Residual-Based Large Eddy Simulation of
Turbulent Flows using Divergence-Conforming

Discretizations
by
Christopher Joel Coley
B.S., University of Colorado, 2006
B.A., University of Colorado, 2006

M.S., Air Force Institute of Technology, 2011

A dissertation submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Ann and H. J. Smead Aerospace Engineering Sciences

2017



The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United States

Government.



This dissertation entitled
Residual-Based Large Eddy Simulation of Turbulent Flows using Divergence-Conforming
Discretizations
written by Christopher Joel Coley
has been approved for Ann and H. J. Smead Aerospace Engineering Sciences

John Evans

Kenneth Jansen

Carlos Felippa

Peter Hamlington

Yuri Bazilevs

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above
mentioned discipline.



Coley, Christopher Joel (Ph.D., Aerospace Engineering Sciences)

Residual-Based Large Eddy Simulation of Turbulent Flows using Divergence-Conforming Dis-

cretizations

Dissertation directed by Assistant Professor John Evans

In this dissertation, a class of methods which combines divergence-conforming discretizations
with residual-based subgrid modeling for large eddy simulation of turbulent flows is introduced.
These methods fall within two frameworks: residual-based variational multiscale methods and
residual-based eddy viscosities. These methods utilize variationally-consistent formulations for the
fine-scale velocities in order to construct subgrid-scale models based on the coarse-scale residual.
The result is an LES methodology that responds naturally to spatially- and temporally-varying
turbulence. Numerical results demonstrate that these new methods demonstrate proper behavior
for homogeneous turbulence and outperform classical LES models for transitional flows and wall-
bounded turbulent flows. Furthermore, the resulting formulations contain no “tunable” parameters,
and thus extend generally across various classes of flow.

Additionally, a differential variational multiscale method in which the unresolved fine-scales
are approximated element-wise using a discontinuous Galerkin method is presented and examined.
Stability and convergence results for the methodology as applied to the scalar transport problem
are established, and it is proven that the method exhibits optimal convergence rates in the SUPG
norm and is robust with respect to the Péclet number if the discontinuous subscale approximation
space is sufficiently rich. The method is applied to isogeometric NURBS discretizations of steady
and unsteady transport problems, and the corresponding numerical results demonstrate that the
method is stable and accurate in the advective limit even when low-order discontinuous subscale
approximations are employed. Based on these promising results, a class of differential subgrid
vortex models for large eddy simulation of turbulent flows is proposed.

Finally, the underlying discretization utilized by the simulations here offers the opportunity



to develop efficient new geometric multigrid linear solvers. In this regard, a geometric multigrid
methodology for the solution of matrix systems associated with isogeometric compatible discretiza-
tions of the generalized Stokes and Oseen problems is presented. The methodology provably yields
a pointwise divergence-free velocity field independent of the number of pre-smoothing steps, post-
smoothing steps, grid levels, or cycles in a V-cycle implementation. The methodology relies upon
Scwharz-style smoothers in conjunction with specially defined overlapping subdomains that respect
the underlying topological structure of the generalized Stokes and Oseen problems. Numerical re-
sults in both two- and three-dimensions demonstrate the robustness of the methodology through
the invariance of convergence rates with respect to grid resolution and flow parameters for the
generalized Stokes problem as well as the generalized Oseen problem, provided it is not advection-

dominated.
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Chapter 1

Introduction

1.1 Motivation

Large eddy simulation (LES) has been a successful methodology for simulating turbulence,
but challenges still remain which have so far prevented LES from becoming a mature technology
for complex engineering flow analysis. LES has been demonstrated to perform adequately for
flows at low Reynolds numbers and with basic geometries and physics. However, the currently
available subgrid-scale models are inadequate for many classes of flows, such as for transitional flows
[21, 69, 116, 113, 135], rotational flows [10, 54, 113, 129, 135], flows with a reverse energy cascade
(backscatter) [114, 113], relaminarization [113], and flows that include aeroacoustics [104, 113, 115],
mixing [142, 144], and chemical reactions [117, 144]. In spite of these issues, the simple Smagorinsky
model and its variants are still probably the most widely used models in LES today. This speaks
loudly about the inability of newer subgrid-scale models to resolve the aforementioned problems
inherent in LES. In addition to the deficiencies present in current subgrid-scale models, the use of
filters in LES is also associated with many difficulties, including the need for inhomogeneous non-
commutative filters for wall-bounded flows and the use of complex filtered quantities in compressible
flows [11].

Variational multiscale (VMS) methods for turbulence modeling seek to address the short-

comings of LES. In VMS methods, filtering is replaced with variational projections and modeling



is limited to the fine scales. Some of the motivations behind the development of VMS for turbu-
lence modeling include the desire to perform scale separation a priori (whereas traditional filtering
performs this separation a posteriori) [86], and to retain numerical consistency in the coarse-scale
equations. Thus far, early attempts at using VMS methods to provide LES-like turbulence model-
ing show promise [11, 86, 87, 88|, and this is an active area of research where there is still much to
be gained.

1 have recently arisen as an attractive can-

Divergence-conforming B-spline discretizations
didate for the spatial discretization of fluid flow problems [33, 59, 61, 63, 64, 62, 124]. These
discretizations comprise a discrete Stokes complex [36, 57, 66] and may be interpreted as smooth
generalizations of Raviart-Thomas-Nédélec finite elements [107, 120]. When applied to incompress-
ible flow problems, divergence-conforming discretizations produce pointwise divergence-free velocity
fields and hence exactly satisfy mass conservation. As a result, they preserve the balance law struc-
ture of the incompressible Navier-Stokes equations, and in particular, they properly conserve mass,
linear and angular momentum, energy, vorticity, enstrophy (in the two-dimensional setting), and
helicity (in the three-dimensional setting) in the inviscid limit [64]. These discretizations have been
shown to provide excellent accuracy and stability in the direct numerical simulation (DNS) of in-
compressible viscous flow [61, 63, 64] and have recently been applied to Cahn-Hilliard flow [136],
turbulent flow [45, 132], and fluid-structure interaction [96] where improved results were attained
in comparison with state-of-the-art discretization procedures.

Despite the promise that divergence-conforming discretizations can deliver improved accuracy
for the simulation of incompressible turbulent flows, the introduction of efficient linear solution
strategies is critical for divergence-conforming discretizations to develop into a mature technology.
So far, very little research has been conducted in the area of efficient linear solvers. In fact,

only the performance of Krylov subspace methods in conjunction with block preconditioners has

been investigated in prior work [46, 47]. However, the inherent structure of divergence-conforming

! Depending on context, divergence-conforming B-spline discreizations may also be referred to as isogeometric com-
patible discretizations, isogeometric discrete differential forms, structure-preserving discretizations, or curl-conforming
discretizations.



discretizations offers the opportunity to develop geometric multigrid methods based on Schwarz-
style smoothers [53] in conjunction with specially-defined overlapping subdomains that respect the
underlying topological structure of the generalized Stokes and Oseen problems [44].

The goals of the current research are twofold: first, to arrive at an LES methodology for turbu-
lent flows that is robust across a wide range of flow regimes, and second, to introduce an optimally-
efficient linear solution procedure for divergence-conforming discretizations of incompressible fluid
flow. Toward the first goal, a new turbulence modeling framework has been developed which
leverages residual-based turbulence modeling with divergence-conforming discretizations of the in-
compressible Navier-Stokes equations. Within this framework, various subgrid models have been
implemented and analyzed. It is demonstrated that the resulting methodology not only performs
as well as classical LES methods for homogeneous turbulence, where LES is currently demonstrated
to perform well, but also performs well where classical LES methods fail to perform adequately,
such as for transitional flows and wall-bounded flows. Furthermore, this methodology contains no

“tunable” parameters, and thus extends generally across various classes of flow.

1.2 Research Objectives and Contributions
With the completion of this dissertation, the following research objectives have been obtained.

(1) Quasi-static and dynamic residual-based variational multiscale subgrid models for simula-
tion of turbulent flows using divergence-conforming discretizations have been implemented

and analyzed.

(2) Quasi-static and dynamic residual-based eddy viscosity subgrid models for simulation of
turbulent flows using divergence-conforming discretizations have been implemented and

analyzed.

(3) Performance of the above-mentioned modeling methodologies have been evaluated for the

problems of forced homogeneous turbulence, decay of homogeneous turbulence, Taylor-



Green vortex flow and turbulent channel flow. It is demonstrated that the turbulence mod-
eling methodologies introduced in this research perform as well as classical LES method-
ologies for homogeneous turbulence problems and outperform existing LES methodologies

for transitional flows and wall-bounded flows.

Differential variational multiscale subgrid models for scalar transport utilizing discontinu-
ous Galerkin subscales have been developed, analyzed, and demonstrated. These models
are demonstrated to be accurate, displaying optimal convergence rates with respect to
mesh refinement, and robust with regard to the advective limit and geometry. It is demon-
strated that lowest-order discontinuous subscale approximations are sufficient to stabilize
high-order coarse-scale approximations in the context of isogeometric analysis. These re-
sults provide optimism that development of discontinuous subscale approaches for LES-type

turbulence modeling is a worthwhile pursuit.

Differential variational multigrid subgrid models for simulation of turbulent flows using

divergence-conforming discretizations have been introduced.

A geometric multigrid method using Schwarz smoothers on overlapping subdomains which
respect the divergence-free constraint have been developed and demonstrated for the gen-
eralized Stokes and Oseen problems. It is proven that the methodology yields a point-
wise divergence-free velocity field independent of the number of pre-smoothing steps, post-
smoothing steps, grid levels, or cycles in a V-cycle implementation. Furthermore, the
methdology is found to exhibit convergence rates independent of the grid resolution and
flow parameters for the generalized Stokes problem and the Oseen problem, so long as it is

not advection-dominated.



1.3 Structure of the Dissertation

The structure of the remainder of this dissertation is as follows. Chapter 2 introduces the in-
compressible Navier-Stokes equations, including the Galerkin method for the incompressible Navier-
Stokes equations and the treatment of weakly-enforced Dirichlet boundary conditions. In Chapter
3, divergence-conforming discretizations are presented and the B-spline spaces which are used for
discretization in this work are described. Chapter 4 discusses filtering of the incompressible Navier-
Stokes equations and the classical LES approaches which have been developed within this paradigm.
This is followed by a discussion of residual-based variational multiscale methods for LES in Chap-
ter 5 and residual-based eddy viscosity models in Chapter 6. Chapter 7 presents numerical results
which demonstrate the performance of the residual-based VMS and RBEV models. In Chapter 8,
a differential variational multiscale method utilizing discontinuous subscales for scalar transport is
presented. Chapter 9 describes an efficient linear solver for divergence-conforming discretizations
in the form of a geometric multigrid method. Finally, in Chapter 10, conclusions are drawn and

future work is discussed.



Chapter 2

Incompressible Navier-Stokes Equations

In this chapter, the incompressible Navier-Stokes equations are introduced, first in strong
form, then in weak form. From the weak form, we derive the Galerkin formulation. We end the

chapter with a discussion of weak enforcement of Dirichlet boundary conditions.

2.1 The Strong Form of the Incompressible Navier-Stokes

Equations

We consider the incompressible Navier-Stokes equations subject to homogeneous Dirichlet
boundary conditions. For d € Z,, let Q@ C R? denote an open, Lipschitz bounded domain, let T
denote the boundary of ©, and let T € R,. Given v € Ry, f: Q x (0,7) — R%, and ug : Q — R%,
the strong form of the Navier-Stokes problem then reads as follows: Find u: Q x [0,7] — R and

p:Qx(0,T) — R such that

%‘t‘—&-u-Vu—VAu—l—Vp =f for (x,t) €2 x(0,T)
V-u =0 for (x,t) € 2 x (0,7)
(2.1)
u =0 for (x,t) €T x(0,7)
u,_, =uy forxe

where u denotes the velocity field, p denotes the pressure field, v denotes the kinematic viscosity,

f denotes the force per unit mass, and ug denotes the initial velocity field. The velocity field is



uniquely specified by the Navier-Stokes problem while the pressure field is unique up to a constant.
In order to simplify later discussion, we define the differential operator associated with the

Navier-Stokes equations Lyg as

V-u
LysU = , (2.2)
u,;+V - (u®u)+ Vp—vVu

where U = [u,p]”.

2.2 The Weak Form of the Incompresible Navier-Stokes Equa-

tions

We now state a weak formulation for the incompressible Navier-Stokes equations. We strictly
consider the case of homogeneous Dirichlet boundary conditions without loss of generality. Before

proceeding, we must first define suitable velocity and pressure test spaces:

H}(Q) := {ve H'(Q):v=0o0n r}
L) = {q € L*(Q): /quﬂ = 0} :

We also assume that o,v € Ry, a € H)(Q2), and f € L?(Q2). With these assumptions in hand, the
weak form of the incompressible Navier-Stokes equations is stated as follows: Find u € H§(Q) and
p € L3(9) such that

a(viw) — b(v, p) + b(u, g) = ¢(v) (2.3)
for all v € H}(Q) and ¢ € L3(f2) where

a(v;u) ::/V-audQ—i—/v-(u~Vu) dQ+/VVv:VudQ
o Ot Q Q

b(v,p) = /Q (V- v)p dO

l(v) ::/ﬂv-fdQ



2.3 The Galerkin Method

To discretize in space using a mixed Galerkin formulation, we first must specify finite-
dimensional approximation spaces for the velocity and pressure fields. We denote these spaces
as V;, C H{(Q) and Q; C L&(Q) respectively, but we defer the discussion of suitable approxima-
tion spaces to Chapter 3. With approximation spaces defined, the mixed Galerkin formulation of
the incompressible Navier-Stokes equations is stated as follows: Find u; € Vy, and p;, € Q,, such
that

a(vhiup) = b(vVa, pr) + b(un, qn) = £(vh) (2.4)

for all v, € Vj and g, € Q. It should be noted that the velocity and pressure approximation
spaces may not be arbitrarily selected. Instead, they should be chosen such that the Babuska-
Brezzi inf-sup condition is satisfied [7, 23]. We later select isogeometric divergence-conforming
discretizations for spatial discretization which indeed satisfy such a condition.

When V, is sufficiently refined so as to resolve all length scales down to the Kolmogorov scale,
uy, represents the DNS solution. However, when this is not the case, then there are unresolved fine
scales in the simulation and uy, is inaccurate. The accuracy of this solution can be improved by
modeling the effect of the unresolved scales on the resolved scales. One approach to accomplish

this is the variational multiscale method, which is introduced in Chapter 5.

2.4 Weak Enforcement of Dirichlet Boundary Conditions

The no-slip boundary condition, u x n = 0 where n is the outward facing normal to T,
leads to the formation of boundary layers for wall-bounded flows. High mesh resolution is required
near boundary layers to accurately represent associated sharp layers, so when the no-slip condition
is strongly enforced in a mixed Galerkin formulation, inaccurate flow field approximations are
obtained for insufficiently-resolved boundary layer meshes. It has recently been shown that superior
results can be achieved by imposing the no-penetration boundary condition strongly and the no-slip

boundary condition weakly using a combination of upwinding and Nitsche’s method [14, 15]. With



such an approach, we first specify finite-dimensional velocity and pressure approximation spaces as
before, but we only require that the corresponding discrete velocity fields satisfy v - n = 0. That
is, we specify V), CHL(Q) = {ve H(Q):v-n=0o0onT} and Q;, C L§(Q). The corresponding
formulation for the incompressible Navier-Stokes equations is then stated as: Find u, € V3 and

pr € Qy, such that

anp(Viiup) — b(vi, pr) + b(un, qn) = €(vp) (2.5)

for all vj, € Vj, and qp, € Qy, where

ap(vVpiup) == a(vy,up) —/

vvy - Vauy dI' — /
r

vVavy - uy dl' + / @vh -uy, dl.

r r h

Above, h is the wall-normal element mesh size and C7 is a positive constant that must be chosen
sufficiently large to ensure coercivity of a(-;-). Appropriate values for the constant C; can be
obtained by solving element-wise eigenvalue problems or by appealing to analytical upper bounds
for the trace inequality [60].

In order to impose non-homogeneous tangential Dirichlet (prescribed-slip) boundary condi-

tions, we instead solve [64]

an(Va;un) = b(vp, pr) + b(un, gn) = (Vi) (2.6)

where

eh(Vh) = K(Vh) - /

UVavh - upe (t) dT + / %v,,um (t) dr. (2.7)
T T

where upe (t) is the prescribed velocity at the wall. We choose to weakly enforce Dirichlet boundary
conditions for the incompressible Navier-Stokes equations throughout this work. This not only leads
to more accurate numerical results [14, 15], but it also ensures proper solution behavior in the limit

of zero viscosity [63, 64].



Chapter 3

Divergence-conforming Discretizations and Compatible B-splines

Up to this point, we have yet to specify suitable velocity and pressure approximation spaces
for the incompressible Navier-Stokes problem. In this chapter, we present a particular selection of
velocity and pressure approximation spaces which is not only inf-sup stable but also yields pointwise
divergence-free discrete velocity fields. Before doing so, however, we first introduce the so-called
Stokes complex, which succinctly captures the fundamental theorem of calculus and expresses the

differential relationships between potential, velocity, and pressure fields.

3.1 The Stokes Complex

The Stokes complex [57, 66] is a cochain complex of the form

0 y Y ¥ vV Y Q s 0 (3.1)
in the three-dimensional setting where
o= H(Q) \p::{¢eL2(Q);6x¢eH1(Q)and¢><n:oOnr}

V= HL(©) Q= L3(Q)

are infinite-dimensional spaces of scalar potential fields, vector potential fields, velocity fields, and
pressure fields. The Stokes complex is a smoothed version of the classical L? de Rham complex, and

when the domain Q C R? is simply connected with simply connected boundary, the Stokes complex
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is exact. This means that every pressure field may be represented as the divergence of a velocity
field, every divergence-free velocity field may be represented as the curl of a vector potential field,
and every curl-free vector potential field may be represented as the gradient of a scalar potential
field. An analogous two-dimensional Stokes complex also exists, though for brevity, the interested
reader is referred to [57] for more details.

It has been shown in previous works that the Stokes complex endows the incompressible
Navier-Stokes problem with important underlying topological structure. In particular, the infinite-
dimensional inf-sup condition may be derived from the complex [57]. As such, there is impetus
for developing finite-dimensional approximations of the Stokes complex. Such discrete complexes
are referred to as discrete Stokes complexes, and when these complexes are endowed with special

commuting projection operators, they form the following commuting diagram with the Stokes

complex:
0 » Y, v Y, v Y. qQ 0
ln(b lm lnv lnq (3.2)
0 B —— Ty, 5 V), s Q, 0

where ®;, ¥, V3, and Q;, are discrete scalar potential, vector potential, velocity, and pressure
spaces and Il : @ — @y, ILy, : ¥ — Wy, II, : V =V, and 11, : Q — Qj are the aforementioned
commuting projection operators. Remarkably, when V;, and Q,, are selected as velocity and pres-
sure approximation spaces in a mixed Galerkin formulation of the incompressible Navier-Stokes
problem, the resulting approximation scheme is inf-sup stable and free of spurious oscillations and
the returned discrete velocity solution will be pointwise divergence-free [61, 63]. Thus any veloc-
ity /pressure discretization which is inherited from a discrete Stokes complex is referred to as a
“divergence-conforming” discretization. Both of the aforementioned properties are a direct conse-
quence of the commuting diagram above, and for the sake of completeness, we prove the second

property below.

Lemma 3.1.1 Assume that the discrete velocity and pressure spaces Vj, and Q,, are associated

with a discrete complex which commutes with the Stokes complex. Suppose v, € V) satisfies
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b(vp,qr) = 0 for every g € Q. Then V - v;, = 0 pointwise.
Proof Let g, = V - vj. Then ||V - vh||%2(m: b(vi,qn) = 0 and the desired result follows.

While we have demonstrated the benefit of using velocity and pressure spaces coming from
a discrete Stokes complex, we have not yet described how to arrive at such spaces. In order to do
so, we turn to the use of so-called isogeometric compatible B-spline discretizations, which are the

focus of the next two sections.

3.2 Univariate and Multivariate B-splines

The basic building blocks of isogeometric compatible B-spline discretizations, like any isoge-
ometric analysis technology, are B-splines [49]. B-splines are piecewise polynomial functions, but
unlike C%-continuous finite elements, B-splines may exhibit high levels of continuity. Univariate
B-splines are constructed by first specifying a polynomial degree k, a number of basis functions n,
and an open knot vector = = {£p, &1, ..., &n+pt+1}, @ non-decreasing vector of knots &; such that the
first and last knot are repeated p+ 1 times. We assume without loss of generality that the first and
last knot are 0 and 1, respectively, such that the domain of the knot vector is (0,1). With a knot
vector in hand, univariate B-spline basis functions are defined recursively through the Cox-deBoor

formula:

Nip(€) = g5 Nip1(§) + g2 Nijy 1 (6) forp >0

Tpt1—Eit1

Fiole) — 1 &G <E<&in
0 elsewhere.
Figure 3.1 shows example sets of unvariate B-spline basis functions. We can alternatively de-
fine B-splines not from the knot vector itself, but instead a vector of unique knot values ¢ =
{¢1,¢2, ..., Cn, } and a regularity vector oo = {1, g, .. ., v, } such that the B-splines have «; con-

tinuous derivatives across (;. By construction, a; = a,,, = —1. We will later employ the convention

a—1= {_17042_1)"'70[7%*1 _1’_1}'
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Figure 3.1: Maximal continuity univariate B-spline basis functions of varying polynomial degree
associated with a vector of unique knot values ¢ = {0,1,2,3,4,5,6}: p = 0 (upper left), p = 1
(upper right), p = 2 (lower left), and p = 3 (lower right).

Given a set of knot vectors and polynomial degrees, multivariate B-spline basis functions are

obtained through a tensor-product of univariate B-spline basis functions

d
Ni,p(f) = H Nik:pk(fk‘)
k=1

where i = (i1,142,...,iq) and p = (p1,p2,...,pq). We denote the corresponding space of multidi-

mensional B-splines over the parametric domain = (0,1) as
SP1P2ed (M) = {f Q=R \ f&=> aiNi,p(e)} :

where «; is the regularity vector associated with the 4 direction where j = 1,...,d and My, is
the parametric mesh defined by the vectors of unit knot values in each parameteric direction. Note
that the space is fully characterized by the polynomial degrees, regularity vectors, and parametric
mesh as indicated by the notation. For ease of notation, however, we drop the dependence on the

parameteric mesh and instead use Shlay P4, = SR, P4 (M},) in what follows.
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3.3 Isogeometric Compatible B-splines

We are now in a position to define isogeometric compatible B-splines. Their definition is
made possible through the observation that the derivative of univariate B-splines of degree k are
univariate B-splines of degree k — 1. Since multivariate B-splines are tensor-products of univariate
B-splines, the aforementioned property naturally generalizes to higher dimension, allowing us to
build a discrete Stokes complex of B-spline spaces [57, 35]. We first define such a discrete Stokes
complex in the parametric domain ) = (0,1)? for both d = 2 and d = 3 before constructing
a discrete Stokes complex in the physical domain of interest using a set of structure-preserving
push-forward /pull-back operators.

In the two-dimensional setting, we define the following B-spline spaces over the unit square:
\iJh = {¢h € Sg}l”p;Q : wh =0 on f}

T — ) p1,p2—1 p1—1lp2 | & _ r
V= {VhGSal’m_le :Vp-n=0on F}

al—1l,az

Qh = {Qh € Sﬁll‘_ll’f;i;_ll : / GrdQ) = 0} ,

Q

where ¥}, is the B-spline space of streamfunctions, V), is the B-spline space of flow velocities,
and Qh is the B-spline space of pressures. These discrete spaces are endowed with B-spline basis
functions {N;p b {N}’}?Z”l, and {sz }19,, respectively, where ny, is the number of streamfunction
basis functions, n, is the number of velocity basis functions, and n, is the number of pressure basis
functions, all of which can be inferred from the chosen polynomial degrees and knot vectors. One

can readily show that these spaces form the following discrete Stokes complex:

0 b, Y v, Y Q, s 0, (33)

Provided the functions in the B-spline pressure space are at least CO-continuous, there exists a
set of commuting projection operators that make the above discrete complex commute with the
Stokes complex. Thus, we refer to the spaces \ffh, Vh, and Qh as compatible B-spline spaces. As
mentioned previously, if we select V}, and Qh as velocity and pressure approximation spaces in

a mixed Galerkin formulation of the incompressible Navier-Stokes equations, then the resulting
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scheme yields a pointwise divergence-free velocity field. The degrees of freedom associated with
compatible B-splines are associated with the geometrical entries of the underlying control mesh.
This is graphically illustrated in Figure 3.2, which shows that streamfunction degrees of freedom
are associated with control points, velocity degrees of freedom are associated with (and aligned
normal to) control edges, and pressure degrees of freedom are associated with control cells. Each
degree of freedom corresponds to a particular basis function, and to visualize these basis functions,
we have selected four degrees of freedom in Figure 3.2 and visualized the respective basis functions

in Figure 3.3 .

O—7—0O

Figure 3.2: Control mesh and degrees of freedom for maximal continuity compatible B-splines of
degree k1 = ko = 2 associated with vectors of unique knot values ¢; = {2 = {0, 1,2,3,4}. Filled
circles (@) denote streamfunction degrees of freedom, triangles (», A) denote velocity degrees of
freedom, and filled squares (H) denote pressure degrees of freedom. Hollow markers indicate degrees
of freedom associated with boundary conditions.

! Note that the pressure basis function we have highlighted does not have zero average over the parametric
domain. In practice, we enforce this constraint using a Lagrange multiplier rather than to the individual pressure
basis functions.
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Figure 3.3: Streamfunction (upper left), velocity (upper right and lower left), and pressure (lower
right) basis functions associated with the circled degrees of freedom in Figure 3.2.

In the three-dimensional setting, we define the following B-spline spaces over the unit cube:

by = {dn € SpT2I by =0 on I}
. 1. p1—1,p2,p3 p1,p2—1,p3 p1,p2,p3—1 . 7 _ I
P = {wh € Sa1—17a2,a3 X Soc1,oc2—1,a3 X Sa17a27a3—1 tYpxn=0onI

<>

1,02—1,a3—1 a1—laz,a3—1 ar—l,az—1,a3

A -~ _17 _17 -1 . S A —
Q, = {qh e §nlmlp-l /Q ind€) = 0},

~ — -1 -1 -1 —1,p2—1 ~ -
b= {Vh e Sg17p2 1,p3 w §P1—Lp2,:p3 x gPr—Lp2=Lps . vy -n=0on F}

where <i>h is the B-spline space of scalar potentials, ), is the B-spline space of vector potentials,

Vh is the B-spline space of flow velocities, and Q 5, 1s the B-spline space of pressures. These discrete

g

spaces are endowed with the basis functions {Nf}?jl, {Ng’}?ﬁl, {N?}™ and { NP}, respectively,
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where ny is the number of scalar potential basis functions, n, is the number of vector potential
basis functions, n, is the number of velocity basis functions, and n, is the number of pressure basis
functions, all of which can be inferred from the chosen polynomial degrees and knot vectors. Once

again, one can show that the above spaces form the following discrete Stokes complex:

0 (i)h v \i’h vx Vh v Qh 0. (3.4)

Provided the functions in the B-spline pressure space are at least C?-continuous, there exists a set
of commuting projection operators that make the above discrete complex commute with the Stokes
complex.

Heretofore, we have discussed how to construct compatible B-splines in the parametric do-
main. To define compatible B-splines in the physical domain 2, we need to first define a piece-wise
smooth bijective mapping F : Q — Q. This mapping can be defined using Non-Uniform Rational
B-splines (NURBS), for instance, as is commonly done in the isogeometric analysis community [49],
although this is certainly not the only way to define this mapping. With this mapping in hand, we

define two-dimensional compatible B-spline spaces in the physical domain via the relations
U, = {¢h6\11:¢hoFE\ilh}
V), = {vh €V:det(d)I v, oF € Vh}
Qp = {Qh €Q:det(J)gnoF € Qh}»
and three-dimensional compatible B-spline spaces via the relations
1= {oncigpoF €y
W, = {w eW:J T e, oF € \ifh}
Vi, = {vh eV:det ) I vyoF e Vh}
Qui={meQ:det M oF € Q.
where J = O¢F is the Jacobian of the parametric mapping. Corresponding basis functions in the

physical domain are defined via pushes-forward of the basis functions in the parametric domain,

and we denote the discrete velocity basis functions as {N7}, and the basis functions for other
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quantities in analogous fashion. It is easily shown that the compatible B-spline spaces in the
physical domain also comprise a discrete complex which commutes with the Stokes complex. The
compatible B-splines in the physical domain are referred to as isogeometric compatible B-splines,
as they are built from B-splines, the basis building blocks of geometric modeling, and they are

defined on the exact geometry of the problem of interest.



Chapter 4

Filtering, Eddy Viscosity, and Classical LES Approaches

Large eddy simulation was first proposed in 1963 for use in atmospheric simulation [128], and
early applications were also in this area [52, 103]. About a decade after its initial introduction, LES
for engineering-related problems was first explored by Deardorff [51] and Schumann [125]. Early
applications of LES were in simple flows, such as homogeneous turbulence, mixing layers, and
plane channel flows. However, as computer technology improved and computing power increased,
the number of LES applications also grew [144]. The popularity of LES has increased as it provides
higher accuracy than Reynolds-Averaged Navier Stokes (RANS) [121] methods but also lower cost
than DNS.

There are four conceptual steps in LES. The first is to decompose the velocity into a resolved
component and an unresolved (or residual) component, where the resolved component of the ve-
locity represents the large eddies. This can be accomplished either through filtering or variational
projections. Next, the equations for the evolution of the resolved velocity field are derived from the
Navier-Stokes equations. These equations will contain some effect of the residual motion. The third
step is to obtain closure by modeling the residual motion, which is usually accomplished by using
eddy-viscosity models, variational multiscale concepts, or a combination of both. In the final step,
the resulting equations are solved numerically for the resolved velocity [118]. In this chapter, the
classical LES paradigm, where scale separation is accomplished through filtering and the residual

motion is modeled using an eddy viscosity, and several such models are described. It should be
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noted that in the scale-separation step, the filter width is typically taken to be equal to the grid
spacing. When this is the case, it is appropriate to refer to the residual component as a subgrid
component. Although it is not necessary for the filter width and grid spacing to coincide, for the
purposes of this dissertation, it will be assumed that they do, and thus the term “subgrid” will be

used in lieu of “residual” throughout.

4.1 The Filtered Navier-Stokes Equations

In the classical LES setting, scale splitting of the velocity is performed through a filtering
operation and the subgrid stresses are modeled using eddy-viscosity models. In these filtered
equations, a subgrid stress tensor arises as a result of the subgrid-scale motion [102]. The simplest,
and most common approach to modeling the subgrid stress tensor is through the use of an eddy-
viscosity model.

The Navier-Stokes operator for the filtered Navier-Stokes equations can be written as

o V-a
L NSU = s (4.1)
i, +V-(u®d)+Vp—vVa+ V.1,
where here the barred terms indicate the filtered velocity and pressure fields and 7., the so-called
residual-stress tensor, is an additional term resulting from the filtering operation that must now be
modeled. This residual-stress tensor accounts for the transfer of momentum caused by turbulent
eddies. In eddy-viscosity models, this effect is modeled by an effective eddy viscosity, analogous to

how a molecular viscosity is used to model the momentum transfer caused by molecular diffusion.

This modeling takes the form

Ty = 21/158, (42)

where the rate of strain tensor is given by
K — J ). 4.3
=5 <axj+axi) (4:3)

Substituting (4.2) and (4.3) into (4.1) gives a modified form of the Navier-Stokes operator such
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that
V-a
L NSU = s (4.4)
u:+V-(a@u)+Vp—V - 2vgVua
where it is recognized that the effect of modeling the subgrid motion with an eddy viscosity is such

that an effective viscosity v can be defined as

Veff = V + 4. (4.5)

4.2 Eddy-viscosity Models

The concept of an eddy viscosity was first proposed by Boussinesq [20] and was initially
utilized in LES by Smagorinsky [128]. In this work, Smagorinsky assumed the eddy viscosity to be
a constant. Lilly further developed the concept of the eddy viscosity and, borrowing from mixing
length theory [119], determined a form for the eddy viscosity as a function of the grid size and
rate of strain tensor [103]. This basic model for the eddy viscosity has come to be known as the
Smagorinsky (or the Smagorinsky-Lilly) model for eddy viscosity. This model depends on the so-
called Smagorinsky constant, which is assumed to be constant for a given flow, but varies in value
depending on the type of flow. Despite its simplicity, the Smagorinsky eddy-viscosity model has
proven to be quite successful, especially for flows with isotropic turbulence.

Despite being one of the most popular subgrid-scale models, the Smagorinsky eddy-viscosity
model has its shortcomings. First of all, the Smagorinsky constant needs to be tuned for different
flows. Secondly, the Smagorinsky constant in reality should not be constant throughout a flow,
and needs to be modified whenever the turbulence is decaying or damped, such as near walls
[111]. A third deficiency is that the Smagorinsky model is known to be overly-dissipative for
transitional flows [144]. In order to address these deficiencies, dynamic eddy-viscosity models have
been proposed. Some of these models use ad-hoc damping and intermittency functions, but perhaps
the most successful has been the model proposed by Germano [69]. In this dynamic Smagorinsky

model, the Smagorinsky “constant” is computed locally in space and time during the simulation.



22

This is accomplished by recognizing an algebraic identity between the subgrid-scale stresses at
two different filtered levels and the resolved turbulent stresses. The result of this relationship is an
eddy viscosity that vanishes in laminar flow and at solid boundaries, and has the correct asymptotic
behavior in the near-wall region of turbulent boundary layers [69]. Despite these positive attributes,
the dynamic Smagorinsky model still has its deficiencies. The eddy viscosity that results from the
Germano identity can oftentimes vary wildly in time and space, and can even be negative. These
problems are typically overcome by performing some sort of averaging, enforcing positive values for
the eddy viscosity, or employing other techniques [39, 70, 141]. Also, implementation of the model
can be difficult, as it involves the use of a test filter, which poses its own set of unique challenges
[111].

In contrast to dynamic models, a different approach to addressing the aforementioned defi-
ciencies with the classical Smagorinsky model is to utilize a subgrid scale model that relies on an
operator other than the rate of strain tensor. By choosing an appropriate operator, it is possible to
design a method that has favorable characteristics, including damping in areas of low turbulence,
such as in regions of laminar or transitional flow and near walls, without resorting to complicated fil-
tering operations. Three examples of such models include the Wall-adapting Local Eddy Viscosity
(WALE) [110], Vreman [137], and Sigma [109] models. While these models have been demon-
strated to provide performance comparable to the dynamic Smagorinsky model for some classes of
flow [110, 137, 109, 143], they still have their deficiencies. For example, the WALE model does not
appropriately “turn off” in laminar flows with three-dimensional velocity gradients. Additionally,
both the WALE and Vreman models both fail to properly damp the eddy viscosity for axisymmetric
expansion and flows with solid rotation [109]. Furthermore, none of the models mentioned here can
properly account for backscatter, and they all feature a constant in their formulation which must

still be tuned for various classes of flow.
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4.3 Considered Eddy-Viscosity Models

Eddy viscosity models can be written in a general form as

v = (CA)?OP, (4.6)

where C'is some constant, A is an associated length scale (usually the filter width or grid spacing),
and OP represents some operator that is chosen to give the method favorable characteristics. In this

work, we consider four eddy-viscosity models: Smagorinsky, WALE, Vreman, and Sigma models.

4.3.1 Smagorinsky Eddy-Viscosity Model

In the Smagorinsky eddy-viscosity model, the eddy viscosity is calculated as [103]

v = (C:A)?|S), (4.7)

where A is the filter width, S is the rate of strain tensor, and Cs is the Smagorinsky constant. For
homogeneous isotropic turbulence, a value of Cs = 0.18 has been shown to perform satisfactorily,

but smaller values have been required for other applications [69].

4.3.2 Wall-adapting Local Eddy Viscosity Model

In the WALE model, the traceless symmetric part of the square of the velocity gradient
tensor is used as an operator rather than the rate of strain tensor. This operator is chosen as
it goes naturally to zero near the wall without the use of any damping functions nor dynamic

procedure. Using this operator, the eddy viscosity is calculated as [110]

(sd.s.d)g

1~y

v = (CpA)? - - (4.8)
2 4
(Si5Si5)2 + (S%S%)
where the traceless symmetric part of the square of the velocity gradient tensor S¢ is
d_ 1,9 2 1 2 (4.9)
Sij = 5 (95, + 9i7) — §5ijgkk, .
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0;; is the Kronecker delta symbol, the velocity gradient tensor g is defined as

ou;
9ij = %a

(4.10)

A is the filter width, S is the rate of strain tensor, and C,, is a constant. In the original work which
introduced the model, a value of C\, in the range 0.55 < C,, < 0.60 was reported for homogeneous
turbulence [110], but later studies by the authors suggest a lower value of C,, = 0.325 is more
appropriate [1]. In general, the optimal value for C,, varies based on several factors including the

flow problem considered and even the mesh size of the simulation [110].

4.3.3 Vreman Model

In the Vreman model, an alternative operator is used which is designed to produce very low

dissipation in transitional and near-wall regions. The eddy viscosity is calculated as [137]

B
v =2.502, | =5 (4.11)
aijaij
with
o0u;
Qij = axz : (4.12)
Bij = A2 it (4.13)
Bg = 811512 — Bl + Br11Bss — B + BazBaz — B33, (4.14)

and Cj is the Smagorinsky constant.

4.3.4 Sigma Model

In the Sigma model, the subgrid stress is related to the singular values of the resolved velocity
gradient tensor. The operator of this model is constructed to deliver zero subgrid stress in cases of
two-component or two-dimensional flow as well as in cases of pure axisymmetric or isotropic con-
traction/expansion. Furthermore, it has a cubic behavior near solid boundaries and thus naturally

damps near walls. The eddy viscosity is calculated as [109]
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Vg = (CO'A)2 Dy, (4.15)

with
o3 (01 — 032) (02 — 03)

2 )
01

D, = (4.16)

where 01 > 09 > 03 > 0 are the three singular values of the velocity gradient tensor, g. The value of
the constant, C, must be tuned based on the flow problem, the grid resolution, and numerics, but
a value of C, = 1.35 has been reported to provide results comparable to the classical Smagorinsky

model for homogeneous isotropic turbulence [109].



Chapter s

Residual-based Variational Multiscale Models for

Structure-preserving LES

5.1 Projection and Variational Multiscale Models

The possibility of developing an LES formulation using VMS for subgrid-scale modeling of
incompressible turbulent flows was first discussed in [86]. The main idea was to use variational
projections rather than filtered equations and to confine modeling to the fine scales. In this work,
the solution space is divided into three components: a coarse (or large) scale, a resolved fine (or
small) scale, and an unresolved fine scale. In making this three-way split, it is recognized that the
unresolved fine scale affects the resolved fine scale and the resolved fine scale affects the coarse
scale. After this scale separation is performed, the effect of the Reynolds stress on the fine scales
is modeled through an eddy-viscosity, inspired by the classical Smagorinsky model, but which is
applied only to the fine scales. This methodology diminishes the role of the Smagorinsky constant
in producing dissipation in favor of dissipation effects associated with velocity fluctuations and, as
a result, yields correct asymptotic behavior at walls and reduces damping of resolved structures as
compared to the classical Smagorinsky LES [86]. Additionally, limiting modeling to the fine-scale
equations retains numerical consistency of the coarse-scale equations, which is important for the
underlying numerical method to achieve optimal convergence. This version of the VMS method for

turbulence modeling was studied in [87, 88] and is demonstrated to work very well for homogeneous
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isotropic flows and fully-developed turbulent channel flows.

One deficiency of the original VMS method is that the energy transfer to unresolved modes
is too small when the discretization is very coarse. In order to address this, a residual-based VMS
formulation for LES of incompressible turbulent flows was presented in [11]. This approach models
the fine scales as a function of the coarse scale residual, thus avoiding any ad hoc devices, such
as eddy viscosities, and captures all scales consistently. The method presented in [11] first splits
the exact solution into coarse and fine scales and substitutes this splitting of the solution into the
Navier-Stokes equations. Next, this equation is projected onto the coarse- and fine-scale subspaces.
When the splitting of the solution is performed such that the cutoff for the coarse scales resides in
the inertial subrange, an LES interpretation of the method is applicable. The fine-scale solution
is related to the residual of the coarse-scale solution through the action of a fine-scale Green’s
operator [82] that acts on the residual of the coarse-scale solution. The action of the fine-scale
Green’s operator is then approximated as the product of the element-wise stabilization parameter
7 [32, 79, 80, 130] and the local coarse-scale residual.

This turbulence modeling methodology was implemented with a NURBS discretization of
the unsteady Navier-Stokes equations and the resulting method was demonstrated to perform
admirably for the test cases of forced isotropic turbulence and fully-developed turbulent channel
flow [11]. One advantage of the residual-based VMS method is that the magnitude of the fine-scale
solution scales with the residual of the coarse-scale solution. As a result, the subgrid modeling
“turns off” naturally for laminar flows and the method reverts to DNS when there is sufficient grid
resolution. These features are particularly attractive for predictive simulation of turbulent flows
in engineering applications, because in many cases the flow regime at a given location in space
is often not known a priori, yet the flow solution needs to be computed with sufficient accuracy.
The residual-based VMS formulation for LES has been successfully used to simulate a number of
challenging turbulent-flow test cases [16, 10]. While these results show much promise, it is also
argued that improved sugbrid modeling can yield even better results.

Traditionally, in the methods described above, the fine-scale problem is not solved outright.
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Rather, the objective is to solve the coarse-scale problem, but it is recognized that the fine-scale
problem influences the coarse-scale solution. As such, once the fine-scale problem has been param-
eterized in terms of the coarse-scale solution, it is substituted back into or statically condensed out
of the coarse-scale problem. The net result is that only one problem, expressed entirely in terms
of the coarse scale solution must be solved. In contrast to this approach, there is the option to
solve the approximate fine-scale problem outright and use the solution in the coarse-scale prob-
lem. Omne method that uses this approach is the method of subgrid vortices. Before describing
the method of subgrid vortices, we formally introduce the variational multiscale method and the

resulting fine-scale problem.

5.2 The Variational Multiscale Method

The VMS method was originally introduced in [80] in order to identify the origins of stabilized
finite element methods and it was quickly realized that the VMS method provides a theoretical
framework for incorporating missing fine-scale effects into numerical problems governing coarse-
scale behavior [11, 80, 82, 86, 89]. Construction of the variational multiscale method is simple:
decompose the solution to a partial differential equation into a sum of coarse-scale and fine-scale
components, determine the fine-scale component analytically in terms of the coarse-scale compo-
nent, and solve for the coarse-scale component numerically. The above scale decomposition is
uniquely specified by identifying a projector from the space of all scales onto the coarse-scale sub-
space. As a consequence, the coarse-scale component is a priori guaranteed to best-fit the solution
in a variational sense.

To proceed forward, we must first define finite-dimensional, coarse-scale test spaces V. C V
and Q C @ and corresponding continuous, linear projection operators P, : V. — V and P, :
Q — Q. The projection operator P, naturally splits the test space into coarse-scale and fine-scale

components as exhibited by the decomposition
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V=VaV
where V' = ker(P,) is the infinite-dimensional, fine-scale test space. Consequently, each test
function v € V is uniquely represented as the sum of a coarse-scale test function v = P,v € V
and a fine-scale test function v/ = v — v € V. Associated with the coarse-scale test space is a
corresponding set of trial functions of the form S = g+V where g € S satisfies the non-homogeneous
Dirichlet boundary condition g|r,= g. This inspires a similar split of the set of trial functions into

coarse-scale and fine-scale components:

S=S+¢

where S’ is the infinite-dimensional set of fine-scale trial functions. Therefore, the solution to the
problem u € S and is uniquely represented as the sum of a coarse-scale component t = g+P,u € S
and a fine-scale component u’ = u—u € S’. Since the coarse-scale trial functions satisfy the required
non-homogeneous boundary condition, the fine-scale trial functions satisfy homogeneous boundary
conditions, and thus we have S’ = V’. Following the same treatment for the test space @, we can
define a set of trial functions for the pressure W such that W = W + W’ and W' = Q.

Heretofore, we have discussed how to split the solution to the problem into coarse-scale and
fine-scale components, but we have not discussed how to obtain said components via a numerical
method. To do so, we simply use the decompositions V= V@V’ and Q = QP Q' and bilinearity to
perform a scale splitting of the problem. To do this, we first define space-time sets of trial functions

as

Sy = C(0,T];S) (5.1)
which is the set of continuous functions u : [0,7] — S with

@gﬁﬁﬁm@<w,

and

Wy :=C([0,T]; W) (5.2)
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which is the set of continuous functions p : [0,7] — W with

' .
Orggg,llp( M p2)< o0

The corresponding variational problem takes the form: Find u € C ([0, T];S), u’ € C ([0, T]; S'),

peC([0,T; W), and p' € C ([0, T); W') such that

a(via+u) —b(@,p+p) +ba+u,q) = (%) (5.3)

for all v € V, g € Q and almost every ¢ € (0,T) and

aviu+u) —b(v,p+p)+ba+u,q) =) (5.4)

for all v € S', ¢ € Q' and almost every t € (0,T). The coarse-scale problem is given by (5.3),
whereas (5.4) is referred to as the fine-scale problem. This is the split variational problem that
relates the effect of the fine scales on the coarse scales and vice-versa. It should be noted that
at this point, the VMS method is exact. However, solving for the coarse-scale solution depends
on a method for solving the infinite-dimensional fine-scale equation. Since this is, in general,
intractable, some form of modeling for the fine-scale method must be employed. Thus, developing
suitable subgrid-scale models for the VMS method is of utmost importance.

By relating the subgrid scales to the resolved scales, it is shown that the subgrid scale solution
is related to the residual of the resolved scales [80, 82]. In particular, for divergence-conforming
discretizations, the fine-scale problems for u’ € & and p’ € W can be solved in terms of the

so-called coarse-scale residual of the momentum equation' :

u' = Gig (Resy, (1,p)) (5:5)
D' = Gpress (Resy (,9)) (5.6)

where g(,el and gl’)ress represent fine-scale Green’s operators [48, 80, 82] and

B ou  _ _ _
Res,, (u,p) :=f — n +u-Vu-—vAu+ Vp. (5.7)
! Note in general the fine-scale velocity and pressure depend on the coarse-scale residual of both the momentum and
continuity equations. However, for divergence-conforming discretizations, the coarse-scale residual of the continuity
equation is zero by design.
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In order to solve (5.6), we need to employ suitable approximations for the fine-scale Green’s oper-
ators G and Gy, ... This is addressed in the next section. By inserting the resulting solution for
u’ and p’ back into the coarse-scale problem, a final finite-dimensional system for the coarse-scale
solution @ € S and p € W is achieved.

The primary issue associated with the variational multiscale method is that V’ and Q' are
infinite-dimensional spaces and thus solving the fine-scale problem is an intractable task. Fortu-
nately, for most problems of interest, it is sufficient to approximate the effect of the fine-scales on

the coarse-scale solution in order to produce stable and accurate numerical solutions [48]. This

motivates the need to pursue effective approaches for modeling the fine-scale problem.

5.3 The Fine-scale Problem

We now present the fine-scale problem for the variational multiscale incompressible Navier-
Stokes problem, including some candidate approximations for solving the fine-scale problem. First,
we assume that the fine-scale problem can be localized to an element. The physical interpretation
of this assumption is that the subgrid scales do not transfer mass between elements. With this

assumption in mind, the element-wise fine-scale problem for a given element can be stated:

%—‘{—i—v-(ﬁ®u’+u’®ﬁ+u’®u’)—yAu’+Vp’ = Res,, (u,p) for (x,t) € Q. x (0,7)

V-u =0 for (x,t) € Q. x (0,7
u =0 for (x,t) € Te x (0,7
ul,_, =u; for x € Q.
(5.8)

The relationships in (5.6) inspire two candidate algebraic approximations to (5.8). In the
first approximation, denoted the quasi-static approximation, the fine-scale solution is solved at a
given time step based on the coarse-scale momentum residual at that time step. In an alternative

approximation, denoted the dynamic approximation, the time derivative of the fine-scale solution
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is retained in hopes of improving the approximation [43]. These approximations are

a /
Quasi-static: 7.;'u’ = 8—1; +V-(aou +u@u+u @u)—vAd (5.9)
Dynamic: 7;'u'=V-(a®@u +u®a+u ®@u)-rvAd, (5.10)

where qu,l and Td_l are algebraic operators associated with the quasi-static and dynamic approxi-
mations, respectively. In order to define these operators, it is first recognized that these operators
represent time scales for their respective fine-scale approximations. We then turn to dimensional

analysis in order to find appropriate forms for these operators. The time scale 7 must depend on

h, v, and @. Thus, we identify both advective and diffusive time scales:

. h
Advective: Tugy = =——
Cr |
h2
Diffusive: Tdif = —,
Crv

where Cf is typically chosen to be 2 and C7y can be determined from inverse estimates [95]. We
also seek an additional time scale related to the unsteadiness of the problem. One option which
has its origins in stabilized methods [85, 126] is to relate the time scale to the time step size used

in the numerical discretization:

At
Tuns = m7

(5.11)
where again Cyyy is a constant and is typically chosen to be 2. While this formulation for 7y,s has
been demonstrated to be effective when At is sufficiently large, its dependency on time step size
means Typs vanishes as the time step is decreased. For explicit schemes which may rely on very
small time steps in order to satisfy the CFL condition, this can lead to an ineffective or unstable

[79] method. In order to address these issues, we propose an alternative formation for 7,5 which

relies on the unsteadiness of the flow solution rather than the time step:

= [0n] Al (5.12)
[0n+1 — Up| Crir’ '

Tuns
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where 1,41 and 4, represent the coarse-scale solution at the next and the current time steps, re-
spectively. Although we present this alternate formulation for 7,5, we use the classical formulation
given by (5.11) herein.

Having defined appropriate time scales related to the advection, diffusion, and unsteadiness

of the flow, we can now define appropriate formulations for 7., and 74:

1
T = (T 4 1o+ 752) (5.13)

_ —o\—1/2
Ta= (Tody + Tai) | - (5.14)

Utilizing (5.13) and (5.14) in conjunction with (5.9) and (5.9), respectively, then defines our ap-
proximation to the fine-scale problem. We choose to solve the fine-scale problem using the method

of subgrid vortices.

5.4 Method of Subgrid Vortices

The method of subgrid vortices is based on the application of the VMS method to divergence-
conforming discretizations of the Navier-Stokes equations. In this method, a reduced fine-scale
velocity problem with homogeneous boundary conditions is solved over each element using a dis-
crete approximation of the divergence-free fine-scale space. The basis for the fine-scale velocity is
constructed as the curl of the (divergence-free) fine-scale vector potential space, where the vector
potential space is represented with Bernstein polynomials. The physical interpretation of each of
these basis functions is a set of single vortical filaments, or subgrid vortices.

When this basis is naively constructed, a discretization of polynomial order ky and dimension
d will contain (ky — l)d linearly-dependent subgrid vortices. In order to construct an analysis-
suitable basis of linearly-independent functions, an eigenvalue decomposition of the element stiffness
matrix is conducted. The eigenvectors corresponding to non-zero eigenvalues then provide the basis
used to solve for the fine-scale velocity. This set of eigenvectors represents a set of subgrid vortices

residing in each element, organized by their energy content. Furthermore, it is recognized that
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the stabilization parameter 7 represents a time scale related to the dissipation rate of the subgrid
vortical energy. This interpretation of the method elucidates the connection between the underlying
mathematics and the physical representation of the subgrid model. While the method of subgrid
vortices was first imagined as a VMS method for turbulence modeling, since it explicitly calculates
a fine-scale velocity, it can also be used with residual-based eddy viscosity models, which are

introduced in the next chapter.

5.5 Considered Residual-based Variational Multiscale Models

We utilize the fine-scale approximations in (5.9) and (5.10) along with the fine-scale prob-
lem (5.8) in order to define a class of residual-based variational multiscale models for structure-

preserving LES.

5.5.1 Quasi-static Variational Multiscale Model

In the quasi-static VMS model, we approximate the fine-scale velocity using the fine-scale
approximation (5.9). The resulting problem is a Darcy problem with diffusivity Tq_sl driven by the

momentum residual of the coarse-scale solution. This has the form
Tq_slu’ +Vp = —Res,, (,p) over Q.
(5.15)

V-u=0 over Q,

subject to the boundary conditions

u-n=0 on 09,

/p’zO over e,
Qe

n is the normal vector on element boundaries. In the quasi-static VMS model, the fine-scale

(5.16)

velocity is solved instantaneously at each time step and thus does not take into consideration any
time evolution of the fine-scale velocity.
The fine-scale problem described in (5.15) is solved using the method of subgrid vortices. The

approximate fine-scale problem is approximated element-by-element using a diverence-conforming
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discretization of degree k. This has the effect of representing the fine scales using subgrid vortical

structures.

5.5.2 Dynamic Variational Multiscale Model

In the dynamic VMS model, we approximate the fine-scale velocity using the fine-scale ap-
proximation (5.10). The resulting problem is a Darcy problem with diffusivity 7'0;1 driven by the

momentum residual of the coarse-scale solution. This has the form

o, p o
— +7, u +Vp = —Res;,, (n,p) over €

ot (5.17)
V-u=0 over Q,

subject to the same boundary conditions as (5.16). As with the quasi-static VMS model, the

method of subgrid vortices is used in order to solve (5.17).

5.5.3 Coarse-scale Governing Equation

Given either of the models above, we can substitute the resulting fine-scale solution back into
(5.3) in order to arrive at an approximation for the coarse-scale solution. In doing so, we make
the following assumptions: 1) the effect of unsteadiness and diffusion of the fine-scale velocity on
the coarse scales is negligible and 2) the effect of the fine-scale pressure on the coarse scales is
negligible. These assumptions may be linked to the choice of projection operators for the velocity

and pressure fields as made precise in [89, 132]. The resulting coarse-scale governing equation is

avas (Vi a,u') — b(v,p) + b(a, q) = £(¥), (5.18)

where

ayys(v;a,u’) ::/V-audQ—{—/v-((u—i—u’)-V(u—{—u')) dQ—I—/VVV:VudQ.
Q Ot Q Q



Chapter ¢

Residual-based Eddy-viscosity Models for Structure-preserving

LES

6.1 Residual-based Eddy-viscosity Models

Residual-based eddy-viscosity (RBEV) models, first introduced in [111], borrow ideas from
the classical eddy-viscosity models and the residual-based VMS formulation. In the RBEV model,
the effect of the subgrid scales is expressed as an eddy viscosity that acts on the coarse scales.
In contrast to the Smagorinsky eddy viscosity model, where the eddy viscosity is proportional to
the grid size and the rate of strain tensor, in the RBEV model, the eddy viscosity is proportional
to the fine-scale velocity and the grid size. In order to calculate the fine-scale velocity, the RBEV
model utilizes the VMS formulation in order to provide an approximate expression for the fine-scale
velocity field as an algebraic operator 7 times the residual of the coarse-scale velocity. Since the
eddy viscosity is proportional to the fine-scale velocity, and the fine-scale velocity is proportional
to the coarse-scale velocity residual, this lends a natural dynamic behavior to the RBEV model.

The RBEV model has much in common with the original VMS method [80] and the more
recent residual-based VMS methods [11], but there are two important distinctions. In the original
VMS method [80], there is a three-way split of the solution space and modeling is confined to
the fine scales. In the RBEV model, there is a two-way split of the solution space and the eddy

viscosity is applied to the coarse scales. When compared to residual-based VMS methods [11],
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the difference is in the utilization of the fine-scale solution. In the VMS method, an expression
is found for the fine-scale solution which is then substituted into the coarse-scale problem. In
the RBEV model, the fine-scale velocity is used to construct an eddy viscosity model for the
coarse-scale equations. The RBEV model has been tested in predicting the decay of incompressible
and compressible homogeneous turbulence and was shown to be more accurate than the dynamic

Smagorinsky model [111].

6.2 Considered Residual-based Eddy Viscosity Models

To contrast the variational multiscale models presented in Chapter 5, we also consider
residual-based eddy viscosity models. In these RBEV models, we seek to capture the effect of
the subgrid scale turbulent motion through an eddy viscosity that acts on the coarse scales as in

(4.5). For the RBEV model, the eddy viscosity has the form [111]

Vg = Oh }u" s (61)

where h represents the grid spacing and u’ denotes the fine-scale velocity. For the constant C, we
make the claim that the subgrid approximation represents all turbulent motion at length scales
smaller than the grid resolution, and thus set the constant to C' = 0.074 [111]. We utilize the
fine-scale approximations in (5.9) and (5.10) along with the fine-scale problem (5.8) in order to

define a class of residual-based eddy-viscosity models for structure-preserving LES.

6.2.1 Quasi-static Residual-based Eddy Viscosity Model

In the quasi-static RBEV model, we approximate the fine-scale velocity using the fine-scale
approximation (5.9). The resulting problem is the same fine-scale velocity problem (5.15) as the
quasi-static VMS model. After the fine-scale velocity is computed, the result is substituted into

(6.1) in order to produce the quasi-static RBEV model.
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6.2.2 Dynamic Residual-based Eddy Viscosity Model

The dynamic RBEV model follows closely from the quasi-static RBEV model. As in that
case, the eddy viscosity is represented as in (6.1). In comparison to the quasi-static RBEV model,
we approximate the fine-scale velocity using the fine-scale approximation (5.10). The resulting
problem is the same fine-scale velocity problem (5.17) as the dynamic VMS model. The resulting
fine-scale velocity is then used to calculate an eddy viscosity, resulting in the dynamic RBEV

model.



Chapter 7

Numerical Results for a Selection of Turbulent Flows

In this chapter, we present numerical results for a series of turbulent flow simulations which
demonstrate the performance of the residual-based VMS and RBEV models. The flow problems
chosen here reflect several classes of flows, including homogeneous turbulence, transitional flows,
and wall-bounded flows. Results for the residual-based VMS and RBEV models are compared to
classical LES models. Prior to presenting these numerical results, a brief description of the software

used for these simulations is provided.

7.1 Implementation of a Parallel Divergence-conforming B-

spline Framework

In order to evaluate the performance of the VMS and RBEV models presented here, an accu-
rate and efficient unsteady incompressible Navier-Stokes solver using using divergence-conforming
discretizations was written. It was required that the simulation software scale efficiently in order to
test problems up to the limit of DNS and, additionally, be flexible enough to accommodate many
different subgrid models for evaluation and study. With these goals in mind, a custom divergence-
conforming discretization code was purpose-built, written in C++, in order to support the current
research.

The software developed here was modeled after a sequential divergence-conforming three-
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dimensional unsteady incompressible Navier-Stokes solver used for DNS simulations in [57]. Con-
siderable changes were introduced to the software in order to add subgrid-scale models and to
parallelize the code. The resulting code uses the Crank-Nicolson [50] method to discretize the
viscous terms and a multi-step Adams-Bashforth [9] method to discretize the nonlinear advective
terms. A vector potential representation of the velocity field is used in order to provide an efficient
method for solving the Navier-Stokes equations. At each time step, the program uses a vector
potential expression to convert a discrete generalized Stokes system from a mixed problem into a
positive semi-definite problem of Maxwell type, which is solved using the Jacobi-preconditioned con-
jugate gradient method [57]. The solution is evolved in time using a second-order Adams-Bashforth
multi-step method [9].

The code developed here can accommodate many different LES turbulence models, including
traditional eddy-viscosity, VMS, RBEV, and differential subgrid vortex models. At this time,
the classical Smagorinsky, WALE, Vreman, Sigma, VMS (quasi-static and dynamic), and RBEV
(quasi-static and dynamic) models have all been implemented. For the classical Smagorinsky,
WALE, Vreman, and Sigma models, it is necessary to calculate the velocity gradient components
in order to construct each model’s respective subgrid stress operator. In contrast to standard finite
element codes, calculating the velocity gradients is a straightforward task for the code developed
here as the framework of the code makes arbitrary-order derivatives of the basis functions readily
available. On the other hand, implementation of VMS and RBEV models requires the calculation
of a fine-scale velocity, which is accomplished by solving a fine-scale problem over each element
using the method of subgrid vortices.

In order to accomplish this, a two-step process is carried out at each time step. First, the
coarse-scale problem is solved with the approximated value of the fine-scale velocity field at the
current time step. Second, the fine-scale velocity field for the next time step is calculated based on
the residual of the coarse-scale velocity field of the current time step. At time ¢ = 0, the fine-scale
velocity field is initialized to u’ = 0. Solving the local fine-scale problem over each element is made

efficient by exploiting the homogeneous boundary conditions for each fine-scale element problem.
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As such, the local system is assembled and solved only over the internal degrees of freedom on
each element. After this reduced system is formed, an eigenvalue decomposition of the system is
performed and the system is solved using a basis consisting of the eigenvectors associated with
non-zero eigenvalues.

Parallelization of the code is provided through the Message Passing Interface (MPI), with
the Portable, Extensible Toolkit for Scientific Computation (PETSc) [8] handling most of the
implementation details. Furthermore, PETSc data types are used for management of the vectors
and matrices associated with solving the system for the coarse-scale problem, and PETSc’s Krylov
solver is used for solving the system at each time step. In contrast, the fine-scale element problems
are solved using LAPACK [2]. Domain decomposition is performed by METIS [100] by providing a
graph of the element connectivity to its multilevel recursive-bisection routine. Since the fine-scale
problem is solved over elements, these operations are completely localized on each process and do
not add any additional computational expense in the form of inter-process communication. The
resulting code is a highly efficient, scalable framework able to utilize various subgrid-scale models
for solving the unsteady Navier-Stokes equations using a divergence-conforming discretization.

In order to demonstrate the parallel efficiency of the code, a series of tests were conducted.
For these tests, the Taylor-Green vortex flow problem was solved and the simulation was run for 300
time steps. The baseline case considered is 64% elements using 24 processes. The problem is then
scaled in a way such that the amount of work per process is kept roughly constant. This results
in problem sizes of 812 elements and 1023 elements run with 48 and 96 processes, respectively.
Solutions using both no subgrid model and the dynamic VMS model are tested. A summary of
the test cases is described in Table 7.1, where the dynamic VMS model is labeled as “D-VMS”.
It is clear from these results that the code exhibits acceptable scalability. Simulations involving
the subgrid modeling show slightly worse scalability than simulations without subgrid modeling.
This is partially explained by the fact that even though the calculations involved with the subgrid
modeling is completely local on each process, these calculations still add considerable amount of

additional work per time step. Thus, any load imbalancing (which cannot be completely eliminated
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in the isogeometric analysis setting) leads to reduced parallel efficiency. Another factor in the
degredation of scalability is in the linear algebra. Specifically, the problem with the dynamic VMS
models require more iterations of the solver in order to solve the solution at each time step. Thus,
in order to provide a more accurate measure of scalability, the amount of work for each problem
should be kept the same by using the same number of iterations of the solver at each time step

regardless of which subgrid model is used.

Table 7.1: Parallel efficiency

Model  Problem size Processes used Wall-time Parallel efficiency

no model 262114 24 0:38 -
no model 531441 48 0:40 0.950
no model 1061208 96 0:43 0.884
D-VMS 262114 24 4:57 —
D-VMS 531441 48 5:11 0.955
D-VMS 1061208 96 6:53 0.719

In addition to these scalability results, a “stress test” was performed to determine the limits
of the code’s scalability, even if the code is not scaled optimally in these limits. To date, the code
has been demonstrated on domains of up to 256% elements, which corresponds to a system of over

51 million degrees of freedom.

7.2 Numerical results

In this section, numerical results that demonstrate the efficacy of the proposed turbulent
simulation method for a set of benchmark turbulent problems are presented. A suite of test problems
were chosen in order to evaluate the performance of the VMS and RBEV models across a wide range
of flows, including homogeneous turbulence, transitional flow, and wall-bounded turbulent flow.
Homogeneous turbulence is represented with both forced homogeneous turbulence at Rey = 233
and decay of homogeneous turbulence at an initial Rey = 233. These two simulations are considered
to be two parts of one flow problem. First, turbulence is created and sustained through forcing,

then the forcing is removed and the turbulence is allowed to decay. This approach to modeling
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homogeneous turbulence is taken here since it reflects the conditions under which turbulence is
experienced in flows of engineering interest, where regions of homogeneous turbulence are generated
upstream by some mechanism.

Results for the forced and decaying homongeneous turbulence problems using the VMS and
RBEV models are compared with results using no model (under-resolved DNS) and the classical
Smagorinsky model. Transitional flow is represented with Taylor-Green vortex flow at Re = 1600
and wall-bounded turbulent flow is represented by turbulent channel flow at Re, = 395. The
classical Smagorinsky model is ill-suited for these last two problems, so results for the WALE,
Vreman, and Sigma models are also compared for these cases. For all the simulations which follow,
the following constants were used for their respective models: Cy; = 0.18, C,, = 0.325, C,, = 1.35.
These simulations were all performed using the software described in the previous section. For the
purpose of presenting results here, k and k; refer to the polynomial order to which the coarse- and

fine-scale velocity discrete spaces are complete.

7.2.1 Forced Homogeneous Turbulence at Re) = 233

The study of homogeneous turbulence allows for the study of the energy transfer from the
large scales to the small scales without any interference from any mechanisms such as wall damping
or energy input in intermediate scales. For these reasons, homogeneous turbulence has become
a fundamental flow for the study of turbulence. By adding a forcing which acts on the lowest
modes to homogeneous turbulence, it is possible to achieve a higher Reynolds number and to
gather longer statistics than what is possible for decaying homogeneous turbulence. As such, we
begin our evaluation of our proposed turbulence methodology with this problem. We consider
forced homogeneous turbulence at Taylor microscale Reynolds number Rey = 233. The domain
in physical space is ) = (277)3 with periodic boundary conditions in all directions. The kinematic
viscosity is set to v = flo in order to establish the Taylor microscale Reynolds number of Re = 233.

Forced homogeneous turbulence is simulated as specified in [11] by supplying a constant power
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input in the lowest modes. The forcing at a given time is given by

f(x)= 2E, U, exp (ik - x) , (1)
|ril <t g
K#£0

where ¢ = v/—1, P, = 62.8436001234 is the fixed power input,

1 L
E”f:§ Z Uk - Ug

P (7.2)
|ks| <k
K#0
is the kinetic energy contained in the lowest modes, and
N 1 h .
u, = — [ u”" (x)exp(—ik-x)dQ (7.3)
€2 Jo

are the Fourier coefficients of the velocity field. These Fourier coefficients 1, are computed for
each k that satisfies |x;| < kf,7 = 1,2,3 and Ky is chosen to be 3. Note that this specification of
the forcing inputs power into a box with dimensions defined by s in each direction, rather than
a sphere with radius kf, as was used in [101]. As such, the turbulence in the lowest modes is not
isotropic, although the structure of the highest and intermediate scales is unaffected. Also, this
alternative specification for the forcing leads to a higher Reynolds number than what is reported in
[11, 101]. The integrals in (7.3) are calculated using quadrature rather than fast Fourier transforms
because only a few modes are required.

The simulation is initialized to a random velocity field with zero fine-scale velocity and is
allowed to advance in time until the dissipation reaches equilibrium with the power input. The time
step used is At = 0.0125h, where h is the grid spacing. After the simulation reaches equilibrium,
data samples are collected for 15 eddy turnover times (Tett) with samples separated by 0.5T 4.
Velocity components are sampled at the knots. Forced homoegeneous turbulence at Rey = 233
was computed using the VMS and RBEV models presented earlier and compared to the classical
Smagorinsky eddy viscosity model.

The quantities of interest are the energy spectrum and the two-point third-order structure

function. The energy spectrum function E (k) is calculated as the integral of the velocity spectrum
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® (k) over the surface of a sphere of radius k = |K|:

_ [ 2(k) ®(K)
Emy_desm% (7.4)

where S (k) is the surface of the sphere and ® (k) is calculated as the Fourier transform of the
two-point velocity correlation [118].

The two-point third-order structure function is defined as

&@g:<@ﬂm+ryw%@»§, (7.5)

where u;(x) is a velocity component at a position a parallel to a relative displacement r. Here,
() implies ensemble average. In the inertial subrange, S3 scales like r for fully-developed, locally
isotropic turbulence [118]. Thus, a simulation which accurately represents the energy transfer in
the inertial subrange is accompanied by an accurate representation of Ss.

First, in order to provide an overall impression of the performance of all of the considered

™

models, the energy spectra for simulations with h = J,

k =2 and k;y = 1 are presented in Fig. 7.1.
This solution is intentionally under-resolved and thus serves as a representative case that allows the
performance of the various methods to be compared. The reference line represents the —g power
law. It is apparent that without any sort of subgrid-scale modeling, the solution suffers from energy
pileup in the higher modes. However, both of the dynamic models show great improvement over
the no-model case and demonstrate excellent agreement with the —% law in the inertial subrange
and through the cutoff wavenumber. Comparing the Smagorinsky model to the dynamic residual-
based models highlights the fact that the Smagorinsky model is overly dissipative for this case! . In
contrast to the dynamic residual-based models, the quasi-static methods suffer from energy pileup
and it appears that that neither of these models are very effective for this problem. This is due to

the small time step used, which is required to satisfy the CFL, but has the unfortunate effect of

rendering 7,5 too small such that the fine scales are not properly activated in the simulation.

! Tt is acknowledged that superior results for the Smagorinsky model can be achieved if a smaller C; is chosen,
however this would render the model under-dissipative for the second part of this simulation when the forcing is
turned off. This highlights the need for models that can respond dynamically to turbulence which varies in space and
time.
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Figure 7.1: Energy spectra for simulation of forced homogeneous turbulence with k = 2, ky = 1,

and h = {5 and reference line with —g slope. Comparison of subgrid-scale models (no model,

Smagorinsky LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-
RBEV), and dynamic RBEV (D-RBEV)).

We next present the two-point third-order structure function for the same simulation in Fig.
7.2. Only the Smagorinsky and dynamic residual-based models are presented since it is already
clear from the energy spectra that the quasi-static models are ineffective here. The results reinforce
what was observed in the energy spectra. Namely, we see that the dynamic residual-based models
properly capture the energy transfer in the inertial subrange, whereas the Smagorinsky model is

overly-dissipative.
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Figure 7.2: Two-point third-order structure function for simulation of forced homogeneous turbu-
lence with k = 2, ky = 1, and h = {;. Comparison of subgrid-scale models (Smagorinsky LES,
dynamic VMS (D-VMS), and dynamic RBEV (D-RBEV)).

The next set of results demonstrate consistency of the dynamic residual-based models with
respect to mesh refinement. In Fig. 7.3 the energy spectra for the dynamic VMS and dynamic
RBEV models are presented for k¥ = 2, ky = 1, and various mesh sizes. Both results show good
agreement with the DNS, although the dynamic VMS model is superior to the dynamic RBEV
model. Both dynamic models show some energy pileup for the coarsest mesh which goes away as
the mesh is refined. For h = {5 and smaller, the dynamic VMS accurately matches the DNS up
to the cutoff wavenumber. In contrast, the dynamic RBEV model shows some slight energy pileup

for h = {5 and is slightly over-diffuse, even for h = 5.
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Figure 7.3: Energy spectra for simulation of forced homogeneous turbulence under mesh refinement
with & = 2 and ky = 1 and reference line with —% slope.

Next, results for degree elevation of the basis are presented. In Fig. 7.4 the energy spectra for
the dynamic VMS and dynamic RBEV models are presented for h = {5 and various coarse-scale
and fine-scale polynomial orders. From these results, we can make two observations. The first
observation is that linear coarse scales are insufficient for the dynamic VMS model. It appears that
at least quadratics are required to get enough resolution for the subgrid-scale model to produce
the proper dissipation. In contrast, the eddy viscosity, and thus the dissipation, of the dynamic
RBEYV model is related only to the magnitude of the fine-scale velocity, so it is not sensitive to the
coarse-scale polynomial order. The second observation is that neither model is very sensitive to
the polynomial order of the fine scales. We obtain equally impressive results for £y = 1 as we do
for ky = 2. This is very encouraging, as it suggests that the model can be kept computationally

efficient by utilizing the lowest-order basis for the fine scales.
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Figure 7.4: Energy spectra for simulation of forced homogeneous turbulence under degree elevation

with h = { and reference line with —% slope.

7.2.2 Decay of Homogeneous Turbulence at Initial Re) = 233

We next present results for the decay of homogeneous turbulence. The problem is initialized
by running the forced homogeneous turbulence simulation previously described until the dissipation
reaches equilibrium with the power input. This ensures that the solution has fully-developed,
homogeneous turbulence with proper correlations in the coarse- and fine-scale velocity fields. At
this point, designated ¢ = 0 for this simulation, the forcing is turned off and the simulation is
advanced in time and allowed to naturally decay. The domain in physical space is €2 = (27r)3 with
periodic boundary conditions in all directions. The kinematic viscosity is set to v = ﬁ. The
time step used is At = 0.0125h, where h is the grid spacing. The solution is advanced for 4.46
seconds, during which time 28 data samples are taken. Velocity components are sampled at the
knots. The decay of homogeneous turbulence was computed using the VMS and RBEV models
presented earlier and compared to the classical Smagorinsky eddy viscosity model.

Only results for the dynamic residual-based models are presented here. Since quasi-static

models were determined to be ineffective for the forced homogeneous turbulence, they are not
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further explored here in the context of decaying homogeneous turbulence. Additionally, results
for the Smagorinsky model are not presented here, since it is already widely established that the
Smagorinsky model is well suited for decaying homogeneous turbulence? .

The energy spectra for the dynamic VMS model at both the initial time and a later stage
(t = 4.45) are presented in Fig. 7.5 for k = 1,2, ky = 1, and h = {;. Again, the reference line
represents the —g power law. It is clear that the model properly transfers energy from the large
scales to the small scales without any energy pileup. Even for £ = 1, where the model experienced
energy pileup for the forced homogeneous turbulence, here the energy is able to properly transfer

between scales and dissipate away. For this problem, unlike for the forced homogeneous turbulence,

it appears that the dynamic VMS method is effective even with £ = 1.
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(a) Initial time (¢t = 0) (b) Later time (t = 4.45)

Figure 7.5: Kinetic energy spectra for simulation of decaying homogeneous turbulence with varying

coarse-scale degrees, ky = 1, and h = {; and reference line with —% slope. Dynamic VMS model.

Next, the energy spectra for the dynamic RBEV model at both the initial time and a later
stage (t = 4.45) are presented in Fig. 7.6 for k = 1,2, ky = 1, and h = {i;. As was the case with the
dynamic VMS model, the dynamic RBEV model properly transfers energy from the large scales to

the small scales without any energy pileup.

2 The Smagorinsky model was constructed and tuned to perform well for this problem!
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Figure 7.6: Kinetic energy spectra for simulation of decaying homogeneous turbulence with varying
coarse-scale degrees, ky = 1, and h = {5 and reference line with —% slope. Dynamic RBEV model.

7.2.3

Taylor-Green Vortex at Re = 1600

Three-dimensional Taylor-Green vortex flow is one of the simplest systems in which to study

the generation of small scales through vortex stretching and the energy dissipation from the resulting

turbulence. The initial condition of Taylor-Green vortex flow is laminar and consists of purely two-

dimensional streamlines, but for all time ¢ > 0, the flow is three-dimensional. As the solution

is evolved in time, vortex stretching causes the generation of small-scale motion and eventual

transition into turbulence. The initial conditions for this flow are

up (xaya Z) =

sin (z) cos (y) cos (z)

—sin (z) sin (y) cos (2)

0

(7.6)

The initial condition can be visualized in Fig. 7.7. The flow is periodic in all three spatial

directions in the domain Q = (0, 27r)3 and, due to inherent symmetries in the flow, can be modeled

within a computational domain of Q" = (0,7r)3 with impermeable stress-free boundaries. At low

Reynolds numbers (Re < 400), the flow is anisotropic for all time, but as Reynolds number increases,
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the flow experiences increased isotropy [21].

Figure 7.7: Isosurfaces of enstrophy colored by z-component of vorticity for Taylor-Green Vortex
flow at t = Os

Taylor-Green vortex flow at Re = 1600 was simulated and results are presented here. The
simulation is initialized as in (7.6) and the simulation is advanced for 10 seconds, which is enough
time for the flow to develop and transition into fully turbulent flow. A time step size of At = 0.125h
is used in all simulations. The flow is solved using the VMS and RBEV models presented earlier
and are compared to the classical Smagorinsky, WALE, Vreman, and Sigma eddy viscosity models
and to Fourier-based DNS results using 256 modes [21, 133].

The quantities of interest are the time history of the kinetic energy and of the kinetic energy
dissipation rate, the Q-criterion, and the energy spectrum for the solution at the final time instance

of the simulation. The kinetic energy, E}, of the flow is given by

By (t) = é/QWdQ. (7.7)

The kinetic energy dissipation rate, €, can be computed as the time derivative of E}:

dEy
= =% 7.8
€ o (7.8)
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For incompressible flow, the kinetic energy dissipation rate is directly related to the enstrophy, e:
€ = 2ve, (7.9)

where the enstrophy is computed as

1 w-w
_ L [ew 1
. Q/Q ) (7.10)

where w = V x u is the vorticity. For LES, application of (7.9) to the resolved velocity field results
in the resolved dissipation rate. This represents the amount of kinetic energy dissipation that is
present in the coarse scales. The difference of the total dissipation rate and the resolved dissipation
rate allows for the calculation of the model dissipation rate, which gives a measure of how much
dissipation a particular subgrid scale model provides.

The Q-criterion represents the local balance between vorticity magnitude and shear strain
rate, and identifies vorticies as regions where the vorticity magnitude is greater than the magnitude

of the rate of strain. The Q-criterion is calculated as [91]

Q= (o8 - 1sP). (7.11)

where ;; = % (gg; — gzz>

Before presenting the results for the residual-based models, we first present a comparison
of classical eddy-viscosity models. First, the time histories of the kinetic energy is presented for
simulations with h = {%z and k = 2 in Fig. 7.8. All of the models appear to predict the same
time evolution of the kinetic energy, and actually demonstrate a decrease in performance from the
no-model baseline case. All of the models are overly dissipative, and depart from the DNS from

the very beginning of the simulation. This suggests that all of the models are active even at the

beginning of the simulation when the solution is purely laminar.
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Figure 7.8: Time history of kinetic energy for simulation of Taylor-Green vortex with k£ = 2 and

h = {5. Comparison of subgrid-scale models (no model, Smagorinsky, Sigma, Vreman, WALE with

DNS [21].

We now turn our attention to the total dissipation rate for the same set of simulations,
presented in Fig. 7.9. All of the eddy-viscosity models show roughly the same characteristics:
too much dissipation for all time, beginning at the onset of the simulation, a local maxima at the
midpoint of the simulation, and a prediction of the peak dissipation approximately one second
earlier than the DNS data. In all cases, the prediction with the model is further from the DNS
than the no-model baseline. It is clear that none of the operators used in these models properly

reduce the eddy viscosity in three-dimensional laminar flow.
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Figure 7.9: Time history of total dissipation rate for simulation of Taylor-Green vortex with k& = 2

and and h = {;. Comparison of subgrid-scale models (no model, Smagorinsky, Sigma, Vreman,

WALE with DNS [21].

We can further elucidate the various models’ response to turbulence production and transi-
tion by examining the resolved and model dissipation rates. The time histories of both of these
parameters for the same set of simulations are presented in Fig. 7.10. Between the four models,
there is not very much difference in the resolved dissipation. The model dissipation reflects the
same characterstics that were observed with the total dissipation. At ¢ = 0, all of the models have

non-zero model dissipation? .

3 Interestingly, these models all exhibit more model dissipation than resolved dissipation for almost all time.
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Figure 7.10: Time history of resolved and model dissipation for simulation of Taylor-Green vortex

with k& = 2 and h = {5. Comparison of subgrid-scale models (no model, Smagorinsky Sigma,
Vreman, WALE with DNS [21].

In the next set of results, we evaluate the performance of the residual-based models. Since
the Sigma, Vreman, and WALE models did not show marked improvement over the Smagorinsky
model, we have selected the Smagorinsky model as a representative eddy-viscosity model by which
to measure the residual-based models. First, the time histories of the kinetic energy is presented
for simulations with h = J¢, k = 2 and ky = 1 in Fig. 7.11. From the figure, it is clear that all of
the residual-based models outperform the Smagorinsky model. Furthermore, the dynamic models
are more accurate than the quasi-static models. Since the Smagorinsky model has no mechanism
to reduce the eddy viscosity in laminar flows, it departs from the DNS solution very early in the
simulation. All of the residual-based models depart from the DNS at roughly the same point in
time, later than the Smagorinsky model, indicating that in all four cases, the model is appropriately
“turned off” when the solution lacks subgrid-scale activity. Interestingly, at later times, both of
the quasi-static residual-based models become overly dissipative. Although both dynamic models
have lower kinetic energy than the DNS after the midpoint in the simulation, by the late times

both models match the DNS in terms of the dissipation rate.
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Figure 7.11: Time history of kinetic energy for simulation of Taylor-Green vortex with k£ = 2,
kf =1, and h = {5. Comparison of subgrid-scale models (no model, Smagorinsky LES, quasi-static
VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and dynamic RBEV
(D-RBEV)) with DNS [21].

We once again turn our attention to the total dissipation rate for the same set of simulations,
presented in Fig. 7.12. First, we observe that the quasi-static models are fairly ineffective and
do not show any improvement from the no-model baseline until after the time of peak dissipation.
After this point, the subgrid-scale activity has developed to the point that the coarse-scale residual
grows large enough for the quasi-static models to activate, despite the extremely low value of 74,
resulting from the small time step. The dynamic RBEV model shows much improvement over the
quasi-static models, but is overly dissipative for all time. The dynamic VMS model, on the other
hand, shows the closest agreement to the DNS for all time. The dynamic VMS model even predicts

the proper maximum total dissipation, although it arrives at this point in the simulation early.
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Figure 7.12: Time history of total dissipation rate for simulation of Taylor-Green vortex with k = 2,
ks =1, and h = {5. Comparison of subgrid-scale models (no model, Smagorinsky LES, quasi-static
VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and dynamic RBEV
(D-RBEV)) with DNS [21].

In order to better understand how these residual-based models respond to turbulence produc-
tion and transition, we again examine the resolved and model dissipation rates. The time histories
of both of these parameters for the same set of simulations are presented in Fig. 7.13. It is clear
that the quasi-static models are not activated until very late in the simulation, and even then they

produce very little modeling. The two dynamic models show similar performance.
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Figure 7.13: Time history of resolved and model dissipation for simulation of Taylor-Green vortex
with & = 2, ky = 1, and h = {5. Comparison of subgrid-scale models (no model, Smagorinsky

LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and
dynamic RBEV (D-RBEV)) with DNS [21].

In Fig. 7.14, we present the kinetic energy spectrum for the various models at the end time of
the simulation. This occurs shortly after the point of maximum dissipation, so the solution is fully
turbulent with structures encompassing the full range of turbulent scales present. The reference
line has a slope of —1.98, as reported in [21]. From the spectra, it is clear that the dynamic
models and the Smagorinsky model exhibit the expected energy cascade? . The quasi-static models

demonstrate some slight energy pileup in the higher modes.

4 At this point, the flow is essentially a “box of turbulence,” so the Smagorinsky model performs well. Note,
however, that it has lower energy overall due to its overly-dissipative nature at earlier times.
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Figure 7.14: Energy spectra for simulation of Taylor-Green vortex with k =2, ky =1, and h =
and reference line with —1.98 slope. Comparison of subgrid-scale models (no model, Smagorinsky
LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and
dynamic RBEV (D-RBEV)).

Another way to compare the performance of the models is to look at the character of the
vortical structures present in the various solutions. Contours of () = 1 colored by vorticity at a late
time shortly after the time of maximum dissipation (t = 9.57) for the Smagorinsky and dynamic
VMS models are compared in Fig. 7.15. Compared to the dynamic VMS model, the Smagorinsky
model damps out the smallest turbulent structures. Only the larger vortical structures, with
lower vorticity, remain. In contrast, the dynamic VMS model more accurately predicts turbulent

structures in the smallest length scales that can be represented on the mesh.
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Figure 7.15: Contours of () = 1 colored by vorticity for simulation of Taylor-Green votex with
k=2, k;=1,and h = {5. Comparison of Smagorinsky LES and dynamic VMS models.

We once again turn our attention to consistency of the residual-based models with respect
to mesh refinement and polynomial elevation. We limit our presentation in this regard to the
dynamic models since they demonstrated the best performance for the Taylor-Green vortex. First,
we examine consistency of the methods with respect to mesh refinement. In Fig. 7.16, the time
histories of the total, resolved, and model dissipation for the dynamic VMS and RBEV models are
presented for various mesh sizes. It is clear here that as the mesh is refined, the total dissipation
rate for both models converge to the DNS solution. This is accompanied by an appropriate increase
in the resolved dissipation rate as well as a corresponding decrease in the model dissipation rate. It
is also noted that the dynamic VMS model outperforms the dynamic RBEV model for both coarse

and fine meshes.
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Figure 7.16: Time history of total, resolved, and model dissipation for simulation of Taylor-Green
vortex under mesh refinement with £ = 2 and ky = 1.
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Now we demonstrate the effect of coarse- and fine-scale degree elevation. The time histories of
the total, resolved, and model dissipation for the dynamic VMS and RBEV models are presented for
various coarse- and fine-scale polynomial degrees in Fig. 7.17. The same trends that were observed
for homogeneous turbulence are seen here. First, the dynamic RBEV model shows effectiveness
with k£ = 1, while the dynamic VMS model shows improved results with k = 2 compared to k = 1.
Second, coarse-scale polynomial order is more influential in the results than fine-scale polynomial
order. For the dynamic RBEV model, there is essentially no difference observed for k; = 1 or
ky = 2, regardless of coarse-scale polynomial degree. For the dynamic VMS model, there is an
observable but minute improvement in the prediction by using a higher fine-scale order. However,

this effect is less pronounced as the coarse-scale order is elevated.
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Contours of () = 1 colored by vorticity are plotted alongside the magnitude of the fine
scale velocity for the dynamic VMS model in Fig. 7.18. Solutions at an early time (¢ = 0.25),
an intermediate time (¢ = 4.66) and a late time shortly after the time of maximum dissipation
(t = 9.57) are presented in order to provide a comparison of the character of the solutions during
various phases of transition from laminar to turbulent flow. It is clear that the fine scales grow in
amplitude as expected in regions where more small-scale turbulent structures develop and the fine
scale velocities remain low in amplitude where only large-scale structures that can be resolved by

the mesh are present.
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Figure 7.18: Q-criterion contours colored by vorticity and magnitude of fine scale velocity for
ud

simulation of Taylor-Green votex with k =2, ky = 1, and h = {5.
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Up until now, the quasi-static residual-based models have been demonstrated to be ineffective
as a result of the small time step used rendering 7,, so small as to essentially “turn off” the fine
scales in the model. In order to explore the possibility of eliminating the sensitivity of 75, to the time
step, we now consider the quasi-static VMS model using 7,4, defined using the alternate formulation
for 7yns given by (5.12). The total dissipation rate for the quasi-static VMS model using both
formulations of s is plotted in Fig. 7.19. Here, it is clear that the alternate formulation for 7y

has the effect of bringing the total dissipation rate closer to the DNS.
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Figure 7.19: Time history of total dissipation rate for simulation of Taylor-Green vortex with k = 2,
ky =1, and h = {5. Comparison of quasi-static VMS model using 7uns defined by (5.11) and by
(5.12) with DNS [21].

By examining the resolved and model dissipation rates for the two formulations of 7,5 (pre-
sented in Fig. 7.20), it is clear that the alternate formulation for 7,5 is effective in activating the

fine scales. The result is an increase in the model dissipation rate and a corresponding decrease in
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the resolved dissipation rate.
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Figure 7.20: Time history of resolved and model dissipation for simulation of Taylor-Green vortex

with k = 2, ky = 1, and h = {5. Comparison of quasi-static VMS model using 7yns defined by

(5.11) and by (5.12) with DNS [21].

In order to better evaluate the effectiveness of the quasi-static VMS model using the alternate
formulation for 7,,5, we now compare the results to those of the dynamic VMS model. The total
dissipation rate for the two models are compared in Fig. 7.21 and a comparison of the resolved and
model dissipations rates are presented in Fig. 7.22. From these figures, it is clear that the quasi-
static VMS model using the alternate formulation of 7,5 provides results similar to the dynamic

VMS model.



69

—DNS |
—QS-VMS
0.014 D-VMS ]

0.016

200.012|

1 |c~1
=
=

0.01 }

0.008 +

Dissipation rate (
e
o
ja]
(=2
T

Time (s)

Figure 7.21: Time history of total dissipation rate for simulation of Taylor-Green vortex with k = 2,

kr =1, and h = {5. Comparison of dynamic VMS model (D-VMS) and quasi-static VMS model

using Tups defined by (5.12) (QS-VMS) with DNS [21].
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Figure 7.22: Time history of resolved and model dissipation for simulation of Taylor-Green vortex
with & = 2, ky = 1, and h = {5. Comparison of dynamic VMS model (D-VMS) and quasi-static
VMS model using 7yns defined by (5.12) (QS-VMS) with DNS [21].

7.2.4 Turbulent Channel Flow at Re, = 395

The next numerical example is turbulent channel flow at Re; = 395, where Re, is the
Reynolds number based on the friction velocity and the channel half width. Near the regions of the
channel walls, the turbulence is damped as the velocity must necessarily go to zero at the wall. This
provides a challenging flow for classical LES models since the velocity gradients do not go to zero at
the wall. The simulation domain is rectangular with dimensions 27 x 2 x 2% in the streamwise, wall-
normal, and spanwise directions, respectively. In the streamwise and spanwise directions, periodic
boundary conditions are applied, and at the wall (y = +1), no-slip Dirichlet boundary conditions are
imposed such that the no-penetration condition is strongly enforced and the no-tangential velocity
condition is weakly enforced. Uniform grid spacing in the wall-normal direction is utilized (no
grid stretching) so that the weak boundary condition acts as a variationally-consistent wall model
[14]. The domain is illustrated in Fig. 7.23. The flow is driven by a constant pressure gradient,
fz, acting in the streamwise direction. In order to achieve a Reynolds number of Re, = 395, the

forcing is set to f, = 1.47200 x 10~% and the kinematic viscosity is set to v = 3.372040 x 1073.
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The solution is initialized with no mean streamwise flow and random fluctuations in all three
velocity components. A time step of At = 0.0125h, is used, where h; is the grid spacing in the
streamwise direction. The solution is advanced in time until the dissipation reaches equilibrium
with the pressure forcing. After this time, the solution is advanced for 10 flow-through times and
the velocity fields are sampled at the mesh knots every 0.5s. The flow is solved using the VMS
and RBEV models presented earlier and the statistics of interest are compared to the classical
Smagorinsky, WALE, Vreman, and Sigma eddy viscosity models and to DNS data of Moser et al.

using a semi-spectral simulation with 256 x 193 x 192x modes [106].

Figure 7.23: Setup for the turbulent channel flow problem.

The statistics of interest are the mean streamwise velocity, the root-mean-square velocity
fluctuations, and the Q-criterion. Given a discrete sampling of the velocity field, the root-mean-

square velocity fluctuation for a given velocity component u at a specified location in the field x is



72

calculated as

Upms (X) = \/:L Z (u(x,t) — (u (X)>)2, (7.12)

where n is the number of time samples of the velocity field. Statistics are obtained by averaging
the sampled velocity fields in the streamwise and spanwise directions as well as time. All results
are presented in non-dimensional wall units. The non-dimensional distance to the wall y* and the

non-dimensional velocity u™ are calculated as

yt = yZT, ut = 5 : (7.13)
T

where u, is the friction velocity and is calculated as

Tw
Ur = 4 —, 7.14
p (7.14)

where p is the fluid density and 7,, is the wall shear stress. When the no-slip boundary is strongly

enforced, the wall shear stress is calculated in the usual way:

ou
w — . 5 1
i} H <6y>y0 (7 5)

where p is the dynamic viscosity of the fluid. With weakly-enforced no-slip boundary conditions,
however, the effective wall shear stress is equal to the wall shear stress from (7.15) plus an additional
wall shear stress term that accounts for the possible non-zero velocity at the wall [64]. The effective

wall shear stress is then calculated as

Crlu(y =0)|

- (7.16)

Tw,eff = Tw +

As was done for the Taylor-Green vortex, we first present a comparison of classical eddy-
viscosity models. In Fig. 7.24, the mean streamwise velocity is presented for simulations with
k = 1 and 323 unstretched elements. The no-model baseline case under-predicts the mean flow,
but does a good job of capturing the right characteristics of the velocity profile (as indicated by
a correct matching of the slope of u™). None of the eddy-viscosity models predict the slope of

uT as accurately as the baseline case, although the WALE, Vreman, and Sigma models are all
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an improvement over the Smagorisnky model. The Vreman model is close in slope and value in
the channel center, but is overly dissipative near the wall. In contrast, the WALE, Sigma, and
Smagorinsky models are all overly dissipative in the channel center, with the Smagorinsky model

the most dissipative.
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Figure 7.24: Mean streamwise velocity for simulation of turbulent channel flow with £ = 1 and
323 unstretched elements. Comparison of subgrid-scale models (no model, Smagorinsky, Sigma,
Vreman, WALE, with DNS [106].

Next we examine the root-mean-square velocity fluctuations. Figure 7.25 presents the root-
mean-square velocity fluctuations for the streamwise, spanwise, and wall-normal velocity compo-
nents® . Here, the no-model baseline case provides the closest prediction for all of the velocity
fluctuations. The Vreman model once again is demonstrated to provide a reasonable match to the

DNS data in the channel center, but is overly dissipative near the wall. The WALE and Sigma

® The DNS data for the root-mean-square velocity fluctuations is recreated here by digitizing the plots from [11].
There, the curves do not show the oscillations present in the curves presented here. These oscillations are merely an
artifact of the digitzation process.
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models show somewhat better agreement, but still do not provide a very good match. For these

models, U, is over-predicted, v,.,,s is under-predicted, especially close to the wall, and w,.,,s does

not have the proper character.

almost all of the fluctuations in the flow.
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Figure 7.25: Root-mean-square velocity fluctuations for simulation of turbulent channel flow with
k =1 and 322 unstretched elements. Comparison of subgrid-scale models (no model, Smagorinsky,

Sigma, Vreman, WALE, with DNS [106].

Contours for ) = 0.1 colored by streamwise velocity for the four LES models are presented
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in Fig. 7.26. Similar characteristics that were observed from the root-mean-square velocity fluctu-
ations are also present here. Namely, it is once again clear that the Smagorinsky model is overly
dissipative, as the solution for this model damps out almost all of the vortical structures in the
flow. The Vreman model is also overly dissipative, supporting only large-scale vortical structures.
In contrast, the Sigma and WALE models support increasingly smaller turbulent structures. We
also see that all of the models have a higher peak centerline velocity than (u) = 1.1 as predicted

by the DNS [106].

15 15

Streamwise Velocity ()
Streamwise Velocity ()

(a) Contours of @ = 0.1. Smagorinsky model. (b) Contours of @ = 0.1. Sigma model.

15 15

Streamwise Velocity (2
Streamwise Velocity (2

(c) Contours of @ = 0.1. Vreman model. (d) Contours of @ = 0.1. WALE model.

Figure 7.26: Q-criterion contours colored by streamwise velocity for simulation of turbulent channel
flow with k = 1 and 323 unstretched elements. Comparison of subgrid-scale models (Smagorinsky,
Sigma, Vreman, and WALE).
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We now examine the performance of the residual-based models. First, the mean streamwise
velocity is presented for simulations with £ = 1, ky = 1, and 163 unstretched elements in Fig. 7.27.
Note that this mesh is even coarser than the mesh used to compare the eddy-viscosity models. Since
none of the eddy-viscosity models considered provided very accurate results using 32 unstretched
elements, it is certainly not expected that any of them will provide reasonable results for this mesh,
which is even coarser. However, the results for the Smagorinsky model are plotted alongside those
for the residual-based models in order to provide a point of reference. Also note that in the figure,
the data for the no-model baseline case is obscured by the data for the quasi-static residual-based
models. As has been the case for homogeneous turbulence and the Taylor-Green vortex, we see that
the quasi-static models using the classical definition for 745 are rendered ineffective due to the small
time step required to respect the CFL condition. The dynamic VMS model is shown once again to
be ineffective for £ = 1, whereas the dynamic RBEV model shows marked improvement over the
baseline case. Although the dynamic RBEV model provides the most accurate approximation of
the mean streamwise velocity in the center of the channel, closer to the wall it is overly dissipative
and the entire velocity curve for this model has the wrong curvature. Considering how poor the
classical eddy-viscosity models performed on the finer mesh, it is remarkable that the residual-based

eddy-viscosity model performs so well for this problem.
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Figure 7.27: Mean streamwise velocity for simulation of turbulent channel flow with k = 1, k; =
1, and 16% unstretched elements. Comparison of subgrid-scale models (no model, Smagorinsky
LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and
dynamic RBEV (D-RBEV)) with DNS [106].

Next we examine the root-mean-square velocity fluctuations. Figure 7.28 presents the root-
mean-square velocity fluctuations for the streamwise, spanwise, and wall-normal velocity compo-
nents. From these figures, we observe that the dynamic RBEV model is overly dissipative, as
the velocity fluctuations are reduced much too aggressively near the wall, and the overall shape
of the fluctuation curves have the wrong character. The dynamic VMS model seems to show an
improvement in the wall-normal velocity fluctuations near the middle of the channel, but the so-
lution diverges closer to the wall. This suggests that, although the dynamic VMS model did not
affect the mean-flow prediction much, it is activated to some degree in providing some subgrid-scale

modeling.
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Figure 7.28: Root-mean-square velocity fluctuations for simulation of turbulent channel flow with
k=1, k=1, and 163 unstretched elements. Comparison of subgrid-scale models (no model,
Smagorinsky LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-
RBEV), and dynamic RBEV (D-RBEV)) with DNS [106].

Next, the mean streamwise velocity is presented for simulations with k& = 2, k; = 1, and
163 unstretched elements in Fig. 7.29. Compared to the k& = 1 case, we observe that that no-
model baseline case shows closer agreement to the DNS case. However, the quasi-static models are
still rendered ineffective due to the small time step. Likewise, the Smagorinsky model does not

show much, if any, improvement. In contrast, both of the dynamic residual-based models perform
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admirably. Although the dynamic RBEV model provides the most accurate approximation of the
mean streamwise velocity in the center of the channel, closer to the wall it is overly dissipative and
the entire velocity curve for this model has the wrong curvature. In contrast, the dynamic VMS
model has the correct slope and curvature except for very close to the wall, although it slightly

under-predicts the mean velocity.
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Figure 7.29: Mean streamwise velocity for simulation of turbulent channel flow with k = 2, k; =
1, and 16% unstretched elements. Comparison of subgrid-scale models (no model, Smagorinsky
LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-RBEV), and
dynamic RBEV (D-RBEV)) with DNS [106].

We now turn our attention to the root-mean-square velocity fluctuations. Figure 7.30 presents
the root-mean-square velocity fluctuations for the streamwise, spanwise, and wall-normal velocity
components. From these figures, we observe that the dynamic VMS model provides the best
prediction of the streamwise and spanwise fluctuations. The dynamic RBEV model does not show

much improvement in the prediction of the root-mean-square velocity fluctuations and continues



to be overly dissipative, especially close to the wall.
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Figure 7.30: Root-mean-square velocity fluctuations for simulation of turbulent channel flow with

300

400

k=2 k=1, and 163 unstretched elements. Comparison of subgrid-scale models (no model,

Smagorinsky LES, quasi-static VMS (QS-VMS), dynamic VMS (D-VMS), quasi-static RBEV (QS-

RBEV), and dynamic RBEV (D-RBEV)) with DNS [106].

Finally, contours for Q = 0.1 colored by streamwise velocity for the dynamic residual-based
models are presented in Fig. 7.31. From the figure we see that the dynamic RBEV model is more
dissiptative than the dynamic VMS model. We also observe that the dynamic VMS model has

a lower peak centerline velocity and higher streamwise velocity gradient near the wall than the
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dynamic RBEV model.
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Figure 7.31: Q-criterion contours colored by streamwise velocity for simulation of turbulent channel
flow with k = 2, ky = 1, and 163 unstretched elements. Comparison of subgrid-scale models

(dynamic VMS and dynamic RBEV).



Chapter s

Variational Multiscale Modeling with Discontinuous Subscales for

Scalar Transport

Recall that the primary challenge in the variational multiscale method is determining the
fine-scale component in terms of the coarse-scale component. Namely, the problem governing the
behavior of the fine-scales is infinite-dimensional and nearly as difficult to solve as the original
problem of interest. Consequently, in practice, the fine-scale problem must be approximated. The
simplest approximations are based on algebraic models which express the fine-scale component
in terms of an algebraic expression of the coarse-scale residual. In fact, classical stabilization
approaches such as the streamline upwind Petrov Galerkin (SUPG) method [32], the Galerkin Least
Squares (GLS) method [83, 84], and the Douglas-Wang method [55] may be viewed as algebraic
models. While these models have proven to be quite successful in capturing the mean effect of the
unresolved fine-scales on coarse-scale behavior, they typically are unable to account for higher-order
moments of fine-scale components [38]. For example, it has been shown that algebraic models yield
inaccurate representations of the subgrid stress tensor for turbulent incompressible flows [138].

A more accurate approximation of the fine-scale problem may be obtained using differential
models wherein a model differential equation is solved for the fine-scale component. Perhaps the
simplest differential model is the method of residual-free bubbles [24, 30, 25, 29, 122]. In this
approach, the fine-scale solution space is approximated by the space of bubbles over each element.

This yields an element-wise problem which can then be solved for the fine-scale solution field over
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the element. It should be noted that these element-wise problems are still infinite-dimensional,
so they must in turn be solved using a numerical method. Moreover, the fine-scale solution over
each element exhibits multiscale features including the presence of boundary layers over element
boundaries, so any proposed method must be able to account for such features. In prior work,
researchers have turned to Galerkin’s method to solve these problems with either (i) polynomial
bubble functions and subgrid viscosity [27, 72] or (ii) piecewise polynomial functions over Shiskin
submeshes [28, 26]. The first approach leads to a simple implementation, though the exact value
of the required subgrid viscosity is problem-dependent and polynomial bubble functions are unable
to accurately represent layers. The second approach leads to a more complex implementation, but
it is better able to accurately capture boundary layer phenomena.

In this chapter, we examine an alternative approach, which we refer to henceforth as the
method of discontinuous subscales, in which the fine-scales in the method of residual-free bubbles
are approximated element-wise using a discontinuous Galerkin method [4]. As the discontinuous
subscales are not required to meet the residual-free bubble boundary conditions in a strong sense,
they are able to represent layers without resorting to a complicated submesh. Herein, we employ
the symmetric interior penalty method to approximate diffusive fluxes and the upwind method to
approximate advective fluxes on element boundaries in the element-wise fine-scale problems [3, 127].
This yields a stable methodology for transport and incompressible fluid flow even in the advective
limit, though it should be mentioned that alternative discontinuous Galerkin methods may be em-
ployed [41, 42, 108]. To examine the effectiveness of the method of discontinuous subscales, we
conduct a theoretical stability and convergence analysis of the method as applied to the scalar
transport problem. Though the scalar transport problem is linear, it exhibits multiscale behavior
in the form of boundary and internal layers and thus serves as a simplified vehicle to study the more
complicated Navier-Stokes equations. Through our analysis, we find that the method of discontin-
uous subscales exhibits optimal convergence rates and is robust with respect to the Péclet number
if the discontinuous subscale approximation space is sufficiently rich. We further explicitly identify

the required richness in the context of affine finite elements. We finish this chapter by applying
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the method to isogeometric discretizations [81] of steady and unsteady transport problems. Our
motivation for examining isogeometric discretizations is that they exhibit improved stability and
accuracy properties as compared with classical finite elements when applied to difficult transport
[13], laminar and turbulent fluid flow [11, 61, 63, 132], and fluid-structure interaction [12] applica-
tions. Surprisingly, we find that the method of discontinuous subscales is stable and accurate in
the advective limit even when lowest-order discontinuous subscale approximations are employed as
a companion fine-scale model for an isogeometric discretization.

It should be mentioned that the method of discontinuous subscales is related to many other
multiscale methods in the literature, and in particular, it is closely aligned with the discontinu-
ous residual-free bubble method of Sangalli [123], the multiscale discontinuous Galerkin method of
Hughes et al. [18, 34, 90], and the parameter-free variational multiscale method of Cottrell [48]. In
the discontinuous residual-free bubble method, one also employs a discontinuous Galerkin method
to approximate fine-scale solution behavior, though alternative boundary conditions are employed
at the element boundaries. Moreover, no theoretical stability or convergence results exist for the
method. In the multiscale discontinuous Galerkin method, variational multiscale analysis and an
interscale transfer operator are employed to essentially reduce the computational complexity of a
discontinuous Galerkin method to that of a continuous Galerkin method. While the multiscale dis-
continuous Galerkin method has a firm theoretical foundation, it is fairly difficult to implement, and
it is not possible to employ different polynomial degrees for the coarse- and fine-scale components
in the method. The parameter-free variational multiscale method is perhaps most closely aligned
with the method of discontinuous subscales. In this approach, the discontinuous Galerkin method
is employed to approximate the so-called fine-scale Green’s function as opposed to the residual-
free bubble directly. No theoretical stability or convergence results exist for the parameter-free
variational multiscale method, though we believe that the analysis carried out here can be easily
extended to this approach.

In this chapter we first provide an overview of the scalar transport problem, and then we

introduce the method of residual-free bubbles and the method of discontinuous subscales. We next
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present a theoretical analysis of the method of discontinuous subscales and we apply the method to a
selection of steady and unsteady scalar transport problems. Finally, we present a pair of differential

VMS models for the simulation of turbulent flows using divergence-conforming discretizations.

8.1 The Governing Equations of Scalar Transport

We limit our discussion in this chapter to the scalar transport problem, also referred to as the
advection-diffusion or drift-diffusion problem in the literature. Though we consider both steady and
unsteady transport throughout, we only state the strong and weak forms of the unsteady problem
here as the corresponding forms for the steady problem are implied. With the above in mind, the
strong form of the unsteady scalar transport problem reads as follows: Find u :  x [0,T) — R

such that

%+a.w_v.(wu):f in Q % (0,7)

u=g onlpx(0,T)
kVu-n=h onTyx(0,T)
U = U in Q x {0}
where Q C R? is the spatial domain of the problem, d is the number of spatial dimensions, I" is the
boundary of the domain, I'p is the Dirichlet part of the boundary, I'y is the Neumann part of the
boundary, n is the unit outward boundary normal,  is the scalar being transported, a : Q — R? is
the advective velocity, k : © — R is the diffusivity, f : Q@ — R is the applied forcing, g : I'p — R
is the prescribed Dirichlet data, h : I'y — R is the prescribed Neumann data, and ug : 2 — R is
the prescribed initial data. In order for the scalar transport problem to be well-posed, we require
that I =T'p NIy and that a, = a-n > 0 on I'y. Note that to simplify our presentation, we have
assumed that the advective velocity, diffusivity, forcing, and prescribed data are all independent of
time. We further assume throughout that these quantities are all smooth and that the advective
velocity is divergence-free.

To establish a weak form of the unsteady scalar transport problem, we must first define a
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test space and set of trial functions. With this in mind, let
Vi={ve H (Q):vp,=0} (8.2)

and

S:={uec H'(Q) : ulr,= g} (8.3)

denote the time-instantaneous test space and set of trial functions, respectively, where H! (Q) is the
Sobolev space of square-integrable functions with square-integrable derivatives. We further define

the space-time set of trial functions as
S = C([0,T]; 5) (8.4)
which is the set of continuous functions u : [0,7] — S with:

t .
ma [u(®) | @) < o0

The weak form of the unsteady advection-diffusion problem then reads as follows: Find u € Sp

such that u(-,0) = ug(-) and:

8uv—/ua‘Vv#—//<cVu'Vv+/ anuv:/fv—i—/ hv (8.5)
o Ot Q Q Ty Q Ty

for all v € V and almost every ¢t € (0,7"). It is well-known that the strong and weak forms of the
advection-diffusion problem admit a unique solution that depends smoothly on the prescribed data
[65].

To simplify our later discussion, we define the following operator:

EAD::;—Fa-V—V%V (8.6)

Note that £ 4p is precisely the differential operator associated with the unsteady scalar transport

problem.
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8.2 Residual-Free Bubbles and the Method of Discontinuous

Subscales

Now that we have defined the governing equations for scalar transport, we are ready to present
the method of discontinuous subscales. Before doing so, however, we first review the residual-free

bubble method.

8.2.1 Differential Fine-scale Modeling with Residual-free Bubbles

Assume that we have a decomposition of the spatial domain into a mesh of elements M =
{Qk }jeL, satisfying UrQx = Q. We associate the decomposition with the finite element mesh in
the finite element setting, and we associate the decomposition with the Bézier mesh in the context
of isogeometric analysis [19]. In the residual-free bubble approach [24, 30, 25|, we simply replace
the fine-scale test space and set of trial functions in the variational multiscale method by the space

of H'-conforming bubbles over each element:
Vibbie = Shuppie = {v € V 1 v € Hj(Q) for each element Qi C Q} . (8.7)

Since the functions in Vj ;. and S} ;. are zero-valued on the boundary of each element, the
fine-scale problem applies element-by-element. Thus, we have
O (u+u
H)v’—/ (a—i-u’)a-Vv'—l—/ KV (i +u) - Vo' = o' (8.8)
QK at QK QK QK
for every v' € H} (k) and each element Qi C Q. By integration-by-parts, the above implies the

following element-wise problem:
Lapuy = Res (2) in Qf
(8.9)
uy =0on Tk,
where v} = u/|q, and 'k is the boundary of the element Q. Residual-free bubbles are defined
as the functions v/, which satisfy the above problem strongly.

Note that the governing equations for the residual-free bubbles are still infinite-dimensional.

While these equations are easier to solve than the fine-scale problem associated with the variational
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multiscale method, they are still nearly as difficult to solve as the original scalar transport problem.
Thus, in practice, one must turn to a numerical method to approximate the residual-free bubbles.
Additionally, the residual-free bubbles exhibit multiscale behavior such as boundary layers, so
any method must be able to account for such behavior. As previously mentioned, a number of
approaches have been proposed in prior work based on the continuous Galerkin method. While
these approaches have been shown to be closely related to the SUPG method, they exhibit complex
features such as problem-dependent subgrid diffusivity [27] or advection-aligned Shishkin subgrid
meshes [26] in order to overcome the advective instabilities associated with the continuous Galerkin
method and to account for the multiscale features in the residual-free bubbles. We instead turn to

another means of approximating the residual-free bubbles in the next subsection.

8.2.2 Approximation of the Residual-free Bubbles with Discontinuous Subscales

Recall that the residual-free bubbles exhibit the same sorts of multiscale phenomena as the
solution to the scalar transport problem, including boundary layers along element boundaries. This
inspires us to weaken the enforcement of element-wise homogeneous Dirichlet boundary conditions
via a discontinuous Galerkin methodology. We refer to this approach as the method of discontinu-
ous subscales as the corresponding residual-free bubble approximations are discontinuous between
adjacent elements.

To set the stage, we need to first define a finite-dimensional test space and set of trial functions
for the discontinuous subscales. As with the method of residual-free bubbles, these two sets collapse
to the same space, and we simply require that the test and trial functions are H'-conforming over
each element. We denote the discontinuous subscale approximation space over element Qx as

Vi se. K = S;h sek C H' (Q) and the approximation space over the entire domain as
Viise = Siise = {v € L*() : v|q, € Viise.xc for every Qg € M}, (8.10)

There are many potential candidates for the discontinuous subscale approximation space, and we

consider polynomial basis functions of a particular degree later in this paper.
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It remains now to discretize the governing residual-free bubble equation using our discon-
tinuous subscale approximation space. We turn to a discontinuous Galerkin method in which the
symmetric interior penalty method is employed to approximate the diffusive fluxes on element
boundaries and the upwind method is employed to approximate the advective fluxes on element
boundaries [127]. This approach is known to be stable even in the advective limit, and it results in

the following element-wise problem

8 !
uv'—/ u'a-Vv’—i—/ &V - Vo'
Q Ot Qs Qs

Cpenk
—|—/ u'v'al — / kVu' - nv' — / u'kVV - m+ / Pl = Res (u) v’

)-i-

(8.11)
for every v’ € Véisc’K where ;) = (a-n)" = max{a-n,0}. Above, hk indicates a measure of the
size of element Qi (e.g., hx could be the diameter of the smallest ball encompassing the element),
and Cpen, > 0 is a stabilization parameter that must be specifically chosen such that the resulting
methodology is stable. It should be noted that the exact value of the stabilization parameter should
depend on both the coarse-scale and discontinuous subscale approximation spaces, and we discuss
how to choose the stabilization parameter in the next section.

At this juncture, we have arrived at a fully specified method. However, we should highlight
a few modifications that yield a more robust and streamlined methodology. First of all, we have
found that the optional inclusion of an artificial diffusivity k4 in the subscale governing equation
generally improves stability as well as the conditioning of the resulting linear system. Guidelines
for how to choose the artificial diffusivity are provided in the next section. Second of all, we have
found that neglecting the influence of the subscale solution field in the unsteady and diffusive terms
appearing in the coarse-scale governing equation also improves stability. It should be mentioned
that these terms also vanish if the projection operator is specially chosen as observed in previous
works [89]. Finally, one may choose to ignore the time-history of the subscale solution field by
removing the time-derivative of the subscales appearing in the subscale governing equation. This
approach, which we refer to as the quasi-static model, leads to a simpler implementation than the

corrresponding dynamic model. However, both the dynamic and quasi-static models exhibit nearly
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the same computational cost. It should be noted that the dynamic and quasi-static labels are

inspired by the Dynamic Subscales (DSS) and Quasi-Static Subscales (QSS) methods of Codina et

al. [43], though the DSS and QSS methods do not attempt to solve for the residual-free bubbles.
Collecting all of our governing equations together, we obtain the following:

Coarse-scale Governing Equation:

auv—/(u—i-u’)a-Vv—F//iVu'Vv—i-/ anuv:/fv+/ hv
o Ot Q Q 'y Q T'n

forallo eV

(8.12)

Dynamic Discontinuous Subscale Model:

o’

U’—/ u’a-Vv'+/ (k + Kart) V' - V'
Q, Ot Qx Qx

Cpenk
+/ u'val — / kVu' - nov' — / u'kVV - m+ / P = Res (1) v’
I'i IS ' g hK Qx

for all v’ € V. and Qi € M
(8.13)

Quasi-static Discontinuous Subscale Model:

/ va- Vv + / (K + Kart) V' - V' - m
QK QK

Cpenk
+/ u'v'al —/ kVu' - nv —/ u'kV' n+/ Py = Res (1) v/

for all v’ € V4. i and Qi € M
(8.14)

The governing semi-discrete equations may be discretized in time using any particular time-
integrator of interest, yielding a linear system to be solved at each time-step. Note that in both the
dynamic and quasi-static discontinuous subscale models, the subscale solution fields on each element
are decoupled. Consequently, an element-wise static condensation procedure can be employed to
remove the subscale degrees-of-freedom from the discrete system at each time-step, yielding a
reduced linear system for the coarse-scale solution field [140]. Moreover, as the subscale solution
fields on each element are decoupled, this reduced linear system has exactly the same sparsity

pattern as that associated with either Galerkin’s method or the SUPG method.
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8.3 Analysis of the Method of Discontinuous Subscales

Now that we have presented our methodology for solving the scalar transport problem, we establish
stability and convergence results. To simplify exposition, we deal solely with the steady advection-
diffusion problem with homogeneous Dirichlet boundary conditions. With this in mind, let us define
the group vector space V" = Vx V. the group variables U" = (u,v/) € V" and V"' = (3,v") € V",

the group bilinear form

B (Uh,vh) = B(a,v) + O, v) + C'(a,v)) + B'(u/,v) (8.15)
where
B(u,v) = /ua-Ver/nVu-vv
Q Q
Nel
CW,v) = —Z/ u'a- Vv
K=17%K
Tel
C'(u,v') = Z / v (a-Vu—V - (kVa))
K=1"9K
Tlel
B'(Wv) = Z <—/ u'a-Vv'—i—/ (K + Kart) Vu'-Vv'+/ u'v'al

Chenk
—/ kVU - nv' — / WKrVY -n 4 / PR )
I'x 'k 'k hK

and the group linear form

L (wh) = L(3) + L'(v) (8.16)
where
L(v) = fo
Q
L/(Ul) _ f’Ul
Q

With the above notation established, our discrete problem is as follows: Find U” € V" such that
for all Vi € VA

B (Uhjvh) - L (Vh) . (8.17)
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Throughout, we assume that V is a finite-dimensional space of continuous piecewise polynomial or
tensor-product polynomial functions of degree k defined over a given mesh M of simplices (triangles
and tetrahedra) or parallelotopes (quadrilaterals and hexahedra). We also assume that V). is a
finite dimensional-space of discontinuous piecewise polynomial or tensor-product polynomials of
degree k; defined over the same mesh M. While our analysis only strictly covers the setting of
affinely-mapped finite elements, it easily extends to the more general settings of curvilinear finite
elements and isogeometric analysis.

Throughout this section, we make use of the classical Lebesgue spaces L4(D) endowed with
the norm ||| ¢(p) where 1 < ¢ < oo and D C R? is a generic open domain for integer d > 1. We
will also utilize the Sobolev spaces W#4(D) for k a non-negative integer and 1 < ¢ < oo, endowed

with the norm

aa aa 9 1/2
1 d
a+...+aq<k 1 d L1(D)
and semi-norm
aa 8a 9 1/2
1 d
|u‘k,q,D = Z agjal e WU (819)
ar+..+ag=k 1 d L1(D)

In the setting when ¢ = 2, the Sobolev spaces W#4(D) become H¥(D) and we use the simplified

notation ||||x.p= |||

k2,0 and ||y p= ||k,2,p. Sobolev norms are defined over boundaries of open
domains in an analogous manner.

To proceed forward, we must make certain assumptions regarding the form of the penalty
constant Cpep, and the artificial diffusivity xqr¢. In particular, we assume the following:
Assumption 1: The penalty constant Cpe, satisfies Cpen, > 8Cirace Where Cirgee > 0 15 a suffi-

ciently large positive constant such that

_ Cy _ _ Ctrace |
ol S ol o 9 nl < S ol 0,
Ctrace Ct'race

2 2 2 2
V1€ 2 e and V0 ml, < S

for every v € V, v/ € V)., and element Qi € M.
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Assumption 2: The artificial diffusivity ket takes the form

llallo,c0.0x Cinv“}>1 2
Kart = C, max T a
art art < { hK ) h%( ” Hoo,QK

where Cgre > 0 is an arbitrary non-negative constant and Cin, > 0 is a sufficiently large positive

constant such that

Cim; Cim;

_ _ _ 12

|U|%,QK— hTHU |(2),QK and ||AUH(2),QK§ hT\Uh,QK
K K

|U/|%,QK§ %HU/H%,QK and ||AU/||3,QK§ hZTm|U/’1,QK
K K

for every v € V, v' € V)., and element Qi € M.
One can readily find the trace and inverse constants associated with Assumptions 1 and 2 by solving
element-wise eigenproblems. Alternatively, explicit bounds for these constants are available both
in the setting of finite elements and isogeometric analysis [13, 60, 74, 139].

The following result shows that the group bilinear form is coercive, and hence the group

variable solution is unique.

Theorem 8.3.1 The coercivity result

1 B el Chenk
B<vh,vh>z4<n|v|ig+2 (54 om0+ Hv’H%,rK+Ha}/2v’\|3,rK>)
K=1

holds for all V* € V" provided Assumption 1 is satisfied.

Proof For the coarse-scale bilinear form, we evaluate

B(v,0) = /@a-V@+/nVﬁ-V@
Q Q
1
— _/ iv. (afﬂ) +"5|@‘%,ﬂ (by the product rule)
Q

= /-{|17|%’Q. (by the divergence theorem) (8.20)
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Similarly, for the fine-scale bilinear form, we evaluate

Nel
B'(v',v) = Z (—/ v'a~Vv/—i—/ (K + Kart) Vv"Vv/—i—/ vv'al
K—1 Qk Qk IV
C
—/ /{Vv'-nvl—/ v'va'-’rH—/ penHv'v')
Tk Tk rr MK
el
Cpenk
= > (Bt mar) [V g+ 10 1 1
K=1 hic
1 N2 + (.2 ! /
— fV-(a(v))—l— an(v) -2 kVU - nv
Q 2 'k 'k
Nel
Cpenk
= > B+ mard) VR e 2= 101G 1
K=1 I

1
e @ [ty -2 [ wveaw)
FK2 'k Tk
Ne )
Brctylol e -2 [ w9 n) .
'k

(8.21)

Cpenk
= Y (e war) B+
K=1 K

For the bilinear forms coupling the coarse-scales and fine-scales, we evaluate

el
O, )+ C'E0) = =Y / VY - (kYD)

K=179xK

el

= Y (/QK mVﬁ-Vu’/FK fiVTwnv'). (8.22)

K=1

To continue, we recognize that, for every element Qx € M,

/ &V - n’
Ik

by Young’s inequality, and

/ &V - nd
Ik

by the trace inequality. By a similar argument, we have

/ kVD - nv
'k

for every element Qx € M. Finally, by Young’s inequality, we have

/ kVo - Vv
Qi

1 hK 4Ct7‘ace
< - v - n3 w|[o]|3
5 (G mlIV o+ S

1/1 4C;
<5 (o Rawt el B, ) (5.23)

1 /1 4C4
< 3 <4K,|U %,QK—I- h:ceﬂﬂv/

b (5.24)

1,
< 5 (’{|U|%,QK+KJ|U/|%,QK) (8.25)
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for every element Qg € M. Collecting our results contained in (8.20)-(8.25), we obtain

B(v,v) = &lvlig (8.26)
Nel C K
BO) 2 Y (0t rd) Bt T i 5020
K=1 K
1 4C,
e R ) (827
el

C(v',0) + C'(v,0) > —Z (KID3 0 51V 17 0y

1 _ 4CY
F el G i, ) (5.28)
The desired expression follows by adding the above inequalities and invoking Assumption 1. |

The coercivity result provided in Theorem 4.1 ensures that the group variable solution is
unique, but it does not ensure that the corresponding methodology is stable. In fact, note that in
the limit Kk — 0, the coercivity result suggests that the methodology loses control of the coarse-scale
solution entirely. However, we are able to show that the methodology satisfies a different notion of

stability, namely inf-sup stability, in this limit. To proceed forward, let us define the norm

Nel
Coonk
IVhE = m\vhmZ(mmm V'3 0.+ ;’f; 10|13 1 +lan/ 2o ’IIOFK)
Nel
1/2 _
+ZH PPl (a-V (0+0)) 3.0, (8.29)

for every V* € V" where P} is the L?-projector onto the space of discontinuous subscales Ve i

on element Qx € M and 7x is the element-wise constant

HaHO,oo,Q Cim)’f -1
T = C; <max{ I £ n

where C; > 0 is an arbitrary positive constant. With the above norm defined, we have the following

inf-sup stability result.

Theorem 8.3.2 The inf-sup stability result

h h
inf  sup B(UL V')

————>£>0
Urevh vy UM sV s
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holds provided Assumptions 1 and 2 are satisfied where 3 is a positive constant independent of the

problem parameters a and x and the mesh size h = maxg hi.

Proof Let U" = (@, 4/) be an arbitrary member of V. Tt suffices to show that there exists some

V" = (3,v") € V" such that B(U", V") > 8| U"||s||V"||s. In this direction, let 2’ € V), be defined

such that 2'|q, = Tk P) (a - V (@ + u')). Note that we have the following inequalities bounding the

element-wise L2-norm of 2’:

A

IN

IN

IN

IN

TK|a -V (71 + u’) llo.0x

T | al|0,00,0k |8 + U'|1,0x
Ot lallo.00.05 13+ llo.0x
CrC2 a + 0,0,

muv

-Gyl (|l

+Hw'llogx) »

the element-wise L?-norm of the gradient of 2’:

Kl/2’2/|17QK <

<

1/2
K202 R 2 oo

1/2 1/201/2

—1/2
2t 2 o

CH2| > Py (a- ¥ (@ + ) llogx,

again the element-wise L?-norm of the gradient of z’:

1/2

- K

= rCoV2CM2

< C2C2CM2 2P (0 (a4 o)) oo

1/2
art|z ’1 Qx S Hm/”t

F1/2 1/201/2]1,1”7_[;1/2 /

1/2;, -1
C'h{v hi HZ/HO,QK

art ~inv 'K ZHO,QK

’LTL’U

znv

z HO,QK

(8.30)

(8.31)

(8.32)



the element-wise L2-norm of the trace of 2’:

lar/22"lo,r

IN

IN

<

lal]

1/2

o2

trace

K

cl/

0,00, ||ZIHO,FK

i a0, I Pic (a- ¥ (2 +44)) oo

/20072

trace

201/2

0,00,Q2K

hic " lald g, I Pl (a- ¥ (54 0)) o

0,00,QK

trace||7_[1(/2p}( (a’ -V (ﬂ + u/)) ||0,QK7

again the element-wise L?-norm of the trace of 2’:

Cl/Qh—1/2/{1/2”Z/

pen' 'K

0,I'

<

— 7'[1</201/2C1/2 h}—(lﬁl/Z "7’;_(1/22/

IN

1/2 ~1/2 —-1,.1/2
Cpe/nctr/acehK K / HZ,HO,QK

pen ~'trace ‘0791(

CHR2CN R Con 21 P (@ V (W + ') lo.0

pen~'trace™~inv

and the element-wise L2-norm of the normal derivative trace of 2’:

1/2
hK/ KMV o, <

IN

IN

01/2 Rl/g

trace ‘Z/|1,QK

01/201/2 h;(llil/QHZI’ 0.0k

inv ~trace

12 2002 1 1j2y )2
TK Cim)ctracehK K ||7- z ||0,QK

CH2C2 PPl (a-V (a+d))

trace

0,0k -

We need one more inequality for 2’. Notably, observe:

||7'11(/277}( (a-VZ)

0,0

IN

IN

1
TK
o

1/2 ~1/2; 1
7—K/ Cm/th Ha’

TKC-1/2h;(1HG,

2la

07OO»QK ‘ Z/ | 1791(

1nv 0,00,k ||z/HOaQK

O,OO,QKHTKP}( (a -V (ﬂ + u')) HOVQK

0,00,k HTII(/Q,P}( (a -V (ﬂ + u,)) HO,QK

mu

CrC2 kPl (@ Y (1 + ) o

mu
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(8.33)

(8.34)

(8.35)

(8.36)

Let us define Z" = (0,2"). Note immediately that as a consequence of the above inequalities, the

following inequality holds:

1Z"(|s< C.|U"||s

(8.37)
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Cz = \/CT (1 + Ctrace + Ctracecpenc + CaTtCZTLU + C sz}) (838)

muv

We now seek a lower bound for the quantity B(U", Z"). We observe that

B(U" zh) =

B'(u, )+ C'(u,2)

Nel

Z <—/ v'a -V + / (k + Kart) V' - V2 + / u'Zat

K=1

C
—/ kVU - nz —/ WkVZ - n+/ penﬁu'z'

—i—/ "(a-Vu—V-(kVa)) >
Qg

Nel
Z(/ a-V (a+u) z'—i—/ (K + Kart) Vu' - V2
K—1 Qg Qx

- Cpenk
—/ u'za, — / kVu' -nz' — / u'kVzZ -n+ / P
I I I'x rx i

_ /Q A (Wa))) . (8.39)

We deal with each of the expressions appearing above one-by-one. First, we note that, by definition

/QKa.v(mU')z' - TK/QKa-V(ﬂ+u’)73}((a-V(ﬂ+u’))

= | *Pk (a-V (@+u)) |3 q,- (8.40)

For the next term, we have

/ kVu - V2
Qx

IN

MquQquLQK

< c&/%“%u'h,wu%% (a-V (a+u)) ook

H V2Pl (a-V (a+ ) ||3’9K> (8.41)

where 1 > 0 is an arbitrarily chosen positive number. In analogous fashion, we have

I —
/ u'Za,
'k

/ Kart VU - V2!
Qp

1/2 ~1/2 [ Kart V2, 1/2 —
< OOl (R o+ 2Ird Pk @ ¥ (44) I )

(8.42)

1 i 2 i
< o, <273||a1/2 I r 5 I *Phc (a-V(HU'))II%nK)

(8.43)
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/ Cpenk
— Uz
rx hK

~1/2 —1/2 Cenl'i 12 =
< oo (29 1R p et Lkl *Ph (a9 (a4 w)) Ry )
2v4h K

(8.44)

where again 72,7v3,74 > 0 are arbitrarily chosen positive numbers. The remaining terms require

slightly more care. For the first remaining term, we have

/F VU -n| < (Cpeiﬂhl/z 1/2||vu’.n\|07pK) (C;f{g 1/2p~ 1/2Hz’||o,rK)
K
< (Ctl/fcecpew 1/2|U/|1,QK) (C]%(gg 1/2h_1/2||Z/HO,FK>
< (W) (Cpl2e 1/2h‘”2uz'uo,rK)
S CPROIC (G Rt I P o9 (144 i )
(8.45)

where v5 > 0 is another arbitrarily chosen positive number. For the second remaining term, we

have

IN

(Cplinhid "N lorc ) (Contl*nil2n 21Vl )

pen pen

Cpenk _
O (ot Wt S I P (0¥ (5+)) s

/ AV n‘
Ik

(8.46)

where v > 0 is yet another arbitrarily chosen positive number. For the last remaining term, we

integrate by parts, resulting in

/QK 2 (V- (kVa)) = _/QK KV - V2 +/ KV -1z (8.47)

Ik

The two terms on the right-hand-side are then easily bound as before, yielding the inequality

_ Ko _ _
[ 2@ | < o (Flaka P 1/2P;<(a-v(u+u'))||a,QK)
Qx Y7
“1/2 =12 K | _ 1/2 -
+OVOUOECL (il + B Py (a9 @+ ) o, )

(8.48)
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where 7 > 0,78 > 0 are two final arbitrarily chosen positive numbers. Collecting all of the above

inequalities, we obtain the composite inequality

Tel
B(U" 2" > C1 Y |1 * P (@ V (5+ ) [ o, —Canltli o

K=1

el Chenk

=3 ((€omt Cumard Wi + 05 il e ) (5.49)
K=1 K
wherein
1/2 1/2 1/2 1
Ci=1- 7; ((’)’1 + v6 + '77) + Ca/ Ozr{v Y2 + Ctr/ace'73 + C;e/'r%ctraéec v/ (74 +7s5 + 78))

Ci/Q C1/2C;e/gc—1/20—1/2

C — + trace nv
27 2y 278
1/2 1/2 41/2 ~—1/2 ~—1/2
_ CT / CT/ Cpénctraée C’mv/
Cs = +
2m 275
1/2 ~1/2 ~1/2
C _ CT/ Cm{t CW{U
= "
273
_ arauiae | o
Cs = +
274 276
1/2 ~1/2
C _ CT/ Ctr/ace
6 — 2 .
3

We now assume that ~; through ~g are chosen sufficiently small to guarantee that C; > 0. Note
that we can choose such constants independent of the problem parameters and the mesh size. This
choice in turn defines the constants C through Cg. We are now in a position to define a suitable

group test function Vi = (v,0") € Vi Namely, we select v = @ and v' = v/ + Cj;,2’ where
1 . 1
Clin = 3 2%11‘1;16 {Cz} ) (8.50)
Then, by Theorem 8.3.1 and (8.49), it follows that
B(U", V) > Chounal U"||% (8.51)
with

1
Chound = min {87 Clclin} (852)
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and
V< G| U" |1 (8.53)

with C, = 1 + Cy;,C,. Thus the desired condition holds with S = Chound/C» independent of the

problem parameters a and s and the mesh size h. |

We now introduce one more assumption. This assumption guarantees that our methodology
is at least as stable as the SUPG method for steady scalar transport, as is shown in Corollary 4.3.

Assumption 3: The following inequality holds for each element Qi € M.:

I7%a - 9 (54 ') By < Csura (Karlt Ry +HImk *Pic (- 7 (54 0)) 3.0y )

where Csypg > 0 is a positive constant independent of the problem parameters a and k and the

mesh size h.

Corollary 8.3.3 Provided Assumptions 1, 2, and 3 hold, the following inf-sup stability result is

satisfied:
B(U", vh)
inf  sup > Bsupa >0
Urevt yheyn ||[UM | supc|| V|| supe
where
Nel C
h
IV Bure = mrv|m+z(n+nm B ot L1 ek e )

Nel
/2, 2
+ Z & +') 8.0
for every V" € V" and Bsype is a positive constant independent of the problem parameters a and

x and the mesh size h.

There remains the question of whether or not we can expect Assumption 3 to be satisfied
for a given finite element discretization. The following lemma demonstrates that Assumption 3
is indeed satisfied if the discontinuous subscale solution space is sufficiently rich and the artificial

diffusivity is chosen in an intelligent manner.
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Lemma 8.3.4 Assumption 3 is satisfied provided that one of the following two conditions is sat-

isfied:
C1: It holds that a - V (v +v') € V,,, for every (v,v) € V™.

C2: It holds that a- Vv € V). for every v € V and Assumption 2 is satisfied with Cy,.¢ > 0.
Proof We write

I 2a -V (54 0) R o= 74P (a-V (0 + ) B o+l (T - Pk) (a- ¥V (5+2'))

2
0,.Qx
where 7 is the identity operator. If Condition C1 holds, it follows that

1/2

7™ (T = Px) (@~ V (0 4+)) 6.0, =0

and consequently the lemma is satisfied with Csypa = 1. If Condition C2 holds, we instead have

1/2

172 (T = Py) (a-V (0+0)) g, = |7 (T - Pk) (a- V)

‘2
0,25

< 7lla- VV'[[§ oy

< 7i|lal]o,00,0 [V

1,0xk-

As Assumption 2 is satisfied with Cg,; > 0, it follows that

1/2 _ C
I7* (Z = Pie) (- ¥ (0 4+0)) [0, < G rarelt' [0
art
and consequently the lemma is satisfied with Csype = max {1, CC; - } |

Suppose that the imposed velocity field is a polynomial function of degree q over each element
Qi € M. Then, for the case of a finite element mesh of simplices, we see that a- Vv is a polynomial
function of degree k+¢—1 over each element and a-Vv' is a polynomial function of degree ks +¢g—1
over each element. Consequently, if ky > p+ ¢ — 1 and ¢ < 1, then Condition C1 of Lemma 4.4
is satisfied, and if only ky > p + ¢ — 1 is satisfied but Cg+ is chosen to be a positive number,
then Condition C2 of Lemma 4.4 is satisfied. For a continuous piecewise linear finite element

discretization with discontinuous piecewise linear subscales, we see that Condition C1 of Lemma
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4.4 is satisfied for a piecewise linear velocity field. Alternately, for a continuous piecewise quadratic
finite element discretization with discontinuous piecewise linear subscales, we see that Condition C1
of Lemma 4.4 is satisfied for a piecewise constant velocity field. By enriching the subscale space to
discontinuous piecewise quadratic subscales, we find Condition C1 of Lemma 4.4 is satisfied again
for a piecewise linear velocity field.

Lemma 4.4 provides a general guideline for how to choose the polynomial degree of the
subscale space. Nonetheless, we have observed our methodology often returns accurate and stable
results even when the conditions of the lemma are not satisfied. In particular, we have observed our
methodology is stable if we employ smooth splines for our coarse-scale solution and discontinuous
piecewise bi-linear finite elements for our subscale solution. We anticipate that Lemma 4.4 holds
in this case, though such an analysis is beyond the scope of the current work.

Our final theorem demonstrates that our method exhibits optimal convergence rates with

respect to the SUPG norm provided Assumptions 1, 2, and 3 hold.

Theorem 8.3.5 Suppose that the exact solution satisfies the smoothness condition u € HP1((2)

and Assumptions 1, 2, and 3 hold. Then, the error E = (u — @, —u’) satisfies the a priori estimate

Nel

2p+1 2
IEpe< Capriors Y (lalloconnhi?™ +rhi2) [u2s o,
K=1

where Coypriori 18 @ positive constant independent of the problem parameters a and x and the mesh

size h.

Proof Let @ € V be an interpolation function which we will define later, and let us split the error
into two components, a method error defined as E" = (@ — u, —u') = (e, ¢') and an interpolation

error defined as § = (u — ,0) = (1,0). Our first objective is to bound the method error by the

interpolation error. By Corollary 4.3, we have that

B(E", V"
Bsupc|E"||supe<  sup ( )

A= ¥ (8.54)
vieyr |V |supa

Furthermore, it is readily shown that our method is consistent, that is, B(E, V") = 0, so we further
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have that

—B(n, V"
Bsupc|E"|supc< sup —Bn.VT)

. (8.55)
vieyr [V |supa

We now require a bound on the term B(n, V). Direct substitution results in
B(n, V") = B(n,v) + C'(n, /). (8.56)
We can bound the first term on the right hand side of (8.56) as

/ kKVn - Vo
Q

Nel
—1/2 1/2 _ _
<3 (HTK / nHOQK HTK/ a,-VUHOQK . \vymK>. (8.57)
K:l b b

|B(n,v)| < '/anVz‘z +

The second term on the right hand side of (8.56) requires more care. We first integrate by parts

to obtain
Nel
C) =Y [ vlaVn- V- (:vn)
K=1"9K
Nel
=3 (/ na-w’+/ nv’an+/ Wn-Vv’/ Wn-M')- (8.58)

To proceed, we require bounds for each of the four terms on the right hand side of (8.58). The first

and third terms are easily bounded as before, yielding

/QK na - Vu'| < HT;(UQUHO,QK HTll(/Za -V 0.0 (8.59)
/QK kVn -V | <k |77‘179K W’LQK ) (8.60)
Similarly, we can bound the second and fourth terms like
e <l e, o
/FK kVn-n'| <k ||Vn- nlor, HU/HO,FK . (8.62)

Collecting (8.56)-(8.62) and applying the Cauchy-Schwarz inequality, we obtain the composite

inequality

[B(n, V") - ~1/2 |2 2
IV*supe (2 QHTK n”ogk+2ﬁ|nll,gK+’
=1 )

) h 1/2
1/2 H UK o - 2 .
U Mo rg * Cpen IV nlor.
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Combining the above expression with (8.55), we finally obtain the method error bound

/@hK
0,k Cpen

1/2

o] 9n-nlr, ).

—1/2
IE" |2y pa </BSUPG <2H / HOQ - 2n
K
K=1
(8.63)

Now suppose we have chosen the interpolant % to be a “best” interpolant such that the following

local interpolation estimates hold for every element Qg € M:

05,0 < Conapehz 2 ul 1.0,

113 0 < Conapeh i [ulp i1 0,

105 e < Conapeh7? ™ ulps1 05
[V - "||(2),FK < Cshapehigil‘uﬁﬂ,m{

where Cipgpe > 0 is a positive constant independent of the mesh size but possibly dependent on

the mesh regularity and coarse-scale polynomial degree k [40]. It then follows that

~1/2 !
[, =7t Il
< Clypane O | Cinur | jopta), 12 4
S UshapeCr  Max h ) hQ K |u|p+1,QK (86)
K K
2 2
K |77‘1 QK < Cshape’{'h[?|u|z2)+17QK (865)
2
ot < laloesc il
< Cshdp@”a'HO,OO,QKh?Jrl’u|127+1,QK (8.66)
/ihK 2 — 2 2
T mlE e < Conape Coabl il (3.67)
pen

Combining (8.64)-(8.67) with the method error bound (8.63) yields

Nel

IE"|%0pe < Cinethod Z (
K=1

2p+1 2
2t nh,f) 21 0, (8.68)

where

—1/2
Cmethod - BSUPGCshape (2C =+ Cpen + 2)
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The interpolation error may be bounded in a similar manner, resulting in

Nel

HTIH%UPG < Cinterpolati(m Z (HaHO,oo,QKh%H_l + Hh%?) |u’12’+1791< (869)
K=1

where Cinterpolation > 0 is a positive constant independent of the mesh size but possibly depen-
dent on the mesh regularity and coarse-scale polynomial degree k. The desired result follows by

combining (8.68) and (8.69) with the decomposition E=E" + 7. |

Note remarkably that the error estimate characterized by Theorem 5.5 is completely inde-
pendent of the subscale polynomial degree. Consequently, the subscales act purely to stabilize the
coarse-scale solution and have virtually no impact on solution accuracy. This is one of the main
messages of the current work: it is possible to stabilize a high-order numerical method with a
low-order, but stable, numerical method.

It should also be remarked that while the constants appearing in all of the above estimates are
independent of the problem parameters a and x and the mesh size h, they are possibly dependent
on mesh regularity, the coarse-scale polynomial degree k, and the subscale polynomial degree kj.
A more delicate analysis is required to obtain dependencies with respect to these variables. This
would be useful, for instance, in the context of a boundary layer application wherein a highly skewed

mesh should be employed near solid boundaries.

8.4 Numerical Results

We finish this chapter by applying our methodology to a collection of two-dimensional steady
and unsteady transport problems. All of the following results were obtained by applying the method
of discontinuous subscales to isogeometric Non-Uniform Rational B-splines (NURBS) discretiza-
tions on uniform grids [81]. These discretizations employ CP~!-continuous piecewise tensor-product
polynomials or rational functions of degree k. For k = 1, isogeometric NURBS discretizations cor-
respond to standard bilinear finite elements, while for k > 1, isogeometric NURBS discretizations

exhibit enhanced continuity as compared to standard tensor-product finite elements. For more in-
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formation on NURBS-based isogeometric analysis, refer to [49]. Throughout, we used the following

values for Cpe, and Kgre:

Chen = 4 (ks +1)° (8.70)
and
hi |al
art — 8.71
fart = "6k, (8.71)

where kj is the subscale polynomial degree and hx is the mesh size for a given element Qx € M.
These are inspired by theoretical estimates for the trace and inverse constants associated with a
discontinuous subscale discretization [74, 139]. Note that these values are simpler than the ones

proposed in the previous section, but we have found that they still yield stable and accurate results.

8.4.1 Steady Manufactured Solution

We begin by considering a simple manufactured solution u (x,y) = sin (7z)sin (7y) to the
steady scalar transport problem. This solution is realized on the domain Q2 = [0, 1] x [0, 1] by setting

the velocity to a = (\/5/2, \/5/2), setting the forcing to

flx,y) = 7”2/5 (cos () sin (my) + sin (7x) cos (7y)) 4+ 72k (2sin (12) sin (7y)) (8.72)

and applying homogeneous Dirichlet boundary conditions along the entire domain boundary. To
ensure the problem is advection-dominated, the diffusion is set to k = 1076, The problem is then
characterized by the Péclet number Pe = % = 10% where L is the length of the domain. Numerical
solutions are calculated on grids of 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64, and 128 x 128
elements for coarse-scale polynomial degrees k = 1,2 and subscale polynomial degrees ky = 1,2.
The L?-norms of the error in the coarse-scale solution and the subscale solution are presented in
Fig. 8.1. We observe that both the coarse-scale and subscale solutions converge optimally under

mesh refinement.
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Figure 8.1: Convergence for steady manufactured solution for varying polynomial degrees.

8.4.2

Steady Advection Skew to the Mesh

We next consider the classical two-dimensional advection skew to mesh problem. This prob-

lem is graphically depicted in Fig. 8.2. The Péclet number for the problem is Pe = 108, so the

problem is advection-dominated. Throughout this subsection, we select 8 = 45°.

u=20
u=1
1=1/3

a = (cos 0, sin )
Ky = I(ESiJ
K=10%L=1

u=1

Figure 8.2: Problem setup for the two-dimensional advection skew to the mesh problem.
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First, we explore the effect of mesh refinement. Solutions on uniform NURBS meshes with
32 x 32, 64 x 64, and 128 x 128 elements for both k£ = 1 and k = 2 are computed and compared. For
each of the cases, the subscale polynomial degree is chosen to be ky = 1. A representative solution

for k=2, ky =1, and a 64 x 64 mesh is shown in Fig. 8.3.

1.2 12
: 1 1
g 0.8 0.8
2
<
£ 0
g 0.6 0.6
<
S
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0.2 0.2
0 0
T
(a) Isometric view (b) Overhead view
1 1
0.8 0.8
g
=
g 0.6 0.6
g
=1
)
=
g 0.4 0.4
S
0.2 0.2
0 0
y 1 . 0 0.2 0.4 0.6 0.8 1
T
(c) Isometric view (d) Overhead view

Figure 8.3: Coarse-scale (top) and subscale (bottom) solutions for the advection skew to the mesh
problem for k =2, ky =1, and h = 1/64.

The effect of mesh refinement is illustrated by comparison of the obtained solutions along
the slice y = 0.7 in Fig. 8.4. The results are as expected. Refinement of the mesh allows for a
more accurate representation of the boundary and internal layers. The results are polluted by the

presence of oscillations near the boundary and internal layers, but for & = 1, these oscillations
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are limited to a region of one or two elements away from the layers. For k = 2, the oscillations
do infiltrate further into the domain, but it is our experience that these oscillations are not due
to method instability but rather the fact that we are trying to fit the sharp gradients present in
the boundary and internal layers. As isogeometric NURBS discretizations exhibit a high level of
continuity, any oscillations due to overfitting such gradients are expected to extend into the domain
in analogy with Gibbs’ phenomena. Nonetheless, the oscillations decay in magnitude away from
the layers and are still limited to a region of a fixed number of elements away from the layers. As
we will later see, these oscillations can be greatly suppressed through the use of weak enforcement

of Dirichlet boundary conditions.
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x x

(a) Coarse-scale solution for k =1, k; = 1, and vary-(b) Coarse-scale solution for k = 2, ky = 1, and vary-
ing mesh size. ing mesh size.

Figure 8.4: Coarse-scale solution along y = 0.7 for varying mesh sizes and coarse-scale polynomial
degrees.

We now explore the effect of degree elevation. First, we examine the effect of coarse-scale
degree elevation. Solutions for k = 1,2,3 with £y = 1 on a uniform NURBS mesh with 64 x 64
elements are computed and compared. The effect of coarse-scale degree elevation is illustrated
by comparison of the obtained solutions along the slice y = 0.7 in Fig. 8.5. Note that each of
the coarse-scale solutions are able to capture the internal and boundary layers, and the coarse-

scale solutions associated with higher polynomial degrees exhibit sharper representations of the
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layers. However, the coarse-scale solutions associated with higher polynomial degrees also exhibit
oscillations in the regions near the internal and boundary layers due to overfitting and Gibbs’
phenomena. Next, we explore the effect of subscale degree elevation. Solutions for k£ = 2 with
ky =1,2,3 are computed on a uniform NURBS mesh with 64 x 64 elements and compared. The
effect of fine-scale degree elevation is illustrated by comparison of the obtained solutions along the
slice y = 0.7 in Fig. 8.5. From the figure, it is seen that the choice of subscale polynomial degree
does not greatly affect the coarse-scale solution. Consequently, it is recommended that one choose
the lowest possible subscale polynomial degree in order to stabilize the higher-order coarse-scale

solution at minimal computational cost.
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(a) Coarse-scale solution for ky = 1, h = 1/64, and(b) Coarse-scale solution for k = 2, h = 1/64, and
varying coarse-scale polynomial degrees. varying subscale polynomial degrees.

Figure 8.5: Coarse-scale solution along y = 0.7 for varying coarse-scale and subscale polynomial
degrees.

Heretofore, we have enforced the Dirichlet boundary conditions on the coarse-scale solution
field in a strong manner. However, it has been noted in recent work that greatly enhanced results
may be obtained by instead imposing these in a weak manner using a combination of upwinding

and Nitsche’s method [14, 15]. The resulting coarse-scale governing equation takes the form:
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Coarse-Scale Governing Equation with Weak Boundary Condition Treatment:

/auv—/(u+u’)a.w+/mVu-Vv+/ sy
o Ot Q Q Ty

Nel
—/ /@Vu‘nv—/ ukVU-n +
FD 1_‘D

Z/ Wuwr/ altun

= Jreor, i o (8.73)

:/fv—i-/ hv—/ grVv-n +
Q T'n I'p

Nel

28: CNitschel _ _
7}7/ gu — a,, gu

K=1 I'rnN'p K I'p

forallo € V

In the above equation, Cpijtsche 1S @ penalty constant that must be chosen sufficiently large for

T = max{a-n,0}, and a;, = (a-n)” = min{a-n,0}. Herein,

method stability, a;f = (a-n)
we choose Cpitsche = 4p. It should be mentioned that the discontinuous subscale model remains
untouched if the Dirichlet boundary conditions on the coarse-scale solution are imposed weakly.
To assess the effect of weak boundary condition enforcement, we have computed solutions
using both using strongly-enforced and weakly-enforced Dirichlet boundary conditions with k = 2
and ky = 1 on a uniform NURBS mesh with 64 x 64 elements. The effect of boundary condition
enforcement is illustrated by comparison of the obtained solutions along the slice y = 0.7 in Fig.
8.6. Note from the figure that there no longer remain any oscillations near the boundary layer if
one employs a weak boundary condition enforcement. Moreover, while there remain oscillations
near the internal layer, these oscillations are small in magnitude and limited to a region of a small

number of elements away from the layer. Consequently, it is strongly advised to weakly enforce

Dirichlet boundary conditions along portions of the boundary where a layer is expected.
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Figure 8.6: Coarse-scale solution along y = 0.7 for varying boundary-condition enforcement with
k=2kf=1,and h = 1/64.

8.4.3 Steady Advection in a Quarter-annulus

We next consider a problem posed on a non-square geometry, namely the advection of a
Gaussian curve in a quarter annulus. This problem is graphically depicted in Fig. 8.7. Here, r; is
the inner radius of the annulus and r, is the outer radius of the annulus and they are chosen to be
r; = 1 and r, = 2. The flow field for this problem is chosen to be a = (y, —x) and the diffusivity is
chosen as k = 1 x 10% such that the problem is advection-dominated. Dirichlet boundary conditions

are strongly enforced on the lower boundary of the annulus with

)2
g(x,y=0)= . 127r exp <(202M)) , (8.74)

where o0 = 0.05 and p = —1.5. Traction-free Neumann boundary conditions are prescribed on the

other three boundaries.
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u=g

Figure 8.7: Problem setup for the advection in a quarter-annulus problem.

A typical solution corresponding to k = 2, ky = 1, and a NURBS mesh of 64 x 64 elements is
displayed in Fig. 8.8. From the figure, it is clear that the method is able to very accurately capture

the solution free of oscillations on the curved geometry.
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Figure 8.8: Coarse-scale (top) and subscale (bottom) solutions for the advection in a quarter-
annulus problem for k = 2, ky = 1, and a NURBS mesh of 64 x 64 elements.
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8.4.4 Unsteady Advection of a Gaussian Hill

We now consider an unsteady scalar transport problem, namely the advection of a Gaussian
hill in a rotating flow field. For this problem, the domain is Q@ = [0,1] x [0, 1] and the flow field is

given as @ = (y — 0.5,z — 0.5). The initial scalar field is given as

w(z,y,0) = exp (—210 ((a; — 052+ (y — 0.25)2>> : (8.75)

where o = 0.065, and Dirichlet boundary conditions are strongly enforced along the entire boundary
of the domain. Numerical solutions are calculated on a 64 x 64 NURBS mesh with coarse-scale
polynomial degree k = 2 and subscale polynomial degree ky = 1. Both the dynamic and quasi-
static discontinuous subscale models were employed to stabilize the solution. Time-integration is
carried out with the generalized-alpha method using a time step of At = 0.005 and ps = 1 such
that o, = 0.5, ay = 0.5, and v = 0.5. The small time step is chosen such that the only source of
error is spatial error.

Establishing the initial condition for this problem takes some care, and the approach differs
between the dynamic and quasi-static models. For the quasi-static model, we do not require a
time-history of the discontinuous subscale solution. Thus, only an initial condition for the coarse-
scale solution field is required, and this is established through an L2-projection of the exact initial
condition. For the dynamic model, a time-history of the discontinuous subscale solution is required.
Consequently, after an initial condition for the coarse-scale solution field is obtained, an initial
condition for the discontinuous subscale solution is established through an L2-projection of the

difference between the exact initial condition and the coarse-scale initial condition.

8.4.4.1 Results for the Quasi-static Discontinuous Subscale Model

We first display results obtained using the quasi-static discontinuous subscale model. In Fig.
8.9, the concentration along the centerline of the hill (found at y = 0.25) is plotted for the initial
solution and the solution after 1, 5, and 10 full revolutions (¢t = 6.28,31.40, 62.80, respectively).

It is clear that the method is able to preserve the hill with very high accuracy even after several
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rotations. After one rotation, the peak is reduced to 0.997, representing a numerical dispersion
of the peak of 0.3%. After ten rotations, the peak is reduced to 0.969, representing a numerical
dispersion of the peak of 3.1%. There is also some slight skewing of the solution in the downwind

direction.

8.4.4.2 Results for the Dynamic Discontinuous Subscale Model

We next display results obtained using the dynamic discontinuous subscale model. In Fig.
8.9, the concentration along the centerline of the hill (found at y = 0.25) is plotted for the initial
solution and the solution after 1, 5, and 10 full revolutions (¢t = 6.28,31.40, 62.80, respectively).
Like the quasi-static model, it is clear that the method is superb in preserving the hill. After one
rotation, the peak is reduced to 0.996, representing a numerical dispersion of the peak of 0.4%.
After ten rotations, the peak is reduced to 0.965, representing a numerical dispersion of the peak
of 3.5%. Again, like the quasi-static model, there is some slight skewing of the solution in the
downwind direction. Curiously, the magnitude of the subscale solution is three orders less for the
dynamic model than the quasi-static model, but the two models produce very similar results both

quantitatively and qualitatively.

1 : 1 ;
Solution at ¢ = 0 FA Solution at ¢ = 0
3 — — Solution at ¢ = 6.28 E — — Solution at t = 6.28
Solution at ¢t = 31.40 Solution at ¢t = 31.40
0.8+ i\ |- Solution at £ = 62.80| 0.8+ i} | - Solution at ¢ = 62.80) |
5 5
2 0.6+ 3 0.6+
) )
Z Z
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0 0.2 0.8 1 0 0.2 0.8 1
(a) Coarse-scale solution for the quasi-static model (b) Coarse-scale solution for the dynamic model

Figure 8.9: Coarse-scale solution for the unsteady advection of a Gaussian hill problem along
y=025for k=2 kf=1,and h =1/64.
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8.4.5 Unsteady Advancing Front

We finish by returning back to the advection skew to the mesh problem but in an unsteady
context. Namely, we initialize the scalar field to be zero everywhere except at the Dirichlet boundary
where the initial condition meets the specified boundary condition. We then let the solution evolve
according to the problem specifications in Fig. 8.2. Since we expect a boundary layer to form for
this problem, we elect to enforce the Dirichlet conditions in a weak fashion. For all our numerical
results, a uniform NURBS mesh with 64 x 64 square elements was employed with a coarse-scale
polynomial degree of k = 2 and a subscale polynomial degree of ky = 1. Time-integration is carried
out using the generalized-alpha method using a time step of At = 0.01 and py = 1 such that
am = 0.5, ay = 0.5, and v = 0.5. We compute and compare solutions using both the dynamic and

quasi-static discontinuous subscale models.

8.4.5.1 Results for the Quasi-static Discontinuous Subscale Model

Solutions for the advancing front problem solved with the quasi-static discontinuous subscale
model at representative time steps of ¢ = 0,0.51,2.01 are shown in Figs. 8.10 and 8.11. The coarse-
scale solution converges to the steady-state solution as expected. The coarse-scale solution is quite
accurate in the eyeball norm, though at each time step, minor oscillations are present near the
internal layer similar to what was observed in the steady skew to the mesh problem. Additionally,
the magnitude of the oscillations in the fine-scale solution at the final time-step correspond to
roughly the same magnitude of the oscillations observed in the steady problem. This is expected,
since we expect the steady state subscale solution to coincide with the subscale solution in the

steady problem.

8.4.5.2 Results for the Dynamic Discontinuous Subscale Model

Solutions for the advancing front problem solved with the dynamic discontinuous subscale
model at representative time steps of ¢ = 0,0.51,2.01 are shown in Figs. 8.10 and 8.11. Again,

the coarse-scale solution is quite accurate and converges to the steady-state solution as expected,
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and minor oscillations are present near the internal layer similar to what was observed in the
steady skew to the mesh problem. Surprisingly, the magnitude of the subscale solution is much
smaller than the subscale solution computed using the quasi-static discontinuous subscale model
at intermediate times, yet the obtained numerical results for the coarse-scale solution field are
qualitatively and quantitatively similar. The coarse-scale solution field for the dynamic model does
exhibit fewer oscillations than the coarse-scale field for the quasi-static model, particularly away

from the boundary layer (e.g., near the spatial location (x,y) = (1,1) at time ¢ = 2.01).
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Figure 8.10: Coarse-scale solutions for the unsteady advancing front problem for k = 2, ky = 1,

and h =1/64 at t = 0,0.51, 2.01.
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8.5 Differential Subgrid Vortex Models

Encouraged by the positive results demonstrated for scalar transport, we wish to extend
the concept of differential subgrid-scale modeling to LES of turbulent flows. Thus a new class of
differential subgrid vortex models is proposed here. Using this approach, it is possible to account
for effects such as advection and diffusion of the fine-scales. As a result, it is expected that these
models will exhibit superior accuracy and stability over existing subgrid modeling methods. In
subsections 8.5.1 and 8.5.1, we present two candidate differential subgrid vortex models for LES of

turbulent flows.

8.5.1 Quasi-static Differential Subgrid Vortex Model

In the quasi-static differential subgrid vortex model, we approximate the fine-scale velocity

as

u-Vu' —vAd + Vp = —Res,, (0,p) over Q.
(8.76)
V-u=0 over Q,
subject to the same boundary conditions as (5.16). The method of subgrid vortices is used to

solve (8.76), solving the element fine-scale equation using a divergence-conforming discontinuous

formulation with weakly-imposed Dirichlet boundary conditions [15].

8.5.2 Dynamic Differential Subgrid Vortex Model

In the dynamic differential subgrid vortex model, we seek to improve the approximation
provided by the quasi-static differential subgrid vortex model by including the time evolution of

the fine-scale velocity. The resulting approximation for the fine-scale velocity is

/
87u +1-Vu' — vAu' + Vp' = —Res,, Bazilevs07b (,p) over

ot (8.77)

V-u=0 over Q,
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subject to the same boundary conditions as (5.16). As in the quasi-static differential subgrid vortex
model, the method of subgrid vortices is used to solve (8.76), solving the element fine-scale equation

using a divergence-conforming discontinuous formulation.



Chapter 9

Multigrid Methods

Despite the promise of divergence-conforming discretizations for the spatial discretization of
fluid flow problems, very little research has been conducted so far in the area of efficient linear solvers
for these discretizations. In fact, only the performance of Krylov subspace methods in conjunction
with block preconditioners has been investigated in prior work [46, 47]. In this chapter, we introduce
an optimally efficient linear solution procedure for divergence-conforming discretizations of the
generalized Stokes and Oseen problems. It should be noted that there are many different candidates
in this regard. For instance, there exist efficient physics-based splitting methods such as the inexact
Uzawa algorithm [56]. However, these techniques rely on suitable Schur complement approximations
which can be difficult to design in the context of generalized Oseen flow. Alternatively, one can
employ a multigrid method in conjunction with a Vanka smoother [134], a Uzawa smoother [68],
or a Braess-Sarazin smoother [22]. While these techniques generally do not require accurate Schur
complement approximations, they typically involve specially tuned relaxation parameters. Perhaps
more concerning is the fact that all of the aforementioned procedures do not return a pointwise-
divergence free velocity field unless the linear solver is fully converged.

To overcome the issues associated with the aforementioned linear solution procedures, we
present a geometric multigrid methodology which relies upon Schwarz-style smoothers [53] in con-
junction with specially defined overlapping subdomains that respect the underlying topological

structure of the generalized Stokes and Oseen problems. This methodology is inspired by multi-
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grid and auxiliary space preconditioning methodologies for divergence-conforming discontinuous
Galerkin formulations of Stokes flow [6, 98, 99, 97] and multigrid methodologies for compatible fi-
nite element discretizations of Darcy and Maxwell problems [5, 76]. We prove that our methodology
yields a pointwise divergence-free velocity field independent of the number of pre-smoothing steps,
post-smoothing steps, grid levels, or cycles in a V-cycle implementation. We also demonstrate by
numerical example that our methodology is optimally efficient and robust in that it exhibits con-
vergence rates independent of the grid resolution and flow parameters for the generalized Stokes

problem as well as the generalized Oseen problem, provided it is not advection-dominated.

9.1 Temporal Discretization of the Navier-Stokes Equations

and the Generalized Stokes and Oseen Problems

To motivate the need for efficient linear solvers for the generalized Stokes and Oseen problems,
we first demonstrate how such problems arise through semi-implicit temporal discretization of the
incompressible Navier-Stokes equations subject to homogeneous Dirichlet boundary conditions,
first introduced in (2.1). To discretize (2.1) in time, we first define a sequence of time instances
tg < t1 <ty < ... <ty such that t9 = 0 and ty = T, and we denote the velocity and pressure

n)

solutions at the n'® time instance as u™ and p(™) respectively for n = 0,..., N. We further define

%. Without loss of generality, we assume that the time instances are equi-spaced,

lny1/2 =
and we define the time step size to be At = t,,41 — t,,. The velocity solution at N = 0 is given
by u(® = ug, while to find the velocity and pressure solutions at each subsequent time instance,
we must discretize the Navier-Stokes problem in time. We discuss two demonstrative semi-implicit
temporal discretization schemes herein, though the proceeding discussion also applies to other
semi-implicit temporal discretization schemes! .

Let us first consider the standard Crank-Nicolson/Adams-Bashforth scheme [75]. In this

! With a fully implicit time discretization scheme, one must turn to a nonlinear solution procedure such as
Newton’s method. However, with Newton’s method, one solves a sequence of generalized Oseen problems. Hence,
the multigrid methodology discussed here can also be employed to solve these problems.
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approach, a central difference approximation of the unsteady term and linear interpolation approx-

imations of the diffusive and pressure force terms are employed:

ou ult) — )
a(tn+1/2) S eE—
Au+) 4 Au()
2
2

Au(lpy1/2) &

Vp(tni1/2) =

The advection term at ¢,,, 1 /o is alternatively approximated using Taylor-series expansions involving

time instances t,—1 and t,, resulting in?

u® . g™ — %um—l)  TuD

DO o

(u-Vu) (tpy1/2) =

Collecting the above approximations, we find that the resulting generalized Stokes system holds for

eachn=0,...,.N —1:

cu™ ) — pAu+D) L ypnt) = fgf;l) for x € Q

V.outh) =9 for x € Q (9.1)
u™th =0 forx el
where o = 0 = 2/At and
fglsﬂ) =f(tnq1/2) + ou™ —3u™ . vu™ 4 u V. vuY 4 yAu™ — vp™), (9.2)

The above generalized Stokes system is reaction-dominated for small time step sizes and diffusion-
dominated for large time step sizes. We demonstrate later that our geometric multigrid methodology
is robust for both of these regimes.

The advantage of the Crank-Nicolson/Adams-Bashforth scheme [9, 50] is that the advection
term is handled in a purely explicit manner. After spatial discretization, this leads to a symmetric
matrix problem. However, the disadvantage of the scheme is that it is stable only if the time-step

is chosen sufficiently small as to satisfy a CFL condition. With this in mind, we next consider

2 This approximation is not properly defined for n = 0. Consequently, the approximation is replaced by u™.vul™
for n = 0 in practice.
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an unconditionally stable semi-implicit scheme introduced by Guermond [73]. In this scheme, the
unsteady, diffusive, and pressure force terms are approximated as before, but the advection term

is approximated as follows? :

3 1 u(n+1) + u(n)
. ~ [ 2 — 21 . - =7
(09w (tr12) ~ (a0 = Ju ) v< et

Note that the advection velocity is approximated in an explicit manner while the gradient is ap-
proximated in an implicit manner. Collecting the above approximations, we find that the resulting

generalized Oseen system holds for each n =0,..., N — 1:

ou™t) 4 a(ntD) gyt — p At 4oyptl) = fggrlﬂ) for x € Q

V-ulrth =9 for x € Q (9.3)
u™t) =0 forx el
where o = 2/at, a®*D) = 3u™ — lu(=1 and
fggrl) =f(tht12) + ou™ —a*h . gu® 4 pAu™ — vp™). (9.4)

In constrast with the generalized Stokes system obtained earlier, the above system admits different
behavior based on not only the scalars o and v but also the advection velocity a1, We demon-
strate later that our geometric multigrid methodology is robust for this system provided it is not

advection-dominated. This holds if a CFL-like condition is satisfied.

9.2 Spatial Discretization of the Generalized Stokes and Oseen

Problems

Now that we have motivated the need for efficient linear solvers for the generalized Stokes
and Oseen problems, we turn to the question of spatial discretization. In this section, we present

a mixed Galerkin discretization for the generalized Stokes and Oseen problems.

3 This approximation is also not properly defined for n = 0. Consequently, the approximation is replaced by
ul™ . v ((u(") + u("+1)) /2) for n = 0 in practice.
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9.2.1 Weak Formulation of the Generalized Stokes and Oseen Problems

To begin, we must state a weak formulation for the generalized Stokes and Oseen Problems.
We strictly consider the case of homogeneous Dirichlet boundary conditions without loss of gen-
erality. As in Chapter 2, we utilize the velocity and pressure test spaces H}(Q2) and L3(Q) and
we assume o,v € Ry, a € H}(Q), and f € L*(Q). Additionally, we assume that the advection
velocity is divergence-free, that is, V - a = 0. With these assumptions in hand, the weak form of
the generalized Stokes or Oseen problem is stated as follows: Find u € H}(Q2) and p € LZ(Q2) such
that

a(v,u) = b(v,p) + b(u, q) = £(v) (9-5)
for all v € H}(Q2) and ¢ € L3(£2) where

/ ov-udf)+ / vVv : Vu df) generalized Stokes
a(v,u) := L &

/ ov-udf)+ / v-(a-Vu) dQ+ / vVv :Vu dQ generalized Oseen
Q Q Q

bv.p)i= [ (V-v)p a9
Q
Uv) = / v - £dQ
Q
9.2.2 Mixed Galerkin Approximation of the Generalized Stokes and Oseen Prob-
lems

To discretize in space using a mixed Galerkin formulation, we first must specify finite-
dimensional approximation spaces for the velocity and pressure fields. We denote these spaces
as Vy C Hé(Q) and Q; C L%(Q) respectively, where we opt to use isogeometric B-spline spaces
as described in Chapter 3. With approximation spaces defined, the mixed Galerkin formulation of

the generalized Stokes or Oseen problem is stated as follows: Find u, € Vj, and p, € Q, such that

a(Vh, up) = b(vh, pp) + b(un, qn) = £(v) (9.6)

for all v, € Vp, and q € Q,.
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9.3 B-spline Refinement

One more concept needs to be introduced before proceeding forward, namely the concept of
B-spline refinement. For a fixed set of polynomial degrees, B-spline refinement is carried out by a
process referred to as knot insertion [71]. In the univariate setting, we start with a particular knot
vector 2 and then insert a sequence of knots to arrive at a refined knot vector = such that = C E.

n

The B-spline basis functions associated with the original knot vector, denoted as {Nl (f)}

9y
i=1
can be represented as linear combinations of the basis functions associated with the refined knot
~ n
vector, denoted as {Ni7p(§)} , using a transformation matrix T. This relationship is expressed
i=1

mathematically as
Nip(€) = [Tl N;p()
j=1

for i = 1,...,n. Consequently, if a B-spline function takes the form

it can be alternately be represented as

j=1
where
n
iy =) [Tliji
i=1
for j =1,...,n. Figure 9.1 depicts the action of knot insertion for univariate quadratic B-splines.

B-spline refinement in the multivariate setting (including the compatible B-spline setting) is carried
out in a tensor-product fashion, and the transformation matrix T takes the same form in both
the parametric domain and the physical domain. There exist a variety of algorithms capable of
performing knot insertion [71, 112, 131] which can be used to construct the transformation matrix

T, so we do not discuss this construction further.
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Figure 9.1: The action of knot insertion for univariate quadratic B-splines. Top Left: The original
quadratic B-spline basis with £ = (0,0,0,.2,.4,.6,.8,1,1,1). Top Right: A B-spline function
expressed in terms of the original quadratic B-spline basis. Bottom Left: The refined quadratic
B-spline basis with = = (0,0,0,.1,.2,.3, 4,.5,.6,.7,.8,.9,1,1,1) (bottom, left). Bottom right: The
same B-spline function as illustrated in the top right panel but expressed in terms of the refined
quadratic B-spline basis.

9.4 A Structure-preserving Geometric Multigrid Methodology

At last, we are ready to present our geometric multigrid methodology for divergence-conforming
discretizations of the generalized Stokes and Oseen problems. We begin this section by reviewing
the basics of the geometric multigrid approach as well as the required components in the setting
of a divergence-conforming discretization. Then, we introduce the Schwarz-style smoothers which
our methodology leans upon. We then show that our methodology preserves the divergence-free
constraint on the velocity field and that it effectively ellipticizes the underlying system of interest.
We limit our discussion to the V-cycle algorithm, though our approach can also be applied within

a W-cycle or Full Multigrid framework [31].
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9.4.1 Nested B-spline Stokes Complexes, Intergrid Transfer Operators, and the

V-Cycle Algorithm

Assume that we have a sequence of nested B-spline Stokes complexes that have been obtained
through knot insertion. We denote the discrete velocity and pressure spaces associated with this

sequence as {Vy},“, and {Q,},“, respectively where ny is the number of levels, and we note that

VoCVlc...CVW

QCQcC..cqQ,

and

V-Vy=Q

for each £ =0,...,ny. Level £ = 0 corresponds to the coarsest mesh while level £ = n; corresponds
to the finest mesh. The action of knot insertion not only allows for B-spline refinement, but it also
provides the intergrid transfer operators associated with a geometric multigrid method. Namely,

we can build prolongation operators
PZ:V5—>V5+1 and qu:QZ%Qlﬁ-l

for £ =0,...,ny—1 using the construction provided in Subsection 9.3. We encode the action of these
prolongation operators in the matrices P} and PZ such that the following refinement operations

hold:

20(€) =D _[PYL;iNG 1 (€)

J

Nfz(é) = Z[PZ]jiNj[{g+1(€)

Twy,e Ng.0 . .
for £ =0,...,ny — 1, where {Nf 4} and {Nfe} " denote the velocity and pressure B-spline

i=1 =1

basis functions associated with level £. Moreover, the degrees of freedom associated with pressure
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and velocity fields on the /" level can be transferred to the (¢ 4 1)t level via the expressions:

up = Pjuy

pi+1 = Pipy.

As is standard with a Galerkin formulation, restriction operators are constructed as the adjoint or
transpose of the prolongation operators, namely R}, = (P})", R{,, = (Ph7, o1 = (P}’)T, and
Ry, = (Pz)T for £=0,...,ny — 1. Finally, we define a prolongation matrix P, for the full group

variable such that

Uyy1 Pz 0 Uy
U = = =P,Uy,
Pr+1 0 P oY,
for ¢ =0,...,ny — 1. The corresponding restriction matrix for level ¢ is given by Ry = (Pg)T.

We need a few more components before stating the multigrid V-cycle algorithm for our
discretization scheme. First of all, we need to form the matrix system associated with the finest
level, KU = F. We then form the system matrices associated with coarser levels via the relation
K; = Ry 1 K 1Py for £ = 0,...,np — 1 where K,,, = K. Second of all, we need to choose a
smoother for each level £ which we encode in a smoothing matrix Sy, and and we need to select
a number of pre-smoothing steps v; and post-smoothing steps v5. Third of all, we need to choose
a suitable initial guess U for the solution on the finest level. Then, one V-cycle corresponds to a

single call of the form MGV (ny, U,F) to the recursive function defined below [31].
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Algorithm 1 Multigrid V-Cycle Algorithm

1: function MGV (¢, U, F)

2 if /=0 then

3 U= K[lF > Exact System Solution
4 else

5: for i =1 to v; do

6 U+« U+S;'(F-K/U) > Pre-Smoothing
7 end for

8 G =R, (F -K,U) > Restriction of Residual to Coarse Grid
9: AU=0 > Coarse Grid Correction Initialization
10: MGV (/—-1,AU,G) > Coarse Grid Correction Evaluation
11: U+ U+P,1AU > Update of Solution
12: for : =1 to 1y do

13: U+« U+S,'(F-K/U) > Post-Smoothing
14: end for

15: end if

16: end function

Note that the solution U is updated within the algorithm stated above. Hence, additional V-cycles
simply correspond to additional calls of the form MGV (n,, U, F).
9.4.2 Overlapping Schwarz Smoothers on Compatible Subdomains

At this juncture, we have not yet determined what smoother to employ. We turn to the use
of overlapping Schwarz smoothers [53] with specially chosen overlapping subdomains which respect
the underlying topological structure of the generalized Stokes and Oseen problems [99]. Namely,
for each level ¢, we define a collection of subdomains {€2; ¢}; where each individual subdomain is

defined as the support of a discrete streamfunction basis function in the two-dimensional setting:
Q= NY
i.0 7= supp ( N,
and a discrete vector potential basis function in the three-dimensional setting:
Qg = NY
i =supp (N7, ).

It is easily seen that the subdomains form a cover of the physical domain, that is

Q:UQM
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For each subdomain, we define discrete velocity and pressure subspaces V;, C Vy and Q, , C Qy,

respectively, as

Vie:={vi € Vy:supp v, € Qir} and  Q,,:= {qn € Qp:supp qn C Qis}.

In the two-dimensional setting, we define a discrete streamfunction subspace for each subdomain

as
;0= {bn € Yy :supp vy, C Qi 0}

and in the three-dimensional setting, we define a discrete vector potential subspace for each sub-

domain as
W, 0= {1, € ¥, :supp ¥, C Q).

The degrees of freedom associated with all of the aforementioned subspaces are illustrated in the

two-dimensional case in Figure 9.2 for two separate subdomains.
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Figure 9.2: The degrees of freedom associated with two example subdomains in the parametric
domain . Filled circles (@) denote streamfunction degrees of freedom, triangles (», A) denote
velocity degrees of freedom, and filled squares (M) denote pressure degrees of freedom. Hollow
markers indicate degrees of freedom associated with boundary conditions.

By construction, dim (¥;,) = 1 in the two-dimensional setting and dim (¥;,) = 1 in the
three-dimensional setting. Moreover, dim (V;¢) = 4 and dim (Q; ;) = 3 in both the two- and three-
dimensional settings® . Thus, the subspaces associated with each subdomain form the following

exact discrete Stokes complex in the two-dimensional setting:

o .
0 > Wiy Vi Qi v 0 (9.7)

)

and the following exact discrete Stokes complex in the three-dimensional setting:

Qi ./ 0. (9.8)

Thus, as previously suggested, our choice of subdomains indeed respects the underlying topological

structure of the generalized Stokes and Oseen problems.

4 From Figure 9.2, it appears that dim (Qi,l) = 4. However, the functions in Q,;, must satisfy a zero average
constraint, so the dimension is one less than what is observed from the figure.
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With our subdomains defined, we can now describe our choice of smoothers, namely additive
and multiplicative Schwarz smoothers using our prescribed subdomains. In this direction, let E,
and E?,Z denote the velocity and pressure subdomain restriction matrices for a given level ¢ and
subdomain ¢ that take the full set of velocity and pressure degrees of freedom associated with level ¢

and map them to the set of pressure and velocity degrees of freedom associated with the subdomain

; ¢. Additionally, let

v
ie O
E;(:=

)

q
0 Ei,ﬁ
denote the subdomain restriction matrix for a given level £ and subdomain ¢ for the full group

variable. Then, the action of the additive Schwarz smoother is defined through

S;' =17 (Z EZZ(EingEZZ)_IEi,g) , (9.9)
i

where n € (0,1) is a suitably chosen scaling factor [98], while the action of the multiplicative

Schwarz smoother is defined through

S, ! = [I -] @- EZE(EMKZEZe)lEMKg)] K, (9.10)

i
The additive and multiplicate Schwarz smoothers are generalizations of the classical Jacobi and

Gauss-Seidel smoothers, and indeed they can be implemented in an efficient, iterative manner. For

both of these smoothers, a sequence of local matrix problems of the form
K; /U,y =F;, (9.11)

where K; = EMKgEZZ must be solved. It is easily seen that

where
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Thus, with both the additive and multiplicative Schwarz smoothers, a discrete generalized Stokes
or Oseen problem is solved for each subdomain. In the next subsection, we further clarify this
interpretation in a variational setting. With the additive Schwarz smoother, the subdomain prob-
lems are solved independently, and their respective solutions are summed together and multiplied
through by a scaling factor as indicated above. With the multiplicative Schwarz smoother, the

subdomain problems are solved in a sequential fashion in analogy with the Gauss-Seidel smoother.

9.4.3 Preservation of the Divergence-free Constraint

Now that we have presented our choice of smoother, we demonstrate that our geometric
multigrid methodology preserves the divergence-free constraint on the velocity field. Provided that
the initial guess for the V-cycle algorithm satisfies the divergence-free constraint, it is sufficient to
show that each smoothing step provides velocity updates that are divergence-free. One application
of either the additive or multiplicative Schwarz smoother at level ¢ is akin to solving a collection

of local subdomain problems of the form: Find du;, € V; and dp; ¢ € Q; 4 such that

ap(Vh, 0w ¢) — b(vh, 0pig) + b(dwi g, qn) = (V) — ap(Vi, up) + b(vy, pr) — b(up, gn) (9.12)

for all v, € V¢ and q; € Q; , where uy, and py, are the approximate discrete velocity and pressure
solutions. For the additive Schwarz smoother, the approximate discrete velocity and pressure
solutions are updated following the solution of all of the local problems according to

up < uy +1n (Z (5111'7()

()

Ph < ph+1 (Z 5]%',@)

)

while for the multiplicative Schwarz smoother, the approximate discrete velocity and pressure

solutions are updated following the solution of each individual local problem according to
up, < uy +ou,y

Ph < Dh + 0D
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For each subdomain problem, if the approximate discrete velocity solution is divergence-free, it

holds that

b(du; e, qn) =0

for all g, € Q; 4. Since Q; p =V - V4, we can select ¢, =V - du; ¢ to find
IV - 0 17 2 ()= b(Oi 0, gn) = O

and thus the solution to the local problem is also divergence-free. Thus, if the initial guess for
the V-cycle algorithm satisfies the divergence-free constraint, each subsequent application of the

Schwarz smoother at any given level £ preserves the divergence-free constraint as well.

9.4.4 Efficacy of the Structure-preserving Geometric Multigrid Methodology

We conclude here with a short discussion of the efficacy of our geometric multigrid method-
ology. We restrict our discussion to the three-dimensional setting without loss of generality. Recall
that the spaces ¥; 4, V; ¢, and Q; , form a discrete Stokes complex for a given level £ and subdomain
i. Thus, we can express the velocity solution du; ¢ € V; ¢ to (9.12) in terms of the curl of a vector
potential d1;, € ¥;, provided the velocity is divergence-free, and this vector potential can be

obtained via the reduced subdomain problem: Find d); € ¥; ¢ such that
ah(V X Ch,V X (5’([)1',[) = K(V X Ch) — ah(V X Ch,uh) (913)

for all 5 € ¥;,. This is precisely the subdomain problem associated with the global semi-elliptic

generalized Maxwell problem with hyperresitivity [17]: Find ¢ € ¥}, such that
h hy _ h
an(V x ¢",V x9p") =£4(V x ") (9.14)

for all ¢" € ¥y,. Tt is known that a geometric multigrid methodology based on the use of Schwarz
smoothers posed on structure-preserving subdomains is optimally convergent for Maxwell problems
[5]. Consequently, we can expect that at least the discrete velocity solutions will converge in our

approach.
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9.5 Numerical Results

We now present a series of numerical tests illustrating the effectiveness of our proposed
geometric multigrid methodology. Each of the tests correspond to problems with homogeneous
Dirichlet boundary conditions applied along the entire domain boundary. In our discretization
scheme, no-penetration boundary conditions are enforced strongly and no-slip boundary conditions
are enforced weakly using a penalty constant of C; = 4(p — 1) where p is the polynomial degree
which is taken to be equal in each parameteric direction. It should be noted that p refers to the
polynomial degree of the discrete streamfunction space in the two-dimensional case and the discrete
scalar potential space in the three-dimensional case. Hence, for & = 2, the discrete pressure fields
are piecewise bilinear /trilinear B-splines rather than piecewise biquadratic/triquadratic B-splines.
Maximally smooth B-splines defined on uniform knot vectors are utilized throughout.

For all of the following tests, we define convergence as the number of V-cycles required to
reduce the initial residual by a factor of 105. We always initialize the V-cycle algorithm using a
random initial guess which satisfies the divergence-free constraint on the velocity field. For each V-
cycle, one pre-smoothing and two post-smoothing steps are employed using either the multiplicative
or additive Schwarz smoother. For the additive Schwarz smoother, a scaling factor of n = 0.5 is
employed.

For all the problems presented here, a single element is used for the coarsest mesh and we
investigate the convergence behavior for various levels of refinement. We report on the convergence
behavior of our method for both the generalized Stokes and Oseen problems as well as a selection
of different problem parameters, polynomial degrees, domain geometries, and number of spatial
dimensions (2D and 3D). With respect to problem parameters, we consider the ratios between
reaction and diffusion and advection and diffusion, which we express through a Damkdchler number
(Da) and a Reynolds number (Re). We define these numbers as:

2
Da:% and Re:ﬂ.

where a is the advective velocity and L is a characteristic length scale, both of which are taken to
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be one throughout.

9.5.1 Two-dimensional Generalized Stokes Flow in a Square Domain

We first consider a two-dimensional generalized Stokes problem posed on the square domain

(0,1)2. In particular, we consider a forcing

f=ocu—vAu+Vp (9.15)
corresponding to the following manufactured solution [33]:

. 2e%(—1 + 2)%2%(y? — y)(—1 + 2y) (9.16)

(—e*(-1+ z)z(-2+2(3 + 2))(—1 +y)*y?

p = (—424 + 156e + (1% — y)(—456 + €*(456 + 22(228 — 5(y% — y))
(9.17)

+22(—228 + (y2 — ) + 223 (=36 + (v — y)) + 2*(12 4+ (1* — 1))))).

The velocity field associated with this exact solution is plotted in Figure 9.3.

Figure 9.3: Velocity field for the unit square generalized Stokes problem.
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We first present convergence results for our multigrid method using the multiplicative Schwarz
smoother and polynomial degrees k = 2 and k = 3 in Table 9.1. It is clear that for a given
polynomial order, the convergence behavior is robust with respect to both the number of levels of
refinement and the problem parameters. We also observe that as polynomial order is increased,
the convergence behavior deteriorates, albeit slightly. This is consistent with previously observed
behavior for isogeometric analysis [67, 78, 77].

Table 9.1: Number of V(1,2) cycles required for convergence for the unit square generalized Stokes
problem using the multiplicative Schwarz smoother and k = 2, 3.

k=2 k=3
nge DOFs Da=1 Da=1000 DOFs Da=1 Da = 1000
1 33 3 2 56 6 6
2 85 5 4 120 12 14
3 261 5 5 320 13 13
4 901 6 5 1008 12 12
5 3333 6 5 3536 13 13
6 12805 7 6 13200 13 13
7 50181 7 6 50960 13 13
8 198661 7 6 200208 13 13
9 790533 7 7 793616 13 13
10 3153925 7 7 3160080 13 13

We next present convergence results for our multigrid method using the additive Schwarz
smoother and polynomial degree £ = 2 in Table 9.2. As expected, overall convergence is slower
with additive Schwarz than with multiplicative Schwarz, although in this case the method is still

robust with regard to both the number of levels of refinement and the problem parameters.

Table 9.2: Number of V(1,2) cycles required for convergence for the unit square generalized Stokes
problem using the additive Schwarz smoother and k = 2.

ne DOFs Da=1 Da = 1000
1 33 5 4
2 85 12 9
3 261 15 14
4 901 16 15
5 3333 16 16
6 12805 16 16
7 50181 16 16
8 198661 16 16
9 790533 16 16
10 3153925 16 16
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9.5.2 Two-dimensional Generalized Stokes Flow in a Quarter Annulus

We next consider a two-dimensional generalized Stokes problem posed on a quarter annulus.
The domain is described in Figure 9.4 where r; = 0.075 and r, = 0.225. We consider a manufactured
solution achieved by mapping the solution presented in (9.16)-(9.17) to the quarter-annulus domain
using a quadratic rational Bézier parametric mapping and appropriate push-forward operators. The

velocity field associated with the exact solution is also plotted in Figure 9.4.

Figure 9.4: Domain description (left) and velocity field (right) for the quarter annulus generalized
Stokes problem.

We present convergence results for our multigrid method using the multiplicative Schwarz
smoother and polynomial degree k = 2 in Table 9.3. Compared with the square domain, the number
of V-cycles required for convergence is larger. However, the method is still robust with respect to

both the number of levels of refinement and the problem parameters.
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Table 9.3: Number of V(1,2) cycles required for convergence for the quarter annulus generalized
Stokes problem using the multiplicative Schwarz smoother and k£ = 2.

ne DOFs Da=1 Da = 1000
1 33 2 2
2 85 3 3
3 261 8 7
4 901 16 15
5 3333 24 24
6 12805 26 26
7 50181 31 31
8 198661 34 34
9 790533 34 34
10 3153925 34 34

9.5.3

We next consider a three-dimensional generalized Stokes problem posed on the

Three-dimensional Generalized Stokes Flow in a Cube Domain

(0,1)3. In particular, we consider a forcing

f=o0u—vAu+Vp

corresponding to the following manufactured solution [61]:

u=Vxw

z(z — Dy (y — 1)%2%(z — 1)?

0

o}z — 1)y —1)%2(z — 1)

4

p = sin(rz) sin(ry) — —
T

unit cube

(9.18)

(9.19)

(9.20)

(9.21)

Streamlines colored by velocity magnitude associated with the exact solution are plotted in Figure

9.5.
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Figure 9.5: Streamlines colored by velocity magnitude for the unit cube generalized Stokes problem.

We present convergence results for our multigrid method using the multiplicative Schwarz
smoother and polynomial degrees £k = 2 and k£ = 3 in Table 9.4. Convergence appears to be
much quicker in the three-dimensional setting. Notably, one V-cycle appears to be sufficient to
reduce the residual by six orders of magnitude for a sufficient number of levels for both k£ = 2 and
k = 3 and irrespective of the Damkdohler number. We believe this may be due to the fact each
velocity degree of freedom is updated twice as many times in each iteration of the smoother in the
three-dimensional case as compared to the two-dimensional case.

Table 9.4: Number of V(1,2) cycles required for convergence for the unit cube generalized Stokes
problem using the multiplicative Schwarz smoother and k& = 2, 3.

k=2 k=3
ne DOFs Da=1 Da=1000 DOFs Da=1 Da = 1000
1 135 1 1 304 2 4
2 575 1 1 972 1 1
3 3159 2 2 4300 1 1
4 20519 1 1 24300 1 1
5 147015 1 1 160684 1 1
6 1111175 1 1 1163052 1 1
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9.5.4 Three-dimensional Generalized Stokes Flow in a Hollow Cylinder Section

The final generalized Stokes problem considered in this paper is a three-dimensional problem
posed on a hollow cylinder section. The domain for this problem is simply the quarter annulus
from before extruded in the z-direction by a depth of d = 0.1. We consider a manufactured solution
achieved by mapping the solution presented in (9.19)-(9.21) to the hollow cylinder section domain
using a quadratic rational Bézier parametric mapping and appropriate push-forward operators.
Streamlines colored by velocity magnitude associated with the exact solution are plotted in Figure

9.6.

Figure 9.6: Streamlines colored by velocity magnitude for the hollow cylinder generalized Stokes
problem.

We present convergence results for our multigrid method using the multiplicative Schwarz
smoother and polynomial degree £ = 2 in Table 9.5. Incredibly, one V-cycle again appears to
be sufficient to reduce the residual by six orders of magnitude for a sufficient number of levels

irrespective of the Damkohler number.
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Table 9.5: Number of V(1,2) cycles required for convergence for the hollow cylinder generalized
Stokes problem using the multiplicative Schwarz smoother and k£ = 2.

ne DOFs Da=1 Da = 1000

135 1
575 1
3159 2
1
1
1

20519
147015
1111175

O UL W N
= = = N N

9.5.5 Two-dimensional Generalized Oseen Flow in a Square Domain

We now turn our attention to the generalized Oseen problem. We first consider a two-
dimensional generalized Oseen problem posed on the square domain (0,1)2. We manufacture a

solution with a forcing
f=ou+a -Vu—-—vAu+Vp (9.22)

where u and p are defined as in (9.16)-(9.17) such that the resulting solution is the same as the unit
square generalized Stokes problem. Note that the advection velocity is taken to be the manufactured
velocity field.

We present convergence results for our multigrid method using the multiplicative Schwarz
smoother, polynomial degree k£ = 2, and various Reynolds and Damkohler numbers in Table 9.6.
When Reynolds number is low, the advection terms become negligible, and thus the method per-
forms as it did on the 2D generalized Stokes problem. As the Reynolds number is increased, the
advection term becomes more significant. In this case, we have observed favorable convergence
behavior as long as the Damkohler number is at least as large as the Reynolds number. When the
system becomes advection-dominated, on the other hand, the multigrid method fails to converge.
We expect that improved results may be obtained through the use of an alternative smoother which

respects the directionality of the advection velocity.
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Table 9.6: Number of V(1,2) cycles required for convergence for the unit square generalized Oseen
problem using the multiplicative Schwarz smoother and k = 2.

Re=1 Re = 100
ne DOFs Da=1 Da=1000 Da = 1000
1 33 3 2 2
2 85 5 4 3
3 261 5 5 4
4 901 6 5 9
5 3333 6 5 13
6 12805 7 6 15
7 50181 7 6 11
8 198661 7 6 7
9 790533 7 7 7
10 3153925 7 7 7
9.5.6 Three-dimensional Generalized Oseen Flow in a Cube Domain

We conclude by considering a three-dimensional generalized Oseen problem posed on the unit

cube (0,1)3. We manufacture a solution with a forcing
f=ou+a -Vu—vAu+ Vp (9.23)

where u and p are defined as in (9.19)-(9.21) such that the resulting solution is the same as the
unit cube generalized Stokes problem. As with the two-dimensional generalized Oseen problem,
the advection velocity is take to be the manufactured velocity field.

We present convergence results for our multigrid method using the multiplicative Schwarz
smoother, polynomial degree k = 2, and various Reynolds and Damkohler numbers in Table 9.7.
The same trends that were observed for the two-dimensional case are observed here as well. Namely,
when the system is not advection dominated, we achieve excellent convergence behavior. Also,
as was the case with the generalized Stokes flow, the three-dimensional case exhibits improved

convergence as compared to the two-dimensional case.
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Table 9.7: Number of V(1,2) cycles required for convergence for the unit cube generalized Oseen
problem using the multiplicative Schwarz smoother and k£ = 2.

Re=1

Re =100

DOFs

Da=1

Da = 1000

Da = 1000

DT WD -

135

575
3159
20519
147015
1111175

Il =l NS

=N WN N

WWN WM N




Chapter 10

Conclusions and Future Work

10.1 Conclusions

In this dissertation, a novel paradigm for the large eddy simulation of turbulent flows uti-
lizing residual-based subgrid modeling has been presented. By combining divergence-conforming
discretizations with residual-based subgrid modeling, an LES-like simulation capability which ad-
dresses many of the shortcomings of classical LES approaches has been developed. Furthermore,
this method contains no “tunable” parameters, and thus extends generally across various classes
of flow. Numerical results demonstrate that the method matches the performance of classical LES
models for homogeneous turbulence, but outperforms classical LES models for transitional flows
and wall-bounded turbulent flows. The dynamic VMS model is found to be strangely insufficient
for kK = 1, but shows excellent results for £ = 2 for all of the flows presented here. In constrast, the
dynamic RBEV model is effective even for k = 1, and demonstrates reasonable results throughout,
but is less accurate than the dynamic VMS model for k£ = 2. The quasi-static residual-based models
using the classical definition for 7,5 are inadequate for semi-implicit time-integration which require
very small time steps, but an alternate formulation for 7,5 which is less sensitive to the time step
is demonstrated to make the quasi-static models as effective as the dynamic models.

Additionally, a differential variational multiscale method, referred to as the method of dis-

continuous subscales, has been presented. This method is based on approximating the residual-free
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bubbles using a discontinuous Galerkin formulation. Stability and convergence results for the
methodology were determined and the applicability of the model to scalar transport problems was
demonstraetd through a collection of numerical examples. It is observed that the method is ac-
curate, displaying optimal convergence rates with respect to mesh refinement, and stable in the
advective-limit. It is also demonstrated that, somewhat surprisingly, lowest-order discontinuous
subscale approximations are sufficient to stabilize high-order coarse-scale approximations in the
context of isogeometric analysis. Furthermore, two differential subgrid vortex models have been
proposed, which extends the method of discontinuous subscales to the realm of LES modeling.
Finally, a structure-preserving geometric multigrid methodology for isogeometric compatible
discretizations of the generalized Stokes and Oseen problems has been presented. This methodology
relies upon Schwarz-style smoothers in conjunction with specially chosen subdomains. It was proven
that the methodology yields a pointwise divergence-free velocity field independent of the number
of pre-smoothing steps, post-smoothing steps, grid levels, or cycles in a V-cycle implementation,
and the efficiency and robustness of the methodology was demonstrated by numerical example.
Specifically, it was found that the methodology exhibits convergence rates independent of the
grid resolution and flow parameters for the generalized Stokes problem as well as the generalized
Oseen problem, provided it is not advection-dominated. It was also discovered that, somewhat
surprisingly, the methodology exhibits improved convergence rates in the three-dimensional setting

as compared with the two-dimensional setting.

10.2 Ongoing and Future Work

There are many promising areas for continued research in residual-based subgrid-scale mod-
eling for turbulence and linear solver technology. With regard to residual-based subgrid-scale
modeling, demonstrating the performance of the VMS and RBEV models for rotating flow is cur-
rently underway. The Taylor-Couette flow problem for Re = 8000 has been implemented and

initial simulations to validate the code have been conducted. A representative solution using the
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quasi-static VMS model is presented in Fig. 10.1. We plan to run a parameter study for this
problem similar to what was presented here for the Taylor-Green vortex and the turbulent channel
in order to assess the accuracy of the residual-based models for rotating flow. Additionally, con-
tinued improvements to the models presented here can be made. Pursuing additional stabilization
techniques is expected to make the VMS models more effective for the linear case and improve
the performance of the RBEV models. We also seek improvements to the quasi-static models in
order to achieve the same performance as the dynamic models at less computational expense. In
terms of discontinuous subscale approaches, there are also several avenues for continued work. The
first avenue is the design of discontinuous subscale approaches which yield coarse-scale solutions
satisfying positivity and monotonicity constraints. This can be achieved through the use of discon-
tinuity capturing operators [93, 94] or by directly embedding the constraints within the variational
multiscale framework [58]. The second avenue of research in this area is the design of discontinu-
ous subscale approaches for LES-type turbulence modeling. Two such models are presented here
and in future work they will be implemented, analyzed, and demonstrated. While lowest-order
discontinuous subscale approximations were found to stabilize coarse-scale approximations in the
context of scalar transport, it is expected that such approximations will not be sufficient to yield
accurate representations of the subgrid stress tensor for turbulent incompressible flows [138]. It is
anticipated that improved LES turbulence models may be attained through adaptive refinement of
the discontinuous subscale approximation space. It is also expected to be fruitful to extend and
apply residual-based LES turbulence methodologies to multi-physics problems, including coupled

flow transport, fluid-structure interaction, and magnetohydrodynamics.
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Figure 10.1: Simulation of Taylor-Couette flow for Re = 8000 with k = 2 and ky = 1 on a domain
of 323 elements. Velocity contours on and near the inner and outer cylinder walls and streamlines
colored by velocity magnitude. Quasi-static VMS model.

With regards to linear solvers, a full mathematical analysis of the presented geometric multi-
grid methodology is planned. It is anticipated that this analysis will largely follow the same program
of work as laid out in a recent geometric multigrid paper for divergence-conforming discontinuous
Galerkin formulations of Stokes flow [98]. Additionally, the method can be extended to advection-
dominated Oseen problems. In this setting, it is expected that upwind-based line smoothers will
be required [105]. Third, it is planned to extend our methodology to multi-patch geometries and
adaptive isogeometric compatible discretizations [37, 92]. Initial results in this area are quite en-
couraging. Finally, as is planned with future work for residual-based LES turbulence models, it
is also planned to extend the structure-preserving geometric multigrid methodology to the same

classes of multi-physics problems as previously mentioned.
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