Introduction

This supplement to Scientific Report No. 11 (February, 1975) consists
of the following:
i) a short list of errata;
ii) a revision of the beginning of section V;
iii) a revision of two portions of section Vi;
iv) a revision of the entire Appendix B;
v) an additional appendix (Appendix G) dealing with an application
of the theory to the Goubau line; and

vi) a number of additional references.

Items i) - iv) were made necessary by the discovery of an error in
the derivation of the real (geometric) part of the correction to the
propagation constant, which arose from an inconsistent use of the various
coordinate systems involved. The corrected formula (20) has a very clear
and suggestive physical interpretation.

The application of the theory to the Goubau line was motivated by
current interest in the radiation properties of this structuré, and by the
apparent absence of any previous analysis of its radiation losses due to

curvature.

This research was performed under grant no. AFF-19628-76-C-0099

from Air Force Cambridge Research Laboratories (AFCRL).



Errata

Equation (17), p. 17, should read

o|>

kg =v) =5 - 1§ | (17)

Equation (20), p. 18, should read
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J; x[uoHo-Ho.+ eEo~Eo] ds | (20)

The comments made regarding Arnaud's [13] work do not apply if the
.pfoper intérpretations of his quanfities‘are made. A dishussion»qf this
point appears in [38] . Furthermoré, Lewin has located an error of % in
hfs result and published a correction [39].  All three results for the
Fiber are thus ndw in agreeﬁent.

The first equation for A on p. 45 (two up from (E.1)) should read
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In the following two equations, the quantity i should be eliminated.



SECTION V*

GEOMETRIC CORRECTIONS TO THE PROPAGATION CONSTANT

Since the waveguide has‘been assumed lossless, we have seen in
Appendix B that the correction A/P to the propagation constant is real,2
and in fact suggests & geometrical interpretation as a shift of the phase
velocity reference point to the center of gravity of the 'energy" |

w(uoHo-Ho +'€Eb.E§) from the arbitrarily chosen reference point within the
guide., This interpretation is reinférced by the fact, shown in Appendix C,
that this 1/R correction vanishes for a mode on a symmetrical structure
which itself possesses certain symmetry properfies about the chosen origin
of the local coordinate systém. This is a result which is well-known in

the case of certain closed waveguides [24] and for open slab waveguides [9],

- but not, apparently, in the general case.

xThis supersedes the first paragraph of section V (p.19) of the
criginal report. ‘ -



SECTION V17

RADIATION CORRECTIONS TO THE PROPAGATION CONSTANT

The imaginary ;orrection to the propagation constant is given by
-ic/P. In contrast to the geometric correction of the previous section,
it depends critically upon the perturbation fields Ep and ﬁp. Before
proceeding to the evaluation of ¢, it is interesting to note the similarity
of the form of thevterm ~ic/P to a power balance relation [26] , as well
as to a modal coupling coefficient for sdrface waves [13,22] . These
observations allow a number of possible physical interpretations of this
quanti£y, for instance, the "power' lost (radiated) through the contour C,
or Arnaud's [13] interpretation as coupling to a whispering galtery mode
propagating along an artifically introdﬁced perfectly conducting cylinder,
which is allowed to approach infinity in a manner which circumvents the
mathematical difficulty that such modes are not normalizable in the absence
- of the cylinder. The authors prefer to. think of (18) as representing co-
directional couplfng to a second, image guide whose fields are E and

pr
Hpr’ the portions of Ep and ﬁp reflected from the Furning point. An
investigation of crosstalk carried out by Arnaud [37] suggests thét such
fields could be produced by the.(Fictitious) image of the actual guide in
a semi-infinite lossy medium, or by an (actual) second guide separated
from the original onebby a lossy layer. Comparison of the equations in [37]
with the ekpres%ion for radiation loss of a slab (see Appendix E) shows
that for a suitable choice of parameters of the layer, this analogy is

quite clbse, and the distance between the guide and its image can actually

be identified (see section Vil).



We now argue in a similar manner to Appendix B. We assume RI and
R2 are takeﬁ far enough away from the guide»so that essentially all of
the "power flow' is included.in (19) (strictly speaking, of course, P is
not a power since no complex conjugation is involved), but not so far that
R] is hear or past the WKB turning point. This may be done provided that

kdl(vo,s)R >> 1 for all s, or simply kOAOR >> 1, where we have abbreviated
A = k(\)o,O)

Now, in equation (21), all terms from the dominant part of E~ and B

O I+

+
p

(i.e., E:, H™ - see Appendix B) can be seen to be imaginary by examining

=

(D.1). These, as was argued in Appendix B, are smaller than any order of
(kOR)_I, and hence dé not affect the real bart‘oF VoS vge fn the terms of
b(oo), however, not only is the contribution real, but the opposite

exponehtia]vdependeﬁces on X cancel (i.e., the decaying fields 'Eo’ Ho
and the locally gfowing parts of Ep,ﬁp), leaving a result independent of

the choice of R]. The main contribution, then, comes from C], and is

given by:

/
P S,

This supersedes the last paragraph of section Vi {pp. 23-24) of the
original report, up to but not including eqn. (22).
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Appendix B*

In order to derive an expression for VTV ft is most conveﬁient
éo utiﬁize a local coordinate,sYStém which is not disﬁorted, as is the
case with (X, y, 2). We thus choose a Iocaf coordinate system+ (x,y,2)
with x =p = R, y =RB and z = z, in which x now is an actual distance
from the curvéd axis of the wéVegdide.. Since we can write

N}."w
1

5 (B.1)

-

there’ wn]l be o difflculty |n us;ng tee results of seetldn 11, because
the dlfference between X and X W|ll not affect the accuracy fetalned in
our calculations. Thus, from'here'on; these two coordinate systems will
be'considered fnterchaﬁgeeble. |

Now i f §+,'§+»and v are the guide fields and propagation constant
for the curved aneguide which satisfy (13), and Eﬁ ﬁ; and v the
flelds and prOpagatton COnstant for the corresponding straight waveguide

whwch satlsfy+

-t - —t —-
. - F T= e - )
vt X E0 ik voayx Eo lwuoHo .
, (B.2)
ot — J— —
, - F. . .H™= -
Vt X HO ‘ lkovoayx HO IweEO
where Vt = 3 E? +a _—%E is the transverse del operator in the local physical

system (x,y,z), and is related to the eurlt'opefétor defined after equation
(13) by

. _ _ As : s . .
curl_ A=V x A +3 -2 : (B.3)
t P

Thls Appendix Superﬁedes Appendlx B (pp 37-39) of the orlglnal repOrt
I‘Not to be confused with the global system. (x,y,z) of Fig. 2.

$Note that in eqh. (16) we must understand e=¢(X, 2) whereas (13) and (B.2)
contain e(x z), i.e., in a physical coordinate system.
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Applying (15) to the vector F = E; x BT - E' x E; , we then find
;E[E xit - Y x5 ) fg-dl\/ Fds
R o] 5 R

= H - B.. 3 . IS .l. -
f{uko(v v, E [E xH+Ex ] + R[EZHOY Eosz]}dS

S R" 7y o
(B.4)
where fields without a superscript are understood to be '+'.
For the moment we will not specify S or C. [If we denote the
perturbation fields by E = E-E and H =H-H , we have
! ‘ P o p o _
_9_ = . -— - . - f - — _'
'£R [EO><H E x H_ o - a ds 2ik (v \)O) A 3, E_xH_ ds
-ZIkYQI'xé-Edes-l 3+ F xH_dS
R Jg 7y o o “R Sax o o
J__f - ‘. . f .Q... .. - r - - |
R S(EPZHoy EOprZ)dS *+ ik ‘S,(v-\)OR)ay [E, x Hp+ pr H 1dS
(B.5)
We note that Ex'= VX » SO that
V.r (xE x A)=3 - E x H + xyv - (ExH) (B.6)

t o o X o o t o o

and thus, using (B.2), (B.5) can be rewritten as

— T - " - 1 - l.. . I3 q . N — -
c nko(\) \)O)P = iA R £ X on Ho andz+ = I(EPZHOY Eoprz)ds

h - -p__m— H 4+ F H )
.+ lko j; v vo R)ay [on HP f’Ep><‘HO] dSs (B.7)



whére c, P and A are given by equations (18) - (20). To establish the
validity of eqn. (17), then, it must be shown that all.other'real corrections
to Vv are smaller than 0(1/R), and that all other imaginary corrections
are of smaller order than c/P.

On the basis of section III,'we may assume that the perturbation fields

and v have asymptotic developments of the form*

N B
Ep "\;—k——R—E] + 2 E2 + ... + 0(00) (|X|/R << 1)
o (kOR)
(B.8)
2 () (8.9)
vouy o+ + + ... + O0(g .
o kOR (k R)Z o)

with a similar expression for Hz . Here o is given by (11) with s=0.
By substitution into (13), and comparison of coefficients of like powers of

(kOR)_], we obtain

N N 3 + _ } nt
vt)<En+l F |ko\)oae N En+l lprH o k x Vthn koaz o 'wuokox -
n =+
+ ik Z V. a xE-_.
o) %0 j*1 7o n-j
VoxH . F ik v xHA Bk XV xFT -k & HT, + fwek XE
. Tk v B X F - iweE X g *+ fwek xE
+ ik Z <A (B.10)
T o VJ+] n-j )

“The validity of such an expansion implies that the curved guide mode

is indeed merely a slight perturbation of the corresponding straight guide mode.
This will not be the case, for example, with so-called ''edge-guided' or
"whispering gallery' modes which, due to a curvature-inducedor -shifted caustic,
are not well-approximated by any $traight guide mode [1h, 32- 34]. In such cases,
it would be necessary to know E and H sndependently in order to apply the
present method. P P
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for n>0, while Ei and ﬂi satisfy (B.2). Manipulations of (B.2) and

(B.10) similar to those which produced (B.7) yield

- 4 — - _ _ -+ - _+
C[on Aopr “Enpy ¥ Al - 3 dp =k f (EgHoy + HOE) ds
| S

== - . -t e =+ . —+
* kg f XE, [V xF - iweE ] + B - [V xE + fwy F1}ds

S
' o - =t +
o - . E = . ‘
ik Z_ Vgl f 3, [EOan_J. En_ijo] ds (B.11)
j=0 S
We now proceed to argue by induction. It is known (see [22] , Appendix C

therein) that for a general lossless waveguide, it is possible to choose

the longitudinal fields (Eé,‘Hg ) to be real, and consequently the trans-

o, Hi) are all imaginary. This will thus be the

verse fields (Ei, E
x’ "z’ x

case for EO and ﬁ;. Assume therefore, that this further holds for

Er,..., E&, AT,..., A

— 1+
=N
— 1+
ST

, and that Vgrereov, are known to be real. By
choosing the boundary C of the surface S sufficiently far from the guide

(see also section VI), the contour integral in (B.11) can be made arbitrarily

exponentially small by reason of the surface wave nature of the fields. It
can then be concluded from our hypotheses that Vot must be real. Similar
" considerations using (B.10) then allow us to conclude that E:+] and ﬁi+]
n

also possess the same phase relationships as ‘Es ‘and ﬁio. By induction
therefore, these statements are true for any value of n.

Let us now examine the various terms on the right side of (8.7). Again
the contour integral (which is imaginary) may be made smaller than any inverse
order of koR by é suitable choice of C, and thus is’negligible COmpared to

in (also imaginary). In the first surface integral, the imaginary part is
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seen to be O(J/Rz) and so negligible, while the real part is O(OO/R)
and also negligible compared to ¢, which is (see section VII) at worst
O(Gb/R%)' The remaining surface integral can be disposed of in much the
same fashion. Equation (17) has thus been established. Let us note in
conclusion that the above stipulations regarding C and S will be made

somewhat more quantitative when they are used again in section VI



G-1

APPEND IX G*

As a further examplé, let us consider the lowest order (axially
symmetric) TM mode on a Goubau line [35] . No formula for the bending loss
of such ]fnes seems to have appeared in the literature, and the only
experimental results of which the authors are aware have been obtained for
very small bend radii, to which the present theory is inapplicable [36].

For a Goubau line consisting of an inner conductor of circular cross-section
with radius a, and an annular dielectric coating of outer radius b, and
refractive index n, situated in free space, the fields for the mode

under consideration are [357:

Ey = A[Jo(koK‘or) - QO(\)O)YO(kOKOr)] a<r<b
= A[JO(kOKob) - Qb(VO)YO(kOKOb)]KO(kokor)/Ko(kokob) r>'b
_ ] C e )] 2
B = V27 My 5 Hy = (lun) [e /(e ~v,)] oE /or
where 2 2.1
K'o = (n - \)O) ; QO(\)O) = JO(kOkOa)/YO(kOKOa)
€r=n2 (a<r<b) or 1 (r>b)
2
ZO = (uo/eo)‘

A is some constant, and Jo’ ﬂ?, KO are the Bessel functions of the first
kind, second kind, and modified Bessel functions of the first kfnd,
respectively. Continuity of Ey already being satisfied in the above,
continuity of ﬁb at r =b vyields the eigehvalue equation

“This Appendix is new.
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] _rﬁ J](»kOKQb). - QO(yO)Y] (kquti i K, (_kQAQb.).
<o (ke p) - o O IV Tk bl ~ A K RA )

Q o 00

o

The P-integral (19) can be shown to be

oo 2T
P = zj" J" E H, rdrdo
a (o] '

2 ,
2mv A A 2
__ o 2, 2yin" 2 1 2 n .
Z, b (1-n )sz Fllvg) + 2 Fotv)+ 27 #o(vo)Fz(Voi
Ko ) oo |
_ hnz‘
ﬂszKhYz(k K a)
000" 00

" (Note that, fhough not evident, P<0 if A vis real)

where ’
Fj(vo) =‘Jj(koKob) - Qb(vO)Yj(koKob).
Now for r >b, ‘

- Ersin(¢-¢o)

E
z

il

(0 AF (9, ) /A K (6 2 BYIK, (k Ao r)sin(oo,)

= g
]

il

- H ;os(¢~¢o) i(AFO(vO)/AOzoKO(kOAOb))Kl(k;xor)cos(¢-¢o)

where oo is the mode polarization angle, so tHat from Appendix F,

o -t 2 ‘ ]

E(0) = |(vOAFo(vO)/ZKOKO(kOAOb)) sin ¢0

~ s 2

H(0) = +I(AFO(vO)/ZXdZOKO(kOXOb)) cos ¢

so that
m ( gl )% -ZTo AZFi(vo) ( 2 .2 2 )
c=-— (=) e - [(visin"¢ + cos™¢
koZo koR 2X7/2K2(k A b) ° ' °
o o' 0o

where To is oncé more given by (26) with v==vo and k==lo. Just as in
the optical fiber case; the radiative attenuation c¢/P is nearly independent
of the mode polarization if vo = 1, but becomes more‘polarization dependent

for slower surface waves. Thus
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(Tt e o ) Fo ) (6.1)
c/P=(—)" e ©Ff (1) G.
kR %y, x7/2 2(k ALIDW)
where
Fo) =1+ Ai sin’ 6,
2. Z'n2 2 1 .2 n ] 2

D(\)o)=b (1-n )\_2 Fl(\)o) +;\_2— I:o(\)o) * 2 2 Fo(\) )FZ(\) ) TTZkZKl*YZ(k K a)

o o o o oo
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