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ABSTRACT

The objective of this work is to investigate the character-
istics of dielectric slab waveguides frequently used in in-
tegrated optics by a microwave modeling technique. The study
includes excitation of a surface wave mode in a low loss
dielectric waveguide as well as coupling between two similar
(degenerate mode) and different (non-degenerate) waveguides.
The e#perimental data indicate the coupling length is short
for the non-degenerate, and decreases as the separation between
the two guides decreases for either case (degenerate or non-
degenerate)..

We also investigated the field characteristics outside a
curved slab and the containment of radiation. Previous
theoretical work indicated that the use of 1/p type profile
in the refractive index would reduce the radiation losses.
Unfortunately, such a graded profile cannot be obtained.physicall?.
A simple solution is to truncate the inverse—linear\profile at
some finite distance from the guide to achieve a substantial
reduction of radiation. Experimentélly, we achieved a tapered
profile by using a triangular taper. This resulted in reducing
the radiation by as much as 3 db over the untapered case.

Also included in this work is the investigation of far

field pattern for guides with different radii of curvature.
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CHAPTER I

INTRODUCTION

Studies of surface wave modes were made as early as 1907
by Zenneck who considered a plane wave incident on a lossy .di-
velectriclmeaium: But serious practical use of this type of
‘mode for communication was made in the fifties when Gaubau [24]
‘suggested the use of a dielectric-coated single conductor surface-
wave transmission line. Theoretical analysis of these so-called
G-lines were made by Barlaw and Cullen [25], for individual
lihes and by Méyérhoff [26], among others, for the coupling
between two surface wave transmission lines (Gaubau lines).
Also, Cullen [27] analyzed, theoretically, the surface.wave,j
excitatioh of a”single dielectric slab waveguide. -Due to the
intrinsic losses of these G-lines the practical use of them is
restricted to mainly microwave application. Moreurecentlyvthere
haS‘been7conSiderable'research in surface wave propagation along
pure dielectric-waveguide structures. Some of the interest was
in fiber optics for long distance communication [1], other in
intégrated optics [2]. The losses of fiber lines were reduced
drastically to a few decibels per kilometer so that the use of
fibers for optical communication becomes more of a reality.
Meanwhile progress made in optical fibers also opens the way
in the design of small components devices called "integrated
optics," where active and passive devices can be built on a

common substrate and connected to a dielectric waveguide [32].



2

Snitzer [28] reported some experimental studies of several
low-order ﬁodes £hat appeared alone or in a combination on
fiber waveguides. The theory of higher-order hybrid modes of
dielectric guides was advanced by Snitzer [29] and Kapany
and Burke [30]. A theoretical study of the launching of
HEl,m modes By‘plane wave with the wave vector parallel to
the axis of ‘a circular rod was reported by Snyder [31]. Optical
guides radiate energy from bends. Marcattili [15) and Lewin [17]
formulated a closed form expression for the attenuation due to
these bends. Chang and Barnes [11l] treated the reduction of
radiation from bends for a curved dielectric slab. Maley [12]
found the far field pattern and the radiated power due to the
discontinuity from straight into curved slab waveguides.

Jones [14], Arnavd [13] and Kuester and Chang [8] analyzed
coupling phenomena between two dielectxic waveguides for
degenerate and non-degenerate surface wave mode .

Up to now there has been little experimental invéstigation
of the coupling and radiation losses in dielectric waveguides
(fibers or slab waveguidesi. At optical frequencies detailed
study of these structures is hampered by their small size of
the order 10-50 microns. In order to circumvent this diffi-
culty, we investigated‘in this report a microwave scale model
of these optical dielectric waveguides. This can be done using
microwave frequency since uniformity, surface roughness and
dimension of the waveguldes can be controlled with precision.
In addition, the possibility of minimizing the radiation from

bends and coupling between twc waveguides could be studied



‘experimentally.

In this investigation a dielectric slab waveguide having
small relative dielectric constant ef = 1.03) was simulated
using a microwave model. The waveguide was designed to
support just a single mode (TEO) and the thickness was about
9.2 cm, where the frequency of operation is 9 GHz.

Chapter III deals with the experimental setup being used
- for the excitation of a surface wave model. Also, the design
of a single mode dielectric slab waveguide is treated there.
Chapfer IV is devoted to the experimental and theoretical
investigation of a single mode slab waveguide. Coupling
between two dielectric slab waveguides for degenerate and non-
degenerate cases was presented in Chapter V. A theoretical
analysis was ihcluded also. However, Chapter VI mqinly
treats, experimentally, the radiation due to bends in s;ab
waveguides. Reduction of radiation and far field pattern are
discussed. Results of this study as well as some suggestions
are summarized in Chapter VII. The Appendix contains some
Basic-Computer Programs for the solution of transcedental
mode equations, the magnitude and phase of the coupled system
modes, and attenuation and radiation losses from curved guides.

This work is mainly experimental in nature, although some

theoretical justification is included.



CHAPTER II
THEORY

In this chapter, we first summarize some of the known

theoretical results pertinent to our investigation.

(a) Single Slab Waveguide

A surface wave mode can be guided along a dielectric
slab waveguide. These modés have an evanescent character
in the outside region of the slab due to the unboundedness
of these structures. In general surface wave modes in a
symmetric slab have the following characteristics:

1. No low frequency cutoff for the dominant mode.

2. A finite number of discrete modes of propagation

at a given frequency.

3. The possibility of a mode solution with a phase

velocity less than the speed of light in free space.

Inside the dielectric slab region these modes can be
considered as a plane wave incident from the dielectric region
onto the air-dielectric interface at an angle less or greater
(depending on how the angle is measured) than the critical
angle 9 where sin o = 1 and n is the refractive index

c c ny 1 B
of the dielectric slab. For incident angles greater than the

critical angle there is complete reflection at the interface

and the field outside the dielectric is evanescent type.



Therefofe the plane waves propagate in a zigzag path along

the z axis undergoing complete reflection at each interface.
For a two dimensional dielectric slab waveguide with

air in the outside region and for a TE type excitation

the wave equation renders two types of modes (even and odd)

as given in [6~7]. Assuming no variation along y direction,

9 _ ‘ -
3y = 0 (2-1)

and with time énd z dependence of the form

ei(wt—Bz) (2-2)
X
\
T
56" Q//// > Z
x=-t

Fig. 1l: Single Slab Dielectric Waveguide



we have for the even guided modes, a field distribution of

Ey = A_cos hx x| <t ,(2—3)
_ _ ih - _
HZ = - o Ae sin hx (2-4)
o
where
2 _ 22 2 _
h® = nlko R (2-5)
Ey = A_ cosht e-p(]x]—t) lx] >t (2-6)
_ _ _xip -p (1 x|-t) -
HZ 'lmo Ae cos ht e (2 7)
and

2 .2 2 -
p = 8% - k2 (2-8)

where h is the transverse propagation constant inside the

slab region,

p 1is the decay constant outside the slab.
B is the propagation constant along the z axis.
t half width of the slab

L, . . . .
n.= €’ 1is the refractive index inside the slab.

1 r
ko = %F is the free space propagation constant.

The significance of the above equations is the evanescent
field character in the outside region and the slow character

of the wave along the z axis. The surface wave phase Velocity

v = % =2 (2-9)



is therefore slower than c, the velocity of light in air.
Therefore these structures are often referred to as slow-
wave structures. In the above analysis the requiremént for
a mode to be guided is that p2 > 0.

An eigenvalue equation for finding h and p can be

found by applying boundary conditions. These equations are

given by:
= bt _
tan ht = ot (2-10)
and
)2 + @)% = (n2-1) (k) (2-11)

The solution of the above equations (which can be put into
one trancendental equation) will determine the character

df the field inside and outside the slab surface, also the
velocity that the wave propagates along the =z axis. The
power P flowing in the =z direction per unit lenéth in

the y direction is given by

=1 5« H*) .as = B |E |2 -
P =5 J'Re(E><H ) -ds = i IEyl dx (2-12)
or -~
_ (Bt + B8/p 2 -
P =( 2wu6 ) Ae - (2-13)

The significance of equation (2-13) is that the amplitude of
the field Ae can be found in terms of the power p flow-
ing in the 2z direction.

The odd mode type solution is given as



E, = A, sinhx x| <t (2-14)
E = -X A sinht e PUXIt) |x| >t (2-15)
y |x| o |

and its eigenvalue equation is

- - bt -
cot ht nt | (2-16)

Therefore depending on the physical dimension ofithe slab,
its refractive index and the frequency of operation, a
single mode or multimode waveguide can be designed. It is
obvious from equation (2-10) that the lowest order mode has
no lower cutoff frequency. Also at a specific frequency there
is only.finite number of proéatating modes.

Radiation modes can also exist in a slab waveguide.
These unguided modes come out as a solution of the wave equation
and satisfy Maxwell equations, if we consider a plane wave |
incident from the outside region onto the slab waveguide. As
a result of the refraction and reflection, a standing wave
can exist inside and outside the slab surface. These modes
do not decay in the outside region and are bound to the
dielectric waveguide. The normalization of these modes in—v
volves a delta function [20]. Marcuse [6] presented detailed

information about these radiation modes.



(b) Coupling Between Two Dielectric Waveguides:

There exist many theoretical papers concerning this
subject, Marcuse [4] obtained the coupling coefficient of
two parallel dielectric waveguides of arbitrary shape and
arbitrary distribution of refractive index using pertur-
bation theory. His result applies only to degenerate modes
(modes having equal phase'velocities). Jones [14] using
dyadic Green's functions, found the coupling coefficient be-
tween two parallel (arbitrarily) shaped waveguides that
includes the effect of continuous mode spectrum, |
There is a large amount of literature on this subject.
Kuester and Chang [8] give comprehensive discussions on this
topic; They also treat the coupling problem by using a
variational technique. This method renders a far better
‘esult than the above mentioned papers especially in the non-
degenerate case and for a very closely spaced waveguide.

The following results were obtained from their paper.

Continuous coupling between two parallel dielectric
waveguides will occur due to the evanescent nature of the
surface-wave modes in the region outside of the waveguide.
In Fig. 2 a cross-sectional view of two waveguides is showﬁ.’
Each of the two guides has a refractive index profile of
(ni + n‘g);i where 1i=1 or 2 and n, is the refractive
index of the surrounding medium. Assuming that the separation

between the two guides is very large, the system field can



be given as

=+ -+ =+
E = mlEl + m2 2
=+ =+ -t

= ml 1 + m2H2

=+

10

(2-17)

=+ . . . .
where (El 5 Hl 2) are the transverse field distributions
14 14

for the two Waveguides, each in the absence of the other,

for propagation in the forward z-direction with propagation

~constant B8 . m; and m, are as yet undetermined constants.
1,2 1 2

By using a variational formulation and the-application of the

Rayleigh-Ritz principle, it was found that the system propa-

gation constant g could be written as

B+ = Bav + A8
where _ 1
8av - 2(51 + 82)
and
AB = /A% + 52
1 _
62 = ¢c.c./P,P
172°°172
where

Here the surface integration is over the entire cross-

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

sectional plane; (u,e) are the permeability and permittivity
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. . . =+ + - - = -
of the dielectric media; E- =_E£ a, + Ei so that Ei, Ei
are the transverse and longitudinal components of ET
. —— == . s . -+ =+
respectively. (E , H ) is the "adjoint" field of (E+, H)
having a transverse field distribution,
————+ _—'-—+'_—=—_+ T = + -
Et = Et . EZ = Ez H Ht Ht' HZ HZ - (2=-23)

and propagating in the negative 2z-direction. It is clear
that Pl , are associated with the power flow of the two
, .

individual waveguides, and Cl’2 are associated with the
mutual coupling of power between the two guides. C1,2 _are
expected to be much smaller than Pl,2 since Cl,2 involves
only surface integration over_the‘individual waveguide cross
sections where the field of the other waveguide is exponentially
small. Hence from (2-18), there exist two waveguide system
modes whose propagation constants B+ and B_ are centered

at (Bl + 52)/2 and separated from each other by the amount

of 2AB. The transverse field distribution of these two

system modes are given by

=+ =+ —+
E" = m (] + q, By (2-24)

L P [ —ns/h%4s2

In the case of coupling between two degenerate modes in

where

a system of two identical waveguides Bl = 62, this implies
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d = 1. Hence one of the system modes is symmetrical, E; =
=+ =+ . . . . = = =
El + E2 while the other is antisymmetrical E; = EI - E; .

If a surface-wave mode initially propagates in only one of
the two identical lossless dielectric waveguides, i.e.
—+ ] :
Ez(z = 0) = 0. The total field at 2z = 0 would be two system

modes of equal amplitudes
a7, =g8r 4+ 8F (2-26)

Since the symmetric and anti-symmetric modes have different
phase velocity, they interfere with each other either con-
structively or destructively according to

-if, z -ig z
-+ + =+ -
Et £ = ES e + Ea e (2-27)

as shown in Fig. 3 for two identical slab waveguides. At

a distance L (called the qoupling length),

L=, T 8 | (2728
the two amplitudes become‘equal but opposite. Hence at
z = L the total field corresponds to that of the surface-
wave mode of an isolated second waveguide while the field in
the first guide is identically zero. Thus there is a complete
power transfer from guie 1 to guide 2 at =z = L.

It was found for idénticalvslab waveguides separated by

distance d that AR is given by:



e=n3+n’

13

Ce=nZent

Fig. 2 Geometry of two parallel guides
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Fig. 3 Change in relative phase of Ez and Eg

causes total field to transfer from guide 1 to

guide 2
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pd
(2-29)

AB = 2 sz e-z
koﬁl(nl--l)Le
where L, =D+ 2/p and p,h and n, are given in part (a)
of this chapter and D is the Width of the slab. It can be
seen from equation (2-29) that AR decreases exponentially
for increasing the separation d.

In the case of non-degenerate modes, there is a partial
transfer of power in comparison to a complete power transfer
in the degenerate case whenever the coupling length is an ;Vj
integral multiple of L. The reason is that the two system

modes are neither symmetrical or antisymmetrical. 1In this

case the total electric field can be written as

E: t - ( qu-q ) E;+ e_18+z * (q_-?; ‘)E;- efB_z
o - - 4
(2—30)
where
-;i = E; * qiﬁ; :

Also the maximum amount of power which can be transferred is
‘given by

L
2

P 2
|81 -
5 (2-31)

2
|81,17 =
12 122+ 82|

where for a lossless case



15

In conclusion the amount of coupling between modes in two
parallel waveguides is very small except when the propagation

constants of the two individual modes are nearly equal,

By = B, -

(c) Radiation from Bends:

Considerable research has been made in this area.
Marcatili [15], formulated the problem in terms of cylindrical
fuhctions with some approximations to the characteristic
equation. Lewin [17] treated the problem of bends in fiber
using toroidal structure. He built up an integral formulation
for the field which satisfies the Helmholtz equation and which
is suitable in the toroidal éystem. However, Chang and
Barnes [11l], by using a suitable transformation, replaced a
smoothly curved, homogeneous slab by a straight one with
varying refractive index profile. Their technique was ex-
tended to bends in fibers. The formulations that will be
presénted in this section have been taken from the paper by
Chang 'and Barnes. |

By assuming that the field around the bend for TE-type

surface mode with no variation along the y-direction is given

by

Ey(p,e) = Q(p)e TkVEO (2-32)

where v is the normalized propagation constant along the
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azimuthal direction.

k = w/uoeo is the free space propagation constant.
$2(p) 1is the transverse variation of the electric field.
R is the radius of curvature to the inner side of the

curved slab.
Also by using a proper transformation

x =R &n o/R (2-33)
and

z = RO
The wave equation in curved coordinate was transformed into

the following form

2
42 (x) + k%[n? exp(2x/R) - V2] Q(x) = 0 (2-34)
dx J
n refractive index inside the slab
n., =<
J 1 outside the slab

The boundaries in this coordinate system are located

at x =0 and d where d =R n(l + D/R) = D .

As depicted in Fig. 4 a smoothly curved homogenous slab
was replaced by a straight one which has approximately the
same thickness, but with a varying refractive index profile.
It is interesting to note from equation (2-34) that for
fixed v = Vo the term exp(2x/R) - vi is real and negative

near the slab surface but is real and positive for large x.
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d=R 2n (1+D/R)

€l/2 = exp(x/R)

- e e 3¢

d ‘

pAEGY 7

(b)
Fig. 4:

(a) Section of curved slab: geometry

(b) Equivalent straight slab.
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At X, = R &n Vo or

Py T VR ' (2-35)
a turning-point will occur. Beyond this point, the solution
would be in the form of an outgoing unattenuaﬁed wave so that
the radiation condiiion at infinity will be satisfied. Suitable
solution to (2-34) for inside and outside the siab‘were made

using a WKB approximation and with the application of boundary

conditions it was found that
oikvRY _ —aRO-ikvg (R+D/2)8 C (2-36)

where

2
o = Ao Yo

- o
(n -1)voLe

3 2
-2) >k R/3v
e °©0° ° (2-37)

" and

d
i

D + 2/ (k),)

_ o, 2
o (vo - l);2

>
|

= (n2 - \)g);5

is the normalized propagation constant of a

<

ll
Wim :
o ) .

straight homogenous slab waveguide

is the normalized transverse propagation constant

=
o)
I
W!b‘
o)

inside a straight homogenous slab.
A= %— is the normalized decay constant in the outside
o
region of a straight slab.

o is the attenuation constant.
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p and h can be found from equations (2-10) and (2-11).

An interesting conclusion can be drawn from eq. (2—37);
that is the attenuation per unit length o around a smoothly—
curved guide-is exponentially proportional to R. Hence the
amount of attenuation can vary from negligibly small to very
large over small range of R. Another conclusion that can be
drawn from (2-37) is that for a fixed radius of curvature, a
substantial reduction in attenuation can be achieved by de-

creasing the attenuation depth p_l‘= (k}\o)—l

of‘the evan-
escent field. In other words the turning-point is being
moved away from the slab.

It is clear that if radiation to be reduced, the turning
point has to be relocated. A complete removal of this point
(therefore, the radiation) will be possible if the refractive
index of the surrounding material is changed to compeﬁsate
the index variation due to‘curyature. The ideal profile for
the refractiVe index would be’of the form R/p. But unfor-
tunately this kind of graded index profile is not physically
acceptable because it requires the refractive index to vanish
at infinity. A pfactical form is to truncate the inverse-linear

profile at some finite distance so that the turning-point can

be reasonably relocated.‘
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(d) Radiation from a Circular Bend Between Two Discontinuities.

S. Maley [12], had solved this problem by assuming that
the radius of curvature is sufficiently large so that the
radiated power is small compared to the power carried by the
waveguide. This provides a further assumption that the electro-
magnetic field inside the curved slab propagates around the
bend essentially unchanged with_respect to the straight guide.
vAs depicted in Fig. 5, the assumption is that the incident

transverse electric field for TE modes in the three regions

are given by

E, = 3.8, e tVokz
i X1
: (2-38)
= = -ivokz
Hit =a,H,, e
in region 1
E. = Sin e LVKIé
1 (2-39)
= _ = . - . ~ivkre
Hlt = (-a_ sin¢ + aZCOZd))lee
in region 2 where 0 < ¢<¢Y and
= = -ivkry —ivokz' :
Bi a8 e e (2-40)
- - . _ -ivk,ry -iv.kz
= (- o o}
Hlt ( ay siny + a, cos 1IJ)Hiz e e

in region 3, where (Ei, ﬁit) are the incident transverse
electric and magnetic fields respectively. Power was assumed

to flow from region 1 through region 2 into region 3.



WAVEGUIDE —*.:1 REGION I

ol |

BSOS

Fig.5 Configuration of Dielectric Slab Waveqguidc
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E. = A_ cos ht
i e
s+ h . .
H,, = -i ~— A sinht
it wuo e

z' is the distance along the outer surface of the
waveguide region 3.

h = /n®- vg k is the transverse propagation

constant for a straight slab.

k =.w¢uoeo is the free space propagation constant.
t = D/2 is the half width of the slab.

] is the angle formed between the two straight
sections.
r = R+ D 1is the radius of curvature to the
outside region of the curved slab.
v is the normalized propagation constant as given

in part C.of this chapter.

The main purpose of this assumption is to find the far
field pattern of the electric field and the power lost in the
outside region due to the discontinuity between the straight
into curved seétion. As shown in Fig. 5, coordinates Ry and 64

and coordinates R and gives the position of point P

1 1 “
with respect to the upper and lower ends of the outer surface
of the waveguide bend. It is assumed R, Ry and Ry are very
large that they become nearly parallel. Using Jordan's

notation, the magnetic and electric potential in the three

regions can be expressed in terms of the electric and magnetic
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current sheets, J and M respectively where

J = nxH,

=
I
!
=
X
tet

and T is the outward normal vector.

These complicated integral expressions are evaluated
using diffefent asymptotic techniques to give the magnetic
and vector pdtentials A & ?; The electric and magnetic fields

are then found from

E = ~iwpyA - VxF
_ i _ (2-41)
H= — V X E .
WH
Thus
E = -a‘XMG(e)
' (2-42)
§=-0 [2, cos 6 - a_sin 61G(8)
"o Yy Z
where
G(0) = (Y-sin 0)e XTSI Oe gy _ (v_gin(p+y))
e—lkrvwelkr31n(e+w) £(04+y) (2-43)
and
(1+i)e *KRo g
M = . . 1
2
4(ﬂkRO)
no H,
Y = =222 - _ihtanht .

E,
1
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Also

f£(2)

1

vo"'cos® T T cos ¢ (2-44)

where ¢ either g or g + y

i
and ng = g% is the free space wave impedance.

it is important £o note that if the phase distribution of

the waves is uniform along the entire waﬁeguide (v = vo), then
there is no radiation. However for a curved structure v is
very close to Vo but not equal (refer to part C of this
Chapter). Thus from equations (2-44) and (2-42), E and H are
both very sensitive to the value of Vv and vo.

An approximate value for the number, N, of lobes between
the vertical and the waveguide was derived by analyzing the
rapidly varying term in G(8) of the electric field E. This
number of lobes is given by

4kor

Ihe

N

sin % sin? % +1 (2-45)

Thus N varies linearly as a function of the radius of
curvature. The total radiated power was shown to vary inversely
as the square of the radius of curvature.

|Ei|2D2v§ 12 | *
Pr = ____._.__._.ZEYl Kl(w,\)o) + (Y + ¥ )Kz(w’\)o) + K3(l’)l\)o):]

32tk n r
°o (2-46)



where Kl(w,vo), Kz(w,vo) and K3(w,vo) are given by
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2 2 2 2
o o sin 20 [évo + cos Y .\ SVO . llvo+ 4
1 2 2 2 2 2. .7 2 1,2 2 2
3(\)O-vl)(\)O cos“P) (vo cos“YP) (vo l)(\)O cos“Y) 2(\)o 1)

gy [,2 ,
v0(2v + 3) - -1/Vg~1 cot ¥

o
+ (3 = - tan
2_..3 /. 2. 2 v
(v-1) //vo 1 o
5 (3\)2 + coszw)cos [ 3v2—l
Ky = - §{j >3 t = é]
(vo— cos Y) (vo—l)
K sin 2y 3v2+coszw v2 v2 + 2
3 30 Pcos)l T2t 3 Tt ]
-—O _ _ _ _
o (vo cos“ ) (vo l)(\)O cos ) 2(\)O 1)
2
v -1 cot vy
o) i -1 o
+ (3 5 - tan ~ - ' )
2 2 2 2 _ % -
(vo-1) V/vo—l o

where Y* is the complex conjugate of Y.



CHAPTER III

EXPERIMENTAL SET UP AND MEASUREMENT PROCEDURE

The microwave model of the dielectric slab waveguide
consisted of a strip of dielectric foam 9.2 cm in width, and
about .95 cm in thickness. The‘dielectric foam was placed
between two planar conducting sheets as shown in Fig. 6,
thereby simulating a slab waveguide 2.7 wavelengths thick
and of unbounded width. The two parallel conducting sheets
on either side of the slab simulate unbounded width. These
parallel plates are 360 cm in length and 240 cm in width
each. The lower plate was held fixed and filat on a large
table. The top plate was.suspended from the ceiling and could
be moved up and down using a pulley system.

As depicted in Fig. 7,‘each plate originally was a thin
flat sheet of aluminum .2 cm in thickness and 360 x 120 cm
width. In the laboratory it was important to use some kind
of stiffening (thick channels of aluminum around its sides
and plywood in the center of the plate for the top sheet to
minimize the curvature caused by its weight). By making the
top sheet movable it was very easy to change the shape of the
slab inside these two plates like making bends with differ-
ent radii or putting two parallel slabs with differént dimen-

sions next to each other and vary the separation in between, etc.
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To measure the transverse component of the electric fields,
it was necessary to drill small holes .6 cm apart for insertion
of ghe probe through the top sheet.. |

The model was excitéd by 9.0 GHz signal fed into a rec-
tangular horn which flares from a standard x-band waveguide to
a 25.4 cm by .95 cm multimode rectangular waveguide with a
variable width profile’over a length of one meter. The horn
was then used to provide excitation at one end of the dielec-
tric slab which, as was mentioned before, was placed between
the 240 cm X 360 cm metallic paréllel plates with separation
of .95 cm as indicaéed in Fig. 8.

iThe dielectric slab is made of extruded polyethylene foam
which has a relative permittivity betwegn 1.03 and 1.04, which
can be calculated using a logarithmic mixing rule. It is
expressible in terms of the relative volumes occupied.by the
polyethylené and trapped air. By compressing foam slabs of
différent initial volumes into slabs of the same volume, a
different refractive index for each slab can be achieved |
[9,10], furthermore these results ére predictable using the
above mentioned logarithmic mixing rule. The use of foam
material provides an additional advantage in fabrication,
ydesign parameters such as cross-sections, spacinqs, and curva-
tures of straight and curved slabs can be met with precision.
Experimental studies, such as power coupling between two

guides, scattering pattern of curved guides at the bends,
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power loss due to continuous and scatﬁering radiation in a
curved section etc. conducted on the model give results that
can be interpretéd in terms of the actual optical waveguide.

In order to cut the foam to the shape required with
reasonable accuracy, we have used either a high speed sawv
or a hot nicrome wire (59 in resistance) carrying 1 amp of
current.

For the design of a single mode dielectric slab waveguide, -

equation (2-11) can be used by assuming

Then

ht = k_t /n] - 1 (3-1)

The first odd mode has a cutoff frequency at ht = g '

therefore to assume single mode operation the width of the

slab should be chosen in such a way that the circle of equation
(2-11) does not intersect the curve of equation (2-16), since
the second mode comes at ht = % .

Choosing, ht = 1.5 will insure single mode operation.

Hence equation (3-1) becomes

1.5 =%k t /ﬁ -1
o) 1
or
£ = 1.5
k n-~- 1

(e} 1
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~i.e. the width of slab, D, is given by

3

' 5 (3-2)
‘ko n,- 1

D = 2t =

where n, is the refractive index of the slab and
kO = wo/E;E; . With D given by equation (3-2), the TE_ mode
is excited in the slab guidel

Measurements of the transverse field distribution were
made with a miniature probe protruding through the holés on
the top metal plate, therefore to take a complete set of
measurements  each hole has to be probed individually.

A serrodyne system [23] was used to measure the relative
amplitude and phase of the electric field. Figure 9 shows a
schematic diagram of the system. The Serrodyne system con-
sists of an oscillator which feeds a signal of 9 GHz frequency
into a travelling wave tube (TWT-Alfred 504). The outbut of
TWT has a frequency of 9 GHz + 1000 Hz which is fed into the
multimode rectangular waveguide horn that flares into the
parallel plate and slab waveguide system. The output of the-
probe is fed into a crystal mixer along with the oscillator
signal. The useful part of the output of the crystal is
proportional to the product of the amplitudes of the two signals
at their difference frequency (1000 Hz). It is this 1000 Hz
signal which gives the informatin about the field being probed.
Usually a signal 20 db below the output of TWT is coupled out

and mixed with the oscillator signal to be used as a reference
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signal. The reference signal is held at constant amplitude.
The standing wave meter, phase meter and scope respond only
to the difference frequency of 1000 Hz in the crystal output.
Heﬁce‘the crystal output is amplified and used as the input
to the standing wave meter, phase meter and scope.

The calibration for amplitude measurements needed in this
experiment was given by Kerrigan [23]. A curve for the inter-
polation of a given set of calibrated amplitude data are

shown in Fig. 10. Figure 10 interpolates logarithmically.
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CHAPTER IV

SINGLE SLAB DIELECTRIC WAVEGUIDE

Following the design procedure given in Chapter III,

Eg. (3-2) with ni =€ = 1.03 and an operating frequency
= 9 GHz, the width of the slab can be calculated for single

mode operation (TEo mode) as
D=9.2 cm or 2.7)

where A = 3.3 cm is the free space wavelength.

Now using the experimental set up described in the pre-
vious chapter, the straight slab was placed ih between the
two parallel aluminum plates as shown in Fig. 8. At the end
of the slab a matched termination was placed. This termi-
nation consisted of triangular tapefed spears of a highly
lossy carbon material that absorbs the ;adiated power from
the end of the dielectric waveguide. The termination has
little reflection due to the tapered design of it. The horn
provides a reasonable source for the excitation of a surface
mode.

Transverse field measuféﬁents were made at two different
locations to determine whether the surface wave mode was
successfully launched. As shown in Fig. 11, both the magni-

tude (calibrated) and phase of the transverse electric field
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Fig. 11 Magnitude and Phase of the Transverse

Electric Field Vs. Distance for 1 m (A-A plane)

and 2.7 m (A'-A"' plane) away from the horn.



were measured across the dielectric slab at distances of

1 meter (i.e. A-A plane) and 2.7 meter (i.e. A’—A; plahe)
away.from the excitation horn. It was found that the spurious
radiation fr&m the horn has a strong inflqence on the shape
of the field distribution at the A-A plane. At the A'-A'
plane, however, there is little influence due to the spurious
radiation.

A theoretical analysis has been made‘by:solving the tran-
scendental equations (2-10) and (2-11) for h and P, using
numerical methods (see Appendix). Where h is the transvérse
propagation constant inside the dielectric slab (it is 20
P is the transverse attenuation constant oﬁtside the slab
(it is 26 m %). Equations (2-3) and (2-6) give the trans-
verse field distribution inside and oytside the dielectric
‘waveguide respectively.

A theoretical and experimental plot of the magnitude (on
a linear db scale) and phase of the tfansverse electric field
are shown in Fig. 12. There is very good agreement beﬁween |
the two curves.

Electromagnetic field measurements for Figs. 11 and 12
were made at two different times. Different scale systems
were used in plotting fhe magnitudes for the two figures.
These measuréments were made for the same slab width (9.2 cm)
at a distance of 2.7 m from the horn (A'-A' plane). More

data points were taken in plotting the experimental curve

38



2.7
0 —0

-4 60
o
a

-8 120

>
&5
<3
o
i3]
)
5 rl2 180
=
é —— Theoretical
— — — Experimental
-16 240
NS Phase

20 |- \\ — ' T — TN\ /—'300

. S gy \~_/ ? R

-24 | I I I | 360

-2 -1 0 1. 2
DISTANCE IN WAVELENGTH
A= 3.3 cm
Fig. 12. Magnitude and Phase of the Transverse

Electric Field Vs.

Single Slab Waveguide

Distance for a

(DEGREE)
Y

PHASE OF E

39



in Fig. 12. Therefore some slight'difference in phase can
bé seen in comparing the phase of Fig. 11 (at A'-A' plane)

and that in Fig. 12 (experiment).
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CHAPTER V
COUPLING BETWEEN TWO DIELECTRIC SLAB WAVEGUIDES

In this chapter we are concerned with the experimental
investigation of the coupling between two dielectric slab
Waveguides, but experimental results will be compared with
theory.

In the manner described in Chapter IV, a surface-wave
mode was launched in a single dielectric slab. The
addition of another similar slab parallel to the first
(excited waveguide) as shoWn in Fig. 13 will permit coup-
ling some power from the first slab to the second. This is
due to the fact that the field of a surface-wave mode
extend indenfinitely intd the region outside the waveguide.
Since there is a continuous flow of power between the first
slab and the second, the field in the second wavegquide will
be enhanced until a certain distance L 1is reached. At |
this‘point there is a complete power transfer from the
first waveguide to the second. This complete power transfer
happens just in the degenerate (both waveguides having the

same phase velocity) case. For the non-degenerate situation
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a partial pbwer transfer will occur. This process
contihues indefinitely with power beihg transferred back
and forth b?tween the two waveguides. At the operating
frequency 9 GHz, it was difficult to experimentally verify
the theory by finding the distance over which there is a
complete power transfer since the coupling distance is very
large (in the range of 10 meters for the degenerate case
with a separation of 1.51). This means at least a 10 meter

length of parallel metal plates would be needed.

Experimentally,'we investigated the case where the
horn provides the only excitation source for the slab. This
kind of excitation has some disadvantages in the case of
coupling because of the radiation that flares sideways as
shown in Fig. 13 and causes some chahges in the amplitude
and phase of the second waveguide.

Practically, it is not possible to have a unit magni-
tude of electric field at the first waveguide and exactly
zero amplitude at the second, as we have assumed in the
theoretical analysis of coupling in Chapter II. However as
will be deﬁailed in the following, we had good agreement between

the theoretical and experimental curves of the electric field
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Fig. 13: Two Parallel Slab Waveguides.
Slab 1 is excited by a horn..

magnitudes in the second waveguide beyond certain distance.
This distance is greater for the degenerate case.

Our purpose was to study the coupling characteristics
as a function of separation for bdth degenerate and non-

degenerate type modes.

(a) Two parallel and similar slabs (degenerate case):

Transverse electric field measurement was done, as for
the single slab case, at two different places 30 wavelenth
(A-A plane) and 81 wavelength (A'-A' plane) away from the
horn. Figures 14, 15 and 16 show the magnitude and the
phase of the transverse electric field Ey in the two

waveguides at the two planes (A-A) and(A'—A'). It is evident
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from the phase characteristics at the A-A plane, that the"
radiation coming out of thé horn has a strong influence on
the field of the second waveguide. Also there is no clear
surface type mode at the second slab at this distance be-
cause the coupliné length is very large (approximately 9.6,
7.4 and 5.7 meters for the three different types of separa-
tions 1.5A, 1.2)X and .9XA respectively), while our measure-
ment is at‘l meter from the horn. The strong influence of
radiation at this blane will make it difficult to obtain
good agreement with the theoretical analysis. At the A'-A'
plane, the surface wave type mode has the shape predicted
by theory. Thus the unwanted radiation from the horn has
little influence on the amplitude but it does have some in-
fluence on the phase. It is interesting to note that as
the slab separation becomes smaller the magnitude of the
electric field in the second slab-increases. This indicates
that the coupling distance L (for complete power transfer)
decreases as the separation gets smaller. .

‘Theoretically, Kuester and Chang [8] solved for the field
in the waveguides, assuming that each mode is normalized to

unit power carried in the zZ-direction

=+ =+ =+

E = Al(z) El + Az(z) E, (5-1)
where

A (z) = cos(ABz) & 12 / (5-2)

A, (z) = -i sin(ABz) e 1FZ (5-3)



and B 1is the propagation constant along the =z axis for
a single slab waveguide. EI and E; are the single slab
transverse field distribution which are equal for similar
waveguides.

By letting

A
B = 2. max.

Al max.

We have plotted the experimental and theoretical curves
B|z=8lA/Blz=30A in Fig. 17. Also Table I represents the

differences between the two curves in terms of percentage

of error.-
Table I
: Theoretical
Separation Relative Error Coupling Length
In Meters
L9 122 5.7
1.2 16% , 7.4

1.5 23% 9.6

It would seem that error in this case is primarily due to

(1) The coupling length is very large while after one
meter distance (A-A plane) measurement is hard to
detect a clear shape of a surface wave mode in the
second waveguide. It is interesting to note from
Table I that as the coupling length increases the

relative error between the theory and experiment

49
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increases also. Although a goaod result were measured
at the plane A'-A' (2.7 m away from the horn) there is
still another prbblem, radiation from the horn that
contributed to the error.

(2) The radiation that flares from the horn was mentioned
earlier as having a strong influence (causes the en-
hancement of the electric field) at the‘plane A-A.
Therefore a comparison in the relative amplitude at
the two different planes will be less than anticipated

from the theory.

From equations (5-2) and (5-3), the phase of Ey across
each slab should be 90°. Experimentally, if we look at the
difference in the average variation of phases in the two slab
waveguides, it will be approximately 100°. This is in a good
agreement with the theoretical analysis. The phase in the
first waveguide behaves like a constant, which is the theo-
retically predicted value while the phase in the second slab
has a wide variation. This could be the effect of radiation

coming out of the horn.

(b) Two parallel but different width slab waveguides

(Non-degenerate case) :

This discussion is similar to that for the degenerate
case except for some minor points. The first slab was kept

at the same width 2.7X as previously while the second slab
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was designed so that the wave would propagate little faster
than the wave in the first waveguide if it were isolated from
the first slab. A .4% increase in wavelength in the second

waveguide with respect to the first will result in

KZ == 1.004Xl
251 1
2 2 _ .2
e kg = By = By

Since Bl is known for a single slab with width D = 2.7),

it is easy to find h% and pg "given by

2 2 2
Py = (Er— l)ko - h2
v Py
Hence using +— = tan h,t we can solve for t.,.
h2 272 2
Thus D2 = 2t2 = 5.2 cm

or D2 1.6) , where A=3.3 cm is the free space wavelength.
is the half width of the second slab.
h is the inside slab transverse propagation constant.

P,y is outside the slab transverse decay constant.

After placing the smaller slab parallel to the first, measure-
ments of the transverse field distribution were made in the.
manner described in part (a) of this chapter. Figures 18,

19 and 20 show Ey as a function of distance for 3 different

. separations 1.5X, 1.2\ and .9X. It is noted that the
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amplitude in the smaller waveguide, for fixed separation
cgompared with the amplitude for the degenerate case at the
same distance from the horn 81 (A'-A' plane) has increased.
This is du€e to the decrease in the coupling length for the
non-degenerate case.

As mentioned in part (a) of this chapter, it is required
that the power in each waveguide be normalized to a unit mag-

nitude in each waveguide. Therefore using

wH

P=1-= ——B—g |Ey|2dx
o :

the ratio between the two amplitudes in the two slabs is

Ae2 B.t, + B./p :
—= 1-1 17%1

A =

Using equation (2-30) and the above normalization factor,
.we can plot the relative amplitude of Ey in the second
waveguide as a function of separation at two different dis-
tances, as shown in Fig. 21. As in the degenerate case the

quantity plotted is B The two theoretical

2=812/ Bl y=301 -

and experimental curves match up very well with error per-

centages as shown in table II.
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TABLE IX
Theoretical
Separation Relative Error Coupling Length
: in meters
.9 , 7% 3.1
1.2X 1% 3.5
1.5\ 11% 3.8

‘The reason for the relatively éood comparison in this case
is that the coupling length is shorter now and more within
the range of our experimental equipment. The surface wave
type mode in the second waveguide as shown in Figs. 18, 19
and 20, well shaped at the plane A-A (1 meter from the

horn) while in the degenerate case it was not.
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CHAPTER VI

RADIATION FROM BENDS IN DIELECTRIC SLAB WAVEGUIDE

In this chapter several aspects of the radiation from
bends was investigated experimentally. The investigation
included |

(a) Effects-of the‘transition from straight to curved

dielectric slab. |

(b) Propagation within a circular bend between two

discontinuities.

"(¢) Minimization of radiation from bends.

(d) Far field radiation pattern measurements.

Radiation from a circular bend without trensitions has
been analyzed by Marcatili [15], Lewin [17] and Chang and
Barnes [11]. These studies were limited to just finding the
radiated power from a circular section only. S. Maley [12],
1ater on,‘analyzed the far field pattern of a circular bend
joining two discontinuities. These investigations are mainly
theoretical in nature while there are few experimental studies.
Neuman [18] made measurements on waveguides with electric
fields having constant magnitude and constant phase angle
and with a‘geometric configuration consisting of a'straight

section connected to a circular bend.
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Using the same experimental model as described in

Chapter III, the following experiments were performed.

(a) Propagation through a transition from straight to

curved dielectric slab waveguide:

Here, the concern is with the launching of a single
surface wave mode into a straight section (about 1.5m long)
which is connected to a curved slab, having a radius of curva-
ture equal to 3.5 meters. A high loss, triangular tapered
type termination was placed at the end of this section as
a matched termination. Magnitude and phase measurement of
the transverse electric field along the radial direction on
the curved structure (i.e. A'-A' plane) were made. As shown
in Fig. 22 the angle of measurement with respect to the
straight section is about 30°. Also included is the trans-
verse field distribution along the straight section at a dis-
tance of 1 meter from the horn (i.e. A-A plane), in order to
check the excitation of single surface wave mode;

As it can be seen the field distribution pattern (at
the A'-A' plane) and therefore the power carried by the
principle mode inside the slab, appear to have shifted towards
the outer slab surface. Outside the slab in the exterior
region, the field has an oscillating character. This is due
to the interference between the continuous radiation along

the curved section and the scattered field from the end of
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the straight section. The continuous radiation can be
explained from the viewpoint of the shift in the phase
velocity along the slab direction. The separation between
two constant phase fronts § = el and 6 = 62 increases
continuously as a function of radial distance. Therefore
for those waves farther from the slab surface, they have to
travel faster in order to maintain a planar uniform phase
front with those closer to the slab. As was mentioned in
Chapter II, at a radial distance equal to that of the turn-
ing point, Po = QOR, the phase velocity p%% is exactly

the speed of light. Beyond this point, wave has to travel
faster than the speed of light and hence, is forced to
radiate in the radial directidn. Since a curved section can
‘be thought of as an inhomogenous straight waveguide any

wave incident from the straight waveguide (homogenoué) on
the curved part (inhomogeﬁous straight slab), will have some
scattering effect. Hence the direct scattering (caused by
the discontinuity) is as important as the continuous radiation
from just the curved section in determining the near-zone

field distribution in the outer slab boundary.

(b) Circular bend between two discontinuities:

Similar to part (a) of this chapter, the transverse field
distribution along the radial direction for a curved structure

between two straight waveguides was measured. This part is
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different from part (a) fof the addition of a straight wave-
guide at the end of the curved section. Also a matched, high
loss termination was placed ét the end of the added straight
section. AThese meqsurements‘were made for three different
radii R = 60X, 90X and 120X having angles of bend of 64°,
38° and 28° between the two straight sections respectively.
As indicated in Figs. 23 and 24, the magnitude (on a linear
db scale) and the phase of Ey along the radial direction (i.e.
the phase A'-A') were plotted. It is interesting to note
that the stréngth of the oscillating field on the exterior
region of the slab increases as the radius of curvature Qets
smaller. |

If we just consider the éontinuous radiation from the
cufved guide, it can be seen from eqg. 2-37 that when R y
decreases a becomes larger and‘hence the field strengtﬁf
inside the slab decreases.. We have plotted in Fig. 27 tbe
maximum trénsverse electric field inside the curved structure,
at certain angle Q from the straight section in region 1,
with respect to the maximum electric field inside the straight
waveguide. This gives an indication of the amount of power
radiated by the bend. The radiated field due to just the

continuous radiation can be calculated from equation 2-32.

The following was plotted as (Theoretical-Chang)

E
20 loglo l EC max.

= — 200 RO 1ogloe = -8.6859q
S max.
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where RO = 1 meter for the three radii R = 60\, 90A, and
\120% and Ec max. is the max. transverse field inside the
curved guide.

ES max: is the max. transverse field inside the straight
waveguide. There is a computer program in the Appendix to
evaluate ¢ which is the attenuation constant.

Included in Fig. 27 are the additional effects due to
the discontinuity between the straight and curved waveguide
sections. The theoretical analysis was taken from [12].
Equation 2-46 gives the total radiated power due just to

the discontinuity. It turns out, for all cases where

R = 60X, 90X and 120X , that the radiated power can be

P = 2.63 10 €

r | R2

given by

and the input power Pi flowing in the z direction per unit

length in the x direction in the straight waveguide is

Zwuo

P, = %f Re (E x %) dx =(§t——+—64p) lAelz

or

P, = 7.12 10”4 lAe[2 .
Hence

i; . =37

P, ° 2
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The above relation if it is included with the field due to

the continuous radiation, have been plotted (Theoretical

Maley - Chang) in Figure 27. It may be argued that the
discrepancy between the theoretical curves and the experi-
mehtal is excessive. This is felt to be caused by the fact

‘ that the experimental result show the maximum magnitude of
the electric field inside the curved waveguide is shifted
toward the outside slab boundary indicating that there are
1additonal modes present that are not taken into consideration
in the theoretical analysis. These have the effect of in-
creasing or decreasing the magnitude of the electric field,
depending whether they interfere constructively or destruc-
tively, and hence the measurements are not exactly comparable
with the theory which assumes the field inside the slab behaves
similar to that in the straight one except for a small shift
toward the outside slab surface due to the Airy function
behavior inside the curved waveguide. This can be seen from
equation 2—34,‘if we replace the exponential term by a linear
prof;le n(l + %5) since the variation of x 1is small inside
the slab. The solution of this differential equation with

a linear profile is an Airy function [21]. These theoretical
analysis also do not take into consideration the inside region
radiation in the curved structure due to the discontinuity.
These radiations clearly have strong influence for small

radius of curvature. As indicated in Figs. 23 and 24, on the
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inner side of the curved slab, the electric field has a

high order mode in addition to the fundamental one especially
in the case R = 60)X; this can only be explained if there

is some inside radiation due to the discontinuityvfrom the

straight waveguide into the curved one.

(c) Minimization of radiation at bends:

Chang [11], suggested that a refractive index having an
% dependence in the exterior region of the curved slab will
completely eliminate the continuous radiation. Unfortunately
this kind of profile is not physically possible since it
requires the refractive index to vanish at infinify. However
an inverse-linear profile truncated at some finite distance
has the effect of reducing radiation. This can be achieved
in a model by compressing a polyethylene foam slab of a larger
initial volume and with a specific profile (like inverse-
linear) into the required dimension, a higher refractive
index with a linearly graded profile can be achieved [22].
With our experimental set up, it was very hard to accom-
plish this type of linearly graded profile because it requires
strong forces on the top and the bottom of the two parailel
plates. Also there is difficulty in keeping the rectangular
shape of the slab, since a pressure from the top and bottom
will increase‘the width of the slab (a bulging effect).

Finally it was decided to use a curved slab with a 1A width



having trapezoidal (.95 cm and .55 cm in thickness) or tri-
angular shape added to the outside boundary of a 1.7\ curved
rectangular slab (.95 cm in thickness). The two sections
were joined together to form a trapezoidal dielectric wave-
guide with a 2.7A'in width, as shown in Fig. 25. The assump-
tion was that the refractive index in these trapezoidal sec-
tions would have the effect of aﬁeraging out with the air
region and hence providing a truncated inverse-linear profile.
Interestingly enough, for the same type of configuration as

- in part b of this Chapter, the radiation in the outside region
 dropped by the amount of 3 db due to this kind of tapering.
Figures 25 and 26 give the magnitude and phase of the radial
transverse field distribution for a fixed radius of curva-
ture R = 90X with no tapering and with the trapezoidal and
triangular type profile on the outside region of the curved
slab. It is clear from the magnitude curves that there is

a decrease in radiation. It is also observed from Fig. 27
that the relative maximum of the electric field for a tapered
type curved slab divided by the maximum electric field

inside the straight slab is greater1than for the experiment

without the oﬁter tapered section around the bend.

(d) Far field measurements

S. Maley [12], derived a far field pattern for a curved
structure between two discontinuities. He made the assump-

tion that the field propagates around the bend essentially

68



69

o8¢ =h

‘Y06
wog * ¢

Y06 = ¥ ©oIn3eaInd Jo snipex

pexTy © 103 Hutaiedey xernbuetayz pue Teprozedexy yzTm pue bButiadey ou
Y3TM 9D0URISTP TRTIPRY °*SA PISTA OTIIOSTH 9SIDASURI] 9Yl JO opnjTubep

= I04g
=X

HLONHTIAYM NI HONVISIA TYIAYY

€

[4 1 0

x4

"bra

YHJVYL TYAIOZYdVIL

dddYL IVINDNVIVL

dHd¥L ON

] [ 1 1
ATV TYATIOZYAVIIL ———

YL IVINONVIYI, ——
YHdYL ON

d J0 HANLINDOVW

X

(€a)



70

|ouelsTd
Tetped °"SA 6z "HT4 uUT umoys pPISTI DTIAIDSTH esIoAsueRl] 9U3l FO 9SBYL " 9C
. wd ¢€°¢ = Y
HIONATIAYM NI HONVLSIA IVIAVY
. € z 1 0 I- z-
_ ] T _
xadey], Teprozedel] ———
aade], xeTnbueTtil — . —
xadey, ON ]
— . .\\l. \
N
S
\.Illl//".\\\

— YT YL T

‘bTa

09¢

0o¢

ove

08T

d 40 ISYHA

0ZT

09

(33993A)



0
-2 -
Triangular taper -o
Trapazoidal taper -o
3]
@)
=
H _4 }—
X
o]
E
)
€6 -
5
d
£
) o EXPERIMENTAL
.
-8
4 Theoretical
(Maley-Chang)
x Theoretical
-wCh‘ang
-10 ] | I
0 40 ' 80 120 169

RADIUS OF CURVATURE IN WAVELENGTH

A

3.3 cm

Pig. 27 The Max. Amplitude of the Transverse
Electric Field of the Curved Section relative
to the Max. Amplitude of the straight section

Vs. the Radius of Curvature

71



unchénged compared to the straight waveguide. Also the
observation point is so far away that the vectors Rl’ R

and R., (all shown in Fig. 5) become nearly parallel. Other

3
approximations were made in evaluating the electric and
magnetic potential function by using the asymptotic form

for the Hankel function. The reason for these approxiﬁations
was to get a closed form for the field pattern. An approxXi-
mate number of lobes between the vertical and the waveguide
was derived. It was shown that this number depends linearly
on the radius of curvature and on the angle between the two
straight guides as given in eq. 2-45,

To make a qualitative comparison with the theoretical

analysis, radial transverse field measurements were made

72

outside the curved slab at a larger angle (from the straight ;i

guide of region 1) than that given in part b of this chapter.
Due to the limitation in the amount of space available for
these measurements, we can not assume these plots as exactly
far field data since they were measured close to the wave-
guide. Therefore the theoretical assumption that Rl’ R and R,
becomes parallel does not apply for this case of measurements.
The number of lobes measured along the radial direction to
the vertical are given in the following table for the
theoretical (Eq. 2-45) and experimental results. In making
this measurement, the field closer than 5 wavelengths from

the outer surface of the waveguide was disregarded. -
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TABLE ITIT
Number of lobes
Radius of Curvature Y angle in degree Experiment Theory
90X 38° 11 9
1201 28° 5 4

Reasonable agreement can be seen even though the theory

was derived for far field patterns. Figures 28 and 29 show
the nearly Field Pattern measurements. The lobes‘look néarly
equal in magnitude and closely spaced as was predicted by

Maley [12]. ,
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CHAPTER VII

CONCLUSIONS

We have éresented a variety of experimental investigations
dealing mainly with straight énd curved dielectric slab wave-
guides. The design of the single straight slab was to insure
single surface wave mode excitation and to have a tightly bound
field (i.e., far above cutoff). The relative dielectric con-
stant of the waveguide was about 1.03 at 9 GHz as was measured
in previous experimental investigation (see Bahar [22].

‘There was a negative effect resulting from the use of the
large horn for the'excitation of the dielectric waveguide. Some
of the radiation that flared from that large horh did not
enter the dielectric waveguide. This external radiation in-
fluenced the measurements of the surface wave mode. Additional
problems resulted from the‘larée size of the two parallel
plates and the consequent difficulty of moving them and of
keeping them parallel.

The coupling between two waveguides was investigated
theoretically and experimentally and it was shown that in the
non-degenerate case the coupling length was less than that in
the degenerate case and that complete power transfer cannot be
achieved. As the separation between the two slabs was de-
creased, the coupling length decreased also. These results
agree with theory.

Radial transverse electric field measurements were made
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inside and outside the sléb 6n a circular bend. These results
indicate stfong radiation due to the discontinuity from the
straight slab into the curved one and also due to the con-
tinuous fadiétion from the bend. The influence of the radius

of curvature was also investigated. It was found that radia-
tion increases with a decrease in radius. This is also in
agreement with theory. Reduction of radiation by using tri-
angular and trapazoidal tapering in the cross sectional shape
of the wavegquide was also in&estigated and it was found that
radiation could be reduced. Qualitative agreement was achieved
between the theorétical derivation and experimental measurements
for the number of lobes in the prihcipal region of radiation

of a bend. However, the measurements were not in the far field,

due to size limitations imposed'by the physical model.
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APPENDIX

To solve for the transverse propagation constant inside
the dielectric slab by finding the roots of the transcen-

dental equation.

$vo10
2020
2030
00 40
P0O50
PB60
9070
2280
2090
2100
2110
2120
9130
6140
2150
2160
2170
2180
0190
0200
2210
0220
@230
g240
8250
2260
2270
2280
2290
2300
9310
2320
P339
8340
9350
0360
8370
0380
9390
04020
B410
@420
8430
449
2450
D460
‘0470
B480

PRINT "WAVEGUIDE PERMITTIVITY =3
INPUT E2
PRINT "PERMITTIVITY OF THE EXP. DECAY REGION="3
INPUT E1
PRINT "HALF WIDTH OF SLAB ="
INPUT T |
LET U=188%T
DEF FNY(X)=X*X* CTAN(X)*TANCX)+1)-(E2~E1)*U%U
PRINT "LOWER LIMITsUPPER LIMIT,STEP="3
INPUT I,J.K -
PRINT
FOR X=1 TO J STEP K
LET Y=FNY(X)
LET X3=X
IF Y=0 GOTO 0250
IF Y>1E+35 GOTO 0280
IF X=1 GOTO 0200
IF Y1=0 GOTO 8200
IF SGNCY)<>SGN(Y1) GOTO ©300
LET X1=X2
LET Y1=FNY(X1)
PRINT X»Y
NEXT X
END
PRINT "THERE IS A ROOT AT "3
PRINT X3
GOTO 0200 :
PRINT “THERE IS A POLE AT"3
GOTO 9260
REM ---BISECTION
LET X2=X
LET Y2=Y
LET X3=(X1+X2)/2
LET Y3=FNY(X3)
IF SGNCY1)><>SGN(Y3) GOTO D420
LET P=ABS(Y3)-ABS(Y1)
LET X1=X3
LET Y1=Y3
GOTO 0430
LET P=ABS(Y3)-ABS(Y1)
LET X2=X3
LET Y2=Y3
REM - =---CONVEREGENCE
IF ABS(X2-X1)<1E-35 GOTO 0470
IF ABS(X2-X1)<.0@06@1%xABS(X1) GOTO 0472
GOTO ©330
IF P> GOTO 0280
GOTO 2250
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To find the relative magnitude and phase of the transverse
electric field in the second waveguide with respect to the
first (excited guide) for degenerate surface wave mode.

@016 INPUT LE
@028 PRINT

@030 PRINT “EPSILON="3E

@840 PRINT

@078 FOR I=1 TO 3

@088 READ D,Gl

G098 LET KO=188.626

21060 LET B=0

0118 LET Q1=(-B+G1)/D

2126 LET @=(-B+G1)>/(~B-G1)

@130 LET G=KO*Gl%L

0149  LET A1=SQRC((1-Q)*COSCG)) t2+((1+QI*SINCG)) 12)
@150 LET A2=2%Q1*SINCG)

@160 LET A=8.6859%LOG(A2/A1)

6170, LET P1=ATNC(=B/G1)*TANCG))

@182 LET P=180%P1/(4%ATN(1))

8199  PRINT "AMP.='";A,"PHASE=";p

8200 NEXT I

@210 DATA 1.45502E=3, 1.45582E-3

0220 DATA 1<12294E~3s 1.12294E~3> 8+66655E-4> 8+66655E-4
@239 END
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To find the relative magnitude and phase of the transverse
electric field in the second waveguide with respect to the

first (excited guide) for non-degenerate surface wave mode.

PR10
po2e
R3O
P040
2050
2060
P70
Pe80
o090
P100
2110
0120
0130
2140
2150
P160
2170
2180
0190
p200
p210
p22e
0230

INPUT
PRINT
PRINT
PRINT

Lo>E

"EPSILON=";E

LET B1=1.08136
LET B2=1.0087

FOR I=

1 TO 3

READ D, G1

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

KP=188+626

B=+5%(B1~-B2)

Q1=(-B+G13)/D

A=(-B+G1Y/(~B~-G1)

G=KO*G1*L
A1=SQRCCC1-Q)%COS(G)) 12+ ((1+@)*SINCGII*2)
A2=2xQ1%SINCG)

A=8 ¢« 6859%L0G(1.089%A2/A1)
P1=ATNC((~-B/G1)Y*TANCG))
P=180*%P1/(4%xATNC(1)3)

PRINT "AMP.="3A>"PHASE="3P

NEXT I

DATA
DATA
END

2.83161E-3» 3.05742E-3 :
1.53433E-3s 2.81708E=3s 1.15877E-3, 2.66927E-3

&



To calculate the attenuation constant o dus to the con-

tinuous radiaticn from a bend.

RE13
BE2O
@3B
B2 4B
Be58
DO6B
2870
BRve
5334
169
B3119
2128
2130
BLag
BL58
@168
2179
BLrEG
B19@
2200
B219

INPUT R
PRINT
PRINT “RADIUS OF CURVATURE="3R

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

E=1+063

Bzi.008%39

KB=3188.626

D=.092

L=SGR(B%B=1)
M=SQRC(E-B*B)
Liz=D+2/(KB*L)
T=2xK@%L 2 (BxR-R~D3/3
FlelLsMxM/{(E~-132¢B2L1)
F2=EAFP { ~2%KQ+RkL2L&L/{(3%B%xB))
Fi3=Fi%F2

PRINT “ALPHA-CHANG ="3F3

LET
LET
LET

P=4%ATN(1?
Gl=K@*MEMESQR(P*L/ (KB%R) )/ (2%B*B%B*x(E-1))

G=Gl%F2

PRINT “ALPHA-LEWIN =3
GOTO 0816

END
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To calculate the total radiated power from a circular bend

between two discontinuities.

@19 LET P=4%ATN(1)

¢P2% FOR R=2 TO 4 STEP 1

2030 LET T=1.0833/R

2240 LET B=1.00939

@RS LET Ti=SINC(2%T)

Po6Y LET L=SQR(B*B=1)

P79 LET A=COS(T)>

2089 LET L1=B*B~A%A

BB96 LET L2=Li*L1

0109 LET L3=L1xL1x*L1

0110 LET Bl1=B%B-1

0120 LET Al=1/TANIT)

2139 LET B2=B1x*Bl

@149 LET B3=B1%B1%Bl

B159 LET A2=COS(T)>*COS(T)>

P160 LET A3=B*B

2179 LET H1=T1/(3%B1%L1)

@188 LET H2=C(3%A3+A2)/L2+5%A3/(B1%L1)+(11%A3+4)/(2%B2))
2199 LET H3=(B*(2%A3+3)/(B3%L))*(3%P/2-ATN(L*A1/B))
0280 LET Ki=H1%xH2+H3 '

p210 LET K2=(-2/39%CA%(3%A3+A2)/L3+(3%A3-1)/B3)
pe2e LET Gl:(Ti/(S*Ll))*(-(3*A3+A2)/L2+A3/(81*Ll)+(A3+2)/(2*82))
@239 LET G2=(B/(B2%L)>*(2*%P/2-ATN(L*A1/B))

2249 LET K3=G1+G2

g250 PRINT "K1 ="3K1,"K2 ="3K2,"K3 ="3K3

pe6w PRINT H15,H2,H3,G1,G2

2270 NEXT R

¢288 END



