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 Abstract 
 Wind energy has seen impressive growth in recent decades and will fulfill a greater portion of 

 the world’s energy mix as decarbonization efforts ramp up. Developers must accurately assess 

 the wind resource at potential project sites. Minimizing errors in preliminary predictions is critical 

 for keeping wind energy viable, especially with expansion into complex terrain. Complex terrain 

 introduces a number of complexities that might eliminate the possibility of an on-site 

 assessment, meaning that numerical weather prediction (NWP) models, such as reanalysis 

 products (ERA-5 or MERRA-2) or high-resolution simulations (WTK-LED/WRF) may be used. 

 WTK is generally expected to perform better than ERA-5 or MERRA-2 because of the additional 

 computing power required to extract datasets, and comparing these models to three 

 observational sites at the WFIP2 project in the Columbia River Gorge confirms WTK’s strength 

 in complex terrain. None of these products were strong performers in complex terrain when 

 compared to lidar observations (CC max ~ 0.7) and WTK, ERA-5, and MERRA-2 all have 

 negative biases when compared to observations. ERA-5 has the largest average bias of ~ -3 

 m/s. WTK had the smallest average bias, ~ -1 m/s. WTK had specific strengths when compared 

 to ERA-5 and MERRA-2, such as its low bias in summer months. WTK also forecasted the 

 diurnal wind cycles best, despite exaggerating the cycle magnitude. 

 1 Introduction 
 The necessity of access to clean and reliable energy stands at an all-time high, with drivers 

 such as fossil fuel market volatility, supply vulnerability, and concerns over climate change  (Asif 

 & Muneer, 2007)  . The Klass model projects that known  oil and gas reserves will be extinguished 

 within the next 50 years, so there is an acute sense of urgency about meeting humanity’s 

 energy needs  (Shafiee & Topal, 2009)  . 

 The development of renewable energy has been a marker for global transformation, and wind 

 power is an important piece of the puzzle. Global investment in wind power now exceeds $109 

 billion annually and continuously growing, solidifying this industry as one of the most 

 rapidly-expanding industries worldwide  (  Wind in Numbers  | GWEC  , 2022)  . The potential to 

 supply the electrical grid with renewables is increasing with the emergence of new platforms, 

 such as the offshore wind industry, which has had a steady and unprecedented 36% annual 

 growth since 2001  (Rodrigues et al., 2015)  . Investment  in renewables has also been helped by 

 federal and state government energy incentives, which have primarily benefited wind  (Wiser & 

 Bolinger, 2019)  . 

https://www.zotero.org/google-docs/?PNEBqd
https://www.zotero.org/google-docs/?PNEBqd
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https://www.zotero.org/google-docs/?PYx0m4
https://www.zotero.org/google-docs/?cFjqLU
https://www.zotero.org/google-docs/?cFjqLU
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 This swift progression in the wind energy industry requires that developers accurately predict 

 wind resources at new project locations  (Brower, 2012)  .  Developers habitually overpredict the 

 wind resource at potential sites, and minimizing errors in such estimations remains one of the 

 largest issues with wind energy development  (J. C.  Y. Lee & Fields, 2021)  . The expansion of 

 wind energy into offshore and complex terrain locations even further necessitates a precise and 

 accurate estimate of wind speeds. The preferred way to conduct a wind resource assessment 

 campaign is to measure turbine hub-height wind speeds with meteorological towers or 

 remote-sensing devices, such as lidars or sodars, that are placed on-site. However, the cost 

 and person-hours required for conducting field campaigns to assemble meteorological masts or 

 install remote sensing devices consistently exceeds projections  (Sheppard, 2009)  . Remote 

 sensing instruments for wind energy are also extremely expensive and are typically owned and 

 deployed by only a few specific institutions  (Goit  et al., 2019)  . On top of this, developers must 

 operate with constraints on time, electrical power, and physical topography  (Pronk et al., 2021)  . 

 Alternatives to an in-situ assessment campaign are NWP products such as reanalysis (ERA-5 

 or MERRA-2) or finer resolution mesoscale simulations. 

 Global reanalysis products serve as important tools that have numerous meteorological and 

 industry applications and are especially useful for wind energy purposes. For over 30 years, 

 organizations have collectively worked to create climate and weather reanalyses that use 

 historical data  (Compo et al., 2011)  . Two reanalysis  products that are commonly used right now 

 are ERA-5 and MERRA-2. ERA-5 is provided by the European Center for Medium-range 

 Weather Forecasts (ECMWF). The spatial resolution of reanalysis products is greatly improving, 

 as demonstrated by ERA-5, whose ~1 degree latitude/31 km horizontal resolution and 137 

 vertical pressure levels provide finer horizontal and vertical resolution than its predecessor, 

 ERA-interim, which provided horizontal resolution of 80 km and only 37 pressure levels 

 (Hersbach et al., 2020)  . MERRA-2 comes from the Global  Modeling and Assimilation Office 

 (GMAO) at the National Aeronautics and Space Administration (NASA) and operates in 

 between ERA-5 and ERA-interim with a resolution of ~2 degrees latitude/60 km and 42 pressure 

 levels  (Bosilovich et al., 2016; Jourdier, 2020)  .  Despite these improvements, ERA-5 and 

 MERRA-2’s spatial and temporal resolution can still fail to capture certain critical meteorological 

 phenomena, which could result in an inaccurate wind speed prediction on the wind farm scale. 

 Some advantages, though, of these reanalysis products, is that they can be easily queried by 

 anybody and accessed via a simple download. 

https://www.zotero.org/google-docs/?pB0TrO
https://www.zotero.org/google-docs/?cjyDwQ
https://www.zotero.org/google-docs/?9amhGI
https://www.zotero.org/google-docs/?dPhNya
https://www.zotero.org/google-docs/?zDCJfS
https://www.zotero.org/google-docs/?uKglpz
https://www.zotero.org/google-docs/?OgO6df
https://www.zotero.org/google-docs/?fioZdC
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 Use of reanalysis for wind energy purposes has been considered for more than 20 years 

 (Schwartz et al., 1999)  . Some developers utilize reanalysis  as a preliminary assessment for 

 certain sites before conducting a full-scale assessment campaign  (Ayik et al., 2021; Samal, 

 2021)  . Developers speculate about whether reanalysis  products are reliable enough to be the 

 basis for an entire wind resource assessment campaign, and expansion of the wind energy 

 industry into offshore locations has only increased debates about reanalysis suitability  (Ahmad 

 et al., 2022; Gualtieri, 2021)  . Typically, ERA-5 has  outperformed MERRA-2 for wind energy 

 applications in simple terrain  (Fan et al., 2021;  Gruber et al., 2022; Ramon et al., 2019)  .  Few 

 studies have assessed these products in complex terrain, and a deeper hub-height validation 

 study of reanalysis, especially in complex terrain locations, where wind energy has great 

 potential to expand, could boost trust in their use. 

 Advanced, high-resolution NWP modeling can provide accurate wind speed data, but running 

 the simulations is quite costly and resource-intensive. Their main benefit comes from their ability 

 to utilize a reanalysis product as a substratum for boundary conditions and refine this with 

 additional computing power for a higher resolution. They also resolve a range of scales of 

 motion at a particular site for an overall rigorous prediction involving a variety of scales of 

 motion. More refined mesoscale modeling has been considered for wind energy resource 

 assessment since before 2010, and improvements in its resolution have yielded even more 

 analyses of its performance  (Al-Yahyai et al., 2010;  Castorrini et al., 2021; Fernández-González 

 et al., 2018)  . There have also been efforts to apply  NWP models across the United States and 

 Europe and create a wind speed reference dataset  (Dörenkämper  et al., 2020; Draxl et al., 

 2015; Hahmann et al., 2020)  . Specific wind resource  assessment campaigns that primarily used 

 NWP have occurred at many sites globally, including Malaysia  (Nor et al., 2014)  , Fiji  (Dayal et 

 al., 2021)  , Greece  (Giannaros et al., 2017)  , Thailand  (Chancham et al., 2017)  , Alaska  (J. A. Lee 

 et al., 2019)  , and Portugal  (Salvação & Guedes Soares,  2018)  . NWP has further been used in 

 complex terrain and offshore campaigns  (Indasi et  al., 2017; Rybchuk, Optis, et al., 2021)  . 

 As a whole, as wind energy continues to expand, investigation about placing turbines into 

 complex terrain will continue and new resource assessment campaigns will be necessary. The 

 aforementioned issues with completing an in-situ assessment with meteorological instruments 

 are exacerbated when topography, such as mountains or coastlines, is introduced as an 

 additional factor. NWP and reanalysis are alternatives for wind predictions, and it is important to 

https://www.zotero.org/google-docs/?EhwABW
https://www.zotero.org/google-docs/?TDtbhn
https://www.zotero.org/google-docs/?TDtbhn
https://www.zotero.org/google-docs/?pKD3sK
https://www.zotero.org/google-docs/?pKD3sK
https://www.zotero.org/google-docs/?5P3Veb
https://www.zotero.org/google-docs/?QF6SsN
https://www.zotero.org/google-docs/?QF6SsN
https://www.zotero.org/google-docs/?Trekqu
https://www.zotero.org/google-docs/?Trekqu
https://www.zotero.org/google-docs/?GFmWpf
https://www.zotero.org/google-docs/?kQ4Mbr
https://www.zotero.org/google-docs/?kQ4Mbr
https://www.zotero.org/google-docs/?1MZWnL
https://www.zotero.org/google-docs/?hp7MSo
https://www.zotero.org/google-docs/?YYPQlm
https://www.zotero.org/google-docs/?YYPQlm
https://www.zotero.org/google-docs/?JOejN3
https://www.zotero.org/google-docs/?KepOro
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 know whether easily-obtainable reanalysis products, such as ERA-5 and MERRA-2, are 

 capable of predicting wind speeds as precisely as NWP. Preliminary research shown in Pronk, 

 et al., 2021 demonstrated similar performance between ERA-5 and the Weather Research and 

 Forecasting (WRF) NWP model in simple terrain. This superior performance by the less 

 expensive tool is highly surprising, given the magnitude of computational power required for 

 WRF. To expand this research and test reanalysis and NWP in complex terrain, I performed a 

 model validation at three complex terrain sites and analyzed the performance of ERA-5, 

 MERRA-2, and more advanced simulations in a complex terrain scenario by comparing these 

 models to available surface observations. 

 2 Data and Methods 
 I utilized locations with observational data from the Second Wind Forecast Improvement Project 

 (WFIP2), a four year study initiated by the U.S. Department of Energy (DOE) to expand industry 

 understanding of meteorological phenomena and model performance in complex terrain. The 

 WFIP2 campaign took place in the Columbia River Gorge, bordering Washington and Oregon, 

 with the overall goal of improving wind energy forecasting  (Shaw et al., 2019)  . This experiment 

 took place as part of the Atmosphere to Electrons (A2e) initiative, which partnered the DOE with 

 several national laboratories and federal agencies to optimize predictions of energy production 

 from wind farms. 

 2.1 Observations 
 The WFIP2 campaign had 27 total observational sites with varying combinations of surface 

 instruments at each  (Wilczak et al., 2019)  . Three  observational sites containing lidars are 

 utilized for this analysis (Figure 1). Observational data from heights below 60 meters and higher 

 than 140  meters above ground level (AGL) will not be considered in this analysis because of 

 the limitations of available heights from model products and tailoring this comparison for wind 

 energy applications (Table 1). Turbine hub heights in the region are typically 80 meters AGL, 

 meaning the rotor disc spans 40 meters to 120 meters AGL. Additionally, as shown in Table 2, 

 observational data that is missing, unavailable, or not a number (NaN) are linearly interpolated if 

 there is surrounding data within 30 minutes (Figure 2). Then, observations taken over time 

 intervals shorter than 1 hour are resampled using an hourly average for comparison to hourly 

 model data. 

https://www.zotero.org/google-docs/?iVtOhb
https://www.zotero.org/google-docs/?znGKgZ
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 Figure 1:  Map of the WFIP2 project location and observational sites 

 I consider observations from Windcube V1 and V2 scanning lidars. These scanning devices 

 capture wind speeds using conical scans and measuring backscatter off of aerosols, a method 

 that manufacturers report is accurate to 0.1 m/s  (Aitken  et al., 2012)  . The WindCube V2 gauges 

https://www.zotero.org/google-docs/?1CZXQb
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 Table 1:  Heights and time intervals available for observations and models used in comparison 

 Heights available (meters AGL)  Time interval 

 Gordon’s Ridge (GOR)  Lidar  40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260  2 minutes 
 (resampled hourly) 

 Wasco Airport (WAS) Lidar  40, 60, 80, 100, 120, 140, 160, 180, 200  10 minutes 
 (resampled hourly) 

 Vansycle Ridge (VAN) Lidar  40, 60, 80, 100, 120, 140, 160, 180, 200  2 minutes 
 (resampled hourly) 

 WRF: WTK-LED  60, 80, 100, 120, 140, 160, 180, 200  hourly 

 ERA-5  10, 31, 54, 66.5*, 79, 106, 121.5* 137, 170, 205, 245, 288, 334 

 *  = interpolated from surrounding 2 heights 

 hourly 

 MERRA-2  40, 60, 80, 100, 120, 140  hourly 

 Used in comparison  60, 80, 100, 120, 140  hourly 

 line-of-sight velocity with a zenith angle of 28° across 4 directions at 1 Hz, which is improved 

 upon slightly in the WindCube V2, which captures 5 directions  (Bodini et al., 2019)  . 

 Table 3 summarizes the dates that observations were taken at these three sites. The first 

 reference site is Gordon’s Ridge, Washington (GOR), at an elevation of 723 meters above sea 

 level (ASL). This site has available hub-height wind speed data from the University of 

 Colorado’s Windcube V2 that was active from November 16, 2015 to March 9, 2017. The 

 second reference site is Wasco State Airport, Oregon (WAS) at an elevation of 460 meters ASL. 

 This site has hub-height wind speed data from multiple lidars: one WindCube 200s scanning 

 lidar from the National Oceanic and Atmospheric Administration (NOAA) Earth System 

 Research Laboratory (ESRL) and another Windcube V1 Profiler from the University of Colorado. 

 This analysis will consider reviewed data from the Windcube V1 that was on-site from February 

 23, 2016 to January 27, 2017. The third site is Vansycle Ridge, Oregon (VAN) at an elevation of 

 532 meters ASL. Relevant wind speed observations at this location come from a WindCube V2 

 provided by the Lawrence Livermore National Laboratory (LLNL) that was active from March 9, 

 2016 to April 1, 2017. 

 2.2 ERA-5 Reanalysis 
 ERA-5 is one reanalysis product used for comparison against WTK-LED. ERA-5 data was 

 retrieved from the Copernicus Climate Data Store (  https://cds.climate.copernicus.eu  ).  ERA-5 

 features a horizontal resolution of ~1 degree latitude (31 km) with 137 vertical pressure levels. 

https://www.zotero.org/google-docs/?OiCw8q
https://cds.climate.copernicus.eu/
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 Figure 2:  Data availability for each observational  site before and after processing NaNs using a 

 linear interpolation from usable points within 30 minutes 

 For this analysis, I used the closest ERA-5 latitude-longitude grid point to the exact location of 

 each corresponding observational site, which has been proven to result in the best reanalysis 

 performance  (Sheridan et al., 2020)  . The grid points  and respective distances from sites are 

 summarized further in Table 4. Some ERA-5 data between two heights were interpolated to 

 closely match heights from other model products, as shown in Table 1. 

 2.3 MERRA-2 Reanalysis 
 The second reanalysis product used here is MERRA-2. MERRA-2 data can be run and 

 extracted from Renewables.Ninja (  https://www.renewables.ninja/  ).  MERRA-2 has a resolution of 

 ~2 degrees of latitude (60 km) and 42 pressure levels. Like ERA-5, for this project, I used data 

 from the closest longitude-latitude grid point to the 3 surface observation sites. 

 2.4 Numerical Weather Prediction: WRF/WTK-LED 
 The WTK-LED data for the three sites at WFIP2 came from the Wind Integration National 

 Dataset (WIND) Toolkit Long-term Ensembel Dataset (WTK-LED), provided by the National 

 Renewable Energy Laboratory (NREL). The data were extracted by NREL’s Nicola Bodini, who 

 personally performed the WTK-LED simulations for the purpose of this research. The attributes 

 of the WRF runs are summarized in the table below and have the same characteristics as those 

 mentioned in Pronk, et al., 2021. The model output was initialized monthly, 2 days prior to and 

 up to 1 day after the end of every month. The first day is for the model to spin-up and the 

 second and final days are for combining the months. The closest 2-km grid point is used for 

 WRF. 

https://www.zotero.org/google-docs/?CcwuRM
https://www.renewables.ninja/
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 Table 3:  Time periods that each observational site was active 

 Data time period: 

 Gordon’s Ridge (GOR)  2015-11-16 to 2017-03-09 

 Wasco Airport (WAS)  2016-02-23 to 2017-01-27 

 Vansycle Ridge (VAN)  2016-03-09 to 2017-04-01 

 Table 4:  Locations of each observational site and  corresponding grid points used for analysis 

 Site Exact Location  (°)  Coordinates used for 
 ERA-5 and 
 MERRA-2  (°) 

 Reanalysis point distance from 
 observational site (km) 

 Gordon’s Ridge (GOR)  (45.51581,-120.78040)  (46, -121)  56.53 

 Wasco Airport (WAS)  (45.59011,-120.67193)  (46, -121)  52.25 

 Vansycle Ridge (VAN)  (45.95509,-118.68763)  (46, -119)  24.68 

 Table 5:  WTK-LED WRF simulation characteristics 

 WRF Version  4.2.1 

 Spatial resolution  2 km 

 Temporal resolution  5 minutes (resampled hourly) 

 Heights (meters AGL)  12, 34, 52, 69, 86, 107, 134, 165, 200 

 Atmospheric forcing  ERA-5 

 Atmospheric nudging  Spectral nudging 

 Planetary boundary layer (PBL) scheme  Mellor-Yamada-Nakanishi-Niino Level 2.5  (Nakanishi  & Niino, 2009) 

 Microphysics  Morrison double-moment  (Morrison et al., 2009) 

 Longwave & shortwave radiation  Rapid radiative transfer model  (Iacono et al., 2008) 

 Topography database  Global multi resolution terrain elevation data from the United States Geological 
 Survey (USGS) and the National Geospatial-Intelligence Agency (NGIA) 

 Land-use data  Moderate Resolution Imaging Spectroradiometer 30 s 

 2.5 Error Metrics 
 In order to quantify the performance of WTK-LED against reanalysis products, four key metrics 

 were utilized as recommended in  (Optis et al., 2020)  .  These metrics are bias, centered 

 root-mean-squared-error (cRMSE), R-squared, also called correlation coefficient (CC), and 

 Earth-mover’s distance (EMD). 

https://www.zotero.org/google-docs/?vxF5hK
https://www.zotero.org/google-docs/?1zlgkh
https://www.zotero.org/google-docs/?GMYj2Q
https://www.zotero.org/google-docs/?zudEY1
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 In order to decompose model error into bias and random error, I first calculated bias as: 

 𝐵𝑖𝑎𝑠    =  𝑝 −  𝑜     = mean of model  𝑝 

 = mean of the observations from lidars  𝑜 

 cRMSE, which is part of the decomposed RMSE, where c refers to “centered” or “unbiased”. If 

 models offered perfect predictions of wind, cRMSE would be 0. This is calculated as: 

 𝑐𝑅𝑀𝑆𝐸    =    [  1 
 𝑁 

 𝑛 = 1 

 𝑁 

∑ [( 𝑝 
 𝑛 

−  𝑝 )   − ( 𝑜 
 𝑛 

−  𝑜 )]   
 2 
]

 = number of data points in the series  𝑁 

 = time series values of modeled wind  𝑝 
 𝑛 

 = time series values of observed wind  𝑜 
 𝑛 

 The third metric of comparison between the models and observations is a simple R-squared 

 correlation coefficient (CC). R-squared is used for showing how much statistical variance exists 

 between two datasets. Identical data, or a perfect wind speed prediction by models when 

 compared to observations, would have a CC of 1. The correlation coefficient is calculated as: 

 𝑟  2 =
 1 
 𝑁 

 𝑁 = 1 

 𝑁 

∑ ( 𝑝 
 𝑛 
−    𝑝 )   −   ( 𝑜 

 𝑛 
−    𝑜 )

 σ 
 𝑝 
 σ 

 𝑜 

⎛

⎝

⎞

⎠

 2  = standard deviation of modeled data  σ 
 𝑝 

 = standard deviation of observed data  σ 
 𝑜 

 Finally, the EMD, also known as the Wasserstein distance, measures the difference between the 

 two distributions as an area between two cumulative distribution functions. EMD captures a 

 wider scope by integrating over the entire dataset. A perfect distribution between two wind 

 speed datasets would have an EMD of 0. 

 𝑊 
 𝑝 

=
 0 

 1 

∫  𝐹 
 𝑜 
− 1 ( 𝑧 ) −  𝐹 

 𝑝 
− 1 ( 𝑧 )|||

|||
 𝑝 
 𝑑𝑧 ( ) 1/  𝑝 

 = inverse probability distribution function  of observed  𝐹 
 𝑜 
− 1 ( 𝑧 )

 wind 

 = inverse probability distribution function  of modeled  𝐹 
 𝑝 
− 1 ( 𝑧 )

 wind 

 3 Results 
 The results shown here give a comprehensive overview of the performance of each NWP 
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 product versus observations at each site. The sections below analyze the overall mean wind 

 speed profiles and discuss the four chosen error metrics, mean wind speed profiles by season, 

 error metrics by season, overall diurnal cycles, and diurnal cycles by season. Figures 3-11 are 

 referenced in this results section and appear below in Appendix A. 

 3.1 Overall annual mean wind speed prediction 
 The annual average shows that WTK, ERA-5, and MERRA-2 all under-predict observed wind 

 speeds at all three sites. Figure 3 shows the overall mean wind speed profiles for each wind 

 speed dataset at each site, which shows that WTK is the closest to accurately predicting wind 

 speeds, followed by MERRA-2, then ERA-5. However, further analysis is required to truly 

 understand the differences between these methods. 

 3.2 Overall annual wind speed error 
 Isolating the bias metric confirms that all model products demonstrated a negative bias at the 

 three sites, as shown in Figure 4 a-c. WTK showed the smallest magnitude mean bias at all 

 sites. At GOR, WTK showed an overall annual bias of ~ -1 m/s, MERRA-2 showed ~ -1.5 m/s, 

 and ERA-5 had a large negative bias of ~ -4 m/s. At WAS, WTK did not have a significant bias, 

 and showed only a minute positive bias at 60 meters AGL up to a slight (~ -0.5 m/s) negative 

 bias at 140 meters AGL. MERRA-2 and ERA-5 also had smaller values of bias at WAS, showing 

 ~ -1 m/s and ~-3.5 m/s, respectively. VAN demonstrated similar bias in the model products as 

 GOR: ~ -1 m/s for WTK, ~ -2 m/s for MERRA-2, and ~ -3.5 m/s for ERA-5. VAN exhibited a 

 decreased bias at higher levels, contrasting GOR and WAS. 

 Expanding bias to cRMSE (Figure 4 d-f) shows that at each site had a different product which 

 performed best. At GOR, MERRA-2 performs best, followed by ERA-5, then WTK. At WAS, 

 ERA-5 performs the best, followed by WTK, then MERRA-2. WTK is the best performer at VAN, 

 followed by ERA-5 then MERRA-2. A possible reason for a different product having a cRMSE 

 advantage at each site is the model grid point’s proximity to the observational site. 

 No site had a strong correlation coefficient, but WTK has the best of the three models at every 

 site. The third metric, R-squared, (Figure 4 g-i) at GOR was nearly identical for each method 

 (~0.5). The correlation at WAS and VAN is strongest for WTK and ERA-5 is considerably close 

 (within 0.1). The correlation coefficients are relatively low for every site (no better than 0.7), 

 highlighting the challenges that exist with any model product when complex terrain is 
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 introduced. 

 As shown in Figure 4 j-l, WTK had the best EMD for all sites (<1.5 m), which was subsequently 

 followed by MERRA-2. ERA-5 has quite a high EMD for all three sites (3-4 m). The mean wind 

 profiles and error metrics for the annual data suggest that the WTK-WRF produces more 

 accurate predictions than ERA-5 or MERRA-2. This signal can be supported by looking at the 

 seasonal and diurnal variability of these methods. 

 3.3 Seasonal mean wind speed prediction 
 The seasonal mean wind profiles for each site generally support the above findings from the 

 overall profiles, but seasonal variability introduces complexity. There are some specific seasonal 

 flows in the Columbia River Gorge region which certainly can influence model performance. 

 Gap flows, or strong gorge winds, occur easterly in the wintertime and westerly in the 

 summertime, promoted by temperature shifts, rapid amplification of a 500-mb ridge, and an 

 offshore pressure gradient in the Pacific Northwest  (Sharp & Mass, 2004)  . Moreover, the hills 

 and valleys in the gorge create intense westerly flow in the cold and transition seasons that can 

 last for hundreds of kilometers  (Wilczak et al., 2019)  . 

 Each product performed differently compared to observations at the sites, with no clear pattern 

 in the seasonal separation. At GOR, despite slight seasonal variability in observed wind speeds, 

 all models under-predict in each season.  MERRA-2 outperformed WTK in winter and fall, and 

 the two had a nearly identical result in spring. WTK was the best performer at GOR during the 

 summer, with MERRA-2 underestimating. ERA-5 followed with a large underestimation for every 

 season. 

 WTK is the strongest seasonal performer at WAS. Winter at WAS (Figure 5 b) shows a spot-on 

 WTK prediction, followed with a slight overestimation by MERRA-2. WTK again performs best at 

 WAS in spring and summer with a slight underestimation in spring months and slight 

 overestimation in summer months. MERRA-2 is second-best, showing better results in spring 

 than summer (Figure 5 e, h). In the fall, MERRA-2 is the best performer at WAS, closely edging 

 out WTK by being more precise at greater heights (Figure 5 k). ERA-5 once again 

 underestimates speeds for all seasons at WAS. 

 Finally, at VAN, all methods under-predict in the winter, but MERRA-2 is the top performer. 

https://www.zotero.org/google-docs/?JCZz55
https://www.zotero.org/google-docs/?U2x9Ql
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 Spring and summer performances of all three datasets are nearly identical at VAN, with a 

 near-perfect WTK estimation, then MERRA-2 and ERA-5. MERRA-2 and WTK are relatively 

 equivalent in the fall, but ERA-5 underestimates speeds in all seasons (Figure 5 c, f, i, l). 

 3.4 Seasonal wind speed error 

 ERA-5 had the largest wintertime bias at all three sites of around ~ -2 to -4.5 m/s. MERRA-2 

 and WTK differed a bit between the three sites during winter, though. At GOR, MERRA-2 and 

 WTK performed similarly with an average bias of ~ 1 m/s, but WTK had a higher bias at higher 

 heights, while MERRA-2 had a higher bias at lower heights. WAS also featured similar 

 wintertime performance between MERRA-2 and WTK, with biases of ~ 0.5 m/s and -0.5 m/s, 

 respectively. At VAN, MERRA-2 had the smallest wintertime bias of  ~ -1 m/s, followed by WTK 

 with ~ -1.5 m/s (Figure 6 a-c). The springtime bias again revealed ERA-5 with a stark 

 under-prediction of ~ -3 to -4 m/s at each site. WTK was the best performer in spring, with a bias 

 of ~ -1 m/s at GOR, an accurate prediction at WAS, and a bias of ~ -0.5 m/s at VAN. MERRA-2 

 was within 0.5 m/s of WTK at GOR, but was over 1 m/s behind at WAS and VAN. Summer 

 showed ERA-5’s largest negative bias of any sites of ~ -4 to -5 m/s (Figure 6 d-f). Summer is 

 also where WTK performed best, never showing a bias of more than 1 m/s in magnitude. WTK 

 predicted excellently at VAN in summer. MERRA-2 showed a consistent ~-2 m/s bias in 

 summertime months at all three sites (Figure 6 g-i). Finally, during the fall, like all other seasons, 

 ERA-5 has a bias of ~ -3 to -4 m/s of bias across all sites. MERRA-2 and WTK each have 

 biases of ~ -1 m/s in the fall. WTK has a slightly better performance than MERRA-2 at lower 

 levels at VAN (Figure 6 j-l). 

 cRMSE is generally lower during summer months compared to other seasons. GOR has very 

 similar cRMSE performances for WTK, MERRA-2, and ERA-5 during every season, all within 1 

 m/s of each other. At WAS, ERA-5 is the consistent best performer, which comes as a surprise 

 after the product’s large biases (Figure 6). WTK is second-best in winter and summer, followed 

 by MERRA-2. In spring, WTK and MERRA-2 performed almost identically (Figure 7 d-f). VAN 

 has WTK with the lowest cRMSE for all four seasons (Figure 7 c, f, i, l). ERA-5 and MERRA-2 

 are similar for winter, spring, and summer with a cRMSE of ~1 m/s greater than that of WTK, but 

 ERA-5 actually is quite similar to WTK in fall. 

 The correlations between WTK, MERRA-2, and ERA-5 and observations varied greatly with 
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 seasons. At GOR, all methods had about the same R-squared during summer of ~ 0.6 (Figure 8 

 g). In winter, MERRA-2 had the highest CC, followed by WTK, then ERA-5 (Figure 8 a). In 

 spring at GOR, WTK had the highest CC, then ERA-5, then MERRA-2 (Figure 8 d). In fall at 

 GOR, MERRA-2 again has the strongest CC, this time followed by ERA-5, then WTK (Figure 8 

 j). At WAS, winter and spring demonstrate WTK as having the strongest correlation, followed by 

 ERA-5 (Figure 8 b, e). Summer and fall at WAS have ERA-5 and WTK with similar correlations 

 (Figure 8 h, k). At VAN, WTK has the best CC for winter, spring, and summer, followed by 

 ERA-5 (Figure 8 c, f, i). In summer at VAN, ERA-5 has the strongest CC, the only site where the 

 product has the strongest correlation to observations (Figure 8 l). MERRA-2, despite having little 

 bias and closely matching WTK in that metric, has the weakest R-squared for all seasons at 

 WAS and VAN. As a whole, the correlations change seasonally, proving lower in winter and 

 increasing in summer at GOR and WAS. 

 EMD also changed a fair bit when isolating seasonal periods for the three sites. Across the 

 board, ERA-5 had the highest EMD, typically ~ 3 m or more. WTK consistently had the smallest 

 EMD, barely exceeding 1 m. MERRA-2 was the most variable throughout the seasons. 

 MERRA-2 did well in winter and fall, even exceeding WTK for higher levels at GOR (Figure 9 a, 

 j). EMD for MERRA-2 increased during spring and summer months, though, deviating starkly 

 from WTK. 

 3.5 Diurnal mean wind speed prediction 
 The relative strengths of these reanalysis products can also be considered by how accurately 

 they predict diurnal cycles. A general weakness at predicting these day-night shifts is expected, 

 given that the coarse spatial and temporal resolution of NWP products could miss expected 

 phenomena in the boundary layer at night, like quiet near-surface winds and upper-level 

 acceleration with low-level jet development and turbulence collapse. It is also challenging for 

 NWP products to consider other meteorological details like surface variability and soil moisture. 

 The overall annual average diurnal cycles are shown in Figure 8. At all three sites, there is a 

 clear absence of any diurnal wind speed cycle in ERA-5 and the same negative bias explained 

 above is apparent in these plots. MERRA-2 shows a very slight diurnal variation, but drastically 

 underestimates the cycle. On the other hand, WTK tends to over-exaggerate the diurnal cycle 

 with higher day-to-night deviations than those coming from surface observations. 
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 3.6 Seasonal diurnal wind speed 
 It is beneficial to break down the diurnal cycle by season, like what was done with the mean 

 wind plots and performance metrics in sections 3.3 and 3.4. Neither ERA-5 nor WTK show 

 much diurnal cycle in the wintertime.. WTK appears to match the shape of the cycle, but is 

 timed poorly, as shown in Figure 11 a, b.  During springtime, WTK exaggerates the diurnal cycle 

 at all three sites. MERRA-2 and ERA-5 show no clear cycle at GOR or WAS (Figure 11 d, e). All 

 methods surprisingly show a cycle at VAN, with WTK being the most accurate. MERRA-2 

 seems to match the profile best though, with a low-bias (Figure 11 f). In summertime, MERRA-2 

 and ERA-5 both match the diurnal profile excellently at GOR and WAS, but have low biases. 

 WTK again has an over-emphasized cycle in summer for the first 2 sites. WTK predicts 

 relatively well at VAN, where ERA-5 and MERRA-2 actually understate the day-night wind 

 speed differences. In fall, WTK has the best diurnal cycle shape for replicating observations at 

 GOR and WAS, but MERRA-2 appears to have the closest speed prediction. Consistent with 

 the other sites and seasons, WTK has a cycle that is more prominent than real speeds. At VAN, 

 MERRA-2 is close to WTK in speeds, but more accurate in profile. 

 4 Conclusion 
 Wind energy is taking off as a reliable, sustainable way that people will be able to obtain 

 electricity. Wind is an extremely variable phenomena, though, and as wind energy starts to 

 enjoy an increased share of the worldwide electricity market, the importance of accurately 

 forecasting and assessing wind resources at potential sites will escalate  (Marquis et al., 2011)  . 

 When on-site measurements of wind speeds are not possible to obtain, NWP and reanalysis 

 products can be used in their place. Performing a model validation using three sites from the 

 WFIP2 project, located in mountainous terrain, helps to understand how WTK-WRF, ERA-5, and 

 MERRA-2 work in such conditions. 

 As a whole, none of these products excelled in complex terrain. When looking specifically at 

 correlation coefficient, every site and every method had extremely low correlation to actual lidar 

 observations. This highlights that there are some significant challenges with using any of these 

 products in complex terrain. The mean wind profiles and error metrics for the annual data give a 

 primary indication that WTK-WRF runs produce more accurate predictions than ERA-5 or 

 MERRA-2, and this is supported by separating out data into a seasonal comparison. 

 The seasonal mean wind plots again indicate that WTK has the most accurate mean wind 

https://www.zotero.org/google-docs/?vwxBiy
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 speed prediction. MERRA-2 is a close competitor, though, especially in fall and winter. ERA-5 

 vastly underestimated speeds at all three locations for all four seasons. WTK’s greatest strength 

 was a very low-magnitude bias in summer months. WTK was the overall best product based on 

 the chosen metrics (bias, cRMSE, CC, EMD). 

 MERRA-2 and ERA-5 would need vast improvements to be reliable for proper wind resource 

 assessment. The performance metrics further highlighted ERA-5’s poor forecast accuracy, but 

 surprisingly, the profiles of ERA-5 matched observations very well, indicating that it could be a 

 stronger product to use if a bias-correction was applied to the reanalysis data. Use of 

 bias-corrected reanalysis is already considered for some projects  (Staffell & Pfenninger, 2016)  . 

 One potential reason for ERA-5’s overall slow-bias could be that the ERA-5 centroids are quite 

 far from the locations of the lidars (Table 4). The accuracy advantages of the WTK are clear 

 here, but if a fairly accurate prediction could be achieved with and cost-effective reanalysis, 

 developers are sure to consider these simpler models. 

 This research about WTK, MERRA-2, and ERA-5 should be expanded by applying similar 

 model validations at additional complex terrain sites that have available observational data. 

 There is plenty of research that recognizes that the physical complex terrain space, such as that 

 in the Swiss Alps, is advantageous for wind energy development  (Clifton et al., 2014)  . The 

 terrain is different there than in the Columbia River Gorge, and using these models in a variety 

 of terrain types will further demonstrate their strengths and necessary improvements. As 

 understanding of and wind behavior in complex terrain increases, so too will the importance of 

 this research. Mountain flows, mountain wakes, and recirculation zones are just a few of the 

 meteorological phenomena that occur in complex terrain  (Lange et al., 2017; Menke et al., 

 2019  ). Continued experimentation will allow for more  scientific knowledge about the weather 

 and atmosphere in complex terrain and thus, the best way to utilize NWP products for wind 

 energy development. 

 Improvements to the model products themselves could also be relevant for future research. 

 Using an updated Planetary Boundary Layer (PBL) scheme, such as the 3DPBL, in models 

 could significantly increase their performance  (Arthur  et al., 2022)  . This 3DPBL can be also be 

 coupled with a wind farm parameterization for improved forecasting  (Rybchuk, Juliano, et al., 

 2021)  .  Combining wind resource assessment methods  is proving to be a strong way to 

 formulate an accurate prediction. Some European laboratories are utilizing satellite-borne lidars 

https://www.zotero.org/google-docs/?iaWeMr
https://www.zotero.org/google-docs/?vd34Ml
https://www.zotero.org/google-docs/?Zc9GV9
https://www.zotero.org/google-docs/?Zc9GV9
https://www.zotero.org/google-docs/?pBHQnF
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 to measure wind resources in the boundary layer, a method that could be especially strong 

 when viewed alongside reanalysis products  (Lux et  al., 2022; Witschas et al., 2020)  . 

https://www.zotero.org/google-docs/?Gs3jRD
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 Appendix A 

 Figure 3:  Plots of overall annual wind speed profiles  for GOR, WAS, and VAN Shaded areas 

 show 1 standard deviation of the mean of each dataset 
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 Figure 4:  Plots of overall annual mean bias (m/s),  cRMSE,  CC, and EMD for GOR, WAS, and 

 VAN. 
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 Figure 5:  Plots of wind speed profiles for each season  at GOR, WAS, and VAN. 
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 Figure 6:  Plots of mean bias (m/s) at GOR, WAS, and  VAN by season 
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 Figure 7:  Plots of cRMSE (m/s) at GOR, WAS, and VAN  by season 
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 Figure 8:  Plots of Correlation Coefficient at GOR,  WAS, and VAN by season 
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 Figure 9:  Plots of EMD (m) at GOR, WAS, and VAN by  season 
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 Figure 10:  Plots of overall annual diurnal cycle profiles for GOR, WAS, and VAN. Shaded areas 

 show 1 standard deviation of the mean of each dataset. 
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 Figure 11:  Plots of diurnal cycle profiles for each  season at GOR, WAS, and VAN. 
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