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Thesis directed by Prof. John Hauser

The pendulum provides a seemingly inexhaustible source of practical applications and inter-

esting problems which have motivated research in a variety of disciplines. In this thesis, we study

equations that described a driven pendulum with odd-periodic driving. The equations also de-

scribe the under-actuated, double pendulum system called the pendubot. Techniques for trajectory

exploration are developed.

For the inverted pendulum, we first wrote the problem as a two point boundary value problem

with Dirichlet boundary conditions. Then, we develop an equivalent linear operator that combines

a Nemitski operator (or superposition operator) with the linear operator for the unstable harmonic

oscillator. By exploring the properties of the Green’s function for the unstable harmonic oscillator

with Dirichlet boundary conditions, we developed bounds on various norms that prove useful for

determining which parameter values will satisfy invariance and contraction conditions. With a

direct application of the Schauder fixed point theorem, we showed that our family of equations

representing an inverted pendulum always possessed an odd-periodic solution. Using the Banach

fixed point theorem we showed that there is a unique solution within an invariant region of the

space of possible solution curves. When there is a unique solution, successive approximations can

be used to compute the solution trajectory. To illustrate the power and application of these ideas,

we apply them to a pendubot with the inner arm moving at a constant velocity.

For non-inverted trajectories of the pendubot, we presented a necessary condition for tra-

jectories to exist with general periodic forcing. For odd-periodic periodic driving functions this

condition is always satisfied. For a driving function of A sin(ωt), we found multiple solutions for

the outer link. With the trajectories in hand, we demonstrated through simulation and/or physical

implementation, the usefulness of maneuver regulation for providing orbital stabilization.



Dedication

I would like to dedicate this thesis to my loving family.



v

Acknowledgements

I would like to thank my advisor, John Hauser, for his support and patience over the last

several years. He was always willing to discuss interesting problems and ideas. He has taught me

more than I could have hoped for, and without his guidance and support this thesis would not have

been possible.



vi

Contents

Chapter

1 Introduction 1

1.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical Models 7

2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Parameter ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Input Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Linear Controllability Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Physical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Practical System Brake (LgV Control) . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2 LgV Pendubot Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Inverted Trajectory Exploration 23

3.1 Constant Velocity Pendubot Equation . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 General Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Trajectory Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



vii

3.3.1 Operator Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Green’s Functions for Unstable Oscillators . . . . . . . . . . . . . . . . . 27

3.3.3 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Contraction & Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Specialization to the Constant Velocity Pendubot . . . . . . . . . . . . . . . . . . 41

3.4.1 Torque Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Contraction Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Regions of Unique Solutions Revisited . . . . . . . . . . . . . . . . . . . 54

3.6 Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Eigenvalues of DN β
α (ϕα(·)) . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Eigenvalues and Conjugate Points . . . . . . . . . . . . . . . . . . . . . . 62

3.6.3 Approximating the Eigenvalues of DNα(ϕα(·)) . . . . . . . . . . . . . . . 62

3.7 Example of a Nonconstant Inner Arm Profile . . . . . . . . . . . . . . . . . . . . 67

4 Non-Inverted Trajectory Exploration 72

4.1 Driven Hanging Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Nonlinear Least Squares Trajectory Exploration . . . . . . . . . . . . . . . . . . . 75

4.4 Trajectory Exploration Odd-Periodic Driving Function . . . . . . . . . . . . . . . 77

5 Maneuver Regulation 81

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Longitudinal and transverse coordinates . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Transverse Form of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Transverse Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Driven Pendulum Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Maneuver Regulation Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii

5.7 Maneuver Regulation about Non-Inverted Trajectories . . . . . . . . . . . . . . . 88

5.7.1 Maneuver Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.2 One Transverse Coordinate System . . . . . . . . . . . . . . . . . . . . . 89

5.7.3 Regulation of the Transverse Coordinates . . . . . . . . . . . . . . . . . . 93

5.8 Maneuver Regulation about Inverted Trajectories . . . . . . . . . . . . . . . . . . 98

6 Conclusions 103

Bibliography 106



ix

Tables

Table

2.1 Table of identified pendubot parameters ranges for various inputs. . . . . . . . . . 13



x

Figures

Figure

2.1 Pendubot with inverted outer link. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Plot of an exemplary input torque used for parameter identification. . . . . . . . . 14

2.3 Plot of θ resulting from the exemplary input torque shown in Figure 2.2. . . . . . . 14

2.4 Plot of ϕ resulting from the exemplary input torque shown in in Figure 2.2. . . . . 15

2.5 Plot of the total energy of the system computed from the angular velocity of θ

and the input torque, τ , along with and the estimated total energy based on the

identified parameters. The total energy computed from the measured angles agree

very closely with the estimated total energy computed using the identified parameters. 15

2.6 The experimental setup for the lab at CU includes a pendubot with an inner link

that is approximately six inches and the outer link is approximately nine inches.

Only the inner link is connected to a motor, while both links include a quadrature

encoder for measuring position with a resolution of 2π/5000. Control designs

are implemented using Simulink and a dSpace 1103 PPC controller board with a

sampling rate 0f 400Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Chapter 1

Introduction

The pendubot is a two-link planar robot with an actuator only on a fixed pivot. The first link

is coupled to the fixed pivot and the second link is connected to the first link opposite the fixed pivot

creating the double pendulum system. This system provides a theoretical and experimental setting

where aggressive maneuvering, including situations where the pendulum pivot experiences highly

variable accelerations, can be explored. The dynamics of the pendubot are closely related to many

interesting problems such as the pendulum and cart, a motorcycle, a rocket with vectoring thrust,

as well as gaits of robots. The pendubot includes both kinematic and controllability singularities

that make the system even more interesting. In addition to modelling uncertainties, measurements

of the position and estimates of the velocity at best provide noise-corrupted observations of the

system states.

We are particularly interested in understanding how to effectively find and implement aggres-

sive maneuvers in view of uncertainties, disturbances, kinematic singularities, and controllability

issues. The dynamics of the pendubot are simple enough to allow for thorough analysis, and com-

plicated enough to provide for some interesting nonlinear behaviors. Moreover, it is not hard to see

that the pendubot has four equilibrium points (i.e., when the inner arm is horizontal and the outer

arm is vertical) that are not linearly controllable.

Trajectory tracking strategies can be ineffective in tracking aggressive maneuvers of the pen-

dubot. In particular, for many interesting trajectories, such as aggressive periodic orbits, a local

degradation in tracking can impact the global performance. Consequently, the practical benefit of
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these designs leaves a lot to be desired. For example, the ineffectiveness can be seen when the con-

trollers using these designs are implemented on the physical system as the controllers tend to lack

desirable robustness properties. Maneuver regulation provides one scheme for providing stable

path following. In particular, maneuver regulation decouples the time index of the motion along

the path while regulating the lateral dynamics. This control strategy has proven effective in situa-

tions where robustness issues have prevented the use of traditional trajectory tracking controllers.

We divide our study of the pendubot into the following three major parts

(1) Trajectory Exploration;

(2) Maneuver Regulation Design; and

(3) Simulations/Physical Implementation.

1.1 Literature Overview

The pendulum provides what seems to be an inexhaustible source of practical applications

and interesting problems which have motivated research in a variety of disciplines. For example,

the paper of Mawhin [1] provides an interesting account of how the pendulum has played an impor-

tant role in the development of nonlinear analysis. The inverted pendulum is a classic experiment

that has also been used in control laboratories for several decades to illustrate a variety of concepts

in both linear and nonlinear control theory. One finds experiments ranging from the standard in-

verted pendulum on a cart (or a linear track), to the curved horizontal track (Furuta) [2], to the

vertically curved track (pendubot) [3], not mention other systems such as the acrobot [4]. Not only

is the inverted pendulum one of the simplest unstable nonlinear systems imaginable, inverted (or

nearly inverted) configurations of the pendulum also provide a simple model for rocket dynamics.

Surprisingly, the dynamics of the inverted pendulum continues to appear in numerous other

systems of interest. The inverted pendulum driven by a lateral acceleration is clearly present in

the dynamic balance of a skier racing down the slope. In much the same way, simple models for

exploring bicycle and motorcycle dynamics include the inverted pendulum as a key subsystem,
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imposing strong constraints on the system performance—see, e.g., [5, 6], [7], and [8]. These

dynamics also show up as internal dynamics in aircraft flight dynamics [11].

Exploration of the driven inverted pendulum with arbitrary bounded lateral acceleration can

be found in [12]. In that work, a contraction mapping was used to determine where the solu-

tions lived and also to develop a successive approximations method to find the solution. Similar

techniques have been developed by Devasia and Paden [14]. The conditions developed in these

previous works are not satisfied for the pendubot with substantial constant inner arm velocity.

A variety of papers have been written discussing swing-up control of the pendubot. Exam-

ples include partial feedback linearization techniques [15], an impulse-momentum approach [16],

and energy-based approaches [17]-[18]. In [19], a fuzzy logic control strategy is presented for

keeping the inner arm and outer arm inverted and with a maximum deviation of approximately

.25 rad. [20] uses virtual constraints for their choice of motion planning and for the generation of

oscillatory or periodic motions of the not actuated link of the pendubot via output feedback control.

In contrast to these references, we are interested in finding and understanding the types

of aggressive trajectories that exist for the pendubot. In particular, we develop techniques for

finding periodic trajectories and providing orbital stabilization for aggressive periodic orbits. For

the purpose of aggressive trajectory exploration, a logical beginning is with periodic pendubot

motions where the outer link is vertical at the top and bottom of its motion. This leads us to

consider odd-periodic motions on the pivot of the inverted pendulum and to develop techniques

for estimating regions in Banach space where aggressive odd-periodic trajectories of the inverted

pendulum exist.

There are a variety of control strategies that can be potentially used to implement aggressive

trajectories of the pendubot. Many nonlinear analysis problems of engineering interest can be re-

duced to a problem of tracking a nominal trajectory. Be it an athletic maneuver, a car changing

lanes on an automated highway, an airplane taking a turn, or an idling engine going through a

sudden load change, the designer has in mind an appropriate path to be complete in a finite prede-

termined time and built his control system accordingly. Moreover, many control system objectives
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can be obtained by providing a stable motion along a path.

Maneuver regulation provides one scheme for providing stable path following. In particular,

maneuver regulation decouples the time index of the motion along the path while regulating the

lateral dynamics. (see, e.g., [21] and [22]) In Chapter 5, a more detailed background of maneuver

regulation is provided before we finally demonstrate that this type of control strategy can prove

effective in implementing aggressive maneuvers of the pendubot.

1.2 Motivation and Challenges

Trajectory exploration, maneuver regulation, and physical implementation each have in-

dividual challenges that have to be overcome. With regard to trajectory exploration, aggres-

sive trajectories of the pendubot can result in the outer arm being pushed and pulled by the in-

ner arm. For example, for a constant inner arm velocity it is not hard to see that when that

T < 2π/8.11 ≈ 0.774sec results in the outer arm being pulled down and pushed up. Most of

the traditional maneuvers found in the literature of systems, such as the pendulum and cart, do not

result in the pivot pulling down on the pendulum. Instead, the pivot on the pendulum is pushing up

and gravity will be pulling the link down. With aggressive maneuvers on the pendubot, part of the

maneuver can result in the pendulum being thrown up during part of the trajectory. This results in

the pivot pulling down on the pendulum and the effects of gravity disappearing.

As a result, it was not clear that trajectories always exist. In fact, we had difficulty finding

trajectories when the outer arm began pulling the inner arm. We had used a least squares approach

to successfully find trajectories in the hanging down configurations and slower moving inverted

maneuvers. However, as the maneuvers became more aggressive, our least squares approached

proved unsuccessful. This led to the exploration the existence and uniqueness of inverted trajecto-

ries.

As described in more detail below, we began by developing a general form of the inverted

pendulum driven by odd periodic and considered the equivalent two point boundary value problem.

After development of a Green’s function we used the Schauder fixed point theorem to show that
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the inverted pendulum with an odd periodic driving acceleration at the pivot always possesses an

odd periodic solution. Then, we were able to show that it is sometimes possible to construct a

contraction mapping so that the Banach fixed point theorem can be used to ensure that there is a

unique solution within an invariant region of the space of possible solution curves. Now we know

that trajectories always exist. Moreover, these techniques provide estimates on where the solutions

lie. This allows us to more confidently use boundary value solvers and continuation methods to

find solution trajectories.

For designing controllers and for successful implementation, the system presents quite a few

challenges. The pendubot is an underactuated, non-minimum phase, nonlinear system, without

direct control of the outer arm. Due to the non-minimum phase, the inner arm will sometimes

need to go in the “wrong” direction. In addition, the system also has kinematic singularities (e.g.,

inner arm at ninety degrees) which limits our ability to execute nonminimum phase activities.

The kinematic singularity results in an effective loss of controllability because the arm can only

be moved up and down and not left and right. This is one reason why the controller can have a

difficult time when the inner arm is at ninety degrees. We ultimately demonstrate that maneuver

regulation can be an effective strategy for this system.

1.3 Organization

This document is organized as follows:

• This chapter discusses the motivation as well as the research goals and contributions of

this dissertation.

• Chapter 2 provides a derivation of a mathematical model of the pendubot is presented.

Then, some fundamental limitations of the pendubot are also discussed.

• Chapter 3 presents an exploration of inverted maneuvers of the pendubot. Odd periodic

orbits are closely examined by rewriting and solving a two point boundary value problem.
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• Chapter 4 presents an exploration of maneuvers of the pendubot with the outer link hang-

ing down.

• Chapter 5 presents an overview and background of maneuver regulation of nonlinear

systems. It includes a review of the fundamental definitions and theorems useful to under-

stand the maneuver regulation controllers. Then, physical implementation of trajectories

with the outer link hanging down are discussed followed by simulations for a maneuver

regulation controller with an inverted outer link.

• Chapter 6 presents the conclusions based on the above work and discusses future avenues

of research.



Chapter 2

Mathematical Models

As with any electro-mechanical system, developing one or more models to understand the

behaviors of the system is essential for trajectory exploration, practical control design, and simu-

lation. This chapter starts with the development of a model of the pendubot. We then estimate the

parameters for our physical system. An input transformation is presented to write the outer link

dynamics which are used later for trajectory exploration. Finally, we discuss some limitations of

the physical system including the kinematic and controllability singularities found when the inner

arm is horizontal and the outer arm is vertical.

2.1 Equations of Motion

The pendubot as illustrated in Figure 2.1 consists of two links - an inner link and an outer

link. A torque can be applied to the inner link via a stationary pivot point providing 360o of rotation

for the inner link. The outer link is connected to the end of the inner link opposite to the stationary

pivot point. The outer link can rotate around this moving pivot point in the same plane of motion

as the inner link. There is no actuator associated with the moving pivot point to supply a torque to

control the outer link. As such, the motion of the outer link is controlled through the movement of

the inner link.

For the pendubot in our lab at CU the inner link is approximately six inches and the outer

link is approximately nine inches. However different versions of the pendubot exist or can be built.

See [10] and [15], for example, where the inner link was approximately eight inches and the outer
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Figure 2.1: Pendubot with inverted outer link.

link was approximately fourteen inches. With this description of the system, we now derive the

equations of motion for the pendubot.

For the inner link, let m1 be the total mass, l1 be the length, lc1 be the distance to the center

of mass, and I1 be the moment of inertia of the inner link about its centroid. Similarly, with regard

to the outer link, let m2 be the total mass, l2 be the length, lc2 be the distance to the center of mass

of the outer link, and I2 be the moment of inertia of the outer link about its centroid. Also, let g be

the acceleration of gravity.

The equations of motion can easily be derived using the following Lagrangian dynamics

equations:

L = T − V

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τ

where T is the kinetic energy and V is the potential energy of the system.

The first step in deriving the equations of motion is to write the position components of the
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center of masses of links one and two. Doing this one gets

x1 = lc1 sin(θ)

y1 = −lc1 cos(θ) = h1(θ)

x2 = l1 sin(θ)− lc2 sin(ϕ)

y2 = −l1 cos(θ) + lc2 cos(ϕ) = h2(θ, ϕ)

In order to get the cartesian velocity components, simply take the derivative to get the following

ẋ1 = lc1 cos(θ)θ̇

ẏ1 = lc1 sin(θ)θ̇

ẋ2 = l1 cos(θ)θ̇ − lc2 cos(ϕ)ϕ̇

ẏ2 = l1 sin(θ)θ̇ − lc2 sin(ϕ)ϕ̇

This gives a total velocity of:

V 2
1 = ẋ2

1 + ẏ2
1

= l2c1θ̇
2

V 2
2 = ẋ2

2 + ẏ2
2

= l21θ̇
2 + l2c2ϕ̇

2 − 2l1lc2θ̇ϕ̇ (cos θ cosϕ+ sin θ sinϕ)

= l21θ̇
2 − 2l1lc2θ̇ϕ̇ cos(ϕ− θ) + l2c2ϕ̇

2

The equations for the kinetic energy, T , and the potential energy, V , can then easily be written as

T =
1

2
I1θ̇

2 +
1

2
I2ϕ̇

2 +
1

2
m1V

2
1 +

1

2
m2V

2
2

=
1

2

 θ̇

ϕ̇


T

M(θ, ϕ)

 θ̇

ϕ̇


V = −m1glc1 cos θ +m2g [−l1 cos θ + lc2 cosϕ]

where

M(θ, ϕ) =

 I1 +m1l
2
c1 +m2l

2
1 −m2l1lc2 cos(ϕ− θ)

−m2l1lc2 cos(ϕ− θ) I2 +m2l
2
c2


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Giving

L = T − V =
1

2
θ̇2d11 +

1

2
ϕ̇2d22 + θ̇ϕ̇d12 +m1glc1 cos θ −m2g [−l1 cos θ + lc2 cosϕ]

where
d11 = I1 +m1l

2
c1 +m2l

2
1

d12 = −m2l1lc2 cos(ϕ− θ)

d21 = d12

d22 = I2 +m2l
2
c2

So,

∂L

∂θ
= −φ1 − θ̇ϕ̇h

∂L

∂θ̇
= d11θ̇ + ϕ̇d12

d

dt

∂L

∂θ̇
= d11θ̈ + θ̇ḋ11 + d12ϕ̈+ ϕ̇ḋ12

∂L

∂ϕ
= −φ2 + θ̇ϕ̇h

∂L

∂ϕ̇
= d22ϕ̇+ θ̇d12

d

dt

∂L

∂ϕ̇
= d22ϕ̈+ ϕ̇ḋ22 + d12θ̈ + θ̇ḋ12

d

dt

∂L

∂θ̇
− ∂L

∂θ̇
= d11θ̈ + d21θ̈ + φ1 + hθ̇ϕ̇ = τ

where
h = m2l1lc2 sin(ϕ− θ)

φ1 = (m1glc1 +m2gl1) sin θ

φ2 = −m2glc2 sinϕ

The final equations of motion can be written in the following standard matrix form

M(θ, ϕ)

 θ̈

ϕ̈

+ C(θ, ϕ, θ̇, ϕ̇) +G(θ, ϕ) =

 τ

0


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where

M(θ, ϕ) =

 d11 d12

d21 d22

 , C(θ, ϕ, θ̇, ϕ̇) =

 hϕ̇2

−hθ̇2

 , G(θ, ϕ) =

 φ1

φ2



2.2 Parameter ID

Identification of nonlinear systems can be generally divided into model-based techniques

and model-less, or black-box techniques. Model-based techniques assume some sort of a priori

knowledge about the plant structure and dynamics, while black-box approaches are aimed at plants

where little or nothing is known. In this case, we have just developed a model for the pendubot

and need to identify the parameters in such a manner that the model response best matches the

observed input-output data. There are many options for identifying the parameters for the model

we developed. For example, [25] provides an optimization based approach. With this approach,

given a choice of parameters ρ and a set of experimental data, a stand optimal control problem

is formulated to minimize (in an L2 sense) the difference between the model response to be the

trajectory (x(·), u(·)) of the system model ẋ = f(x, u, ρ) closest to the given experimental data

(xd(·), ud(·)). We follow [3] and [26] to identify various parameters based on an energy theorem

scheme and using a least squares method to estimate the parameters.

For rotational systems, the power, P (t), is related to the torque, τ , and the angular velocity,

ω, and can be expressed as

P (t) = ω τ

The energy theorem states that the work of forces applied to a system is equal to the change of the

total energy of the system. For the pendubot, this can be mathematically written as∫ t2

t1

θ̇T τ dt = E(t2)− E(t1)



12

where the total energy can be written as

E =
1

2
µ1θ̇

2 − µ3ϕ̇θ̇ cos(ϕ− θ) +
1

2
µ2ϕ̇

2 − µ4g cos θ + µ5g cosϕ

with
µ1 = m1l

2
c1 +m2l

2
1 + I1 = d11

µ2 = m2l
2
c2 + I2 = d22

µ3 = m2l1lc2

µ4 = m1lc1 +m2l1

µ5 = m2lc2

The energy is a linear combination of these parameters and can be written as

E =

[
1
2
θ̇ 1

2
ϕ̇ −θ̇ϕ̇ cos(ϕ− θ) −g cos θ g cosϕ

]


µ1

µ2

µ3

µ4

µ5


This allows us to use a least squares estimation method to identify these parameters giving

M(θ, ϕ)

 θ̈

ϕ̈

+ C(θ, ϕ, θ̇, ϕ̇) +G(θ, ϕ) =

 τ

0


where

M(θ, ϕ) =

 µ1 −µ3 cos(ϕ−θ)

−µ3 cos(ϕ−θ) µ2



C(θ, ϕ, θ̇, ϕ̇) =

 µ3 ϕ̇
2 sin(ϕ−θ)

−µ3 θ̇
2 sin(ϕ−θ)



G(θ, ϕ) =

 µ4 g sin θ

−µ5 g sinϕ


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Table 2.1: Table of identified pendubot parameters ranges for various inputs.

µ Low High Selected
µ1 0.01254052002565 0.01356808738595 0.01302808113329
µ2 0.00425706510419 0.00468327083910 0.00433245959712
µ3 0.00367479281471 0.00399861601008 0.00374775571049
µ4 0.08808765624407 0.08971131877057 0.08948194136085
µ5 0.02469397236154 0.02791766074388 0.02516833107165

To begin, we first collected several sets of data with various input torques from the pendubot.

The torques generated step responses on the inner arm, sinusoidal torques of various frequencies

and magnitudes, and a free fall from different initial configurations. All of these data sets contain

both useful and irrelevant information, i.e., the signal and the noise. The pendubot has only two

encoders to measure the angles of the inner link and the outer link with a resolution of 0.072

degrees. We used a non-causal filter to estimate the velocities and to filter the measured angles.

Figures 2.2 - 2.4 illustrate an example of one of the observed input-output data sets.

Using the observed input-output data sets, we identified µ = (0.01303, 0.00433, 0.00375,

0.08948, 0.02517)T for our system. Table 2.1 shows the variation in the parameters for the data

sets we collected along with our selected parameters. We found the identified parameters we

selected generally allowed total energy of the model to match the total energy of the observed data

on the order of 10−3. Figure 2.5 is a plot of the total energy of the system computed from the

angular velocity of θ and the input torque, τ , along with and the estimated total energy based on

the identified parameters.
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Figure 2.2: Plot of an exemplary input torque used for parameter identification.
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Figure 2.3: Plot of θ resulting from the exemplary input torque shown in Figure 2.2.
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Figure 2.4: Plot of ϕ resulting from the exemplary input torque shown in in Figure 2.2.
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Figure 2.5: Plot of the total energy of the system computed from the angular velocity of θ and the
input torque, τ , along with and the estimated total energy based on the identified parameters. The
total energy computed from the measured angles agree very closely with the estimated total energy
computed using the identified parameters.
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2.3 Input Transformation

The full equations can be written as µ1 −µ3 cos(ϕ−θ)

−µ3 cos(ϕ−θ) µ2


 θ̈

ϕ̈

+

 µ3 ϕ̇
2 sin(ϕ−θ)

−µ3 θ̇
2 sin(ϕ−θ)

+

 µ4 g sin θ

−µ5 g sinϕ

 =

 τ

0


To decouple the accelerations, we multiply on the left by the adjugate matrix (from Cramer’s rule)

to obtain

(µ1µ2 − µ2
3 cos2(ϕ−θ)) θ̈ = (µ2

3 θ̇
2 cos(ϕ−θ)− µ2µ3 ϕ̇

2) sin(ϕ−θ)

+ µ3µ5 g sinϕ cos(ϕ−θ)− µ2µ4 g sin θ + µ2 τ

(µ1µ2 − µ2
3 cos2(ϕ−θ)) ϕ̈ = (µ1µ3 θ̇

2 − µ2
3 ϕ̇

2 cos(ϕ−θ)) sin(ϕ−θ)

+ µ1µ5 g sinϕ− µ3µ4 g sin θ cos(ϕ−θ) + µ3 cos(ϕ−θ) τ

Feedback transformations may be used for a number of theoretical and practical purposes. From

a theoretical point of view, the simplest model is obtained by taking the control input u to be the

inner arm acceleration θ̈. Indeed, the feedback transformation

τ = µ4 g sin θ − (µ3µ5/µ2) g sinϕ cos(ϕ−θ) + (µ1 − (µ2
3/µ2) cos2(ϕ−θ))u

+(µ3ϕ̇
2 − (µ2

3/µ2)θ̇2 cos(ϕ−θ)) sin(ϕ−θ)

can be used to transform the system into

θ̈ = u

ϕ̈ = (µ5g/µ2) sinϕ+ (µ3/µ2) (θ̇2 sin(ϕ−θ) + u cos(ϕ−θ))

= g/l sinϕ+ (l1/l) (θ̇2 sin(ϕ−θ) + u cos(ϕ−θ))

where l1 = µ3/µ5 is the length of the inner link and l = µ2/µ5 is the inertial length of the outer

link. This form can also be obtained by simply using the second equation of the Lagrangian form

above with θ̈ = u.
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As a result of the feedback transformation above, the outer link dynamics can be written as

ϕ̈ =
g

l
sinϕ+

l1
l
θ̇2(t) sin (ϕ−θ(t))+

l1
l
θ̈(t) cos (ϕ−θ(t)) (2.1)

Here, the C2 inner arm trajectory θ(·) may be chosen arbitrarily and imposed by an appropriate

(state dependent) choice of τ(·). We use this time-varying nonlinear equation for trajectory explo-

ration in Chapter 3. Also, we immediately see that when (ϕ−θ(t)) = ±π/2 that no control action

can be directly applied.

From an experimental point of view, the above feedback transformation is not practical since

the velocities ϕ̇ and θ̇ cannot be directly measured. However, since the angles ϕ and θ are accu-

rately measured (using optical encoders), we can use the position dependent portion

τ = µ4 g sin θ − (µ3µ5/µ2) g sinϕ cos(ϕ−θ) + (µ1 − (µ2
3/µ2) cos2(ϕ−θ))u

to compensate for gravity to obtain

θ̈ = u+ sin(ϕ−θ)[−µ2a2(ϕ−θ)ϕ̇2 + a1(ϕ−θ)θ̇2]

ϕ̈ = (g/l) sinϕ+ (l1/l) cos(ϕ−θ) u+ sin(ϕ−θ)[−a1(ϕ−θ)ϕ̇2 + µ1a2(ϕ−θ)θ̇2]

where a2(ϕ−θ) = µ3/(µ1µ2 − µ2
3 cos2(ϕ−θ)) and a1(ϕ−θ) = µ3 cos(ϕ−θ)a2(ϕ−θ).

2.4 Linear Controllability Singularity

The pendubot has a continuum of equilibrium points with the outer arm in a vertical position.

The linearization around four of these equilibrium points (i.e., for the inner link horizontal and the

outer link vertical) result in a linear controllability singularity. The dynamics for the pendubot can

be written as  θ̈

ϕ̈

 = M−1(θ, ϕ)


 τ

0

− C(θ, ϕ, θ̇, ϕ̇)−G(θ, ϕ)


Let x = (θ, θ̇, ϕ, ϕ̇) and linearize ẋ = f(x, u) about x0 and u0 to get a linear system of the form

ẋ = Ax+Bu

y = Cx+Du
(2.2)
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with state x ∈ Rn, u ∈ R.

Definition 2.4.1. A linear system is controllable if for any x0, xf ∈ Rn and any time T > 0 there

exists an input u : [0, T ] ∈ R such that the solution of the dynamics starting from x(0) = x0 and

applying input u(·) gives x(T ) = xf .

Note that x0 and xf do not have to be equilibrium points. However, when xf is not an

equilibrium point, the system will not stay at xf after time T. The following theorem provides a

simple test for controllability.

Theorem 1. A linear system is controllable if and only if the n× n controllability matrix

[B AB A2B ... An−1B]

has full rank.

As an example, the linearization of ẋ = f(x, u) about x0 = (π/2, 0, 0, 0), τ = µ4g gives

A =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 µ5g/µ2 0


B =



0

1/µ1

0

0


The controllability matrix, C = [B AB A2B A3B] has a rank of 2. In addition, the con-

trollability matrix becomes ill-conditioned as the equilibrium points approach one of theses four

points where linear controllability is lost. However, the failure to find controllability from the

linearization does not allow us to conclude that the nonlinear system is not controllable.

2.5 Controllability

Consider the nonlinear system

ẋ = f(x, u)

y = g(x, u)
(2.3)

with state x ∈ Rn, u ∈ R.
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Definition 2.5.1. A nonlinear system is controllable if for any x0, xf ∈ Rn and any time T > 0

there exists an input u : [0, T ] ∈ R such that the solution of the dynamics starting from x(0) = x0

and applying input u(·) gives x(T ) = xf .

Many nonlinear controllability results arise from the consideration of the controllability of

the time-varying linearization about a trajectory of the nonlinear system

(L) ż = A(t)z +B(t)v, A(t), B(t) ∈ C∞

Define A : C(·) 7→ Ċ(·)− A(·)C(·)

Theorem 2. If span{B(·) (AB))(·) (A2B))(·) · ··}(t0) = Rn, then (L) is controllable on

[t0, t0 + δ] for every δ > 0.

To use this test on a nonlinear system at a point (NOT an equilibrium) on a trajectory, it is

helpful for the control to be constant on [t0, t0 + ε], avoiding the differentiating of u(·). For the

pendubot at θ = π/2 and ϕ = 0 configuration, we are not able to conclude controllability nor a

lack of controllability.

2.6 Physical Setup

Figure 2.6 is a block diagram illustrating our experimental setup. To control the pendubot, we

used a dSpace 1103 PPC controller board with the sampling rate set at 400Hz. The implementation

of most of our control laws required velocity feedback. The pendubot currently is not equipped

with a sensor, e.g., a tachometer, for measuring the velocity of the inner and outer links. Instead,

the pendubot only has two rotary encoders for the measurement of the position of the inner and

outer links. These encoders have a resolution of 2π/5000 = 0.072 degrees.

The pendubot is a nonlinear system and therefore the separation principle will not apply

in general. That is, an observer that asymptotically reconstructs the state of the pendubot will

not guarantee that a given stabilizing state-feedback controller will remain stable when using the



20

estimated state instead of the actual state. To estimate the velocity we used the following dirty

differentiator:

V (s) =
50s

s+ 50

This adds time delay to the velocity estimation and additional dynamics which can be included

within the simulations.

                 PC

D/A

Encoder 
Interface

PWM
Servo 

Amplifier
Motor

dSpace 
1103

D/A         Encoder 2

         Encoder 1

Figure 2.6: The experimental setup for the lab at CU includes a pendubot with an inner link that
is approximately six inches and the outer link is approximately nine inches. Only the inner link is
connected to a motor, while both links include a quadrature encoder for measuring position with a
resolution of 2π/5000. Control designs are implemented using Simulink and a dSpace 1103 PPC
controller board with a sampling rate 0f 400Hz.

2.7 Practical System Brake (LgV Control)

The pendubot in the inverted position is unstable system and can quickly pump unwanted

amounts of energy into the system that could be potentially damaging. In this section, we design a

braking mechanism which will dampen the energy out of the system, as quickly as possible, when

either of the pendubot links exceed a predetermined threshold. To this end, we have developed

an LgV controller which will be activated when either of the links exceed some predetermined

velocity.
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2.7.1 General Theory

Given a function h : Rn → R and a vector field f : Rn → R the Lie derivative of h with

respect to f as:

Lfh(x) ≡ Dh(x) · f(x) =
∑
i

∂h(x)

∂xi
· fi(x)

Assume we had the following affine single input system

ẋ = f(x) + g(x)u

In this case, we would like to dampen the energy, h, out of the system. So,

h(x) = T + V

ḣ(x, u) = Dh(x) ẋ

= Lfh(x) + Lgh(x) u

= Dh(x) · f(x) + Lgh(x) u

= 0 + Lgh(x) u (since energy is conserved)

= Lgh(x) u

The LgV control is given by

u = −k Lgh(x)

which gives

d

dt
{h(x(t))} = −k (Lgh(x))2 ≤ 0

Note that u is evaluated and applied pointwise.
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2.7.2 LgV Pendubot Design

For the pendubot, the total energy can be written as

h = T + V =
1

2
q̇TM(q)q̇ + V (q)

where q = (θ, ϕ). The time derivative of the energy can be written as

d

dt
{h(x(t)} = q̇TM(q)q̈ +

∑
i

∂

∂qi

{
1

2
q̇TM(q)q̇ + V (q)

}
q̇i

(conservation of energy then gives)

= q̇TM(q)M−1(q)τ

= q̇T τ (which is power)

Therefore,

Lgh(x) = q̇T τ

= q̇1

u = −kp Lgh(x)

= −kpq̇1 = −kpθ̇

After a little experimentation, we found that kp = 0.5 to be an effective value for damping the

energy out of our system. In order to determine when to apply the brake we developed a set of

simple switching logic which had values that were typically dependent on the desired maneuver.

For example, when either link exceeds some predetermined velocity (e.g., based on the maximum

velocities of the desired trajectory), then switching logic can be used to switch to this controller to

dampen out the energy of the system.



Chapter 3

Inverted Trajectory Exploration

This chapter starts with the development of a general form of the inverted pendulum driven

by odd-periodic forcing. Then, we rewrite the problem as a two point boundary value problem and

develop a Green’s function for an unstable harmonic oscillator with Dirichlet boundary conditions.

Using the Schauder fixed point theorem, we then show that the inverted pendulum with an odd

periodic driving acceleration at the pivot always possesses an odd periodic solution. We also show

it is sometimes possible to construct contraction mapping so that the Banach fixed point theorem

can be used to ensure that there is a unique solution within an invariant region of the space of

possible solution curves before searching for trajectories (e.g. using bvp4c and continuation).

3.1 Constant Velocity Pendubot Equation

As discussed in section 2.3, the outer link dynamics can be written as

ϕ̈ =
g

l
sinϕ+

l1
l
θ̇2(t) sin (ϕ−θ(t))+

l1
l
θ̈(t) cos (ϕ−θ(t))

where l1 = µ3/µ5 is the length of the inner link and l = µ2/µ5 is the inertial length of the outer link.

Here, the C2 inner arm trajectory θ(·) may be chosen arbitrarily and imposed by an appropriate

(state dependent) choice of τ(·). The motion θ(·) is odd-periodic if θ(t) is odd and there is a T > 0

such that θ(t + T ) = θ(t) mod 2π for all t, e.g., θ(t + T ) = θ(t) + 2π for all t. In the case of

constant inner arm velocity θ̇ = 2π/T , we have

ϕ̈ =
g

l
sinϕ+

l1
l

(
2π

T
)2 sin (ϕ−(2π/T )t) .
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Rescaling time, we obtain the normalized, period 2, constant inner arm speed pendubot dynamics

ϕ̈ = α2 sinϕ+ β sin (ϕ− πt) (3.1)

where α =
√
g/l T/2 and β = π2 l1/l. We will refer to the system (3.1) as the constant velocity

pendubot.

3.2 General Equation

The general form of the (unnormalized) inverted pendulum driven by odd periodic forcing is

given by

lϕ̈ = g sinϕ+ ay(t) sinϕ+ ax(t) cosϕ (3.2)

where the continuous acceleration functions, ax(t) and ay(t), are periodic (with common period

T ) and odd and even, respectively. Defining a(t) = (a2
x(t) + a2

y(t))
1/2, we see that (3.2) is of the

form

lϕ̈ = g sinϕ+ a(t) sin(ϕ− ψ(t)) (3.3)

where ψ(t) satisfies ax(t) = −a(t) sinψ(t) and ay(t) = a(t) cosψ(t). We will restrict our attention

to the case where ψ(t) can be chosen to be continuous which occurs, e.g., when a(t) > 0 for all t.

Clearly, a(t) and ψ(t) are even and odd periodic, respectively, in the sense described above.

Rescaling time so that the system has period 2, we see that the inverted pendulum with odd

period forcing has the form

ϕ̈ = α2 sinϕ+ β η(t) sin(ϕ− θ(t)) (3.4)

where η(t) and θ(t) are continuous functions that are even and (generalized) odd periodic of period

2, respectively, |η(t)| ≤ 1 for t ∈ [0, 1], and α =
√
g/l T/2. For the sake of brevity, we will write

the general form as

ϕ̈ = α2 sinϕ+ β f(ϕ, t) (3.5)

where the function f(ϕ, t) = η(t) sin(ϕ− θ(t)) is
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• continuously differentiable in ϕ and continuous in t,

• odd in both arguments: f(−ϕ,−t) = −f(ϕ, t),

• periodic in t with period 2: f(ϕ, t+ 2) = f(ϕ, t),

• 2π-cyclic in ϕ: f(ϕ+ 2π, t) = f(ϕ, t),

• normalized: |f(ϕ, t)| ≤ 1 for all ϕ and t,

• bounded derivative: | ∂f
∂ϕ

(ϕ, t)| ≤ 1 for all ϕ and t.

Note that (4.4) and hence, (3.5), describes a general driven inverted pendulum and not just the

pendubot. Moreover, equation (3.5) parameterizes a family of equations based on two variables,

α and β which covers a very general acceleration profile. Important properties of the system

are thus characterized by the two numbers: α and β. For the pendubot in our lab at CU the

inner link is approximately six inches and the outer link is approximately nine inches. However

different versions of the pendubot exist or can be built. See [15], for example, where the inner

link was approximately eight inches and the outer link was approximately fourteen inches. The

physical pendubot in our lab at CU is characterized by the (identified) parameters l1 = 0.149m

and l = 0.172m (with g = 9.81m/s2) so that βCU ≈ 8.54 and α = α0T with α0 ≈ 3.78. In the

next sections, we will explore properties of solutions of the inverted pendulum with odd periodic

forcing as these parameters vary.

3.3 Trajectory Exploration

In this section we study the solution properties of a family of inverted pendulum systems

driven by odd periodic forcing. Using the Schauder fixed point theorem, we show that the inverted

pendulum with an odd periodic driving acceleration at the pivot always possesses an odd periodic

solution. Fundamental to the production of good estimates is the development of a Green’s func-

tion for an unstable harmonic oscillator with Dirichlet boundary conditions. We also show that
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it is sometimes possible to use the Banach fixed point theorem to ensure that there is a unique

solution within an invariant region of the space of possible solution curves. Using these results, we

characterize the solutions of periodically driven inverted pendulum systems such as that given by

ϕ̈ = α2 sinϕ+ β sin (ϕ− πt), which describes a pendubot with constant inner arm velocity.

The nonlinear analysis techniques explored include topological [13] as well as analytic tech-

niques (e.g., contraction mapping) that are more commonly known to control engineers. From

the topological point of view, we use the Schauder fixed point theorem to show that the inverted

pendulum with an odd periodic driving acceleration at the pivot always possesses an odd periodic

solution. With an eye toward the development of good estimates, we provide a careful development

of a Green’s function for an unstable harmonic oscillator with Dirichlet boundary conditions. From

the analytic point of view, we show that it is sometimes possible to construct a contraction mapping

so that the Banach fixed point theorem can be used to ensure that there is a unique solution within

an invariant region of the space of possible solution curves.

Using these techniques we are able to provide insights into the types of trajectories of the

inverted pendulum, and hence the trajectories of the pendubot, that are possible with odd periodic

forcing. In fact, we are able to show that inverted trajectories exist as the period, T , of the odd

periodic forcing term approaches zero.

3.3.1 Operator Equation

We seek an odd periodic solution ϕ(·) with period 2 of (3.5). Since the right hand side

of (3.5) is odd with respect to (ϕ, t), the desired curve may be found by solving the two point

boundary value problem

ϕ̈ = α2 sinϕ+ β f(ϕ, t) , ϕ(0) = 0 = ϕ(1) (3.6)

for ϕ(t), t ∈ [0, 1]. That is, the curve ϕ(t), t ∈ [0, 1], can be extended (in the obvious way) to an

odd periodic solution of (3.5). Now, writing the dynamics as

ϕ̈ = α2ϕ− α2
[
(ϕ− sinϕ)− β/α2 f(ϕ, t)

]
, (3.7)
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we see that ϕ(·) is a solution to the boundary value problem if and only if it is a fixed point of the

nonlinear operator

N β
α [ϕ(·)] = Aα[M(ϕ(·), ·) ]

whereM[ · ] is the superposition (or Nemitski) operator

M[ϕ(·)](t) = ϕ(t)− sinϕ(t)− β/α2 f(ϕ(t), t)

and Aα[ · ] is the linear operator µ(·) 7→ γ(·) given by the linear boundary value problem

γ̈ − α2γ = −α2µ(t) , γ(0) = 0 = γ(1) . (3.8)

Thus, the two point boundary value problem (3.6) is equivalent to the operator equation

ϕ(·) = N β
α [ϕ(·)]. For brevity, we will sometimes fix β and write ϕ = Nα[ϕ ].

3.3.2 Green’s Functions for Unstable Oscillators

The linear differential operator Aα[ · ] can be rewritten as an integral operator whose kernel

is called a Green’s function of the differential operator. As we will see, the integral operator is a

bounded operator which we can use to study the properties of the unbounded differential operator

Aα[ · ]. In this section, we explore the properties of the Green’s function for the unstable har-

monic oscillator with Dirichlet boundary conditions and show that the operatorAα[ · ] is a compact

operator.

Consider the family of linear systems,

γ̈ − α2γ = −α2µ(t) , (3.9)

parameterized by α > 0 and driven by a bounded input µ(·). Let Aα be the operator that maps a

bounded µ(·) to the solution curve γ(·) of the linear two point boundary value problem

γ̈ − α2γ = −α2µ(t) , γ(0) = 0 = γ(1) . (3.10)
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To see that, for each α > 0, the operator Aα is well defined, note that the solution of (3.9) with

initial values γ(0) = 0, γ̇(0) = γ̇0 is given by

γ(t) = 1
2α

(eαt−e−αt) γ̇0

−
∫ t

0

α
2

(
eα(t−s)−e−α(t−s))µ(s) ds .

(3.11)

Since α > 0, the system (3.9) is hyperbolic so that the map γ̇0 7→ γ(1) is onto, and γ(1) = 0 is

obtained using

γ̇0 = α2

eα−e−α

∫ 1

0

(
eα(1−s)−e−α(1−s))µ(s) ds .

Substituting γ̇0 into (3.11), we see that the desired mapAα : µ(·) 7→ γ(·) is well defined and given

by

γ(t) =

∫ 1

0

gα(t, s)µ(s) ds , t ∈ [0, 1] , (3.12)

where

gα(t, s) :=


α
[

sinhαt
sinhα

sinhα(1−s)−sinhα(t−s)
]
, s ≤ t,

α
[

sinhαt
sinhα

sinhα(1−s)
]
, t < s.

Simplifying the s ≤ t expression, we find that the Green’s function is, as expected, symmetric,

gα(t, s) = gα(s, t), with

gα(t, s) =


α

sinhα
sinhαs sinhα(1−t) , s ≤ t ,

α
sinhα

sinhαt sinhα(1−s) , t < s .

Lemma 3. The Green’s function gα(t, s) is continuous and nonnegative on the square [0, 1]× [0, 1]

for each α > 0.

Proof. Fix α > 0 and note that gα(t, s) is continuous on the line s = t and thus continuous on the

square. Clearly, gα(t, s) ≥ 0 for t ≤ s. For the other case, define rs(t) = sinhα(t−s) / sinhαt

and note that gα(t, s) ≥ 0, t ≥ s > 0, is equivalent to rs(t) ≤ rs(1), t ≥ s > 0. The result follows

since r′s(t) = 2α sinhαs / sinh2 αt > 0 for all t ≥ s > 0.
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Since gα(t, s) is nonnegative on the square [0, 1]2, we find that

|γ(t)| ≤ g̃α(t) ‖µ(·)‖

so that

g̃α(t) :=

∫ 1

0

gα(t, s) ds = 1− sinhαt+ sinhα(1−t)
sinhα

provides a pointwise upper bound on the response. Furthermore, since g̃′α(1/2) = 0 and g̃′′α(t) < 0,

t ∈ [0, 1], the maximum value of g̃α(·) occurs at t = 1/2. Defining ḡ(α) := maxt∈[0,1] g̃α(t), we

see that the norm (or gain) of the operator Aα is given by

‖Aα‖ = ḡ(α) = 1− 1 / coshα/2

where the valid input µ(t) = 1, t ∈ [0, 1], achieves the bound. The bound ḡ(·) is monotonically

increasing with limα→∞ ḡ(α) = 1. Also, it is little surprise that ḡ(0) = 0, since no input comes

into the system in the limit α = 0.

Now, using (3.11), it is easy to see that, for each bounded µ(·), the resulting γ(·) is continu-

ously differentiable on the open interval (0, 1). Indeed, differentiating (3.11) and collecting terms

and simplifying, we find that the operator Ȧα mapping µ(·) to γ̇(·) is given by

γ̇(t) =

∫ 1

0

ġα(t, s)µ(s) ds , t ∈ [0, 1] ,

where

ġα(t, s) :=


− α2

sinhα
sinhαs coshα(1−t) , s ≤ t ,

α2

sinhα
coshαt sinhα(1−s) , t < s .

Note that ġα(t, s) = ∂
∂t
g(t, s) for t 6= s and that the value of ġα(t, s) at t = s where t 7→ gα(t, s) is

not differentiable is immaterial.

Clearly, Ȧα is a bounded linear operator. To develop explicit bounds, note that

|γ̇(t)| ≤ ˙̃gα(t)‖µ(·)‖
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where ˙̃gα(t) :=
∫ 1

0
|ġα(t, s)| ds is given by

˙̃gα(t) = α
coshα−coshαt−coshα(1−t)+coshα(1−2t)

sinhα

Lemma 4. ˙̃gα(t) ≤ α tanhα/2 for all t ∈ [0, 1] with equality holding at t = 0 and t = 1.

Proof. Equality at t = 0 and t = 1 is easily verified. The inequality is equivalent to

1 + coshα(2t− 1) ≤ 2 coshα/2 coshα(2t− 1)/2 .

The result follows easily by noting that hyperbolic cosine curves τ 7→ 1 + cosh τ and τ 7→

b cosh τ/2 can intersect in at most two places, τ = ±τ0 for some τ0 ≥ 0.

Thus, defining ˙̄g(α) := maxt∈[0,1]
˙̃gα(t), we find that

‖Ȧα‖ = ˙̄g(α) = α tanhα/2 .

Note that the dots in ˙̄g(α) and ˙̃gα(t) indicate that these are bounds for γ̇(t)—they are suggestive

rather than operational.

Since Aα maps bounded functions on [0, 1] into continuously differentiable functions on

[0, 1] in a uniform manner, we obtain the well known result:

Proposition 5. Aα is a compact linear operator.

The operator Aα/α2 maps bounded µ(·) to γ(·) satisfying the related linear boundary value

problem,

γ̈ − α2γ = −µ(t) , γ(0) = 0 = γ(1) , (3.13)

and has norm (or gain)

∥∥Aα/α2
∥∥ = ḡ(α)/α2 =: ğ(α) .

Lemma 6. The function ğ(·) is strictly decreasing on [0,∞), and satisfies limα→0 ğ(α) = 1/8 and

ğ(α)→ 0 as α→∞.
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Proof. ğ′(α) < 0, α > 0, follows from the fact that

(α/4) tanhα/2 < α2/8 < coshα/2− 1 , α 6= 0.

The limit ğ(0) = 1/8 is easily derived using the L’Hôpital rule and the limit g(+∞) = 0 is

immediate.
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Figure 3.1: Operator norms ḡ(α) = ‖Aα‖ and ğ(α) = ‖Aα/α2‖ versus α.

We can go one step further and see that the Green’s function for Aα/α2 given by hα(t, s) :=

gα(t, s)/α2 converges (as α → 0) to the Green’s function for γ̈ = −µ(t), γ(0) = 0 = γ(1), given

by

h0(t, s) =


s(1− t) , s ≤ t ,

t(1− s) , t ≤ s .

Here, as with gα(t, s), h0(t, s) ≥ 0 so that

|γ(t)| ≤ h̃0(t)‖µ(·)‖
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where

h̃0(t) :=

∫ 1

0

h0(t, s) ds = t(1− t)/2 .

Defining h̄(α) = maxt∈[0,1] h̃α(t), we see that the norm of this operator is h̄(0) = 1/8 = ğ(0).

3.3.3 Invariance

In the search for periodic solutions or, equivalently, fixed points of N β
α [ · ], we begin by

describing invariant sets of N β
α [ · ].

Proposition 7. The set

B̄δ = {ϕ(·) ∈ L∞ : ‖ϕ(·)‖ ≤ δ}

is invariant under N β
α [ · ], N β

α [ B̄δ ] ⊂ B̄δ, if

ḡ(α) (δ − sin δ) + ğ(α) β ≤ δ . (3.14)

Proof. Let ‖ϕ(·)‖ ≤ δ and note that

‖N β
α [ϕ(·)] ‖ = ‖Aα[ϕ(·)−sinϕ(·)−β/α2 f(ϕ(·), ·) ] ‖

≤ ḡ(α) ‖ϕ(·)−sinϕ(·)‖+ βḡ(α)/α2

= ḡ(α) ‖ϕ(·)− sinϕ(·)‖+ ğ(α) β

≤ ḡ(α) (δ − sin δ) + ğ(α) β

since δ 7→ δ − sin δ is a strictly increasing function.

This leads us to the consideration of the fixed points of the scalar operator δ 7→ h(δ) =

h(δ;α, β) where

h(δ;α, β) := ḡ(α) (δ − sin δ) + ğ(α) β (3.15)

is defined for δ ∈ [0,∞). We denote the first positive fixed point by

δ0(α, β) := min{δ > 0 : h(δ;α, β) = δ} . (3.16)
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The fixed points of (3.15), such as the smallest fixed point, δ0(α, β), are important and will resur-

face in many of the following sections.

Facts:

• For all α > 0 and all β > 0, h(·) has at least one fixed point.

Noting, as shown in figure 3.2, that ε = h(δ) is bounded above and below by ε = ḡ(α)(δ+

1) + βğ(α) and ε = max{ḡ(α)(δ − 1) + βğ(α), βğ(α)}, respectively, we see that every

fixed point of h(·) lies in [δ−, δ+] with

δ+ = (βğ(α)+ḡ(α))/(1−ḡ(α)) ,

δ−= max {(βğ(α)−ḡ(α))/(1−ḡ(α)), βğ(α)} ,

and that, since h(·) is continuous, there is at least one fixed point.

• For each α > 0, the function β 7→ δ0(α, β) is strictly increasing.

• The set [0, δ0(α, β)] is invariant under h(·).

• If there is only one fixed point, then [0, δ] is invariant for every δ ≥ δ0(α, β), and the

iteration δk+1 = h(δk) converges to δ0(α, β) from every δ0 ≥ 0.

• If there is more than one fixed point and ḡ(α)(1 − cos δ0(α, β)) < 1, then the set [0, δ]

is invariant for each δ ∈ [δ0(α, β), δ1(α, β)), where δ1(α, β) denotes the second positive

fixed point. Moreover, δk → δ0(α, β) for each δ0 ∈ [0, δ1(α, β)) so that δ0(α, β) is a

stable fixed point of the discrete time system δk+1 = h(δk).

• Independent of the number of fixed points, the sequence {δk}∞k=0 starting from δ0 = 0

converges to δ0(α, β). That is, δ0(α, β) is always attractive from the left. This will be

shown below.

Lemma 8. Suppose that h : R+ → R+ is C1 with h′(δ) > 0 for almost all δ ∈ R+. Then h(δ) > δ

implies that h(ε) > ε for all ε ∈ [δ, h(δ)]. For the weaker case with h′(δ) ≥ 0, δ ∈ R+, h(δ) ≥ δ

implies that h(ε) ≥ ε for all ε ∈ [δ, h(δ)]. Similar results are obtain for < and ≤.
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Figure 3.2: The fixed points of h(·) lie within an easily calculated range.
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Proof. Set g(δ, ε) =
∫ 1

0
h′(δ + s(ε− δ)) ds and note that, by the fundamental theorem of calculus,

h(ε) = h(δ) + g(δ, ε) · (ε− δ) .

Thus, when h′(δ) > 0 almost everywhere, we see that ε > δ implies that g(δ, ε) · (ε − δ) > 0 and

h(ε) > h(δ) so that h(·) is strictly increasing. Thus, for ε ∈ (δ, h(δ)],

h(ε) > h(δ) ≥ ε

so that h(ε) > ε as desired. The weaker case follows directly.

Proposition 9. Suppose that h : R+ → R+ is C1, strictly increasing (h′(δ) > 0 for almost all

δ ∈ R+), and such that h(0) > 0 and h(γ) ≤ γ for some γ > 0. Then the sequence {δk}∞k=0

obtained using

δk+1 = h(δk), δ0 = 0,

is strictly increasing and converges to δ∗, the smallest (positive) fixed point of h(·). If the hypothesis

on h(·) is weakened to h′(δ) ≥ 0, δ ∈ R+, the sequence {δk} is nonincreasing and again converges

to δ∗. If there is an ε > 0 such that h′(δ) = 0 for δ ∈ (ε, δ∗), then δk → δ∗ in a finite number of

steps.

Proof. Since h(δ0) > δ0, we see, by Lemma 8, that δk+1 = h(δk) > δk for all k ≥ 0 and,

furthermore, that h(δ) > δ for δ ∈ [0, δk] for every k ≥ 0. Thus, since δk < γ for all k, we see

δk → δ∗ for some δ∗ ≤ γ. Since εk = h(δk) also converges to δ∗ and h(·) is continuous, we

conclude that δ∗ is a fixed point, δ∗ = h(δ∗). Furthermore, δ∗ is the smallest positive fixed point

since h(δ) > δ for all δ < δ∗.

Under the weaker hypothesis, it is clear that {δk} is either strictly increasing or converges

in finite steps and that, if it converges, then it must converge to a fixed point. Letting δ∗ be the

smallest positive fixed point, we claim that δk ≤ δ∗ for all k. If not, there is a k0 such that

δk0 < δ∗ < δk0+1 = h(δk0). In that case, we see that δ∗ > δk0 and h(δ∗) < h(δk0) which

contradicts the fact that h(·) is nondecreasing. The result follows.
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Thus, since δ 7→ h(δ;α, β) is strictly increasing and satisfies the other conditions of Propo-

sition 9, we see that δ0(α, β) is easily computed by successive approximation using δk+1 = h(δk)

with δ0 = 0. Furthermore, the set B̄δ with δ = δ0(α, β) is invariant under the corresponding

operator N β
α [ · ]. Note that the mapping (α, β) 7→ δ0(α, β) is not continuous at every (α, β). In

fact, β = 4π(cosh−1(2))2 ≈ 21.7948 is a critical value above which the curve associated with

α 7→ δ0(α, β) will not be continuous. Figure 3.3 depicts the function α 7→ δ0(α, β) for a number

of different β values.

3.3.4 Existence

Now that we have invariant sets ofN β
α , we can use the Schauder fixed point theorem to show

that the two point boundary value problem (3.6) possesses a C2 solution for all α and β and that

N β
α always has a fixed point.

Proposition 10. Given α > 0 and β > 0, the two point boundary value problem (3.6) possesses a

C2 solution satisfying |ϕ(t)| ≤ δ0(α, β), t ∈ [0, 1].

Proof. Let δ = δ0(α, β) and note that, by proposition 7, the convex closed set B = B̄δ is invariant

underN β
α . Now, the functions ψ ∈ N β

α [B] are all such that |ψ̇(t)| ≤ ˙̄g(α) (δ−sin δ+β/α2) so that

N β
α [B] is an equicontinuous family and N β

α : B → B is a compact map. Thus, by the Schauder

fixed point theorem, there is a ϕ(·) ∈ B such that ϕ = N β
α [ϕ ], so that ϕ(·) is a solution of (3.6).

That ϕ(·) is C2 follows immediately.

We saw that ϕ(·) is a solution to the boundary value problem if and only if it is a fixed point

of the nonlinear operator N β
α [ϕ(·)] = Aα[M((·), ·) ] and hence, the two point boundary value

problem (3.6) was equivalent to ϕ(·) = Nα[ϕ(·)]. However, we can define a different nonlinear

operator

N̄α[ϕ(·)] = B[M1 ]

whereM1[ϕ(·)](t) = α2 sinϕ(t)− β f(ϕ(t), t) and B is the linear operator µ(·) 7→ γ(·) given by
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the linear boundary value problem

γ̈ = µ(t), γ(0) = 0 = γ(1).

It is not hard to show that ‖B‖ = 1/8. Hence, B̄α2+β
8

is invariant under N̄ .

It is clear that δ0(α, β) is piecewise continuous in α for a fixed β. In addition, δ0(α, β) will

only have downward jumps. For some choices of α and β, B̄α2+β
8

will be a better estimate of the

invariant region.

Combining the two estimates, we see that for a given β, there exists an α such that N β
α

or N̄ is invariant on B̄δ1(α,β). The size of the invariant region is always bounded by a piecewise

continuous function δ1(α, β) = min
{
α+β2

8
, δ0(α, β)

}
. The invariant region for both estimates

start at β/8 and, as a function of α, the estimate from N̄ increases while the estimate fromNα goes

to 0 asymptotically. In particular, for β > 4π(cosh−1(2))2 ≈ 21.7948, the bound on the invariant

region will result in the α+β2

8
being smaller for some α. Figure 3.4 shows the estimates of the

invariant regions when β ≈ 25.6128.

3.3.5 Contraction & Uniqueness

In the dual interests of obtaining an algorithm for computing a periodic solution ϕ(·) and

determining when it is unique, we now seek conditions under which N β
α is a contraction.

Define p(δ) := δ − sin δ and

q(δ) := max
|ε|≤δ
|p′(ε)| =

 1− cos δ , δ ≤ π

2 , δ > π
(3.17)

and note that

|(ϕ1−sinϕ1)− (ϕ2−sinϕ2)| ≤ q(δ) |ϕ1 − ϕ2|

for all ϕ1, ϕ2 such that |ϕ1| ≤ δ and |ϕ2| ≤ δ. Note also that |f(ϕ1, t)− f(ϕ2, t)| ≤ |ϕ1 − ϕ2| for

all ϕ1, ϕ2 and for all t. We have the following result.



39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

δ
0
(T) (degrees) (β: 25.6128)

Figure 3.4: Estimates of Invariant Regions for β ≈ 25.6128 using the smaller of two estimates that
both start at β/8. The size of the invariant region is always bounded by a piecewise continuous
function δ1(α, β) = min

{
α+β2

8
, δ0(α, β)

}
.
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Proposition 11. Let α > 0 and β > 0 be given and suppose that δ > 0 is such that B = B̄δ is

invariant under N β
α . If

ḡ(α) q(δ) + ğ(α) β < 1 (3.18)

then N β
α : B → B is a contraction and the nonlinear boundary value problem (3.6) possesses a

unique solution ϕ(·) in B.

Proof. Let ϕ1(·), ϕ2(·) ∈ B and note that

‖N β
α [ϕ1(·)]−N β

α [ϕ2(·)] ‖

= ‖ Aα[(ϕ1(·)−sinϕ1(·))− (ϕ2(·)−sinϕ2(·))]

− βA/α2[f(ϕ1(·), ·)− f(ϕ2(·), ·)] ‖

≤ (ḡ(α) q(δ) + ğ(α) β) ‖ϕ1(·)− ϕ2(·) ‖

so that N β
α is contractive on the closed invariant set B. Uniqueness (and existence) follows from

the Banach fixed point theorem.

When the contraction property holds for N β
α on an invariant set B̄δ, the (unique) solution

trajectory ϕ(·) may be computed using successive approximations ϕi+1 = N β
α [ϕi(·)] starting from,

e.g., ϕ0(·) ≡ 0. Note that the contractive condition (3.18) is rather restrictive and is only satisfied

on a subset of possible values of α and β.

Figure 3.3 illustrates the nature of the condition for contraction. In that figure, circles are

used to depict, for each of the selected β s, the value of α (and the corresponding δ0) above which

the contractive condition (3.18) is satisfied. Indeed, it appears that

• For each α > 0, there is a β0 = β0(α) > 0 such that

ḡ(α) q(δ0(α, β)) + ğ(α) β < 1

for all β ∈ (0, β0(α)).
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• Given α0 > 0 and setting β0 = β0(α0),

ḡ(α) q(δ0(α, β0)) + ğ(α) β0 < 1

for all α > α0.

• α 7→ β0(α) is strictly increasing, and β0(α) > 8 for all α > 0.

• δ0(α, β0(α)) < 1 for all α > 0.

3.4 Specialization to the Constant Velocity Pendubot

Remember from (3.1), that the dynamics for a constant inner arm velocity can be written as

ϕ̈ = α2 sinϕ+ β sin (ϕ− πt) (3.19)

where α =
√
g/l T/2 and β = π2 l1/l. The physical pendubot in our lab at CU is characterized by

the (identified) parameters l1 = 0.149m and l = 0.172m (with g = 9.81m/s2) so that βCU ≈ 8.54

and α = α0T with α0 ≈ 3.78.

Intuitively, it is clear that, when the period T is large so that the inner arm moves slowly,

there will be a pendubot trajectory in which the outer link trajectory ϕ(·) remains very close to

zero at all times. This is due to the fact that the primary acceleration seen at the pivot will be

gravity, pushing up on the inverted pendulum. On the other hand, when the period T is very short

(even approaching zero), a substantial centripetal acceleration will be present at the pivot, more

than overcoming gravity resulting in the pendulum being pulled down (rather than pushed up) at

the top of the inner arm cycle. Intuition for this case is somewhat hard to come by.

Figure 3.5 helps us to develop our intuition for what the periodic trajectories look like as the

motion becomes faster and faster. First, note that we are guaranteed that, even as T goes to zero,

there will be a periodic trajectory that does not exceed 62 degrees for βCU. Furthermore, provided

we choose T > 0.31 and βCU, we can use the successive approximation approach to compute the

unique periodic trajectory.
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Figure 3.5: Constant speed pendubot results: invariant region estimate, δ0(α0T, β), and fixed point
trajectory norm, ‖ϕα0T (·)‖, versus T , from 0 to 4 seconds, for the physically chosen βCU = 8.54.
Also depicted is the time (around 0.31 seconds) above which the nonlinear mapping is known to
be a contraction.
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By adjusting the β we can explore trajectories of a pendubot that has a different inner arm

length. As β is increased, the maximum angle of the outer arm, ϕ(·)max, increases. Figure 3.6

illustrates ϕmax (in degrees) versus T for the constant speed pendubot with α as specified and β

varied according to βCU · 2n/2 for n = 0, 1, . . . , 7.

Figure 3.7 shows what half a period of the actual trajectories look like as the period T is

varied in the constant velocity pendubot case for βCU. Even as the period T approaches zero the

maximum lean angle for the outer arm stayed within 42 degrees! At this point in our development,

in order to ensure the application of a successive approximation approach will converge to solutions

to the operatorN β
α [ϕ(·)] = Aα[M(ϕ(·), ·) ], the contraction property must be satisfied. Figure 3.8,

shows the successive approximations ϕi+1 = N β
α [ϕi(·)] starting with ϕ0(·) ≡ 0 for T = 0.32 for

the pendubot in our lab at CU with βCU = 8.54. We see that, within ten iterations we start to

approximate the solution very well.

In our experience, for βCU = 8.54 and for α in the specified range, the successive approxi-

mation algorithm always converged to the desired trajectory, even for T < 0.31. Note that this is

not what happens when β is increased to, say, 25. In situations where the successive approxima-

tion approach is ineffective, one may attempt to use Newton’s method to develop a continuation

strategy for determining solutions as α (or β) is varied. One may, for instance, use the Matlab two

point boundary value solver bvp4c as part of such a continuation strategy. This approach will be

locally effective so long as 1 is not an eigenvalue of DN β
α [ϕα(·)].

For a constant velocity pendubot with a β of 2.5445 times that of the pendubot in our lab

we found the fixed point iteration of the map starting with ϕ(·) ≡ 0 actually converges for T >

0.595. For T < .595, the infinite sequence generated by the fixed point map resulted in convergent

subsequences for all choices of α and β. However, none of the convergent subsequences when T <

.595 were solutions. Note that the infinite sequence generated by the successive approximations

forms an equicontinuous family since every element of the sequence lies in the invariant region and

all the elements of the sequence have the same bounded derivative. Therefore, the infinite sequence

generated by the fixed point map will have some convergent subsequences for all choices of α and
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Figure 3.6: Plot of ϕmax (in degrees) versus T for the constant speed pendubot with α as specified
and β varied according to βCU · 2n/2 for n = 0, 1, . . . , 7. For a fixed α, the maximum lean angle
increases as β is increased.
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Figure 3.7: Plot of ϕ(t) (in degrees) for the constant speed pendubot with T ranging from 0 to 2 in
increments of 1/4 for βCU.
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β.

However, we do not know that these convergent subsequences will be fixed points of the

operator N β
α [ · ] unless we are in a region where the contraction property holds. Figure 3.9 shows

the successive approximations for the constant velocity pendubot when the chosen β = 2.5445βCU

and T = 0.4. In this case, there are two convergent subsequences neither of which converge to the

solution (shown by the dotted line). As we will discuss below in our use of continuation methods,

the eigenvalues of the operator DN β
α determine the change in the successfulness of the successive

approximation approach.

3.4.1 Torque Limits

The pendubot in the lab at CU has limited torque of 2.4 N-m. Trajectories with an inverted

outer arm can end up pushing or pulling the inner arm. Consider the following

V 2/R = l1θ̇ = g

⇒ θ̇ =
√
g/l1 ≈ 8.11rad/sec

⇒ T ≈ 2π/8.11 ≈ 0.774sec

Figure 3.10 shows the maximum and minimum torque requirements for a range of periods, T, in

the constant inner arm velocity case.

In particular, we see that we are within the torque limits for a variety of constant velocity

inner arm trajectories that result in the outer arm being pushed and pulled along the trajectory (i.e.,

T < .774).

3.5 Contraction Boundary

In this section, we are interested in finding the set of (α, β, δ) that satisfy the invariance

condition (3.14) and the boundary of the contraction condition (3.18). That is, we would like to
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Figure 3.8: The successive approximations ϕi+1 = N β
α for the constant speed pendubot with βCU

at T = 0.32 which is just above the time where the nonlinear mapping is known to be a contraction.
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Figure 3.9: Fixed Point Iteration for 2.5445βCU with T = 0.4. Here we see that that two convergent
subsequences emerge neither of which converge to the solution shown by the dotted line.
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Figure 3.10: Plot of Max/Min torque vs T for inverted trajectories with a constant velocity inner
arm. For T < 0.774, these trajectories will result in the pivot point of the outer link being pushed
and pulled. The torque limits for the pendubot system in the lab at CU easily allow for constant
velocity inverted trajectories where the inner arm can be pushed/pulled.
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characterize the set that describes the inverse image of the zero set, i.e., the set F−1((0, 0)) where

F (α, β, δ) =

 ḡ(α)(δ − sin δ) + ğ(α)β − δ

ḡ(α)q(δ) + ğ(α)β − 1


and q(δ) defined in (3.17). Equating the components of F we can eliminate β from consideration

to obtain

ḡ(α)(δ − sin δ)− δ = ḡ(α)(1 + r(δ))− 1 (3.20)

where

r(δ) = q(δ)− 1 =

 − cos δ, δ ≤ π

1, δ > π

Rewriting equation (3.20) we get

sin δ + r(δ) =
(1− ḡ(α))

ḡ(α)
(1− δ) (3.21)

which gives, by a simple trigonometric identity, for δ ≤ π

√
2 sin(δ − π/4) =

1− ḡ(α)

ḡ(α)
(1− δ)

and for δ > π

1 + sin δ =
1− ḡ(α)

ḡ(α)
(1− δ).

Hence, the left hand side of equation (3.21) is equal to

sin δ + r(δ) =


√

2 sin(δ − π/4), δ ≤ π

1 + sin δ, δ > π.

Note that the curves generated by the left hand side and the right hand side of equation (3.21), as

functions of δ, can only intersect at one point defining δ = δ̄(α). Figure 3.11 shows a plot of the left

hand side and the right hand side with only one intersection point. Note that
√

2 sin(δ−π/4) starts

at −1 when δ = 0 and increases to
√

2 when δ = 3π/4 with a zero crossing at π/4. In addition,

1−ḡ(α)
ḡ(α)

(1− δ) starts at 1−ḡ(α)
ḡ(α)

when δ = 0 and decreases with a zero crossing at δ = 1. Indeed, it is
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Figure 3.11: Plot of the curves generated by the left hand side and the right hand side of equation
(3.21). These curves can only have one intersection point defining the boundary, δ̄(α), of the
contraction boundary.
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clear that for each α there can be only one crossing which which lies in δ ∈ (π/4, 1). Moreover,

the solution will start at δ = 1 when α = 0 and monotonically decrease approaching π/4 as

α → ∞. Figure 3.12 is plot of δ(α). Since δ ∈ (π/4, 1) is only varying by about twelve degrees,

0 5 10 15 20 25 30 35 40
44
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52

54

56

58

α

δ (in deg.) v. α

Figure 3.12: Plot of δ(α) in degrees which defines the boundary of the contraction condition. δ(α)
is independent of β and monotonically decreases as α→ 0.

sin(δ − π/4) can be approximated effectively by a linear approximation. A simple substitution of

the linear approximation for sin(δ − π/4) results in δ̃(α) ≈ δ(α) given by

δ̃(α) =
π

4
+

1− ḡ(α)

1 + (
√

2− 1)ḡ(α)

(
1− π

4

)
Figure 3.13 is a plot, in degrees, of the difference between the approximation δ̃(α) and δ(α). As

can be seen from Figure 3.13, δ̃(α) is a very good approximation of δ(α). Note that δ̃(α) and δ(α)

agree at α = 0 and as α →∞. The δ(α) which defines the boundary of the contraction condition

is independent of β. Once we have δ(α) we can compute β(α) by

β(α) =
δ(α)− ḡ(α)(δ(α)− sin δ(α))

ğ(α)

Figure 3.14 shows a plot of β(α).

Proposition 12. For each α > 0, there is a β0 = β0(α) such that

ḡ(α)q(δ0(α, β)) + ğ(α)β < 1
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Figure 3.13: This figure shows (in degrees) that a linear approximation of sin(δ − π/4) results in
an approximation, δ̃(α), that is close to the desired curve.
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Figure 3.14: Plot of β(α) in degrees.
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Proposition 13. α 7→ β̄(α) is strictly increasing, and β̄(α) > 8 for all α > 0.

Remember, δ0(α, β) = min{δ > 0 : h(δ;α, β) = δ} where h(δ;α, β) := ḡ(α)(δ − sin δ) +

ğ(α)β is the first positive fixed point of h(δ;α, β).

Proposition 14. For each α > 0, β 7→ δ0(α, β) is strictly increasing.

Proof. Fix α > 0 and let β2 > β1 > 0 be arbitrary. Set δ1 = δ0(α, β1) and δ2 = δ0(α, β2). Clearly,

h(δ;α, β2) > h(δ;α, β1) for all α and δ > 0. In addition, h(δ;α, β1) > δ1 for δ ∈ (0, δ1] since

h(δ1;α, β1) = δ1 is the first intersection. Thus, h(δ;α, β2) > δ for all δ ∈ (0, δ1]. Therefore,

δ2 > δ1. Hence, h(δ;α, β2) > h(δ;α, β1) > δ on [0, δ) and h(δ1;α, β2) > h(δ1;α, β1) = δ1 so that

h(δ;α, β2) > δ for all δ ∈ (0, δ1].

3.5.1 Regions of Unique Solutions Revisited

We previously provided conditions on α and β that ensure guarantee the existence of a set B

for whichN β
α : B → B is a contraction. WhenN β

α is a contraction, we showed that there will be a

unique fixed point within the closed invariant set B so that the nonlinear boundary value problem

possesses a unique solution ϕ(·) in B. Recall that various properties of N β
α are parameterized

by (α, β, δ). In particular, for each (α, β), with β < β̄(α), there exists a set B = B̄δ0(α,β), with

δ0 < δ̄(α), such that N β
α : B → B is a contraction. In this section we expand our consideration

to regions of α and β where N β
α is not guaranteed to be a contraction. During this consideration

we are able to find unique solutions on sets larger than B where our estimates of N β
α being a

contraction do not hold. To this end, we show that N β
α is a set contractive map on certain sets

allowing us to describe larger invariance regions on which there is a unique solution and regions

for which no solutions exist.

Let δ0 be the first positive fixed points of the comparison function h : R+ → R+. Define δ1 to

be the minimum of the second positive fixed point of h and +∞. When h′(δ0) < 1, the comparison

function h is strictly increasing and will be a monotonically decreasing map on [δ0, δ1). Then, for
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any δ ∈ (δ0, δ1), we have δ0 < h(δ) < δ so that N β
α [B̄δ] ⊂ B̄h(δ). Also, for some δ < δ1 and

δ ∈ [δ0, δ2) N β
α will be a contraction on B̄δ.

Fix α > 0 and let β < β̄(α). Then, δ = δ0(α, β) defines a set, B̄δ0(α,β), on which N β
α is a

contraction. That is, for all δ ≤ δ0, N β
α satisfies the invariance condition

ḡ(α)(δ − sin δ) + ğ(α)β ≤ δ

and the contraction condition

ḡ(α)(1− cos δ) + ğ(α)β < 1.

Hence, there will be a unique fixed point on B̄δ0 .

Theorem 15. There exists

(1) A δ′0 > δ0 such that N β
α is a contraction on B̄δ, for each δ ∈ [δ0, δ

′
0); and

(2) There exists a δ′′0 > δ0 such that N β
α has a unique fixed point in B̄δ, for each δ ∈ [δ0, δ

′′
0).

Proof. To see there always exists a δ′0 > δ0 such thatN β
α is a contraction on B̄δ, for all δ ∈ [δ0, δ

′
0),

we need cos δ > β
α2 − 1−ḡ(α)

ḡ(α)
= δ0 sin δ0 − (1− δ0)1−ḡ(α)

ḡ(α)
. Clearly, δ′0 = δ0 + ε will satisfy

ḡ(α)(1− cos δ) + ğ(α)β ≤ 1.

for small ε > 0. It is also clear that the invariance condition,

ḡ(α)(δ − sin δ) + ğ(α)β ≤ δ

will also hold for small ε > 0 with δ ∈ [0, δ′0].

Now, note that there exists a δ′′0 such that for all δ ∈ [δ0, δ
′
0], N k

α [B̄δ] 7→ B̄δ.

Note that δ′′0 may be large enough that N β
α might not be a contraction on B̄δ′′0

.

Fix β > 0, then δ0(α, β) provides the smallest estimate of a region B̄δ0(α,β) that is invariant

under N β
α , and is defined to be the smallest fixed point of h(·;α, β) so that

δ0 = min{δ : h(δ;α, β) = δ}
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δ0(α, β) is always well defined, and in (0,∞). δ′0 : R2
+(α, β) is given by min{δ > 0 : hcr(δ;α, β) =

1} where hcr(δ;α, β) = ḡ(α)(1 − cos(δ)) + ğ(α)β. Thus, for α > 0 such that δ0(α) ≤ δ′0(α), it

is clear that the two point boundary value problem (parameterized by α, β) has a unique solution

within B̄δ0(α,β) since, on (or restricted to) that closed set, N β
α is a contraction.

The mapping

δ′′0 : R2
+ → R+ ∪ {+∞}

provides (or defines) the boundary for the domain of attraction for the fixed point

δ0(α, β) = h(δ0(α, β);α, β).

This is computed by finding the second largest fixed point, if it exists, of h(δ).

Proposition 16. Fix α ≥ 0 and β > 0, then δ′′0 > δ′0.

Proposition 17. Let h′(δ0(α, β);α, β) ≤ 1 for all (α, β) ∈ R2
+. Then, δ0(α, β) is an asymptotically

stable fixed point if and only if h′(δ0(α, β);α, β) < 1.

Thus, δ′′0(α, β) is greater than or equal to δ0(α, β), including possibly +∞, with the inequal-

ity being strict if and only if

h′(δ0(α, β);α, β) = ḡ(α)(1− cos δ0(α, β)) < 1

When h′ < 1 and there are multiple solutions to h(δ;α, β) = δ, δ′′0(α, β) is given by the second

smallest solution. Figure 3.15 shows a plot of δ0, δ
′
0, and δ′′0 for the β associated with our physical

pendubot system, i.e., βCU = 8.54.

Region I is the region where δ0(α) ≤ δ′0(α). Therefore, it is clear that the two point boundary

value problem (parameterized by (α, β)) has a unique solution within B̄δ0(α,β) since, in region I,

N β
α is a contraction. In region II, we know that the invariance condition is satisfied and hence there

will be a solution within Bδ0(α,β). In addition, we see that to the left of α ≈ 4.14, i.e., region III,

the domain of attraction is infinite and there will no solutions where ϕ(0) = ϕ(1) = 0 within this

region. We know that δ0(α, β) is attractive from the left, converging monotonically from initial
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0, and δ′′0 for the β associated with our
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conditions in the set [0, δ0(α, β)]. Moreover, Figure 3.15 shows that there is a (globally!) unique

solution when β = 8.54 and α ∈ (1.2, 4.14).

Also,

δ′′0(α, β) = min{δ > δ0(α, β) : δ = h(δ;α, β)}

To the left of α ≈ 4.14 we see that the domain of attraction is unbounded and there will be

only one solution where ϕ(0) = ϕ(1) = 0. When h′ < 1, then, we have a guaranteed region where

δ0 will be a stable fixed point of δk+1 = h(δk). In the region where δ : h′ > 1 and less than δ′′0 ,

there can be no solutions as the sets of δ will be shrunk or contracted into sets where we know

there is a unique solution. Hence in this region, there are no solutions.

Also, for βCU = 8.54, δ′′0 has a minimum of approximately 3.09 when α = 11.01. As a

result, we can conclude that there is only one solution with ϕ(0) = ϕ(1) = 0 that is less than

≈ 177 degrees when α > 1.2. To this end, we use the fact that if δ0(α, β) is an asymptotically

stable fixed point of h(·;α, β), then Bδ0(α,β) is an asymptotically attractive invariant set ofN β
α , and

Bδ1 is contained in the region of attraction of B̄δ0 .

3.6 Continuation

Using the Schauder fixed point theorem, we have proven the existence of solutions of the

two point boundary value problem

ϕ̈ = α2 sinϕ+ β f(ϕ, t) , ϕ(0) = 0 = ϕ(1)

for all α > 0 and β > 0. In addition, we found a conservative condition which ensures that N β
α [·]

is a contraction on the invariant set B̄δ so that there will be a unique solution within the set B̄δ.

Moreover, when the contraction property holds, the fixed point of N β
α [·] for a particular α, ϕα(·),

is a well defined function of α giving a curve α 7→ ϕα in C2
0 [0, 1].

We have found, experimentally at least, that we could trace the curve α 7→ ϕα using the

boundary value solver all the way to α equals zero for each of the β′s that we tried. Since our

condition on when N β
α [·] is conservative, we suspect that a local, or isolated, solution should
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continue to exist for parameters outside of those that satisfy the contraction condition. In this

section, we explore the use of continuation methods to find solutions outside of the parameters in

which our conservative condition guarantees N β
α [·] is a contraction.

Recall that

N β
α [ϕ] = Aα [M(ϕ(·), ·)]

whereM[ϕ(·)](t) = ϕ(t)− sinϕ(t)− β/α2 f(ϕ(t), t) . Hence,

DN β
α [ϕα] · ψ = Aα [M′(ϕ(·), ·)ψ(·)]

whereM′(ϕ(·), ·))(t) = 1− cosϕ(t)− β/α2f ′(ϕ(t), t).

The contraction condition (3.18) provides a conservative estimate on the norm of DN β
α [ϕα].

Proposition 18. Given β, if α is in the range on which N β
α is a contraction with fixed point ϕα,

then ‖DN β
α [ϕα]‖ < 1.

Proof. Pick α so that N β
α is a contraction B̄δ with δ = δ0(α, β). Suppose ‖ψ‖ ≤ 1, i.e., (|ψ(t)| ≤

1∀t ∈ [0, T ]), then

‖DN β
α [ϕα] · ψ‖ = ‖Aα [M′(ϕα(·), ·)ψ]‖

≤ ‖Aα‖ ‖M′ψ‖

= ‖Aα‖ max
t∈[0,T ]

∣∣∣∣1− cosϕα(·)− β

α2
f ′(ϕα(t), t)

∣∣∣∣ |ψ(t)|

≤ ḡ(α) ‖1− cosϕα(·)‖+ β
ḡ(α)

α2
‖f ′(ϕα(·), ·)‖

≤ ḡ(α) ‖1− cosϕα(·)‖+ βğ(α) ‖f ′(ϕα(·), ·)‖

≤ ḡ(α)q(δ) + βğ(α) < 1.

Since the ρ(A) ≤ ‖A‖ for a bounded linear operator, the spectrum does not contain 1 when

the contraction condition is satisfied. If we are at a fixed point and DN β
α − I is an invertible
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operator, then the implicit function theorem applies. By starting with a ϕα(·), with α in the region

where the contraction condition is satisfied, a direct application of the implicit function theorem

states that a solution exists for some nontrivial interval around α. As long as the largest real

eigenvalue for DN β
α [ϕα] is less than 1, we can repeat the process and find fixed points, ϕα(·),

outside of our original region of contraction. Next we show that the eigenvalues of DN β
α (ϕα(·)),

i.e., DN β
α (ϕα(·))ψ = λψ are real and use conjugate point theory to find the eignevalues.

3.6.1 Eigenvalues of DN β
α (ϕα(·))

In Section 3.3.2, we developed the Green’s function gα(t, s) for the unstable harmonic oscil-

lator so that we could study the integral operator

G[ψ(·)](t) =

∫ 1

0

gα(t, s)ψ(s)ds

that corresponds to the linear differential operator Aα. G[·] is a compact, self-adjoint operator on

L2[0, 1] and therefore has an infinite sequence of real eigenvalues which converge to zero. [35] In

fact, G is a positive operator since all of the eigenvalues are positive and converge to zero. This

can be seen by writing the following second order ordinary differential equation with constant

coefficients that corresponds to the linear operator

γ̈ − α2γ = −α2λnγ, γ(0) = 0 = γ(1).

Then, solving for the eigenvalues, λn, one gets

λn =
α2

α2 + n2π2
, n = 1, 2, ... (3.22)

with eigenvectors φn(t) = sinnπt.

A trace class operator is an operator whose trace norm ‖G‖tr =
∑∞

1 |λn| is finite. [36]

Clearly, G is a trace class operator. Moreover, from [36], any positive trace class operator G has a

unique positive square root J where G = JJ . In fact, the kernel gα(t, s) can be written with an

eigenfunction expansion

gα(t, s) =
∞∑
1

λnφn(t)φn(s)
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and J must have a kernel jα(t, s) given by

jα(t, s) =
∞∑
1

λ1/2
n φn(t)φn(s).

By defining a multiplication operator

H[ψ(·)](t) = hβα(t)ψ(t)

where hβα(t) = 1 − cosϕα(t) − β/α2f ′(ϕα(t), t) we can write DN β
α (ϕα(·))ψ = GHψ. The

multiplication operator,H, is not compact and has no eigenvalues.

Proposition 19. Suppose hα(·) not constant for any open interval of [0, 1]. Then,H has no eigen-

values.

Proof. Suppose λ is an eigenvalue ofH with eigenvector ψ(t) so that hβα(t)ψ(t) = λψ(t). Suppose

that t0 ∈ (0, 1) is such that ψ(t0) 6= 0. Then there is an open interval (t1, t2) ⊂ [0, 1] with t0 ∈

(t1, t2) such that ψ(t) 6= 0 for t ∈ (t1, t2) which implies that hβα(t) = λ for each t ∈ (t1, t2).

Theorem 20. The composition GH : X → X is a compact operator with the spectrum being

only a countable set of nonzero real eigenvalues with the only possible accumulation point being

at zero.

Proof. First, note that the composition GH is compact since G is compact andH is bounded. Now,

consider GH = JJH. The operator JHJ is a compact, self-adjoint, linear operator. Suppose

this operator has an eigenstructure JHJϕn = λnϕn, then ψn = Jϕn is an eigenvector with

eigenvalue λn of GH because GHJϕn = JJHJϕn = J (λnϕn) = λnJϕn.

Suppose that λ, ψ is an eigenvalue, eigenvector pair of GH so that GHψ = λψ = JJHψ.

If λ 6= 0, set ϕ = JHψ/λ. Then, Jϕ = JJHψ/λ = λψ/λ = ψ and JHJϕ = JHGHψ/λ =

JHψ = λϕ so that λ is a non-zero eignevalue of JHJ , i.e., λ = λn for some n = 1, 2, .... If

GHψ = 0ψ, then (Hψ) (·) ∈ kerG. This implies that (Hψ) (t) = 0 for almost all t (i.e.,Hψ = 0ψ)

which contradicts the fact thatH has no eigenvalues.
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3.6.2 Eigenvalues and Conjugate Points

Since the eigenvalues of DN β
α [ϕα(·)] are real, we can study a conjugate point problem. In

particular, we are interested in finding for what values of λ is the solution of

γ̈ − α2

(
1− 1

λ
hβα(t)

)
γ = 0, γ(0) = 0, γ̇(0) = 1. (3.23)

such that γ(1) = 0. Define δβα(λ) that maps to the solution of the differential equation (3.23) with

γ(0) = 0 and γ̇(0) = 1 at t = 1, i.e., δβα(λ) : λ 7→ γ(1). For a given α and β, the values of

δβα(λ) = 0 are the eigenvalues of DN β
α [ϕα(·)]. Note that the solution of the differential equation

(3.23) will depend continuously the parameters.

Given α and β, we can solve the differential equation of the conjugate point problem for a

family of λ. Figure 3.16 shows the solution of the conjugate point problem when T = 1.0 and βCU.

There is a largest and smallest zero crossing and the only accumulation point is at zero. So, we can

plot the smallest and largest eigenvalue for our system which δα(λ) = 0 as seen in figure 3.17.

Note however, that the smallest and largest eigenvalues change as β changes. For our

configuration of the pendubot, the eigenvalues never have a magnitude greater than one. This,

however, is not always the case. For example, figure 3.18 shows the smallest eigenvalues when

β = 21.72 ≈ 2.544βCU crosses −1.0. Since GH is a compact linear operator, we can use a se-

quence of finite rank operators (e.g., by using numerical integration with a quadrature formula) to

get a very good estimate of the eigenvalues of GH. [37]

3.6.3 Approximating the Eigenvalues of DNα(ϕα(·))

As discussed above, the linear operator DN β
α [ϕα(·)] is a compact linear operator. Therefore,

the spectrum of DN β
α [ϕα(·)] is a countable set of eigenvalues, with zero being the only accu-

mulation point. Moreover, since DN β
α [ϕα(·)] is a compact linear operator, we can approximate

DN β
α [ϕα(·)] by a sequence of finite rank operators using numerical integration with a quadrature

formula. [37]
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Figure 3.16: Plot of solution to the conjugate point problem for the pendubot system when T = 1.0
and βCU. The x’s show the corresponding values of δα(λ)
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Figure 3.17: The maximum and minimum eigenvalues of DN β
α for pendubot βCU are plotted. For

the range of of T shown, the eigenvalues never have a magnitude greater than 1. As a result, the
fixed point iteration will have a local convergence for these values of T .
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Figure 3.18: The maximum and minimum eigenvalues of DNα for 2.5445β are plotted. For the
range shown, the smallest eigenvalue crosses −1 at T = 0.595 explaining why the fixed point
iteration began to fail for T < 0.595.
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First, define (B[ψ]) (t) as follows

(B[ψ]) (t) =

∫ 1

0

gα(t, s)hα(s)ψ(s) ds (3.24)

Note that γ(t) = (B[ψ]) (t).

Because γ(t) is a compact operator, we can approximate γ(t) by a sequence of finite rank

compact operators. Consider the following sequence of finite rank operators, γn(s)

γn(s) = (Bn[ψ])

(
2i− 1

2n

)
, s ∈

(
i− 1

n
,
i

n

)
(3.25)

=
n∑
j=1

gα

(
2i− 1

2n
,
2j − 1

2n

)
hα

(
2j − 1

2n

)
ψ

(
2j − 1

2n

)
1

n
(3.26)

= GnHnψn (3.27)

where i = dnse.

Proposition 21. The matrix Bn has real eigenvalues.

Proof. Since Gn = GT
n > 0, there exists a unique W = W T > 0, such that Gn = WW T .

Bn = GnHn. Therefore, W−1BnW = W−1WW THnW = W THnW . Hence Bn is similar to a

symmetric matrix and therefore has real eigenvalues.
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3.7 Example of a Nonconstant Inner Arm Profile

Remember from section 3.2 that the inverted pendulum with odd period forcing has the

general form

ϕ̈ = α2 sinϕ+ β η(t) sin(ϕ− θ(t))

where η(t) and θ(t) are continuous functions that are even and (generalized) odd periodic of period

2, respectively, and |η(t)| ≤ 1 for t ∈ [0, 1]. For the sake of brevity, we will write the general form

as

ϕ̈ = α2 sinϕ+ β f(ϕ, t)

where the function f(ϕ, t) = η(t) sin(ϕ− θ(t)) is has certain properties.

Let θ(·) = πt − a sin(2πt). Then, ψ = arctan(θ̈/θ̇2) and a(t) = l1/l
√

(θ̇4 + θ̈2). Figures

3.19 and 3.20 illustrate θ(·) and ϕ(·) with θ = πt − a sin(2πt) as 0 < a < 1.0. Figure 3.21 is a

strobe of the pendubot maneuver taken at 20 equal time intervals. Figure 3.22 traces the tip of the

outer link around the maneuver.
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Figure 3.19: Plot of a non-constant inner arm velocity profile θ(·) = πt− a sin(2πt)θ for T = 1.0
sec as a varies from 0.0 to 1.0 in increments of 0.05.
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Figure 3.20: Plot of ϕ(t) for a pendubot with a non-constant inner arm velocity profile θ(·) =
πt− a sin(2πt) for T = 1.0 sec as a varies from 0.0 to 1.0 in increments of 0.05.
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Figure 3.21: Strobe at twenty equal time intervals of the pendubot maneuver with non-constant
inner arm velocity profile θ(·) = πt− a sin(2πt) for T = 1.0 sec and a = 1.0.
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Figure 3.22: Locus of the Outer Link for T = 1.0 sec and a = 1.0.



Chapter 4

Non-Inverted Trajectory Exploration

In chapter 3, we examined inverted trajectories of the pendubot driven by odd-periodic forc-

ing. Using the Schauder fixed point theorem, we then showed that the inverted pendulum with

an odd periodic driving acceleration at the pivot always possesses an odd periodic solution. In

this chapter, we study properties of non-inverted trajectories of the pendubot. The exponential di-

chotomy present in the inverted system isn’t preserved in the non-inverted system as we go faster

and faster. It turns out, using the Schauder fixed point theorem, that solutions always exists for

an odd-periodic driving force. However, uniqueness is not guaranteed. In fact, for a sinusoidal

driving force we demonstrate that we can find multiple solutions.

4.1 Driven Hanging Pendulum

The general form of a driven hanging pendulum as shown in Figure 4.1 with continuous

forcing term, f(t), can be written as

ϕ̈+ g/l sinϕ = f(t) . (4.1)

where l is the inertial length of the outer link and g is the gravitational constant. T-periodic so-

lutions to the equation can be found by considering the corresponding periodic boundary value

problem

ϕ̈+ g/l sinϕ = f(t) , ϕ(0)− ϕ(T ) = 0 = ϕ̇(0)− ϕ̇(T ) (4.2)
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x
y

Figure 4.1: Driven hanging pendulum.

for ϕ(t), t ∈ [0, T ]. Note that the coordinate system used here is different than the one chosen in

Chapters 2 and 3 even though we use the same variable names.

Again, for the pendubot, the inner arm trajectory θ(·) may be chosen arbitrarily and imposed

by an appropriate (state dependent) choice of τ(·) giving

lϕ̈ = −g sinϕ− ay(t) sinϕ− ax(t) cosϕ (4.3)

where the continuous acceleration functions, ax(t) and ay(t), are periodic (with common period

T ) and of the form

ax(t)= l
(
θ̈(t) cos θ(t)−θ̇2(t) sin θ(t)

)
ax(t)= l

(
θ̈(t) sin θ(t)+θ̇2(t) sin θ(t)

)
.

Defining a(t) = (a2
x(t) + (g + ay)

2(t))1/2, we see that (4.3) is of the form

ϕ̈ = −a(t)

l
sin(ϕ− ψ(t)) (4.4)

where ψ(t) satisfies ax(t) = −a(t) sinψ(t) and ay(t) = a(t) cosψ(t).

4.2 Existence

For u ∈ C[0, 1], define the average value as

µ(u) =
1

T

∫ T

0

u(t)dt . (4.5)
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It turns out, that when the average value of the forcing term, f(t) in equation (4.2), is too

big, then there will not be any solutions to the boundary value problem. [1], [13]

Theorem 22. If there is a solution ϕ : [0, T ] → R to (4.1) that satisfies ϕ̇(0) = ϕ̇(T ), then

|µ(f)| ≤ g/l.

Proof. First write ϕ̈ = f(t)− g/l sinϕ and integrate both sides to get∫ T

0

ϕ̈(t)dt = ϕ̇(T )− ϕ̇(0) = 0 =

∫ T

0

f(t)dt− g/l
∫ T

0

sinϕ(t)dt

so that

T |µ(f)| =
∣∣∣∣∫ T

0

f(t)dt

∣∣∣∣ = g/l

∣∣∣∣∫ T

0

sinϕ(t)dt

∣∣∣∣ ≤ g/l

∫ T

0

|sinϕ(t)| dt ≤ g/l T

completing the proof.

Note that as the effective length, l, increases, g/l decreases imposing a stronger condition on

the average value. Odd-periodic driving functions always satisfy this necessary condition for all

l since the average value will be zero. It turns out that a solution always exists for odd-periodic

driving functions as the following theorem from chapter 5 of [13] states.

Theorem 23. Let f : R → R be an odd, T-periodic map f, for some T > 0. Then the forced

pendulum equation (4.1) has an odd, T-periodic solution ϕ : R→ R.

A proof is presented in chapter 5 of [13] and relies on the Schauder fixed point theorem

and fact that f(t) − g/l sinϕ has a bounded image. One of the keys to the analysis presented in

[13] is the bounded image of f(t) − g/l sinϕ. Note that often we rely on the linearization of the

differential equation to provide insights of the solutions. However, the linearization, in this case

does not result in a bounded image and indicates that there is a resonance condition that results in

an unbounded solution. Even in the analysis of the nonlinear system without a bounded image, the

analysis becomes more complicated. It is the presence of the bounded image of f(t) − g/l sinϕ

that allows for a much simpler analysis and application of these types of fixed point theorems.
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4.3 Nonlinear Least Squares Trajectory Exploration

We want to calculate periodic solutions of the outer arm (outer arm profiles) in a non-inverted

position for a given set of periodic accelerations. As discussed above, we first view the double

pendulum as a single pendulum being driven by the accelerations of the pivot point. For a given

inner arm trajectory, the accelerations of the pivot point can be determined. Or, the accelerations

may be specified directly. Then, using the acceleration profiles we are going to look for solutions

which are consistent both with the accelerations at the pivot point and some additional constraints.

The driven pendulum is described by a periodic second order differential equation (with

no control). We are seeking a periodic solution, ϕ(·), that satisfies the second order differential

equation. There are several potential approaches to finding this solution. One approach is to use

boundary value problem solver. This can be done numerically, for example, using the Matlab

command bvp4c. A second approach is to use is to use optimal control.

Consider the problem for finding a trajectory of ẋ = f(x, u) that is close to a specified curve

ξd = (xd(·), ud(·)) in a weighted L2 sense. In particular, given symmetric positive definite matrices

Q, R, and P1, we seek to (locally) minimize the least squares functional

h(ξ) =

∫ T

0

‖x(τ)− xd(τ)‖2
Q/2 + ‖u(τ)− ud(τ)‖2

R/2 dτ + ‖x(T )− xd(T )‖2
P1
/2

over trajectories ξ = (x(·), u(·)) ∈ T . For simplicity, we only require that the desired curve ξd be

continuous on [0, T ]. The dynamics for the driven pendulum system shown in Figure 4.1 are given

by

ϕ̈ =
−(g + u2)

l
sinϕ− (1/l) cosϕ u1

where the controls u1 and u2 are taken to be the pivot point lateral and vertical acceleration ax and

ay, respectively. In state space form, we have ẋ1

ẋ2

 =

 f1(x, u)

f2(x, u)

 =

 x2

−(g+u2)
l

sinx1 − (u1/l) cosx1


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The linearization about a trajectory ξ = (x(·), u(·)) is given by

 ż1

ż2

 =

 0 1

−(g+u2)
l

cosx1 + (u1/l) sinx1 0


 z1

z2


+

 0 0

−(1/l) cosx1(t) −(1/l) sinx1(t)


 v1

v2


defining A(x(t), u(t)) and B(x(t), u(t)). We will also make use of the second derivative of f(·, ·).

Each D2fi(x, u) has a matrix representation: D2f1(x(t), u(t)) = 04×4 and

D2f2(x(t), u(t)) =



(g+u2)
l

sinx1 + (u1/l) cosx1 0 (1/l) sinx1(t) −(1/l) cosx1(t)

0 0 0 0

(1/l) sinx1(t) 0 0 0

−(g/l) cosx1(t)− (1/l) cosx1(t) 0 0 0


.

A suitable K(·) for finite horizon regulation may be obtained by solving a linear quadratic optimal

control problem. To wit, one may choose (with subscript r meaning regulator)

Kr(t) = −R−1
r B(t)TPr(t)

where Pr(·) satisfies the Riccati equation

Ṗr + A(t)TPr + PrA(t)− PrB(t)R−1
r B(t)TPr +Qr = 0, Pr(T ) = P1r, (4.6)

or, equivalently,

Ṗr + A(t)TPr + PrA(t)−Kr(t)
TRrKr(t) +Qr = 0, Pr(T ) = P1r,

with Qr = QT
r > 0, Rr = RT

r > 0, and P1r = P T
1r > 0. (The matrices Qr, Rr, and P1r here need

not be related to cost function above.) The terminal value P1r is often chosen in a fashion to make

it approximately compatible with Qr and Rr and the linearized system dynamics. For instance,
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suppose that (x(T ), u(T )) = (xeq, ueq) is an equilibrium point, f(xeq, ueq) = 0, with controllable

linearization (Aeq, Beq) and let P1r = P T
1r > 0 be the stabilizing solution to the associated algebraic

Riccati equation. Then the extension of Kr(·) (constant on t ≥ T ) stabilizes the corresponding

extension of ξ (also constant on t ≥ T ). Naturally, these comments are also useful in the selection

of P1 for the least squares functional h(·) above.

Suppose now that we have obtained aK(·) and we wish to evaluateP(ξ) and g(ξ) = h(P(ξ))

for some ξ = (α(·), µ(·)) that is not necessarily a trajectory. This is easily accomplished by

integrating the augmented system

ẋ = f(x, u) x(0) = x0,

u = µ(t) +K(t) [α(t)− x]

ẋn+1 = ‖x− xd(t)‖2
Q/2 + ‖u− ud(t)‖2

R/2 xn+1 = 0

(4.7)

over [0, T ] and noting that

g(ξ) = h(P(ξ)) = xn+1(T ) + ‖x(T )− xd(T )‖2
P1
/2 .

The system (4.7) can be implemented in Matlab using an S-function system with

- state (x, xn+1),

- input (α(t), µ(t), K(t), xd(t), ud(t)), t ∈ [0, T ],

and

- output u.

4.4 Trajectory Exploration Odd-Periodic Driving Function

With odd-periodic forcing terms, we know there will always be a solution to 4.2 from the

Schauder fixed point theorem. The Schauder fixed point theorem, however, does not guarantee

uniqueness. In fact, once we find one solution to 4.2, we actually have an infinite number of so-

lutions. For example, if y(t) is a solution, then y(t) + 2πk will be a solution for k = 0, 1, 2, 3, ...
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However, it is possible to find solutions that are really different (i.e., differ by more than a con-

stant). In this section, we provide some examples of trajectories we found during our trajectory

exploration of the pendubot with the inner arm following a sinusoidal input.

Let θ = A sinωt. Figure 4.2 is a plot of the maximum angle the outer arm angle (ϕ(·)

will achieve when driven by θ(t) = 30π/180 sin ω t. We were able to find multiple T-periodic

solutions for the same driving function for various ω as seen in Figures 4.3 and 4.5. Moreover, the

difference between these solutions is not simply a constant function. Just looking at Figures 4.3 and

4.5 one might suspect that the resulting solutions for the outer arm are sinuisoids. This, however,

is not the case. Clearly, the largest solution shown in Figure 4.5 is not a sinusoid. Also, the other

solutions are not pure sinusoids. For example, Figure 4.4 shows the solution with maximum angle

around 2.4 and ω = 5 along with the first and third fourier components.
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Figure 4.2: Plot of the maximum angle the outer arm will achieve driven by θ(t) =
30π/180 sin ω t. We were able to find multiple solutions for the same driving function for var-
ious ω.
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Figure 4.3: Plot of multiple, normalized, solutions when θ(t) = 30 π/180 sin 5.0 t. In this case,
we found three solutions for the same sinusoidal driving function when ω = 5.0.
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Figure 4.4: Plot of one of the solutions when θ(t) = 30 π/180 sin 5.0 t along with the first and
third fourier components. In this case, the sinusoidal driving function does not result in a pure
sinusoid for the outer link.
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Figure 4.5: Plot of multiple, normalized, solutions when θ(t) = 30 π/180 sin 2.0 t. In this case,
we found five solutions for the same sinusoidal driving function when ω = 2.0.



Chapter 5

Maneuver Regulation

This chapter starts with an overview of some of the basic concepts of maneuver regulation.

[9], [21], [22], Then, we demonstrate through simulation and/or physical implementation, the

usefulness of maneuver regulation for provided orbital stabilization for the trajectories found in

Chapters 3 and 4.

5.1 Overview

Nonlinear dynamics can impose nontrivial operating limitations on the operation of physical

systems. In addition, all physical systems include some type of input saturations and dynamic lim-

itations which can result in a decrease in the size of the domain of attraction. The input saturations

and dynamic limitations of the pendubot imposes limits on the time parameterizations of feasible

maneuvers. Given these types of limitations, maneuver regulation can prove useful in successfully

defining and achieving control objectives.

Maneuver regulation has a type of local support property in that a significant local degrada-

tion of regulation is quickly forgiven and does not impact future performance. In contrast, trajec-

tory tracking is globally affected by local degradation as the system tries to catch up in time. It is

the forgiveness of significant local degradation by the maneuver regulation controller that makes

it an ideal choice for implementing aggressive maneuvers. In the next few sections, we see that

maneuver regulation relies on the construction of a suitable change of coordinates to write the dy-

namics in a new form. In particular, the new form lays bare a transverse structure of the system
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while keeping exposed the differential equations to allow for regulation of the transverse dynamics.

Then, we use able to use a linear control design to produce a nonlinear controller that results in a

periodic orbit becoming attractive.

5.2 Longitudinal and transverse coordinates

Consider the nonlinear system

ẋ = f(x, u) ,
(5.1)

with state x ∈ Rn and control u ∈ Rm. Then, (α, µ)(t) ∈ Rn × Rm, t ∈ R, is a trajectory of 5.1 if

for all t ∈ R,

α′(t) = f(α(t), µ(t))

where α′(θ) = d
dθ
α(θ).

A maneuver is a curve in the state-control space that is independent of any parameterization

and consistent with the system dynamics. For example,

α′(θ) = f(α(θ), µ(θ)), θ ∈ R

Using an output map

y = h(x) , (5.2)

where y ∈ Rp, p ≤ n, we can specify a desired trajectory that we would like to regulate the system

to. Given the task yξ(t), we assume that there exists a state-control trajectory ξ(t) = (xξ(t), uξ(t))

that satisfies
ẋξ(t) = f(xξ(t), uξ(t))

yξ(t) = h(xξ(t)) .
(5.3)

The trajectory yξ may be regarded as a regular curve in the output space Rp on which we can

specify a new parameterization, i.e. a function

sξ(·) : R → R

t 7→ sξ(t)
(5.4)
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that is invertible and, at least, of class C1. We denote the inverse of the parameterization as t̄ξ(·)

giving sξ(t̄ξ(θ)) = θ. The time derivative of sξ(t) defines a continuous function

νξ(t) := dsξ(t)/dt (5.5)

that we refer to as the velocity along yξ. Such a quantity may also be expressed using the parame-

terization sξ, obtaining

ν̄ξ(θ) = νξ(t̄ξ(θ)) .

We use a bar sign when a curve is expressed in the new parameterization. From equation(5.3), we

see that x̄ξ satisfies

x̄′ξ(θ)v̄ξ(θ) = f(x̄ξ(θ), ūξ(θ)) (5.6)

ȳξ(θ) = h(x̄ξ(θ)) ,

where x̄′ξ(θ) denotes the derivative with respect to θ. Around the curve ȳξ we define a set of local

coordinates

(θ, ρ) = Φ(y), θ ∈ R, ρ ∈ Rp−1 (5.7)

having the property that ρ vanishes if y belongs to the curve, that is Φ(ȳξ(θ)) = (θ, 0). Denote

φ1, . . . , φp the components of Φ. The first component φ1(y) will be also denoted π : Rp → R and

we define it as

π(y) = arg min
θ∈R
‖y − ȳξ(θ))‖2 . (5.8)

A set of longitudinal coordinate, s, and transverse coordinates, w = (w1, . . . , wn−1), can

be computed by taking the inverse of Φ(y) about the state space curve x̄ξ(s), i.e.,

(s, w) = Ψ(x) . (5.9)

The projection map π(·) defined in (5.8) provides the longitudinal coordinate by posing

s = ψ1(x) = π(h(x)) . (5.10)
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The first p−1 transverse coordinates w1, . . . , wp−1 of x are obtained combining the output function

h(·) together with the functions φi(·), i = 2, . . . , p, obtaining

wi−1 = ψi(x) = φi(h(x)), i = 2, . . . , p. (5.11)

The remaining coordinates are defined as

wi−1 = ψi(x) = n(x)− n(x̄ξ(π(h(x)))), i = p+ 1, . . . , n. (5.12)

5.3 Transverse Form of the Dynamics

The transformation x = Ψ(s, w) allows us to write the dynamics of the nonlinear system

(5.1) using the longitudinal and transverse coordinates. Using the new set of coordinates we can

analyze the system and infer important properties on the stability of the desired trajectory. The

main result states the following:

Proposition 24. The dynamics of the nonlinear system (5.1) on a neighborhood of the trajectory

x̄ξ has the form

ṡ = ν̄ξ(s) + f1(s, w, v)

ẇ = A(s)w +B(s)v + f2(s, w, v)
(5.13)

where v = u− ūξ(s) while f1(·, ·, ·) and f2(·, ·, ·) satisfy

f1(s, 0, 0) = 0, f2(s, 0, 0) = 0,
∂f2(s, 0, 0)

∂w
= 0, and

∂f2(s, 0, 0)

∂v
= 0 .

Proof: See, e.g., [9]

The differential equation (5.13) expressed in longitudinal and transverse coordinates is the

trasverse form of the dynamics of the nonlinear system (5.1).

5.4 Transverse Linearization

Given the nonlinear system (5.1), a trajectory ξ(t) = (xξ(t), uξ(t)), and a parameterization

sξ(t), the dynamics of the nonlinear system can be written in transverse form. It is possible,
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however, to rewrite the dynamics of the transverse coordinates w as a differential equation in the

longitudinal coordinate s avoiding the explicit dependence from time t. Indeed, from [9], we have

Proposition 25. For any trajectory ((s(t), w(t)), v(t)) of the nonlinear system (5.13) for which s(·)

is invertible (that is there exist t̄(·) such that s(t̄(θ)) = θ), the transverse coordinates expressed

as a function of the longitudinal parameterization, i.e. w̄(θ) = w(t̄(θ)), satisfy

dw̄

dθ
= Aᵀ(θ)w̄ +Bᵀ(θ)v̄ + fᵀ(θ, w̄, v̄) , (5.14)

where

Aᵀ(θ) :=
A(θ)

ν̄ξ(θ)
, Bᵀ(θ) :=

B(θ)

ν̄ξ(θ)

while fᵀ(·, ·, ·) is of higher order in w̄ and v̄, that is

fᵀ(θ, 0, 0) = 0,
∂fᵀ
∂w

(θ, 0, 0) = 0,
∂fᵀ
∂v

(θ, 0, 0) = 0 , (5.15)

and where the input v̄ = v̄(θ) is equal to v(t̄(θ)).

Writing the transverse dynamics as a differential equation in the coordinate s allows the design

of control laws that regulate the transverse dynamics to zero without being an explicit function of

time. With a slight abuse of notation, we will write (5.14) using the letter s in place of θ as

dw̄

ds
= Aᵀ(s)w̄ +Bᵀ(s)v̄ + fᵀ(s, w̄, v̄) . (5.16)

The transverse linearization of (5.13) can be written as

dw̄

ds
= Aᵀ(s)w̄ +Bᵀ(s)v̄ . (5.17)

5.5 Driven Pendulum Example

Consider the driven pendulum system

ϕ̈− sinϕ = u
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which can be written as
ϕ̇ = ω

ω̇ = sinϕ+ u .

Suppose now that we would like the system to follow a desired velocity profile ω̃(ϕ) where ω̃(·) ∈

C1 is periodic and strictly positive. On the maneuver, ω = ω̃(ϕ). To obtain ω = ω̃(ϕ), we expect

that u = ũ(ϕ) as well. Indeed, applying ϕ̇ = ω, we find that

ω̇ = ω̃′(ϕ)ϕ̇ = ω̃′(ϕ) = ω̃′(ϕ)ω̃(ϕ)

so that

ũ(ϕ) = ω̃′(ϕ)ω̃(ϕ)− sinϕ

holds. To complete the specification of the maneuver, we choose s as the longitudinal coordinate

so that ṡ = 1 on the maneuver. Integrating ϕ̇ = ω̃(ϕ), ϕ(0) = 0, to obtain ϕ(t), t ≥ 0, and set T to

be the first time t > 0 gives ϕ(t) = 0.

Now, pick ϕ = ϕ̄(s). It is not hard to see that

ϕ̄′ = ω̄(s)

ω̄′ = sin ϕ̄+ ū(s)

giving a maneuver of

[(ϕ̄(s), ω̄(s), ū(s)], s ∈ S1

Since ϕ̇ = ϕ̄′(s)ṡ = ω = ω̄(s) + ρ and u = ū(s) + v , we get the following transverse dynamics

ṡ = 1 + 1
ω̄(s)

ρ

ρ̇ = − (sin ϕ̄(s) + ū(s)) 1
ω̄(s)

ρ+ v .

5.6 Maneuver Regulation Control Law

A linear feedback with gain matrix depending on the “current position” s along the maneuver

is sufficient to make the transverse linearization (when stabilizable) uniformly exponentially stable.

This result, obtained in the domain of the transverse coordinates without an explicit dependence
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from time t may be restated for the nonlinear dynamics in the original coordinates and in the usual

setting of a differential equation with respect to time. From [9], we have the following well-known

result for maneuver regulation

Proposition 26. Suppose that the feedback v̄ = −K(s)w̄ makes the origin of the linear system

dw̄

ds
= (Aᵀ(s)−Bᵀ(s)K(s))w̄ (5.18)

(uniformly) exponentially stable. Then, the control law

u = ūξ(π(h(x)))−K(π(h(x))W (x) (5.19)

applied to the nonlinear system (5.1) is such that x(t) → [xξ] (and consequently y(t) → [yξ]) as

t→∞, provided that the initial condition x(0) is sufficiently close to the maneuver [xξ].

Proof: By hypothesis, the closed loop time-varying matrix Ac(s) := Aᵀ(s)− Bᵀ(s)K(s) is

such that the origin of the linear system w̄′ = Ac(s)w̄ is (uniformly) exponentially stable. This

implies that, given a continuous, bounded, positive definite, symmetric matrix Q(s) > c1I >

0, with c1 some constant, there exists a continuously differentiable, bounded, positive definite,

symmetric matrix P (s) that satisfies the time-varying Lyapunov equation

−P ′(s) = ATc (s)P (s) + P (s)Ac(s) +Q(s) , (5.20)

where P ′(s) denotes (dP/ds)(s). We now show that

V (x) = W (x)TP (π(h(x)))W (x) (5.21)

is a Lyapunov function that proves the exponential stability of curve xξ. That is, on a neighborhood

of xξ, V (·) satisfies

k1‖x‖2
ξ ≤ V (x) ≤ k2‖x‖2

ξ

and

‖∂V
∂x
‖ ≤ k3‖x‖ξ
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and

V̇ (x) ≤ −k4‖x‖2
ξ

for some positive constants k1, k2, k3, k4, and

‖x‖ξ := inf
s∈R
‖x− x̄ξ(s)‖ .

Clearly, this Lyapunov function is defined in a neighborhood of xξ and vanishes along the

curve xξ. (Indeed, W (x) = 0 on xξ.) Moreover V (·) is quadratic in ‖x‖ξ since P (·) is positive

definite and continuous and, on a sufficiently small compact neighborhood of xξ,

l1‖x‖ξ ≤ ‖W (x)‖ ≤ l2‖x‖ξ

for some l1, l2 > 0. Differentiating V (x) we have

V̇ (x) = −wTQ(s)ν̄ξ(s)w +

wTP (s)f2(s, w,−K(s)w) +

wTP ′(s)f1(s, w,−K(s)w)w .

Since the last two terms are cubic in w and ν̄ξ(s) is positive and bounded away from zero, it is

clear that V̇ is locally negative definite and quadratic in ‖x‖ξ. �

5.7 Maneuver Regulation about Non-Inverted Trajectories

In this section, we design a maneuver regulation controller for trajectories of the pendubot

generated by driving the inner arm with an odd periodic signal (e.g., θ = a sinωt) and the outer

arm is hanging down. We convert the desired trajectory to a maneuver of the system and define a

local transverse coordinate system about the maneuver before designing an indexed varying gain

which is implemented as a state feedback controller on the physical system.

5.7.1 Maneuver Regulation

In Chapter 4, we described one way of finding some interesting periodic orbits of the pen-

dubot and we found multiple trajectories
(
θ, θ̇, ϕ, ϕ̇, τ

)
(·) of the pendubot for the same odd-



89

periodic θ(·). Defining a projection, s = π(x), we can convert the trajectory to a maneuver

(α(s), µ(s)). A maneuver is a curve in the state-control space that is consistent with the sys-

tem dynamics. By selecting a feedback transformation to give a transverse maneuver coordinate

system (s, ρ) which is local about α(·). Specifically, x 7→ (α(s), µ(s)), where x ∈ Rn and s ∈ R.

A transverse coordinate system is then defined where x 7→ (s, ρ) and the transverse component

ρ ∈ Rn−1 such that (s, ρ) forms a local set of coordinates around α(s). The choice of the trans-

verse coordinate system defines the projection π(·).

In particular, we define a feedback transformation z = Φ(z), u = µ(s) + v which gives rise

to the following system

ż = DΦ(Ψ(z))f(Ψ(z), µ(s) + v) ≡ f̃(z, v) (5.22)

where Ψ(z) ≡ Φ−1(x). Note, that (5.22) includes information about the control needed to flow

along the maneuver since ż = f̃(z, v) and maneuver where v = 0 and z = (s, 0). From here

explore the design of a control which stabilizes the transverse dynamics by computing the indexed

linearization of the transverse system (5.22) to get

z′ = A(s)z +B(s)v.

Then we compute an indexed varying gain, k(s), which exponentially stabilizes the transverse

dynamics, by solving an indexed varying LQR.

5.7.2 One Transverse Coordinate System

We want to design a maneuver regulation controller to follow the maneuver
(
θ, ϕ, θ̇, ϕ̇, τ

)
(·).

By specifying θ(t) = a sinωt, then θ̇(t) = aω sinωt and we can determine the other states and

needed input as described in Chapter 4.

Let the transverse coordinate, s, be θ and the longitudinal coordinates be

ρ1 = − 2

π
tan

(
π

2

(
R(θ, θ̇)− a

a

))
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ρ2 = ϕ− ϕ̄

ρ3 = ϕ̇− ˙̄ϕ

where R(θ, θ̇) =
√
θ2 + θ̇2

ω2 .



 /

s
1

Figure 5.1: Phase plot of θ and θ̇/ω along with the local coordinate system (i.e., the transverse
coordinate ρ1 and longitudinal coordinate s).

Figure 5.1 shows a phase plot of θ and θ̇/ω. Our choice of this transverse coordinate system

was motivated by desiring a transformation which will look linear close to the orbit and increase

quickly away from the orbit. In fact, for our choice we see that

R = 0 w =∞

R = 2a w = −∞

R = a w = − 2
π
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We defined a map Ψ : z 7→ x as follows

x = Ψ(z) = Ψ(s, ρ) =



r(ρ1) sinωs,

r(ρ1)ω cosωs,

ϕ̄(s) + ρ2,

˙̄ϕ(s) + ρ3


(5.23)

where r(ρ1) = a
[
− 2
π

tan−1
(
π
2
ρ1

)
+ 1
]
. This selection of Ψ(z) implicitly defines the following

inverse mapping Φ : x 7→ z,

Φ :



θ

θ̇

ϕ

ϕ̇


7→



s

ρ1

ρ2

ρ3


=



tan−1 ωθ
θ̇

− 2
π

tan

(
π
2

(√
θ2+ θ̇2

ω2
−A

A

))
ϕ− ϕ̄(tan−1 ωθ

θ̇
)

ϕ̇− ˙̄ϕ(tan−1 ωθ
θ̇

)


Note that z = Φ(x). So, x = Φ−1(z) ≡ Ψ(z). A(s) and B(s) may be computed as follows

A(s)ρ = D2R(α(s)) · (f(α(s), µ(s)), Z(s)ρ) +DR(Ψ(s, 0)) ·D1f(α(s), µ(s)) · Z(s)ρ

B(s)v = DR(Ψ(s, 0)) ·D2f(α(s), µ(s)) · v

where

Z(s) ≡ ∂Ψ

∂ρ
(s, 0),

and

R(x) = (ψ2(x), ψ3(x), ψ4(x))T .

Following [9], D2R(Ψ(s, ρ)) may be computed by defining

M(s, ρ)z ≡ DR(Ψ(s, ρ)) · z
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where z is a general perturbation and recalling that Ψ(s, 0) = α(s). Then,

D2R(α(s)) · (f(α(s), µ(s)), Z(s)ρ) = D2M(s, 0) · ρα′(s)

resulting in

DΨ(z) =



ωr(ρ1) cos(ωs) r′(ρ1) sin(ωs) 0 0

−ω2r(ρ1) sin(ωs) ωr′(ρ1) cos(ωs) 0 0

ϕ̄′(s) 0 1 0

˙̄ϕ′(s) 0 0 1



Z(s) =



r′(0) sin(ωs) 0 0

ωr′(0) cos(ωs) 0 0

0 1 0

0 0 1


Note that DΦ(Ψ(z)) = [DΨ(z)]−1 and r(0) = r′(0) = a 6= 0.

DΦ(Ψ(z)) =



1
ωr(ρ1)

cos(ωs) −1
ω2r(ρ1)

sin(ωs) 0 0

1
r′(ρ1)

sin(ωs) 1
ωr′(ρ1)

cos(ωs) 0 0

−ϕ̄′(s)
ωr(ρ1)

cos(ωs) ϕ̄′(s)
ω2r(ρ1)

sin(ωs) 1 0

− ˙̄ϕ′(s)
ωr(ρ1)

cos(ωs)
˙̄ϕ′(s)

ω2r(ρ1)
sin(ωs) 0 1


and

DR(Ψ(z)) =


1

r′(ρ1)
sin(ωs) 1

ωr′(ρ1)
cos(ωs) 0 0

−ϕ̄′(s)
ωr(ρ1)

cos(ωs) ϕ̄′(s)
ω2r(ρ1)

sin(ωs) 1 0

− ˙̄ϕ′(s)
ωr(ρ1)

cos(ωs)
˙̄ϕ′(s)

ω2r(ρ1)
sin(ωs) 0 1


Defining M(s, ρ) = DR(Ψ(s, ρ)), then

D2M(s, 0) · ρ =


0 0 0 0

−ϕ̄′(s)
ωa

cos(ωs) ϕ̄′(s)
aω2 sin(ωs) 1 0

− ˙̄ϕ′(s)
ωa

cos(ωs)
˙̄ϕ′(s)
aω2 sin(ωs) 0 1

 · ρ1
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[D2M(s, 0) · ρ]α′(s) = −ρ1


0

ϕ̄′(s)

˙̄ϕ′(s)


Finally giving,

Aᵀ(s) =


0 0 0

−ϕ̄′(s) 0 0

− ˙̄ϕ′(s) 0 0

+DR(Ψ(s, 0)) ·D1f(α(s), µ(s))Z(s)

Bᵀ(s) = DR(Ψ(s, 0)) ·D2f(α(s), µ(s)) .

5.7.3 Regulation of the Transverse Coordinates

As discussed above, using a linear feedback with an index varying gain, K(s), which de-

pends on the index s along the maneuver is sufficient to make the transverse linearization uniformly

exponentially stable. To design an index varying gain, we choose to solve the Linear Quadratic

Regulator (LQR) problem given by

min
1

2

∫ T

0

‖ρ‖2
Q + ‖v‖2

Rds

subject to

ρ′ = Aᵀ(s)ρ+Bᵀ(s)v, ρ(0) = ρ0

to give a linear state feedback of v = −K(s)ρ, where K(s) = −R−1BT
ᵀ P . Thus, the maneuver

regulation control law may be written as

v = α(s)−K(s)ρ(s). (5.24)

With the maneuver regulation control law in hand, we simulated and then successfully im-

plemented several trajectories found in Chapter 4. For example, when

θ(t) =
40π

180
sin(

2π

0.5
t)
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we solved the two point boundary value problem to find ϕ and τ as shown in Figures 5.2 and 5.3.
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t

θ(t) and φ(t)

Figure 5.2: Plot of desired θ and ϕ. The driving function, θ(t), has an amplitude of 40 degrees and
a period T = 0.5.

Figures 5.4 - 5.7 show the data collected from the physical system. In figures 5.4 and 5.5

show plots of θ vs θ̇ and ϕ vs ϕ̇. In both plots, the circles represent the desired trajectory and the

solid lines representing the data collected from the system. We see from these plots that the tracking

is not perfect. The use of the estimator (or "dirty differentiator") contributes to the observed error

in regulating the maneuver. In fact, these plots of the physical system data are showing the data

collected from the dirty differentiator. In addition to the dirty differentiator, we are not able to

effectively command the torque. We know from our experiments with the physical system that

there is also a torque map that is slightly different than our model indicates. It is interesting to note

that the physical system converges to a periodic maneuver of the system which is slightly perturbed

from the desired maneuver.
































