RESTRICTIONS ON NLC GRAPH GRAMMARS*

by
Andrzej Ehrenfeuchtl, Michael G. Mainl,
and Grzegorz Rozenbergl'2
CU-CS5-258-83 September, 1983

All correspondence to M. Main or G. Rozenberqg.

* A, Ehrenfeucht and G. Rozenberg were supported in part
by National Science Foundation Grant MCS 79-03838. M. Main

has been supported in part by a grant from the University of
Colorado Council on Research and Creative Work.

(1) Department of Computer Science, Univeristy of Colorado,
Bouldexr CO 80309, USA.
(2) Institute of Applied Mathematics and Computer

Science,
University of Leiden, The Netherlands.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND Do
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

T

RESTRICTIONS ON NLC GRAPH GRAMMARS*

Andrze] Fhrenfeucht!, Michael G. Main! and Grzegorz Rozenberg!-?

ABSTRACT

Several models of "graph grammars” have been studied with the objective of gen-
erating graphs from graphs using a finite set of derivation rules. In this way, possibly
infinite sets of graphs (called graph lengueges) can be finitely defined, One aspect that
must be addressed in any such model is the "embedding problem” -- that is: When a
production is applied, how does the new subgraph get reconnected to the original

graph? Node-label control {NLC) grammars solve this problem in an elegant way that
depends only on the labels of nodes in the new and original graphs. This paper examines
certain restrictions on NLC grammars similar to the Chomsky or Greibach normal forms
for context-free string grammars. For example, one restriction we consider requires
each production to produce a terminal labeled node - similar to Greibach normal form.
We also consider restrictions on the form which the embedding mechanism can take.
Our result is that each of the restrictions we examine causes a reduction in generating
power for the grammars, Finally, we discuss some directions for future research on NLC

grammars.

* A, Ehrenfeucht and G. Rozenberg were supported in part by National Science Foundation Grant MCS-79-
03838. M. Main has been supported in part by a grant from the University of Colorado Council on Research and
Creative Work.,

(1) Department of Computer Science, University of Colorado, Boulder, CO 80309, USA.
() Institute of Applied Mathematics and Computer Science, University of Leiden, Leiden, The Netherlands.

1. INTRODUCTION

Graph grammars provide a mechanism for generating sets of graphs. A survey of
these graph grammars has been given by Nagl, together with a list of numerous applica-
tions such as pattern recognition, semantics of programming languages, data flow
analysis and code optimization [9]. A procedure for transforming graphs which is com-
mon to most "sequential” graph grammars is described as follows [9,10] (by "graph’ we

refer to an undirected, node-labeled, finite graph),

Assume we have a graph which we want to transform using a production o«-f, where

o and f are graphs. Then one follows these four steps:

(1) Locate some instance of a particular subgraph o in the graph to be transformed;
(2) Delete this instance of the subgraph ¢

(3) Introduce a new subgraph £,

(4) Using some fixed algerithm, embed the new subgraph 8 in the remaining nodes of

the graph.

Thus, there is a major difference between applying a graph production a-f and epplying
the analogous string preduction: for a string production, there is no need to specify how
the new substring is to be embedded in the original string. Hence, an important facet of
any model of graph grammars is the method for embedding an introduced subgraph into

the nodes of the original graph.

A model of graph grammars introduced in [4] provides a simple solution to the
embedding problem: the embedding of an introduced subgraph is entirely controlled by
labels of node. These grammars are-called nodedobel controlled graph grammars
(abbreviated NLC grammars), and the sets of graphs which they generate are NLC
languoges. A number of properties of these graph languages have been recently studied

[5,6.7.8].

This paper sets several restrictions on NLC grammars and examines the generative

power of the resulting subclasses of grarnmars. The restrictions are of two types:
(1) Restrictions on the sort of productions which may be used.

() Restrictions on how an introduced subgraph may be embedded in the original

graph.

Restrictions of the first type are familiar in string grammars -- for example, the restric-
tion of context-free grammars to Chomsky normal form [1,3,11] or Greibach normal

form [2,3,11].

The first restriction we consider is based on Chomsky normal forra. A Key property
of a Chomsky normal form grammar is that the right side of any production has length
two or less. The usefulness of this form is that any context-free language can be gen-
erated by such a grammar. The similar restriction that we place on NLC grammars is to
limit the right side of any production to a graph with at most k nodes, where k=2 is
sorne fixed integer. Such a grarmmar is called k-ary. We show that this restriction
reduces the generating power of NLC grammars. In fact, for any k, there are finite
languages which no k-ary grammar generates. Directly from this result we can demon-

strate certain simple infinite languages that no NLC grammar generates.

The second production restriction we consider is based on Greibach normal form
for context-free string grammsrs. In a Greibach normal form grammar, the right side of
each production always consists of a single terminal symbol followed by a string of non-
terminals. Once again, every context-free language is generated by sorme Greibach nor-
mal form grammar. Such a grammar is useful in parsing a language or building a push-
down automaton to accept the ianguagéi The similar restriction we place on NLC gram-
mars is to require the right side of each production to contain at least one terminal-
labeled node. We show that this restriction reduces the generating power of NLC gram-

mars. That is, there are NLC languages which cannot be generated by a grammar with

this restriction.

Finally, we consider three restrictioﬁs of the second type - i.e., restricting the
embedding mechanism. Two of these restrictions capture an ingredient of generative
determinism which has no direct counterpart in string grammars, but which could be
useful in developing parsing algorithms. The third restriction introduces an element of
symmetry in the embedding mechanism, which would be useful in extending the NLC
model to parallel rewrite systems. These three restrictions which we consider all resuit

in a reduction in the generative power of NLU grammars.

NOTATION: If ¥ is a finite alphabet, then Gy denotes the set of all (finite, undirected)
graphs with node labels from £. If o is a graph and v is a node of « with label X, then we

call v an X-node. The number of nodes in o is denoted by |a].

2. NLC GRAMMARS

A (graph) languoge is a set of graphs with node labels from some fixed finite set of
symbols. Graph languages can be generated using graph grammars, and in particular
using NLC grammars. The production rules of an NLC grammar are similar to those of a
context-free string grammar; the embedding component is specified by means of a con-

nection relation. Formally, an NLC grammar is defined as follows:
Definition: An NLC grammar is a five-tuple (£,4 P,5,C), where:

L is a finite set of labels,

Ais a proper subset of I, called ferminal labels.

P ig a finite set of productions; each production has the form X - o, where X is a nonter-

minal label (X € %—A) and « is a graph from Gs.

S is a special nonterminal called the start symbol.

4 :

C is a binary relation CCZxE, called the connection relation. []

This definition of an NLC grammar is more general than the original [4] in that it allows

|
i
|

the right side of a producticn to be the empty graph. However, this is an inessential

difference.

Let G = (X,AP,5,C) be an NLC grammar. The way that a production X- a of P is

applied to transform a graph is as follows:

(1) Start with a graph u and a specific occurrence of an X-node in . We call this node

the maother node. The set of nodes which are directly connected to the mother

node is called the neighborhood.
(2) Delete the mother node from the graph u, and call the resulting graph u&'.

(3) Add to u a copy of the labeled graph a. This new occurrence of o is called the
doughter graph.

(4) For each pair (Y,Z) in the connection relation, connect ewery Y-node in the

daughter graph to every Z-node in the neighborhood.

Call the resulting graph 7. We write 22??) to denote the relation "n is direcily derived

from pin G".
If there exists a finite sequence of transformations:
Dmy, 2
Ho i my s P Hm

&
then we write g :{?Mm and say that u,, is derived from ug in &. The finite sequence is

called a derivation of length m, When G is understood, we will simplify the notation to

*
M =10 Ly P ey,

The language generated by the grammaor G, also called an NLC languange, is the set

of all graphs with terminal labels, which can be derived from the one-node graph with

label S. That is:

LG)={pneGalS %uiv

(Here we have used S to denote the one-node graph with label S'.)

A B D

Example: Suppose we have a production A - in an NLC grammar with

connection relation C = {(4,D),(B.B),(B.D)]. We could apply this production to the

graphD 4 B 4 in two different ways. One possibility is to remove the leftmost A-

node and replace it by the subgraphu——w‘g.

FEmbedding this subgraph according to

the connection relation T gives this result:

Another possibility is to apply the production to the rightmost A-nede. This results in

the graph:
A
D A B B>
D

Fxzample: Consider G = (£,A,P,S.C), where £ = {S.,a}, A=1{a}, C=IxE and P con-

tains these two productions:

n
4
$
I

L0
L4
®

Clearly L{G) consists of all nonempty complete graphs with every node labeled a. If we

change the connection relation to contain only the pair (a,a), then the language

‘becomes the set of nonempty chains with every node labeled a. D :
We finish this section with some preliminary results on NLC languages.

’Deﬁnition: For any integer k=0, an NLC grammar is called k-ary provided that each
production X- a has |a|=<k, An erosing production is a production X- A, where A is the
empty graph. []

Erasing productions for graph graminars are similar to erasing productions for
context-free string grammars [3,11] — and like the string grammars, erasing produc-
tions may always be eliminated from an NLC grammar (unless A itself is being gen-
erated). In fact, these productions can be eliminated without increasing the arity of the

grammar:

Theorem 2.1. [et k=0 be on integer and G = (LAP,5,C) be a k-ary grammar, Then
there erxists o k-ary grammaor G' = (3,A,P,S,C) such thot P' contains no erasing produc-

tions and L(G') = L(G)~{A}. []

The proof of this theorem {s virtually identical to the corresponding proof for context-

free string grammars [11, Theorem 86.2].

In general, there may be several different derivations of a particular graph in a
given grammar. For example, consider the grammar with ¥ = {5,X,a}, A = {a}, C con-

taining {z,2) and {(@,5), and these four produclions:

Here are two derivations of the same three-node graph:

a

S a SXq Sa%:}

Q
o

S X S _aX

S5 = e = e K (LGLE{,

i a—-—————g = e————s

The first of these derivations has the following property: at the last point in the deriva-
tion where the graph has fewer than three nodes, there is exactly one nonterminal label.
Such situations are useful in analyzing derivations, and this leads us to the following

notiorn

Let u be a graph with |p|=n > 1. A derivation of & in an NLC grammar is called con-
strained if at the last point in the derivation where the graph has fewer than n nodes,
there is exactly one nonterminal. If a graph is derivable in some grammar, there may
or may not be a constrained derivation of it. (Compare this to the situation for string
grammars.) However, the following theorem does guarantee that some constrained

derivations exist.

Theorem 2.2. et u be o groph with |p] > 1, and let G be an NLC grammar with no eras-
ing productions, If u € L{G), then there exists o graph n such that 7 has a constrained
derivation in G and n differs from y only in ifs edges.

Proof: The proof consists of a medification of a derivation of i to achieve a constrained
derivation. The modification may change the edges in the final graph, but it will not

change the number or labels of nodes, Begin with a derivation of w:

S D o B PN
We focus our attention on the last graph in this sequence with fewer than |u| nodes, and
call this graph the crifical graph. At this point, a production, say X - o, is applied to a
particular X-node which we will call ¢. After this point, the only sort of productions

which are applied are relabeling of nodes -- since any other sort of production increases

the number of nodes beyond |u|. So. a new derivation is given in this way:

(1) Up to the critical graph, the modified derivation is identical to that of u.

{8) At this point we skip the rewriting of the node e. Instead, we look at each of the
nodes cother than e and apply productions from the latter part of the g derivation

to bring the labels to terminals.

{3) Finally, to the node e, we apply the production X - «, ¢reating some new nodes. By
applying productions from the latter part of the w derivation we can bring all the

labels of o to terminals.

Thiz is obviously a constrained derivation and the resulting graph is identical to g,

except for its edges. []

Corollary 2.3. Lel & be an NLC grammuor with no erasing produclions and lef n> 1 be un
integer. If G generates exactly one graph p with |p|=n, then there is o constrained

derivation of pin G []

Theorem 2.4. lel G be an NLC gramunar and suppose that for every integer m=0, there
exists w graph u € L(G) such that u has the subgraph.:

a b o b a b

&

(2mnodes)

Then gither (a,b) or (b) is in the connection relation of G.

Proof: The proof is by contradiction. Suppose neither {a,b) nor (5,2) is in the connec-
tion relation of ¢. Then the only way a subgraph of the given form can be constructed is
if it appears whole in the daughter graph of some production. Since each daughter
graph is finite, this implies an infinite number of preductions -- but the number of pro-

ductions is also finite. []

3. RESTRICTIONS ON PRODUCTIONS

We have already introduced one restriction on productions: the k-ary grammars.
Recall that an NLC grammar is called k-ary provided that every production X- « has

|o|=k. The first result of this section shows that for every k, the k-ary grammars are

less powerful than general NLC-grammars:

Theorem 3.1. {lefk>1 be an infeger and define u to bs the following graph:

o a
| 41 D—m & +3 nodes
[i3

Ay k-ory grommar which generates y must also generafe anolher graph with k+3

nudeg,

Prool: Assume to the contrary that G is a k-ary NLC grammar and p is the only £+3
node graph & generales. By Thecorem 2.1 we may assume that & contains no erasing
productions, hence by Corollary 2.3 there must be a constrained derivation of w. At
sorme point in this cconstrained derivation there is a step £ =»v¥ with |f]| <k+3 and
|7l =k +8. Consider the daughter graph o which has been inserted at this step, and its
corresponding neighborhood (i.e., the neighborhood of the mother node). Each node in
the neighborhood is already labeled a (since the derivation is constrained), and eventu-

ally each node in o will be relabeled with a. The key observations are these:

s The neighborhood must contain at least two nodes, for otherwise the final graph

cannot be of the required form (i.e., it won't contain a Hamiltonian cycle).

. At least two nodes in o must remain connected to some node in the neighborhoed,

for otherwise the final graph cannot contain a Hamiltenian cycle.

¢ Any node in « which remains connected to part of the neighborhood must remain
connected to all of the neighborhood, because every node in the neighborhood is

labeled identically.

From these three observations, it follows that the final graph has a subgraph like this:

10

Q ¢

X.

from the from o
neighborhood

But no such subgraph occurs in ©. By this contradiction we conclude that every k-ary

grarmmar that generates u also generates some other k +3 node graph. D

Corollary 3.2. For every k=0, there are NLC languoges that are not generaled by any
k-ary NLC grammar, (In particular, the finite language containing only the graph g of

Theorem 3.1 is NLC but not k-ary.)

Corollary 3.3. Consider the infinite sequence of graphs:

a 4} a a
AN ¥
s
Ma 42 o o
o

No infinite subset of this sequence is an NLC longuage, []

The second restriction on NLC grammars thatl we consider is to require each pro-

duction to preduce at least one terminal.

Definition: An NLC grammar is called posifive if for every production X - ¢, the graph «

contains at least one terminal label. []

Obviously any NLC language containing the empty graph cannot be generated by a posi-
five grammar. We will show that there are also NLC languages without the emptly graph
which are not generated by any pasitivé grammar. The method is as follews: letk>1 be
an integer. We will define a graph 7, which is not generated by any k-ary positive gram-
mar. The graph 7, contains 8{k +1) nodes which we will denote by triples <z,y,2> with

zef{lBland y €{1,238] and 2z € {1,2,....k+1}. Each node in 7, is labeled by 'a’, and a

11

node <z,y,;.z,> is connected to another node <z, ys2y> iff ,=x, or Y17Yg OF 2,52,

Note these properties that 7 has:

Property 1: Among any three nodes in 7, at least two are connected {since the

xz-coordinate has only two possible values).
Property 2: Every node in 7, is disconnected from exactly 2k other nodes.

Property 3: For any two nodes of 7, the number of other nodes from which they

are mutually disconnected is at most 2k —2.

Theorem 3.4. Let k>1 be an integer. The graph 7, is not generated by any k-ary posi-

tive grammar,

Proof: Suppose to the contrary that G is a k-ary positive grammar genevating 1,. The
connection relation of ¢ must contain (a,a), otherwise & cannot generate any con-
nected graph with more than k¥ nodes. Consider a derivation of 7, in the grammar G.
Somewhere in this derivation, the number of nodes increases from some number less
than 8{k+1) to exactly 6{k+1). We will focus on one of the new terminal nodes created
at this step of the derivation. This new terminal node is labeled by a, and subsequent
steps in the derivation cannot disconnect it from any other node. (This is because sub-
sequent steps may only relabel an existing node with a, and (a,a) is in the connection
relation.) Thus, at the time of its creation, the new terminal node is disconnected from
exactly 2k other nodes (by property 2). Where could these 2k nodes be? At least k+1 of
them must be outside the new daughter graph, since this daughter graph has at most &
nodes. We will call these the "outside disconnected nodes”, and consider these two

cases for their location:

Case 1: In this case, two or more of the outside disconnected nodes are in the
neighborhood of the new daughter graph. Let X and Y be the labels of two such

outside disconnected nodes. Neither X nor ¥ is equal to a, since (a,2) is in the

12

connection relation. So, eventually, we will have to change both the X and the ¥ to
label @. But this will disconnect these two outside nodes from each other, since
neither (2 ,X) nor (a,Y) is in the connection relation. This creates three mutually

disconnected nodes, which contradicts property 1.

Case 2: In this case, one or zero of the cutside disconnected nodes are in the neigh-
borhood of the daughter graph. This implies that at least one of the outside discon-
nected nodes is not in the neighborhood. Notice that such a node must be discon-
hected from every node in the new daughter graph. This implies that any two nodes
in the daughter graph are connected to each other (by property 1). Hence, there
must be exaclly 2k oulside disconnected nodes. At least 2k —1 of these are not in
the neighborhood. These 2k — 1 nodes must all be disconnected from the entirity of

the new daughter graph. But this contradicts property 3.

By these contradictions, we conolude that & cannot generate 7. []

Corollary 3.5. Lel A be any nonemply alphobet, The NLC language Gpy—{A| consisting

of all nonempty graphs over A is not generated by any positive grammar. [}

4. RESTRICTIONS ON THE CONNECTION RELATION

An NLC grammar { = (5,AP,5,C) is called funcfional if its connection relation
CcExZ is a partial function -~ i.e., for every X € & there is at most one Y € 3 with
(X,Y) € C. The grammar is called inverse functional if the inverse of the connection
relation is a partial function -- i.e., for every ¥ € I there is at most one X € I with
(X,Y) € C. The grammar is called symmetric if the connection relation is symmetric ~
t.e., whenever (X,Y) is in C, then (¥,X) is also in C. In this section we show that all three

of these restrictions reduce the generating power of NLC grammmars.

13

The case of functional and inverse functional grammars are treated simultaneously
using the language Gy of all graphs with terminal labels {a,b}. It is easy to give an
NLC grammar for this language. Thus, the following theorem shows that the functional

and inverse functional restrictions reduce the generating power of NLC grammars:

Theorem 4.1. The NLC language Gy 4y s not generated by ony funciional or inverse

Junctional NLC grammauor,
Proof: The language contains arbitrarily long chains of the form A o % and
5% S By Theorem 2.4, this implies that both (z,¢) and (b,5) are in the

connection relation of any grarumar for Gy ;. The language also contains arbitrarily
long chains of the form

g b o & a b

Again, by Theorem 2.4, this implies that either (a,b) or (b,a) is in the connection rela-
tion of any grammar for Gy, ;. Either of these choices (that is (@.b) or (b,u)) makes
the connection relation neither functional nor inverse functional, []

The case of symmetric gramimars needs a more complex language. We define a

language I with terminal alphabet {a,b}. The language contains these two sorts of

graphs:

(1) Any odd length chain, for example = 8 8% %8 % ¢ B

{2) Any graph with 4m nodes {m=1) in a circle. If read with the proper orientation the

labels of these nodes must be aabbaabd. .., like this:

¢ — 4w, nodes

14

It is not difficult to construct a non-symrmetric grammar for L. The nonterminal label

setisL = {S, 7. X,Y,R A, Az 5} with S as the start symbol. The productions are these:

o L Hoe
S
g 1 T Y X
- T~>‘¥
R—-bAi B B AZ K
anqf Xoe
AIQ‘ Y»ac% }Q.Zi
_A2-4 4
Babn
R—;qi

The connection relation contains any pair where the first component is a.b or X, plus
the pairs (4;.2), (4, 4z) and (R,b). Any derivation that starts with the production & -7
will derive an odd length chain. The other derivations generate the cyclic graphs of L.
Thus, L is an NLC language; but the following theorem shows it is not generated by any

gymmetric grammar.

Theorem 4.2. No symmetric NLC grammaor generales the NLC language L.

Proof: Suppose to the contrary that G is a k-ary symmetric grammar generating L
(k>0). We will need some properties concerning &. First, by Thecrem 2.1 we may
assume that G has no erasing productions. Second, by Theorem 2.4 we know that (a,a),
(b.b) and at least one of (a,b) or (&,a) are in the connection relation of G. But, since G
is symmetric, this means that all of {{a,a),(a,b),(b.a),(b b} is in the connection rela-

tion, that is:

Terminal Property: Any two terminals are related by the connection relation.

The rest of the proof deals with the unique graph in 7 with 4k nodes. We call this graph

¢ end note that it has the following property:

15

Disconnection Property: Let u be any subgraph of ¢ with 2< |u]<k. Then every
node in u is disconnected from at least one neighbor of p. (The neighbors of i are

the nodes which are not in u, but which are directly connected to some node of 4.)

Now, consider a derivation of 0. By Theorem 2.3 we may assume this is a constrained
derivation. At some point in the derivation the number of nodes increases from some
number less than 4k to exactly 4. We will focus on the new daughter graph created at
this peint. Since the derivation is constrained, the neighborhood of this daughter graph
containg only terminal nodes. But, by the disconnection property, every node in the
daughter graph must disconnect from at least one node in the neighborhood, This
implies that every node in the daughter graph is initially labeled with a nonterminal {by

the terminal property).

Consider some particular node in the daughter graph. Eventually this must be labeled
with a nonterminal X which causes the node to disconnect from a neighbor node.
Without loss of generality, we may assume this neighbor node is labeled b --4.e., neither
{X.%) nor (b,X) is in the connection relation. But, suppose after the daughter graph is

ereated we apply these productions:

(1) Change the label of the particular daughter node to X (or leave it alone if it is
already X).

(2) Change every other label to a terminal.
(3) Change the X-node to a terminal label.

This results in a 4k node graph that contains a node which is not connected to any
b-node. Such a graph deesn’t cccur in L, and by this contradiction we conclude that no

syrmameétric grarnmar generates L, []

16

5. DISCUSSION

We have shown that a number of restrictions on NLC gra&xmars reduce the genera-
tive power. In particular, restrictions which correspond to "Chomsky normal form" and
"Greibach normal form' are not normal forms for the NLC grammars. The guestion
remains as to what "useful” restrictions do not reduce the generating power -- that is,
what normal forms exist for NLC grammars? Particularly desirable are normal forms

that would aid in developing parsing techniques.

A question that remains unanswered is the power of functicnal, inverse functional
and symmetric grammars for a one-letter terminal alphabet. (Our results apply only to
alphabets of size two or more). A second question to be investigated is exactly how the
classes of languages generated by the restricted grammars differs from arbitrary NLC
languages. We are particularly interested in the class of languages generated by sym-
metric grammars because such a restriction is a natural choice when extending NLC

grammars Lo parallel rewrite systems,

&y

(®)

(3)

(4)

(5)

(6)

(7)

(8)

(@

17

References

N. Chomsky. On certain formal properties of grammars, Information and Control 2
(1959), 137-167.

3.A. Greibach. A new normal form theorem for context-free phrase structure gram-
mars, JACH 12 (1965), 42-562.

J.E. Hoperoft and J.D. Ullman, miroduction fo Automofa Theory, Langucges and
Computation, Addison-Wesley, Reading, MA., 1979,

D. Janssens and G. Rozenberg. On the structure of node-label controlled graph
languages, Information Sciences 20 (1980), 191-2186,

D. Janssens and G. Rozenberg. Restrictions, extensions and variations of NLC gram-
mars, Informution Sciences 20 (1980), 217-244.

D. Janssens and G. Rozenberg, Decision problems for node-label controlled graph
grammars, JCSS 22 (1981), 144-177.

D. Janssens and G. Rozenberg. A characterization of context-free string languages
by directed node-label controlled graph grammars, Acta Informaticn 16 (1981), 63-
B5.

D. Janssens and G. Rozenberg. Graph grammars with neighbourhood controlled
embedding, TCS 21 (198R), 55-74.

M. Nagl. A tutorial and bibliographical survey on graph grammars, in: Graph-
Grammars and Their Application to Computer Science and Bilology (V. Claus, H.
Ehrig and G. Rozenberg, eds), LNCS 73, Springer-Verlag, Berlin (1978), 70-126.

(10) B.K. Rosen. Deriving graphs from graphs by applying a production, Acta Informa-

tica 4 (1975), 337-357.

(11) A. Balomaa, Formal Languages, Academic Press, New York, 1973,

