where s is a scalar scale factor, |
−−→
O2P |

|
−−→
O1P |

. The scalar factor s indicates that the ratio of the distances

from the cameras to the point, P .

Because the cross product of the vector ~t and
−−→
O1P become the surface normal of the epipolar

plane, π, and the three vertices, O1, O2, and P are on a plane, the dot product between the surface

normal and any vector on the plane should be zero. Thus we obtain

n̂ = ~t×−−→
O1P , (3.10)

−−→
O1P · n̂ = 0. (3.11)

From equation (3.11), by substituting equation (3.9) into vector
−−→
O1P and equation (3.11)

into n̂ in equation (3.11), we have equation (3.12) below,

1

s
RT−−→O2P · ~t×−−→

O1P = 0. (3.12)

Because the cross product ~t× can be expressed with a rank deficient skew-symmetric matrix,

Tx,

Tx =















0 −tz ty

tz 0 −tx

−ty tx 0















, (3.13)

where ~t = (tx, ty, tz)
T, we now obtain equation (3.14) from the matrix Tx and equation (3.12).

RT−−→O2P · Tx
−−→
O1P = 0. (3.14)

The scale factor, s, can be dropped in equation (3.14) since the right hand side is zero. In

addition, it is known that the dot product between two vectors can be expressed with a row vector

and a column vector in matrix form, and thus we have equation (3.15) and (3.16),
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(RT−−→O2P )TTx
−−→
O1P = 0, (3.15)

−−→
O2P

TRTx
−−→
O1P = 0, (3.16)

from equation (3.14).

Here the matrix RTx shows us the information of the rotation and translation, in other words,

the relationship between the two vectors,
−−→
O1P and

−−→
O2P . We call this matrix, RTx, as an essential

matrix, E,

E = RTx, (3.17)

which is defined with the rotation matrix, R, and the translation vector’s cross product form, Tx.

Thus, the essential matrix, E has rank 2, because of the rotation matrix, R, has full rank and Tx

has rank 2. In addition, the rotation matrix, R, is orthogonal, and Tx is skew-symmetric. Thus,

the essential matrix, E, has two same non-zero singular values.

Thus, equation (3.16) can be rewritten as

−−→
O2P

TE
−−→
O1P = 0, (3.18)

and it means that the the projection of P can transferred onto π2 and forms an epipolar line, l2.

Since the projection of P onto π2 is on the epipolar line, l2, the dot product of the projected point

and the epipolar line is zero.

3.3 Relative pose estimation

Pose estimation of the second camera relative to first camera is based on the epipolar geome-

try. The essential matrix has only extrinsic parameters of the relative pose. However, the points we

can get from the camera are projection of the three dimension points onto the image plane through



33

the camera matrices which also include the intrinsic parameters. As same as equation 3.18, we

define the fundamental matrix, F , which satisfies the relationship,

pT2 Fp1 = 0, (3.19)

on the image coordinates, where p1 =

[

x1 y1 1

]T

and p2 =

[

x2 y2 1

]T

. The fundamental

matrix is a 3× 3 matrix as same size as the easential matrix.

F =















f11 f12 f13

f21 f22 f23

f31 f32 f33















, (3.20)

and equation (3.19) is

x2x1f11 + x2y1f12 + x2f13 + y2x1f21 + y2y1f22 + y2f23 + x1f31 + y1f32 + f33 = 0, (3.21)

and equation (3.21) can be rewritten as

[

x2x1 x2y1 x2 y2x1 y2y1 y2 x1 y1 1

]

~f = 0, (3.22)

where ~f =

[

f11 f12 f13 f21 f22 f23 f31 f32 f33

]T

.

For n 3D points, the ith 3D point, P i, has the projections, p1
i and p2

i, respectively on image

planes, then
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~f = 0. (3.23)

Setting up the n by 9 matrix to a matrix A, we obtain

A~f = 0. (3.24)
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The information we usually get is that the matched points from two images. What we want to

know is the fundamental matrix, F , which has 9 unknowns, but the rank of F is two, and thus the

matrix A should have at least eight 3D points, in other word, eight couples of the projections. The

matrix A can be decomposed with Singular Value Decomposition(SVD). More about the epipolar

geometry is explained in [104], [112], and [35].

Using SVD, the matrix, A, is decomposed as

A = UDV T , (3.25)

where U and V are unitary matrices. The matrix D is a diagonal matrix and the diagonal elements

are the singular values. The SVD is a method to measure the distance from the matrix A to

projection plane as we can see in A. Thus, each singular value is the distance measured and

corresponds the column vector of the matrix V as the basis of projection plane. Since what we

need on equation (3.24) is f , the null space of matrix A and the singular value we want should be

zero. Practically, the smallest singular value is not zero, and we choose the smallest one among the

singular values in the diagonal element of the D matrix, and also choose the corresponded column

vector of V as f . Ideally, Af should be zero, and it means the smallest singular value is also zero.

However, it does not happen practically, and thus our solution for the best is minimizing ‖ Af ‖

subject to the condition ‖ f ‖= 1.

Even the f is calculated, it may not satisfy the condition that the fundamental matrix, F , is

a rank 2 matrix. In other words, determinant of the F should be zero. To modify the fundamental

matrix to have rank 2 without losing principal information that we get from the matrix A, we use

the SVD again for F , and we have

F = UFDFV
T
F , (3.26)

where the fundamental matrix, F , is decomposed to three matrices, UF , DF , and, VF . The funda-

mental matrix, F , is a 3 by 3 matrix and have three singular values, and thus one singular value
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among three should be zero. The singular value matrix DF is a diagonal matrix. Replacing the

smallest singular value in the DF by zero gives modified diagonal matrix, DFM , and the modified

fundamental matrix, FM , can be composed again,

FM = UFDFMV T
F . (3.27)

The relationship between the fundamental matrix and the essential matrix is that the fun-

damental matrix has the additional intrinsic parameters, which we already know from the camera

calibration. We now have

F = K−T
2 EK−1

1 , (3.28)

where K1 and K2 is the intrinsic camera matrix of first camera and second camera.

Thus, the essential matrix, E, can be computed by multiplying the camera intrinsic parameter

matrix, K,

E = KT
2 FK1. (3.29)

The essential matrix, E, can be decomposed to the rotation matrix, R and the unit translation

vector, t as seen in equation (3.17)[69].

However, we still have the cheirality problems after we get the rotation matrix, R and the unit

translation vector, t, [35]. Cheirality problem appears because projected points in the image plane

does not tell that the corresponded three dimension points were in front of the camera or behind

of the camera. Thus, we have four possibility of choosing the correct case. The cheirality problem

can be selected by the vote of triangulated point locates in front of or behind the camera, since all

the three dimensional points should be in front of the camera in our camera model[109]. We have

four possible cases, which are (R, t), (R,−t),
(

RT , t
)

, and
(

RT ,−t
)

. For a couple of projection,

the reconstructed three dimensional point, Pre should be in front of both cameras. Thus, each

reconstructed point by the triangulation has a vote for one of four possible cases, and the most

voted couple of R and t is chosen in the end.

After computing the fundamental matrix from the randomly selected 8 points, it is necessary
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a. extract SIFT features from frame n
b. extract SIFT features from frame n+1
c. find matching points
d. normalize the points to reduce errors
e. randomly choose 8 point
f. calculate fundamental matrix and essential matrix
g. Chirality vote for R and t
h. compute re-projection errors and count inliers
i. repeat e, f, g, h, till the number of inliers is larger than the RANSAC threshold

Table 3.1: Relative pose estimation algorithm

for all match points to measure the re-projection errors. The sum of the distance between the

reprojected point on image plane and the location of feature point extracted from SIFT can be

regarded as an error that should be minimized. Thus, we count the inliers which has less distance

than a threshold that we set before the subroutine. By repetition of choosing 8 points randomly,

calculating fundamental matrix, voting for the chirality, and counting inliers with the reprojection

errors, the most acceptable essential matrix can be given. The whole relative pose estimation

algorithm for R and t is shown in Table 3.3.

3.4 Test case

The relative pose estimation algorithm is described as the Table 3.3. The accumulated relative

pose estimation with one camera is regarded as one view visual odometry. One camera visual

odometry is impossible without the scale factor since the translation vector, t, is a unit vector.

Thus, additional information for the scale factor is necessary for the one view visual odometry.

The one camera visual odometry algorithm through the epipolar geometry can be tested with the

LAGR[100] robot data. The LAGR robot has two sets of stereo camera, GPS, and IMU. Computing

the poses of robot using just one view of the stereo camera with the additional information of a

scale factor by the IMU is tested.
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(a) LAGR robot (b) sample image of the LAGR robot

(c) The track of LAGR robot by one view visual odometry with additional scale factor by IMU

Figure 3.5: One view visual odometry test by epipolar geometry
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3.5 Summary

A projective camera model is set up and the relative pose estimation by the epipolar geometry

is discussed. Through the camera model and the epipolar geometry, one view visual odometry

method are implemented and tested. For more accurate calculation, some subroutines in the relative

pose estimation (see Table 3.3) are tested. Other method for computing the fundamental matrix

is also tried[96], but it is too slow and is not so much difference on the test case. The resolution

of images and the focal length are important property for the accuracy, and the algorithm is

impracticable without normalizing method[79] when the diagonal elements of the intrinsic camera

matrix, K, have large values. The number of RANSAC[29] trial is also sensitive parameter in

the algorithm, and practically it depends on the number of good matches in the all the matched

point. The SIFT[58] features gives good results, but its computational burden is somewhat heavy

to compare many points to find matched points. The harris corner detector[34] gives to much

mismatch points and requires more trials in the RANSAC process than the SIFT features. How

to set a threshold is still sensitive for case by case. The threshold should be less than one pixel for

each re-projection in usual, and a smaller threshold requires more RANSAC iteration but does not

guarantee better accuracy than the 1 pixel threshold.



Chapter 4

Multi-Camera Visual Odometry

Multi-camera system is useful for wide angle of view. An around view of an automobile is a

good example. Four cameras are generally used on an around view to show front view, rear view

and side views as seen in Figure 1.2. Another example is the Google Street View[97]. A bunch

of cameras are set in a rig for panoramic images as seen in Figure 4.1. Our application, the VEE

system, also uses three cameras for wide angle of views as seen in Figure 4.2. Visual odometry with

a multi-camera system, which is designed for wide viewing angles, is not as popular as the stereo

visual odometry. In this chapter, starting with explaining our VEE recording equipment, other

researchers’ works related on our problem are going to be discussed. Then, a set of equation with

the geometric constraints is derived. Finally, the reason why the non-stereo multi-camera visual

odometry is avoided will be discussed.

4.1 System Overview

In this section, the camera rig is explained for the purpose to introduce the geometric con-

straints of the system. Three cameras are mounted rigidly with divergent views as seen in Figure 4.2

These settings are good for wide field of views, which is one of the important attraction for the

VEE users. However, there are not enough overlapped area for stereo comparisons for the stereo

visual odometry. Mono view visual odometry of each camera gives the rotation matrix and the

direction of motion, but for the metric scale factors. Those three independent motions of cameras

might be fused to get the movement of the camera rigs. However, the critical conditions, which
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(a) Google Street View Car (b) Closeup of the Camera on the
Google Street View Car

Figure 4.1: Google Street View System, courtesy of Google
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will be discussed in section 4.4, make it difficult to get the information in stable.

We propose to divide the problem of metric motion estimation for a diverging trinocular rig

into five single-view relative pose estimation problems and then calculate the scale factors of each

single-view motion estimate. While the trinocular setup lends itself to three single-view problems,

we construct two additional views by tracking feature points in consecutive image frames between

the center and peripheral cameras.

The key idea here is that feature points on the frontal view will eventually appear in one

of the side cameras after some frames as the camera rig moves forward as seen in Figure 4.3 In

other words, with the front camera, the single view relative pose estimation which we discussed in

section 3.3 should be done first. Then, the pose estimation with a side camera alone on time lapse

we have to calculate, and the pose estimation with the other side alone should be compute. Fusing

these three relative pose estimations does not give us reliable results near the critical condition.

Thus, the relative pose estimation between the front camera of the previous time frame and one of

side cameras on current time frame should be computed. Then, the same one but with the other

side camera must be added. Finally, these five independent relative pose estimation are fused to

estimate the metric scale factors. By adding two more relative pose estimations between forward

camera and side cameras with time lapse, the critical condition near zero rotation is solved.

The five mono view relative pose estimation can be constructed simultaneously and the scale

factors are calculated based on our new system of constraints. As discussed on section 3.3, the

single-view visual odometry algorithm is based on the approach of Nister et al. [70], and uses

RANSAC[29] and SIFT features[58].

4.2 Related Works

Pose estimation of camera rig from the images are investigated by computer vision society

for decades, because the location and direction information of the cameras are the basis for more

advanced applications, such as 3D reconstruction, SLAM and so on. As the Visual Odometry(VO) is

coined in 2004[68], VO algorithms with single camera[68, 12], stereo camera[68], and omnidirectional
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camera[10, 85, 54] were developed. Stereo schemes take advantage of depth information[63] and

performed well in applications[60, 38]. Monocular visual odometry cannot resolve the scale factor

on the translation distance. Omnidirectional camera also needs a special algorithm for VO to take

care of its panoramic images.

Typically, multi-camera visual odometry uses metric reconstruction from stereo pairs, which

are strongly calibrated, and highly overlapped, to resolve the scale factors[73]. If there is a lack

of overlapped area, stereo based visual odometry cannot be used. The Bundle Adjustment[103] is

the general approach for any kind of 3D reconstruction problems, but too slow as the complexity is

O(n2log(n)), where n is unknown parameters, even well implemented with the sparse scheme[49].

With the number of features in the order of tens of thousand, the BA is infeasible without a powerful

machine.

Once the general framework for multi-camera systems was proposed in [75, 31, 90], several

authors have addressed the question of estimating camera motion or pose for multi-camera systems

with limited or no overlap. The key problem as articulated by [65] was that the parameters for

certain critical motions cannot be determined.

In particular one such motion is straight line motion with zero rotation angle, which is

common in vehicles and mobile robots. [44] proposed a method to solve for camera motion by

estimating and averaging the frame to frame rotations extracted from the essential matrices from

individual VO calculations, but was not successful on the critical condition with zero-rotation.

Thus, they just avoided the critical conditions in their test application by rotating their ladybug

camera by 10 degrees for each frame[45, 46].

[77] also addressed a similar structure from motion application and needed to solve for rel-

ative position from a movement of the camera rig, however, they incorporate data from a Global

Positioning System and an Inertial Navigation System.

[33] also proposed a solution for computing the visual odometry scaling factor for non-

overlapped views. However, the difference is that we use not only the matched features for different

frames on same camera, but also the matched features between different frames on neighboring
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cameras.

[43] presented a framework for 6D absolute scale motion, they used the generalized camera

model. They stacked up N-frames for the accuracy of scale factors. However, their Least Squares

equations also have degeneracies when there is no rotation.

[80] also introduced the multiple non-overlapping camera model. They used the Extended

Kalman Filter and median arbiter for four camera’s rotation. However, their model equation is

trivial when the rotation matrix is a identity matrix. In addition, their frameworks need the depth

initialization for each camera at the first frame.

[21] also proposed a factorized framework for a generalized camera model. They divided the

problem into rotation, translation and structure estimation, and averaged the rotation. They also

admitted the possible degeneracies, but no further study is done yet and the framework is with the

synthetic data simulation only.

The applicability of a spherical approximation for multiple camera was studied in [47]. Their

research show better results than the 17-point algorithm for a generalized camera model. However,

there is a strict sufficient condition with the distance between cameras and the distance to the

feature point. To apply on our VEE system cases, the distance between cameras are too small to

meet.

[42] proposed to use a multi-camera rig for SLAM. Other researchers also studied SLAM with

a multi-camera rig[15]. The SLAM and autonomous navigation were integrated in their research,

but they also used the wheel odometry, and the visual information for pose estimation was limited

on their visual SLAM.

Our system uses three off-the-shelf camcorders which do not have any triggering or syn-

chronization method, giving rise to temporal synchronization problems. [16] and [105] proposed

methods for aligning video sequences, but the methods do not fit in our case because the different

time stamp of the frames is continued with specific time lapse.

Calibration of our rig is also a tough problem. The system has slightly overlapped regions

among images for stitching panoramic views. Stereo calibration for the two overlapping pairs was
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performed using the Matlab Calibration Toolbox [7], but the result was not sufficiently accurate.

There is some previous work addressing calibration for non-overlapping cameras [28, 59, 83], how-

ever, they all assumed synchronized shutters.

In our VEE system, none of the above methods can be applied and the usual option to solve

was Bundle Adjustment(BA)[103], which puts all the known variables in one huge matrix and solves

at once with Levenberg-Marquardt iterations. Thus, the BA is computationally expensive in nature

with the complexity of O(n3). As seen in Figure 4.2, the system has three off-the-shelf full HD

camcorders, which have diverted angles on the camera rig for wider field of view since the camera

rig was designed for panoramic stitching for the purpose of wider field of view in VEE systems[107],

and thus there is not enough overlapped area for stereo algorithms.

4.3 Geometry and Equations

We have three cameras on our camera rig. One is looking forward, another is looking 45

degrees left, and the other is 45 degrees looking right. Since these three cameras are for playing

videos on screens as seen in Figure 2.15 , we call these cameras as left, center, and right camera. In

addition, we numbered the center camera as 1, the left camera as 2, and the right camera as 3. We

assume that we already know the intrinsic parameters and the transformation matrix between the

center camera and each side cameras. On Figure 4.5, these two transformation matrices are shown

as TCL and TCR. We assume that TCL and TCR are the previously calibrated camera transform

matrices from the center to the left and right cameras respectively. The motion of camera rig causes

6C2 camera transformations including the TCL and TCR. Here we focus on just five of them. Three

transformations are for each camera with time difference, and two transformations are between

center and side cameras with time differences. We also number the five relative pose estimation.

The pose estimation of center camera alone in time lapse is numbered as 1, the one of left as 2, and

the right one as 3. The additional comparison between the center camera in previous time frame

and the left one in current time frame is numbered as 4, and the one between the center in previous

time frame and the right one in current time frame is numbered as 5.
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Let the transformation matrices T1, T2, and T3 for each cameras with time differences and

T4 and T5 for center camera with left and right cameras with time differences. These constraints

on Figure 4.5 can be translated into the matrix equations,

T2TCL = TCLT1, (4.1)

T3TCR = TCRT1, (4.2)

T2TCL = T4, (4.3)

T3TCR = T5, (4.4)

TCLT1 = T4, (4.5)

TCRT1 = T5, (4.6)

T ′
CLT4 = T ′

CRT5, (4.7)

T ′
CLT2TCL = T ′

CRT3TCR, (4.8)

T ′
CLT4 = T ′

CRT3TCR, (4.9)

T ′
CLT2TCL = T ′

CRT5, (4.10)

where T ′
CL and T ′

CR are inverses of the TCL and TCR, respectively. These constraints are good as

far as we have the translation vectors. However, the independent five monocular visual odometries

give the rotation matrices and the unit translation vectors only, not with the length of the vector.

Let pi(k) be a matrix of image points from camera i at time k. The 5 standard monocular

VO calculations are performed one each for cameras from p1(k) to p1(k + ∆k), from p2(k) to

p2(k+∆k) and from p3(k) to p3(k+∆k) in the usual way, and two more from p1(k) to p2(k+∆k)

and to p3(k + ∆k), respectively using [70] (see Figure 4.5). These yield five rotation matrices,

(R1, R2, R3, R4, R5), and five unit translation vectors, (v1, v2, v3, v4, v5), for the rig motion with

respect to each temporal image pair. Here, ∆k is chosen such that objects are likely to shift from

the center camera to one of the outside camera views, which is a function of the speed of the camera

setup and the frame rate. As ∆k >> 1 in practice, the lack of synchronization between individual
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views becomes neglible. As the transformation matrices are composed of the rotation matrices and

the translation vectors, each transformation matrices can be written as

Ti =







Ri ti

0 1






, (4.11)

where i is from 1 to 5, and the scaled translation vectors, ti, can be written as

ti = ai · vi, (4.12)

where ai is a scholar scale factor for each transformations. Also, the rotation matrices, RCL and

RCR, and the translation vectors tCL and tCR are also known. Now we move on to the vector

equations for the scale factors a1, a2, a3, a4, and a5 for each of the 5 sequences. The scale factor a1

is for the forward looking camera, a2 for the left one, a3 for the right one, a4 for center at time k to

left at time k+∆k, and a5 for center at time k to right at time k+∆k. Using the center camera as

the reference t′CL and t′CR are relative translation vectors transformed by estimated camera rotation

R1:

t′CL = R1tCL, (4.13)

t′CR = R1tCR. (4.14)

Figure 4.5 illustrates the basic geometry arising from the rig motion (R1, t1) from time k to k+∆k.

Note that the origin of camera rig coordinate locates at the center camera. Cameras move from

positions C1, C2 and C3 to C ′
1, C

′
2 and C ′

3 respectively. Given known tcl and tcr, estimated t′cl

and t′cr, and unit translations vi we can construct a series of constraints relating the old and new

camera positions.

For example the location of C ′
2 relative to C1 can be described by the sum of the vector from

C1 to C ′
1, which is t1 = a1v1 plus the vector from C ′

1 to C ′
2, which is the estimated t′cl. We can

describe the same location as the sum of the known vector tcl from C1 to C2 plus the vector from

C2 to C ′
2, which is t2 = a2v2. This vector algebra yields an equation constraining the unknown

scale factor ai (see equation (4.15)).
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We construct 10 such equations exploiting these redundant relationships. The key to the

robustness of our approach to degenerate motions is that we include the cross sequences from C1 to

C ′
2 and C ′

3, which inherently include the extrinsic rotations Rcl and Rcr, and thus will not have zero

rotation when R1 = I. For example, equation (4.21) describes the motion from C1 to C ′
1 through

C ′
2 (a4v4 − t′cl) and through C ′

3 (a5v5 − t′cr). The full set of equations is:

a1v1 + t′cl = tcl + a2v2, (4.15)

a1v1 + t′cr = tcr + a3v3, (4.16)

a4v4 = tcl + a2v2, (4.17)

a5v5 = tcr + a3v3, (4.18)

a1v1 + t′cl = a4v4, (4.19)

a1v1 + t′cr = a5v5, (4.20)

a4v4 − t′cl = a5v5 − t′cr, (4.21)

tcl + a2v2 − t′cl = tcr + a3v3 − t′cr, (4.22)

a4v4 − t′cl = tcr + a3v3 − t′cr, (4.23)

tcl + a2v2 − t′cl = a5v5 − t′cr. (4.24)

From the 10 vector equations above, we rearrange the terms to form a matrix equation for solving

the five scale factors, and thus we obtain
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. (4.25)

We have five unknown scale factors and 10 vector equations, and the system 4.25 is an overde-

termined system. An approximation for a1, a2, a3, a4, and a5 is computed by solving the system.

Each vector equation has three dimensions, and thus three scala equations. Matlab provided a

function for the least square problems. However, the Singular Value Decomposition(SVD) can used

to decompose the system for Least Squares(LS) techniques, if necessary.

In addition to the matrix system above, the weighted least squares scheme was also applied.

For small rotations, the translation vectors of three same camera VO solutions, v1, v2, and v3, are

almost parallel, and they do not have a significant role in the system. Thus, the weighted least

squares scheme is introduced and we apply larger weights to the equations with v4 and v5 than

the other equations. Equations (4.19)-(4.21) are weighted twice than other equations. The vector

v2 and v3 are quite sensitive to the errors and result bad approximations. Thus, the equations

without v2 and v3, but with v4, and v5 are more weighted and gave better result empirically. The

sensitiveness of the equation will be shown with an example in next chapter.

A large degree rotation of the camera rig by a sharp turn of the vehicle is also an important



49

case. In this case there are not enough matches for v4 or v5, because either the right or left

camera will not see the same features as the center view at a prior time step. When we observe

an inconsistent result from one of the mono view relative pose estimation solutions, a scheme to

reject one of the five vectors, v1, v2, v3, v4, or v5, is applied. The vector with the largest error

after the least squares approximation is rejected and the least squares approximation is repeated

to improve the result. Omitting a translation vector from the system not only reduces the length

of the unknown vector in the system, but also reduces the 10 constraints to 6 constraints. This

rejection method is helpful in the unstable cases due to inaccuracy in the relative pose calibration

for the three cameras, and when temporal synchronization inaccuracies are exacerbated by jitter

due to uneven road surfaces.

4.4 The Critical Condition

The critical condition is called when some degenerated situations happens on the motion of

camera rig. One example is pure translation. Another degenerate situation is that pure rotation,

which usually happens with a camera rig, which can pan and/or tilt itself. In VEE recording

cart, the most common critical condition we suffer is the pure translation, in practical, near zero

rotation, because the cart moves forward slowly for smooth videos. Without the proposition that

the features seen on the frontal camera should appear on one of the side camera, we can not make

sure the vector v4 and v5 exist in Figure 4.5.

Let us see what will be happen on our vector equation system without the vector v4 and v5

as seen in Figure 4.6, and thus the system of 10 vector equations in equation (4.25) is reduced to

a system of three vector equations,



50















v1 −v2 0

v1 0 −v3

0 v2 −v3





























a1

a2

a3















=















tcl − t′cl

tcr − t′cr
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. (4.26)

Whereas the set of equations (4.26) is sufficient to solve for the unknown scaling factors a1,

a2, and a3 under normal conditions, some camera motions can lead to singular conditions. For

example, when moving in a perfectly straight line, all rotation matrices become the identity matrix

and the system cannot be solved as seen in [65]. Of course, in pure translation, right hand sides

of equation (4.26) is all zero since zero rotation means that the rotation matrix, R is an identity

matrix. It transforms the vector tcl to vector t′cl, but is same as tcl. In the same way, tcr is equal

to tcr. Thus, the set of equations (4.26) goes trivial and can not solve the case. This problem can

be tackled by adding the vectors v4 and v5. In our three camera visual odometry, the camera rig

moves forward at a walking speed of about 2 miles/h. The purpose of our videos in [107] requires

a smooth transition even if the user on the treadmill walks in the minimal speed, 0.5 miles/h. It

cannot be faster than the walking speed for the video quality. There are typically only gradual

turns, so it is assumed that all camera movement between frames is near the critical condition.

The added vectors, v4 and v5, have the important role in the system because we have more forward

motion than rotation, therefore the weights on equations with v4 and v5 are greater than the other

weights for the weighted least squares method. Due to the sensitivity of the least squares method,

if one motion estimate is an outlier, excluding that the vector from the solution helps stabilize

the system. In that case, the matrix system shrinks to 6 vector equations and 4 unknowns. This

rejection system is also effective for the case of sharp turns, where not enough matches are found

for v4 or v5.
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4.5 Summary

The visual odometry for a multi-camera system, which stereo algorithm can not be applicable

with, is studied. Existing methods have restrictions to apply on our VEE application and a new

approach is necessary to solve the problem. By the observation that feature points, seen in the

forward looking camera, eventually appear on side cameras, the multi-camera visual odometry with

additional time lapse relative pose estimation is proposed. The method proposed in this chapter is

stable even in the critical condition.
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Figure 4.2: Three camcorders on the camera rig

Figure 4.3: The basic idea is that the features on front camera on time time k should appear on
one of the side camera at the time k +∆k.
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Figure 4.4: System Overview: Images from three cameras for five mono view relative pose estima-
tions, with which scale estimation for metric distance, and the correction of the scale factors when
too much errors are calculated for one frame step.

Figure 4.5: Basic Geometry, where T is a 4 by 4 transformation matrix, which has the information
of rotation and translation.
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Figure 4.6: Basic Geometry without the v4 and v5 on a degenerated case of pure translation.



Chapter 5

Experimental Results

As a physical system introduces a series of complications, such as errors from the temporal

difference with unsynchronized shutters, bad camera calibration, or pixel errors on video recorded

with off-the-shelf camcorders, we conduct a first series of experiments using synthetic data to test

the proposed method is absence of these problems. This also allows us to test exact straight-line

movement, which is difficult to obtain experimentally. We then apply the proposed method to real-

world data sets captured using the system shown in Figure 2.10. First data set is a short course

near the engineering building. Through this data set, we investigate how one bad estimation of

five relative pose estimation effects on the whole result. Then, we will see how the problem solved.

Next, the proposed algorithm is applied to a longer 20 minutes track for the VEE program. Due

to the thousands of images, it takes a lot of time. Thus, some speed up techniques are tried and

discussed.

5.1 Synthetic Data Experiment and Gaussian Pixel Errors

Figure 5.1 shows the synthetic data used to test the diverging-view VO system. The camera

test path is generated by a) a sine function and b) a straight line. Both paths pass 1000 random 3D

data points, which are used to generate uniquely identifiable image features for the environment.

The camera rig moves from (0, 0, 1) to (10, 0, 1). 1000 data points are set in the space which spans

[0, 30] on x axis, [−30, 30] on y axis, and [0, 3] on z axis. The arrows in Figure 5.1 indicate the axis
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of camera rig. The intrinsic camera matrix, K, used here, is

K =















1000 0 500

0 1000 500

0 0 1















. (5.1)

Figure 5.2 and 5.3 show the synthetic camera track plotted with blue o’s and the calculated

results with red stars. It shows a perfect match, and the machine errors only exist.

We now test the proposed method with Gaussian distributed pixel errors on matching features

(from 0.2 to 1 pixel errors). The pixel error applies on the image plane for each projection, to which

each 3D synthetic point is projected through a camera matrix. For the same situation we already

did with the synthetic data, the pixel errors are added, and the results are plotted on Figures.

Figure 5.4 and Figure 5.5 show the absolute and relative errors on the scale factor with respect to

Gaussian correspondence error with σ ranging from 0.2 to 1 pixels. Figure 5.6 shows the rotation

error in degrees. Figure 5.7 shows the five different paths. The path with an error rate of 0.2 pixel

is quite good and the one with 0.4 pixel error is still acceptable except one big jump during the

calculation. Cases with 0.8 and more than 0.8 pixel errors illustrate how bad the results become due

to accumulated error. For the error rate of more than 0.8 pixels, the algorithm needs another scheme

that can filter unexpected jumps and the wrong cheirality. By the way, 100 times of RANSAC trial

was good enough to find the best model for all matching points. For the strait motion with the

pixel error, there is much less errors than the sinusoidal motion, and Figure 5.7 shows very little

differences compared to the non-error model.

These results show that our algorithm is quite sensitive on pixel errors but also show accept-

able results within 0.6 pixel errors. Thus, for real scenes, a feature extraction scheme with high

accuracy is required. In practice, SIFT[58] gives us good matches in resolution. In addition, a high

standard on the threshold to distinguish the inliers is necessary.
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5.2 Real Data Experiment and the Erroneous Estimation Rejection Scheme

We performed a real data experiment on a set of short videos captured near the engineering

building. Our algorithm is tested with a 3100 frame sequence recorded at 30fps, making VO

estimates at every ∆k = 15 frame (≈ 200 pose estimates over 130 meters). The speed of cart with

three camcorders on recording is regular walking speed, 2 miles/h. The distance between center

cam and left cam is about 18 centimeters. For stable scale factor, at least one for 30 frames should

be computed, its the maximum frame step, in practice. For sharp turns, in which the features

are not enough on the comparison, the frame step cannot be too large. The outer side seeing

camera may have a lack of features at sharp turn, and that situation is dealt with the rejection

scheme. However, if the turn is so sharp and thus there are not enough matches on the front looking

camera, it fails. Another significant error we should consider is shutter synchronization. Without

any shutter synchronization method, each frame has the maximal temporal differences of 16.7ms

between camcorders. With the frame step, ∆k = 15 and 30fps, the time stamps between two

consecutive frames are 500±16.7ms, making the error from the lack of synchronization negligible.

Thus, we start with 15 for ∆k, and will investigate with variable frame steps in a longer track. The

RANSAC trial for this video is 1000 trial or 70% of matches are good for the case was used, and

the threshold of pixel error for inliers is 1.0 pixels as sum of mutual-reprojections.

In Figure 5.8, the superimposed green dots, blue dots, and red dots illustrate the matched

features between a temporal frame k and the next processed frame k+15, on left, center, and right

sequence images respectively. The cyan dots show the matched features between a center view for

frame k (Figure 5.8(e)) and the left view for frame k+15 (Figure 5.8(a)), and the magenta dots do

the same between the center view for frame k and the right view for frame k + 15 (Figure 5.8(c)).

A typical result for a scale factor calculation is shown in Figure 5.9. A cyan line shows

the camera rig pose at frame k, and the blue line shows the camera rig pose at frame k + 15.

The green lines show the estimated translation vectors for the left, center and right camera. The

red and magenta lines show the vectors v4 and v5. The right vector shows some obvious errors.
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This erroneous situation happens when a wheel of the stroller rolls over a small rock. Even if we

increased the frame step, ∆k, there is still time difference is exist and the mono view relative pose

estimation of the right camcorder makes errors, in this example.

In Figure 5.10, the right vector, v3 is removed and the scale vector of the motion is recalcu-

lated. This means that the 2nd, 4th, 8th and 9th rows of the matrix equation (4.25) are removed

in the error correction. Note that the scale factor of the front camcorder, where locates the origin

of camera rig coordinate. Before the erroneous v3 removed, the scale factor is less than 0.5. After

the v3 is removed, the scale factor is bigger than 0.6. All the metric scale used in chapter is meter,

if not mentioned any other metrics.

Figure 5.11 plots the estimated camera path for the engineering building image sequence.

While going forward around 130 meters there are two smooth turns. Then, at around the 10

meter mark, the motion changes to the −x direction. In addition, since the camera rig was not

perfectly level at the start position, there is 6 meters of height change. The GPS data are recorded

simultaneously by an iPhone app[32] and appear with O markers in Figure 5.11. Note that the

scattered position of GPS points shows the sampling frequency. The accuracy of the GPS data is

known to be less than one meter. This example demonstrates the robustness of our approach to

stabilize the critical straight-line motions as well as upward motion.

5.3 The East Campus Videos and Speed Up Techiniques

The East Campus full HD videos, resolution of 1920 by 1080 pixels, recorded at the east

campus are around 12 minutes long and have 24000+ frames for each camera. The closed-loop trail

is seen on Figure 5.12 and consists of a tree-lined recreational trail around a large office building.

Figure 5.12 also shows 1000+ pose estimations on East Campus loop, with 15 frame step on Full

HD scale images. Note that the GPS ground truth shows roughness at some corners. The estimated

track form the smooth shape of the track. However, there is 30 meters difference from the start

position to the end position on estimation and 30 meters difference on elevations. A drift comes

from the accumulation of errors on each pose estimation. If the camera rig is not level at the start
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position, it gets higher elevations at the end position, even though the end position is same as

the start position. There are some researchers studying to fix the drift problems [92], and it is

postponed to future works, in this thesis.

Table 5.1: Average numbers of features extracted and matched with time consumed, number of
inliers after mono view relative pose estimatoin with time spent, and seconds for our algorithm and
Sparse Bundle Adjustment algorithm. The East Campus videos are tested for this scaled down
cases.

Full HD Half scale Quarter scale 1/6 scale 1/8 scale

Features per Image 11388 3659 994 403 272
Time for Feature Extraction 11.65 3.22 0.84 0.39 0.28

Matches on Center 959 756 315 134 112
Matches on Sides 547 459 215 99 83

Matches on Center-Sides 327 277 166 46 35
Time for Matching 54.79 5.70 0.31 0.045 0.032

Inliers through Mono View VOs 449 395 178 76 62
Time for Mono View VOs 43.38 3.47 0.526 0.465 0.330
Time for Tricam Algorithm 0.01288 0.0012 0.0018 0.00147 0.00204

Time for SBA 10.27 7.12 2.88 1.84 1.178

As shown in Table 5.1, the number of SIFT features extracted from an image is usually

more than ten thousand, and the matched features between consecutive images for forward motion

is around one thousand, and around 500 for sideways motion, and the features moving form the

center to the sides are around 300 when the frame step is 15. As seen in Table 5.1 , the most time

consuming process is to find the matches between images for the full HD images. Finding matches

takes around two minutes for a frame of the camera rig movement. The full-HD images from the

cameras have the resolution of 1920 by 1080 pixels. We post-processed the existing video by down-

sampling it from full HD to half (960 by 540), quarter (480 by 270), 1/6 (320 by 180), and 1/8 (240

by 135) scales, and measured the time it takes to gather a position estimate from frame to frame as

well as the resulting accuracy. The number of feature points and matching features between images

are gradually decreasing as the scale of the input images is reduced. Since the 8-point algorithm is

used for the mono view visual odometry for each camera, the tricam algorithm theoretically also

only needs 8 correct matches in theory. However, passing cars and other disturbances in the videos
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requires additional features to achieve stable numerical solutions. To be done at least one frame

in a second, the images should be scaled down to 1/6 scale. All the time measures in Table 5.1 is

seconds, and measured in Matlab environment on Windows 7 platform with an Intel Core2Quad

9450 processor. The Sparse Bundle Adjust algorithm[57] is also tested and measured in Matlab

with mex compiler, just for the comparison of time consumption against our method. Figure 5.13

shows the tracks on the different scales when the frame step, ∆k, is fixed on 15. It shows that the

1/6 scale is not acceptable and the quarter scale is the best for the time efficiency. Figure 5.13

shows that the time spent for a frame along with the scales in log scale. The 1/6 scale is not so

much faster than the quarter scale, and it would be the best if quarter scale can be done a little

fast.

We also dropped more frames to increase speed. In order to be called ‘real − time’, we

need to be able to finish all calculations within 0.5 seconds when frame step is 15, while it can

take one second when frame step is 30. Unfortunately, the frame step cannot be too large as this

decreases the number of matched features between center and side cameras, which is critical for our

algorithm. We tested from 15 to 29 frame steps at quarter scale, increasing the accumulated error

over 1km distance by an order of magnitude. The errors are mostly made in two regions where

a car passed by nearly and it also means that dropping frames affects more when matched points

are unstable. The result in Figure 5.15 shows that the increased frame step around 23 was quite

acceptable, and if bigger than that, the moving objects in the scene disturbed more.

To speed up, the Matlab code is parallelized for the quad-core processor. The algorithm has

several steps and some of them is independent and can be parallelized easily. Searching features

on three new images can be parallelized to three tasks. Matching features for five different relative

pose estimation are divided to five tasks. The Core2Quad has only 4 cores, but the additional

vectors, v4 and v5 does not take much times since there are not so much matches than the front

view. For a better efficiency, the RANSAC process also is able to be parallelized.

Since the most time consuming process in the algorithm is feature extracting and matching,

the SURF [6], instead of the SIFT features, are tried. Figure 5.3 shows that the comparison of SIFT
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Table 5.2: Average numbers of matched points and Inliers after RANSAC, and average time con-
sumed for each process. Since the RANSAC threshold is set to 0.75, SIFT with ∆k = 15 aborts
RANSAC loop most quickly among the cases.

SIFT,∆k = 15 SIFT,∆k = 21 SURF,∆k = 15 SURF,∆k = 21

Feature Extraction Time 3.22 3.14 0.312 0.316
Matches on Center 756 658 287 254
Matches on Sides 459 358 201 165

Matches on Center-Sides 277 255 103 94
Time for Matching 5.70 5.82 0.178 0.128
Inliers on Center 683 658 202 172
Inliers on Sides 404 243 106 82

Inliers on Center-Sides 242 161 57 51
Time for RANSAC 3.47 128.8 47.7 40.76
Matches-Inliers ratio 0.886 0.705 0.595 0.564

and SURF features on feature matching. SURF has less features and thus less matches. Figure 5.17

shows the comparison of the tracks of SIFT and SURF features with the frame step of 15 and 21

on half scale images. On quarter scale, SURF does not make enough match points, regularly. The

GPS ground truth is a black line, and the SURF features can be a good alternative for SIFT on the

half scale videos. Table 5.2 shows that the time spent on each steps. Note that the SURF consumes

significantly small time on feature extraction, and less than half features compared on SIFT. Thus,

SURF spent less time on matching process. The RANSAC trial time tells something more. Since

the threshold for breaking from the RANSAC cycle is three quarter of matching point, the SIFT

with frame step of 15 breaks out the loop quickly, but others takes all the maximum number of

RANSAC trials and the time spent depends on the number of matched features. The FREAK[72]

feature is also tested, but FREAK does not make enough features even on half scale videos. The

BRISK[53] feature is also considered, but has the binary descriptor as FREAK and not tested.

5.4 A Limitation of the Algorithm

The proposed algorithm, adding time lapse pose estimations between the front camera and a

side camera, gives us reliable result on our VEE camera rig. We tried to expand our algorithm to

other multi-camera panoramic system, the Point Grey’s ladybug camera[76]. Figure 5.18 shows the
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ladybug camera, which has six CCD sensors. We do not have the ladybug camera, we downloaded

the New College Data set[87]. It includes ladybug images, ground truth, and other data with the

other equipments. Each image has 384 by 512 pixel resolution, and the recording frequency is 3Hz.

Our system of equation needs just three of them and only the frontal, front-left, front-right images

are in computation.

The result is not good enough. The ladybug camera gets less than two frames per a second,

and it means that all the frames should be computed. The vehicle which equipped all the sensors

moves to fast and it makes hard to find matched features. Most important, the distance between

cameras is too small. Our VEE systems has 20cm between the front camera and a side camera, and

it gives us the accuracy in one meter of movement. When the VEE cart move forward 1 meter, the

angle made at the previous frontal camera for current frontal camera and the current side camera

is 11.3 degrees and it is large enough for calculation. However, the ladybug camera has less than

20mm for the distance between adjacent cameras, and the movement of the vehicle was so fast that

the distance between frames are larger than 1 meter. In that range, the vector equation system,

our algorithm based on, loses its accuracy. Even though we could not get a meaningful result, the

limits of our algorithm is revealed.

5.5 Disscussion

We have proposed a ‘divide and conquer’ approach for visual odometry on divergent camera

views, which provides robust estimates of translation and rotational motion even when camera

overlap is small and camera motion is straight. The small overlap prevented us from using more

common approaches, such as to rely on internally calibrated cameras and the 5-point algorithm[67].

The 5-point algorithm does not provide us with the scale factor therefore could not be used in our

application, however.

Similarly, we chose to combine the constraints from three cameras by introducing additional

correspondences between consecutive images in the outer and central camera instead of treating

the whole system as one non-central camera as suggested by [36] and using generalized P3P [71, 75]
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as the small amount of overlap in our data is not sufficient for robust stereo matching.

Another common challenge with visual odometry is to distinguish moving from static objects.

If there is a moving object like a pedestrian or a car on the videos, some SIFT features are also on

the moving objects and confuse the estimate. In these cases, RANSAC rejects the SIFT features

on the moving objects. In addition, the proposed scheme to reject those vector with obvious errors

helps to stabilize the results.

The most time consuming processes in our algorithm are comparison of features between

scenes (whose complexity is quadratic to the number of features) and the RANSAC step. Due to

the HD resolution of the video, usually more than ten thousand of SIFT features are detected and

the comparison of features takes a lot of time (in the order of minutes on a Core2 processor). The

RANSAC algorithm terminates in a few seconds, but it could be speed up by tuning the proportion

of inliers and how many features should be included.

We devised scaling down and dropping frames to make the proposed algorithm faster. Fig-

ure 5.14 shows the time spent to process one frame, including feature extraction, feature matching,

five mono view visual odometries and the tricam algorithm for the scale factors. Since the time con-

sumed depends on the number of features, the calculation time decreases exponentially with scale.

At least one pose estimation per a second is necessary for real time calculation, which we achieve

only at 1/6 scale, although with a poor accuracy. We also observe that dropping frames has strong

impact on accuracy in comparison to reducing scale. This can be explained by the observation that

resolutions down to a fourth of Full HD still provide sufficient number of features, but dropping

frames loses important information in particular when perturbed with passing-by objects.

5.6 Summary

The algorithm tests with synthetic data and real video are performed. With the synthetic

data, the proposed algorithm is proved with the assumption that the feature point on frontal camera

should appear on side cameras with time lapse when the camera rig moves forward. In addition,

the stability of the algorithm is found and the limit to use the proposed algorithm, the pixel error
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on the image plane must less than 0.5 pixels to get a reliable estimation.

With the short videos around the engineering building, the proposed algorithm is necessary

to deal with the errors from the shutter synchronization problem and from inaccurate camera

calibrations. The most errored estimation of the five relative pose estimation is ignored and the

result get better than the result with all five estimations.

For the east campus videos, which is long enough for the VEE program, the computing time

is concerned, and some speed-up techniques are tested. Various frame step test finds the most time

effective frame steps. Tests with scaled down images shows that the quarter scale is good enough for

the proposed algorithm. Introducing other features shows the advantage of SURF features on time

consumption and its limits on the number of features and the accuracy. FREAK feature algorithm

is faster than any other algorithm but has not enough features. It seems that the features with

short descriptor is not good on nature scenes since there are so many of similar features such as

trees and grasses, which is hard to distinguish.

Expansion to the ladybug panorama camera reveals the limit of the proposed algorithm. The

distance between adjacent camera is directly related to the accuracy of the algorithm. If the larger

the distance between cameras, the better the results is. However, the distance can not be too large

since the step on time frame is also related.
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Figure 5.4: Scale Errors for pixel errors for sinusoidal (top) and straight motion (bottom).
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Figure 5.5: Relative Scale Errors for pixel errors during sinusoidal motion.
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Figure 5.6: Rotation Errors for pixel errors during sinusoidal motion.
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Figure 5.7: Camera paths with pixel errors The marker +, o, star, cross and square shows for the
path with 0.2, 0.4, 0.6, 0.8 and 1 pixel errors, respectively, for sinusoidal (top) and straight motion
(bottom).

(a) Left frame i+1. (b) Center frame i+1. (c) Right frame i+1.

(d) Left frame i. (e) Center frame i. (f) Right frame i.

Figure 5.8: Spatial and temporal correspondence patterns for consecutive frames.
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Figure 5.9: Estimated camera motion between frames shown in Figure 5.8 showing an errorneous
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Figure 5.11: The camera path through frame 501 to frame 3636
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Figure 5.12: The camera path on East Campus. Ground truth data (top) and open-loop visual
odometry showing drift after return to the initial position.
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Figure 5.15: Estimated tracks with Frame step of 15, 17, 19, 21, 23, 25, 27, and 29, in blue, red,
green, magenta, thick blue, thick red, thick green, and thick magenta

(a) The matched SIFT features on frame 10036(up) and 10021(down)

(b) The matched SURF features on frame 10036(up) and 10021(down)

Figure 5.16: Comparison of SIFT and SURF features on Half scale East Campus videos
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Figure 5.17: The black line is the tracked GPS data. The blue and green lines are the track with
SURF features with frame step of 15 and 21, respectively. The red and magenta lines are the track
with SIFT features with frame step of 15 and 21, respectively.

Figure 5.18: Ladybug panoramic camera with 6 small image sensors, courtesy of PointGrey.



Chapter 6

Conclusion and Future work

I have proposed a novel way to solve a visual odometry problem for divergent camera using

a ‘divide and conquer’ approach and exploiting correspondences from consecutive image frames.

This allows us to reduce the trinocular visual odometry problem to five mono view visual odometry

problems, which in turns allows for robust odometry estimates even in underdefined situations

such as straight line motion, and drastically reduces computational time when compared to the

bundle adjustment method. This approach is applicable whenever the camera rig is constantly

moving forward, which is the case in mapping and robotic application, where the status of the

robot (moving or not moving) is known.

In this work, we assume the camera rig’s speed to be nearly constant, which allows us to

determine the distance between consecutive frames that lead to strong correspondences empirically.

The step on time frame can be various in calculation with adaptive schemes.

An additional challenge for our method is that it is sensitive to the camera calibration which

is difficult to achieve for camera rigs with limited view overlap. Auto calibration can help to resolve

this problem with better accuracy. Also, a more robust visual odometry algorithm and weighting

equations with machine learning may give better results.

There is always the drift problems. Since the error of the pose estimation for each frame is

accumulated and the initial pose can not be level and see north exactly in nature, there exist the

drift. To fix these drift problems, some extra correction process where the loop closes is necessary.

A GPS signals or IMU data of a cellular phone also might be fused for a better result.
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In further work, we wish to find ways to estimate the pose in ‘realtime′ with faster envi-

ronment than Matlab. Feature extracting and comparing algorithm is still studied for quicker and

better methods. Maybe a better feature algorithm is developed in near future and it can be tested

with the proposed algorithm.

For computation time, scaled down images and frame step is tested. Adaptive method on

scaled down images also possible. A trade off of time and accuracy is always a deal to consider.

If too much time taken, a calculation with scaled down images are better choice, but if too less

matched points, back on the larger images are better. Of course, if more cores to access, these

computations can be parallelized and done together in future.
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Appendix A

Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is known as most useful matrix decomposition in

computer vision. The SVD is the final and the best factorization of matrix for now. It is also known

as the SVD gives an optimal solution to any problem in least squares method. In this Appendix, we

will briefly introduce the SVD not only in aspect of mathematician’s points with backgrounds, but

also in aspect of computer scientist’s points with various applications of SVD. We also introduce

some important Theorems and topics related with the SVD.

There are couple of different ways to explain SVD and approaches of the book [3] and [101]

are quite interesting to introduce with different views, namely algebraic view and geometric view.

In this Appendix, we explain the SVD in a form suitable for our purpose including basics of linear

algebra. The introductory concepts, Theorems, Corollaries, Propositions are taken from classical

books, [3], [91], [101], and [37].

A.1 Introduction to linear algebra

A.1.1 Vector spaces and linear maps

A vector space is a set V with operators + and · on V such that commutativity, associativity,

additive identity, additive inverse, multiplicative identity, and distributive properties hold, where

scalars are in either R or C. A vector space over field F, R or C, is called a vector space V over

F. Examples are a real vector space and a complex vector space, which are a vector space over

R and a vector space over C. We now introduce another example of vector space, which contains
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polynomials. A polynomial with coefficients in F is a function p : F → F,

if there exist c0, ..., cn ∈ F such that p(x) = c0 + c1x+ ...+ cnx
n (A.1)

for all x ∈ F. Define P(F) be the set of all polynomials with coefficients in F, then it is also a

vector space.

Points or vectors are elements of vector space. Let v1, ..., vn be vectors in V . Given a1, ..., an ∈

R, a1v1 + · · · + anvn is a linear combination of the vectors. There are finite dimensional vector

space and infinite dimensional vector spaces. It depends on finite or infinite vector list spans the

vector space. The function space and P(F) are typical examples of the infinite dimensional vector

space and Rn is the finite dimensional vector space.

A list of vectors are linearly independent if a1v1 + · · ·+ anvn = 0 iff a1 = · · · = an = 0. If

a list of vectors is linearly independent and spans V , then the list of vectors (v1, ..., vn) is called a

basis of V . For example, a standard basis of R3 is ((1, 0, 0), (0, 1, 0), (0, 0, 1)).

Corollary A.1.1. ([3], p.29) Every finite-dimensional vector space has a basis.

Theorem A.1.2. ([3], p.31) Any two different bases of a finite-dimensional vector space have

the same length.

A function L : U → V is a linear map from U to V with additivity and homogeneity properties.

Additivity : L(u+ v) = L(u) + L(v)

Homogeneity : L(αu) = αL(u)

We denote the set of all linear maps from U to V as L (U, V ), and the set of all linear maps

from V to V as L (V ). Some examples of linear maps are zero, identity map, differentiation, and

integration. The differentiation and integration are defined by L(p) = p′ and L(p) =
∫

p(x)dx,

where L ∈ L (P(R),P(R)).

We now introduce an m-by-n matrix in connection with basis of the vector spaces. Consider

we have the m-by-n matrix
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A =





















a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n





















. (A.2)

Let L ∈ L (U, V ). Suppose there are bases (u1, · · · , un) of U and (v1, · · · , vm) of V . Because

of the linear combination and basis v′s, we write L(uj) uniquely as

L(uj) = a1,jv1 + · · ·+ am,jvn = Σm
i=1ai,jvj , (A.3)

where ai,j ∈ F for each i = 1, ...,m and j = 1, ..., n. Then the matrix of linear map L with respect

to each bases of U and V is (A.2). We now rewrite (A.2) as















u1 · · · un

v1 a1,1 · · · a1,n

...
...

. . .
...

vm am,1 · · · am,n















.

We denote the matrix representation of the linear map by M (L, (u1, · · · , un), (v1, · · · , vn))

or simply by M (L). Thus for each linear map from U to V we have a matrix with respect to its

bases. At this point we introduce when we have a diagonal matrix in association with some basis.

Proposition A.1.3. ([3], p.89) Suppose λ1, ..., λn are distinct eigenvalues of L, and L ∈ L (V ).

Then L has a diagonal matrix with respect to some basis of V iff there is a basis of V consisting of

eigenvectors of L.

This proposition will be connected with theorem in next section, and also used to prove SVD.
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A.1.2 Inner product spaces and linear functional

In order to discuss orthonormal basis, introducing an inner product space and norm of vectors

are inevitable. The inner product on W is a function and it maps an order of pair, (v,w) ∈ W ,

to a scalar, 〈v,w〉 ∈ F with positivity, definiteness, additivity in first slot, homogeneity in first

slot, and conjugate symmetry. Here the definiteness is 〈w,w〉 = 0 iff w = 0. The norm of

the vector is a distance from the origin and it is the length of the vector. The norm of vector

w = (w1, · · · , wn) ∈ Rn is defined by ‖w‖ =
√

w2
1 + · · ·+ w2

n. We call a vector space with an inner

product on W is an inner product space.

The vectors v and w are orthogonal if 〈v,w〉 = 0. Geometrically it is the same as perpen-

dicular. If the list of vectors in w, (w1, · · · , wn), of W are pairwise orthogonal and the norm of w

is 1, then we call orthonormal. The orthonormal list of vectors is linearly independent and thus

orthonormal basis of W is a list of orthonormal vectors.

Theorem A.1.4. ([3], p.107) Suppose (v1, ..., vn) is an orthonormal basis of V . Then

w =< w, v1 > v1 + · · ·+ < w, vn > vn (A.4)

for every w ∈ V .

This theorem A.1.4 states the most importance of orthonormal bases.

Corollary A.1.5. ([3], p.109) Every finite-dimensional inner-product space has an orthonormal

basis.

A linear functional on W is a linear map from W to scalar, R, which also satisfies additivity

and homogeneity.

Theorem A.1.6. ([3], p.117) Suppose is f a linear functional on W . Then there is a unique

vector w ∈ W such that

f(v) =< v,w > (A.5)

for every v ∈ W .
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Suppose V and W are a finite-dimensional, nonzero, inner product space over F. An adjoint

of L ∈ L (V,W ) is denoted by L∗ and it is a linear, L∗ ∈ L (W,V ) if L ∈ L (V,W ). For better

understanding, consider a linear transformation, L : R3 → R, L(x, y, z) = 2x − y + 4z. This

linear transformation is a linear functional on R3, and we can rewrite the map as L(x, y, z) =<

(x, y, z), (2,−1, 4) >. The inner product is in fact a bilinear. Let a linear functional map from v to

< Lv,w >, for a fixed w ∈ W . Then L∗w is the unique vector in V such that

< Lv,w >=< v,L∗w > (A.6)

for all v ∈ V .

A.2 Singular Value Decomposition

A.2.1 Operators on inner product spaces

Suppose we still have the finite-dimensional, nonzero, inner vector product space V over field

F, and let L ∈ L (V ). If L = L∗, then we call L is self-adjoint. It is also known as Hermitian. For

example, let L is the operator on R2 and the matrix of this operator with respect to standard basis

is






a c

c b






.

Then the matrix A is self-adjoint and it is symmetric. The self-adjoint with < Lu, u >≥ 0, for all

u ∈ V is called as a positive operator L.

Proposition A.2.1. ([3], p.128) Every eigenvalue of a self-adjoint operator is real.

If the operator can commute with its adjoint, then we call normal. It means LL∗ = L∗L,

for L ∈ L (V ). Every self-adjoint is normal, but we have normal operator that is not self-adjoint.

Note that any skew-symmetric matrix is also normal, but not self-adjoint. If v is an eigenvector of

L, which is normal, then v is also an eigenvector of L∗.

Corollary A.2.2. ([3], p.132) If L ∈ L (V ) is normal, then eigenvectors of L corresponding to

distinct eigenvalues are orthogonal.
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A.2.2 Singular Value Decomposition : Algebraic point of view

We now introduce an important theorem of self-adjoint operator and for instance, it implies

that a symmetric matrix can be factored into A = UΛUT , where U is an orthogonal matrix and Λ

is a diagonal matrix. The orthogonal matrix U contains orthonormal eigenvectors and the diagonal

matrix Λ contains eigenvalues[91]. The book [3], states the theorem over complex inner product

and real inner product spaces. Both theorems state that every self-adjoint operator has a diagonal

matrix with respect to some normal basis by Proposition A.1.3.

Theorem A.2.3. ([3], p.133, Complex Spectral Theorem) Suppose that V is a complex inner-

product space and L ∈ L (V ). Then V has an orthonormal basis consisting of eigenvectors of L iff

is normal.

Notice that the above theorem considers the case that a complex skew-symmetric matrix.

Theorem A.2.4. ([3], p.136, Real Spectral Theorem) Suppose that V is a real inner-product

space and L ∈ L (V ). Then V has an orthonormal basis consisting of eigenvectors of L iff L is

self-adjoint.

Suppose L ∈ L (V ) and let σ1, ..., σn are eigenvalues of
√
LL∗. Then σ1, ..., σn are singular

values of L. The theorem below shows that every operator on V can be factored into in terms of its

singular values and orthonormal bases of V . If an operator preserves norms, for instance a distance

in a metric space, then we call it is an isometry : If ‖Su‖ = ‖u‖ for all u ∈ V , then an operator

S ∈ L (V ) is an isometry. The theorem below states the operator is written as the isometry times

a positive operator.

Theorem A.2.5. ([3], p153, Polar Decomposition) If L ∈ L (V ), then there exists an isom-

etry S ∈ L (V ) such that L = S
√
L∗L.

The idea of Polar Decomposition comes from the analogy between C and L (V ). We consider

z̄z as L∗L, and suppose the complex number z is in the unit circle. It means that z̄z = 1, similarly
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L∗L = I. Equivalently, we write z̄z = 1 as ( z
|z|)

√
z̄z. Then ( z

|z|) is in the unit circle, and we can

guess the existence of isometry in Polar Decomposition.

Theorem A.2.6. ([3], p.156, Singluar-Value Decomposition) Suppose L ∈ L (V ) has sin-

gular values σ1, ..., σn. Then there exist orthonormal bases (u1, ..., un) and (v1, ..., vn) of V such

that

Lw = σ1 < w, u1 > v1 + . . .+ σn < w, un > vn (A.7)

for every w ∈ V .

In order to prove this theorem, we first apply the Spectral Theorem to
√
L∗L. Then there is an

orthonormal basis (u1, ..., un) of V such that
√
L∗Luj = σjuj for j = 1, ..., n. We now use the Polar

Decomposition to
√
L∗Lw, and thus apply the isometry S ∈ L (V ) such that L = S

√
L∗L to both

side of
√
L∗Luj = σjuj. Because of Theorem A.1.4, we have w =< w, u1 > u1+ · · ·+ < w, un > un,

and then let vj = Suj for each j. Notice that the above theorem is L ∈ L (v). When we consider

a matrix of this linear map, it is a square matrix, but it is not necessary normal or self-adjoint. If

we only consider the real symmetric matrix of operator L, then the matrix is a square matrix, and

Spectral Theorem and SVD state the same results. We also note that the SVD gives us to use two

different bases.

We now introduce the SVD for any matrix M . When we discuss the SVD with the matrix

instead of the operator on inner produce spaces, we easily notice that SVD is applied for any m by

n matrix from literatures. However implementations or proofs are closely related with the proof of

Theorem A.2.6.

Theorem A.2.7. ([91], p.443, Singular Value Decomposition) Any m by n matrix M can

be factored into

M = UΛV ∗, (A.8)

where the columns of m by m matrix U are eigenvectors of MM∗ and the columns of n by n matrix

V are eigenvectors of M∗M . The matrix Λ is a m by n diagonal matrix with singular values, and

the singular values of the square roots of the nonzero eigenvalues of both MM∗ and M∗M .



93

Notice that the matrix U and V in the Theorem A.2.7 are unitary, i.e., UU∗ = U∗U = I and

V V ∗ = V ∗V = I. In other words, U∗ = U−1 and V ∗ = V −1. The columns and rows of unitary

matrix are orthonormal vectors. This version of SVD is mostly introduced from the literature

for the application problems, but we note that mathematician’s point, operators on inner product

space, allows us to discuss SVD as a bounded operator in a classical function space, which is infinite

dimensional inner product space, such as Hilbert space.

A.2.3 Singular Value Decomposition : Geometric point of view

In this subsection, we introduce the SVD from a geometric point of view. The geometric

interpretation of the SVD in 2D is known as it maps the unit circle to an ellipse. From equation

(A.8), we have an equivalent equation MV = UΛ. For each column of V , we also rewriteMV = UΛ

as

Mvj = σjuj , (A.9)

where σj is singular values and j = 1, ..., n. From equation (A.9), we now obviously see that M

maps the orthonormal vectors to scaled orthonormal vectors, σjuj. More specifically, we also can

state Theorem A.2.7 as followings(see Figure(A.1)) :

• Rotate the unit circle with the orthonormal vectors of V .

• Scale by Λ

• Rotate an ellipse with the orthonormal vectors of U .

From the literature, we also see that {uj} is called left singular vectors and {vj} is called

right singular vectors. In most applications, a reduced SVD is used instead of a full SVD under

assumption that the matrix M has full rank n, m ≥ n. The reduced SVD consists of m by n matrix

Ũ and n by n matrix Ṽ with orthogonal columns, and n by n diagonal matrix Λ̃ with positive real

numbers. Theorem A.2.7 is the full SVD, and the assumption of full rank n is not necessary. For

the rank deficient matrix, the full SVD is appropriate, but the reduced SVD can be also used by
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Figure A.1: Geometric view of Singular Value Decomposition at a 2× 2 matrix

modifying it(See [101]). Note that the range of linear map L is defined as range L = {Lv : v ∈ V }

for some v ∈ V . The rank of matrix representation of L is dimension of V − dimension of null L,

where null L = {v ∈ V : Lv = 0}. The rank deficient matrix implies that the rank of matrix is less

than min{m,n} because rank of matrix is min{m,n}.

Theorem A.2.8. (p.35, [101]) For any ν, 0 ≤ ν ≤ r, we define

Mν = Σν
j=1σjujv

∗
j . (A.10)

If ν = {p} = min{m,n}, and define σν+1 = 0, then

‖M −Mν‖2 = inf
A∈Cm×n,rank(A)≤ν

‖M −A‖2 = σν+1. (A.11)

The above theorem is known as low rank approximation and it has a good geometric inter-

pretation. Theorem A.2.8 tells us the partial sum of rank one matrix Mν = Σν
j=1σjujv

∗
j is best

approximation of M in 2-norm. Here 2-norm of matrix M is denoted by ‖M‖2 and defined as

max‖v‖2=1 ‖Mx‖2. Thus the 2-norm of matrix M , ‖M‖2, is equal to the largest singular value of

the matrix M .

A.3 Applications of Singular Value Decomposition

Singular Value Decomposition is used in the proposed method in this thesis three times. The

first one is for the fundamental matrix, F . From the randomly chosen 8 points, the matrix, size of
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8 by 9, is set up. Then, the basis, corresponded on the smallest singular value is the element of the

fundamental matrix, F . Where, we used the SVD to get the basis of the smallest projection errors

of 8 points. It means that there are 8 projections on 9 dimensional space and the singular values

is the distance of 8 projections from the basis. Thus, the basis corresponds to the smallest singular

value is the basis with the smallest errors, in other words, the optimum basis.

Second, SVD is used to fix the fundamental matrix. Since the result is computational and the

application has many kind of errors, the rank of the fundamental matrix, F , is not 2, in practical.

The result of SVD on the fundamental matrix, F , shows three singular values. Since its rank should

be 2, the smallest singular value of the fundamental matrix, F , should be zero. By replacing the

smallest singular value of the fundamental matrix, F , and composing F̃ , the errors on reprojection

is reduced.

Third, SVD can be used for weighted least squares method on solving equation (4.25). For

the system matrix, A, and the right hand side vector, b, we are going to get the vector, x, which

minimize (b−Ax) ′W (b−Ax), where W is a diagonal matrix and the diagonal values are the

weights of each equation. For now, a least square function provided by matlab is used, but it

is possible to rewrite in SVD version when ported to other program language for the purpose of

speed-up.


