THIS RERORT SUPERSEQE
TR % |3 TS witt
APPEAR 1N TEEE
summeR 1975 Eoimon.

n%’r

Computer System Monitors*

by

Gary J. Nutt

Department of Computer Science — —
University of Colorado
Boulder, Colorado 80302

January, 1975

* This work was supported by the National Science Founda-

tion under Grant Numbers GJ-660 and GJ-42251. A preliminary
version of this report appeared under the title “"Computer
System Monitoring Techniques"”, University of Colorado, Depart-
ment of Computer Science Technical Report No. CU-CS-013-73.



INTRODUCTION

The most important questions to be answered before
attempting to monitor a machine agre determining what to
measure and why the measurement should be taken. There
1s no general answer to these questions although g
comprehensive set of considerations has besn discussed
elsewhere [3,16]. Tre following example indicates some
of the considérations involved. Suppose one is interested
in tuning a medium scale system which utilizes virtusl
memory to support s bateh multiprcgramming strategy. The
nature of the Job load isg g major factor in determnining
system performance; the mix may be monovolized by I/0-
bound jobs which utilize very little procesgsor time, In
this case, the bottleneck might be the mass storage
system or the peripheral devices,. Resource utilization
of the peripheral devices may indicate bottlenecks at
that point: hWlgh mass storage utilization may not be
attributable only to the I/C operations, but may be gig-
nificantly influenced by the virtual memory replacement
policy. Processor utilization in twis system is also an
insufficient measure for most purposes, since the over-
head time for spooling, multiprogramming, and virtual
memory may be unknown, A more useful measurement for
operating system policy studies would quantify vprocessor
utilization for the user as well as for each function of
interest in the operating system. From this example,

one can see that the Varilety of evaluation Objectives



and computer systems causes the determination of what
and why to be largely a weuristic problem.

The purpose of this paper, then, is not to answer
the two critical guestions stated above, nor to survey

the entire field of computer measurement but to provide

an, introduction to the considerations involved in how to
measure computer system performance once the what and

why have been determined. In the following subsections,
some basic terminology is first introduced and basic
motivational factors are discussed. Twe next section
describes séveral quantities that deserve consideration

in choosing a method of monitoring. Finally, the alter-
native monitoring techniques of software monitoring, hard%

ware monitoring, and hybrid monitoring are described,



Baslc Terminology

The following basic definitions of often-used terms
are given as a basis for further discussion of monitoring
techniques. These definitions are descriptive rather
than rigorous, since precision usually depends on the
rarticular project at hand.

The throughput rate of a computer system ig the

average number of task completions prer unit time. This
description of throughput suffers from snblgulity in thre
definition of a task completion. Some possible defini-
tions establish the time required for task completion as
the time required for a task to fulfill central processor
execution. Alternatively, task time may be thwe sum of
queue times for input and output as well as the time
during which the task Was active, i.e., resident in the
primary memory. In an interactive system, a task can be
considered to be gz single response to g request made by
an interactive user.

A definition cf'turnaround time is also vague, due
to the problems mentioned in conjunction withw determining

throughput., The average turnaround or response time is

the average amount of time required for the system to
complete a task. Effective turnaround to tve batch user
not only includes machine residency, but also includes
the time that the user walts for an operator to place his
deck of cards into a reader and the time span from orint

completion until the operator returns g listing., Twe



L
effective response time for an interactive system corre-
sponds to the system response time. In many cases, the
significant portion of turnaround is due to the time re-
quired for human action.

A resource in g computer system will be considered
to be any portion of the hardware or software system
which must be allocated to a job in order for the Job to
vcontinue execution, For eXample, a hardware resource
might be a tape drive, a vortion of the primary memory,
or the central processor. A software resource might be
a reentrant compiler, a Supervisor call, or an -4nput

spooling routine. Resource utilization is usually defined

as the fractioﬁ of real time during whick the glven
resource has been allocated to a Job. At other times
(e.g. in consldering resources that always belong to the
operating system such as the area of primary mamory
containing system tables) the resource utilization is
determined as the fraction of real time during which the
resource is actually in use. Thus resource utilization
is often determined by the level of analysis of the
system. In most cases, the applicable definition is
obvious, |

The competition for allocatable system resources

can create performance bottlenecks in which some of the

competing jobs are prevented from progressing due to the
previous allocation of g desired resource. The most

common instance of such 5 bottleneck results when several



5

jobs are frequently requesting the central processor; if
the set of jobs requesting the CPU is almost always
nonempty, then the progression of activity for these
Jobs 1s impeded and the central processor is said to be
a bottleneck. Other frequent bottlenecks in a system are
the primary memory and the disk system in a multiprogrammed
computer,

The job load (or work load) of a computer system
is the set of all programs, data, and commands that are
submitted to the computer system for subsequent execution.
A major factor in determining any measure of pggzgymance
of the system ig the coerresponding job load of tggksystem.
There are several ways to Characterize a bateh or time
sharing workload, and some of these techniques are dis-

cussed in the next section.

A system profile is g graphic representation of the

activity of various resources of twe system, [4,8,9],

In Figure 1, a typical systenm profile of thwe activity of

a CPU and a channel are shown as they might wave been
obtained twrrough s monitoring session. The figure
indicates the total activity of each unit, the fraction

of time in which eXactly one 1is busy, the fraction of time
that both units sre busy, and the fraction of time that
nelther is busy. Cockrum and Crockett presen£ a thorough
analysis of the use of system profiles for predicting the

effect of changing the operating rates of either of the

constltuents, [87,



Motivation for Monitoring

Some specific motivational factors for monitoring a
computer system are: to tune software, to imvrove the
system/user interface, to determine tre character of a
Job load, to investigate resource utilization, or to
provide data for system models. Each of these toples
are briefly discussed below.

Many installations provide a simple vprogram to be
run in conjunction with the target program in a multi-
programmed (or multiprocessor) system which monitors the
execution of the target code [5,6,38,47]. Twe simplest
form of program monitor gathers ao distributionwg?:instruc~
tlion fetch addresses. These data: indicate heavily used
portions of code and can be uséd to optimize twe user
program by expending more effort on Writing efficient
code, perhaps at the assembly language level, for the
heavily used portions. Monitoring the execution of the
user code can also lead to the discovery of inefficient
data structures which result 1n extra amounts of memory
access or bit manipulation.

More general studies of user programs have been made
to understand the structure of the program. Tigh level
language measurements can be used to understand full
statement execution frequencies and the resulting time
required for the statement execution [23,36]. #easure-

ments at the statement level often require modification

to the user program.



The implementation of virtual memory systems on production systems
has Ted to the need for monitoring a program to thermine its demand
on the paging (or segmentation) algorithms (e.g. see reference [26]).
The programmer can drastically influence the number of page faults
by the locality of his program.

Much effort has been expended measuring the job Toad on a computer
system [12, 19, 42]; These studies are generally motivated by the
desire to understand how the magnitude and character of the job load
will grow; Measurement of users often results in some characteriza~
tion of the Toad that can be used for selection studies or that can be
used to drive models of systems for new designs or system tuning. Job
Toad studies also include measurements of the user of a givé;‘system
to determine the relative ease of use of that system, [11]. For
example, how much tfme does it take a naive user to learn how to use
a batch system compared with the time required to Tearn how to use an
interactive system? Given that the users know how to use the respective
systems, what amount of time is required to solve certain problems,
i.e., construct a program that computes the desired result? What
are the attitudes of the users toward the respective systems? Questions
of this nature are considered by Gold and others [15].

Characterization of the user into certain classes is not always
the approach used in a performance evaluation study, especially if
the load is being analyzed to drive a model of a prospective system.

It is possible to use a real job load by establishing a trace of the
actual load placed on a given system. This trace can then be subjected
directly to the model, without actually measuring the wer and his

characteristics [7, 30, 40].



8

The most popular reason for monitoring the activity of a computer
system is to measure resource utilization in order to determine bottle-~
necks to throughput and/or turnaround time. Countless examples of
this motivation for enteriﬁg @ monitoring study exist in the literature,
(e.g. see the bibliographies in the papers by Bell [2]; Drummond, [9];
Estrin et al [11]; Goodman, [16]; Lucas [24]; Miller, [27]). It might
also be desirable to monitor resource utilization to investigate the
relative merits of implementing a system function in either hardware
or software {e;ga see reference [177).

A final motivation for measurement is the desire to obtain data
to verify the representativeness of a mode]. Suppose that an abstract
model of a given system is constructed, and the validity of the model
must be insured. Measures can be taken on the target system and on
the model, as they are both operating on the same job load. The

resulting measurements should compare favorably for a valid model, [30].



FACTORS IN CHOOSING A TECHNIQUE
Some Trade-Offs

The choice of a method of monitoring system performance must
consider a number of trade-offs or alternatives. The first trade-
off involves the sensing of the status of the system. One may choose
to record every occurrence of a selected number of events (called

full trace monitoring), or alternatively, the monitor may sample the

status of the system at selected intervals of time. The full trace
method of monitoring may result in an exorbitant amount of data, with
the accompanying problems of recording and analysis. However, the
complete reaction of the machine is known. Sampiing the system status
can reduce the volume of data, but introduces new problems concerned
with the number of samples taken over the observed period of time and
the randomness with which the samples are taken. One must ensure that
a sufficient number of éamp?es have been taken in which the randomness
of sampling is not synchronized with the occurrence of the variables
being measured in the host system.

Indications of system activity can sometimes be measured by
monitoring software events or hardware events. At other times, neither
measure by itself may be entirely sufficient. Consider a study of
drum input/output activity, where it is desired to know the distribu-
tion of access times. The drum access time is initiated by a "START
I/0" command (see figure 2). At some later time the I/0 is initiated
on the drum, causing {hardware) latency time to be the limiting factor
toward the goal of accomplishing the access.

At time tos the drum is positjoned under the read/write head and

the actual drum I/0 transfer starts and lasts until time t3‘ At time



10

t4, the central processor is interrupted to inform the requesting
process that the I/0 operation is complete. By monitoring the software,
the fSTART I/0" and "I/0 COMPLETE" signals can be recorded and the time
interval, t4—t0, is the time required for the drum I/0. If the re-
sulting access time is deemed to be unusually high, the software events
will not tell the analyst why the time span is long; it may be due to
poor scheduling, the time interval given by t}wtog or it may be the
result of latency time, t2~t}. A hardware-event measurement will pro-
vide the time interval to-tss but does not indicate the scheduling time
required. Hence, in this example, measuring either the software exclu-
sively or the hardware exclusively may lead to no insightﬂin;o a bottle-
neck to drum 1/0. M

The choice of the Tevel of monitoring must be made when planning a
measurement study. Will the goals of the study be satisfied using
macroscopic analysis such as turnaround times, peripheral equipment
utilization, etc.? Or is it necessary to drop the level of evaluation
to the microscopic level of the previous example. We shall generally
differentiate between macroscopic and microscopic monitoring by noting
the time units involved in the measurements. Although there is no
clear-cut boundary, macroscopic analysis can be thought of as analysis
in which the time units involved are seconds, minutes, or hours. Micro-
scopic analysis is characterized by measuring performance in terms of
milliseconds or microseconds. The total time for monitoring at the
macroscopic level might be a matter of hours and for the microscopic
level, a matter of seconds.

The data collected byva perfqrmance monitor must be analyzed at

some time, either in real time as it is collected (sometimes called



11

continuous monitoring) or later by a normal batch program. Many of

the earlier monitors were developed to collect data and save it on an
auxiliary medium such as magnetic tape for Tater batch processing,
(e.g; see references [21] and [457). However, at Teast some online
data reduction and presentation has been shown to be quite useful;

(e.g. see references [5] and [18], with more detailed reports being

produced in the offline mode.



12

Methodology

The Tevel of sophistication of monitoring techniques varies from
simple human observation of the machine to complex hardware or soft-
ware monitors. In the following subsection, five different monitoring
methods are introduced;

The simplest form of system monitoring is human observation of an
active machine. Bell points out some faudfc and visual clues" to
understanding where inefficiencies might exist [2]. He nates”that a
piece of unit record equipment emits a sound whenever it processes a
record. In a multiprogrammed system suffering from severe disk con-
tention, a synchronized printing pattern from the several printers
may result when printing output files. This is caused by the movement
of the disk head from track to track, providing output data first to
one printer and then another. When one of the Jine printers becomes
idle, the other printers increase their tempo, indicating faster
operation.

The system consale can also provide an indicator of system ac-
tivity. The IBM System/360 has a WAIT Tight on the console that is
turned on whenever the central processor is in the wait state. Ob-
serving patterns and relative times that the WAIT Tight is turned on
can help to show the analyst when central processor utilization is Tow.
In some cases, the programmer can detect heavily used portions of code
by observing the address indicator Tights on the console.

Peripheral equipment use can also provide clues to inefficiency.
Whenever a magnetic tape is backspaced and re-read, inefficiency may
exist either due to error reads or writes or to inefficient programs

employing the backspace command. It is always possible that there is



13

a good reason for what appears to be inefficiency. The human observa-
tion is only useful in giving the analyst clues to inefficiency, but
does not always point directly to a performance bug.

A step up in the level of sophistication of monitoring, is the use
of & system accounting Tog to indicate system inefficiency. A system
log provides some high 1eve? information on the performance of the machine
in the form of job occupancy times, processor charge times, unit record
equipment utilization, etc. The monitoring is performed as a part of
the accounting system and is available to the analyst for some high
level evaluation. Accouﬁting log analysis will be discussed in the

software monitor section.

otz

In the absence of performance data from human observafgbn or the
accounting Tog, data may be obtained by one of three general methods:
Hardware monitoring, software monitoring, or through the use of a

hybrid of hardware and software monitoring. A hardware monitor is both

logically and physically distinct from the host computer (i.e. the

computer being measured). A software monitor is an integral part of

the software of the host system and is both logically and physically

a part of the host system. A hybrid monitor usually employs a physi-

cally separate set of hardware components that are activated by the
software of the host system; thus it is logically a part of the host
system, but physically distinct. Detailed discussions of each type

of monitor are presented subsequently.



14

Some Potential Pitfalls

Thére are three general problems to be faced when obtaining
performance data (echuding the question of what to measure): the
introduction of artifact; provision of a suitable clock; and deter-
mining what can be measured with the given tool.

Artifact is the effect on the target system that is caused by the
introduction of a monitoring device. The introduction of artifact
into a system can be very serious or may not affect the system to any
noticeable degree. It is critical thaﬁ the amount of disturbance
caused by the measurement device be well understood. This is not
always the case in monitoring. For example, it has been mentioned
that the system accounting log can be used to obtain systemdgeasurements.
Is it reasonable, then, to relate accounting Tog overhead to measure-
ment, or is that a natural function of the system? Suppose that it is
agreed that the accounting Tog maintenance is a standard system
function; many systems are modified so that the accounting 199 contains
more information than accounting information, e.g., queue dwell times,
resource utilization statistics, etc. Does this modification introduce
measurement artifact or simply more system overhead? These questions
may only be answered for a particular installation with its particular
set of circumstances.

In other situations, the artifact is well-defined and taken into
consideration. For example, the CDC 6000 series has an architecture
which provides for ten peripheral processors in addition to the central
processor. It is possible to use one of the peripheral processors
as a hardware monitor [45]. The amount of disturbance due to the

removal of one peripheral processor from the system can be accounted



15

for if the particular system daes not suffer from pgriphera1 processor
saturation. Under the saturation case, tﬁe effect of removing a
peripheral processor from the set of available resources is critical
and difficult to quantify.

Software monitors are implemented as a portion of the host system.
The measure of artifact is often determined to be the amount of central
processor overhead to execute the monitor code. The effect of memory
contention introduced by the monitor in accessing tables or using an
output controller, channel, and device is often not cans?deréd.

Gathering system data which is to be analyzed requires the existence
of a clock which the monitor can readily access. In the»gg;glof a
hardware monitor the clock may be a component of the monitd;ﬁitse?f,
or the host system clock may be used. . Software monitors must rely on
the system provided clock, thus it can introduce artifact if it accesses
the clock frequently enough to prevent normal system functions from
reading the clock;

Internal clocks are maintained by the éystem supervisor. An
external device provides signals which are interpreted as clock “ticks"
and cause some memory cell to be incremented for each tick. In some
systems, the supervisor is interrupted, (with a high priority interrupt)
whenever it is time to increment the clock memory Tocation. In other
systems, the supervisory code is written so that the supervisor must
check the external device and effect an incrementation as a function
of the amount of code executed in the program. If another program
reads the external device to maintain its own memory word clock,
there is the danger of interfering with the supervisor when‘it needs

to access the external device.



16

Clock resolution for a measurement device is critical to the
interpretation of the data gathered from the host system [44]. If
resolution is too large, i.e., the time between ticks is excessive,
the clock may not be appropriate for the measurement of events that
take place within a relatively short amount of time. The amount of
time separating event occurrences will be lost. If a clock with in-
sufficient resb1ution is used to time the duration of certain events,
the durations may be measured as requiring zero amount of time. If
clock resolution is too fine, other problems may plague the analyst.

Any memory cell of n bits which is incremented at each tick of the clock
will cycle through the entire range of (integer) times inwgfmﬁime units.
Hence, if the time space of interest in the measurement is‘gﬁéh greater
than 2" time units, the meaning of the clock reading will be ambiguous.

A final general problem in choosing a monitor is to decide what
measurements are possible in a given system. Suppose that analysis of
memory references is to be made in a certain (short) time span. Then
the monitoring device must be capable of recording the occurrence of
an event in the same amount of time as the memory cycle time (or
faster). A1l of this collected data must somehow be saved for further
analysis, hence a clever method of storing a mass of data must be present
in the monitor. A case in which the design of the monitor has influenced

the system design is discussed by Ferrari, [13].



17

Data Presentétfon

The variety of methods for data presentation is Timited
only by the imagination of the analyst. Among the most popular means
of describing the monitored data is the histogram and the system
profile. Histograms can be used to illustrate a distribution of turn-
around or response time; resource utilization, etc. much more effect]ve-
1y than by providing a mean and variance. An example of a system
profile was previously given to illustrate resource utilization and
overlap. Recently, Kolence and Kiviat have introduced a radial repre-
sentation of data that is useful in describing a system profile, [22, 31]

o

A Kiviat figure is a circle with unit radius and various axis emanating

from the center of the circle to the circumference. Fach axis repre-
sents a fraction of the total time during which the corresponding
condition associated with the axis is true. The system profile shown
in Figure 1 can be drawn as a Kiviat figure as shown in Figure 3a,
where the axis at "12 o'clock” corresponds to "cpu actiVe”, the axis

at "4 o'clock" represents ”channeitactive", and the axis at "8 o'clock"
represents the condition "cpu and channel active". If the cpu and
channel had been 100% busy; i.e. full overlap, the resulting Kiviat
figure would be as shown in Figure 3b., Although the figures have not

withstood the test of time, they seem to be quite promising, [25, 41].



18

PURE SOFTWARE MONITORING METHODS

During the Tate sixties software monitoring was the
most popu1ar of the techniques discussed in this paper. This probably
resulted from the popularity of performance evaluation in multiprogrammed
systems by people with strong software backgrounds (i.e. system pro-
grammers) and the trend toward more complex software systems in general.
Only more recently have hardware and hybrid monitoring techniques been
widely used. Each software monitor is highly dependent upon the parti-
cular operating system of the host machine: the structure of the opérating
system and its tables dictate the structure of the software monitor.,
Although there is no general form of software monitor, one can classify‘
the techniques as follows: System accounting logs, interrupt-driven
monitors, and sampling monitors. Many studies incorporate more than

one technique, (e.g. see references [5, 31, 38]).

System Accounting Logs

A system accounting log is provided with most operating
systems, particularly if the jeb cost is a function of the amount of
various resources used by ﬁhe job. The simplest system log provides,
as a normal operating system activity, messages that indicate the time
of day for which various activities occur and the job name to which
each activity is related. The content of individual messages indicates
the time at which a job becomes active, i.e., is loaded into primary
memory; when the job becomes inactive, i.e., releases the prfmary
memory space; the amount of central processor time charged to the job;
the amount of I/0 time charged to the job; the amount of primary memory
used within each job step; and the initiation and termination time of

day for each job step. Typically, peripheral equipment assignments



19

are also provided by the system accounting log. Given this minimum
amount of information about each job that is processed by the system,
a substantial understanding of the activity can be obtained by analyzing
this data by another program. The analysis program can be designed
to read the system accounting log, synthesizing system activity by
the occurrence of the individual messages. The resulting analysis
will provide statistics of chargeable central processor activity,
primary memory uti]fzat?on, I/0 resource utilization, and peripheral
equipment assignment time. Data is also available to determine the
distribution of turnaround time (with respect to primary memory
activity), the distribution of the level of multiprogramming, and an
indication of the average throughput rate for the analysis period.
With some ingenuity, the simplified system accounting log can be used
to obtain even more data about the operation of the machine (for example,
see references [33, 41, 48]). |

Since some system Togs include even more information than
the minimum amount discussed above, correspondingly more performance
information can be obtained from the standard system log. For example,
if calls to Tanguage proceésors Cause a message to be written to the
log, their respective frequency of use can be obtained. It is some-
timeé possible to derive compile-to-execution time ratios for these
systems, if compiler call and termination messages both appear in the
system log.

As the system log provides a medium for understanding the
system activity, it also allows one to study the characteristics of
the job load. The various jobs that enter the machine are recorded as
well as a few of their characteristics. Hunt et al have used the

system accounting Tog to derive job classes representing the various



20

types of users in a univarsity environment [19].

The existence of a capability to provide a system Tog has
led some investigators to take advantage of this capability to obtain
more measures about system activity. Stanley describes a Job Accounting
System that has been written for a real-time operating system for an
IBM 360 [44]. The Job Accounting System gathers the usual accounting
statistics in addition to certain desirable data for performance
evaluation studies. Additional data that 1s gathered includes I/0
frequencies, system I/0 wait time, time for which the central processor
is in the wait state but at Teast one I/0 device is operational,
system idle time, and system task central processor time. The resulting
analysis provides a more detajled report of system activity. Stanley
reports that the inclusion of the extra monitoring activity reduces
processing capabilities by about one percent (in terms of the amount
of central processor and memory used).

System accounting Togs are a rather Timited medium for
obtaining performance measures, their primary asset being that accounting
log analysis causes very Eittle disruption to the normal activity of
the computing center. It is generally not possible to obtain sample
data using the method, but a macroscopic trace of system events is

provided.

Interrupt-Intercept Monitors

An interrupt-driven operating system is one in which each
invocation of a portion of the operating system is caused by an interrupt,
a trap, or a supervisor call. For example, cpu scheduling takes place

when a time-slice interrupt or a request for I/0 occurs; another por-



21

tion of the I/0 routines is activated with an I/0 complete interrupt;
etc. Since these interruption points occur whenever the state of sys-
tem resources is changed, they are a Togical time to carry out monitoring
activity. The scheme, perhaps best discussed by Keefe, [20]; is to
intercept each interrupt as it occurs by modifying the interrupt branch
table to cause control to be passed directly to a monitoring routine
rather than to the operating system interrupt handler. The monitoring
routine can then analyze the cause of interruption and inspect system
tables before passing the interrupt on to the operating systém.
A simple eXampIe ilTustrating the interrupt-intercept

monitor is provided by Saltzer and Gintel] [38]. Supposgﬂ}bgre is a
time slice interrupt for central processor ’muTtipIexing. 'fhen at the
end of a time sTice, an interrupt occurs which is intercepted by the
software monitor. The monitor then reads and records the contents of
the instruction counter register, and returns control to the central
processor scheduling portion of the supervisor. The resulting data
can be sorted to provide a distribution of addresses and their frequency
of access by the control unit.

| Using the interrupt-intercept method a trace of system
activity is easily obtained, as explained by Cantrell and Ellison,
[6]. 1In the GECOS operating system, major events include central
processor allocation, servicing various interrupts, processor mode
changes (slave-to-master and vice versa),‘memory compaction, swapping,
etc. Each event occurrence results in a message being written to a
circular Tist and eventually being written on an output device. The
content of each message is dependent upon the kind of event that has
been sensed. It is possible to mask out each type of event if the

event is of no interest to the current analysis. The capability can



22

be used as a very powerfu? monitqriﬁg device fqr systgm activity or
any activity of a subset of the total system. This trace mode is used
only during monitoring periods, thus the artifact introduced by the
built-in monitor affects overall performance only during analysis
periods; In the same operating system, Campbell and Heffner ". . . have
found that the normal traces cause a system speed degradation of only
a few percent;f [5; p; 90716

The interrupt-intercept method of system monitoring has the
distincﬁ advantage of allowing measurements to be taken as an integral
part of the system rather than as an intruder. It is difficult to
assess the exact amount of artifact in terms of extra tables or counters
included in the system introduced by such an approach. If the system
is to be monitored at aIT; this inclusion of tools as a part of the
operating system is the cleanest approach to software monitoring. The
time artifact for the method of monitoring can be exorbitant. However,
the amount of artifact is relatively easy to obtain. It is also re-
quired that the sdftware monitoring program run at a very high priority,

to prevent other interrupts from deactivating the monitor.

Sampling Monitors

Sampling monitors are the easiest type of monitor to imple-
ment. They require the least amount of operating system modification,
but may introduce a significant amount of processor time, memory
space, and I/0 artifact. The concept is simple, and the implementa-
tion of a simple sampling monitor can be accomplished by fnon«system

programmers," although a thorough knowledge of the system structure

is required.



23

A sampling software monitor may be written as a normal
user program for a maltiprogramming system. The monitor is activated
at (possibly random) periods of time to read the contents of the operating
system tabTes; The‘operating system interface must include provisions
for monitor activation and; if there is a memory access protection
mechanism, allow the monitoring program to read the various system
tables. The particular tables that the monitof accesses are a function
of what tables are available and what tables contain information of
interest. The selection of inter-sample periods is critical in that
it must not be synchronized with the occurrence of events which are
being measured by the monitor. A discussion of a commercia1}y«avai?ab?e
sampling software monitor can be found in reference [21],M;Héfe a set
of monitors for various versions of IBM SYSTEM/360 operating systems
are described. Another example of a simple sampling monitor is pro-
vided by Waite, [47]. In this example, the monitor inspects the user's
location counter to obtain a distribution of memory references. The
resulting histogram is useful in spotting heavily referenced portions

of the program, indicating areas where code optimization can be fruit-

ful.



24

PURE HARDWARE MONITORS

A pure hardware monitor is a unit that is both physically and
Iogicé]1y distinct from the computer system being measured. The inter-
face between the monitor and the device is Timited to physical probes
used to pass electronic signals from the host computer to the moni-
toring device; A very simple example is now given to illustrate the
concepts invo?ved;

By recording the IBM SYSTEM/360 WAIT Tight activation, an indica-
tion of central processor activity can be obtained. Stang and South-
gate describe a simple and inexpensive method for monitoring the WAIT
light [43]. A connector is inserted between the bulb andwi;§wsocket;
the connector provides leads that can be connected through various
circuitry to a strip chart recorder. Circuitry is included to remove
noise and control the rate of operation of the strip chart recorder.
The resu]ting trace represents central processor utilization.

Activity of Togical combinations of units can be recorded if each
event of interest has a corresponding Tight on the system console.
Connectors may be insertedkin the proper sockets, providing leads to
the monitoring device. The leads from the console are then routed

through logical AND or OR gates before recording, indicating when

multiple resources are active.

The Components of a Hardware Monitor

More general hardware monitors employ the same basic technique
as discussed above (see Figure 4). The critical item needed for a
hardware monitor is the existence of some electronic signal that indi-
cates the occurrence of an event. It is not always possible to monitor

console Tights, since many events take place that do not have a



25

corresponding light. However, there is usually a signal on some circuit
in the machine. The signal may be of relatively low voltage and the
introduction of a moniteoring probe can disturb the normal reaction of
that circuit. Most internal circuits are designed such that they do

not have the power to drive ekternai monitors. To circumvent this
problem, high impedance probes can be used in the place of an "alligator
;1ipf. A high impedance probe does not draw enough power from the

host circuit to cause any adverse reaction. The signal that is ob-
ser?ed by the probe is amplified and passed to a signal filter for
subsequent processing. The particular probe used for any circuit

family must have certain properties in order to accomplish this task.
The impedance Tevel, pulse duration, inter-pulse duration, and pulse ,
Tevel all enter into the design of the probe, (see the paper by Noe

for a discussion of these considerations, [32]).

Once a signal has been sensed, it is routed to the combinationa1
Togic unit of the monitor. This unit, available on most hardware
monitors, is provided to allow masking and combination of signals.

For example, a probe may be recording processor activity, and another
may be recording channel éativity. The combinational Togic unit can
cause any logical combination of those events to be recorded. By con-
necting the probe leads to a logical AND unit, an event occurrence is
recorded whenever both the processor and the channel are active. If
the two probes are connected to an exclusive OR unit, sequential
activity of the two host components is recorded. This unit may also
filter certain}signals by ignoring them under a predetermined set of
circumstances, [1, 14, 28, 35]. The Togic of the combinational unit

is frequently determined by a plughoard, although more sophisticated



26

hardware monitors may use software within the monitor itself to
select Togical combinations of signals. The outputs from the combi-
national unit are then routed to a Time and Count unit.

The Time and Count unit contains a set of registers, sometimes
consisting of a small memory module, to temporarily record either the
amount of time for which some signal exists or the number of times
that the signal is sensed. The meaning of the contents of a counter
is determined by the Tocation of the probes in the host machine and
the status of the combination unit. The process of determining which
counters to increment provides the greatest variance in the architecture
of different hardware monitors. In the simplest case, a decoder can
be used to break a set of related signals corresponding to a channel
number or address into a single signal associated with that channel
number or address. The single signal is then used to increment a
single counter (register) or to begin accumulating a time for which the
signal state is constant, (e.g. see references [1, 9]). For example,

a 4 x 16 decoder can be used on a 16-bit address to determine the
frequency with which 4K pages are referenced. In Figure 5, the most
significant four bits of the address are passed through the combination
unit to a decoder in the Time and Count unit. A signal on the set of
four lines is decoded to activate exactly one of the lines leading to

@ counter. Decoders with more inputs and outputs can be used to handle
smaller page sizes and/or larger addresses.

Fryer, [14], and Murphy, [28], as well as others use an associative
(content addressable) memory to aid in event recognition. The basic
approach is to save the sensor state (i.e. configuration of a set of

signals) in the index field of the associative memory if it has not



27
previously been entered; if the state has a?ready been saved as an
index, the associative memory indicates a "hit" at the memory address
containing that state. In either case, a corresponding memory Tocation
in a random access memory can then be incremented to save the event
count. Other Time and Count units may incorporate comparators for
signal comparison and sequencers to detect a predetermined sequence of
events as sensed by the monitor; Drummond provides a good explanation
of the use of these components, [9].

A hardware monitor may be designed to periodically dump counter
contents to a mass storage device after sensing a particular set of
signals, or periodically in order to prevent counter overflows. The
mass storage recording medium most often employed in a hardware moni-
tor is magnetic tape; Magnetic tape has the advantage of being
relatively ineXpensive without being too slow to be used for gathering
Targe amounts of data in a short period of time. A third virtue of
magnetic tape is that it is machine processable by another computer.
The current real-time clock reading is included with each record
written to the mass storage medium, to be used for off-line analysis.
In order to minimize databloss during the monitor write cycle, either
the monitoring process must be suspended or some form of buffering
must be used.

Alternatively, the monitor may be used to do online analysis of
the accumulated data, to provide the analyst with an immediate indi-
cation of the performance of the machine. (Even those monitors that
do no online analysis provide a minimal amount of feedback to the
analyst via console 1ights or registers,) This online analysis does

not preclude further offline analysis and has been found to be extremely



28

useful in various performance evaluation studies, [1, 5, 35]. The

current trend in hardware monitors is to include this capability.



29

HYBRID MONITORS

In the previocus two sections, pure software and pure hardware
monitors have been described. Software monitors have the advantage of
being able to relate event occurrences with the stimulus of the event,
since the monitor is usually a part of the operating system and s
cognizant of the set of processes currently active. Unfortunately,
software monitors are notka]ways able to take a needed measure, due
to the Timitations inherent to the instruction set of the host machine:
this form of monitoring can also be criticized for its either un-
determined or exorbitant amount of time artifact introduced by the
monitor. Hardware monitors are capable of sensing a wide variety of
hardware and software events but are Timited in their ability in
detecting the stimulus for the set of responses. An apparent panacea
is the merging of the two techniques to form a hybrid monitor, [11].

The underlying premise of the hybrid monitor is that a hardware
monitoring device is not invisible to the operating system, but
instead, 1t is treated as an "intelligent peripheral device" which can
be used by a software monitor portion of the operating system, [18].
Nemeth and Rovner, [297, describe a facility of a system that incor-
porates built-in sensors and event counters that may be allocated to
users one-at-a-time (i.e. "serially reuseable") under the control of
software. The device has been used to derive an online histogram of
subroutine utilization, to investigate virtual memory performance of
a single program, and other similar tasks. The allocation of the
hardware portion of the monitor has provided the ability to establish
the cause-effect reTationshipg The paper by Stevens, [45], describes

another application of a hybrid monitor approach using the existing



30

hardware of a system, (this approach has also been employed by Control
Data in their ”PARTNER? monitor, [49]). 1In this case, the Control
Data 6000 series computer system architecture includes at Teast one
central processor and ten peripheral processors. A peripheral proc-
essor (PP) can be viewed as a very intelligent channel with a private
memory; the PP is an allocatable resource that communicates with periph-
eral devices and with the central memory. The approach is to allocate
the PP along with a tape drive to a user job (which may or may not be
dormant); the PP then executes a program from its local memory to
sample the state of the system via the operating system tables and the
peripheral equipment status indicators.

More recent hybrid monitors have been built in which the hard-
ware monitor portion takes on the character of the monitors described
in the previous section, [1, 10, 17, 18, 37, 39, 46]. These monitors
are characterized by the use of a minicomputer to control the functions
of the hardware monitor under the direction of data obtained via the
hardware probes and additional information passed to the monitor
through programmed data transfers. The system/monitor interface
technique used by Hughes and Cronshaw, [18], and by Ruud, [37], best
iTlustrate the trend toward hybrid monitoring and so that technique
will be described.

Figure 6 is a block diagram of a hardware monitoring device
integrated into the host system as a peripheral device. Without the
connection to a data channel, the system is no different from previously
described hardware monitors. This additional data path (e.g. a

direct memory access channel) can be used to pass information, in-

cluding interrupts, both ways between the monitor and the host system.



31

In order to detect a sofﬁwarg event in the host system, the operating
system portion of the monitor can pass an interrupt to the external
monitor, causing subsequent data transfers identifying appropriate

causes of the condition, or the external portion of the monitor can be
stimulated by the status of the usual hardware probes. The hardware
monitor may also interrupt the host machine to cause software status
information to be passed to the monitor via the channel. In this manner,
the most significant 1iability of the pure hardware monitoring technique
can be overcome, i.e., causal relationships can be defined. In addition,
the power of a hardware monitor is added to the software monitoring
technique, allowing for more extensive measurements to be taken. The

p roblem of software monitor artifact still exists, but the effect can

be minimized.

The existence of the minicomputer in the monitor also allows for
much broader use of the unit than could be expected of the earlier hard-
ware monitors. The minicomputer can be programmed to reconfigure the
combinational Togic unit upon detecting conditions either via the
probes or direct host machine control. The operation of the Time and
Count unit can also grow more sophisticated by employing the minicomputer
to detect pertinent conditions for recording. The minicomputer also
offers the ability to produce reasonably comprehensive online reports
and could also be used to produce even more detailed summary reports
whenever it is not being used to control monitoring.

From this discussion of hybrid monitoring techniques, it is
apparent that sophisticated monitors of the immediate future will be
of this class. Perhaps the most important consideration in assessing

this technique is the cost of employing such a monitor to obtain



32

performance evaluation data; If the particuiar circumstances surrounding
the need for measurements require only that the average turnaround

time be determined, it would be unreasonable to pTace such a large
investment in a monitoring device when an accounting Tog analysis would
accomplish thevgoai; Thus we close our discussion of monitoring
techniques as we opened it: The questions of what to measure and why

the measurement should be taken must be first considered before choosing
a monitoring technique. Only after some criteria have been chosen can

one consider monitoring techniques.



BIBLIOGRAPHY

10.

11.

12.

13.

14.

15.

AschenbrenneV; R; A., Am%ot; L., and Natarajan, N. K;g "The .
Neurotron Monitor System", Proceedings of the FJCC, Vol. 39, PP .
31-37, 1971. oo

Bell, T. E., "Performance Determination - The Selection of Tools,
If Any", Proceedings of the NCC, Vol. 42, pp. 31-38, 1973.

Bell, T. E;, Boehm; B. W., and Watson, R. A., "Framework and
Initial Phases for Computer Performance Improvement", Proceedings
of the FJCC, Vol. 41, Part II, pp. 1141-1154, 1972.

Bonner, A. J., "Using System Monitor Output to Improve Performance",
IBM Systems Journal, Vol. 8, No. 4, pp. 290-298, 1969.

Campbell, D. J., and Heffner, W. J., "Measurement and Analysis of
Large Operating Systems during System Development", Proceedings of
the FJCC, Vol. 33, pp. 903-914, 1968. :

Cantrell, H. N;, and Ellison, A, L., “Multiprogramming System
Performance Measurement and Analysis”, Proceedings of the SJCC,
Vol. 32, pp. 213-221, 1968.

Cheng, P. S., "Trace-Driven Systen Modeling", IBM Systems Journal,
Vol. 8, No. 4, pp. 289-290, 1969.

Cockrum, J. C., and Crockett, E. D., "Interpreting Results of a
Hardware Systems Monitor", Proceedings of the SJCC, Vol. 38, pp.
23-28, 1971. ‘

Drummond, M. E., Evaluation and Measurement Techniques for Digital
Computer Systems, Prentice-Hall, 1973.

Estrin, G., Hopkins, D., Coggan, R., and Crockers, S. D., "SNUPER
Computer--A Computer in Instrumentation Automation®, Proceedings
of the SJCC, Vol. 30, pp. 645-656, 1967. '

Estrin, G., Muntz, R. R., and Uzgalis, "Modeling, Measurement and
Computer Power", Proceedings of the SJcC, Vol. 40, pp. 725-738, 1972,

Ferrari, D., "Workload Characterization and Selection in Computer
Performance Measurement", IEEE Computer, Vol. 5, No. 4, pp. 18-24,
July/August 1972.

Ferrari, D., "Architecture and Instrumentation in a Modular
Interactive System", IEEE Computer, Vol. 6, No. 11, pp. 25-29,
Nov., 1973,

Fryer, R. E., "The Memory Bus Monitor -- A New Device for Developing
Real-Time Systems", Proceedings of the NCC, Vol. 43, pp. 75-79, 1972.

Gold, M. M., "Time-Sharing and Batch Processing: An Experimental
Comparison of their Values in a Problem-Solving Situation",
Communications of the ACM, Vol. 12, No. 5, pp. 249-259, May 1969.



16.

17.

18.

19.

20,

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

Goodman, A. F., "Measurement of Computer Systems", Proceedings of
the FJCC, Vol. 41, Part II, pp. 669-680, 1972.

Hakozaki, K., Yamamoto, M., Ono, T., Ohno, N., and Umemura; M.,
"Design and Evaluation System for Computer Architecture", Pro-
ceedings of the NCC, Vol. 42, pp. 81-86, 1973.

Hughes, J., and Cronshaw, D., "On Using a Hardware Monitor as an
InteTligent Peripheral”, ACM SIGMETRICS Performance Evaluation
Review, Vol. 2, No. 4, pp. 3-19, Dec., 1973.

Hunt, E. B;, Diehr, G., and Garnatz, D., "Who are the Users: An
Analysis of Computer Use in a University Computer Center", Pro-
ceedings of the SJCC, Vol. 38, pp. 231-238, 1971.

Keefe, D. D., "Hierarchical Control Programs for System Evaluation",
IBM Systems Journal, Vol. 7, No. 2, pp. 123-133, 1968.

Kolence, K; N;, "A Software View of Measurement Tools", Datamation,
Vol. 17, No. 1, pp. 32-38, January, 1971.

Kolence, K. W., and Kiviat, P. J., "Software Unit Profiles and
Kiviat Figures", ACM SIGMETRICS Performance Evaluation Review,
Vol. 3, No. 1, pp. 34-39, March 1973.

Knuth, D. E., "An Empirical Study of Fortran Programs", Software --
Practice and Experience, Vol. 1, 1971.

Lucas, H. C.; "Performance Evaluation and Monitoring", Computing
Surveys, Vol. 3, No. 3, pp. 79-92, September 1971.

Merrill, H. E. B., "A Technique for Comparative Analysis of Kiviat
Graphs", ACM SIGMETRICS Performance Evaluation Review, Vol. 3,
No. 1, pp. 34-39, March, 1974.

Millbrandt, W. W., and Rodriguez-Rosell, J., "An Interactive

Program Evaluation"”, Proceedings of the NCC, Vol. 43, pp. 153~
158, 1974.

Miller, E. F., "Bibliography on Techniques of Computer Performance
Analysis", IEEE Computer, Vol. 5, No. 5, pp. 39-47, September, 1972.

Murphy, R. W., "The System Logic and Usage Recorder", Proceedings
of the FJCC, Vol. 35, pp. 219-229, 1969.

Nemeth, A. G., and Rovner, P. D., "User Program Measurement in. a

Time-Shared Environment", Communications of the ACM, Vol. 14,
No. 10, pp. 661-666, October, 1971.

Noe, J. D., and Nutt, G. J., "Validation of a Trace-Driven CDC
6400 Simulation", Proceedings of the SJCC, Vol. 40, pp. 749-757,
1972.

Noe, J. D., and Runstein, N. W., "Continuous Computer Performance
Monitoring", Unpublished paper, July, 1973.



33.
34.
35.
36.
-37.
38.
,39*

40.

41.
42.
43.

44,
45,

46.

Noe, J. D., "Acquiring and Using a Hardware Monitor", Datamation,
Vol. 20, No. 4, pp. 89-95, April, 1974.

Nutt, G. J., "Computer System Resource Requirements of Novice
Programming Students", University of Colorado, Department of

- Computer Science Technical Report No. CU-CS-039-74, 1974, (to

appear in Software--Practice and Experience).

Pinkerton, T. B., "Performance Monitoring in a Time-Sharing System",
Communications of the ACM, Vol. 12, No. 11, pp. 608-617, Nov., 1969.

Roek, D. J., and Emerson, W. C., "A Hardware Instrumentation Approach
to Evaluation of Large Scale Systems", Proceedings of the ACM
National Conference, pp. 351-367, 1969,

RusselT; E. C., and Estrin, G., "Measurement Based Automatic
Analysis of. FORTRAN Programs", Proceedings of the SJCC, Vol. 34,
pp. 723-732, 1969. ‘

Ruud, R. J., "The CPM-X -- A Systems Approach to Performance
Measurement", Proceedings of the FJCC, Vol. 41, Part II, pp. 949-
957, 1972,
Saltzer, J. H., and Gintell, J. W., "The Instrumentation of
Multics", Communications of the ACM, Vol. 13, No. 8, pp. 495-500,
August, 1970. :

Shemer, J. E. and Robertson, J. B., "Instrumentation of Time-Shared

Systems", IEEE Computer, Vol. 5, No. 4, pp. 39-48, July/August,
1972.

Sherman, S., Baskett, F., and Browne, J. G., "Trace-Driven Modeling
and Analysis of CPU Scheduling in a Multiprogramming System",
Communications of the ACM, Vol. 15, No. 12, pp. 1063-1069,
December, 1972,

Snyder, R., "A Quantitative Study of the Addition of Extended
Core Storage", ACM SIGMETRICS Performance Evaluation Review,
Vol. 3, No. 1, pp. 10-33, March, 1974.

Sreenivasan, K. and Kleinman, A. J., "On the Construction of a
Representative Synthetic Workload", Communication of the ACM,
Vol. 17, No. 3, pp. 127-133, March, 1974.

Stang, H., and Southgate, P., "Performance Evaluation of Third
Generation Computing Systems", Datamation, Vol. 15, pp. 181-190,
November, 1969, v

Stanley, W. I., "Measurement of System Operational Statistics",
IBM Systems Journal, Vol. 8, No. 4, pp. 299-308, 1969.

Stevens, D. F., "System Evaluation of the Control Data 6600",
Proceedings of the IFIP Congress, pp. 034-38, 1968.

Svobodova; L;; "Online System Performance Measurements with Soft-
ware and Hybrid Monitors™, ACM Fourth Symposium on Operating System
Principles, pp. 45-53, October, 1973.



47.

48.

49.

Waite, W. M., "A Sampling Monitor for Applications Programs",
Software -- Practice and Experience, Vol. 3, pp. 75-79, 1973.

Watson, R; A;, "Computer Performance Analysis: AppTlications of
Accounting Data", Rand Report No. R-573-NASA-PR, May, 1971.

--, "6400/6500/6600 PARTNER Installation Manual and Operating
Guide", Control Data Corporation.



