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Abstract

This paper considers the problem of missing observations on the outcome variable

in a discrete choice network model. The research question is motivated by an empirical

study of the spillover effect of home mortgage delinquencies, where mortgage repayment

decisions can only be observed for a sample of all the borrowers in the study region.

We show that the nested pseudo-likelihood (NPL) algorithm can be readily modified to

address this missing data problem. Monte Carlo simulations indicate that the proposed

estimator works well in finite samples and ignoring this issue leads to a severe downward

bias in the estimated spillover effect. We apply the proposed estimation procedure

to study single-family residential mortgage delinquency decisions in Clark County of

Nevada in 2010, and find strong evidence of the spillover effect. We also conduct some

counterfactual experiments to illustrate the importance of consistently estimating the

spillover effect in policy evaluation.

Keywords: missing data, mortgage defaults, networks, NPL, rational expectation.

JEL: C21, R31
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1 Introduction

The past decades have seen a fast progress in the theoretical development of network models.

Yet, the empirical applications of network models are still limited due to the high cost of

collecting network data. Moreover, most existing estimation methods for network models

require that the whole network, instead of a random sample of the network nodes or links,

to be observed by the researcher, which escalates the difficulty of data collection. Hence, it

is of great practical importance to develop econometric methods to analyze network models

with partially observed or sampled network data. The current literature on this topic can be

divided into two research strands. The first strand focuses on partially observed or completely

unobserved network links (see, e.g., Liu 2013, Chandrasekhar & Lewis 2016, de Paula et al.

2019, Hardy et al. 2019, Lewbel et al. 2019, Breza et al. 2020, Boucher & Houndetoungan

2020, Griffith 2020), while the second strand focuses on the missing data problem in the

outcomes or covariates of network nodes (see, e.g., Sojourner 2013, Wang & Lee 2013a,b,

Boucher et al. 2014, Liu et al. 2017). Our paper contributes to the second research strand

by studying the problem of missing observations on the outcome variable in a discrete choice

network model. It complements the studies by Boucher et al. (2014), Wang & Lee (2013a,b)

and Liu et al. (2017) for the same missing data problem in linear network models.

The research question in this paper is motivated by an empirical study of the spillover

effect of mortgage delinquencies. To establish a direct link connecting mortgage repayment

decisions of neighboring homeowners, we build an empirical model based on the discrete

choice network model in Lee et al. (2014), where a mortgage borrower’s repayment decision

depends on not only neighboring foreclosures in the previous time period (the contagion

effect in Towe & Lawley 2013) but also the rational expectation of neighbors’ repayment

decisions in the current time period (the spillover effect in Chomsisengphet et al. 2018).1 An
1In the literature, “contagion effects” and “spillover effects” are often used interchangeably. To distin-

guish between the time-lagged effect of past foreclosures from the contemporaneous effect of current default
decisions, we refer to the former as the contagion effect (as in Towe & Lawley 2013), and the latter as the
spillover effect.
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underlying assumption in Lee et al. (2014) is that the researcher can observe the outcomes

and covariates of all individuals in the network. Although this assumption is quite common

for network models, it is not realistic for a mortgage repayment behavior study. More

specifically, the outcome variable in this empirical model is defined as being 90 days past

due or worse (90+ DPD). Such information is only available in loan performance data, which

is usually collected by the mortgage servicer serving the loans and only covers a portion of

all the active mortgage borrowers in the study region depending on the mortgage servicer’s

market share. Ignoring this missing data issue, by treating the sampled borrowers in the

loan performance data as the full population of all the active mortgage borrowers in the

study region, may introduce a measurement error to the rational expectation of neighbors’

repayment decisions, and thus lead to an inconsistent estimate of the spillover effect.

In this paper, we show that, by supplementing the loan performance data with public

records on covariates of all the borrowers in the study region, the nested pseudo-likelihood

(NPL) algorithm (Aguirregabiria & Mira 2007) can be readily modified to address this miss-

ing data issue. The NPL algorithm is an iterative algorithm that starts from an initial

guess of the delinquency probabilities for all borrowers in the study region, and repeatedly

estimates the model to update the delinquency probabilities until the process converges.

The main intuition of the proposed method is that, since the delinquency probabilities of

all borrowers can be calculated as long as their covariates are known, the aforementioned

measurement error problem can be avoided. Our Monte Carlo simulations indicate that the

proposed estimator works well in finite samples and ignoring this missing data issue leads to a

severe downward bias in the estimated spillover effect. Using empirical data on single-family

residential mortgage delinquencies in Clark County of Nevada in 2010, we find evidence for

both a time-lagged contagion effect (Towe & Lawley 2013) and a contemporaneous spillover

effect (Chomsisengphet et al. 2018). Consistent with the Monte Carlo simulations, we find

that the spillover effect is underestimated when the missing data problem is left unaddressed.

We complement our estimation effort with two counterfactual studies to illustrate the impor-
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tance of consistently estimating the spillover effect in policy evaluation. In the first study, we

hypothetically remove properties in foreclosure, one at a time, from the data, and calculate

the corresponding reduction in the aggregate delinquency level. In the second study, we in-

troduce a positive utility shock, which can be interpreted as a mortgage payment reduction,

to all residents in the study region, and plot the percentage reduction in delinquency rates

as the shock increases. In both counterfactual studies, we find that the overall reduction in

mortgage delinquencies tends to be understated when the contemporaneous spillover effect

is ignored or underestimated due to the missing data problem.

In the empirical study, besides the missing data problem, we face another identification

challenge of disentangling the spillover effect from the correlated effect, i.e., neighbors may

behave alike because they share similar (and possibly unobserved) characteristics or face a

common environment (Manski 1993). In this case, it often requires additional exogenous

variation such as an instrumental variable (IV) to establish a direct causal interpretation of

the delinquency spillover effect (see, e.g., Munroe & Wilse-Samson 2013, Gupta 2019). In

this paper, we adopt the spatial fixed effect approach that is widely used in the literature

(see, e.g., Bayer et al. 2008, Grinblatt et al. 2008, Campbell et al. 2011, Towe & Lawley

2013, Gerardi et al. 2015).2 As argued by Bayer et al. (2008), the thin housing market

limits people’s ability to pick the exact residential location in their desired neighborhood,

and, hence, people’s immediate neighbors can be considered as quasi-random conditional

on the spatial fixed effect. Including spatial fixed effects also helps to control for common

environments and regional random shocks faced by neighboring households. It is worth

mentioning that the fixed effect approach is also a prevailing technique to account for the

correlated effect in the social network models (see, e.g., Bramoullé et al. 2009, Calvó-

Armengol et al. 2009, Liu et al. 2014). To evaluate the effectiveness of the spatial fixed effect

approach in controlling for the correlated effect in this empirical application, we conduct

Moran I tests on the estimation residuals (see Kelejian & Prucha 2001, Section 4.1), and
2Campbell et al. (2011) include census-tract-by-year fixed effects in their panel data model. As we have

cross-sectional data, we cannot incorporate time-varying fixed effects.
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find a strong spatial correlation without spatial fixed effects while no spatial correlation with

spatial fixed effects.

Our empirical findings contribute to a large literature on mortgage defaults and cor-

responding neighborhood effects. In this literature, some work has shown that mortgage

defaults have a significant and highly localized impact on house prices in the neighborhood

(Immergluck & Smith 2006, Schuetz et al. 2008, Harding et al. 2009, Campbell et al. 2011,

Hartley 2014, Gerardi et al. 2015); while other work has been focusing on the impact of nega-

tive equity on default likelihood (Deng et al. 2000, Foote et al. 2008, Bhutta et al. 2010, Elul

et al. 2010, Calomiris et al. 2013, Gerardi et al. 2018). Nevertheless, with a few exceptions,

little work has been done to study the interaction of neighboring mortgage borrowers’ de-

fault decisions. Towe & Lawley (2013) relate a homeowner’s default decision to the observed

default decisions of the neighbors in the previous time period (i.e., neighboring foreclosures).

Munroe & Wilse-Samson (2013) investigate the impact of a completed foreclosure on future

neighboring foreclosure filings. Gupta (2019) studies the contagion effect of foreclosures trig-

gered by an interest rate increase. Huang et al. (2021) develop an exogenous proxy for the

fraction of mortgages in negative equity based on the timing of foreclosures in a neighbor-

hood, and use it to estimate the spillover effect of foreclosures. The most close work to ours

is Chomsisengphet et al. (2018), which establishes a direct connection between neighboring

mortgage borrowers’ contemporaneous default decisions. However, in Chomsisengphet et al.

(2018), the aforementioned missing data problem is left unaddressed.

The rest of the paper proceeds as follows. Section 2 describes the model, NPL estimation

strategy and Monte Carlo simulation experiments. Section 3 presents the data, empirical re-

sults and counterfactual studies. Section 4 concludes. The detailed derivation of asymptotic

properties and marginal effects, and additional Monte Carlo simulation results are collected

in the Online Appendix.
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2 Model and NPL Estimation

2.1 Model

Consider a network with a set of n individuals N ≡ {1, · · · , n}. The topology of the network

is represented by an n × n adjacency matrix W = [wij], with wij as the (i, j)th element of

W . Let yi ∈ {0, 1} denote the dichotomous choices of individual i ∈ N , Xi denote a row

vector of exogenous covariates, and F (·) denote a distribution function. Lee et al. (2014)

propose a binary choice network model, where, in the rational expectation equilibrium, the

probability of yi = 1 is given by

pi ≡ Pr(yi = 1) = F (Xiβ + λ
∑

j∈N\{i}
wijpj). (1)

In Equation (1), the spatial lag term
∑

j∈N\{i}wijpj is the weighted sum of the expected

outcomes of individual i’s connections, with the coefficient λ capturing the network spillover

effect.

To motivate the general econometric model defined in Equation (1), we consider a random

utility model for home mortgage delinquencies. As in a standard random utility model, the

utility of delinquency (yi = 1) is normalized to zero, and the utility of making loan payments

(yi = 0) is given by

ϵi −Xiβ − λ
∑

j∈N\{i}
wijyj, (2)

where ϵi is an i.i.d. idiosyncratic shock with the distribution function F (·). In the empirical

study, F (·) is the standard logistic function, and wij = w∗
ij/

∑
j∈N\{i}w

∗
ij, where w∗

ij is a

known constant capturing the geographical proximity between i and j. More specifically, as

the literature suggests the spillover effect of distressed properties is very local and decays

rapidly with distance (e.g., Campbell et al. 2011, Gerardi et al. 2015, Cohen et al. 2016), we

assume w∗
ij = 1/dij if i and j are within a cutoff distance (say, 0.5 mile), where dij denotes

the geographical distance between i and j, and w∗
ij = 0 otherwise. Thus,

∑
j∈N\{i}wijyj
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is the distance-weighted delinquency rate in mortgage borrower i’s neighborhood, with its

coefficient λ representing the spillover effect of mortgage delinquencies.

As mortgage delinquencies (90+ DPD) cannot be directly observed by other borrowers,

we assume borrowers make delinquency decisions yi simultaneously. We further assume that

X = (X ′
1, · · · , X ′

n)
′ and the distribution of ϵi are common knowledge among all borrowers in

the area, but the realization of ϵi is privately observed by borrower i. In the random utility

model, borrower i goes delinquent on loan payments if the expected utility of yi = 0, given

the information set Ii = {W,X, ϵi}, is less than zero, i.e.,

E(ϵi −Xiβ − λ
∑

j∈N\{i}
wijyj|Ii) < 0

or, equivalently,

ϵi < Xiβ + λ
∑

j∈N\{i}
wijE(yj|Ii).

As the distribution function of ϵi is F (·), borrower i’s probability of delinquency is

pi ≡ Pr(yi = 1) = F (Xiβ + λ
∑

j∈N\{i}
wijE(yj|Ii)).

In the rational expectation equilibrium (Brock & Durlauf 2001a,b), borrower i’s expectation

on borrower j’s delinquency decision, i.e., E(yj|Ii), should be equal to the mathematical

probability for borrower j to be delinquent, i.e., pj. Therefore, the equilibrium of the random

utility model is given by Equation (1). Lee et al. (2014) provide a sufficient condition for

the existence of a unique solution to the fixed point problem defined in Equation (1). In

the case where F (·) is the standard logistic function and
∑

j∈N\{i}wij = 1 for all i ∈ N ,

Equation (1) has a unique solution if |λ| < 4.

To highlight the importance of the spillover effect, we consider the following example.

SupposeXi is a scalar representing the number of foreclosures initiated in the previous period

in borrower i’s neighborhood.3 In the absence of the spillover effect, i.e., λ = 0, the direct
3In the empirical study, the initiation of foreclosure is indicated by the notice of default (NOD) or the
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Figure 1: The Spillover Effect of Home Mortgage Delinquencies

marginal effect of Xi on borrower i’s own delinquency probability pi is

∂pi
∂Xi

= f(Xiβ)β,

where f(x) = ∂F (x)/∂x. For borrower j who is far from i, the indirect marginal effect of Xi

on borrower j’s delinquency probability pj is

∂pj
∂Xi

= 0.

That is, when the neighborhoods of borrowers i and j (represented by the solid circles

in Figure 1) do not overlap, foreclosures in borrower i’s neighborhood have no impact on

borrower j’s delinquency decision. On the other hand, when λ ̸= 0, the direct marginal effect

of Xi on borrower i’s own delinquency probability pi is4

∂pi
∂Xi

= (1 + λψii)fiβ, (3)

notice of trustee sale (NOTS) filed in the county office. Thus, different from the delinquency decision in
the current period that is unobservable to the neighbors, foreclosures in the previous period are publicly
observable.

4Online Appendix B provides a detailed derivation of the marginal effects.

9



and the indirect marginal effect of Xi on borrower j’s delinquency probability pj (j ̸= i) is

∂pj
∂Xi

= λψjifjβ, (4)

with fi = f(Xiβ + λ
∑

j∈N\{i}wijpj) and ψij denoting the (i, j)th element of the matrix

Ψ = W (In − λdiag{fi}W )−1diag{fi},

where diag{fi} is an n×n diagonal matrix with the ith diagonal element being fi. Equation

(4) implies that, when λ ̸= 0, foreclosures in borrower i’s neighborhood may affect borrower

j’s delinquency decision even if they are far from each other. This can be seen in Figure 1.

Suppose house h goes into foreclosure. Knowing that a foreclosure in borrower i’s neighbor-

hood has an impact on borrower i’s delinquency risk, borrower k will adjust the delinquency

decision accordingly. As borrower k is in borrower l’s neighborhood (represented by the

dotted circle in Figure 1), borrower k’s delinquency risk will affect borrower l, which will

in turn affect borrower j. Thus, as a result of the chain reaction, a borrower’s delinquency

decision can be influenced by a foreclosure in a far away neighborhood.

2.2 NPL estimation with missing outcome data

The main difficulty in estimating Equation (1) is that p = (p1, · · · , pn)′ is not observable.

Lee et al. (2014) suggest to use the nested fixed point (NFXP) algorithm (Rust 1987), with

an internal subroutine that solves the fixed point problem given by Equation (1) for p, to

implement the maximum likelihood (ML) estimation. To bypass the computational burden

of the NFXP algorithm, which repeatedly solves the fixed point problem at each candidate

parameter value in the search for the maximum of the log-likelihood function, Lin & Xu

(2017) adopt the computationally more efficient NPL algorithm (Aguirregabiria & Mira

2007). The NPL algorithm is an iterative algorithm that starts from an initial value of p,

and estimates the model with the spatial lag
∑

j∈N\{i}wijpj evaluated at the initial value
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of p. During each iteration, it re-estimates the model with the spatial lag
∑

j∈N\{i}wijpj

evaluated at the predicted value of p from the previous iteration. The algorithm repeats this

process until it converges.

Both Lee et al. (2014) and Lin & Xu (2017) assume that the researcher can observe the

outcomes and exogenous characteristics of all individuals in the network. In our empirical

study of home mortgage delinquencies, the exogenous variables Xi include house character-

istics (such as house square footage, the number of bedrooms, and ownership status), loan

characteristics (such as property value and loan-to-value (LTV) ratio), and the number of

foreclosures initiated in the previous period in borrower i’s neighborhood.5 All this informa-

tion is public and available for all borrowers in the study region of our empirical analysis,

which is in a disclosure state. On the other hand, the outcome variable yi is defined as being

90+ DPD, which is not public information and is only available in the loan performance

data. In the empirical study, we use the loan performance data assembled by a govern-

ment agency that regulates several national mortgage servicers. Similarly to other popular

residential mortgage databases that are commercially available (e.g., CoreLogic or Black-

Knight), the coverage of this data depends on the mortgage servicers’ market shares. For

the specific study region of our empirical analysis, Clark County of Nevada, this data covers

about 26% of the single-family residential mortgages. In other words, among all the mort-

gage repayment decisions in the population, about 26% of them are observed and recorded

in our data.

More generally, suppose we can observe the exogenous variables Xi for all i ∈ N , and

the outcome variable yi for i ∈ N ∗, where N ∗ is a random sample of N with the sample

size given by n∗ = |N ∗|. If one drops individuals with missing outcome data and only uses

information of individuals in the sample N ∗ for the estimation, then the estimated model
5The house characteristics (i.e., house square footage, the number of bedrooms, and ownership status)

are from the 2009 tax assessment record. The loan characteristics (i.e., property value and LTV ratio) are
recorded on the loan origination date in the publicly available transaction data. The initiation of foreclosure
indicated by the NOD or NOTS is also publicly available.
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becomes

Pr(yi = 1) = F (Xiβ + λ
∑

j∈N ∗\{i}
wijp

∗
j), (5)

where p∗j is the solution of the fixed point problem

p∗i = F (Xiβ + λ
∑

j∈N ∗\{i}
wijp

∗
j), (6)

for i ∈ N ∗. Comparing Equation (5) with Equation (1), we can see that the exclusion of

individuals with missing outcome data introduces a measurement error to the spatial lag

term
∑

j∈N\{i}wijpj. The measurement error comes from two sources. First, some neighbors

of individual i are omitted from the spatial lag term. Second, the equilibrium delinquency

probability obtained from Equation (6) is miscalculated. Take the network in Figure 1 as an

example. Suppose we do not observe the delinquency decision of borrower k, i.e., k /∈ N ∗.

If we exclude borrower k from the network in the estimation, then the connection between

borrowers i and j is cut off. As a result, the interdependence of i and j’s delinquency

decisions will be attributed to some other confounding factors, leading to an underestimated

spillover effect. Hence, simply excluding individuals with missing outcome data may lead to

inconsistent estimation results. In the following, we propose a modified NPL algorithm to

address this missing data problem.

Let θ = (λ, β′)′. The modified NPL algorithm starts from an initial value p(0) =

(p
(0)
1 , · · · , p(0)n )′ and takes the following iterative steps:

Step 1 Given p(t−1) = (p
(t−1)
1 , · · · , p(t−1)

n )′, obtain θ̂
(t)

= argmax lnL(θ; p(t−1)), where

lnL(θ; p(t−1)) =
∑
i∈N ∗

{yi lnF (Xiβ + λ
∑

j∈N\{i}
wijp

(t−1)
j )

+(1− yi) ln[1− F (Xiβ + λ
∑

j∈N\{i}
wijp

(t−1)
j )]}.
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Step 2 Given θ̂
(t)
, update p(t) = (p

(t)
1 , · · · , p

(t)
n )′ according to

p
(t)
i = F (Xiβ̂

(t)
+ λ̂

(t) ∑
j∈N\{i}

wijp
(t−1)
j ). (7)

Repeat Steps 1 and 2 until the process converges.

It is worth noting that the updating rule for delinquency probabilities given by Equation

(7) depends only on Xi, but not on yi. As we observe Xi for all i ∈ N , Equation (7)

calculates the updated delinquency probabilities for all i ∈ N , which allows us to obtain

the spatial lag term in the log-likelihood function free of measurement error. This idea is

similar to that in Wang & Lee (2013a), where the authors consider the same missing data

problem in a linear spatial autoregressive (SAR) model. One of the solutions that Wang &

Lee (2013a) suggest is to impute the unobserved yi from the reduced form of the SAR model

using Xi for all i ∈ N , and replace the unobserved yi’s in the spatial lag by their imputed

values.

Kasahara & Shimotsu (2012) show that a key determinant of the convergence of the NPL

algorithm is the contraction property of Equation (1), which is ensured by the condition |λ| <

4 in the case with F (·) being the standard logistic function and
∑

j∈N\{i}wij = 1 for all i ∈ N .

When the NPL algorithm converges, the NPL estimator θ̂ satisfies θ̂ = argmax lnL(θ; p̂),

where

lnL(θ; p̂) =
∑
i∈N ∗

{yi lnF (Xiβ + λ
∑

j∈N\{i}
wij p̂j)

+(1− yi) ln[1− F (Xiβ + λ
∑

j∈N\{i}
wij p̂j)]},

and p̂ = (p̂1, · · · , p̂n)′ is the solution of the system of equations

p̂i = F (Xiβ̂ + λ̂
∑

j∈N\{i}
wij p̂j),
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for i ∈ N . Under some standard regularity conditions, it follows by a similar argument

as in Aguirregabiria & Mira (2007) that the proposed NPL estimator is consistent and

asymptotically normal.6

The estimation of the asymptotic variance of the NPL estimator θ̂ also needs to take

this missing data issue into consideration. Let Ω̂ be an n × n diagonal matrix with the

ith diagonal element being f̂ 2
i /[F̂i(1 − F̂i)], where F̂i = F (Xiβ̂ + λ̂

∑
j∈N\{i}wij p̂j) and

f̂i = f(Xiβ̂ + λ̂
∑

j∈N\{i}wij p̂j). Let J be a n∗ × n selector matrix such that JX collects

elements in X = (X ′
1, · · · , X ′

n)
′ corresponding to i ∈ N ∗. The asymptotic variance of θ̂ can

be estimated by

(Σ̂1 + λ̂Σ̂′
2)

−1Σ̂1(Σ̂1 + λ̂Σ̂2)
−1,

where

Σ̂1 = [Wp̂,X]′J ′JΩ̂J ′J [Wp̂,X],

Σ̂2 = [Wp̂,X]′J ′JΩ̂J ′JW (In − λ̂diag{f̂i}W )−1diag{f̂i}[Wp̂,X ].

2.3 Monte Carlo simulations

To investigate the finite sample performance of the proposed NPL algorithm, we conduct a

simulation study. In the data generating process, we consider both generated and empirical

networks. The generated network provides stylized facts on how the missing data bias is

affected by the network configuration (e.g., a sparse network v.s. a dense network). The

empirical network shows how the proposed estimator performs in a more realistic setting.

The generated network has two spatial layouts based on the rook contiguity and the

queen contiguity. More specifically, we allocate n = 2500 spatial units into a lattice of

50 × 50 squares. Under the rook contiguity, two spatial units i and j are considered as

neighbors if the squares containing them share a common side. In the left panel of Figure 2,
6Online Appendix A derives the asymptotic distribution of the proposed NPL estimator.
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Figure 2: The Rook and Queen Contiguity

the grey squares are neighbors of the black square under the rook contiguity. Under the queen

contiguity, two spatial units i and j are considered as neighbors if the squares containing

them share a common side or vertex. In the right panel of Figure 2, the grey squares are

neighbors of the black square under the queen contiguity. For both spatial layouts, we set

w∗
ij = 1 if i and j are neighbors and w∗

ij = 0 otherwise. The adjacency matrix is given by

W = [wij] with wij = w∗
ij/

∑
j∈N\{i}w

∗
ij.

The empirical network is pulled from the Add Health survey, which collected data on the

social environment of students in grades 7-12 from roughly 130 private and public schools in

the United States in the academic year of 1994-95. In the Add Health survey, every student

attending the sampled schools on the interview day was asked to identify his/her friends

(up to five males and five females) from the school roster. We use School #56 in the Add

Health survey for the simulation study. After removing isolated students with no friends, the

remaining 1546 students in School #56 are directly or indirectly connected in the friendship

network as shown in Figure 3. On average, the students nominated 4.71 friends, with a

standard deviation of 2.85. Let w∗
ij = 1 if student i nominated student j as a friend and

w∗
ij = 0 otherwise. The adjacency matrix is given byW = [wij] with wij = w∗

ij/
∑

j∈N\{i}w
∗
ij.

In the data generating process, F (·) in Equation (1) is given by the standard logistic

function,7 andXi = (1, xi2), where xi2 is a scalar that is generated from a uniform distribution
7The NPL estimators also assume that F (·) is the standard logistic function. That is, F (·) is correctly

specified in the estimation. In Online Appendix C, we conduct additional Monte Carlo simulations to
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Figure 3: Friendship Network
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on [−1, 1]. The true values of the parameters are λ = 2 and β = (β1, β2)
′ = (−1, 2)′. We use

recursive iterations to solve for p = (p1, · · · , pn)′ that is implicitly defined in Equation (1),

and then set yi = 1 if Xiβ+λ
∑

j∈N\{i}wijpj > ϵi and yi = 0 otherwise, where ϵi is a logistic

distributed random innovation. We randomly draw samples N ∗ from the generated data N

under different sampling rates n∗/n ∈ {0.75, 0.5, 0.25}, and assume that Xi is observable for

all i ∈ N while yi is observable only for i ∈ N ∗.

We consider two NPL estimators in the simulation study. The NPL-1 estimator excludes

individuals with missing observations on the outcome variable and only uses the sample

N ∗ for the estimation. Hence, the NPL-1 estimator is likely to be inconsistent due to

the measurement error in the spatial lag term as explained in Section 2.2. The NPL-2

estimator follows the modified NPL algorithm described in Section 2.2. We conduct 1000

simulation repetitions. The mean and standard deviation (SD) of the empirical distribution

of the NPL estimates are reported in Table 1. With the NPL-1 estimator, the estimated

spillover effect (λ) is downward biased, the estimated intercept (β1) is upward biased, and

the estimated slope (β2) seems to be unbiased. The bias increases as the sampling rate

decreases. Comparing the rook contiguity and the queen contiguity, we can see that the bias

is larger when the underlying network is more sparse (i.e., under the rook contiguity). The

intuition is that, as the network becomes more sparse, the spatial lag term calculated based

on the sample N ∗ becomes less representative of the true spatial lag term
∑

j∈N\{i}wijpj.

The direction and size of the NPL-1 estimator’s bias are comparable between the generated

rook/queen network and the empirical friendship network. On the other hand, the NPL-2

estimates are essentially unbiased with both generated and empirical networks, even when

the sampling rate is low (n∗/n = 0.25).

investigate the robustness of the proposed estimator with respect to the misspecification of F (·).
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Table 1: Monte Carlo Simulation Results

NPL-1 NPL-2
λ = 2 β1 = −1 β2 = 2 λ = 2 β1 = −1 β2 = 2

Rook contiguity
n∗/n = 0.75 1.314(0.327) −0.655(0.168) 2.026(0.112) 1.991(0.356) −0.996(0.180) 2.001(0.115)
n∗/n = 0.50 0.625(0.290) −0.294(0.152) 2.054(0.131) 1.973(0.441) −0.987(0.223) 2.006(0.138)
n∗/n = 0.25 0.232(0.311) −0.077(0.145) 2.061(0.189) 1.958(0.615) −0.976(0.314) 2.004(0.198)
Queen contiguity
n∗/n = 0.75 1.511(0.405) −0.757(0.206) 2.006(0.109) 1.985(0.413) −0.994(0.209) 1.999(0.109)
n∗/n = 0.50 0.894(0.418) −0.445(0.215) 2.020(0.132) 1.955(0.495) −0.978(0.250) 2.003(0.134)
n∗/n = 0.25 0.289(0.394) −0.127(0.198) 2.033(0.188) 1.929(0.715) −0.962(0.362) 2.006(0.193)
Friendship network
n∗/n = 0.75 1.560(0.308) −0.795(0.142) 1.991(0.133) 1.983(0.327) −0.993(0.150) 2.002(0.133)
n∗/n = 0.50 1.103(0.353) −0.577(0.163) 1.987(0.161) 2.005(0.417) −1.002(0.195) 2.006(0.162)
n∗/n = 0.25 0.572(0.414) −0.320(0.173) 1.995(0.238) 1.974(0.587) −0.989(0.271) 2.023(0.242)

Mean(SD)
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Table 2: Variable Definitions and Summary Statistics

RRP data MM data
Definition Mean SD Mean SD

Dependent Variable
delinquency 1 if 90+ DPD in 2010, and 0 otherwise. 0.19 0.39
Explanatory Variables
neighbor foreclosures # of foreclosures initiated in 2009 within the 0.1 mile neighborhood. 16.69 13.68 14.88 12.04
square footage The property size in thousand square feet. 2.05 0.78 2.04 0.75
bedrooms # of bedrooms of the property. 3.39 0.83 3.40 0.82
owner 1 if the property is occupied by the owner. 0.73 0.44 0.78 0.41
log property value The logarithm of the property’s value at the loan origination date. 12.35 0.52 12.27 0.51
LTV_60to80 1 if the LTV ratio at the loan origination date is between 60% and 80%. 0.28 0.45 0.31 0.46
LTV_80to100 1 if the LTV ratio at the loan origination date is between 80% and 100%. 0.56 0.50 0.52 0.50
LTV_gt100 1 if the LTV ratio at the loan origination date is greater than 100%. 0.07 0.25 0.07 0.26
# of observations 221,947 58,52619



3 Empirical Analysis

3.1 Data

Our main data sources are the Mortgage Metrics (MM) database and the Renwood Realty

Property (RRP) database. The MM data, assembled by the Office of the Comptroller of the

Currency (OCC) since January 2008, consists of loan-level origination and monthly perfor-

mance information of residential first-lien mortgages serviced by seven national banks and

a federal savings association regulated by the OCC. The RRP data covers over 151 million

properties and 3,143 counties which translates into 99% of the U.S. population coverage.8

We focus on the single-family residential mortgage repayment information in the MM data

for Clark County of Nevada in 2010. The RRP data provides a wholistic coverage on the

covariates of almost all single-family mortgage borrowers in that region, including those not

in the MM data. Using the notation in Section 2.2, we consider the set of borrowers in the

RRP data as N and that in the MM data as N ∗. In our study region, the RRP transaction

data contains 221,947 loan records distributed across 155 census tracts,9 whereas the MM

sample only has 58,526 records.

The MM data is in a panel structure with monthly updated information for loan perfor-

mance. The outcome variable of the empirical model – mortgage delinquency (90+ DPD)

– is extracted from this data. It is worth pointing out that a mortgage delinquency is dif-

ferent from a foreclosure. The former is a decision made by a homeowner to stop making a

mortgage payment, while the latter is a legal process in which a lender attempts to recover
8The RRP database consists of three types of data: (1) the transaction data, which provides a history

of sales and financing activities on residential housing units, (2) the property tax assessment data collected
from county (township) tax assessor’s office, and (3) the pre-foreclosure data (e.g., public records of NOD
and NOTS). We use mortgage transaction data (excluding cash transactions) in RRP to construct the pool
of active mortgages in the study region. Although we do not know if a mortgage is paid off at the time
of our analysis, we feel comfortable that our RRP mortgage data provides a reasonable proxy of the true
“active” mortgage population given the fact that the average loan age of the mortgages in our study region
is 5.2 years as of the end of 2009. We use the RRP tax assessment data for a complete set of housing
characteristic measures. The pre-foreclosure data of RRP provides us information of the existing foreclosure
filings, through which we can identify the contagion effect.

9We focus on census tracts where most single family homes are located by dropping census tracts with
less than 1000 single-family loan records in the RRP data.
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the balance of a loan from a borrower who has stopped making payments to the lender by

forcing the sale of the asset used as the collateral for the loan. Once a loan reaches a serious

delinquency state, such as 90+ DPD, it is usually up to the state level laws and policies

(e.g., the foreclosure law) as well as financial institute level programs (e.g., proprietary mod-

ification programs for loss mitigation) to determine how the foreclosure process proceeds.

Because we are interested in a borrower’s decision instead of the legal aspect of its conse-

quence, we define the outcome variable as being 90+ DPD in 2010. On the other hand, it is

well documented that mortgage delinquency decisions could be affected by neighboring fore-

closures in the previous time period (Towe & Lawley 2013). Hence, we include the number

of foreclosures initiated in 2009 in a borrower’s neighborhood as a covariate in the empirical

model. The initiation of foreclosure is indicated by the notice of default (NOD) or the notice

of trustee sale (NOTS) filed in the county office. This information is publicly available in

a disclosure state (e.g., Nevada) and contained in the RRP data. Other covariates in the

empirical model include house square footage, the number of bedrooms, ownership status,

property value (on the loan origination date), and LTV ratio (on the loan origination date).

All this information is also publicly available and contained in the RRP data. We match the

loans in the MM data with those in the RRP data based on encrypted property IDs.10

Table 2 lists the definitions of the dependent variable and explanatory variables as well

as their summary statistics for both the RRP and MM datasets. Overall, the summary

statistics of the explanatory variables are comparable between these two datasets. In both

datasets, the average number of neighbor foreclosures is 15~17. The average size of the

property is 2000 square feet, and the typical number of bedrooms is between 3 and 4. The

majority of mortgage borrowers claimed to be the owners of their properties. The average

property value is about $220K. The number of borrowers with an initial LTV greater than

80% is slightly more than the number of borrowers with an initial LTV less than 80%.
10The encrypted property IDs were generated based on the actual address of each property. After the

encrypted property IDs were generated, address information has been removed from both the RRP and MM
data. Thus we, as the end data user, have no access to personally identifiable information.
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In the empirical analysis, we treat a census tract as a spatial network.11 Thus, the

scope of spatial interactions is restricted to the census tract level. It is natural to think

that the interdependence of delinquency decisions is more likely to exist between nearby

houses. We therefore adopt the conventional inverse-distance-based spatial weights and

assign zero weights to houses located farther than a cutoff-distance apart. More specifically,

we define the spatial weight as w∗
ij = 1/dij if i and j are within a cutoff distance, where dij

denotes the geographical distance between i and j, and w∗
ij = 0 otherwise. We normalize

the spatial weight as wij = w∗
ij/

∑
j∈N\{i}w

∗
ij, so that the spatial lag term

∑
j∈N\{i}wijpj

can be interpreted as the distance-weighted average delinquency probability in a borrower’s

neighborhood. The radius of the neighborhood is given by the cutoff distance for w∗
ij = 0.

In the empirical study, we experiment with different cutoff distances ranging from 0.5 miles

to 0.1 miles and find the estimation results are robust. Figures 4-6 give a visualization of

the average number of neighbors of each house with different cutoff distances for the census

tracts used in the empirical analysis. Figure 7 plots the distribution of the delinquency rate

in each house’s neighborhood with different cutoff distances using the MM data. We can see

that the distribution of the delinquency rate is quite stable with different cutoff distances.

3.2 Estimation results

The main estimation results are reported in Table 3. The first column reports the standard

logit estimates without accounting for the delinquency spillover effect. The second and third

columns report the NPL estimates of Equation (1) with the delinquency spillover effect. The

NPL-1 estimator falsely treats the borrowers in the MM data as the whole population and

only uses the information on those borrowers and their properties to estimate the model.

As explained in Section 2.2, the NPL-1 estimator is likely to be inconsistent due to the

measurement error in the spatial lag term. The NPL-2 estimator is the consistent estimator

proposed in Section 2.2 for data with missing values on the dependent variable.
11We also conduct a robustness check by defining a block group, which is a subdivision of a census tract,

as a spatial network, and find that the estimated spillover effect is robust to the scope of spatial networks.
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Figure 4: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.5 miles
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Figure 5: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.25 miles
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Figure 6: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.1 miles
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Figure 7: Distribution of Delinquency Rates with Different Cutoff Distances
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Besides the missing data problem, an important identification challenge for this empirical

analysis is the underlying sorting problem, i.e., neighbors may behave alike because they

share similar (and possibly unobserved) characteristics or face a common environment. This

is known as the correlated effect in the peer effect literature (Manski 1993). To establish

a direct causal interpretation of the delinquency spillover effect in the presence of sorting,

some papers take the IV approach. For instance, Munroe & Wilse-Samson (2013) propose

an IV based on random assignment of chancery-court judges, and Gupta (2019) introduces

an IV based on exogenous shocks to interest rates on adjustable-rate mortgage (ARM) loans.

In this paper, instead of resorting to IVs, we adopt the spatial fixed effect approach

that is originated in Bayer et al. (2008) and Grinblatt et al. (2008) and widely followed in

the literature (see, e.g., Campbell et al. 2011, Towe & Lawley 2013, Gerardi et al. 2015).

The rationale of the spatial fixed effect approach is that the thin housing market limits

people’s ability to pick the exact residential location in their desired neighborhood, and,

hence, people’s immediate neighbors can be considered as quasi-random conditional on the

broad-neighborhood fixed effect. Including spatial fixed effects also helps to control for other

confounding factors such as common environments (e.g., educational resources and crime

rates) and regional random shocks (e.g., regional layoffs12). It is worth pointing out that the

identification assumption in our model is stronger than some of the aforementioned papers.

For instance, Campbell et al. (2011) study the causal impact of neighboring foreclosures on

housing prices. Hence, their identification strategy requires that, after controlling for spatial

fixed effects, there is no unobservable that drives the co-movement of foreclosures and prices

of neighboring houses. By contrast, as we study the direct connection between neighboring

households’ mortgage default decisions, the implicit identification assumption is that there is

no unobservable that explains the similar default decisions of neighbors after controlling for

spatial fixed effects. Furthermore, Campbell et al. (2011) include census-tract-by-year fixed

effects in their panel data model, while we cannot incorporate time-varying fixed effects as
12People who work together tend to live very close to one another. This means that when a company has

layoffs, this tends to affect particular neighborhoods — the regional layoffs.
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we have cross-sectional data.

Despite these limitations, including spatial fixed effects is still an effective way to account

for the correlated effect. To show this, we conduct Moran I tests (see Kelejian & Prucha

2001, Section 4.1) based on the NPL-2 estimates of our model with and without block group

fixed effects.13 Without fixed effects, the Moran I test statistic is 9.23 (with a p value of 0.00),

suggesting a strong spatial correlation in the estimation residuals. With fixed effects, the

Moran I test statistic is 0.17 (with a p value of 0.87), suggesting no spatial correlation in the

estimation residuals conditionally on block groups. This result provides some reassurance of

our identification strategy.

Table 3: Estimation Results

Logit NPL-1 NPL-2
delinquency spillover effect 1.1210* 2.3226***

(0.6459) (0.4629)
foreclosure contagion effect 0.0063*** 0.0058*** 0.0048***

(0.0013) (0.0012) (0.0011)
square footage -0.3104*** -0.3084*** -0.3061***

(0.0260) (0.0266) (0.0257)
bedrooms 0.0268 0.0261 0.0246

(0.0197) (0.0194) (0.0189)
owner 0.0586** 0.0585** 0.0593**

(0.0274) (0.0270) (0.0270)
log property value 0.8200*** 0.8149*** 0.8062***

(0.0289) (0.0325) (0.0325)
LTV_60to80 0.4499*** 0.4499*** 0.4487***

(0.0496) (0.0495) (0.0494)
LTV_80to100 0.8105*** 0.8103*** 0.8080***

(0.0479) (0.0479) (0.0479)
LTV_gt100 0.6670*** 0.6659*** 0.6630***

(0.0613) (0.0617) (0.0617)
block group dummies included included included
log-likelihood -27352.78 -27351.48 -27345.05
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1.

For the logit model, all the coefficient estimates are statistically significant at the 5%
13A block group is a subdivision of a census tract or block numbering area. It is the smallest geographic

entity for which the decennial census tabulates and publishes sample data.

28



level with the expected signs (except that the estimated coefficient of bedroom is statistically

insignificant). In particular, a borrower’s delinquency risk increases with more neighboring

foreclosures in the previous time period, giving evidence to the contagion effect (Towe &

Lawley 2013). The delinquency risk also increases with a higher property value and LTV

ratio. After controlling for the other covariates (including the property value), larger houses

have lower delinquency risks. The positive sign of the coefficient estimate of owner is not

surprising since occupancy fraud is found to be common in various mortgage markets, in-

cluding government-sponsored-enterprise-guaranteed, private-securitized, and portfolio-held

mortgage markets (Haughwout et al. 2011, Elul & Tilson 2015, Piskorski et al. 2015, Griffin

& Maturana 2016). Both Haughwout et al. (2011) and Griffin & Maturana (2016) suggest

loans with fraud occupancy status perform much worse than otherwise comparable loans.

In both the NPL-1 and NPL-2 estimations, we find a positive and significant delinquency

spillover effect, while the coefficient estimates for other covariates remain largely the same

as the logit estimates. The NPL-2 estimate of the delinquency spillover effect is more than

twice the NPL-1 estimate. This is consistent with our finding in the Monte Carlo simulations

that ignoring the missing data issue in the MM data leads to a substantial downward bias of

the estimated spillover effect. To see how sensitive the NPL-2 estimate of the delinquency

spillover effect is to the model specification, we report the estimation results with different

sets of regressors in Table 4. The estimated spillover effect using the NPL-2 algorithm is

relatively stable across different model specifications.

As we observe in the Monte Carlo simulations reported in Section 2.3, the NPL-2 esti-

mates are quite stable across different sampling rates. Hence, we expect to obtain similar

NPL-2 estimates if we use sub-samples of the MM data to re-estimate.14 More specifically,

we randomly draw a sub-sample of yi from the MM data, and combine it with the informa-

tion on Xi for all i ∈ N in the RRP data to obtain a new dataset for the NPL-2 estimation.

We repeat this process for 500 times for each of the following sampling rates: 90%, 80%,
14We thank an anonymous referee for suggesting this robustness check.
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Table 4: NPL-2 Estimation Results with Different Sets of Control Variables

delinquency spillover effect 2.3226*** 1.9228*** 2.1805*** 2.2136***
(0.4629) (0.7581) (0.7295) (0.7265)

foreclosure contagion effect 0.0048*** 0.0048*** 0.0045*** 0.0045***
(0.0011) (0.0012) (0.0012) (0.0012)

square footage -0.3061*** -0.0651*** -0.0601*** -0.0443***
(0.0257) (0.0230) (0.0227) (0.0174)

bedrooms 0.0246 0.0198 0.0201
(0.0189) (0.0188) (0.0187)

owner 0.0593** 0.0758***
(0.0270) (0.0262)

log property value 0.8062***
(0.0325)

LTV_60to80 0.4487***
(0.0494)

LTV_80to100 0.8080***
(0.0479)

LTV_gt100 0.6630***
(0.0617)

block group dummies included included included included
log-likelihood -27345.05 -27857.84 -27861.15 -27861.69
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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70%, and 60%,15 and plot the distributions of the estimated spillover effects under different

sampling rates in Figure 8. For all sampling rates considered, the estimated spillover effects

are centered around the NPL-2 estimate reported in Table 3. The distribution spreads out

more as the sampling rate decreases. This exercise provides additional empirical evidence

for the credibility of the NPL-2 estimator in the presence of missing outcome data.

Finally, we conduct some robustness checks regarding our specification of spatial networks

and spatial weights. For the main estimation results reported in Table 3, we treat a census

tract as a spatial network. As a robustness check, Table 5 reports the NPL estimates

with block groups as spatial networks. We find that the NPL-2 estimate of the delinquency

spillover effect is robust to the scope of spatial networks while the bias of the NPL-1 estimate

is more prominent as the network gets smaller. This result is sensible because the discrepancy

between the expected neighborhood delinquency rate calculated based on the MM sample

and the one calculated based on the population increases as the scope of the network gets

smaller. We also conduct a robustness check for the specification of spatial weights. In our

specification of the spatial weight wij, we assume wij = 0 if the geographical distance between

homeowners i and j is greater than a cutoff distance. For the main estimation results reported

in Table 3, the cutoff distance is set to 0.5 miles. As a robustness check, Table 6 reports the

NPL estimates with a cutoff distance of 0.1, 0.25, and 0.5 miles respectively. The results

from this sensitivity analysis are reasonable and consistent with our main findings. For most

covariates, the estimated coefficients are very similar with different cutoff distances. For the

delinquency spillover effect, as the cutoff distance decreases, the NPL-1 estimate decreases

significantly (e.g., 1.12 for 0.5 miles and 0.38 for 0.1 miles, with a drop of 66%) whereas the

NPL-2 estimate is considerably stable across different cutoffs (e.g., 2.32 for 0.5 miles and

2.12 for 0.1 mile, with a drop of less than 10%). As the spatial network becomes more sparse

with a shorter cutoff distance, this empirical result is in line with our finding in the Monte
15As the MM sample only has 58,526 records while the RRP transaction data contains 221,947 records,

the sampling rate of the MM data is about n∗/n = 58, 526/221, 947 ≈ 26%. With a sampling rate of 60% to
draw a sub-sample from the MM data, the actual sampling rate would be about 26%× 60% ≈ 16%.
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Figure 8: Estimates of the Spillover Effect Using Sub-samples of the MM Data
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Carlo simulations that the bias of the estimated spillover effect by the NPL-1 algorithm is

larger with a more sparse network (under the rook contiguity).

Table 5: Estimation Results with Block Groups as Networks

NPL-1 NPL-2
delinquency spillover effect 0.3211 2.2844***

(0.7565) (0.4962)
foreclosure contagion effect 0.0076*** 0.0058***

(0.0014) (0.0012)
square footage -0.3072*** -0.3029***

(0.0270) (0.0253)
bedrooms 0.0262 0.0240

(0.0196) (0.0187)
owner 0.0599** 0.0602**

(0.0270) (0.0270)
log property value 0.8198*** 0.8056***

(0.0326) (0.0327)
LTV_60to80 0.4489*** 0.4475***

(0.0495) (0.0494)
LTV_80to100 0.8095*** 0.8068***

(0.0479) (0.0479)
LTV_gt100 0.6662*** 0.6623***

(0.0618) (0.0617)
block group dummies included included
log-likelihood -27348.45 -27342.19
Standard errors in parentheses.
Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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Table 6: NPL Estimation Results with Different Cutoff Distances

Cutoff dist. = 0.5 mi Cutoff dist. = 0.25 mi Cutoff dist. = 0.1 mi
NPL-1 NPL-2 NPL-1 NPL-2 NPL-1 NPL-2

delinquency spillover effect 1.1210* 2.3226*** 0.7677 2.1307*** 0.3796 2.1194***
(0.6459) (0.4629) (0.5698) (0.3942) (0.4732) (0.3217)

foreclosure contagion effect 0.0058*** 0.0048*** 0.0058*** 0.0044*** 0.0059*** 0.0037***
(0.0012) (0.0011) (0.0013) (0.0011) (0.0013) (0.0010)

square footage -0.3084*** -0.3061*** -0.3088*** -0.3054*** -0.3088*** -0.2998***
(0.0266) (0.0257) (0.0266) (0.0253) (0.0268) (0.0241)

bedrooms 0.0261 0.0246 0.0263 0.0245 0.0263 0.0233
(0.0194) (0.0189) (0.0194) (0.0187) (0.0195) (0.0180)

owner 0.0585** 0.0593** 0.0585** 0.0594** 0.0584** 0.0591**
(0.0270) (0.0270) (0.0270) (0.0269) (0.0270) (0.0268)

log property value 0.8149*** 0.8062*** 0.8157*** 0.8033*** 0.8169*** 0.7930***
(0.0325) (0.0325) (0.0326) (0.0325) (0.0327) (0.0328)

LTV_60to80 0.4499*** 0.4487*** 0.4499*** 0.4485*** 0.4498*** 0.4472***
(0.0495) (0.0494) (0.0495) (0.0494) (0.0495) (0.0494)

LTV_80to100 0.8103*** 0.8080*** 0.8104*** 0.8078*** 0.8104*** 0.8058***
(0.0479) (0.0479) (0.0479) (0.0479) (0.0479) (0.0478)

LTV_gt100 0.6659*** 0.6630*** 0.6661*** 0.6626*** 0.6664*** 0.6605***
(0.0617) (0.0617) (0.0617) (0.0617) (0.0617) (0.0616)

block group dummies included included included included included included
log-likelihood -27351.48 -27345.05 -27351.97 -27344.11 -27352.47 -27341.00
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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3.3 Counterfactual studies

To illustrate the policy relevance of our empirical model and estimation strategy, we carry

out two counterfactual studies. In the first study, we hypothetically remove properties in

foreclosure, one at a time, from the data, and calculate the corresponding reduction in the

aggregate delinquency level. More specifically, we first calculate the predicted delinquency

probability for every borrower in the study region and add the probabilities up to obtain the

initial aggregate delinquency level. Then, we remove a foreclosure from the study region,

re-calculate the predicted delinquency probability for every borrower, and then add them up

to get the new aggregate delinquency level. Taking the difference between the two aggregate

delinquency levels (before and after the removal of a foreclosure) gives the reduction in the

aggregate delinquency level from removing that foreclosure. We then repeat this exercise for

every foreclosure in the study region to obtain the corresponding reduction in the aggregate

delinquency level. Table 7 reports the summary statistics of the reductions based on the

logit, NPL-1 and NPL-2 estimates in Table 3. From the table, we can see that the marginal

effect of removing a property in foreclosure tends to be understated when the spillover effect

is ignored (logit) or inconsistently estimated due to the missing data problem (NPL-1). This

exercise sheds light on the importance of correctly estimating the delinquency spillover effect

in evaluating the effectiveness of a foreclosure prevention program.

Table 7: Aggregate Delinquency Reduction from the Removal of a Neighboring Foreclosure

Mean SD Min Max
Logit 0.16 0.09 0 0.63
NPL-1 0.19 0.12 0 0.81
NPL-2 0.22 0.15 0 1.14

In the second study, we add a constant c, which can be interpreted as a mortgage payment

reduction, to the utility function (2) of all mortgage borrowers in the study region. The

dotted, dashed, and solid lines in Figure 9 represent, respectively, the predicted percentage

reduction in delinquency rates as c increases, based on the logit, NPL-1 and NPL-2 estimates
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Figure 9: Reduction in Delinquency Rates with a Utility Shock c
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in Table 3. Similar to the first study, we can see that the marginal effect of loan payment

reduction is understated when the spillover effect is ignore (logit) or inconsistently estimated

due to the missing data problem (NPL-1).

4 Conclusion

This paper proposes a modified NPL algorithm for the missing data problem in the dependent

variable of a discrete choice network model. We carry out Monte Carlo simulations to show

that the proposed estimator works well in finite samples and ignoring this missing data

issue leads to a downward bias of the estimated spillover effect. We provide an empirical

illustration of our method and conduct some counterfactual experiments to demonstrate the
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importance of consistently estimating the spillover effect in policy analysis.

Although the motivation of this paper comes from the missing data issue in home mort-

gage delinquencies, the applicability of the proposed method is not limited to this specific

setting. As the econometric model described in Section 2.1 is very general, this method can

be applied to many other data sets. For example, in the Add Health survey, every student

attending the sampled schools on the interview day was asked to identify their friends from

the school roster and complete a questionnaire (in-school survey) on basic socio-demographic

characteristics. Then, a subset of students selected from the rosters of the sampled schools

was asked to complete a longer questionnaire containing more sensitive individual and house-

hold information (in-home survey). Using the notations in Section 2.2, the students that

participated in the in-school survey can be considered as N , and those that participated

in the in-home survey can be considered as N ∗. Suppose the outcome variable of a study

is from the in-home survey, while the covariates are from the in-school survey. Then, the

researcher would encounter the same missing data problem as in this paper. When the out-

come variable is continuous, Liu et al. (2017) find that the spillover effect in a linear network

model is also likely to be underestimated neglecting this missing data problem. They pro-

pose a nonlinear least squares estimator to address this missing data problem and provide

an empirical illustration using the Add Health data. On the other hand, when the outcome

variable is binary, the modified NPL method in this paper can be adopted to consistently

estimate the spillover effect.
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Online Appendix for “Estimation of Discrete Choice Network
Models with Missing Outcome Data”

A Asymptotic Distribution of the NPL Estimator

Let Wi denote the ith row of W . When the NPL algorithm converges, the NPL estimator

θ̂ = (λ̂, β̂
′
)′ for θ = (λ, β′)′ is given by θ̂ = argmax lnL(θ; p̂), where

lnL(θ; p̂) =
∑
i∈N ∗

{yi lnF (Xiβ + λWip̂)

+(1− yi) ln[1− F (Xiβ + λWip̂)]},

and p̂ = (p̂1, · · · , p̂n)′ is the solution of the system of equations

p̂i = F (Xiβ̂ + λ̂Wip̂),

for i ∈ N .

Let f(x) = ∂F (x)/∂x. From the first order condition ∂ lnL(θ;p̂)
∂θ

|θ=θ̂ = 0, we have

∑
i∈N ∗

[yi − F (Xiβ̂ + λ̂Wip̂)]
f(Xiβ̂ + λ̂Wip̂)

F (Xiβ̂ + λ̂Wip̂)[1− F (Xiβ̂ + λ̂Wip̂)]
[Wip̂, Xi]

′ = 0.

By the Taylor expansion,

√
n∗(θ̂ − θ)

a
=

{
1

n∗

∑
i∈N ∗

f 2
i

Fi(1− Fi)
[Wip,Xi]

′([Wip,Xi] + λWi
∂p

∂θ′
)

}−1

× 1√
n∗

∑
i∈N ∗

(yi − Fi)
fi

Fi(1− Fi)
[Wip,Xi]

′,

where Fi = F (Xiβ + λWip), fi = f(Xiβ + λWip), and
a
= denotes asymptotic equivalence as

n∗ → ∞. As
∂pi
∂θ′

= fi · ([Wip,Xi] + λWi
∂p

∂θ′
),
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we have
∂p

∂θ′
= diag{fi}([Wp,X ] + λW

∂p

∂θ′
),

which implies
∂p

∂θ′
= (In − λdiag{fi}W )−1diag{fi}[Wp,X ].

Let J be a n∗ × n selector matrix such that JX collects elements in X = (X ′
1, · · · , X ′

n)
′

corresponding to i ∈ N ∗. Then,

1

n∗

∑
i∈N ∗

f 2
i

Fi(1− Fi)
[Wip,Xi]

′([Wip,Xi] + λWi
∂p

∂θ′
)

=
1

n∗

∑
i∈N ∗

{
f 2
i

Fi(1− Fi)
[Wip,Xi]

′[Wip,Xi] + λ
f 2
i

Fi(1− Fi)
[Wip,Xi]

′Wi
∂p

∂θ′

}
=

1

n∗

∑
i∈N ∗

{
f 2
i

Fi(1− Fi)
[Wip,Xi]

′[Wip,Xi]

+λ
f 2
i

Fi(1− Fi)
[Wip,Xi]

′Wi(In − λdiag{fi}W )−1diag{fi}[Wp,X ]

}
=

1

n∗ (Σ1 + λΣ2),

where

Σ1 = [Wp,X ]′J ′JΩJ ′J [Wp,X ],

Σ2 = [Wp,X ]′J ′JΩJ ′JW (In − λdiag{fi}W )−1diag{fi}[Wp,X ],

and Ω = diag{f 2
i /[Fi(1− Fi)]}. On the other hand, under standard regularity conditions,

1√
n∗

∑
i∈N ∗

(yi − Fi)
fi

Fi(1− Fi)
[Wip,Xi]

′ a∼ N(0, lim
n∗→∞

1

n∗Σ1).

Hence,
√
n∗(θ̂ − θ)

a∼ N(0, lim
n∗→∞

n∗(Σ1 + λΣ′
2)

−1Σ1(Σ1 + λΣ2)
−1).
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B Marginal Effects

In the rational expectation equilibrium, the probability pi = Pr(yi = 1) is given by

pi = F (Xiβ + λ
∑

j∈N\{i}
wijpj) = F (Xiβ + λe′iWp),

where ei denotes the ith column of the identity matrix In. Let f(x) = ∂F (x)/∂x. The

derivatives with respective to xik, the kth covariate in Xi, are

∂pi
∂xik

= fi · (βk + λe′iW
∂p

∂xik
), (8)

∂pj
∂xik

= fj · λe′jW
∂p

∂xik
, for j ̸= i, (9)

where fi = f(Xiβ + λ
∑

j∈N\{i}wijpj) and βk is the kth element of β. In matrix form,

Equations (8) and (9) can be written more compactly as

∂p

∂xik
= diag{fi}(eiβk + λW

∂p

∂xik
),

which implies
∂p

∂xik
= (In − λdiag{fi}W )−1diag{fi}eiβk. (10)

Substitution of Equation (10) into Equations (8) and (9) gives

∂pi
∂xik

= fi · [βk + λe′iW (In − λdiag{fi}W )−1diag{fi}eiβk] = (1 + λψii)fiβk, (11)

∂pj
∂xik

= fj · λe′jW (In − λdiag{fi}W )−1diag{fi}eiβk = λψjifjβk, for j ̸= i, (12)

where ψij denotes the (i, j)th element of the matrix

Ψ = W (In − λdiag{fi}W )−1diag{fi}.
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C Additional Monte Carlo Simulations

In this appendix, we conduct additional Monte Carlo simulations to investigate the robust-

ness of the proposed estimator with respect to misspecification of F (·) in Equation (1). More

specifically, we consider the situation where the true F (·) is the standard normal distribution

function in the data generating process but is misspecified as the standard logistic function in

the NPL-2 estimation. We follow the same setup as in Section 2.3. We adopt the generated

rook and queen networks and the empirical friendship network. We set Xi = (1, xi2), where

xi2 is a scalar that is generated from a uniform distribution on [−1, 1]. The true values of the

parameters are λ = 1 and β = (β1, β2)
′ = (−1, 2)′. We experiment with different sampling

rates n∗/n ∈ {0.75, 0.5, 0.25}, and assume that Xi is observable for all i ∈ N while yi is

observable only for i ∈ N ∗.

As a direct comparison between the parameters in the true model (with F (·) being

the standard normal distribution function) and in the misspecified model (with F (·) being

the standard logistic function) is not meaningful, we compare the marginal effects of xi2

in these two models. The marginal effect of xi2 on the aggregate delinquency level of all

agents in the network (i.e.,
∑n

j=1 pj) is given by
∑n

j=1 ∂pj/∂xi2, where ∂pj/∂xi2 is defined

in Equation (11) if j = i and defined in Equation (12) if j ̸= i. Then, we take an average

of the marginal effect across i to obtain the average marginal effect (AME) of xi2 given by

n−1
∑n

i=1

∑n
j=1 ∂pj/∂xi2. We calculate both the true AME, with F (·) being the standard

normal distribution function and (λ, β1, β2) being their true values, and the estimated AME

of the misspecified model, with F (·) being the standard logistic function and (λ, β1, β2) being

their estimates by the NPL-2 algorithm. We conduct 1000 simulation repetitions and obtain

the difference between the true and estimated AMEs in each repetition. We report the mean

and standard deviation (SD) of the differences between the true and estimated AMEs in

Table 8. Although F (·) in Equation (1) is misspecified, the estimated AMEs are essentially

unbiased for all cases considered, suggesting the proposed NPL-2 algorithm is robust with

respect to model misspecification. It is worth pointing out that the two counterfactual studies
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in Section 3.3 are based on marginal effects. Hence, the conclusions of those counterfactual

studies are likely to be robust with respect to misspecification of F (·).

Table 8: Monte Carlo Simulation Results on Model Misspecification

n∗/n = 0.75 n∗/n = 0.50 n∗/n = 0.25
Rook contiguity 0.046(0.031) 0.047(0.037) 0.045(0.054)
Queen contiguity 0.046(0.040) 0.047(0.049) 0.041(0.071)
Friendship network 0.026(0.032) 0.026(0.038) 0.024(0.054)

Mean(SD)
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