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Abstract 

This paper presents the use of Multivariate Regression Trees (MRTs) to analyze Multiobjective 

Evolutionary Algorithm (MOEA) tradeoff sets generated from a long-term water utility planning 

problem. MOEAs produce large sets of non-dominated solutions, where each solution represents 

an observation of how multiple predictor variables (decision levers) impact performance in 

multiple response variables (objectives). Because they explicitly accommodate multiple response 

variables, MRTs can preserve the relationships between objectives revealed through MOEA-

assisted optimization. We generated MRTs for two tradeoff sets that resulted from optimizing the 

Eldorado Utility planning problem under two climate change scenarios. A single MRT helped 

identify the subset of core planning decisions that led to preferred performance and demonstrated 

how decision preferences impacted performance in different objectives. Comparing MRTs from 

two scenarios revealed decisions that performed well across scenarios. The systematic and 

repeatable MRT approach can help water managers understand large, high-dimensional tradeoff 

sets and prompt additional promising analyses. 

Highlights 

• MOEA tradeoff sets contain information that can be hard to extract heuristically 

• MRTs offer an unbiased, repeatable method to analyze MOEA tradeoff sets 

• MRTs can reveal core planning decisions that perform well across future scenarios 

Keywords 

Multivariate Regression Tree (MRT), Multiobjective Evolutionary Algorithm (MOEA), feature 
selection, long-term planning, Front Range, Colorado  
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1 Introduction 

Many academic studies and, recently, several real-world applications of Multiobjective 

Evolutionary Algorithms (MOEAs) have established the tool’s ability to produce innovative 

solutions and valuable performance information about water resources planning problems (CSU, 

2017; Maier et al., 2014; Reed et al., 2013). Through intelligent search and evaluation of 

thousands of potential portfolios, MOEAs produce suites of nondominated alternatives that 

explicitly elucidate relationships between conflicting planning objectives and the complex 

interactions among decisions that affect those objectives (i.e. tradeoff sets). Thorough analysis of 

the information contained in such tradeoff sets generally requires working with hundreds or 

thousands of solutions and considering many performance and decision characteristics, or 

dimensions, simultaneously. Interpreting this magnitude and complexity of relational 

information is difficult, so it is important to develop tools that facilitate water managers’ ability 

to understand causes, effects, and trends in decisions and performance that are embedded in the 

results generated by MOEAs. 

To date, Water Resources Systems Analysis (WRSA) research applications of MOEAs have 

mostly relied on parallel axis plots and/or glyph plots (Kasprzyk et al., 2009; Kollat & Reed, 

2007; Matrosov et al., 2015; Smith et al., 2016) or Cartesian plots (Mortazavi et al., 2012; Wu et 

al., 2017) for insights, performing relatively subjective assessments on the tradeoffs to frame 

assertions of different performance priorities. Subjective explorations are useful for gaining 

general familiarity with the tradeoffs and identifying individual portfolios of interest, but they 

may not result in insights about the fundamental system dynamics that drive performance.  

The volume of solutions and large numbers of decisions and objectives that make MOEA 

tradeoff sets difficult to analyze heuristically also make them good candidates for employing 

feature selection – the process of systematically reducing the dimensionality of a data set by 

distinguishing the most sensitive features from those that are noisy, redundant, or irrelevant (Liu 

et al., 2010), thus identifying fundamental system properties. Since the 1990s, feature selection 

has been used as a pre-processing step to improve subsequent data mining applications in a wide 

range of fields such as bioinformatics (Saeys et al., 2007), satellite imagery classification (Jain 

and Zongker, 1997), social network exploitation analysis (Zheleva and Getoor, 2009), and 

financial fraud detection (Ravisankar et al., 2011).  
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Feature selection has been applied specifically to MOEA tradeoff sets in a number of fields, 

though the term is not common in such studies. In this context, various feature selection 

approaches are presented as the main data mining event (not preparation for data mining) and 

used for the purpose of “knowledge discovery”. Bandaru et al (2017) provide a thorough review 

of this literature; here we will focus on work that has employed regression trees, which are the 

specific type of feature selection/data mining method in which we are interested. 

Regression tree models are generated by recursively partitioning data into two mutually-

exclusive sets in order to sort the data into groups that have similar attributes. They are a popular 

method of feature selection because they are very versatile and easy to interpret. The partitioning 

process does not require or assume any specific distributions within the data, and it can uncover 

hidden structures and interactions between hierarchical and nonlinear variables (Prasad et al., 

2006; Verbyla, 1987). Among many predictor variables, the method can determine which have 

the greatest influence on response (Lawrence and Wright, 2001). The binary rules are easy to 

understand for users who do not have expertise in statistics, and the tree structure itself is an 

intuitive way to visualize a model. 

The few studies that have used regression trees to perform feature selection on MOEA tradeoff 

sets have been limited to univariate regression trees, which relate a single objective (response) to 

multiple decision levers (predictors). Sugimura et al (2010) demonstrated regression tree analysis 

on the design of a centrifugal impeller. The case study optimized 2 objectives using 16 design 

parameters and then generated a regression tree for each objective individually. Dudas et al 

(2011) optimized process rules for a 3-objective automotive production line system using 22 

variables, and like Sugimura et al, created a separate tree for each objective. In another study, 

Dudas et al optimized investments in a production line using three objectives and nine decisions, 

this time eliciting a preferred performance region from decision makers and generating trees 

based on different methods of measuring solutions’ spatial relationships to the region (2014). 

While these univariate regression trees provide useful information, they either separate or 

collapse the relationships between the objectives, and thus do not capitalize on one of the 

primary benefits of using an MOEA.  

The Multivariate Regression Tree (MRT) was developed to relate predictor variables to multiple 

response variables while maintaining the individual characteristics of the responses (De’Ath, 
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2002). It originated in the field of ecology and was designed to be able to relate populations of 

multiple species to a number of independent environmental conditions. Importantly, MRTs do 

not make any assumptions about the underlying relationships between the response variables. 

MRTs have been used previously for feature selection, for example by Questier et al (2005) to 

analyze how the presence or absence of various chemicals predicts certain types of smells. 

However, to our knowledge, they have not been applied to feature selection using an MOEA 

tradeoff set. The versatility of the method (i.e. there is no requirement of any sort of data 

structure) suggests it can be successfully used to analyze the complex dynamics found in such 

data. 

This study makes two contributions. First, it builds on previous efforts to perform feature 

selection on MOEA tradeoff sets using regression trees by newly applying MRTs to the task. 

Second, it employs feature selection to analyze tradeoff sets generated from optimizing a 

complex water supply system. By applying MRTs to a long-term water resources planning study 

performed using the Eldorado Utility Planning Model, we demonstrate how the method can 

facilitate and expand on heuristically-derived insights by extracting latent information about how 

specific combinations of decisions impact different types of performance, and about which 

decisions are likely to perform well in a wide range of potential futures. Such insights may either 

not be discernable from heuristic analyses alone, or the process of discovering them may require 

applying preferences that are not agreeable to all parties involved in developing a plan.  

In the following section we present information about our methods: MOEA tradeoff sets and 

regression trees. We then give background on the Eldorado Utility case study used in the 

optimization. Next are the regression tree results, followed by discussion of their implications for 

practical applications in water resources planning and also for future research. The last section 

offers concluding remarks. 

2 Methods 

2.1 MOEA tradeoff sets 

Multiobjective Evolutionary Algorithms (MOEAs) are a search technology used to efficiently 

generate and evaluate alternative solutions to systems whose conflicting performance objectives 

are impacted by many decisions that exhibit complex interactions (Reed et al., 2013). In the 
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context of long-term water supply planning, the MOEA intelligently designs and tests thousands 

of different combinations (or portfolios) of decisions such as reservoir sizes and conservation 

levels to optimize performance in objectives such as maximizing storage reliability and 

minimizing frequency of water-use restrictions. When attempting to optimize multiple 

conflicting objectives, improvement in one objective requires sacrificing performance in another, 

so there are tradeoffs. During optimization, the MOEA removes from the preferred group any 

portfolio whose performance is worse than another portfolio in all objectives; that is, the 

dominated portfolios are removed. The end product of MOEA-assisted optimization is a set of 

nondominated planning portfolios that quantitatively characterize the performance tradeoffs of a 

system.  

The nondominated tradeoff set is valuable because it represents the system information learned 

by the MOEA as it refines combinations of decision levers to achieve better results in the 

objectives. Each portfolio within the MOEA tradeoff set is an observation of how multiple 

predictor variables (decision levers) affect a system’s performance in multiple response variables 

(objectives). Framing the dataset in this way motivates the use of MRTs to help extract the 

relational information contained in the tradeoffs. 

2.2 Multivariate Regression Trees (MRTs) 

MRTs are an extension of the univariate Classification and Regression Tree (CART) algorithm 

(Breiman et al., 1984). (Trees generated from categorical data are termed classification trees; we 

are working with quantitative data and, as such, will limit our description to regression trees.) 

CART has been used for feature selection in several fields (Chebrolu et al., 2004; Gomez-Chova 

et al., 2003) and also for other data mining purposes in WRSA (Bryant and Lempert, 2010; 

Kwakkel and Jaxa-Rozen, 2016). For CART, the steps and calculations presented below would 

be performed on values of a single response variable; for MRTs, they are instead applied to the 

geometric centroid defined by the summed Euclidian distances to the means of all response 

variables. To convert from MRT to CART, one only needs to remove the innermost summation 

from Equations 1 through 3 found in Section 2.2.1.  

Note that because objectives incorporated into MOEA optimization often measure very different 

types of quantities, all objective values need to be scaled before an MRT is generated to prevent 

objectives with large units and ranges from dominating the splitting. This preserves the equal 



 
 

6 
 

weighting of objectives, which is a core concept that underpins the value of MOEAs. Though 

there are several ways of standardizing or normalizing data, we recommend scaling the 

observations for each objective to a range of 0 to 1 because this approach does not distort within-

objective distribution or across-objective relationships. Decision lever values do not need to be 

scaled. 

2.2.1 MRT algorithm 

The steps of the MRT algorithm will be presented in terms of an MOEA tradeoff set: portfolios 

are observations, decision variables are the predictors, and objectives are the responses. 

A. Calculate the error of the full data set at the root node: 

Equation 1 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ���𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑗𝑗(𝑁𝑁)�
2

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

Where 𝑁𝑁 is the number of portfolios in the tradeoff set, 𝐽𝐽 is the number of objectives, 𝑦𝑦𝑖𝑖𝑖𝑖 is a 

portfolio’s value of objective 𝑗𝑗, and 𝑦𝑦�(𝑁𝑁) is the mean of all values of objective 𝑗𝑗. 

B. For every split between values in every decision lever, sum the error (impurity) 

within and across each of the two child nodes that would result from splitting the data 

by that decision lever value: 

Equation 2 

 

Ε𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ���(𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑗𝑗(𝑘𝑘))2
𝐽𝐽

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

2

𝑘𝑘=1

 

where 𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘) is a portfolio’s value of objective 𝑗𝑗, 𝑦𝑦�𝑗𝑗(𝑘𝑘) is the child node’s mean value of objective 

𝑗𝑗, 𝑘𝑘 is the child node formed by the split, and 𝑛𝑛 is the number of observations in child node 𝑘𝑘. 

C. Split the parent node using the decision lever and value from Step B that resulted in 

the smallest value of Ε𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
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D. Repeat Steps B and C for each child node until a user-specified stopping criterion is 

met. When the criterion is met, splitting terminates and a node becomes a leaf. 

Stopping criterion determines the number of leaves (i.e. the size of the tree). Within-

leaf error is defined as: 

Equation 3 

 

Ε𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ��(𝑦𝑦𝑖𝑖𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑗𝑗(𝑘𝑘))2
𝐽𝐽

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

The explanatory power of a tree is traditionally captured by its relative error; this value 

represents how much of the root error was not resolved by sorting the portfolios via recursive 

splits in decision variables: 

Equation 4 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ Ε𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿
𝑙𝑙=1

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

Where 𝐿𝐿 is the total number of leaves on the tree, 𝑦𝑦𝑖𝑖𝑖𝑖(𝑙𝑙) is a portfolio’s value of objective 𝑗𝑗, 𝑦𝑦�𝑗𝑗(𝑙𝑙) 

is the leaf’s mean value of objective 𝑗𝑗, and 𝑛𝑛 is the number of observations in leaf 𝑙𝑙.  

Though it offers the same technical information as relative tree error, we propose use of the 

complementary “explained variance” quantity (Cannon, 2012) to summarize the overall 

explanatory power of the tree: 

Equation 5 

𝐸𝐸𝐸𝐸(%) = (1 − 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) × 100 

Focusing on minimizing “error” is a misleading characterization in terms of understanding the 

tree’s value. As such, EV will be reported for MRTs in this study.     

2.2.2 Cross validation 

The cross validation technique commonly used when generating MRTs (which is also used in 

this study) is 10-fold cross validation. For each “fold”, a model is trained on 90% of the data and 
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tested by calculating the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 that results once the withheld 10% are placed in their respective 

leaves. The average of the 10 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values is reported back as the cross validated relative error 

(CVRE). This process is undertaken for every potential size of tree to enable comparison 

between 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and CVRE, which can guide users in determining optimal tree size. 

2.2.3 MRT selection 

In any statistical modeling application, steps must be taken to ensure that the model 

appropriately represents the underlying data to the extent that the method can do so 

meaningfully. For regression trees, it is also important to ensure that the structure of the tree is 

understandable for users, so the most appropriate tree will need to balance descriptive power and 

interpretability.  This can be achieved by using standard cross validation procedures and/or 

knowledge of the data to prune the tree (Murphy, 2012). One common way of determining the 

best tree is by examining the progression of its CVRE as size increases. If CVRE stagnates or 

starts to increase, the model is said to be “overfit”- there is no gain, or potentially a loss, of 

explanatory power as the tree increases in complexity. In such cases, a rule of thumb proposed 

by Breiman et al (1984) is to choose the smallest tree that achieves the minimum CVRE plus one 

standard error (the Min + 1SE rule). However, not all data sets exhibit divergent error behavior. 

Other approaches to determining appropriate tree size include requiring a minimum number of 

observations per node, defining the minimum amount of error reduction that must be met for a 

split to proceed, and pre-specifying tree size or depth. 

2.2.4 Example MRT 

To preview the conceptual and visual results of generating an MRT, we present a simple 

example problem and tree. The water utility for a growing city has two objectives: to minimize 

frequency of imposing annual water-use restrictions on customers and also minimize the amount 

of expensive and environmentally-disruptive new storage it has to build to meet increasing 

demands. The decision levers available to the city are to build (or not build) a reservoir with up 

to 100 million cubic meter (MCM) of capacity, and to enact (or not enact) conservation measures 

that would reduce demand by 20% (a binary decision; 0 = no conservation, 1 = conservation 

enacted). Figure 1 represents how an MRT generated for this problem might look. 
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Figure 1. Example MRT. Red text and objects denote MRT concepts or terms that are not found 
on actual MRT plots but are provided here for clarity. All values are hypothetical and designed 
to explain MRT features. 

The MRT has two splits and three leaves. Each leaf is comprised of a set of portfolios whose 

range of performance in each of the two planning objectives is characterized by a boxplot. At the 

root, the boxplot for each objective would span the entire plotting range (included in Figure 1 for 

demonstration purposes). Each of the three leaves has a different configuration of performance 

tradeoffs across the two objectives because the MRT divides the tradeoff set such that the 

variance in performance is reduced in one or more objectives.  

The MRT shows how many portfolios are in each leaf and the error remaining within each leaf, 

calculated as the summed differences between each portfolio’s actual performances in each 

objective compared to the mean performances in each objective of all in-leaf portfolios (see 

Equation 3). While “error” is appropriate in terms of the quantity calculated, it is actually just an 

indication of spread around the means and does not indicate that portfolios are incorrectly placed 

in the leaf.  Leaves with larger numbers of portfolios tend to have higher error because there are 

more errors to sum, and leaves with a large distribution of performance in one or more objectives 

(i.e. large boxplot ranges) will also have higher in-leaf error. (Leaf 1 has the fewest portfolios 
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and tightest ranges, so in-leaf error is smallest; Leaf 3 has the most portfolios and larger ranges 

for both objectives, so it has higher error.)  

The branches of the tree are formed by splitting the portfolios based on their values of the two 

decision levers. The first split is based on reservoir size. This indicates that reservoir size 

explains the most variance across all objectives. Leaf 1 shows that the larger reservoirs require 

larger volume of new storage, as indicated by the height of the teal boxplot, and also that a larger 

reservoir will result in relatively fewer years of restrictions, as indicated by the low placement of 

the light purple boxplot. Portfolios with reservoirs less than 50 MCM in capacity (the right-hand 

tree branch) are further split based on whether conservation was enacted, and that distinction 

leads to two different ranges for years in restriction, as indicated by the different heights of the 

light purple boxplots in leaves 2 and 3. 

The EV value at the bottom of the plot indicates how well the tree was able to organize the set of 

portfolios into groups of similar performance characteristics. This tree was able to explain 75% 

of the variance using two splits (the sum of error across leaves is 25 and the root error is 100). 

There is no threshold of EV that indicates whether a tree is valid or useful; if a user sees value in 

the percentage of variance explained, then the tree is valuable assuming the tree was 

appropriately pruned using cross-validation criteria and problem knowledge. Furthermore, it 

would not actually be desirable to generate a tree that explained 100% of the variance for two 

reasons: it would be unwieldy, and it would eliminate the opportunity to use human reasoning to 

explore flexibility in the decision space as opposed to relying on the MRT algorithm to 

exhaustively organize the portfolios. 

2.2.5 Analyzing MRTs 

Applications of MRTs in other fields are often motivated by understanding how things co-occur, 

which focuses on the relative relationships of response variables (generally species of plants or 

animals) within and across MRT leaves (e.g. two species may be very prominent in leaves 

characterized by certain environmental conditions but rarely found in others, so they are likely to 

be found together) (Davidson et al., 2010; De’Ath, 2002; Herzschuh and Birks, 2010; Larsen and 

Speckman, 2004). In this context studies often examine population composition at each split in 

the MRT to identify the species that are most influential in each partition and also perform 

within-leaf calculations to determine “indicator species”. Another common use of MRTs is to 
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use splits to delineate geographic regions either using latitude and longitude directly or via 

climate or ecosystem variables that can be mapped (Cannon, 2012; Hamann et al., 2011; Salonen 

et al., 2012). The first type of application is very leaves-focused and the second type gains most 

information from the splits.    

A major difference between using MRTs to explain population composition or climate effects vs. 

applying them to MOEA tradeoff sets is that MOEA tradeoff sets exist to facilitate the 

elucidation and navigation of preferences. Users have values that determine which performance 

tradeoffs are acceptable and also have opinions about the decisions that comprise a portfolio. 

This suggests two approaches to analyzing MRTs generated from MOEA tradeoffs that are 

valuable because of the ability to navigate relationships between leaves and splits (objectives and 

decisions) iteratively. 

2.2.5.1 Leaves-first analysis 

After visual inspection of all leaves, users will be able to identify a subset that represent 

preferred patterns of performance tradeoffs and then review the splits (portfolio decisions) that 

led to the leaf. Referring back to Figure 1, a user that values minimization of water-use 

restrictions far more than avoidance of building new storage would focus on Leaf 1. Once Leaf 1 

is identified, the user would learn that reaching the leaf requires at least a 50 MCM reservoir. 

2.2.5.2 Root-first analysis 

Without the benefit of MOEA tradeoff sets to facilitate in-depth discussion of performance 

tradeoffs, water utilities typically focus on decision preferences when crafting portfolios to test 

during long-term planning studies (Smith et al., 2018). In this paradigm, an MRT user would 

start at the root of the tree and at each split determine the preferred value of a decision. 

Following decision preferences down the tree to one or more leaves would reveal how decision 

preferences affect performance tradeoffs and potentially help users see where compromises are 

needed to avoid unacceptable performance. The MRT in Figure 1 would demonstrate to a user 

that if they wanted to avoid a large reservoir (right branch) and not enact conservation (right 

branch), they could expect relatively frequent incidence of water-use restrictions. This likely 

would not be considered desirable.  
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2.2.6 Software  

This study used the mvpart R package (De’Ath, 2014, 2002; R Core Team, 2016), which is 

archived but still functional. Its primary function executes the algorithm described in Section 

2.2.1, and the most important parameters are those that control cross validation and the 

complexity parameter (CP), the stopping criterion that defines the amount of error reduction that 

must be achieved by a split to continue growing the tree. We note our settings in the Results 

section. The only functionality we altered was the standard plotting included with the package; 

mvpart generates a set of bar plots for the mean objective values at each leaf, but we replaced the 

bars with boxplots to give more information. The repository of data, packages, and code 

necessary to reproduce this study’s results can be found in the Acknowledgements. 

3 Case study 

3.1 Front Range, Colorado 

The Front Range of Colorado is an urban corridor on the eastern slope of the Rocky Mountains 

that encompasses several mid-sized cities and many smaller communities. Water providers in the 

region rely heavily on runoff from highly variable annual mountain snowpack, so storage is 

critical for weathering intra- and interannual water supply fluctuations (Doesken, 2014; 

Rajagopalan et al., 2009). The long-term impact that climate change will have on Colorado’s 

hydrology is unclear; temperatures are expected to continue increasing, but precipitation could 

increase or decrease (Lukas et al., 2014). However, despite the possibility of increased 

precipitation, there is likely to be less water in the future due to the dominance of higher 

temperatures (Udall and Overpeck, 2017; Woodbury et al., 2012). In addition to the natural 

supply variability and uncertainty from climate change, the Front Range is experiencing the 

compounding challenge of rapid population growth; the regional population is projected to 

increase by 40% by 2050 (State of Colorado, 2017).  

Water management in Colorado is further complicated by the prior appropriation doctrine, a 

legal framework that bases the succession of streamflow access on date of first use (“first in 

time, first in right”) (Hobbs, 2004). Farmers and energy companies own the vast majority of 

senior water rights in the state, and by 1900 most of the water in eastern slope rivers was fully 

appropriated (Eschner et al., 1983). This means that as cities grew, they collected a mixture of 
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supplies from multiple locations (including the western slope of the Rockies) by acquiring junior 

streamflow diversion rights, building junior reservoirs, buying senior diversion rights from 

agriculture, or buying shares in other water companies. All long-term utility planning involves 

making many decisions and balancing conflicting objectives; on the Front Range, these inherent 

difficulties are exacerbated by rapidly increasing demand, highly uncertain impacts of climate 

change, complex regulations, and contentious social and environmental issues. This context is 

the basis of our MOEA case study, briefly described in the next section. 

3.2 Eldorado Utility Planning Model 

The Eldorado Utility Planning Model was designed based on input from 11 Front Range water 

managers to generically capture important regional management features and challenges (Smith 

et al., 2017). It encompasses the region surrounding a small municipal water provider called the 

Eldorado Utility. Eldorado is located on the eastern slope of a mountain range along with eight 

other water users that directly compete with the utility to divert and store water. Eldorado has 

mostly junior diversion rights, junior storage rights in two reservoirs that it owns, and also has 

shares in a water wholesale company that it takes out of a reservoir owned by that entity. One of 

Eldorado’s diversion rights comes from the western slope, where an additional four users impede 

the utility’s access to water.  
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Table 1. Reprinted from Smith et al (2018) with permission from ASCE. 
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Table 1. Detail for water users in Eldorado Utility Planning Model. Abbreviations refer to those 

found in Figure 2. The order of users going down each table column corresponds approximately 

to reading left-to-right on the diagram. Bolded users are particularly relevant to the results 

presented in Section 4. Superscripts in the table are defined as follows:  ARes = Reservoir; 
BMCM = million cubic meters; CKAF = thousand acre feet; DAg = Agriculture; Ecms = cubic 

meters per second; Fcfs = cubic feet per second. Reprinted from Smith et al (2018) with 

permission from ASCE. 

Abbr. Name Magnitude of 
Rights  Abbr. Name Magnitude of 

Rights 
SB Southern Basin varying flow  XR External Res varying vol 

WC Western City n/a  A2R Ag2 Irrigation 
Co. Res 

24.7 MCM  
(20 KAF) 

WCR Western City 
ResA 

24.7 MCMB  
(20 KAFC) 

 Ag2 Ag2 User n/a 

WAg Western AgD User 
4.3 cmsE (150 
cfsF) 
seasonal 

 
EU Eldorado 

Utility 

0.28 cms (10 cfs);  
0.34 cms (12 cfs);  
0.42 cms (15 cfs) 

PP Power Plant varying flow  WS2 Wholesaler 
Res 2 

123.3 MCM  
(100 KAF) 

TMD TransMtn 
Diversion 2.2 cms (80 cfs)  IsA Instream Flow 

A varying flow 

WSR West Slope Res varying vol;  
2.2 cms (80 cfs) 

 GP Gravel Pit 1.0 MCM (800 
AF) 

WS1 Wholesaler Res1 616.7 MCM  
(500 KAF) 

 Ind Industrial 
User varying flow 

NR North Res 11.1 MCM (9 
KAF) 

 Ag4 Ag User 4 1.4 cms (50 cfs) 
seasonal 

SR South Res 9.9 MCM (8 
KAF) 

 IsB Instream Flow 
B 0.42 cms (15 cfs) 

Ag3 Ag User 3 1.4 cms (50 cfs) 
seasonal 

 XFC External Farms 
& Cities n/a 

Ag1 Ag User 1 1.4 cms (50 cfs) 
seasonal 

 Ag5 Ag User 5 2.9 cms (100 cfs) 
seasonal 

 

The model incorporates a wide range of water rights dates to capture the temporal complexity 

created by prior appropriation. It also has great spatial complexity to reflect the fact that in 

Colorado, water is constantly being diverted from and returned to the stream. Overall, there are 

five distinct basins in the model, each with a streamflow input site at its headwaters. The model 

was designed such that, under historic hydrology, Eldorado’s existing system and sources could 
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meet 100% of current demands with only rare need for restrictions. Different future streamflow 

scenarios that alter timing and volume of streamflow require the utility to take action in order to 

meet growing demands. These scenarios and demands are described in Section 3.4. For more 

detailed model and optimization information refer to Smith et al (2018). 

The Eldorado Utility Planning Model was built using the RiverWare modeling software (Zagona 

et al., 2001). RiverWare’s advanced capabilities facilitated our use of prior appropriation water 

allocation and enabled us to manage ownership of water through its accounting functionality. 

The model uses over 150 custom rules to operate the intricate relationships between objects, 

users, and accounts, and is an example of the kind of complex decision support system that many 

utilities have incorporated into their planning (Labadie, 2004). 

3.3 Problem formulation 

The problem formulation includes 13 decision levers and 7 objectives which are briefly 

described here. 

3.3.1 Decision Levers 

Eldorado Utility has a total of 13 decision levers available to enable it to meet growing demands 

with potentially more challenging streamflow conditions. Some increase the system’s operational 

flexibility, some involve acquiring or freeing up water, and some develop new storage. They are 

briefly described below and summarized in Table 2. Where applicable, lever descriptions include 

a reference to the relevant user in Figure 2. 

3.3.1.1 Enhancing operations 

Certain water sources in Colorado are reusable; cities carefully monitor their return flows from 

unconsumed water so that they can re-divert reusable return flows to meet demands. This is only 

possible by legally acquiring the right to exchange the water from downstream to upstream and 

only works well with strategic storage options. Three levers help Eldorado take advantage of 

reusable return flows: Exchange determines whether the legal right is acquired to store reusable 

water in a reservoir owned by Eldorado; LeaseVolXRes determines the amount of dedicated 

exchange storage space Eldorado rent in the External Res (XR); and LeaseAg2Res determines 

whether Eldorado is allowed to use available space in Ag2 Irrigation Co. Res (A2R) to store 

reusable water.  
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3.3.1.2 Increasing supply 

There are three ways that Eldorado can gain access to “new” supplies. The utility can acquire 

portions of water rights of other users in the model, it can buy shares of water companies in the 

model, and it can create water through conservation or increasing distribution efficiency. 

Eldorado may purchase up to 20% of the rights of Ag3 User (Ag3) (RightsAg3) and Industrial 

User (Ind) (RightsIndustrial). Ag3 rights are very senior and may be stored but are not available 

year-round; Industrial rights are mid-seniority and must be directly diverted from the stream, but 

are available year-round. Eldorado may buy shares from either Wholesaler (WS1, WS2) 

(SharesWholesaler) or Ag2 Irrigation Co. (A2R) (SharesAg2). Through SharesInterruptible the utility 

may also execute a contract for access to A2R shares that is triggered when Eldorado’s storage is 

severely depleted. Acquiring water from any of these sources will draw water away from 

regional agriculture and industry and potentially disrupt those communities. Finally, Eldorado 

may enact none, moderate, or aggressive conservation measures (ConsFactor) or increase 

distribution efficiency (DistEff) by up to 3%. 

3.3.1.3 Building storage 

There are three opportunities for Eldorado to increase the amount of storage it owns. The utility 

may expand the existing South Res (SR) to help store both existing and new eastern slope and 

western slope water (ExpandVolSouthRes). Eldorado can build a new West Slope Res (WSR) to 

store its existing western slope diversion right (BuildVolWestSlopeRes); this is a very challenging 

proposition because of regulatory, social, and environmental considerations. Lastly, the utility 

can develop gravel pits (GP) downstream of its return point to capture reusable flows (GP). 
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Table 2. Summary of Eldorado Utiltiy decision levers. MCM = million cubic meters; AF = acre-

feet.  

Decision Description Units Range Increment 
Enhancing Operations 

Exchange Acquire right to exchange reusable 
return flows to NorthRes --- 0 - 1 Binary 

LeaseVolXRes 
Pay owners of XRes to lease 
dedicated space that can facilitate 
Exchange 

MCM 
(AF) 

0 – 3.7 
(0 - 3,000) 

0.12 
(100) 

LeaseAg2Res 
Pay Ag2 Irrigation Co. to store 
water in any available unused 
space; 0 = off, 1 = on 

--- 0 - 1 Binary 

Increasing Supply 

RightsAg3 Purchase a portion of Ag3’s senior 
diversion right % 0 - 20 1% 

RightsIndustrial Purchase a portion of Industrial 
user’s mid-seniority diversion right % 0 - 20 1% 

SharesWholesaler Purchase additional shares of 
Wholesaler water shares 0 - 6,000 10 

SharesAg2 Purchase shares of Ag2 Irrigation 
Co. water shares 0 - 10,000 100 

SharesInterruptible 
Negotiate agreement with Ag2 
Irrigation Co. for optional supply 
leases 

shares 0 - 10,000 100 

ConsFactor 

Reduce starting per capita demand 
through conservation measures; 0 = 
no change, 1 = 10% reduction, 2 = 
20% reduction 

--- 0 - 2 1 

DistEff 

Improve distribution efficiency by 
reducing unaccounted-for water 
(e.g. fixing leaks, improving 
metering, etc.) 

% 90 - 93 1% 

Building Storage 

ExpandVolSouthRes Expand SouthRes MCM 
(AF) 

0 – 2.47 
(0 – 2,000) 

0.12 
(100) 

BuildVolWestSlopeRes Build West Slope Res MCM 
(AF) 

0 – 12.3 
(0 - 10,000) 

0.12 
(100) 

GP 

Develop gravel pits to store 
reusable return flows downstream 
of the city; 0 = not developed, 1 = 
developed 

--- 0 - 1 Binary 
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3.3.2 Objectives 

Brief qualitative descriptions of the seven objectives are given below. For further detail and 

equations, please refer to the Appendix. 

The first three objectives, RestLev1, RestLev2, and RestLev3, seek to minimize the total number 

of years (within the 25-year simulation) that Eldorado goes into three restriction levels of 

increasing intensity. To comply with Eldorado’s current reliability policy, the utility can only go 

into each level 5, 1, and 0 years out of 25, respectively. 

The fourth objective, MissedOpp, minimizes the average annual volume of water that the utility 

“misses”, i.e. when timing of demand or availability of storage space prevent Eldorado from 

capitalizing on the full amount of its water rights. Optimizing how efficiently Eldorado uses the 

water it has helps prevent wasteful acquisitions. 

Objective five, New Supply, seeks to minimize the average annual volume of water Eldorado 

uses from new sources. Though the utility does need to acquire or create new water to meet 

growing demands, they do not want to take more than they need for future water security. 

The sixth objective, April1Storage, maximizes carryover storage of the lowest storage-to-annual 

demand percentage recorded during the 25-year simulation. April 1 is the approximate date when 

reservoirs would be at their lowest levels before spring runoff begins to fill them again and is a 

measure of carry-over storage. Compared with the restrictions-based objectives, this captures a 

longer term reliability signal because it evaluates performance based on the worst-performing 

year of the simulation. 

Finally, NewStorage minimizes the volume of newly-built storage within each portfolio. Because 

storage is difficult to permit and socially and environmentally contentious, Eldorado seeks to 

carefully consider the number and size of storage projects it pursues. The combination of this and 

the NewSupply objective provide a cost-like signal and allow the utility to consider planning 

policy on a broader level (Smith et al., 2018).  

3.4 Scenarios 

The optimization runs using the Eldorado Utility Planning Model assumed a buildout demand 

based on 40% population increase by 2050 (State of Colorado, 2017), when the simulation time 
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horizon starts. The demands exhibit single family residential patterns, i.e. use increases 

substantially during summer months when lawns are irrigated. The irrigation demands go up 

slightly during dry years and are affected by conservation and distribution efficiency levers, but 

the baseline population demand does not change throughout the simulation. 

Because future streamflow in Colorado is highly uncertain, the set of studies associated with this 

model use several hydrologic scenarios. The scenarios relevant to this article are the 1°C- and 

4°C-warmer futures, which were chosen based on a Front Range climate change study 

(Woodbury et al., 2012). The perturbed hydrology used monthly changes (i.e. deltas) from that 

study and generated sets of stochastic headwater streamflow. The stochastic simulation first 

generates annual streamflow timeseries using a KNN resampling approach (Lall and Sharma, 

1996), which are disaggregated to monthly flows using the proportional disaggregation method 

of Nowak et al (2010). The monthly deltas from for the warming scenario from Woodbury et al 

(2012) are then applied.  

3.5 Optimization implementation 

We used the Borg MOEA for this study (Hadka and Reed, 2013), which tests have shown to 

perform similarly or favorably compared to other state-of-the-art algorithms on difficult 

benchmark problems (Reed et al., 2013; Zatarain Salazar et al., 2016). The Eldorado Utility 

Planning Model embedded in the search loop simulates the supply and usage dynamics of 

Eldorado Utility and other regional water users over 25 years (from 2050 to 2075) at a monthly 

timestep. Portfolios were tested as fully-implemented configurations of Eldorado’s system.  

Performance of each portfolio was evaluated across ten hydrologic traces, each distributed to a 

separate computing core of an Amazon Web Services Elastic Compute Cloud (EC2) instance 

(Mathew and Varia, 2014). Each distributed simulation took approximately 20 seconds. This 

relatively long simulation time prompted us to limit search to 5,000 function evaluations. 

Though this number of evaluations is lower than that of many other MOEA studies, the resulting 

tradeoff set is sufficiently large and diverse to demonstrate the MRT method. We used the 

default Borg settings except for changing initial population size from 100 to 50. 
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3.6 Heuristic analysis of Eldorado optimization tradeoffs 

3.6.1 Sample analysis using parallel axis plots 

Figure 3 presents a set of Eldorado Pareto-optimal portfolios from a 1°C-perturbed optimization 

run. We will use the set to facilitate readers’ understanding of MOEA tradeoff sets and describe 

how the Eldorado Utility Planning Model captures Front Range, Colorado, water management 

tradeoffs. The figure also offers an opportunity to demonstrate the challenge of heuristically 

analyzing the results of MOEA-assisted optimization. The performance and decision tradeoffs of 

the set of 961 portfolios are presented using parallel axis plots, which are a visual analytics 

technique commonly used in multiobjective optimization studies (Herman et al., 2014; Kasprzyk 

et al., 2013; Watson & Kasprzyk, 2017). 

 
Figure 3. Parallel plots of the tradeoff set resulting from optimizing the Eldorado Utility 

Planning Model under 1˚C-warmer hydrology. Plot (a) shows the relationships between different 

performance objectives. Plot (b) shows the portfolios of decisions that resulted in the 

performance from plot (a). Grey portfolios do not comply with the utility’s reliability policy 

(which allows up to 5, 1, and 0 years in Levels 1, 2, and 3 restrictions, respectively); compliant 

portfolios are colored based on years in Level 1 restrictions. 
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In Figure 3a, each of the seven performance objectives is represented by a vertical axis. Each of 

the 961 portfolios is represented by a segmented line that crosses each axis at the level of 

performance it achieves in that objective, where crossing lower on an axis denotes better 

performance. (Note that April 1 Storage is the only maximization objective, so even though 

higher levels of storage are better, that is still represented by lower positioning on the axis.) The 

portfolio lines are colored based on whether they comply with Eldorado’s reliability policy (grey 

portfolios are noncompliant) and then the number of years they were in Level 1 restrictions, with 

dark blue corresponding to zero years at the bottom of the leftmost axis. The “violins” on the 

axes show portfolio densities to clarify trends in performance that can be obscured due to 

overlapping lines. Figure 3b is oriented identically to Figure 3a except that there are 13 axes – 

one for each decision lever. Every portfolio line in Figure 3a has a corresponding line in Figure 

3b that conveys the amounts or levels of all of the decisions within the portfolio. The lower a line 

crosses an axis in Figure 3b, the less of that decision has been chosen. 

In Figure 3a we can see relationships between the objectives. Color enables us to tell that all of 

the dark blue portfolios with zero years in Level 1 restrictions have medium to high levels of 

New Supply (fifth axis from the left), medium to high levels of April 1 carryover storage, but 

may have anywhere from 0.2 to 15.4 MCM (200 to 12,500 AF) of New Storage (rightmost axis). 

This means that to minimize years in Level 1 restrictions, it is imperative that Eldorado obtain 

new water sources but may choose to build or avoid large amounts of new reservoir storage. 

However, portfolios that do not build much New Storage perform more poorly in April 1 Storage 

and tend to require greater volumes of New Supply. This shows an important tradeoff within the 

Eldorado model as well as on the Front Range: utilities often have to choose between meeting 

growing demands with new supplies that come from conservation and other users’ shares and 

rights, which may be socially and economically disruptive to communities, and relying on 

contentious, expensive infrastructure that is difficult to permit. 

Filtering the portfolios (here, through color) based on reliability compliance represents non-

subjective criteria that a utility might use to begin learning how portfolios’ decision attributes 

relate to performance. Working up from the bottom of the Wholesaler Shares axis in Figure 3b 

we can see that as these increase, performance in Level 1 restrictions improves. The same is true 
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for increasing levels of conservation – only green portfolios with three or more years in 

restrictions plot at the bottom, indicating that no conservation was enacted.  

3.6.2 Limitations of heuristic analysis 

Figure 3 was designed to demonstrate the specific points described in the paragraphs below it. 

That is, the order of the axes and the use of color supported a narrative. This demonstrates a 

fundamental problem with how many-dimensional datasets are presented that is exacerbated by 

the existence of user preferences: shapes, colors, and data orientation all influence perception of 

underlying system dynamics.  

Visually inspecting the parallel plots revealed useful information about tradeoffs and trends in 

two decision levers. Beyond this point in a heuristic analysis an issue arises: what is the next 

move? A manager could ask what would happen if the set was filtered to exclude portfolios that 

have any instances of restrictions. Another idea would be to exclude from the compliant set any 

portfolios that build a contentious West Slope Reservoir. Or we could try to focus on portfolios 

that have lower amounts of New Storage, but the violin in Figure 3a shows that there is no 

natural break point at which to segment the portfolios and thus the differentiation between levels 

of performance would be subjective. 

The logic effectively applied to the early stages of the heuristic analysis is the result of the 

authors’ years of expertise with MOEA tradeoff sets, parallel axis plots, and the Eldorado Utility 

system; not every MOEA user could do this. Despite having comfort and experience with the 

tradeoffs, the array of paths we suggested above shows how quickly the analysis can become 

ambiguous and potentially counterproductive: the questions that managers try to answer with the 

tradeoff set and the order in which they are asked will heavily influence perceptions which could 

then be difficult to dislodge despite re-ordering; the conditions on which the results are filtered 

may be based on preferences that are not shared by all parties involved in a planning process 

(e.g. minimizing New Storage may align with judgements about whether reservoirs are 

environmentally responsible). Even if analyses are iterative, relying heavily on conflicting 

preferences to orient filtering may increase users’ focus on different positions.   

Finally, because of computational limitations, most practical applications of MOEAs to WRSA 

problems will require users to cull hydrology. However, decisions that perform well in one set of 
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potential hydrologic futures may or may not be robust given different conditions. When MOEAs 

are used for planning under deep uncertainty, multiple rounds of optimization can be used to 

address shortcomings inherent to scenario-specific optimization (Eker and Kwakkel, 2018; 

Watson and Kasprzyk, 2017). The issues described above compound when multiple tradeoff sets 

are generated.  

The list below summarizes the general limitations of using a heuristic approach alone to analyze 

MOEA tradeoffs: 

- visual representations of many-dimensional data involve subjective decisions that can 

influence perceptions of system dynamics; 

- humans are not good at deciphering patterns across many dimensions that could include 

complex interactions; 

- predetermined decision and performance preferences may heavily influence heuristic 

analyses and prevent users of MOEA tradeoff sets from seeking or learning fundamental 

system dynamics; 

- different users’ perceptions of system dynamics resulting from subjective heuristic 

analyses could exacerbate conflict; and 

- without objective information about decision and performance dynamics it is more 

difficult to draw conclusions when working with multiple tradeoff sets.    

MRTs are a simple, automated approach to analyzing MOEA tradeoffs that produce multiple 

insights simultaneously. Including them alongside heuristic analyses of tradeoff sets provides a 

neutral and repeatable foundation that can clarify results and orient additional investigations. In 

the next section we present the results of using MRTs for feature selection and describe how 

their structure and insights can enhance system and tradeoff understanding. 

4 Results 

We performed two separate optimizations of the Eldorado Utility case study – one for the 1°C-

perturbed hydrology and one for the 4°C – and created an MRT for each set of tradeoffs. We first 

describe the results of an MRT generated from the 1°C-perturbed portfolios described in the 

previous section, and follow that discussion with an MRT from a 4°C-perturbed optimization. 

Generating two trees helps to validate the use of the MRT method on tradeoffs from the 
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Eldorado Utility case study and enables us to gain additional insights into the system behavior by 

comparing them. 

4.1 MRT for 1°C-perturbed tradeoff set 

The plot of CVRE vs. tree size shown in Figure 4 was produced by fitting an MRT to the 

Eldorado Utility 1°C-perturbed tradeoff set described in Section 3.6. We allowed the MRT 

algorithm to build a large tree based on a CP of 0.001. A very small CP value allowed us to 

analyze the progression of CVRE over the course of many splits. The minimum CVRE shown 

here is marked by the red dot (though the CVRE would likely continue to decrease very slowly 

as the tree grew) and the tree size that corresponds to the Min + 1SE rule is marked in yellow.  

 

Figure 4. CVRE vs. size of MRT for 1°C results from Eldorado Utility optimization. 

At no point does the CVRE start to increase or fully stagnate, so choosing the tree size for this 

data set is more subjective. The choice made for this study was to require that in order for a split 

to occur it must meet an error reduction threshold of at least 1% of the root error, so the CP was 

set to be 0.01. This corresponds to a tree with 14 leaves (marked by the vertical dashed line) and 

a maximum tree depth of 5 splits. The value was chosen heuristically by balancing simplicity, 



 
 

26 
 

descriptive value, and meaningful interpretation of the criterion. The next “round” CP value 

would be 0.005 and result in an unwieldy 28-leaf tree.  

Figure 5 and Figure 6 present the left and right branches, respectively, of the MRT generated 

from the 961 portfolios in the 1°C-perturbed tradeoff set described in Section 3.6. We will first 

orient the reader to the features of the tree and then discuss different approaches to analyzing it. 

 
Figure 5. Left branch of the multivariate regression tree generated from the Eldorado Utility 1˚C 

optimization tradeoffs. 
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Figure 6. Right branch of the multivariate regression tree generated from the Eldorado Utility 

1˚C optimization tradeoffs. 

At the top of the tree halves in Figure 5 and Figure 6 we see that the first split is based on the 

conservation level incorporated into each portfolio. No conservation is ConsFactor = 0, moderate 

conservation is ConsFactor = 1, and aggressive conservation is ConsFactor = 2. The left branch 

includes portfolios where ConsFactor is greater than or equal to 1.5, i.e. portfolios that have 

aggressive conservation. The number reported is the average between the levels of decision 

above and below the split. As another example, following the left branch, the next split is on the 

volume of West Slope Res. To the left are portfolios that have reservoirs up to 6.5 MCM (5300 

AF), and to the right go the portfolios that have reservoir volumes starting at 6.7 MCM (5400 

AF). The granularity of the split value depends on the increment of a decision lever (presented in 

Table 2). 

Following splits down to the leaves, each leaf has a set of boxplots: one for each of the seven 

objectives denoted by the color and ranges shown in the legend. The order of the boxplots is the 
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same as the order in which the objectives were first described, which is also their order in Figure 

3a. And, like the parallel plots, the lower a boxplot is positioned within the plot area, the better 

the performances of the portfolios within the leaf. The EV value at the bottom indicates that the 

tree explains 70.4% of the performance objective variance within the data set.  

4.1.1 Analyzing the tree: leaves-first 

Our first analysis will start at the leaves, consider the ranges of performance for the objectives, 

assert a set of priorities to direct focus on a single leaf, and then follow the branches up to the 

root to see what decision rules produced that leaf. For example, Eldorado Utility managers (and, 

by extension, managers in the Front Range who were the basis of the Eldorado model) may want 

to prioritize reliability-related objectives (Smith et al., 2019). Given that criteria, leaves that have 

boxplots that are very low with small ranges in the first three objectives (blue, grey, and red) 

would contain portfolios of interest. Examination of the leaves in Figure 5 and Figure 6 shows 

that there are three that meet that boxplot configuration- leaves 1, 2, and 6 (see Figure 5). 

Focusing on leaves 2 and 6, which are superior to Leaf 1 in years in Level 1 Restrictions, will 

help illustrate the value of MRTs and connect them to recognizable tradeoffs. Figure 7 provides a 

close-up comparison of the two sets of boxplots. 

 
Figure 7. Comparison of two leaves from the 1˚C MRT. Note that both leaves incorporate 

Aggressive Conservation and have a very similar number of Ag2 Shares. 

The decision rules that lead to Leaf 2 are: aggressive conservation; a West Slope Res smaller 

than 6.6 MCM (5350 AF); 5,200 or more shares of the Ag2 Irrigation Co.; and at least 7% of 

Industrial User’s water rights. None of the portfolios have any incidence of any level of 

restrictions, they have moderate to high volumes of MissedOpp water, a very high range of 

NewSupply (the highest range of all the leaves), medium-high April 1 carryover storage, and 
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moderate to low volumes of NewStorage. Despite having zero years in restrictions, the April 1 

carryover storage objective is not as high (i.e. positioned as low) as might be expected because 

the portfolios within the leaf have relatively low amounts of NewStorage. 

As shown in Figure 5 and emphasized in Figure 7, the path to Leaf 6 includes aggressive 

conservation, a West Slope Res 6.6 MCM (5350 AF) or larger, and at least 6300 Ag2 Shares. 

The performance ranges in Leaf 6 are notably different than in Leaf 2. Among the portfolios in 

Leaf 6, there is one occurrence of Level 1 restrictions and one occurrence of Level 2 restrictions, 

moderate volume of MissedOpp water, moderate to high NewSupply, high to moderate volumes 

of April 1 carryover storage, and high to very high volumes of NewStorage. Incorporating the 

larger West Slope Res reduced Leaf 6’s reliance on NewSupply (e.g. via the Industrial Rights 

required in Leaf 2), but the portfolios are therefore more likely to have large amounts of 

NewStorage. The patterns in these two leaves echo the tradeoff between NewSupply and 

NewStorage discussed for the parallel plot in Figure 3a. The ability to confirm these MRT results 

with surface-level visual analysis provides more confidence in the MRT findings that are harder 

to deduce heuristically, such as the importance of a large amount of Ag2Shares, which shows up 

in both leaves. 

Emphasizing leaves 2 and 6 as superior to others in reliability objectives does not preclude other 

leaves and other sets of decisions from containing portfolios that match Eldorado’s performance 

priorities. The leaves simply indicate that after sequentially splitting the portfolios based on all of 

the relationships within the tradeoff set, these particular sets of decision levers are most likely to 

result in appealing portfolios. Furthermore, the decisions in the paths to highly reliable leaves 

must still be accompanied by actions in the other decision levers; there is just more flexibility in 

the values for the levers not represented in splits.  

4.1.2 Analyzing the tree: root-first 

Analyzing the tree starting from the leaves up as described in the previous section is a way of 

asserting performance preferences and understanding which decisions are likely to lead to good 

performance. Starting from the root and working down allows users to understand the impact on 

performance of decision preferences.  
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Using the tree branch in Figure 6, we can demonstrate the four steps of a path that an Eldorado 

manager might take down the tree if a general policy of new water sources but limited reservoir 

expansion was preferred.  

1. At the first split, a manager may choose to go to the right because she or he does not 

want to have to rely on aggressive conservation to meet performance goals.  

2. At the next split, a manager may choose to go left because Wholesaler Shares are a 

reliable water source that does not require infrastructure.  

3. Next, a manager may go left to avoid a large West Slope Res because of cost, 

permitting, etc. 

4. Finally, the manager may go right to see how bad the outcomes could be if no 

conservation was enacted. 

Leaf 11 is the outcome of applying these decision preferences, and the boxplots reveal that they 

will likely result in decent performance in NewSupply and NewStorage but poor performance in 

the other objectives. This manager would have learned that the combination of decisions in this 

path will likely result in non-preferable performance regardless of the other 10 decisions in the 

portfolio.  

4.1.3 Reviewing MRT insights 

The insights gained from MRTs would likely have been difficult to obtain through heuristic 

approaches, but they should also be verified (because splits are not guaranteed to be meaningful) 

and built upon using different types of analyses. One option is to use interactive visual analytics 

software such as Tableau (Jones, 2014) to manually apply MRT splits and further explore 

portfolios within leaves of interest. As each split down a branch is applied to the dataset, for 

example by filtering on decision levers, ranges in one or more objectives should shift indicating 

that the split had meaningful impact. Figure 8 provides an example by revisiting the parallel plots 

used in Figure 3. 
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Figure 8. Parallel plots from the 1˚C Eldorado Utility tradeoff set, with the portfolios 
contained within Leaf 2 of the 1˚C MRT emphasized. 

Figure 8a and Figure 8b are oriented almost exactly like the plots in Figure 3; the only difference 

is that in this figure, color is used to distinguish the set of 27 portfolios from Leaf 2. In Figure 8a, 

the pattern and ranges of the Leaf 2 portfolios’ performance across the seven objectives matches 

the boxplots from Figure 7a. The ranges of ConsFactor, West Slope Res, Ag2Shares, and 

Industrial Rights in the decision levers in Figure 8b reflect the splits, and red dashed axis lines 

highlight the restricted ranges of those decisions. In eight of the remaining nine decision 

dimensions, there is considerable variety in potential values to accompany the constrained 
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decisions. The levels of Wholesaler Shares are almost universally very high, though, so this 

decision lever correlated closely with a split based on another decision lever and the large 

numbers of Wholesaler Shares are contributing to the preferred performance though they were 

not explicitly represented in the MRT.   

Other types of visualizations such as pair-wise scatter plots between individual decisions and 

objectives or correlation matrices between objectives and decision levers may also be helpful in 

MRT verification. If there are no identifiable relationships between the decision levers 

represented in splits and one or more objectives, users should be cautious in their interpretation 

of MRT results.  

4.2 MRT for 4°C-perturbed tradeoff set 

All previous discussions of tradeoffs, portfolios, and trees have referred to a set of portfolios 

generated from optimizing for a 1°C-warmer future. Planning in consideration of multiple 

possible future scenarios is beneficial in and of itself, and it also increases the impact of MOEA-

based MRTs. Figure 9 and Figure 10 present an MRT generated from a set of portfolios 

optimized for 4°C-perturbed hydrology. Tree size was determined by using the same logic that 

was described for the 1°C tree in Section 4.1 and the 1% error reduction criteria was used again. 

After briefly describing a few features specific to the 4°C tree, we discuss findings from 

comparing the two trees. 
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Figure 9. Left branch of the multivariate regression tree generated from the Eldorado Utility 4˚C 

optimization tradeoffs. 
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Figure 10. Right branch of the multivariate regression tree generated from the Eldorado Utility 

4˚C optimization tradeoffs. 

The root error and total number of portfolios are given at the root node of the MRT in Figure 9 

and Figure 10. Splits, leaves, boxplots, colors, and objective ranges are all oriented the same as 

in Figure 5, but note that the objective ranges are different. This is especially relevant in the first 

three objectives (years in levels of restrictions); the more challenging hydrology resulted in more 

frequent restrictions and fewer portfolios with low incidence of curtailment. The EV indicates 

that the tree explains 71.2% of the performance variance found within the tradeoff set. 

If we repeat the same leaf-first exercise from the 1°C tree, where we determined that the 

performance preference was to have minimal years in all three levels of restrictions, that criteria 
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reduces viable leaves down to two: Leaf 1 and Leaf 3 from Figure 9. The decision path to Leaf 1 

includes aggressive conservation, at least 4060 Wholesaler Shares, a West Slope Res less than 

4.3 MCM (4350 AF), and at least 7% of Industrial Users rights. The splits for Leaf 3 are, like 

Leaf 1, aggressive conservation and at least 4060 Wholesaler Shares, but then instead of a small 

West Slope Res and a percentage of Industrial rights, Leaf 3 includes a West Slope Res at least 

5.4 MCM (4350 AF) in volume. A comparison of the two leaves shows that they exhibit the 

same NewSupply-NewStorage tradeoff seen in the 1°C MRT and the original parallel plots of 

the 1°C tradeoffs. As noted for the 1°C tree, this agreement the parallel plots and the 4°C tree 

signals that the MRT is accurately capturing major dynamics while providing more detailed 

latent information. 

4.3 Comparing MRTs 

Comparing the broad characteristics of the two trees provides valuable information. First, we 

note that the decisions on which splits occur are very similar across both trees: ConsFactor, West 

Slope Res, and Industrial Rights are prominent in both trees. In the 1°C tree, Ag2 Shares are 

more important, while in the 4°C tree, Wholesaler Shares are more important. Since Wholesaler 

Shares are a western slope source and Ag2 Shares are eastern slope, this may be indicative of a 

shift in basin yields with warmer temperatures. The general agreement in splits suggests that 

these decisions are the most influential factors in a portfolio in either scenario, and this is a 

fundamental insight about the Eldorado system. 

We can expand on this general decision lever agreement by comparing sets of leaves from the 

two trees. First we will compare Leaf 2 from the 1°C tree and Leaf 1 from the 4°C tree, as shown 

in Figure 11. The decisions that lead to these leaves with very similar objective tradeoffs include 

three nearly identical splits: aggressive conservation, a medium or smaller West Slope Res, and 

approximately 7% or more of the Industrial rights. Ag2 Shares in 1°C are traded for Wholesaler 

Shares in 4°C. 
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Figure 11. Comparison of Leaf 2 from the 1˚C MRT and Leaf 1 from the 4˚C MRT. Note that 

Aggressive Conservation, West Slope Res, and Industrial Rights have identical or similar values 

in both leaves. 

Now compare Leaf 6 from the 1°C tree and Leaf 3 from the 4°C tree in Figure 12. Like the 

previous comparison, the patterns of objective performances are similar, and they share two 

almost identical splits: aggressive conservation and medium to large West Slope Res. Again, 

Ag2 Shares in 1°C are replaced by Wholesaler Shares in 4°C.  

 
Figure 12. Comparison of Leaf 6 from the 1˚C MRT and Leaf 3 from the 4˚C MRT. Note that 

these leaves both incorporate Aggressive Conservation and a moderate-to-large West Slop Res. 

The 1°C- and 4°C-perturbed hydrologies are substantially different in runoff timing, magnitude, 

and overall annual hydrograph shape. The presence of overlapping decisions across the two 

hydrologies for two fundamental planning strategies (minimizing NewStorage in Figure 11 vs. 

minimizing NewSupply in Figure 12) suggests that each strategy corresponds to a set of core 

decisions and that these decisions are robust to a wide range of futures.   
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5 Discussion 

The previous section focused on interpretation of MRTs, but we also wish to address larger 

implications of their use in both WRSA practice and research.  

5.1 Context for incorporating MRTs into tradeoff analyses 

MRTs offer an unbiased and repeatable method of using MOEA tradeoff sets to learn about 

fundamental system dynamics and gain detailed information about which decisions are likely to 

have the most impact on system performance. While these are valuable contributions, an MRT is 

not a substitute for in-depth exploration of a tradeoff set and the information it provides should 

be combined with system knowledge to ensure accurate interpretation. Ultimately, MRTs are a 

promising tool to orient and enhance other types of tradeoff set analysis, all of which require 

technical skills and expert reflection to use properly. 

5.2 Building on MRT results in practice 

Generating and interpreting MRTs can result in fundamental system insights as demonstrated in 

Section 4, but the most important benefits are derived from the different ways that the predictive 

capabilities of the trees can be used. For example, once promising leaves are identified, 

managers can build on the core strategies without having to re-run an optimization. This can 

facilitate diving into unexplored parts of the decision space or answering policy questions that 

were not formally posed in the original formulation of the optimization in a computationally 

efficient manner. The trees can also provide quick answers to what-if scenarios or emerging 

contexts, such as if a new path is needed because a reservoir does not receive a critical permit or 

a source of water that was integral to a plan is no longer available.  

The ability of MOEAs to generate a set of portfolios that have approximately-best performance 

for the many ways that tradeoffs can be balanced does not necessarily imply that the portfolio 

chosen will ultimately be contained within it; portfolios that are not strictly nondominated may 

be preferred for un-modeled reasons. The insights gained from nondominated MRTs can be used 

in a targeted exploration of dominated portfolios of interest, or MRTs could be generated using 

the full set of portfolios generated by the MOEA. 
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5.3 Future research 

The findings and limitations of this study suggest several interesting areas of additional WRSA 

MOEA research. One idea is to use insights from MRTs to learn about a problem and constrain a 

new iteration of the problem formulation to target a specific region of objective performance. 

This would be a new approach to the de Novo planning framework demonstrated by Kasprzyk et 

al (2012). The identification of robust decisions across scenarios is also a promising result that 

warrants structured analysis to develop a framework to guide the use of MRTs for this purpose. 

Another beneficial direction would be to test MRTs on different types of water resources 

applications, e.g. reservoir operations, to determine whether the results are meaningful in non-

planning contexts. We also suggest exploring the efficacy and value of combining different 

feature selection methods with WRSA tradeoff sets, and then assessing whether they are 

considered useful and usable by practitioners who have used or are interested in employing 

MOEAs in their planning processes (Smith et al., 2017).  

6 Conclusion 

The increasing prevalence of MOEA studies in WRSA research and practice calls for greater 

attention to developing tradeoff analysis tools. While tradeoff sets are complex and often 

challenging to analyze heuristically, the high dimensionality and large volume of results 

produced by MOEAs can be assets when combined with feature selection. Here we present 

MRTs, which relate performance variations within and across multiple objectives to distinct 

subsets of specific decisions, providing users with information about the most consequential 

decisions and their most productive ranges.  

Using the Eldorado Utility Planning Model, we demonstrated multiple types of analysis that can 

be performed with MRTs. Starting with the MRT leaves, managers may identify groups of 

portfolios that correspond to their performance priorities and learn which decision splits were 

critical to arriving at promising leaves. Alternatively, starting at the top of the tree and following 

decision splits down based on decision preferences provides information about how these 

preferences impact performance across multiple objectives. Finally, comparing leaves from 

different trees may shed light on decisions that perform well across multiple futures. Insights 

gained from all of these approaches can inform in-depth exploration of the tradeoff set and 

prompt new policy questions.  
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MRTs are versatile, simple to generate, and present easily comprehensible insights that may not 

be apparent during heuristic analyses of tradeoff sets. They overcome mostly or entirely the 

limitations described in this paper: the only subjective choice required in the visual 

representation of the tradeoffs is the order in which performance boxplots are places; they find 

patterns across many dimensions in an objective and repeatable process that eliminates the 

possibility of interference from user preferences that can skew perceptions and exacerbate 

conflict; and they provide an objective basis on which to compare multiple tradeoff sets.    

Appendix 

This appendix presents the underlying equations for the seven objectives qualitatively described 

in Section 3.3.2.  

MOEA-assisted optimization evaluates performance based on an objective function vector, F(x), 

where x is the portfolio defined by decision lever values (described and defined in Section 3.3.2). 

Each value in the vector results from calculating a separate objective, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.  

Equation A-1 

F(x) = (𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1,𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2,𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3,𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , ) 

∀ 𝐱𝐱 ∈ Ω 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1, 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2, and 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3 are restrictions-based reliability measures. Restriction levels 

are triggered based on April 1 storage levels, which are used by Front Range, Colorado, utilities 

to assess their system status for the upcoming year. In the model, restrictions are represented by 

reductions in outdoor water use (while indoor use is never curtailed). Table A-1 summarizes the 

restriction triggers and impacts. 

Table A-1. Storage-based triggers and water-use impacts of restriction levels. 

Current Storage-to-Long-
Term Avg Annual Demand 

Restriction 
Level 

Resulting 
Indoor Use 

Resulting 
Outdoor Use 

> = 75% 0 100% 100% 
< 75% 1 100% 80% 
< 50% 2 100% 50% 
< 25% 3 100% 0% 
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where “Current Storage-to-Long-Term Avg Annual Demand” is defined as  

Equation A-2 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 1

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
 × 100 

 

The three restrictions objectives are calculated as follows: 

Minimize the number of years that Eldorado spends in Level 1 Restrictions: 

Equation A-3 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1(𝐱𝐱) = 𝐸𝐸 ��𝑦𝑦𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖=1

𝑌𝑌

𝑖𝑖=1

�
𝑡𝑡

 

 

Minimize the number of years that Eldorado spends in Level 2 Restrictions: 

Equation A-4 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2(𝐱𝐱) = 𝐸𝐸 ��𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖=2

𝑌𝑌

𝑖𝑖=1

�
𝑡𝑡

 

 

Minimize the number of years that Eldorado spends in Level 3 Restrictions: 

Equation A-5 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3(𝐱𝐱) = 𝐸𝐸 ��𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖=3

𝑌𝑌

𝑖𝑖=1

�
𝑡𝑡

 

where 𝑌𝑌 is the number of years simulated per 𝑡𝑡 traces in the hydrologic ensemble. Expectation 

notation, 𝐸𝐸[ ], denotes that the average across the traces was used. 

The optimization seeks to minimize the fourth objective, 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which measures how 

efficiently Eldorado uses its supplies and system components to meet demands. It is affected by 
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whether the utility can capitalize on reusable water and also whether Eldorado acquires an 

overabundance of Wholesaler or Ag2 shares. 

Equation A-6 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐱𝐱) =  

𝐸𝐸 �
1
𝑌𝑌
�(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

𝑌𝑌

𝑖𝑖=1

+ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖�
𝑡𝑡

 

 

Objective five, 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, is also minimized, and quantifies the amount of “new” water that the 

utility acquires form shares and other water users or creates through conservation. 

Equation A-7 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐱𝐱)

=  𝐸𝐸 �
1
𝑌𝑌
�

(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: 
𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴3,𝑅𝑅𝑖𝑖𝑖𝑖ℎ𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

𝑖𝑖

𝑌𝑌

𝑖𝑖=1

�
𝑡𝑡

 

 

The sixth objective, 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, seeks to maximize the amount of water Eldorado has in 

carryover storage on April 1 of every year. 

Equation A-8 

𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐱𝐱) =  𝐸𝐸 �𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉
𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

� × 100�
𝑡𝑡
 

where 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 denotes that the objective is calculated using the minimum annual value over the 

course of the simulation. 

The final objective, 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, minimizes the total volume of new storage that Eldorado builds. 
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Equation A-9 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐱𝐱) =  �[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑅𝑅𝑅𝑅𝑅𝑅 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, (𝐺𝐺𝐺𝐺 ∗ 0.99 𝑀𝑀𝑀𝑀𝑀𝑀)] 

Note that GP is multiplied by 0.99 MCM (800 AF) because the GP lever is on/off or 1/0, but the 

volume added is 0.99 MCM (800 AF). 

The optimization was subject to a single constraint- there could be no instance of unmet indoor 

demand: 

Equation A-10 

𝑐𝑐𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 0 
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