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Wilcox, Bethany R. (Ph.D., Physics)

New Tools for Investigating Student Learning in Upper-division Electrostatics

Thesis directed by Professor Steven J. Pollock

Student learning in upper-division physics courses is a growing area of research in the

field of Physics Education. Developing effective new curricular materials and pedagogical

techniques to improve student learning in upper-division courses requires knowledge of both

what material students struggle with and what curricular approaches help to overcome these

struggles. To facilitate the course transformation process for one specific content area –

upper-division electrostatics – this thesis presents two new methodological tools: (1) an

analytical framework designed to investigate students’ struggles with the advanced physics

content and mathematically sophisticated tools/techniques required at the junior and senior

level, and (2) a new multiple-response conceptual assessment designed to measure student

learning and assess the effectiveness of different curricular approaches.

We first describe the development and theoretical grounding of a new analytical framework

designed to characterize how students use mathematical tools and techniques during physics

problem solving. We apply this framework to investigate student difficulties with three

specific mathematical tools used in upper-division electrostatics: multivariable integration

in the context of Coulomb’s law, the Dirac delta function in the context of expressing volume

charge densities, and separation of variables as a technique to solve Laplace’s equation.

We find a number of common themes in students’ difficulties around these mathematical

tools including: recognizing when a particular mathematical tool is appropriate for a given

physics problem, mapping between the specific physical context and the formal mathematical

structures, and reflecting spontaneously on the solution to a physics problem to gain physical

insight or ensure consistency with expected results.

We then describe the development of a novel, multiple-response version of an existing

conceptual assessment in upper-division electrostatics courses. The goal of this new version

is to provide an easily-graded electrostatics assessment that can potentially be implemented
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to investigate student learning on a large scale. We show that student performance on the

new multiple-response version exhibits a significant degree of consistency with performance

on the free-response version, and that it continues to provide significant insight into student

reasoning and student difficulties. Moreover, we demonstrate that the new assessment is

both valid and reliable using data from upper-division physics students at multiple institu-

tions. Overall, the work described in this thesis represents a significant contribution to the

methodological tools available to researchers and instructors interested in improving student

learning at the upper-division level.
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I. CHAPTER I: INTRODUCTION

A. Motivation

Historically, one of the major focuses of the Physics Education Research (PER) com-

munity has been on understanding student learning in order to improve the ways we teach

undergraduate physics courses [1]. These efforts are often accompanied by the development

and evaluation of new instructional materials and/or pedagogical techniques designed to

improve student learning. For the introductory physics courses, a number of materials and

techniques have been developed most of which focus on incorporating various degrees of

interactive engagement into physics instruction. Examples of this work span the space from

small changes to the traditional classroom structure (e.g., peer instruction through the use

of concept tests in lecture [2] or incorporation of research-based tutorial worksheets into the

traditional recitation environment [3]) to large scale overhauls of the classroom structure

(e.g., workshop physics [4]). Significant increases in student learning gains on associated

introductory conceptual assessments in courses that utilize one or more of these interac-

tive materials and/or techniques represent one measure of the effectiveness of these course

transformations [4–6].

Despite the success of course transformation efforts at the introductory level, upper-

division physics courses are still largely taught using only conventional lecture techniques.

However, some physics faculty at the University of Colorado Boulder (CU) have expressed

dissatisfaction with student learning in upper-division courses. One example of this dissat-

isfaction came when the CU physics faculty voted to seek funding to support research-based

transformations of their core upper-division courses [7]. Their concerns were driven in part

by research findings that, for example, showed no gains in student performance on an intro-

ductory electricity and magnetism conceptual assessment after completing one semester of

a conventionally taught junior-level electrostatics course [8].

Responding to this push from the faculty, researchers at CU set out to transform several
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of their upper-division physics courses, including junior-level electrostatics [9, 10], electro-

dynamics [11], and quantum mechanics [12], as well as sophomore-level classical mechanics

[13]. The course transformation process was guided by an iterative design process involving

three key components [7]:

(1) Establishment of consensus learning goals through faculty collaboration

(2) Design of curricular materials and instructional techniques to help students achieve

these learning goals

(3) Assessment of student understanding to determine which learning goals are being met

For introductory courses, step (2) of the transformation process is facilitated by the

existence of a large body of research aimed at identifying persistent student difficulties with

various topics in physics (see Ref. [14, 15] for a review). Moreover, considerable work has

been done to characterize student problem solving at the introductory level (see Ref. [16]

for a review). However, research on student difficulties at the upper-division level has only

recently gained traction in the Physics Education Research (PER) community (e.g., [17–24]).

The relative lack of available information on the difficulties encountered by upper-division

students hinders the process of developing effective curricular materials to improve student

learning.

Additionally, assessment of student learning gains in transformed introductory courses

(step (3) of the transformation process) is made possible in part by the existence of validated

conceptual assessments such as the Force Concept Inventory (FCI) [25] and Brief Electricity

and Magnetism Assessment (BEMA) [26]. Scores on these assessments demonstrate that

learning environments composed solely of traditional lecture (i.e., chalkboard lecture with

occasional demonstrations and rhetorical questions) are only modestly successful at address-

ing known student difficulties [5]. Alternatively, learning environments which incorporate

active learning techniques are significantly more successful at addressing student difficulties

[17] and result in higher learning gains [5, 6]. As part of the course transformation efforts

at CU, researchers recently developed a small number of conceptual assessments specifically
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targeting upper-division physics content [11, 12, 27, 28]. These assessments have been used

for multiple semesters at CU and other institutions. Moreover, the primarily open-ended

format of these assessments has provided rich insight into student reasoning.

Another implicit goal of course transformation efforts at both the introductory and upper-

division level is sustainability and wide-scale adoption [29]. Promoting the sustainability of

materials and tools involved in investigating and improving student learning requires making

explicit design choices that facilitate easy adoption of these tools by faculty across courses

and institutions. For example, the open-ended format of the CU upper-division assessments,

while providing valuable insight into student thinking, also makes them challenging and

time consuming to grade and represents a significant barrier to their adoption on a large

scale. If these assessments are to be used by a wide range of faculty, it may be necessary to

adapt them to a more easily-graded format. Moreover, providing a scaffold that can be used

to interpret and synthesize both the available research on student difficulties and personal

observations may be critical part of encouraging faculty to pay explicit attention to student

difficulties in the classroom.

B. Overview of the Dissertation

It is the intent of this thesis to facilitate the development and sustainability of transformed

course materials and pedagogical techniques that improve student learning by addressing the

following research questions:

(1) How do students use and reason with mathematical tools in upper-division problem

solving?

(2) What types of common difficulties do they encounter in the process of mathematical

problem solving and can we organize these difficulties productively?

(3) Is it possible to create a valid and reliable multiple-response version of a free-response,

upper-division conceptual assessment that has the logistical advantages of a multiple-

choice test while continuing to provide meaningful insights into student thinking?
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For the remainder of this thesis, we focus on one particular topical area: junior-level electro-

statics. We have chosen to limit our focus to electrostatics for several reasons including the

existence of a standard text [30] which is used by the majority of undergraduate universities

across the country resulting in higher than average consistency in course content coverage.

Additionally, researchers at CU have developed a suite of transformed curricular materials,

including a validated assessment tool, [31] that have been used repeatedly both at CU and

elsewhere.

This thesis presents the development and application of two methodological tools to ad-

dress our research questions and facilitate the investigation of student learning in upper-

division electrostatics courses. The first is an analytic framework for analyzing student

difficulties with mathematical tools and techniques in physics. While the application of the

framework described here is limited to topics and tools from electrostatics, its use could be

extended to other areas of physics [32]. The second tool is an electrostatics conceptual as-

sessment with a novel, multiple-response format that facilitates large-scale implementation.

The topic coverage of this assessment targets electrostatics; however, the multiple-response

format and the process of development and validation could potentially be replicated to pro-

duce conceptual assessments for other topical areas. While these two tools were developed

and can be utilized independently, this thesis also highlights ways in which each informs and

supports the other.

This dissertation is organized as follows. To address the challenge of characterizing stu-

dent difficulties at the upper-division level, Chapter II introduces an analytical tool (the

ACER framework) for investigating upper-division students’ difficulties manipulating sophis-

ticated mathematical tools in their physics courses. We summarize the existing problem-

solving literature and define the underlying theoretical constructs that ground the framework.

We also describe the development and validation of the framework, its general structure, and

an overview of the process of operationalizing the framework for specific mathematical tools

in the context of electrostatics.
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Chapter III demonstrates the utility of the framework through analysis of student difficul-

ties with three different mathematical tools: integration of continuous charge distributions

(i.e., Coulomb’s Law), delta functions as a method for mathematically describing volume

charge distributions, and separation of variables as a technique for solving Laplace’s equa-

tion. For each of these mathematical tools, we present the operationalized framework and

common student difficulties identified via the framework.

Chapter IV shifts the focus to a second barrier to upper-division course transformation

by describing the development and validation of a multiple-response adaptation of an ex-

isting conceptual assessment known as the Colorado Upper-division Electrostatics (CUE)

diagnostic [27]. Beginning with a summary of the history, outcomes, and limitations of the

original free-response instrument, we motivate the need for an easily graded version which

can be utilized on a large scale. We then detail the process of crafting distractors and devel-

oping a grading scheme for the multiple-response CUE and discuss both expert and student

validation.

Having established the content validity of the new instrument, Chapter V describes the

statistical analysis of students’ scores on the multiple-response CUE. Here, we use a variety

of test statistics from Classic Test Theory to characterize the difficulty, discrimination, and

consistency of scores on the new version. This chapter also reports both quantitative and

qualitative findings from two direct comparisons of the free-response and multiple-response

versions of the instrument. Finally, in Chapter VI, we briefly summarize the two method-

ological tools described in this thesis and suggest potential research directions for future

work.

C. Summary of Key Findings

Here, we list the key research findings presented in this thesis loosely organized in the

order that they appear in the text.
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• The ACER Framework - ACER is a new analytical framework designed to help

instructors and researchers characterize students’ use of mathematical tools in upper-

division physics problem solving. The framework assumes a resources perspective on

the nature of knowledge, and was developed based on patterns identified in expert

problem solving. The goal of ACER is to provide an organizing structure that iden-

tifies and focuses on important nodes in the complex and often iterative solutions

characteristic of upper-division problem solving.

• Student difficulties with multivariable integration - Student difficulties with

integration in the context of Coulomb’s law centered primarily around constructing

an integral expression for the potential that was consistent with the particular phys-

ical situation. This included expressing both the difference vector (
⇀
r − ⇀

r′) and the

differential charge element (dq). Additional difficulties included activating the direct

calculation of the potential via the integral form of Coulomb’s law as the appropriate

solution method and spontaneously reflecting on the final solution.

• Student difficulties with the Dirac delta function - Common student difficul-

ties with the Dirac delta function in the context of expressing volume charge densities

included activating the delta function as the appropriate mathematical tool, translat-

ing a verbal description of a charge distribution into a mathematical formula for the

charge density, and recognizing that the delta function can have units. Our students

also exhibited difficulties with the procedural aspects of integrating the delta function

despite often recognizing that the delta function picks out the value of a function at a

particular point.

• Student difficulties with Cartesian separation of variables - Student difficul-

ties with separation of variables as a technique to solve Laplace’s equation in Cartesian

coordinates included recalling/justifying the separated form of the potential, applying

the necessary logic to separate the PDE into ODEs, and recalling/justifying the need
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for the infinite sum. Student also demonstrated a preference for formal integral proce-

dures (i.e., Fourier’s trick) over simpler algebraic manipulations (i.e., term matching)

to solve for the final unknown constant(s).

• Student difficulties with spherical separation of variables - Common student

difficulties with separation of variables as a techniques to solve Laplace’s equation

in spherical coordinates included activating separation of variables as the appropri-

ate solution method, identifying all implicit boundary conditions, and spontaneously

reflecting on the final solution. Unlike with Cartesian separation of variables, stu-

dents demonstrated a strong preference for simpler algebraic manipulations (i.e., term

matching) over formal integral procedures (i.e., Fourier’s trick) to solve for the final

unknown constant(s).

• The multiple-response CUE assessment - The coupled multiple-response (CMR)

CUE diagnostic is a new assessment tool designed to help instructors and researchers

assess student learning of electrostatics on a large scale. It utilizes a novel multiple-

choice format that allows students to select multiple responses and awards points based

on both the accuracy and consistency of their selections. We demonstrate that the

CMR CUE is both valid and reliable according to multiple measures including expert

and student review, item and test difficulty, item and test discrimination, and internal

consistency.

• Comparing the multiple-response and free-response formats - Student per-

formance on the new multiple-response version of the CUE is consistent with student

performance on the free-response version. Student performance on the two formats

was statistically similarly on multiple test statistics. Qualitative analysis of student

responses to a subset of the questions on both tests show that while the majority of

student responses to the free-response version included elements that matched the op-

tions on the CMR version, roughly a third also included elements that would not have
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been captured by the CMR response options.

• Investigating student difficulties with the CMR CUE - The new multiple-

response format preserves a significant fraction of the insight into student thinking

afforded by the original free-response version. Students’ responses to related questions

or subparts demonstrate a high degree of consistency even when those responses are

incorrect. Additionally, the multiple-response CUE can be used to quickly determine

prevalence and persistence of known student difficulties within new student populations

by examining patterns in students’ responses.
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II. CHAPTER II: DEVELOPING A FRAMEWORK

A. Introduction and Motivation

Upper-division physics content requires students to manipulate sophisticated mathemat-

ical tools (e.g. multivariable integration, approximation methods, special techniques for

solving partial differential equations, etc.). Students are taught these tools in their mathe-

matics courses and use them to solve numerous abstract mathematical exercises. Yet many

students still struggle to apply mathematical tools appropriately to problems in physics.

This is not necessarily surprising given that physicists use mathematics quite differently

than mathematicians (e.g., to make inferences about physical systems) [33, 34]. However,

persistent mathematical difficulties can undermine attempts to build on prior knowledge as

our majors advance through the curriculum. Upper-division instructors face significant pres-

sure to cover large amounts of new content, a task made more difficult by constantly having

to review the relevant mathematical tools. It is often an explicit goal for advanced courses

to develop students’ ability to connect mathematical expressions to physics concepts. For

example, consensus learning goals for upper-division courses at CU [35] include “Students

should be able to translate a physical description of an upper-division physics problem to

a mathematical equation necessary to solve it,” and “to achieve physical insight through

the mathematics of a problem.” To improve student learning in advanced physics courses,

we find it necessary to move away from merely noting students’ conceptual difficulties to-

wards systematically investigating how students integrate mathematics with their conceptual

knowledge to solve complex physics problems.

In order to address the issues that arise when solving physics problems that rely on so-

phisticated mathematical tools, we must first understand how students access and coordinate

their mathematical and conceptual resources. However, canonical problems in upper-division

The majority of Chapter II is taken from Ref. [32] on which BRW is first author. All text taken verbatim

from this publication was written by BRW.
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courses are often long and complex, and students’ reasoning is similarly long and complex.

Making sense of the difficulties that arise requires a well-articulated framework for analyzing

students’ synthesis of conceptual knowledge and mathematical tools. Here, we use the term

framework to refer to a structure of guiding principles and assumptions about the underlying

relationship between a physical concept and the mathematics necessary to describe it. At

the upper-division level in particular, this relationship can be strongly dependent on the

particular concept in question, suggesting that a useful framework needs to be adaptable to

a wide variety of physical concepts and mathematical tools.

We first encountered the need for such a framework while investigating students’ under-

standing of approximation methods (i.e., Taylor series) in a middle-division classical me-

chanics course [36] and with integration of continuous charge distributions (i.e., Coulomb’s

Law) in an upper-division electrostatics course [37]. Our initial analysis focused on iden-

tifying emergent themes in students’ work. We quickly identified a multitude of common

difficulties, but, beyond producing a laundry list of errors, we struggled to organize these

difficulties in a productive way. This lack of coherence made it challenging to identify rela-

tionships between the difficulties and to produce actionable implications for instruction or

further research.

To provide a suitable organizational structure, we developed a framework to address stu-

dents’ activation of mathematical tools, construction of mathematical models, execution of

the mathematics, and reflection on the results (ACER). The ACER framework is a tool

designed to aid both instructors and researchers in exploring when and how students em-

ploy particular mathematical tools to solve canonical problems from upper-division physics

courses. Our goal is to provide a scaffold for describing student learning that is explic-

itly grounded in theories of learning but can still be leveraged by instructors who are not

thoroughly versed in such theories.
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B. Existing Problem-Solving Strategies and Theoretical Frameworks

While the investigations of the difficulties students encounter when utilizing mathematics

in physics are diverse, we have identified two approaches to thinking about student problem

solving that commonly appear in the literature. The first approach seeks to characterize

expert physicists’ use of mathematics. Such a characterization can help to produce instruc-

tional and analytical tools to align students’ problem solving with that of experts’. The

second approach focuses on describing students’ in-the-moment reasoning, not just in terms

of how it does not make sense to physicists, but in terms of how it does make sense to the

students. Here, we review some of the previous research using these two approaches.

The first of these two approaches seeks to better understand the ideal landscape of the

intersection between physics and mathematics. For example, Redish [33] developed an ideal-

ized model of how physicists use math to describe physical systems. He identifies four steps

that guide this process (see Fig. 1):

(1) map the physical structures to mathematical ones

(2) transform the initial mathematical structures

(3) interpret the results in terms of the physical system

(4) evaluate the validity of the results.

This iterative model makes it clear that the source of students’ difficulties may not be as

simple as not knowing the necessary mathematical formalisms. While the intentionally broad

nature of the model makes it widely applicable, we found it challenging to utilize it to identify

FIG. 1. An iterative representation of Redish’s [33] idealized model for the use of math in science.
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concrete, actionable implications for the instructor or researcher dealing with mathematical

difficulties in the physics classroom.

It has been well documented that students do not approach physics problems in a manner

consistent with Redish’s model [33]. In fact, students often approach physics problems

in a way that seems haphazard and inefficient to experts [38]. Some attempts have been

made to address this at the introductory level by explicitly teaching students a problem-

solving strategy that is more aligned with the expert approach. Wright and Williams [39]

incorporated a problem-solving strategy (WISE) into their introductory physics course that

involved four steps:

(1) What’s happening?

(2) Isolate the unknown

(3) Substitute

(4) Evaluation

The WISE strategy was designed as a heuristic that physics students could use to become

more efficient and accurate problem solvers.

Similarly, Heller et al. [40] developed a strategy to help their introductory students inte-

grate the conceptual and procedural aspects of problem solving. This strategy included 5

steps:

(1) Visualize the problem

(2) Physics description

(3) Plan the solution

(4) Execute the plan

(5) Check and evaluate

Docktor [41] modified and extended this strategy to develop a validated physics problem-

solving assessment rubric. With the goal of providing consistent and reliable scores on

problem-solving tasks, this rubric is scored based on five general processes: Useful Descrip-

tion, Physics Approach, Specific Application of Physics, Mathematical Procedures, and Log-

ical Progression. Useful Description is the process of summarizing a problem statement by
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assigning symbols and/or sketching. Physics Approach and Specific Application of Physics

represent the process of selecting and linking the appropriate physics concepts to the specifics

of the problem. Mathematical Procedures refers to the mathematical operations needed to

produce a solution, and Logical Progression looks at the focus and consistency of the overall

solution.

The strategies presented above suggest considerable agreement as to the general structure

of expert problem solving as well as some indication that this structure can be used as a

guide to assess student work at the introductory level. The prescriptive and linear nature

of these problem-solving strategies lends itself well to the kinds of problems encountered in

introductory physics. However, upper-division problems are more complex, often iterative,

and less likely to respond to a prescriptive approach. Additionally, problem-solving strategies

are intentionally independent of specific content so as to be generally applicable, and on their

own offer limited insight into the nature of students’ difficulties with specific mathematical

tools.

The other approach to thinking about students’ mathematical problem solving in physics

focuses on explaining why students solve problems in a particular way by focusing on their

in-the-moment reasoning. For example, Tuminaro [42] used videotaped problem-solving ses-

sions with introductory students to develop a theoretical framework describing students’ use

of mathematics in physics. This model of student thinking blends three theoretical con-

structs: mathematical resources [43], epistemic games [44], and frames [45]. Mathematical

resources are the abstract knowledge elements that are involved in mathematical thinking.

Tuminaro [42] includes in the category of mathematical resources: a student’s intuitive math-

ematics knowledge and sense of physical mechanism, their understanding of mathematical

symbolism, and the strategies they use to extract information from equations. Epistemic

games are coherent patterns of activities observed during problem solving. Each game is

characterized by different sequences of moves and types of resources used by the student.

The game that a student chooses to play is governed by the frame they are operating in,
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which is determined by their tacit beliefs about and expectations of the kind of activity they

are engaged in.

The framework presented by Tuminaro [42] was developed for introductory students and

relies on students’ explicit discussion of the details of their work. Upper-division students,

on the other hand, tend to work more quickly and externalize fewer of their specific steps.

To address this, Bing [46] leveraged the theoretical constructs of mathematical resources and

epistemic framing to analyze upper-level students’ use of mathematics. Epistemic framing

is the students’ unconscious answer to the question “What kind of activity is this?” Bing

argues that a student’s framing can be identified by examining the types of justifications and

proof that they offer to support their mathematical claims, rather than the specific ‘moves’

they make. Bing identifies four epistemic frames used by upper-division students:

Invoking Authority: Students quote a rule or previously packaged result without

offering further justification.

Physical Mapping: Students rely on the quality of fit between their mathematics

and the physical situation at hand to justify their steps.

Calculation: Students rely on computational correctness to justify the validity of

their result.

Math Consistency: Students establish relevant relationships and make inferences

based on similarities in the underlying mathematical structures of different

expressions.

There are several limitations to the theoretical frameworks from Tuminaro [42] and Bing

[46]. To understand student work in terms of epistemic games or epistemic framing, one

must have data on the students’ real-time reasoning. This largely restricts the potential

data sources to video and audio data, eliminating students’ written work. Additionally,

effective application of either framework requires considerable familiarity with the underlying

theoretical constructs in PER. In practice this will prevent many instructors, particularly at

the upper-division level, from productively utilizing the frameworks.
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Describing experts’ use of mathematics and utilizing theoretical models of students’ in-

the-moment reasoning are complementary aspects of understanding mathematical difficulties

in physics. As described in the next section, the ACER framework leverages ideas from both

in order to target students’ use of mathematics in upper-division courses.

C. The ACER Framework

ACER is an analytical framework designed to guide and structure investigations of stu-

dents’ difficulties with the sophisticated mathematical tools used in their physics classes.

When solving upper-division physics problems, students often make multiple mistakes or

take unnecessary steps which must then be tracked through the solution. This undermines

attempts to pinpoint the fundamental difficulties that cause the students to struggle or to

identify relationships between these difficulties. The ACER framework provides an organiz-

ing structure that focuses on important nodes in students’ solutions. This removes some of

the “noise” in students’ work that can obscure what is going on. This section provides a

general overview of the framework and its development.

1. Overview

ACER was developed in conjunction with research into student learning of two topics in

upper-division physics: Taylor series [36] and direct integration [37]. The results of applying

the framework to specific topics will be discussed in detail in Chapter III; here, we present

the general development and form of ACER. The ACER framework, like the frameworks

presented by Tuminaro [42] and Bing [46], is fundamentally cognitive and assumes a resource

view on the nature of knowledge [43].

In order to better understand students’ difficulties, we performed a modified version of

task analysis [47, 48] on canonical problems relating to each of the topics mentioned above.

Task analysis is a method used to uncover the tacit knowledge used by experts when solving
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complex problems. Our modified use of task analysis is described in greater detail in Sec.

II C 2; however, the general process requires a content expert to work through the problem

while documenting and reflecting on all elements of a complete solution. These elements

are then discussed with several other content experts to reach consensus that all important

aspects of the solution have been identified. After several iterations, we found that these

various problem-specific elements could be organized into four components that appeared

consistently in the solutions to a number of content-rich problems utilizing sophisticated

mathematical tools. These four components are: Activation of the tool, Construction of

the model, Execution of the mathematics, and Reflection on the result. Each component is

described in greater detail below.

In order to solve the back-of-the-book or exam-type problems that ACER targets, one

must determine which mathematical tool is appropriate (Activation) and construct a math-

ematical model by mapping the particular physical system onto appropriate mathematical

tools (Construction). Once the mathematical model is complete, there is often a series of

mathematical steps that must be executed in order to reduce the solution into a form that

can be readily interpreted (Execution). This final solution must then be interpreted and

checked to ensure that it is consistent with known or expected results (Reflection). The four

general components are emergent from our own analysis of experts’ problem solving and are

consistent with previous literature on problem-solving strategies (see Sec. II B). Though the

framework suggests a certain logical flow, we are not suggesting that all experts or students

solve problems in a clearly organized, linear fashion.

A convenient visualization of ACER is given in Fig. 2. The framework provides a

researcher-guided outline that organizes key elements of a well-articulated, complete so-

lution. The framework does not assign value by providing an ideal solution path towards

which the students should strive. ACER is also not designed to be general enough to be

applied to open-ended problems; however, its targeted focus means it can be operationalized

for a variety of mathematical tools used in context-rich problems. Sec. II C 2 will discuss

16



FIG. 2. A visual representation of the ACER framework. Arrows denote common feedback path-

ways between the components.

how ACER is operationalized for specific tools and topics. ACER is a tool for understanding

and characterizing the difficulties seen in students’ work, but its structure is not meant to

approximate students’ actual solutions. Instead, the general structure of ACER was de-

veloped to accommodate the complex and often iterative solution patterns characteristic of

upper-division problems.

Activation of the tool: A problem statement contains a number of explicit and/or

implicit cues that prime or activate different resources (or networks of resources) associated

with any number of mathematical tools [43]. These cues can include the goal of the problem

(e.g., calculate the potential) as well as the language and symbols used. The resources that

students activate depend on the individual student and their perception of the nature of the

task (i.e., their epistemic framing [46]). Operationally, evidence of Activation can manifest

in several different ways. For example, a student might explicitly state, “This problem

requires a Taylor expansion,” or they might simply write down the general form for a Taylor

expansion. Moreover, they might skip writing the general form of the expansion and jump

straight to expressing each term in the expansion appropriate for this physical situation.

Any of these would be considered evidence of the Activation of Taylor series.

Construction of the model: In physics, mathematics are often used to express a sim-
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plified picture (i.e., a model) of a real system. These mathematical models are typically

necessary to solve physics problems. Mathematical models are generally written in a re-

markably compact form (e.g., ∆V = −
∫ ⇀

E · d
⇀

l) where each symbol has a specific physical

meaning that may be context dependent. Different representations (e.g., diagrammatic or

graphical) are sometimes necessary to construct or map the elements of the model [33].

Operationally, Construction encompasses elements of the problem-solving process related to

customizing the general form of a mathematical tool for a specific physical situation. The

output from this component should be in a form that requires only executing the necessary

procedural mathematical steps to arrive at a final solution.

Execution of the mathematics: In order to arrive at a solution, it is usually necessary

to transform the math structures produced in the construction component (e.g., unevaluated

integrals) into mathematical expressions that can be more easily interpreted (e.g., evaluated

integrals). Each mathematical tool requires specific background knowledge and base math-

ematical skills (e.g., how to take derivatives or integrals). The mathematical manipulations

performed in this component are not necessarily context-free. When employing these base

mathematical skills, an expert maintains an awareness of the physical meaning of each sym-

bol in the expression (e.g., which symbols are constants when taking derivatives or integrals)

[33]. Operationally, elements of the problem-solving process that fall into Execution are

those that relate to the procedural mathematics of solving a physics problem. Generally,

these are steps in the solution that could, in theory, be accomplished by a computer or person

with no knowledge of the specific physical situation at hand.

Reflection on the result: Solutions to problems in upper-division physics usually result

in expressions that are not merely superficial manipulations of formulas provided in the

textbook or notes. Instead, they are new entities that offer meaningful insight into explaining

or predicting the behavior of physical systems. Reflecting on these expressions is a crucial

part of understanding the system and gaining confidence in the calculation performed (e.g.,

how do we know an expression is the correct one?). At the most basic level, reflection
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involves checking expressions for errors (e.g., checking units) or comparing predictions to

established or expected results (e.g., checking limiting behavior). This kind of reflection

can help to identify mistakes that occurred in the other components of the framework.

Operationally, evidence for Reflection requires explicit statements or mathematical checks

related to confirming the validity of the final solution or intermediate steps. While Reflection

may be occurring implicitly throughout the problem-solving process, only explicit checks can

be unambiguously captured by the framework.

The theoretical constructs that ground the frameworks presented by Tuminaro [42] and

Bing [46] are commensurate with the implicit theoretical constructs that ground ACER.

For example, a problem solver accesses different, possibly overlapping, networks of resources

depending on the component of the framework in which they are working. Similarly, certain

epistemic frames would be more useful than others when operating in different components.

For example, Invoking Authority (see Sec. II B) can be a valuable frame while in the Acti-

vation component. Appealing to authority (e.g., taking a formula from the book or notes) is

often a good way to identify which mathematical tool to use. However, in the Construction

component, when trying to map that tool to a specific problem, relying on rules or previ-

ously derived results without further justification can easily sidetrack the unwary student.

Alternatively, a Physical Mapping frame would likely be productive for both the Construc-

tion and Activation components where alignment between the mathematics and the physical

situation is key.

While we acknowledge the value and importance of explicitly grounding ACER in theo-

retical constructs like resources and epistemic frames, we have intentionally avoided explicit

identification of specific resources or frames as part of the framework. In this way, it is

not necessary to have a strong background in theories of learning in order to utilize ACER.

Moreover, while the ideas behind resources and epistemic framing strongly impacted its de-

velopment, the ACER framework is likely compatible with a number of other theoretical

constructs (e.g., schema [49]). Thus, the framework still represents a potentially useful tool
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for instructors and researchers with a range of theoretical perspectives on learning.

The general components of the framework are also consistent with Redish’s idealized

model for the way physicists utilize mathematics [33], as well as the steps in the problem-

solving strategies presented for introductory physics [38–41]. Yet, ACER goes beyond these

broad descriptions by providing a mechanism to target specific topics and mathematical

tools. This mechanism is described in the following section.

2. Operationalizing the Framework

The utility of ACER as a framework for understanding students’ use of mathematics in

physics comes when it is operationalized for a specific mathematical tool. Operationalization

is the process by which a particular problem or set of problems that exploit the targeted

tool are mapped onto the framework. This involves identifying important elements in each

component that together result in what an expert/instructor would consider a complete and

correct solution.

We used a modified form of task analysis to operationalize the framework. Formally, task

analysis [47, 48] is accomplished by having a subject matter expert (SME) solve problems

while explaining their steps and reasoning to a knowledge extraction expert (KEE) who

keeps a record. This method for uncovering the tacit knowledge used by experts has been

exploited to produce example solutions designed to improve students’ ability to solve novel

problems [50].

Our modified task analysis does not include a KEE. This was done because such an

expert was not readily available to us, nor did we want the need for a KEE to prevent other

researchers or instructors from utilizing the framework. Instead, the SME works through

the problems, documenting their reasoning and mapping the vital elements of their solution

onto the components of ACER. This record is then shared with several other SMEs to ensure

that all important aspects of the solution are accounted for. Additionally, these experts

come to a consensus in classifying each element into a specific component (i.e., Activation,
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Construction, Execution, or Reflection). These preliminary elements are then applied to

student work and the operationalized framework is refined to accommodate patterns of

student reasoning not present in the SMEs solutions.

Our motivation for removing the KEE was entirely practical in origin; however, not

utilizing a KEE may have implications for the theoretical foundations of our modified task

analysis. The KEE, as a content novice, helps to force the SME to fully and clearly justify

their steps even when they include decisions based on procedural and declarative details the

SME no longer thinks about [47]. Removing the KEE from the task analysis process makes

it more difficult to ensure that the important elements identified in the solution are complete

from the point of view of a novice as well as an SME. For this reason it is important that the

operationalized ACER framework which is produced by the modified task analysis remains

flexible to modification based on emergent analysis of student work.

The following chapter describes the operationalization of the framework for the use of

three different mathematical tools and techniques in upper-division electrostatics: multi-

variable integration in the context of Coulomb’s law, the Dirac delta function as a tool

to express volume charge densities, and separation of variables as a technique for solving

Laplace’s Equation.
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III. CHAPTER III: APPLICATION OF THE FRAMEWORK

A. Context and Data sources

Data for these studies were largely collected from the first half of a two-semester Electricity

and Magnetism sequence at the University of Colorado Boulder (CU). This course, called

E&M 1, typically covers electrostatics and magnetostatics (chapters 1-6 of Griffiths [30]).

The student population is composed of junior and senior-level physics, astrophysics, and

engineering physics majors with a typical class size of 30-70 students (roughly 20% female).

At CU, E&M 1 is often taught with varying degrees of interactivity through the use of

research-based teaching practices including peer instruction using clickers [2] and optional

out-of-class or in-class tutorials [10].

We collected data from up to three distinct sources for each of the investigations described

in this chapter: student solutions to instructor designed questions on traditional midterm

exams, responses to specific questions on the multiple-response Colorado Upper-division

Electrostatics (CUE) Diagnostic [51], and think-aloud student interviews. Interviews were

videotaped and students’ written work was captured with embedded audio. Interviewees were

paid volunteers who responded to an email request for research participants. All interviewees

had successfully completed E&M 1 one to two semesters prior.

Students’ exam solutions were analyzed by identifying each of the key elements from the

operationalized framework (see Sec. III B 2) that appeared in the students’ solutions. Each

element was then further coded to identify the types of steps made by students. These

codes represented emergent themes in the students’ work and were not predetermined by

the framework. This emergent coding helped to ensure that the expert-guided framework

did not miss important but unanticipated aspects of student solutions. The interviews were

similarly analyzed by classifying each of the student’s major moves into one of the four

components of the framework. Participants in all three studies demonstrated a wide range

of abilities and received course scores ranging from A to D. In this way, exams provided
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quantitative data identifying common difficulties and interviews offered deeper insight into

the nature of those difficulties.

B. Multivariable Integration in the Context of Coulomb’s Law

1. Previous Research on Student Difficulties with Integration

Integration is a ubiquitous mathematical tool in the undergraduate physics curriculum,

and student difficulties with integration have been the focus of a number of investigations

by both math and physics education researchers. Many of these studies have highlighted

students’ conceptual understanding of integrals. Orton [52], for example, interviewed 110

upper-level high school math students and pre-service math teachers’ in Britain on 18 in-

tegration tasks. He documented a wide variety of issues, including difficulties recognizing

that the exact value for the area under the curve could be achieved through the limit of a

Riemann sum and justifying why particular steps were necessary when calculating integrals.

Thompson and Silverman [53] discussed student understanding of integrals as accumula-

tion functions. They noted that integrals can be conceptualized both as the accumulation of

infinitesimal amounts of multiplicative bits and as the area under the curve of a function over

a particular interval. These two ideas can be thought of as equivalent only when a student

has internalized the idea that the area under the curve can represent something other than

area (e.g., the area under a force vs. distance curve represents work). Similarly, Bajracharya

et al. [54] documented instances in which the area-under-the-curve concept interfered with

students’ interpretation of definite integrals with negative values; these students rejected the

idea of ‘negative area’. Nguyen and Rebello [55] also investigated students’ understanding

of the area-under-the-curve concept specifically in the context of introductory physics. They

found that few students spontaneously connected the work done on a projectile to the area

under the force curve. They also found that many students were not able to select the ap-

The majority of Section III B is taken from Ref. [32] on which BRW is first author. All text taken verbatim

from this publication was written by BRW.
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propriate graph for which the area under the curve represented the value of a predetermined

integral.

Other studies have focused on student understanding of differentials in the context of

integration. Artigue et al. [56] conducted an interdisciplinary investigation of student ideas

about what the differential represents and when it is useful. They found that, while students

were able to recognize problems requiring the use of a differential (e.g., dz), they often could

not clearly justify its use in terms of non-linear functional dependence. They also found

two common extremes in student conceptions of the differential. Some students attributed

no physical meaning to the differential except that it indicates the variable of integration,

while others described it as a ‘little piece’ of something (e.g., a small piece of a wire or a

small length). Hu and Rebello [57] also investigated student ideas about differentials through

detailed analysis of group interviews with students. They identified 4 specific resources and

4 conceptual metaphors used by introductory students when working with differentials and

suggest that some resources and metaphors may be more productive when solving certain

types of physics problems.

Additional research around students’ use of integrals in physics has looked more broadly

at how students solve problems involving integration. Hu and Rebello [58] utilized the idea of

conceptual blending to understand how students combine their math and physics knowledge

to set up integrals in physics. They found that their students used differing blends of three

mental spaces relating to symbolic representation, math notation, and physics when setting

up integrals with varying levels of success. Similarly, Khan et al. [59] identified different

strategies that introductory students used when solving integrals in symbolic and graphical

representations. They found that, while students employ a number of different strategies

to solve integrals, after both first and second semester calculus-based physics, 40-70% of

students did not recognize the need for an integral to find the quantity of interest.

The studies described above focus primarily on students conceptual difficulties with single-

variable integration at the level required for introductory physics. In the study described in
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the remainder of this section, we focus instead on multivariable integration in the context of

the integral form of Coulomb’s law.

2. Operationalizing ACER for Multivariable Integration

Determining the electric potential or electric field from a continuous charge distribution

using the integral form of Coulomb’s law is one of the first topics that upper-division students

encounter in junior-level electrostatics. For the remainder of the paper, we use Coulomb’s

Law to refer to the integral equation allowing for direct calculation of the electric field or

potential from a continuous charge distribution.

E(
⇀
r) =

1

4πε0

∫
V

dq

|⇀r|2
r̂ (1)

V (
⇀
r) =

1

4πε0

∫
V

dq

|⇀r|
(2)

Here, dq represents the differential charge element and
⇀
r is the difference vector

⇀
r − ⇀

r′

between the source and the observation location (i.e., Griffiths’ script-r [30]). In this case,

the ‘tool’ we refer to is integration, and we describe its application to problems determining

the potential or electric field from an arbitrary, static charge distribution via Coulomb’s

Law. We will focus here only on charge distributions that cannot easily be dealt with using

Gauss’s Law.

As an initial step in the process of operationalizing the ACER framework for multivariable

integration in the context of Coulomb’s law, we generated and refined a network diagram

illustrating the conceptual and procedural resources that experts use to solve these types

of problems. Fig. 3 shows this network diagram organized according to the components

of the ACER framework. The creation of a network diagram helps to fully externalize

the important aspects of the problem-solving process and how the aspects are connected;

however, the diagram in Fig. 3 is complex and can be difficult to parse. Therefore, the next
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step in the operationalization process involves translating this diagram into a more concise

list of the key elements of a complete and correct solution, referred to as the flattened

framework. The flattened ACER framework for direct integration (i.e., Coulomb’s law) is

given below.

Element codes are for labeling purposes only and are not mean to suggest that there is

a single correct order to the solution, nor are all elements always involved for any given

problem. The alphanumeric code for each element of the framework provides topic, compo-

nent, and element; for example, the third element in the Activation component for the use

of integration is coded IA3. This convention will be used throughout the remainder of the

thesis.

Flattened ACER framework

Activation of the tool: The first component of the framework involves the selection

of a solution method. The modified task analysis identified four elements involved in the

activation of resources identifying direct integration (i.e., Coulomb’s Law) as the appropriate

tool.

IA1: The problem asks for the potential or electric field.

IA2: The problem gives a charge distribution.

IA3: The charge distribution does not have appropriate symmetry to productively use

Gauss’s Law.

IA4: Direct calculation of the potential is more efficient than starting with the electric field.

Elements IA1–IA3 are cues typically present in the problem statement. Element IA4

is specific to problems asking for the electric potential and is included to account for the

possibility of solving for potential by first calculating the electric field. This method is valid

but often more difficult.

Construction of the model: Here, mathematical resources are used to map the spe-

cific physical situation onto the general mathematical expression for Coulomb’s Law. The

resulting integral expression should be in a form that could, in principle, be solved with no
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knowledge of the physics of this specific problem. We identify four key elements that must

be completed in this mapping.

IC1: Use the geometry of the charge distribution to select a coordinate system.

IC2: Express the differential charge element (dq) in the selected coordinates.

IC3: Select integration limits consistent with the differential charge element and the extent

of the physical system.

IC4: Express the difference vector,
⇀
r, in the selected coordinates.

Elements IC2 and IC4 can be accomplished in multiple ways often involving several smaller

steps. In order to express the differential charge element, the student must combine the

charge density and differential to produce an expression with the dimensions of charge (e.g.,

dq = σdA). Construction of the difference vector often includes a diagram that identifies

vectors to the source point,
⇀
r′, and field point,

⇀
r.

Execution of the Mathematics: This component of the framework deals with the

mathematics required to compute a final expression. In order to produce a formula describing

the potential or electric field, it is necessary to:

IE1: Maintain an awareness of which variables are being integrated over (e.g., r′ vs. r).

IE2: Execute (multivariable) integrals in the selected coordinate system.

IE3: Manipulate the resulting algebraic expressions into a form that can be readily inter-

preted.

Reflection on the result: The final component of the framework involves verifying that

the expression is consistent with expectations. While many different techniques can be used

to reflect on the result, these two checks are particularly common:

IR1: Verify that the units are correct.

IR2: Check the limiting behavior to ensure it is consistent with the total charge and geom-

etry of the charge distribution.
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Element IR2 is especially useful when the student already has some intuition for how the

potential or electric field should behave in the limits. However, if they do not come in with

this intuition, reflection on the results of this type of problem is a vital part of developing it.

In the next section, we will apply this operationalization of ACER to investigate student

work on a canonical electrostatics problem (Fig. 4).

3. Interview and Exam Prompts

At CU, E&M 1 students are exposed to the Coulomb’s Law integral for the electric field

(Eqn. 1) before the analogous expression for the electric potential (Eqn. 2). However, the

vector nature of the electric field makes Eqn. 1 significantly more challenging to calculate,

and historically, instructors at CU tend to ask students to compute the potential on exams.

The exam problem examined here asked students to calculate the electric potential along an

axis of symmetry from a disk with charge density σ(φ) (Fig. 4). We selected this problem

because it is a recognizable Coulomb’s law question which requires integration and has been

asked on the first midterm exam in E&M 1 for multiple semesters.

Exams were collected from four semesters of the course (N=172), each taught by a different

instructor. Two of these instructors were physics education researchers involved in developing

the transformed materials and two were traditional research faculty. All four semesters

Calculate the electric potential at point P on the z-axis
from a disk with a given surface charge density σ(φ).

FIG. 4. An example of the canonical exam problem on continuous charge distributions.
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utilized some or all of the available transformed materials. The exact details of the disk

question, while similar, were not identical from semester to semester (see Appendix A for

exact prompts). One of the PER faculty asked the students to sketch the charge distribution

and then to calculate an expression for the potential on the z-axis (as in Fig. 4). The other

PER faculty asked the students to calculate the total charge on the disk but only required

them to set up the expression for the potential on the x-axis as the resulting integral cannot

be solved easily by hand. Both non-PER faculty asked for the total charge on the disk first

and then for the potential on the z-axis.

Interview data came from two sets of think-aloud interviews (N=10), performed approxi-

mately 1 year apart on different sets of students (see Appendix B for full interview protocols).

The first set of interviews was structured to probe the preliminary difficulties identified in

the student exams. The students were asked to calculate the potential from two parallel

disks of charge by direct integration, and they were provided with a diagram of the charge

distribution and Eqn. 1 and 2. In terms of the ACER framework, this prompt completely by-

passed the Activation component. Also, while the first interview protocol offered important

insight into how students spontaneously reflect (or not) on their solutions, it provided no

explicit probe of the Reflection component. The second interview protocol specifically tar-

geted Activation by asking students to find the potential along the z-axis outside a spherical

shell with non-uniform charge density σ(θ) without providing a diagram or prompting them

to solve the problem in any specific manner. An additional question targeted Reflection by

asking students to determine which of three expressions could represent the potential from

a static, localized charge distribution with total charge Q (see Fig. 5).

4. Student Difficulties with Multivariable Integration

Here, we present the identification and analysis of common student difficulties with

Coulomb’s Law integrals organized by component and element of the operationalized ACER

framework (See Sec. III B 2).
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Which of these expressions could represent the potential
from a static, localized charge distribution with charge Q?
Here, d is a characteristic distance scale and a, b, and c are
constants with undetermined units.

1.
a

2ε0
(
√
r2 + d2 − r)

2.
b

4πε0

d

r2

3.
c

2ε0

d

r

FIG. 5. Three equations presented in the second interview set to target Reflection. Students must

determine the units of a, b, and c. The prompt has been paraphrased; see Appendix B for full

prompt.

Activation of the tool: Roughly three-quarters of our students (73%, N=125 of 172)

correctly approached the exam question using Eqn. 2. The remaining students (27%, N=47

of 172) attempted to calculate the potential by determining
⇀

E, either by Gauss’s Law or

Eqn. 1, and then taking the line integral (i.e., missing elements IA3 and IA4). Rather than

stemming primarily from a failure to recall Eqn. 2, we argue below that this difficulty likely

originated from a failure to reject these other methods.

Identifying evidence of Activation in the exam solutions was challenging because students

did not typically write out their thought process as they began the problem. In particular,

there was rarely explicit evidence that the students attended specifically to IA1 and IA2

(i.e., the prompt asked for potential and provided information on the charge distribution).

However, we did not see students attempting to calculate quantities unrelated to the potential

or attempting to utilize methods inconsistent with the information provided.

More easily identified was element IA3, which eliminates Gauss’s Law as a valid approach.

Approximately a tenth of our students (11%, N=19 of 172) attempted to employ Gauss’

Law to solve for
⇀

E and then to calculate V by taking line integral. These students often

justified their answers with comments such as, “Since we want the voltage at a point outside

the disk, the E-field we use will appear to be that of a point charge at the origin.” This

inappropriate use of Gauss’s Law is consistent with previous research at the junior-level [60].
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Interestingly, none of the students in the single semester (N=25) that were asked to sketch

the charge distribution rather than to calculate total charge attempted to use Gauss’s Law.

This suggests that calculation of the total charge may have activated resources associated

with Gauss’s Law.

The misapplication of Gauss’s Law was also the primary issue observed in the interviews.

Even when the students were explicitly prompted to use direct integration, one of five stu-

dents still attempted to use Gauss’s Law. Two students in the second set of interviews

explicitly considered using Coulomb’s Law but rejected it in favor of using Gauss’s Law or

the expression for E from a point charge. ACER states that there are a number of cues

(elements IA1–IA3) embedded in the prompt of a physics problem that can guide a student

to the appropriate solution method. For example, if the prompt provides a boundary condi-

tion rather than a charge distribution, this is likely to cue the student to use separation of

variables or method of images. Elements IA1 and IA2 are identical for questions that can

be solved by Gauss’s Law and Coulomb’s Law (i.e., it asks for V or E and provides ρ(
⇀
r′)).

However, our students tend to be more comfortable with Gauss’s Law (i.e., their Gauss’s Law

resources are easily activated); therefore, they must first reject Gauss’s Law as appropriate

before they will attempt to use Coulomb’s Law.

Even without Gauss’s Law, it is still possible to solve for V by first calculating E using

Eqn. 1, but this calculation requires considerably more work (element IA4). Indeed, of

the students who attempted this method (15%, N=26 of 172) only a few (N=3) completed

the exam problem successfully. One virtue of the electric potential in electrostatics is to

allow for easier calculation of the electric field via
⇀

E = −
⇀

∇V . However, the students may

have jumped to calculating V from E because they were exposed to
⇀

E first and resources

associated with the electric field were more easily activated. This difficulty was not observed

in the interviews.

Construction of the model: For Coulomb’s Law integrals, the largest number of com-

mon student difficulties appeared in the Construction component, particularly when ex-
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pressing the differential charge element and difference vector (elements IC2 and IC4). These

difficulties cannot be explained purely by students failing to conceptualize the integral or

lacking the mathematical skills to set up integrals over surfaces and perform vector sub-

tractions. Rather, students had trouble keeping track of the relationships between various

quantities as they adapted the deceptively simple general formula (Eqn. 2) to a specific

physical system.

Almost all of the exams (97%, N=166 of 172) contained elements from the Construction

component (i.e., the student did more than just write down the equation). Of these students,

only two did not use the appropriate coordinates (cylindrical), indicating that students at

this level are adept at selecting appropriate coordinate systems in highly symmetric problems

(element IC1). Similarly, only one of the interview participants started with an inappropri-

ate coordinate system, and this student eventually switched after attempting the problem

in Cartesian coordinates. This finding is somewhat surprising given prior research indicat-

ing that even middle-division physics students often have a strong preference for Cartesian

coordinates [61].

The remaining elements of Construction proved more challenging. Nearly half the stu-

dents (42%, N=69 of 166) had difficulty expressing the differential charge element (element

IC2) and some (14%, N=23 of 166) failed to provide limits of integration or gave limits that

were inconsistent with their differential (element IC3). The most common errors made while

expressing the differential charge element (dq) were (see Table I): performing the integration

over a region of space with zero charge density, using a differential with the wrong units,

and plugging in total charge instead of charge density.

Initially, we interpreted difficulties with dq as a failure to conceptualize Eqn. 2 as a sum

over each little ‘bit’ of charge. Previous research on student difficulties with the concept of

accumulation as it applies to definite integrals supports this interpretation [53]. However, the

interviews suggest that the problem was more subtle than that. Even those interviewees who

failed to produce an appropriate expression for dq made statements or gestures indicating
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TABLE I. Difficulties expressing the differential charge element (dq). Percentages are of just the

students who had difficulty with dq (42%, N=69 of 166). Codes are not exhaustive or exclusive but

represent the most common themes, thus the total N in the table need not sum to 69.

Difficulty N Percent

Not integrating only over charges 37 54

e.g., dq = σ dr dz rdφ

Differential with the wrong units 23 33

e.g., dq = σ dr dφ

Total charge instead of charge density 10 14

e.g., dq = Qtot dr rdφ

they understood the integral to be a sum over the charge distribution. Additionally, post-test

data from the classical mechanics course at CU shows that more than 80% of our students

can correctly determine the differential area element for a cylindrical shell one semester

prior to taking E&M. Thus the problem appeared to be neither that the students were not

conceptualizing the integral as a sum over the charges, nor that they could not construct

a differential area element. Instead, the difficulties appeared when students were asked

to apply these two ideas simultaneously to produce an expression for dq consistent with a

specific charge distribution.

The magnitude of the difference vector, |⇀r|, must also be expressed such that it is con-

sistent with the specific charge distribution (element IC4), and most students (86%, N=148

of 172) attempted to do so. About half of these (47%, N=69 of 148) were unable to pro-

duce a correct formula for |⇀r|. The most common errors included (see Table II): using a

magnitude appropriate for a ring of charge, setting the magnitude equal to the distance to

the source point (r′), setting the magnitude equal to the distance to the field point (r),

and never expressing the magnitude in terms of given variables or quantities. It was of-

ten difficult to distinguish between the middle two difficulties because students’ notation

rarely distinguished clearly between the source and field variables; these issues are combined

in Table II. The remaining students were distributed over a variety of distinct, but not

widely-represented issues.
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TABLE II. Difficulties expressing the magnitude of the difference vector (r). Percentages are of

just the students who had difficulties with r (47% of 148, N=69). Codes are not exhaustive but

represent the most common themes, thus the total N in the table need not sum to 69.

Difficulty N Percent

Ring of charge 27 39

i.e., |⇀r| =
√
a2 + r′2

Distance to source or field point 17 25

i.e., |⇀r| = r or |⇀r| = r′

No expression for |⇀r| 8 12

Students’ spontaneous use of diagrammatic representation may be an additional aspect of

the Construction component. For example, drawing the vectors
⇀
r,

⇀
r′, and

⇀
r can be a helpful

step towards a correct expression for |⇀r|. We found that about two-thirds our students (66%,

N=98 of 148) drew one or more of these vectors on the exams; however, only half of these

students (50%, N=49 of 98) made explicit use of this diagram in their solution. It may be

that our students have seen enough of these types of problems to know that they should

draw a diagram but have not internalized how to use it productively.

Six of the eight interview participants who used Coulomb’s Law also spontaneously drew

the difference vector, and a seventh drew the vector but did not explicitly identify it as

⇀
r. However, even those students who were able to articulate the difference vector as the

distance between the source and field point struggled to produce a useful expression for it.

Only one interview participant arrived at a correct expression for the difference vector while

the others were either unable to express |⇀r| or treated it as a single variable like r or r′. The

greater degree of difficulty with
⇀
r observed in the interviews may be due to the time delay

between the participants completing the course and sitting for the interview.

Using Griffith’s “script-r” notation, rather than
⇀
r−⇀

r′, has a number of advantages includ-

ing making Coulomb’s law for continuous charge distributions look very similar to Coulomb’s

law for a point charge. However, it may be that this notation also encourages students to

look at
⇀
r as a separate entity that they must remember rather than a quantity they construct.

In fact, most students made comments in the interviews about not remembering the formula
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for
⇀
r or which direction it pointed, and few even attempted to use the source and field point

vectors to answer these questions. Only three of the eight interviewees spontaneously drew
⇀
r

and
⇀
r′, suggesting that the “script-r” notation obscured the importance of these two vectors.

Failure to properly distinguish between r, r, and r′ often resulted in improper cancellations

in the Execution component.

Execution of the mathematics: Given the high pressure and individual nature of

both exams and interviews, we expected that many students would make mathematical

errors particularly with element IE3. Yet our data offer no evidence that mathematical

errors either with integrals or algebraic manipulations (elements IE2 or IE3) were specific to

solving Coulomb’s Law problems nor that they represented the primary barrier to student

success on these problems. More than half the student exam solutions (60%, N=103 of 172)

contained elements from the Execution component. The significant reduction in number

was due primarily to the one of the four classes (N=55) that was only asked to set up

the integral for V. Additionally, not all students progressed far enough in their solutions to

actually evaluate integrals.

We were not able to produce a quantitative measure of student difficulties with element

IE1 from the exams because the majority of students did not consistently distinguish between

source and field variables (i.e., r vs. r′). However, of the four interview participants who

made a distinction between the source and field point, none consistently used the primed

notation. Two of these students ended up integrating over the r variable as if it were r′.

Overall, half the students’ exams containing elements of Execution (51%, N=53 of 103)

made various mathematical errors while solving integrals or simplifying their expression al-

gebraically (elements IE2 and IE3). Roughly half of the students with mathematical errors

(49%,, N=26 of 53) made only slight mathematical errors, such as dropping a factor of two

or plugging in limits incorrectly. The remaining students (51%, N=27 of 53) made various

significant mathematical errors, such as pulling integration variables outside of integrals or

not completing one or more integrals. Only a small fraction of exam students (8%, N=8

36



of 103) had difficulties only with elements in the Execution component (i.e., no mistakes in

Activation or Construction). Similar trends were observed with the seven interview partici-

pants who attempted to complete one or more calculations. Four students made significant

mathematical errors, two made only slight mathematical errors, and one made no errors.

Reflection on the result: In many cases, mistakes in the Construction or Execution

component resulted in expressions for the potential which had the wrong units and/or limit-

ing behavior (elements IR1 and IR2). While our students were able to identify these checks

as valuable when explicitly prompted, we found that they rarely spontaneously check these

properties to gain confidence in their solutions.

Only a small number of students (8%, N=13 of 172) made explicit attempts to check their

work on exams and almost exclusively by checking limiting behavior. While it is possible that

a greater number of students did perform one or more checks (i.e., elements IR1 and IR2)

but simply did not write them out, the interviews suggest this is less likely. When they had

not been prompted to check or reflect on their solutions, half of the interview participants

made no attempt to do so. Two of the remaining students only made superficial comments

about being uncertain if their solution was correct. One stated that her answer did not make

sense but was not able to leverage this realization to correct her earlier work. The final two

students both mentioned checking the units of their solutions, though not recalling the units

of εo prevented one of them from actually doing so.

The second set of interviews explicitly targeted Reflection by directly asking the students

to determine if three formulas (Fig. 5) could represent the potential from a static, localized

charge distribution with positive total charge Q. All five students suggested checking the

units of these expressions, yet all but one had difficulty doing so because they did not recall

the units of εo. This may be part of why units checks were not more common in the exam

solutions as well. Eventually, all the students were able to execute a units check once shown

a method for getting around the units of εo by considering the formula for the potential of a

point charge. Additionally, all five students suggested checking that in the limit as r → ∞
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the potential went to zero. Only two students spontaneously argued that V would need to

fall off as 1
r
. The other three made this argument when their attention was specifically drawn

to the fact that the charge distributions was localized and had positive total charge.

One of the three expressions for V required an appropriate Taylor expansion in order

to determine its behavior at large r (i.e., expression 1 of Fig. 5). Only one of the five

students recognized the need for an expansion without prompting. Another three argued

that the expression clearly did not fall off like a point charge. However, when directed to

Taylor expand, all three were able to manipulate the expression in order to isolate the small

quantity and determine the leading term in the series.

5. Summary and Implications

We found that our junior-level students tended to encounter two broad difficulties which

inhibited them from successfully solving for the potential from a continuous charge distri-

bution using Coulomb’s Law. First, students struggled to activate direct integration via

Coulomb’s Law as the appropriate solution method. In particular, some students tried to

calculate the potential by first calculating the electric field by Gauss’s Law or Coulomb’s Law.

For instructors, this suggests that presentation of Eqn. 2 should be accompanied by explicit

emphasis on when and why Gauss’s Law cannot be used as well as the utility of calculating

the electric potential rather than the electric field. The latter should be aimed at helping stu-

dents to develop strong connections between the conceptual idea of the potential and various

mathematical formula which allow them to calculate V(
⇀
r). Second, students had difficulty

coordinating their mathematical and physical resources to construct an integral expression

for the potential which was consistent with the particular physical situation, specifically

when expressing the differential charge element, dq, and difference vector,
⇀
r. Instructors

may be able to help by highlighting the relationships between these quantities to encourage

students to view Eqn. 2 a as coherent whole rather than a conglomeration of disconnected

pieces. We also found that while our juniors were capable of correct and meaningful reflection

38



when explicitly prompted, very few executed these reflections spontaneously. We consider

the ability to translate between physical and mathematical descriptions of a problem and to

meaningfully reflect on or interpret the results as two defining characteristics of a physicist,

yet these are areas where our students struggled most when manipulating Coulomb’s Law

integrals.

Our investigation of student difficulties was highly focused on the use of multivariable

integration in a specific physics context; as such, our findings do not always directly con-

nect to findings from previous research (Sec. III B 1). For example, much of the existing

literature focuses on the area-under-the-curve concept [52–55]. However, we argue that the

area-under-the-curve concept may not be productive way of conceptualizing multivariable

integrals, particularly 3D integrals. Alternatively, conceptualizing multivariable integrals as

the accumulation of infinitesimal amounts of multiplicative bits, as discussed by Thompson

and Silverman [53], is likely to be a much more productive strategy particularly in terms of

Construction. Similarly, the finding from Artigue et al. [56] that some students attributed

no physical meaning to the differential except to indicate the variable of integration offers

a potential explanation for our finding that some of our students did not construct expres-

sions for the differential charge element that were consistent with it representing a little bit

of charge. Moreover, the conceptual blending framework discussed by Hu and Rebello [58]

could offer a valuable analytical tool for identifying productive and unproductive strategies

used by students when operating the Construction component.

C. The Dirac Delta Function in the context of Electrostatics

1. Previous Research on Student Difficulties with the Dirac Delta Function

Another mathematical tool that appears repeatedly throughout the undergraduate

physics curriculum is the Dirac delta function (hereafter referred to as simply, the δ-function).

The majority of Section III C is taken from Ref. [62] on which BRW is first author. All text taken verbatim

from this publication was written by BRW.
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The δ-function represents an interesting topic to investigate student difficulties for several

reasons. Despite often being discussed as a purely abstract, mathematical construct, it

is rarely used in purely mathematical contexts. In fact, physicists often introduce the

δ-function into a problem in order to describe or model a concrete physical system. Addi-

tionally, it is our experience that the δ-function is often perceived by experts as trivial to

manipulate, and is often introduced to simplify the mathematics of a problem. However, we

still observe common and persistent student difficulties using the δ-function. Moreover, while

the δ-function has appeared in literature around student difficulties with Fourier transforms

and measurement in quantum mechanics [63–66], we are unaware of any existing literature

directly targeting student difficulties with the δ-function.

2. Operationalizing ACER for the Dirac Delta Function

A physics student may be exposed to the δ-function at several different points in the

undergraduate curriculum. These include its use as a tool to express volume mass or charge

densities, to describe potential energies or wavefunctions in quantum mechanics, in the

context of Fourier transforms, and, for more advanced situations, in the context of Green’s

functions. In mathematics courses, the δ-function is rigorously defined as a distribution [67],

and is typically not seen by students until senior or masters level analysis courses. Such

courses are not often taken by physics majors. Here, we will focus almost exclusively on

the δ-function as a tool to describe volume charge densities in the context of upper-division

electrostatics as this is one of the earliest and perhaps simplest uses. Despite the general

sense of many faculty at CU that students will be familiar with the δ-function by the time

they reach the junior-level, we find that for some (arguably many) students junior-level

electrostatics will be their first exposure to the δ-function.

To guide our data collection and analysis, we operationalized the ACER framework for

problems involving the use of δ-functions to express the volume charge (or mass) densities of

1, 2, and 3D charge distributions. For example, the volume charge density of a line charge
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running parallel to the z-axis and passing through the point (1,2,0) can be expressed as

ρ(
⇀
r) = λδ(x − 1)δ(y − 2), where λ is a unitful constant representing the charge per unit

length. Expressing volume charge densities in this way is often necessary when working with

the differential forms of Maxwell’s Equations and can facilitate working with the integral

forms of both Coulomb’s Law and the Biot-Savart law. Given its many possible uses, we

do not claim that the research presented here will span the space of all possible difficulties

with the Dirac δ-function; however, it will provide a sampling of the kinds of challenges that

students face when manipulating δ-functions.

Our network diagram expressing the conceptual and procedural resources used by experts

when solving these types of δ-functions questions is given in Fig. 6. The elements of the

flattened ACER framework extracted from this network diagram are detailed below. Recall,

element codes are for labeling purposes only and are not meant to suggest a particular order,

nor are all elements always necessary for every problem.

Flattened ACER framework

Activation of the tool: The first component of the framework involves identifying δ-

functions as the appropriate mathematical tool. We identified two elements in the form of

cues present in a prompt that are likely to activate resources associated with δ-functions.

DA1: The question provides an expression for volume charge density in terms of δ-functions

DA2: The question asks for an expression for the volume charge density of a charge distri-

bution that includes point, line, or surface charges

We include element DA1 because, in electrostatics, δ-functions are often provided explic-

itly in the problem statement, effectively short-circuiting Activation.

Construction of the model: Elements in this component are involved in mapping the

mathematical expression for the charge density to a verbal or pictorial representation of the

charge distribution or vice versa.

DC1: Relate the shape of the charge distribution to the coordinate system and number of

δ-functions
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DC2: Relate the location of the charges with the argument(s) of the δ-function(s)

DC3: Establish the need for and/or physical meaning of the unitful constant in front of the

δ-function

For problems that also require integration of the δ-function (e.g., to find total charge from

ρ(
⇀
r)) there are additional elements in construction related to setting up this integral.

DC4: Express a differential volume element consistent with the geometry of the charge

distribution

DC5: Select limits of integration consistent with the differential volume element and region

of interest

Alternatively, for sufficiently simple charge distributions, one can bypass setting up and

computing integrals (elements DC4 & DC5) by using the physical meaning of the unitful

constant to simply state the total charge (e.g., Q(uniform, spherical shell) = σ ∗ 4πR2).

Execution of the mathematics: This component of the framework deals with ele-

ments involved in executing the mathematical operations related to the δ-function. Because

this component deals with actually performing mathematical operations, these elements are

specific to problems requiring integration of the δ-function.

DE1: Execute (multivariable) integrals that include one or more (potentially multidimen-

sional) δ-functions

When the results of the integrals in DE1 must be simplified for interpretation, Execution

would include a second element relating to algebraic manipulation; however, none of the

integrals included in this study elicited or required significant algebraic manipulation.

Reflection on the result: The final component includes elements related to checking

and interpreting aspects of the solution, including intermediate steps and the final result.

While many different techniques can be used to reflect on a physics problem, the following

three are particularly common when dealing with δ-functions.

DR1: Check/determine the units of all relevant quantities (e.g., Q, ρ, the unitful constant)
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DR2: Check that the physical meaning of the unitful constant is consistent with its units

and the units of all other quantities

DR3: Verify that the value of the charge in a region is consistent with expectations

While the first two elements are similar, we consider element DR2 to be a distinct and

potentially more sophisticated reflection task in that it is seeking consistency between the

student’s physical interpretation of the unitful constant and its units. The distinction be-

tween elements DR1 and DR2 was motivated in part by preliminary analysis of student

work, which demonstrated that the link between the units of the constant and its physical

interpretation may not be made spontaneously by many students (see Sec. III C 4).

In the next section, we will apply this operationalization of ACER to investigate student

work on canonical δ-function questions.

3. Interview and Exam Prompts

Midterm exam data were collected from 7 semesters of the E&M 1 course (N=372) taught

by 5 different instructors. Of these, four were traditional research faculty, and one was a

physics education researcher. Two of these instructors, including the PER faculty member

(SJP), taught the course twice during data collection. Questions on the exams were devel-

oped solely by the instructor for that semester; however, in all cases, the question provided

a mathematical expression for a charge density and asked for a description and/or sketch of

the charge distribution (e.g., Fig. 7; see Appendix C for exact prompts). In one case, the

students were also asked to calculate the integral of the given δ-function expression. This

type of canonical exam question will be referred to as an A1-type prompt as it corresponds

to element DA1 of the operationalized ACER framework.

Student responses to the multiple-response CUE [51] provided an additional data source.

The multiple-response CUE is a research-based, end-of-semester conceptual assessment that

will be discussed in greater detail in Chapters IV-V. Only one question on the CUE deals

with δ-functions, and it is of the same general type as the questions asked on the exams

44



A1-type Prompt:

Sketch the charge distribution:

ρ(x, y, z) = cδ(x− 1)

Describe the distribution in words too.
What are the units of the constant, c?

FIG. 7. An example of a canonical exam question involving the Dirac δ-function. This prompt

corresponds with element DA1 of the operationalized ACER framework (Sec. III C 2).

(A1-type). However, rather than an open-ended prompt, the CUE asks a two-part, multiple-

choice question (see Fig. 8). CUE data from CU were collected from four semesters (N=145)

of the E&M 1 course; two of these were courses for which we also have exam data. In

addition to the CU data, we also collected multiple-response CUE data from 9 courses at

7 external institutions (N=161). These institutions range from small liberal arts colleges to

large research universities.

Think-aloud interviews (N=11) were conducted in two sets performed roughly a year apart

on different sets of students. Interview protocols for both sets of interviews were designed, in

part, to probe more deeply into difficulties identified in the exam solutions, and thus included

one or more exam style (i.e., A1-type) questions (see Appendix D for full interview protocols).

However, the operationalization of the ACER framework for δ-functions (Sec. III C 2) showed

that these standard exam questions do not capture all aspects of problem-solving with the

δ-function. In particular, this type of question bypasses Activation at anything more than

the most surface level assessment of whether a student recognizes the δ-function. To probe

Activation more deeply, we began the first set of think-aloud interviews with a question that

provided a description of the charge distribution and asked for a mathematical expression

for the charge density (see Fig. 9). This interview prompt will be referred to as an A2-

type prompt as it corresponds to element DA2 of the operationalized framework. The A2-

type prompt also provides a different perspective on Construction than the A1-type exam

prompt by requiring students to generate a multidimensional δ-function expression rather
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Q8 - A mass density is given by ρ(
⇀
r) = m1δ

3(
⇀
r− ⇀

r1) +m2δ
3(

⇀
r− ⇀

r2),
where m1 and m2 are constants.

i. What is the value of
∫
all space

ρ(
⇀
r)dτ?

a) m1δ
3(

⇀
r − ⇀

r1) +m2δ
3(

⇀
r − ⇀

r2)

b) m1δ
3(

⇀
r1) +m2δ

3(
⇀
r2)

c) m1 +m2

d) m1
⇀
r1 +m2

⇀
r2

e) m1r1 +m2r2

f) m1r1
2 +m2r2

2

ii. What physical situation does this mass density represent?

a) Two solid spheres of radius r1 and r2

b) Two concentric spherical shells of radius r1 and r2

c) Two nested cylindrical shells with radius r1 and r2 (i.e., a
coaxial cable)

d) Two point masses located at
⇀
r1 and

⇀
r2

e) Two spheres of non-zero radius located at
⇀
r1 and

⇀
r2 (i.e., a

dumbbell)

FIG. 8. The multiple-response CUE question related to the δ-function. This prompt is of the same

general type as the A1-type prompt used on the midterm exams.

A2-type Prompt:

What is the volume charge density of an infinitely
long, linear charge distribution running parallel to
the z-axis and passing through the point (1,2,0)?
Be sure to define any new symbols you introduce.
Sketch this charge distribution.

FIG. 9. An example of the interview question used to specifically target spontaneous activation of

the δ-function. This prompt corresponds to element DA2 of the operationalized ACER framework

(Sec. III C 2).

than just interpreting it. However, participants in the first interview set often failed to

activate the δ-function in response to the A2-type prompt and thus never moved on to deal

with Construction. In order to target the Construction component more clearly, the second
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set of interviews directly prompted students to use δ-functions to express the charge density.

Additionally, only one of the seven exam questions asked students to integrate an expres-

sion containing a δ-function. To further probe students ability to integrate the δ-function

(element DE1), both interview protocols included questions that prompted students to cal-

culate the total charge within a finite region of space. The second set of interviews also

ended by asking students to perform a set of context-free integrations of various δ-function

expressions (Fig. 10) in order to more clearly investigate the Execution component. These

particular integral expressions were each designed to target a specific difficulty we antici-

pated students might have with the procedural aspects of integrating the δ-function. While

all integrals were presented without a physical context, in the case of integral d) students

were also asked if they could come up with a physical situation in which they might set up

this integral.

4. Student Difficulties with the Dirac Delta Function

This section presents the identification and analysis of common student difficulties with

the Dirac δ-function organized by component and element of the operationalized ACER

framework (Sec. III C 2).

Perform the following integrations:

a)
−∞∫
∞
δ(x)dx

b)
−∞∫
∞
xδ(x)dx

c)
10∫
0

[aδ(x− 1) + bδ(x+ 2) + cδ(x− 3)]dx

d)
∫∫∫

aδ(r − r′)r2sin(θ)drdφdθ

FIG. 10. Context-free integral problems used in the second set of interviews (N=6) in order to

directly target the Execution component of the framework.
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Activation of the tool: Elements DA1 and DA2 of the framework represent two different

types of prompts that can cue students’ to activate resources related to the δ-function. In

the case of A2-type prompts, the student must first recognize that the δ-function is the

appropriate mathematical tool before they can correctly answer the question. However, for

A1-type questions, the δ-function is given as part of the prompt, effectively short-circuiting

Activation and providing little information about students ability to recognize when the

δ-function is appropriate.

None of the instructor-written exams included A2-type questions. Instead, this element

was specifically targeted during the first of the two interview sets. When presented with the

A2-type prompt in Fig. 9, two of five interviewees spontaneously suggested using δ-functions.

The remaining three participants all expressed confusion at being asked to provide a volume

charge density for a line of charge. Two of these students attempted to reconcile this by

defining an arbitrary cylindrical volume, V , around the line charge and using ρ = Q/V . This

strategy, while incorrect, represents a reasonable attempt to make sense of the problem in

lieu of the δ-function. Later in the interview, all five of these students were presented with

the δ-functions expression for a linear charge density and all but one correctly interpreted

this expression as describing a line charge. This result suggests that even immediately after

completing a junior-level electrostatics course, many students may have difficulty recognizing

when the δ-function is the appropriate mathematical tool even when they are able to provide

a correct physical interpretation of it.

Three participants in the second interview set had just completed one semester of upper-

division quantum mechanics at the time of the interview. To investigate the context-

dependent nature of student Activation of the δ-function, we began these students’ interviews

by asking for a mathematical expression for the potential of a finite square well in the limit

that the well became very narrow and very deep. Two of these three participants sponta-

neously suggested the δ-function as the appropriate tool. Both of these students explicitly

focused on the use of the words “very narrow and very deep” just before suggesting the
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δ-function. The third student initially attempted to write the potential as a piecewise func-

tion but brought up the δ-function when explicitly told there was a more compact way to

represent the potential without using a piecewise notation. Successful activation of the δ-

function in the quantum case seemed to be linked to the high degree of similarity between

the visual representation of a deep, narrow potential well and the commonly used graphical

representation of δ(x).

Construction of the model: The Construction component deals with mapping be-

tween the physics and mathematics of a problem. In the case of δ-functions, this mapping

can be done in two directions: from mathematics to physical description, or from physical

description to mathematics. The A1-type prompts (Fig. 7) used on exams, the CUE, and

in interviews investigated students’ ability to translate a mathematical expression for the

charge density into a physical description of the charge distribution. As part of this process,

students needed to connect the coordinate system and number of δ-functions in the given

expression to the shape of the charge distribution (element DC1). For example, the expres-

sion ρ(x, y, z) = cδ(x− 1) contains one Cartesian δ-function and thus represents an infinite

plane of charge. Roughly a quarter of students (23%, N=87 of 372) had an incorrect shape

on exams. The most common error was misidentifying volume charge densities that included

1 or 2 δ-functions as point charges (62%, N=54 of 87).

On the CUE diagnostic administered at the end of the semester, the fraction of students

selecting the incorrect shape was roughly a third (35%, N=51 of 145). This trend of selecting

the incorrect shape is slightly more pronounced in student populations beyond CU who have

taken the multiple-response CUE (49%, N=79 of 161, 7 institutions). The most common

error for this question was misidentifying the given point mass density (see Fig. 8) as a

solid sphere or spherical shell with radius
⇀
r1 (76%, N=99 of 130 incorrect responses, all

institutions). This finding is interesting because, given students’ tendency to misidentify

charge densities as point charges on exams, we might expect that they would be more

successful at identifying point mass densities. However, we hypothesize that the prevalence
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of this particular error may have been exacerbated by the apparent similarity between the

expressions for this point mass density and that of a spherical shell (ρ(
⇀
r) = m1δ(r − r1)),

which are distinguished only by the presence of the cube on the δ-function and vectors in

the argument.

In interviews, 9 of 11 participants correctly identified the shape of one or more charge

distributions from the mathematical expressions for the charge density. The remaining 2

students both sketched the charge distribution on 3D Cartesian axes as a very narrow spike

originating at a point consistent with the argument of the δ-function and extending upwards

parallel to one of the axes (e.g., see Fig. 11). This ‘spike’ representation was also seen in a

small number of the exam solutions (5%, N=17 of 311). The spike drawn by these students

is highly reminiscent of the 1D graphical representation of δ(x) as an infinitely tall and thin

Gaussian distribution at x = 0 that is commonly used when first defining the δ-function.

Students who draw this ‘spike’ when sketching the charge distribution may be attempting to

apply this 1D representation of the δ-function to a 3D sketch. The examples shown in Fig.

11 have a number of additional interesting features. For example, the student in Fig. 11(d)

places the spike at z = 2c rather than z = 2. Additionally, the spikes are not always parallel

FIG. 11. Examples of the ‘spike’ representation used by 5% of exam students and 2 of 11 interview

students. In this case, students were prompted to sketch the charge distribution described by

ρ(x, y, z) = cδ(x)δ(z − 2).
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to the same axis despite all having the same prompt. These features may warrant further

investigation in future studies; however, as they were observed in only a small number of

exam solutions and in none of the interviews, we will not discuss them in further detail here.

The interviews also included an A2-type prompt (Fig. 9) to explore students’ ability to

translate a physical description of the charge distribution into a mathematical expression

for the charge density. This process requires students to use the geometry of the charge

distribution to select an appropriate coordinate system and number of δ-functions. Of the

eight interview participants who attempted to use δ-functions in response to the A2-type

prompt, three were able to correctly express the line charge density as the product of two 1D

Cartesian δ-functions. Four of the remaining five students instead attempted to use a single

δ-function whose argument was the difference between two vectors, for example ρ ∝ δ(
⇀
r−⇀

r1)

where
⇀
r1 = (1, 2, z). These students did not explicitly acknowledge this as a 3D δ-function

either verbally or by cubing the δ-function. Three of these students also described the line

charge as a continuous sum of point charges and integrated their δ-function expression over all

z. This strategy reflects a fundamentally reasonable physical interpretation of the situation

that can be used to construct a correct expression for the line charge density; however, none

of these students were able to fully leverage this interpretation to correctly express the charge

density.

Determining the location of the charge distribution (element DC2) was not a significant

stumbling block for students in this study. None of the interview students and a tenth of the

exam students (10%, N=39 of 372) drew an incorrect position for the distribution. The most

common errors were switching the signs of the coordinates (36%, N=14 of 39, e.g., locating

the plane described by ρ(x, y, z) = cδ(x−1) at x=-1) or having the wrong orientation of line

or plane distributions (38%, N=15 of 39). However, all relevant exam questions in this study

dealt with locating charge distributions described by δ-functions in Cartesian coordinates,

and it is possible that student difficulties with element DC2 would be more significant for

other geometries or more abstract notation.
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The third element in Construction relates to the need for a unitful constant in the expres-

sion for ρ(
⇀
r). For A1-type questions, this constant is provided as part of the given expression

for the charge density, and fully interpreting this expression requires recognizing the physical

significance of this constant. For example, in the expression ρ(x, y, z) = cδ(x− 1), the con-

stant, c, represents the charge per unit area on the surface of the plane. Roughly a quarter of

the exam students (27%, N=70 of 255) presented with an arbitrary constant spontaneously

commented on its physical meaning and most of these (81%, N=57 of 70) had a correct

interpretation. This fraction should be interpreted as a lower bound as additional students

may have recognized the constant’s physical significance but did not explicitly write it down

on the exam. The interviews suggest that a students’ interpretation of the constant can be

facilitated or impeded by their identification of its units. This dynamic will be discussed in

greater detail below in relation to the Reflection component.

The A2-type prompts used in interviews, on the other hand, do not include the unitful

constant but instead require that a student recognize the need for this constant indepen-

dently. Two of eight interviewees did not spontaneously include a multiplicative constant

in their expression for the charge density. Alternatively, three of the remaining participants

recognized the need for a multiplicative factor but expressed this factor as ρ(
⇀
r) (e.g., volume

charge density = ρ(
⇀
r)δ(x− 1)δ(y− 2)). These students appeared to be interpreting the ρ(

⇀
r)

term as representing only the magnitude of the charge density rather than the magnitude

at a specific point in space. This also suggests that these students are not treating ρ as

the quantity defined by convention to be volume charge density and are instead treating it

as the quantity conventionally defined as λ (i.e., line charge density). Ultimately, four of

the eight participants included a multiplicative constant and articulated a correct physical

interpretation of that constant before moving on from this question.

The final two elements in Construction (elements 4 & 5) are not specific to questions

involving δ-functions, but rather apply to any physics problem involving multivariable inte-

gration. These elements deal with expressing the differential volume element and selecting
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limit of integration. We have previously examined student work around these two elements

in the context of Coulomb’s law integrals (see Sec. III B 4) and observed a number of difficul-

ties. However, only a small number of students (21%, N=12 of 56) struggled with either the

Cartesian differential volume element or limits of integration in the single semester where

the exam question asked for total charge in a finite region of space. Furthermore, only one of

eleven interviewees had clear difficulties expressing the differential charge element in spher-

ical coordinates, and one other selected incorrect limits for their Cartesian integral. Thus,

setting up integrals for the relatively simple Cartesian and spherical geometries used in this

study was not a significant challenge for our upper-division students.

Execution of the mathematics: The Execution component of the framework deals

with the procedural aspects of working with mathematical tools in physics. The exams

provide limited insight into this component as students were asked to actually calculate

an integral of a δ-function in only one semester. In this case, the students were given the

expression for 3 point charges and asked to calculate
∫
ρ(

⇀
r)dτ . Roughly a quarter of the

students (27%, N=15 of 56) made significant mathematical errors related to the δ-function

while executing this integral (element DE1). The most common error (73%, N=11 of 15)

amounted to a variation of equating the integral of the δ-function with the integral of the

zero point of its vector argument (e.g.,
∫
δ3(

⇀
r − ⇀

r1)dτ =
∫

⇀
r1dτ). Ultimately, only a small

fraction of students (7%, N=4 of 56) had errors only with the elements in the Execution

component (i.e., no mistakes in Activation or Construction).

More than a third of students (37%, N=53 of 145 at CU, 41%, N=66 of 161 at external

institutions) selected an incorrect value for the integral of a point mass density in response

to the CUE question. The most common error (81%, N=43 of 53 at CU, 68% N=45 of 66

at external institutions) was equating the integral of the δ-function with the value (vector

or magnitude) of
⇀
r at which the argument was zero (e.g.,

∫
δ3(

⇀
r − ⇀

r1)dτ =
⇀
r1). This issue

is different from, though potentially related to, the most common issue seen in the exam;

however, none of the response options on the multiple-choice CUE question matched the
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outcome of the incorrect setup seen commonly on exams. Ultimately, these types of errors

indicate that students have correctly recognized that the δ-function somehow picks out the

value
⇀
r =

⇀
r1 but apply this reasoning in an ad hoc fashion in the integration process.

The first set of interviews investigated Execution in the context of calculating the total

charge on a uniformly charged spherical shell. Two of the five participants were not able to

complete this calculation and explicitly stated this was because they could not recall how to

integrate the δ-function. When asked for the value of
∫∞
−∞ δ(x)dx these participants guessed

it would be x or 1/x. Extending this logic into three dimensions, this response appears

consistent with some of the common incorrect responses on the CUE and exam questions

(e.g.,
∫
δ3(

⇀
r − ⇀

r1)dτ =
⇀
r1 or 1/|⇀r1|).

The second interview set (N=6) targeted the first element in Execution differently by

asking students to perform the context-free integrations in Fig. 10. Two students stated

that the integral in b) would be equal to x without evaluating this expression at x = 0,

but none of the six participants had difficulty with the integrals in a) or c). Moreover, the

3D δ-functions used on the exam and CUE seemed to evoke different, and potentially more

fundamental, difficulties than the 1D δ-functions used in interviews. Three of six interviewees

also evaluated the r integral in part d) in the following way,
∫
δ(r − r′)r2dr = 1

3
r′3, despite

correctly executing parts a)-c). Two of these students explicitly stated that the effect of the

δ-function was only to pick out the value r = r′. This result is consistent with that from the

exams and CUE, and suggests that a significant fraction of our upper-division students have

internalized the idea that the δ-function picks out a particular value of the variable, but do

not recognize the other impacts of the δ-functions on the result of the integral, particularly

when dealing with 3D or non-Cartesian δ-functions.

Reflection on the result: The Reflection component deals with aspects of the problem-

solving process related to interpreting and checking intermediate steps and the final solution.

For the questions used in this study, one of the most powerful tools available for checking and

interpreting the various δ-function expressions is looking at units (elements DR1 and DR2).
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In particular, for A1-type problems, looking at the units of the given constant (e.g., the c in

ρ(x, y, z) = cδ(x− 1)) can facilitate interpretation of that constant’s physical meaning. Five

of the seven exam prompts explicitly asked students to comment on the units of the given

constant and two-thirds of the students (70%, N=178 of 255) responded with the correct

units (element DR1).

Beyond just commenting on the units of the given constant, we would like our students

to recognize the physical interpretation of this constant (element DC3), and ensure that

the units and physical interpretation are consistent (element DR2). However, it was often

difficult to assess if students did this on the exams, in part because only a quarter of our

students (N=70 of 255) explicitly commented on the physical interpretation of the unitful

constant (element DC3). Most of these students (83%, N=58 of 70) also provided units for

the constant that were consistent with their physical interpretation of its meaning. However,

a third of the students (32%, N=82 of 255) gave units that were inconsistent with the shape

they identified regardless of whether they commented on the constant’s physical meaning.

Some of these students had the correct shape but incorrect units (40%, N=33 of 82), and

others had the incorrect shape but correct units (30%, N=25 of 82). For an expert, the units

of the constant, its physical meaning, and the shape of the charge distribution are tightly

linked; however, these results suggest that this relationship may still be developing for the

students.

5. Summary and Implications

Our upper-division students encountered a number of issues when using/interpreting the

δ-function. For example, our students often struggled to activate the δ-functions as the ap-

propriate mathematical tool when not explicitly prompted. As our upper-division students

progress forward through the undergraduate and graduate curriculum, it becomes increas-

ingly important that they be able to recognize situations in which particular tools will be

useful. Additionally, we found that students have a greater degree of difficulty translating
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a verbal description of a charge distribution into a mathematical formula for volume charge

density than the reverse process. While interpreting a mathematical formula for the charge

density is a valuable skill for our physics majors, the ability to construct that same formula

from scratch is potentially an even more valuable skill that our physics majors are likely to

use in the future.

Our students also encountered difficulties with the procedural aspects of integrating 3D

and/or non-Cartesian δ-functions despite often recognizing that the δ-function picks out the

value of the integral at a single point. These difficulties manifest both in solving integrals

embedded in a physics context and those presented in a purely mathematical context. Finally,

our students demonstrated significant difficulty determining the units of the δ-function, thus

limiting their ability to interpret or check their expressions for the charge density.

This study was not designed to investigate the impacts of different instructional strategies

or curricular materials on the prevalence or persistence of students’ difficulties with the Dirac

δ-function; however, our findings do suggest several implications for teaching or using the δ-

function at the upper-division level. For example, instructors should be aware that students

are unlikely to encounter the δ-function in their required mathematics courses, and that it

may or may not be covered in a math methods course run within a Physics department. Thus,

the assumption that all students in a junior-level course will be aware of the δ-function and its

properties may not be justified. Students’ struggles with the procedural aspects of integrating

more complex δ-function expressions may be one manifestation of this lack of sufficient prior

experience with the δ-function. These students may benefit from additional opportunities

to practice integrating both 1D and 3D delta functions and in multiple coordinate systems.

Additionally, canonical δ-functions questions rarely, if ever, require a student to consider

when the δ-function is an appropriate tool. Questions that describe a charge distribution

and ask for an expression for the charge density can provide a baseline assessment of student

ability to activate the δ-function when not prompted explicitly. This type of question also

addresses another finding: constructing a mathematical expression for the charge density is
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a distinct and potentially more challenging task for our students than interpreting that same

expression. As the former task is arguably the more authentic, students may benefit from

additional opportunities to construct various δ-function expressions in multiple coordinate

systems.

The belief that the δ-function is unitless was a surprisingly prevalent and persistent idea.

This belief may be exacerbated by presenting the δ-function as a purely abstract mathe-

matical construct. Moreover, the idea of a unitless δ-function can interfere with students’

interpretation of the unitful constant. To facilitate student reflection on problems involving

the δ-function, specific emphasis should be placed not only on the fact that the δ-function

can have units, but also on how to determine them based on the argument of the δ-function.

D. Separation of Variables in the context of Laplace’s Equation

1. Previous Research on Student Difficulties with Separation of Variables

Partial Differential Equations (PDEs) appear in multiple contexts in the upper-division,

undergraduate physics curriculum (e.g., waves on a string, Maxwell’s equations, the Schrödinger

equation). One of the most common approaches to solving a PDE is to turn it into multiple

Ordinary Differential Equations (ODEs) using a technique known as separation of variables

(SoV). In this thesis, we use the term SoV to refer to the technique of guessing a general

solution with a functional form that allows the PDE to be separated into several ODEs

and then solving these ODEs individually with appropriate boundary conditions. This tech-

nique is not to be confused with the strategy (also conventionally referred to as separation

of variables) used to solve separable ODEs by isolating terms with the function and the

variable on either side of the equals sign and integrating. We are not aware of any existing

research specifically targeting student difficulties with SoV, though some work has been

done looking at solving ordinary differential equations generally. Much of this differential

equations literature focuses on students’ use of graphical techniques to solve linear ODEs
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[68–70], or numerical solutions to more complex differential equations that cannot be solved

analytically [71].

2. Operationalizing ACER for Separation of Variables

At CU, physics students encounter SoV several times in their undergraduate courses. The

first exposure is often in sophomore classical mechanics as a technique to solve Laplace’s

equation in Cartesian coordinates, typically in the context of solving for the temperature

as a function of position in a mechanical system with given boundary conditions. Students

may also encounter this technique in a differential equations course taken from the Math

department. Junior electrostatics is the next place where CU’s physics majors see SoV in the

context of solving Laplace’s equation for the electric potential, V , in 2D and 3D Cartesian

coordinates and spherical coordinates with azimuthal symmetry. Students do not typically

encounter spherical SoV without assuming azimuthal symmetry until quantum mechanics

where it is used to solve the Schrödinger equation for the hydrogen atom. In discussions

with the physics faculty at CU, some instructors have expressed the sense that students do

not begin to demonstrate mastery of the SoV technique until they see it for a third time in

quantum mechanics, and sometimes not even then.

Here, we focus on student use of SoV in junior-level electrostatics. To guide our data

collection and analysis, we operationalized the ACER framework for problems involving so-

lutions to Laplace’s equation in Cartesian coordinates (i.e., ∇2V (x, y, z) = 0) and spherical

coordinates with azimuthal symmetry (i.e., ∇2V (r, θ) = 0). These types of problems typi-

cally ask for an expression for the voltage in a charge-free region and provide an expression

for the voltage along the boundary of that region. To operationalize the framework, we cre-

ated a network diagram expressing the conceptual and procedural resources used by experts

when solving these types of SoV questions (Fig. 12). Note that while this diagram includes

both Cartesian and spherical geometries, there are several points where the framework high-

lights procedural differences between the solutions in these two different coordinate systems.
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An interesting aspect of this network diagram, relative to those for integration (Fig. 3) and

delta-functions (Fig. 6), is the degree of interplay between Construction and Execution. Par-

ticularly for Cartesian SoV, expert solution paths move back and forth between Construction

and Execution several times before arriving at a complete solution. The implications of this

dynamic will be discussed in greater detail in the following sections.

The elements of the flattened ACER framework extracted from the SoV network diagram

are detailed below. Recall, element codes are for labeling purposes only and are not meant

to suggest a particular order, nor are all elements always necessary for every problem. In

particular, the elements of Construction and Execution are unlikely to occur in the specific

order listed.

Flattened ACER framework

Activation of the tool: The first component of the framework involves identifying

SoV as the appropriate mathematical technique to solve for the voltage. We identified

three elements in the form of cues present in a prompt that are likely to activate resources

associated with SoV.

SA1: The question provides boundary conditions and asks for separation of variables directly

or provides the expression for the general solution

SA2: The question provides boundary conditions and uses language associated with sep-

aration of variables (e.g., infinite sum, Legendre polynomials, Fourier series, general

solution)

SA3: The question provides boundary conditions and asks for the electric potential or volt-

age in a charge free region

For element SA1, it is more common for a question to provide the general solution for the

voltage in spherical geometries than in Cartesian, in part because the functional form of the

general solution in Cartesian depends on the boundary conditions (element SC2).

Construction of the model: Elements in this component deal with modifying the

general expression for the solution to Laplace’s equation so that it matches the boundary
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conditions. As there is no ambiguity in the signs of the separation constants for SoV in spher-

ical coordinates due to the nature of the θ coordinate, the second element of Construction

is specific to Cartesian problems.

SC1: Determine any relevant boundary conditions, both those explicitly given in the

prompt/figure and those implicit from the physical situation (e.g., V (r →∞)→ 0)

SC2: (Cartesian only) Choose the signs of the separation constants or select the functional

forms for the solution that are appropriate for the boundary conditions

SC3: Apply each boundary condition to the general solutions in order to solve for all un-

known constants (set up only)

Note that these elements do not necessarily occur sequentially, either with respect to one

another or with respect to elements of the Execution component.

Execution of the mathematics: This component of the framework deals with elements

involved in executing the mathematical operations related to SoV. As students are rarely

(if ever) asked to actually produce and solve the ODEs resulting from SoV in spherical

coordinates, the first two elements of Execution are specific to Cartesian (and potentially

Cylindrical) problems.

SE1: (Cartesian only) Manipulate the PDE into ODEs using the separated form of the

potential (e.g., V (x, y, z) = X(x)Y (y)Z(z))

SE2: (Cartesian only) Know or look up the solution to these ODEs given the signs of the

separation constants

SE3: Calculate values for all unknown constants based on applying the boundary conditions

through zero matching, term matching, or Fourier’s trick integrals.

SE4: Manipulate algebraic expressions into forms that can be readily input into V (
⇀
r) and

interpreted

Element SE3 can be accomplished in a variety of ways sometimes involving several smaller

steps depending on the particular boundary conditions. The strategies we refer to as zero

matching, term matching, and Fourier’s trick are explicitly described in Sec. III D 4.
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Reflection on the result: The final component includes elements related to checking

and interpreting aspects of the solution, including intermediate steps and the final result.

While many different techniques can be used to reflect on a physics problem, the following

four are particularly common when dealing with SoV.

SR1: Check the units of the final expression

SR2: Check that the solution matches all boundary conditions

SR3: (Spherical only) Check that the solution behaves as expected in known limits (may

include calculating lowest order moments)

SR4: Confirm that the solution satisfies Laplace’s Equation

Element SR3 refers specifically to checking the functional dependence, rather than the

value, of the voltage in known limits. For example, checking that V (r → ∞) = 0 would be

considered SR2 while showing that V goes to zero as 1/r would be SR3. The final element

of Reflection (SR4) was added to the framework after initial analysis of student work where

we observed that mistakes in the Construction and Execution components often resulted in

solutions that did not satisfy Laplace’s equation.

In the next section, we will apply this operationalization of ACER to investigate student

work on canonical SoV problems involving both Cartesian and spherical geometries.

3. Interview and Exam Prompts

Midterm exam data were collected from 10 semesters of the E&M 1 course (N=474)

taught by 8 different instructors. Of these, six were traditional research faculty and two were

physics education researchers. Two of these instructors, including one of the PER faculty

members (SJP), taught the course twice during data collection. Questions on the exams

were developed solely by the instructor for that semester. In four cases, the instructor asked

one or more SoV questions on both the midterm and final exams, thus the following section

reports the analysis of 15 distinct exam questions for a total of N=744 unique solutions.
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A rectangular pipe, running parallel to the z-axis, extending from −∞ to
∞, has three grounded metal sides and a fourth side maintained at a
constant potential, Vo, as in the figure.
Find the potential V (x, y) at all points inside the pipe.

FIG. 13. An example of a canonical exam problem targeting Cartesian SoV. Variations on this ques-

tion include providing a non-constant potential on the forth side (e.g., Vo(x, y = a) = Vosin πx/a),

placing the non-grounded side at y = 0 rather than y = a, or placing one of the grounded sides at

infinity.

A thin spherical shell of radius R and centered on the origin has a
voltage on its surface given by V (R, θ) = Vocos

2(θ).

Find the potential V (r, θ) everywhere (inside and outside the sphere).

FIG. 14. An example of a canonical exam problem targeting spherical SoV. Variations on

this question include providing a simpler or more complex expression for the boundary (e.g.,

V (R, θ) = Vocos θ), giving the boundary condition in terms of Legendre polynomials (e.g.,

V (R, θ) = P9(cos θ)), or only asking for the potential inside or outside the sphere.

As our goal is to identify the presence of common student difficulties, the remainder of this

analysis will report N as the number of solutions rather than number of students.

Exam questions requiring the use of SoV in Cartesian and spherical coordinates are both

common at CU. Four of the exam questions in our sample (N=235 solutions from 3 semesters)

provided students with a rectangular pipe or gutter with given values for the voltage on each

side and asked for an expression for the voltage valid everywhere inside (e.g., Fig. 13, see

Appendix E for exact prompts). The remaining 11 exam questions (N=509 solutions from

9 semesters) provide students with an azimuthally symmetric expression for the voltage on

the surface of a spherical shell and asked for an expression for the voltage valid inside and/or

outside the shell (e.g., Fig. 14, see Appendix F for exact prompts).
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Student responses to the multiple-response CUE (Colorado Upper-division Electrostatics

diagnostic - a research-based, end-of-semester conceptual assessment described in Chapter

IV) provide an additional data source. Two questions on the CUE deal with SoV: one in

Cartesian (Fig. 15), and one in spherical (Fig. 16). CUE data were collected from four

semesters (N=145) of the E&M 1 course at CU; three of these were courses for which we also

have exam data. In addition to the CU data, we also collected multiple-response CUE data

from 9 courses at 7 external institutions (N=161) ranging from small liberal arts colleges to

large research institutions.

Think-aloud interviews (N=11) were conducted in two sets performed roughly two years

apart (see Appendix G for full interview protocols) in order to further probe preliminary

difficulties identified in student exams. The first interview set (N=4) was designed to tar-

get student difficulties with SoV in Cartesian coordinates and was conducted prior to the

development of the ACER framework. The students were asked to determine the voltage

inside a semi-infinite plate with one side held at a constant potential (similar to the question

Q13 - To solve for V inside the box by separation of variables, which form of the
solution should you choose? Select only one.

A. V(x,y) = (A eky +B e−ky)(̇C sin kx+D cos kx)

B. V(x,y) = (A sin ky +B cos ky)(̇C ekx +D e−kx)

C. V(x,y) = (A sin ky +B cos ky)(̇C sin kx+D cos kx)

D. V(x,y) = (A eky +B e−ky)(̇C ekx +D e−kx)

E. More than one of these could be used

because ... (select ALL that support your choice of method)

a. � it is harder (but not impossible) to fit the boundary conditions on x with
exponentials

b. � it is harder (but not impossible) to fit the boundary conditions on y with
exponentials

c. � oscillatory solutions cannot fit the boundary conditions on x
d. � oscillatory solutions cannot fit the boundary conditions on y
e. � exponential solutions cannot fit the boundary conditions on x
f. � exponential solutions cannot fit the boundary conditions on y

FIG. 15. The multiple-response CUE question related to the Cartesian SoV. The prompt has been

paraphrased, see Appendix H for full prompt.

64



Q1 - A hollow, insulating spherical shell with radius R, with a voltage on its

surface, V (θ) = kcos(3θ). Find
⇀

E or V inside the sphere at point P.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law
b. � symmetry allows you to calculate

⇀

E using a spherical Gaussian surface
c. � the boundary conditions is azimuthally symmetric (i.e., symmetric in φ)
d. � there is not appropriate symmetry to use other methods
e. � you can use

⇀

E(
⇀
r) = −

⇀

∇(kcos 3θ) and evaluate this at point P
f. � ∇2V = 0 inside the sphere and you can solve for V using Legendre Polynomials

FIG. 16. The multiple-response CUE question related to spherical SoV. This prompt is consistent

with element SA3 of the framework.

in Fig. 13). The students were directly prompted to approach this problem by using the

SoV technique to solve Laplace’s equation. They were also provided the expression for ∇2

in Cartesian coordinates along with the solutions to the relevant ODEs and the integral ex-

pression needed to determine the coefficients in a Fourier series. From the perspective of the

ACER framework, this prompt clearly targeted the Construction and Execution components,

but bypassed Activation.

The second interview set (N=6) began with a spherical SoV problem in which the students

were given a spherical shell with a known voltage on the surface (see Fig. 14). To directly

target Activation, the prompt did not specifically mention Laplace’s equation or prompt the

students to use the SoV technique. Students who were able to complete this problem in the

allotted time were also explicitly prompted to come up with a way to check their solution

in order to convince themselves their expression was correct (i.e., Reflection). The second

interview set ended by asking students to begin working though the Cartesian question

shown in Fig. 13, though no student had time to fully complete this question. While the
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Cartesian prompt also did not directly prompt SoV, this question did not provide insight

into spontaneous Activation because it came immediately after a spherical SoV question.

While we intentionally operationalized the framework for problems in both Cartesian and

spherical geometries, our analysis found that the type and frequency of errors was often

quantitatively and/or qualitatively different for the two geometries. For this reason, we

report on student difficulties with these two geometries separately. Where appropriate, we

also synthesize these findings in Sec. III D 6.

4. Student difficulties with Separation of Variables in Cartesian Coordinates

This section presents the identification and analysis of common student difficulties with

the separation of variables technique in Cartesian coordinates organized by component and

element of the operationalized ACER framework (Sec. III D 2).

Activation of the tool: Canonical Cartesian SoV questions (e.g., Fig. 13) are highly

distinctive both because they provide boundary conditions and because they do not provide

information needed to solve the problem using other methods (e.g., ρ(
⇀
r)). Elements SA1-

SA3 describe different types of prompts that can cue students to activate resources related

to SoV, loosely organized according to the likelihood that they will do so. One of the four

exam questions (N=69) explicitly prompted students to use SoV and presented them with

the appropriate separated form for the solution (i.e., V (x, y) = X(x)Y (y)); thus, these

solutions provide minimal insight into Activation. Alternatively, prompts consistent with

SA2 or SA3 require students’ to identify SoV as the appropriate technique, and only one of

the 166 solutions to implicit prompts used a method other than SoV. Due to the distinctive

nature of Cartesian SoV questions, we are hesitant to interpret this result as evidence that

our students have a solid understanding of when SoV is the correct approach; however, it

does suggest they are adept at recognizing these canonical questions.

Construction of the model: The Construction component deals with mapping between

the physics and mathematics of a problem. For SoV, this process includes identifying all
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necessary boundary conditions (element SC1). Cartesian SoV problems typically provide

these boundary conditions explicitly in the prompt (see Sec. III D 5 for discussion of implicit

boundary conditions). Consistent with this, only a small fraction of solutions (5%, N=12

of 234) used incorrect values for the boundary conditions. Common errors included putting

the non-zero boundary condition on the wrong side (N=4), including inappropriate implicit

boundary conditions (N=4, e.g., V (x → ∞) = 0), or listing the value of the potential at

a point (usually a corner) rather than along a side (N=2). One interview participant also

listed the boundary conditions at each corner. This student recognized and corrected the

error after attempting to apply a boundary condition and finding that this did not help him

solve for any unknowns. Thus, extracting boundary conditions from the prompt or figure

for Cartesian SoV questions was not a significant stumbling block for the majority of our

students.

After identifying boundary conditions, the next step is to produce a general expression for

the voltage that can satisfy these boundaries (element SC2). For Cartesian SoV questions,

this amounts to deciding which direction (x or y) gets the exponential dependence. One

exam prompt (N=69) asked students to select the appropriate general solution for V (x, y)

from the two possible Cartesian solutions to Laplace’s equation (see Appendix E), and all

students selected the correct expression. The multiple-response CUE asked a similar ques-

tion but provided two additional response options which featured sinusoidal or exponential

dependence in both directions (Fig. 15). In contrast to the results on the exam question,

only two-thirds of CU students (66%, N=95 of 145) selected the correct expression, while

the majority of the remaining students selected either the solution with flipped functional

dependence (12%, N=17 of 145) or one of the two response options that did not satisfy

Laplace’s equation (14%, N=21 of 145). This trend is even more pronounced in student

populations at other institutions, with almost a quarter of students (23%, N=37 of 161)

selecting either purely sinusoidal or purely exponential dependence.

The remaining three exam prompts did not provide possible expressions for the voltage.
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In practice, this meant that students could explicitly work through the process of separating

Laplace’s equation (elements SE1, SC2, and SE2) or jump straight to a general expression

for the potential without deriving this expression. Using the former strategy, element SC2

requires deciding which separation constant gets the negative value (and thus which direction

gets the sinusoidal dependence). Roughly two-thirds of solutions (71%, N=117 of 165) ex-

plicitly commented on the signs of the separation constants, and most (87%, N=102 of 117)

assigned the negative constant such that it was consistent with the boundary conditions.

Similarly, just over three-quarters of solutions that jumped straight to a general expres-

sion (79%, N=38 of 48) also gave a functional form that was consistent with the boundary

conditions. As with the responses on the multiple-response CUE, the most common er-

rors included either flipping the functional form or having sinusoidal solutions (or negative

separation constants) in both directions.

Of the six interview students who progressed far enough in their solution to begin one of

the Cartesian SoV questions (see Appendix G), four derived the general expression directly

from Laplace’s equation. All four correctly identified which coordinate (x or y) should be

given the negative sign and justified this based on the boundary conditions. The two remain-

ing students jumped straight to a general expression for the potential without derivation.

One of these two argued for needing both exponential and sinusoidal dependence, but used

complex rather than real exponentials. The second of these students argued for sinusoidal

behavior in both x and y directions and justified this by stating that the boundary con-

ditions in both directions could be matched by sines. Only when directly asked to show

that this expression solved Laplace’s equation did this student recognize that one of the two

directions must have exponential dependence. This result suggest that students who argued

for purely sinusoidal or purely exponential dependence on the exams and CUE may have

been focusing on satisfying the boundary conditions without considering that, ultimately,

the solution must also satisfy Laplace’s equation.

The final element of Construction deals with setting up the equations that are used to solve
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TABLE III. Difficulties setting up expressions match the boundary conditions in Cartesian. To

account for the fact that certain difficulties were not applicable to all exam prompts, percentages

are given with respect to the subset of incorrect solutions taken from the applicable semesters.

Codes are not exhaustive or exclusive but represent the most common themes, thus the total N in

the table need not sum to 71.

Difficulty N Percent

Incorrect application of non-zero boundary condition 32 20 (of N=71)

e.g., not plugging in a value for x or y, or using Y (y = a) = V (x)

Missing + or - exponential term 16 24 (of N= 66)

(relevant for box questions only excludes gutters)

Never applied non-zero boundary condition 14 20 (of N=71)

Incorrect setup of Fourier’s trick integral 8 12 (of N=66)

e.g., missing or extra sum, not multiplying by sin(n′πx/a)

for the unknown constants in the general solution in order to match the boundary conditions

(note, algebraic mistakes related to solving these equations will be discussed in relation to

the Execution component). Almost a third of solutions (30%, N=71 of 234) included issues

with setting up the equations to solve for one or more constants. The exact details of these

errors were often strongly tied to the nature of the specific boundary conditions in question,

but common issues included (see Table III): inappropriately arguing that one exponential

term should be eliminated, incorrectly setting up or failing to utilize the non-zero boundary

condition, or setting up an integral (i.e., Fourier’s trick) incorrectly. As we might expect,

the majority of these issues centered around setting up the expression to match the non-zero

boundary condition.

In interviews, four students attempted to solve for unknowns (element SC3), and three

had difficulty doing so. Consistent with student performance on exams, the most common

issue related to using the non-zero boundary condition to solve for the final constant(s). None

of these three students spontaneously included a sum in their solution even after applying

the non-zero boundary condition and finding that the resulting equation could not be solved

(e.g., V (x, y = 0) = Vo = Asin(πx/a), where A is a constant). After being prompted that

they actually had an infinite number of solutions (rather than just one), all three students
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recalled that they needed to introduce a sum of these solutions, but none could clearly justify

how this step helped. One potential explanation for the increased frequency of this issue

relative to the exams is that, on exams, students are recalling an algorithm that includes

introducing a sum but have not internalized the motivation for that sum.

Execution of the mathematics: The Execution component deals with the procedural

aspects of working through the mathematics of a physics problem. For Cartesian SoV,

this can include the process of separating Laplace’s equation into ODEs by assuming the

separated form of the potential (i.e., V (x, y) = X(x)Y (y), element SE1). Excluding solutions

from semesters where the general solution for the potential was provided, more than half

of the exam solutions (59%, N=98 of 165) explicitly included this process and only a small

fraction (10%, N=10 of 98) had difficulties with it. The most common error (N=7 of 10)

was using different constants in the x and y ODEs, resulting in a solution with the correct

functional form that does not actually satisfy Laplace’s equation.

In interviews, six of seven participants commented on or attempted to work through this

process of separating Laplace’s equation. Of these, four students spontaneously suggested

assuming the separated form of the potential (element SE1), though one student noted that

he did not understand the motivation for making this assumption. Of the remaining two

participants, one clearly articulated that the goal was to separate Laplace’s equation into

ODEs, but could not recall how to do this on his own. The other student neither recalled

the separated form nor recognized its purpose without being explicitly told. Additionally,

four of the interviewees either did not recognize that the expression f(y) + f(x) = 0 implies

f(y) = −f(x) = c (where c is a constant), or attempted to apply this logic before having

fully separated x and y dependent terms (e.g., arguing X(x)′′Y (y) = c). Given that there is

little (if any) physical motivation for assuming V (x, y) = X(x)Y (y), it become particularly

important that students understand the mathematical motivation for this move. However,

interviews suggest that, even when students correctly use this assumption in their solution,

they may not have a clear sense of the motivation or justification for this assumption.
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The second element in Execution involves solving the ODEs that result from separating

Laplace’s equation (e.g., X(x)′′ = ±k2X(x), where k2 is the separation constant). More than

two thirds of solutions (70%, N=116 of 165) included an expression for one or more ODEs

either derived from Laplace’s equation or stated without work. In practice, it is typical for

students to simply write down the solutions to these ODEs either by memory or from an

equation sheet, and just under a fifth of solutions (16%, N=19 of 116) provided a general

solution that was inconsistent with the ODE they were solving. Common mistakes included

providing a solutions whose functional form was inconsistent with the sign of the separation

constant (N=7 of 19), or using the separation constant (rather than its square root) in the

expression for the general solution (N=5 of 19). Thus solving the relatively simple ODEs

required for Cartesian SoV questions was not a significant barrier to our students’ success.

The Execution component of ACER also deals with the procedural mathematics of de-

termining values for each of the unknown constants (element SE3) in order to match the

boundary conditions (element SC3). Our initial analysis of both expert and student work

suggested that there were three common strategies used to solve for these constants:

Zero matching: – Setting unknown constants to zero in order to enforce boundary condi-

tions on which V = 0.

Fourier’s trick: – The strategy used to solve for the coefficients in a Fourier series by

exploiting the integral properties of orthogonal functions.

Term matching: – The strategy of exploiting the properties of orthogonal functions to

directly match the coefficients of like terms.

Zero matching is nearly always necessary in Cartesian SoV questions, and nearly all

of the exam solutions demonstrated some form of zero matching (94%, N=220 of 234).

Alternatively, whether Fourier’s trick or term matching is used to solve for the final unknown

constant(s) often depends on the nature of the final boundary condition. For one of our three

exam questions, the final boundary had a constant voltage (e.g., Fig. 13), making it necessary

to solve using Fourier’s trick. However, the two remaining exams provided a voltage of the
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TABLE IV. Common difficulties when executing the procedural mathematics of solving for con-

stants in the general solution. Percentages are of just the students who exhibited these difficulties

(45%, N=105 of 234). Codes are not exhaustive or exclusive but represent the most common

themes, thus the total N in the table need not sum to 105.

Difficulty N Percent

Off by a constant factor or sign 33 31

e.g., factor of 2, Vo, or length a

Problems with a Fourier’s trick integral 30 29

e.g., pulling non-constant terms like V (x, y = a) out of the integral,

or not collapsing the sum

Dropping the factor of Y (y = a) from the final solution 18 17

Not finishing the calculation 27 26

form V (x, y = a) = Vosin(πx/a) (see Appendix E). In these cases, it is possible to use either

Fourier’s trick or term matching, though term matching is considerably simpler. Despite

this, more of our students’ solutions utilized Fourier’s trick (44%, N=52 of 117) than term

matching (36%, N=42 of 117). This result may indicate that our students have a strong

association of Fourier’s trick with SoV in Cartesian coordinates, and/or that they have not

internalized the properties of orthogonal functions enough to see term matching as a viable

strategy. Without interview data on student reasoning for this specific type of boundary

condition, we are not able to distinguish between these two possible explanations.

When solving for the values of the unknown constants in their general solution (element

SE3), roughly half of students’ solutions (45%, N=105 of 234) contained various mathemat-

ical mistakes. Common errors included (see Table IV): losing or gaining a constant factor,

incorrectly executing a Fourier’s trick integral, (when applicable) not including the constant

factor Y (y = a), and not finishing the calculation. For the two exam questions that could

be solved using either Fourier’s trick or term matching, the fraction of solutions with math-

ematical errors was higher in solutions that utilized Fourier’s trick (77%, N=40 of 52) than

in those that utilized term matching (33%, N=14 of 42). This is likely due, at least in part,

to the fact that Fourier’s trick requires the set up and execution of an integral, and thus is

a more mathematically demanding strategy.
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For solutions in which the student finished solving for the final constant(s) (78%, N=130

of 166), it was then necessary to compile all aspects of the solution into a single expression for

the voltage (element SE4). Just under a quarter of solutions (22%, N=29 of 130) either did

not compile a final expression or made various mathematical mistakes not related to previous

Execution or Construction errors (e.g., incorrectly simplifying exponentials to hyperbolic

trig functions, or dropping or adding non-constant factors such as Y (y)). In practice, the

interviews provided limited insight into the procedural aspects of solving for the unknown

constants as students were, at most, asked to set up the expression for the final constant(s);

however, none of our interview participants had difficulty with the simple manipulations

required to match the V = 0 boundaries.

Ultimately, roughly a quarter of the solutions (26%, N=61 of 235) included only errors

related to the elements in the Execution component (i.e., no previous mistakes in Activation

or Construction). This number is high relative to the fraction of students who had difficulty

only with Execution when utilizing multivariable integration (8%, Sec. III B 4) or the Dirac

delta function (7%, Sec. III C 4). This result suggests that, particularly for problems involv-

ing Fourier’s trick, the procedural mathematics involved in problems requiring Cartesian

SoV can be a significant barrier for our junior-level electrostatics students.

Reflection on the Result: The Reflection component deals with the process of checking

and/or interpreting the final expression. It is often the case in Cartesian SoV that mistakes

in the Construction or Execution components resulted in an expression for the potential that

had the wrong units, did not match the boundary conditions, or did not satisfy Laplace’s

equation (i.e., elements SR1, SR2, and SR4 respectively). Overall, we found that very few of

our students (N=2 of 234) made explicit, spontaneous attempts reflect on their solution using

any of these checks. This number should be interpreted as a lower bound on the frequency

of spontaneous reflections as is possible that more of the exam students made one of these

checks and simply did not write it down explicitly on their exam solution. However, only

two of seven interview participants made spontaneous attempts to reflect on their solutions,
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TABLE V. Number of exam students who explicitly utilized each of the three possible reflective

checks (N explicit) along with the number of solutions that included an error that would have been

detected by this check (N incorrect). Total N represents the total number of solutions that could

have utilized that reflective check.

Reflective check Total N N incorrect N explicit

Units (SR1) 125 19 0

Boundary conditions (SR2) 138 97 1

Laplace’s equation (SR4) 154 30 1

and exclusively by checking that their general solution satisfied Laplace’s equation (element

SR4). One other student executed this check only after being directly prompted.

Another strategy for understanding Reflection involves looking at the number of solutions

where the final expression included an error that would have been detected by one or more

of these checks. Table V lists this along with the number of solutions that explicitly included

each reflective check. Overall, these results suggest that an explicit check of boundary condi-

tions would likely be the most effective reflective practice for students in terms of detecting

errors, but that our students are rarely executing this (or other) checks spontaneously.

5. Student difficulties with Separation of Variables in Spherical Coordinates

This section presents the identification and analysis of common student difficulties with

the separation of variables technique in spherical coordinates organized by component and

element of the operationalized ACER framework (Sec. III D 2).

Activation of the tool: One instructor exclusively used SA1-type prompts on both

the midterm and final exams in his course (N=138); thus, these solutions provide minimal

insight into Activation. However, of the solutions to exam questions with implicit prompts

(i.e., consistent with elements SA2 or SA3), very few (4%, N=16 of 371) utilized a method

other than SoV (e.g., Coulomb’s law,
⇀

E = −
⇀

∇V (R, θ), etc.). Alternatively, on the multiple-

response CUE question (Fig. 16) asked at the end of the semester (but before the final) just

under half of our students (41%, N=59 of 145) did not select SoV as the appropriate solution
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method. This trend is slightly increased for other institutions with just over half the students

selecting other methods (60%, N=96 of 161). The most common alternatives were Direct

Integration via Coulomb’s law (26%, N=40 of 155 incorrect responses, all institutions) and

Gauss’ law (45%, N=69 of 155 incorrect responses, all institutions). This may be a reflection

of the fact that spherical SoV questions, while still distinctive from an expert point of view,

are potentially less recognizable to students than their Cartesian counterparts due to their

superficial similarity to problems that might be solved by Coulomb’s law or Gauss’ law.

The second set of interviews provided additional insight into Activation of spherical SoV

through a question like the one shown in Fig. 14 (see Appendix G for the exact prompt).

Of the six interview participants, three spontaneously brought up Laplace’s equation and

suggested SoV as the correct solution method. Of the remaining students, one mentioned

Laplace’s equation only after being prompted to consider the fact that all the charges would

be confined to the surface of the shell, while the other two needed to be explicitly told to

consider Laplace’s equation. Moreover, these three students only suggested using SoV after

being reminded that Laplace’s equation is a complex PDE and asked how we generally deal

with PDEs in physics. This result suggests that, as we might expect, the activation of the

SoV technique for these students was more closely linked to the formal mathematics of the

problem, rather than the physical context.

Students’ overall success at Activation on the midterm and final exam questions seems

to contradict the significantly lower success rate seen on the CUE and in interviews. One

potential explanation for this is that students are simply pattern matching on the exams

rather than internalizing a clear motivation for when and why SoV is appropriate. This

interpretation is supported by the following comment made by one of the interview partic-

ipants: “I remember these questions; I used to love these questions, and I don’t remember

how to do them anymore ... I guess I didn’t understand this problem as well as I should

have; I just remember going through a mathematical, like, process to get it, and I knew that

one really well.”
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Construction of the model: The Construction component deals with mapping be-

tween the physics and mathematics of a problem. For spherical SoV, this process includes

identifying all necessary boundary conditions (element SC1), both those provided explicitly

in the prompt and those that are implicit in the underlying physics of localized charge dis-

tributions (i.e., V (r → ∞) → 0 and V (r → 0) 6= ∞). Of the solutions that utilized SoV

on the exams (N=488), almost two-thirds (61%, N=298 of 488) included correct expressions

for all explicit and implicit boundary conditions. Of the remaining solutions, more than half

(62%, N=117 of 190) never expressed the relevant implicit boundary conditions at r = 0

and/or r =∞. Despite this, the majority of these solutions (89%, N=104 of 117) correctly

eliminated either the Al (outside) or Bl (inside) terms. This move was often accompanied by

seemingly axiomatic statements like “Al’s go to zero outside.” This finding is also consistent

with the idea that some students are using pattern matching to guide their solution rather

than clearly justifying their steps from the underlying physics. Other issues with expressing

the boundary conditions (element SC1) included using incorrect or inappropriate implicit

boundary conditions (12%, N=22 of 190, e.g., enforcing V (r → ∞) → 0 when solving for

V inside a sphere), or incorrectly expressing the surface boundary condition (22%, N=42 of

190, e.g., arguing V (R) = Vocos
2θ → VoP2(cos θ)).

As upper-division students are rarely (if ever) expected to derive the general expression for

the voltage from Laplace’s equation in spherical coordinates, the second element of construc-

tions does not typically apply to spherical SoV questions. Alternatively, the final element of

Construction deals with setting up the equations to solve for the unknown constants in the

general solution in order to match the boundary conditions (note, algebraic mistakes related

to solving these equations will be discussed in relation to the Execution component). Ulti-

mately, just under a fifth of solutions (19%, N=90 of 485) included issues with setting up the

equations to solve for one or more constants. The most common issues included (see Table

VI): not plugging in r = R when matching the boundary condition at the surface, problems

expressing or eliminating Pl terms, and including both Al’s and Bl’s when matching the
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TABLE VI. Difficulties setting up expressions match the boundary conditions in spherical. Per-

centages are of just the students who had difficulties setting up the boundary conditions (19%,

N=90 of 485). Codes are not exhaustive or exclusive but represent the most common themes, thus

the total N in the table need not sum to 90.

Difficulty N Percent

Not plugging in r = R for the surface boundary 21 23

Problems with Pl terms 16 18

e.g., expressing Pl terms incorrectly, dropping Pl terms inappropriately

Including both Al’s and Bl’s in a single expression 10 11

e.g., (AlR
l + Bl

Rl+1 )Pl = VoPl
Never applied the surface boundary condition 18 20

boundary condition at the surface despite previously setting Al or Bl to zero.

In interviews, students tended to move quickly back and forth between identifying bound-

ary conditions and setting up equations to match them. For example, all five participants

who solved the spherical SoV question (see Appendix G) began by identifying one of the two

implicit boundary conditions (element SC1) and using it to correctly eliminate either the Al

or Bl terms (element SC3). All of these students then moved on to matching the boundary

condition at the surface without commenting on either the second implicit boundary condi-

tion or what region their expression would be valid for. Three interviewees correctly set up

an expression to match the surface boundary condition (element SC3). One of the remaining

students did not plug in r = R into his expression until prompted, while the other student

did not initially isolate like terms when solving for constants. When asked where their final

expression was valid, all five interviewees initially argued it would be valid everywhere. Once

they were specifically directed to consider limiting values of r, all interviewees recognized

their solution was inconsistent with the remaining implicit boundary conditions, but only

one student spontaneously considered the possibility of having separate expressions for V (r)

inside and outside the sphere. Thus, the interviews suggest the tendency of both exam and

interview students to not spontaneously acknowledge some or all of the implicit boundary

conditions may discourage them from recognizing that their solution is valid only for certain

regions of space or vice versa.
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Execution of the mathematics: The Execution component deals with the procedural

aspects of working through the mathematics of a physics problem. The first two elements

of Execution address the process of separating Laplace’s equation into ODEs by assuming

the separated form of the potential (i.e., V (r, θ) = R(r)Θ(θ)). In spherical coordinates, this

process yields a single, general solution for the potential. Students in junior electrostatics are

typically shown this derivation once and are rarely (if ever) expected to replicate it. Thus

elements SE1 and SE2 are not typically necessary for problems involving spherical SoV.

Once a student has used the boundary conditions to set up expressions for the unknown

constants (element SC3), there are any number of mathematical manipulations that may be

necessary to solve for these constants (element SE3). As described previously, we have noted

three common strategies that can be used in this process (see Sec. III D 4): zero matching,

Fourier’s trick, and term matching. Of the exam solutions that showed explicit evidence of

Execution (92%, N=469 of 509), nearly all (97%, N=455 of 469) used some form of zero

matching to eliminate one set of constants (Al’s or Bl’s). The majority of solutions also used

term matching (89%, N=405 of 455) to solve for the non-zero constants, while only a small

fraction (12%, N=56 of 455) used Fourier’s trick. This strong preference for term matching

is appropriate and is likely a reflection of the fact that nearly all surface boundary conditions

given on exams at CU can be expressed as a sum of 1-3 Legendre polynomials. Moreover,

several of the exam prompts provide or explicitly ask students to express V (R) in terms of

Legendre polynomials.

When solving for the values of the unknown constants (element SE3), roughly a quarter of

students’ solutions (27%, N=125 of 469) contained various mathematical mistakes. Common

issues included (see Table VII): losing or gaining a constant factor, keeping or losing Pl terms

inconsistent with the boundary condition, and not finishing the calculation. The fraction

of solutions with mathematical errors was higher in solutions that utilized Fourier’s trick

to determine non-zero constants (60%, N=34 of 56) than in solutions that utilized term

matching (21%, N=84 of 405). This is likely due, at least in part, to the fact that Fourier’s
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TABLE VII. Common difficulties when executing the procedural mathematics of solving for con-

stants in the general solution. Percentages are of just the students who exhibited these difficulties

(27%, N=125 of 469). Codes are not exhaustive or exclusive but represent the most common

themes, thus the total N in the table need not sum to 125.

Difficulty N Percent

Incorrect term matching 32 26

e.g., keeping too many or not enough Pl’s in the expansion

Off by a unitless constant factor or sign 27 22

e.g., factor of 2

Off by a unitfull constant factor or sign 22 18

e.g., Vo, or radius R

Not finishing the calculation 24 19

trick represents an inherently more mathematically demanding strategy.

The final element in Execution (element SE4) deals with compiling all aspects of the

solution into a single expression for the voltage. Roughly three-quarters of the solutions

(73%, N=374 of 509) were completed enough to potentially include a final expression for

the voltage, and most (83%, N=313 of 374) did so correctly. Common mistakes included

not compiling a final expression (23%, N=14 of 61), dropping or adding terms (25%, N=15

of 61), and not including the r-dependence from the general solution (21%, N=13 of 61).

Ultimately, only a small fraction of students (8%, N=43 of 509) had difficulties only with

elements of the Execution component (i.e., no mistakes in Activation or Construction).

The interviews provided relatively minimal insight into student difficulties in the Execu-

tion component, in part because only two of the five students made mathematical errors of

any kind while solving the spherical SoV problem. Both of these students initially failed

to include the r-dependence from the general solution when compiling their expression for

the voltage. Comments made by these two students suggested that they were focusing on

how their final expression matched the boundary condition at r = R. As the boundary

condition does not have r-dependence, this may account for these students leaving the r-

dependence out of their final expression. The overall success of the interviewees with respect

to Execution may be due in part to both the simplicity of the given boundary condition
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(V (R) = Vo(1 + cos θ)) and the fact that all of the interviewees used term matching rather

than Fourier’s trick to solve for the non-zero constants. Thus the mathematical manip-

ulations required for this problem were minimal and purely algebraic. Overall, analysis of

both the interviews and exam solutions suggest that Execution rarely represents the primary

barrier to student success on spherical SoV problems.

Reflection on the Result: We identified four reflective checks that a student could use

to gain confidence in (or detect problems with) their solution to problems involving spherical

SoV (elements SR1-4). Only a small fraction of our students made explicit, spontaneous

attempts to check their final expressions (8%, N=27 of 360) and the majority of these did so

only by checking boundary conditions (70%, N=19 0f 27). In interviews, two of five students

made spontaneous attempts to check their solution, one by looking at units and the other

at boundary conditions. One additional student suggested checking units after being asked

how he might convince himself his solution was correct.

Two of the exam prompts directly targeted element SR3 by asking students to comment

on why they might expect the first term in the potential outside the sphere to behave as 1/r

(the given surface voltage was everywhere positive, see Appendix E). A completely correct

response requires that the student recognize that if the voltage is everywhere positive, then

the sphere must have net positive charge on its surface, and thus would look like a point

charge in the limit of large r. Of the solutions to these two exams, only a small fraction

(8%, N=6 of 72) articulated this argument fully. Common alternative justifications included

that 1/r was the dependence for a point charge but made no comment about the charge

on the sphere, or that 1/r goes to zero at infinity which matches the boundary condition.

Similarly, all three of the interview students that were asked about limiting behavior of the

potential needed explicit guidance before recognizing that the overall sign of the potential

can be used to infer the sign of the total charge. If a significant fraction of our students have

difficulty producing an expectation for the behavior of the potential at large r, this may have

contributed to why spontaneous checks of limiting behavior were so rare.
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TABLE VIII. Number of exam students who explicitly utilized each of the four possible reflective

checks (N explicit) along with the number of solutions that included an error that would have

been detected by this check (N incorrect). Total N represents the total number of solutions that

reached a point where they could have utilized that reflective check. The limiting behavior check

applies only to exams that asked for Voutside, and the two semesters in which students were directly

prompted to consider limiting behavior are excluded; this accounts for the lower Total N.

Reflective check Total N N incorrect N explicit

Units (SR1) 315 39 2

Boundary conditions (SR2) 382 119 22

Limiting behavior (SR3) 157 27 5

Laplace’s equation (SR4) 365 51 1

It is also possible that more of the exam students performed one of these reflective checks

spontaneously, but did not explicitly write it down on their solution. To address this, we

can also examine the fraction of solutions that included errors in their final expressions that

would have been detected by one or more of these checks. Table VIII lists this along with

the number of students who explicitly utilized each reflective check. These results suggest

that explicit checks of boundary conditions are both the most common (though still rare)

and potentially the most effective in terms of catching errors.

6. Summary and Implications

We investigated upper-division student difficulties when using the separation of variables

technique to solve Laplace’s equation in the context of junior electrostatics by examining

students’ solutions to exam questions and think-aloud student interviews. We found that

our students encountered a number of issues when solving SoV problems, and that these

difficulties differed for problems involving spherical and Cartesian geometries. The ACER

framework helped us to organize and categorize these difficulties within the problem-solving

process.

For Cartesian SoV, we found that our students were highly successful in terms of recogniz-

ing SoV as the appropriate mathematical technique when presented with canonical Cartesian
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SoV questions. Alternatively, a subset of our students used a general expression for the po-

tential that did not satisfy Laplace’s equation, possibly because they were focusing primarily

on satisfying the boundary conditions. Moreover, despite a relatively high rate of success

on exams, we observed a number of issues in interviews relating to recalling/justifying the

separated form of the potential (i.e, V (x, y) = X(x)Y (y)), applying the correct logic to sep-

arate Laplace’s equation into several ODEs, and recalling/justifying the need for the infinite

sum. We suspect that this apparent disconnect between student performance on exams and

interviews may be a reflection of students pattern matching on exams without being able

to fully justify their steps. Pattern matching, as a less robust strategy, is unlikely to be as

effective in the interviews which take place after the course was completed.

We also found that when solving for non-zero constants in Cartesian SoV, our students had

a strong preference for Fourier’s trick over term matching when both strategies were possible.

This preference, while understandable given the types of boundary conditions students are

accustomed to, may have exacerbated student difficulties with the procedural mathematics

as Fourier’s trick represents a more mathematically demanding strategy. Finally, very few

of our students made spontaneous attempts to reflect on their solutions despite the fact

that these strategies, particularly checking boundary conditions, can be highly effective at

detecting errors made earlier in the solution.

For spherical SoV, we found that our students were sometimes less successful in terms of

recognizing SoV as the appropriate mathematical technique than for Cartesian SoV. Inter-

views suggest that this may be due, in part, to a failure to activate Laplace’s equation as

the underlying equation that needs to be solved. Many of the issues that arose in Cartesian

SoV related to working through the process of separating Laplace’s equation and solving the

resulting ODEs; however, as students are typically not required to work through this process

in spherical, these difficulties were not observed for spherical SoV.

We also found that many students did not identify and/or spontaneously identify all im-

plicit boundary conditions on the potential in spherical coordinates. As boundary conditions
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are typically explicitly given in Cartesian SoV, this difficulty was not observed in Cartesian

problems. Moreover, we found that in contrast to the tendency to use Fourier’s trick for

Cartesian SoV, our students had an appropriate preference for term matching when solving

for non-zero constants in spherical SoV problems. Students’ tendency to prefer one strategy

over the other is likely a reflection of the canonical kinds of boundary conditions that are

used for these two different geometries. Consistent with this and the idea that Fourier’s trick

represents a more mathematically demanding strategy, fewer students had difficulty with the

procedural mathematics in spherical problems.

The idea that students were solving SoV problems algorithmically was also supported

by student work around spherical SoV. For example, we consistently found that students

make unjustified simplifications on spherical exam problems (e.g., setting Al’s to zero with-

out explanation), and one interview student made explicit comments about recalling that

there was an explicit procedure for solving these problems but was not able to reproduce

it. Consistent with the results for Cartesian, we again found that students rarely made

spontaneous attempts to reflect on their final solutions when solving spherical SoV problems

despite making a number of errors that would have been detected through one or more of

these checks.

While it was not the goal of this study to investigate the impacts of different instructional

strategies or curricular materials on the prevalence or persistence of students’ difficulties

with separation of variables, our findings do suggest several implications for teaching SoV

in electrostatics. First, for problems in Cartesian coordinates, both the introduction of the

separated form of the potential and the infinite sum are critical pieces of the solution that

students have difficulty clearly justifying and/or coming up with spontaneously. It may be

particularly important to directly target these two issues in order for students to form a

more robust conception of the SoV technique. For example, getting students to come up

with the need for the infinite sum on their own (i.e., asking them to try solving for the final

non-zero constant(s) without it), rather than simply telling them it was necessary, seemed
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to be a particularly productive exercise for our interview students.

It is also worth acknowledging that solving SoV problems algorithmically, while unde-

sirable, is often a highly effective strategy, in part because there are a finite number of

solvable SoV questions and they are all fairly similar. However, we have identified several

variations on these canonical questions that may help to discourage students from purely

pattern matching, particularly for Cartesian questions. For example, placing the non-zero

boundary condition on either the y = 0 or x = 0 sides of a rectangular box can complicate

the simplification of the exponential term. Alternatively, providing a function rather than

a constant for the non-zero boundary condition (i.e., V (x, y = 0) = Vosin(πx/a)) can also

force students to adapt their normal Cartesian SoV procedure. This latter strategy would

also provide an avenue for an explicit discussion of when Fourier’s trick vs. term matching

represent the most efficient strategy for solving for the unknown constants. For spherical

SoV, asking for the potential between two nested spherical shells may also discourage pattern

matching as neither the Al’s or Bl’s go to zero in this case.

E. Synthesis and Discussion

Having applied the ACER framework to three distinct mathematical tools and tech-

niques, we can begin to identify common themes around students’ use of mathematics in

upper-division electrostatics. For example, there is a general sentiment expressed by some

physics faculty that “students just don’t know the math; they really just need to learn the

math better and they will be successful at solving physics problems.” However, we find

while up to half of our students made mistakes related to the procedural mathematics (i.e.,

Execution) of exam questions, this was the sole issue for less than a tenth of students. All

of the remaining students who did not have perfect solutions had difficulty with elements of

Activation and Construction in addition to any issues they may have encountered with the

procedural mathematics. The only exception to this trend for our students was for separa-

tion of variables in Cartesian coordinates where roughly a quarter of the students’ solutions
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included only Execution errors.

We also found that as many as a quarter to half our students had difficulty identifying

the appropriate mathematical tool for a given problem (i.e., Activation) when not explicitly

told what tool to use. Once again, Cartesian separation of variables was the exception

to this trend; however, this may well be due to the highly distinctive nature of canonical

Cartesian separation of variables problems. We also found that standard exam questions

at CU often explicitly prompt students to use a particular tool or technique to solve, and

thus provide little to no insight into whether students understand when these tools are

appropriate. Alternatively, canonical exam questions rarely directly prompt students to

reflect on their solutions (i.e., Reflection), and for all three mathematical tools discussed

here, less than a tenth of CU students made explicit, spontaneous attempts to check or

interpret their final expressions.

Often, the most significant and persistent difficulties encountered by our students when

utilizing these mathematical tools in electrostatics related to customizing each of these tools

to the specific physical situation in each problem (i.e., Construction). The issues that arose

in this component were highly dependent on both the tool in question and the nature of the

specific prompt. Elements of the Construction component are often those that are unique to

physics problems and depend on both a students’ conceptual and mathematical resources.

Students do not typically encounter this aspect of mathematical problem solving in the

context of solving purely mathematical problems in their math courses.

The applications of the ACER framework to the specific mathematical tools and tech-

niques presented in the last three sections not only offers insight into common student diffi-

culties, but also helps us to discuss the framework itself. In all cases, the ACER framework

provided a consistent scaffold from which we grounded our analysis of what students actu-

ally did when solving mathematically demanding physics problems. Moreover, the process

of operationalizing the framework forced us to fully and clearly explicate the resources and

strategies (both tacit and explicit) that are required to solve specific types of physics prob-

85



lems. This helped to more clearly identify the sources of students’ difficulties in terms of

what is actually involved in mathematical problem solving. It also helped to provide ac-

tionable implications for instructors trying to overcome these difficulties in their classroom.

Additionally, both the framework and the findings that resulted from applying it to different

mathematical tools were designed to be accessible to physics instructors who are not familiar

with qualitative methods or theoretical constructs related to the nature of knowledge and

learning.

There are several important limitations to the ACER framework. As with any expert-

guided description, it should not be assumed a priori that the operationalized ACER frame-

work will span the space of all relevant aspects of actual student problem solving; however,

additional research comparing the operationalized framework, as produced by the expert

task analysis, to interviews and group problem-solving sessions will be necessary to ex-

plore the limitations of ACER in terms of capturing emergent aspects of students’ work.

The framework was designed to target the intersection between mathematics and physics

in upper-division physics courses, and it is not well suited to describing student reasoning

around purely conceptual or open-ended problems. Additionally, the framework inherently

incorporates some aspects of representation because the translation between verbal, mathe-

matical, graphical, and/or pictorial representations is almost always required to solve physics

problems; however, the exact placement of multiple representations within the framework is

likely to be highly content dependent. Furthermore, we have not commented on the integra-

tion of prediction and metacognition into the framework, in part because we rarely observe

our students showing explicit signs of either without prompting.

86



IV. CHAPTER IV: DEVELOPING THE

MULTIPLE-RESPONSE CUE DIAGNOSTIC

A. Introduction

1. Background and Motivation

Research-based conceptual assessments represent one of the most commonly adopted tools

to come out of the PER community in the last several decades. At the introductory level,

the FCI [25] is arguably the most well-known of these assessments; however, many other

instruments, spanning multiple topical areas, have also been developed (see Refs. [25, 26, 72]

for examples and Ref. [73] for a more comprehensive list).

Fewer conceptual assessments have been developed to target upper-division physics con-

tent, in part because conceptual assessment at the advanced undergraduate level presents

some unique challenges. For example (as discussed in Chapter II), advanced physics content

requires students to employ sophisticated mathematical tools and techniques. This increased

emphasis on mathematics makes it more difficult, and perhaps less desirable, to create assess-

ments that focus only on students’ conceptual understanding. Additionally, the increased

complexity of the physics content makes it challenging to construct clear, level-appropriate

questions that can be answered within a reasonably short time frame. The relatively small

body of existing research on students’ difficulties also makes it more difficult to create ques-

tions that specifically target areas where students struggle. Various logistical constraints

on the development of standardized assessments also represent a more significant barrier at

the upper-division level than the introductory level. For example, less consistency in con-

tent coverage between different instructors and institutions makes it more difficult to create

a single instrument that matches the learning goals of a majority of courses/instructors.

Additionally, small class sizes at the upper-division level hinder efforts to collect enough

Significant fractions of Chapter IV are taken from Refs. [51, 74] on which BRW is first author. All text

taken verbatim from these publications was written by BRW.
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early-implementation data to achieve sufficient statistical power to ensure the validity and

reliability of a new instrument.

Despite these challenges, several conceptual assessments have been developed for the

upper-division level, targeting a range of content areas that include (but are not limited to):

sophomore classical mechanics [28], junior electricity and magnetism [11, 27, 75], quantum

mechanics [12, 24, 76], and several engineering assessments targeting thermodynamics [77–

79] and waves [80]. Additionally, several assessments developed for the introductory and

sophomore level have been used productively as pre/post-tests at the upper-division level

[81, 82]. Note that, here, we are using the term ‘conceptual assessment’ broadly and in-

clude in this category assessments that target aspects of mathematical thinking (rather than

procedural mathematics) and strategic processes and practices (e.g., identifying the correct

solution method).

Here, we will focus on one of these upper-division conceptual assessments which targets

content from junior-level electrostatics: the Colorado Upper-division Electrostatics (CUE)

Diagnostic [27]. The CUE was developed at CU in order to facilitate assessment of the

effectiveness of the newly developed transformed course materials for E&M 1 [10]. Topics

on the CUE align with the first 5 chapters of Griffiths’ text [30] including some minimal

magnetostatics. The scope and format of the CUE was specifically designed to address

explicitly articulated learning goals developed through collaboration between physics faculty

and PER post-docs at CU [35]. These goals represent a consensus of what these faculty want

students to be able to do after completing our upper-division courses. Several examples of

these consensus learning goals are given below (see Ref. [83] for the full list).

Math/physics connection: Students should be able to translate a physical description of

an electrostatics problem to a mathematical equation necessary to solve it.

Communication: Students should be able to justify and explain their thinking and/or

approach to a problem or physical situation.

Problem-solving techniques: Students should be able to choose and apply the problem-
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solving technique that is appropriate to a particular problem.

These course-scale learning goals are tightly linked to the physics content; however, they

also emphasize more meta-level outcomes related to the problem-solving strategies and habits

of mind characteristic of professional physicists and highlight the importance of students’

ability to synthesize and generate responses. For this reason, the developers of the CUE

decided that a free-response (FR) format would more adequately test these consensus learn-

ing goals, and thus would be more valuable to faculty than a multiple-choice instrument.

Additionally, relatively little literature on student difficulties around problems related to

upper-division electrostatics was available to inform the development of tempting multiple-

choice distractors. The developers anticipated that once established, the FR format might

provide the insight into students’ reasoning necessary to craft a multiple-choice version of

the assessment at a later date.

While the open-ended nature of the questions on the CUE has the potential to elicit

a large variety of student responses, creating clear and reliable rubrics for such questions

requires a complex and nuances grading scheme that details correct scoring for common

student answers (e.g., Fig. 17). Tests of inter-rater reliability for the CUE grading rubric

showed that some training was necessary for new graders to produce consistent scores using

this rubric [27]. Since its development, the CUE has been given in multiple courses and

institutions. CUE scores correlate strongly with other measures of student learning, such

as overall course and BEMA score, and are sensitive to different types of instruction (e.g.,

interactive vs. traditional lecture) [27]. Data from student responses on the CUE have also

been used by researchers to investigate and identify student difficulties (e.g., [18, 19, 60, 84]).

While the CUE has proved relatively successful as a standard measure of student learning

across a small number of institutions and courses, this process has been heavily facilitated by

researchers at CU. A significant fraction of the external instructors have sent their students’

CUE’s to the PER group at CU for grading and analysis. This strategy is highly impractical

if the CUE is to be used as a large-scale assessment tool like the multiple-choice instruments

used at the introductory level. However, the time-consuming nature of both the grader
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Give a brief outline of the EASIEST method you would use
to solve the problem.
DO NOT SOLVE the problem, we just want to know:
(1) The general strategy (half credit) and
(2) Why you chose that method (half credit)

Q3. A neutral, non-conducting cube with side length a and
charge density, ρ(r) = kz.

Find
⇀

E (or V ) at point P, where P is off-axis, at a distance
50a from the cube.

Q3 Rubric

Correct Answer Correct answer is multipole expansion using the dipole component

(3 pts) +1 point for saying direct integration

+2.5 for dipole only

+0.5 for approximation or multipole

+2 for multipole

+1 for dipole or approximation

Explanation (2 pts) Full credit for saying dipole dominates because the observation
point is far away

+1.5 points for “multipole because r >> a”

+1 point if said that it’s a dipole but give no further explanation

+1 point if mention higher order multipoles (but not a dipole)

+0.5 for saying the integration is hard because P is off-axis.

If answer “direct integration” must give explanation of how they
would solve this integral. 0.5 for a poor explanation of how they
would go about it (e.g., writing down Coulomb’s Law)

FIG. 17. An example question from the CUE along with the associated scoring rubric. Graders

undergo roughly 5 hours of training in which they independently score 10-15 example exams and

compare their scores to accepted scores in order to use this rubric to produce consistent scores that

can be compared to published results. Question prompt has been paraphrased; see Ref. [31] for full

question prompt, scoring rubric, and scoring materials.

training and grading process itself represent a significant barrier to independent faculty

adoption of the CUE. If the CUE is to be used as an assessment tool by a wide range of

faculty, it must be adapted to a more easily graded format without sacrificing its ability

to provide a meaningful measure of students’ conceptual understanding in upper-division

electrostatics.

90



To address these scalability and usability issues, we set out to craft a more easily graded

version of the CUE using student solutions from previous semesters to construct distractors.

Early attempts quickly showed that a standard multiple-choice assessment, with a single

unambiguously correct answer and 3-5 clearly incorrect (though tempting) distractors, was

insufficient to capture the variation in responses found on the majority of the FR questions.

Instead, we developed a version where students select multiple responses and receive partial

credit depending on the accuracy and consistency of their selections in order to match the

more nuanced grading of a FR assessment [85]. For the remainder of this section we will

refer to this new version as the coupled, multiple-response (CMR) CUE.

2. Previous Research on Multiple-choice testing

Instructors and researchers have been considering the relative advantages of multiple-

choice (MC) and free-response (FR) testing formats for many years [86–89]. While the

difficulties inherent in writing and interpreting MC questions have been well documented [90–

92], the ease and objectivity of grading afforded by MC formats makes them ideal for large-

scale and cross-institutional testing. These logistical advantages have motivated considerable

work to develop strategies for constructing valid and objective multiple-choice items [93–95].

This includes discussion of how many MC distractors should be used [96] and methods for

accounting for guessing [97].

The increase in the number and usage of MC tests has not, however, marked the end of

the tension between MC and FR testing formats, and direct comparisons of the two have

yielded mixed results. Kruglak [98] looked at tests of physics terminology with both MC

and FR formats. He found that while the MC questions showed a slightly higher correlation

with overall achievement in the course than the FR questions, scores on the two different

formats showed only low to moderate correlation with one another. This finding disagrees

with results from Hudson and Hudson [94], who found a high degree of correlation between

students’ scores on MC tests and a set of FR pop-tests particularly when using an aggregate
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score from all the MC tests given in the semester. A related study by Scott et. al. [99]

compared students’ scores on a MC final exam to their performance on the same problems

in a think-aloud interview setting. Ranking the students based on each of these scores, they

found a high correlation between the two ranks.

Additional work comparing MC and FR formats has focused specifically on the FCI. For

example, Lin and Singh [85] looked at two FCI questions in MC and FR formats. As with

all FCI items, the distractors for these questions were based on common student difficulties.

However, rather than being scored dichotomously, scores were weighted to reflect different

levels of understanding. Comparing scores on MC and FR versions of these questions, they

found that average scores on the two formats did not differ significantly, and that both

formats had equivalent discrimination. A similar study reported a moderate correlation

between student performance on FCI questions and FR exam questions targeting the same

physics content [100]. However, this study also found that the nature of individual student’s

responses varied significantly between the FCI and exam questions.

There have also been attempts to narrow the gap between MC and FR formats by mod-

ifying the ‘standard’ MC format characterized by a single unambiguously correct answer

and 3-5 distractors. For example, a conceptual inventory developed by Rhoads and Roedel

[101] contained a number of items with a ‘multiple-correct’ answer format. These items of-

fered four response options including 2-3 correct options targeting different levels of Bloom’s

Taxonomy [102] in order to differentiate between higher and lower level learning. Kub-

inger and Gotschall [103] also described a multiple-response format where each item has five

response options, of which any number may be correct. Students were scored as having

mastered the item only if they selected all correct responses and none of the incorrect ones.

This study found that measures of item difficulty did not differ significantly between the

multiple-response format and FR formats.

Overall, previous research on MC testing has highlighted a number of similarities and

differences between MC and FR formats. Agreement between the two formats appears
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augmented when: the MC distractors are based on known student difficulties, the scoring of

each MC distractor is adjusted to reflect varying levels of student understanding, the format

of the MC items is adjusted to reduce the impact of guessing, and/or a large number of MC

items are used in the comparison. We specifically leveraged the first three of these heuristics

in our development of the new CMR version of the CUE.

3. Testing Theory

A key step in the development of a standardized conceptual assessments in either a MC

or FR format is establishing the validity and reliability of the instrument. Two common

perspectives on test development are Classical Test Theory (CTT) [104] and Item Response

Theory (IRT) [105]. The majority of conceptual assessments in physics, both at the introduc-

tory and upper-division level have been validated using CTT, while only a small number have

been developed or analyzed using IRT [106–109]. CTT posits that a high quality assessment

must have 5 characteristics [104, 110]:

1. Validity - Does the test measure what it claims to measure?

2. Reliability - Does the test measure what it measures consistently?

3. Discrimination - Does the test differentiate between high and low performers?

4. Good comparative data

5. Tailored to the population

Additionally, CTT provides a number of test statistics that quantify how well an instru-

ment matches these characteristics. For polytomously scored assessments, these statistics

include [104]: item difficulty as measured by the average score on each individual item, item

discrimination as measured by Pearson Correlation Coefficients [111] of item scores with the

rest of the test, internal consistency as measured by Cronbach’s Alpha [112], and whole test

discrimination as measured by Ferguson’s Delta [105]. Each of these test statistics will be

discussed in greater detail in Chapter V. For dichotomously scored assessments, several of

the test statistics used are slightly different (see Ref. [104] for an overview); however, as
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both versions of the CUE are polytomously score, we will not provide further elaboration on

statistical tests for dichotomously scored instruments.

One significant drawback of CTT is that all test statistics are population dependent. As a

consequence, there is no guarantee that test statistics calculated for one student population

(e.g., physics students at a community college) will hold for another population (e.g., physics

students at a university). For this reason, scores on assessments validated through the

use of CTT can only be clearly interpreted inasmuch as the student population matches

the population with which the assessment was validated. For additional discussion of the

limitations of CTT, see Ref. [113]. To address the shortcomings of CTT, psychometricians

later developed Item Response Theory. In the simplest IRT model (i.e., the Rasch model

[114]), a students’ performance on individual items is assumed to depend only on their latent

ability and the item difficulty. More complex IRT models also include parameters to account

for item discrimination and student guessing. For test items that fit this model, all item

and student parameters can be determined in such a way as they are independent of both

population and test form [105, 115].

Despite the appeal of generating population-independent parameters, there are several sig-

nificant drawbacks to IRT as a potential tool to develop upper-division physics assessments.

Even the simplest dichotomous IRT models require large N (>100) to produce estimates of

item and student parameters that are reliable enough for low-stakes testing [105, 116]. This

number increases for more complex models that, for example, include item discrimination

parameters, or for instruments with polytomous scoring [116]. The small class sizes typical of

upper-division physics would necessitate classroom testing at multiple institutions, possibly

over multiple semesters, to collect this volume of data. Additionally, in order for the param-

eters generated by IRT to be truly population independent, they must fit the appropriate

IRT model. Crafting a large number of items that fit these models often requires multiple

iterations of preliminary testing, further increasing the number of students necessary to de-

velop and validate an assessment. Due in large part to the logistical barriers to IRT, the
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analysis in this thesis will exclusively utilize CTT.

B. Creating a Multiple-response Version

1. Adapting the Questions

As our goal was to create a new version of an already established and validated conceptual

assessment, we explicitly avoided making substantive changes to the content coverage or

questions on the CUE. There are several distinct question styles on the original FR CUE, but

roughly two-thirds of the items present students with a physics problem and ask them to state

the appropriate solution method or select an answer and then to justify that answer/method

(Fig. 17 gives an example of this type of item). These items are scored using a validated

grading rubric that includes established point values for common responses [27].

Preliminary distractors for the CMR CUE were developed using both the FR grading

rubric and student responses to the FR items. We began by compiling a list of a priori

codes based on common responses identified on the FR rubric (see Fig. 17). These codes

were then used to characterize multiple semesters of student responses to the FR version.

The initial list of codes was expanded during this process to account for emergent response

patterns not already encompassed by the a priori codes. By looking at the frequency of each

code, we identified the most common justifications provided on each question. For many of

the CUE questions, a completely correct justification requires the student to connect several

distinct ideas. For example, a complete response to the item shown in Fig. 17 must include

several pieces: (1) that the potential can be expressed using the Multipole expansion, (2)

that the cube looks like a dipole, and (3) at large distances the first non-zero term (the dipole

term) will dominate. However, both the a priori and emergent coding showed that many

students gave partially correct justifications that were missing one or more key elements.

This was especially true for the Method/Reasoning style items like the one in Fig. 17. A

standard MC format requires identifying and articulating a single, unambiguously correct
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answer along with three to five tempting but unambiguously incorrect distractors. Our early

attempts to construct distractors satisfying these requirements failed to capture either the

variation in justifications or the partially correct ideas that were coded from the FR items.

To accommodate the wide range of correct, partially correct, and incorrect reasoning that

students gave on the FR version, we switched to a less restrictive multiple-response format.

After asking the students to select the correct answer or easiest method, we provide a set

of what we are calling reasoning elements, of which students can select all that support

their choice of method (see Fig. 18). Reasoning elements were taken from common codes

identified in the student responses to the FR version, and each one may be correct, incorrect,

or irrelevant in the context of justifying a particular answer or choice of method. Full

credit requires that a student select all (and only) the reasoning elements that together

form a complete justification; however, they can receive partial credit for selecting some, but

not all, of the necessary elements (see Sec. IV B 2). This format allows for a wider range

of justifications than a standard multiple-choice test as students can combine reasoning

elements in many different ways. It also requires students to connect multiple ideas to

construct a complete justification, thus providing an avenue for students to demonstrate

partially correct or incomplete ideas.

This multiple-response format is similar to the one discussed by Kubinger and Gotschall

[103]. However, the response options they used were individually marked as true or false,

making it unnecessary for the student to make any kind of connections between the state-

ments. In contrast, our items often include reasoning elements that are true but irrele-

vant, true in some physical situations, or true but incomplete. A fully correct response

with this format requires that students be consistent both between reasoning elements and

method/answer selection, and between reasoning elements.

The CMR version of the question shown in Fig. 17 is given in Fig. 18. The boxes next to

each reasoning element are intended to facilitate students’ interaction with the new format

by resembling ‘check all’ boxes that the students are familiar with from online surveys. The
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Q3 - A solid, neutral, non-conducting cube as below, with side length ‘a’ and
ρ(z) = kz.

Find
⇀

E or V at point P, where P is off-axis, at a distance 50a from the cube.

Select only one: The easiest method would be ...
A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � the cube will look like a dipole; approximate with
⇀

E or V for an ideal dipole

c. � symmetry allows you to calculate
⇀

E using a cubical Gaussian surface

d. � symmetry allows you to calculate
⇀

E using a spherical Gaussian surface
e. � the observation point is far from the cube
f. � there is not appropriate symmetry to use other methods
g. � ∇2V = 0 outside the cube and you can solve for V using Fourier Series

FIG. 18. A sample item from the CMR CUE. Question prompt has been paraphrased; see Appendix

H for full prompt and Appendix I for the rubric and scoring materials.

wording of the question prompts was adjusted only when necessary to accommodate the new

format. Two questions on the FR version (Q11 & Q15, see Ref. [31]) dealt with mathematical

expressions for the boundary conditions on E and V. One of these questions (Q15) was not

included on the new CMR version as it already had a multiple-response format that became

redundant once Q11 had been redesigned to be multiple-response. Thus the FR version has

17 numbered items, while the CMR version has only 16.

Roughly two thirds of the questions on the FR CUE explicitly ask for students to ex-

press their reasoning, and their CMR counterparts have the tiered format shown in Fig.

18. The remaining items have various formats that include interpreting or generating spe-

cific formulas (e.g., boundary conditions) as well as sketching graphs, vector fields, and/or

charge distributions. These items were translated into more standard multiple-choice and

multiple-response formats. We selected the simplest format for each item that allowed us
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to encompass the majority of the coded student solutions to the FR version. It is not pos-

sible to provide examples of all question formats on the CMR CUE here; however, the full

instrument is included in Appendix H and can also be accessed at Ref. [31].

2. Scoring

While allowing for a more nuanced measure of student understanding, the ‘select all’

format of the CMR CUE also sacrifices one of the logistical advantages of standard MC

questions because it is not as straightforward to score this format using automated machine

grading (e.g., Scantron). Student responses to the CMR CUE must instead be entered into

an electronic grading spreadsheet. The grading spreadsheet is an Excel workbook that has

been pre-programed to translate students’ letter responses to each question (e.g., ‘a’, ‘B’,

etc.) into numerical scores for each student using an appropriate grading scheme. Thus,

once students’ responses have been entered, the electronic gradesheet instantly scores each

student, preserving the fast and objective grading of a MC assessment.

Additionally, the new format also allows for considerable flexibility in terms of scoring.

The CMR CUE can easily be scored using multiple grading schemes simply by modifying the

grading spreadsheet. FR tests, on the other hand, require significant time and resources to

regrade with a new grading scheme. There are several different potential grading schemes for

a question like the one in Fig. 18 ranging from very simple to very complex. However, Lin and

Singh’s previous work [85] suggests that a more complex rubric designed to reflect different

levels of student understanding may be more effective at achieving consistency between the

FR and CMR versions. Here we will investigate two different grading schemes: (1) a simple

grading scheme designed to preserve the straightforward scoring of a standard MC rubric,

and (2) a more complex rubric designed to closely replicate the nuanced grading used to

score the FR CUE [27]. These two rubrics (described in greater detail below) are not the

only potential rubrics that might be developed, but represent two extremes that will allow

us to explore the impact of different grading schemes.
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In the grading scheme used on the simpler grading rubric (R1), students are awarded full

points for making correct selection and zero points for any response not including a correct

selection. For the example item shown in Fig. 18, students are awarded three points for

selecting the Multipole Expansion (‘D’) as the easiest method and up to two points for also

selecting any combination of the relevant reasoning elements ‘b’ (0.75 pt), ‘e’ (0.75 pts), and

‘f’ (0.5 pts), for a total of five points on the question. In this scheme, reasoning points can

only be received when the correct method is selected, and selection of incorrect or irrelevant

reasoning elements does not impact the student’s score.

Alternatively, in the grading scheme used on the more complex grading rubric (R2),

students are awarded full points for making correct selections but can also receive some

credit for partially correct responses. For example, the CMR CUE scoring rubric for the

Method/ Reasoning questions awards full points for selecting the easiest method, and also

awards partial credit for selecting methods that are possible, even if they are not easy.

Additionally, the rubric awards points for reasoning elements that are consistent with the

choice of method. For example, on the item in Fig. 18, it is also possible, though difficult, to

use Direct Integration to solve for
⇀

E or V . The rubric awards students who select method ‘A’

one point for the Method and an additional half point for selecting the consistent reasoning

element, ‘a’. On items without the tiered format, students can still receive some credit

for selecting distractors that reflect partially correct ideas or demonstrate an appropriate

degree of internal consistency. The point distribution and weighting of each answer or

method/reasoning combination was designed to closely match the established scoring on the

FR version (see Appendix I for the full R2 grading scheme).

In addition to offering additional credit for consistency, the R2 rubric also subtracts points

from students with reasoning elements that are inconsistent with their choice of method.

Typically, selecting an inconsistent or incorrect reasoning element will prevent a student from

getting more than three out of five points on questions that ask for explicit justifications.

These consistency checks in the R2 grading scheme help to reduce the credit a student can
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get by chance. On standard MC tests, a student can expect to get a score of roughly 20-

25% just by guessing. Using the R2 scoring rubric on 100 computer generated responses

simulating random guessing, we found an average score of 13%. Alternatively, these same

responses resulted in an average score of 21% when using the R1 grading scheme which does

not subtract points for inconsistent selections. Differences in students’ scores using these

two rubrics will be presented in Chapter V.

C. Establishing Content Validity

There are several distinct aspects to establishing the validity of an assessment instrument.

Recall that in CTT (see Sec. IV A 3), validity deals with whether a test measures what it

claims to measure. This includes examining how well the test items cover the targeted

content domain, which is referred to as content validity [104].

1. Expert Validation

The content validity of an assessment is established in part by ensuring that the content

is seen as accurate, clear, and valuable to content experts in the discipline. The FR CUE was

designed to align with learning goals for upper-division electrostatics that were developed

in collaboration with physics faculty at CU. The original instrument was also reviewed by

physics experts and revised based on their feedback [27]. Since the CMR CUE has the same

prompts, the validity of its physics content is, to a large extent, already established. However,

the operationalization of this content has changed significantly in the new format. We

solicited and received feedback from nine experts in physics content or assessment spanning

six institutions, all with experience teaching upper-division physics. Small modifications

were made to several items as a result of this feedback.

The majority of the changes suggested by these experts were minor adjustments to the

wording of several prompts and reasoning elements to clarify either the language or the
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physics content (e.g., the addition of the word ‘isotropic’ to describe the linear dielectric

in Q14, see Appendix H). In one case (Q12, part iii), several experts expressed a subtly

incorrect idea relating to the functional dependence of the electric field along the z-axis

above a uniform disk of charge when z << R. This idea lead them to the (incorrect)

conclusion that the fully correct graph of E(z) was not provided in the given list of response

options. If a subset of physics experts believe that the correct response to this question is

not included, it may impact their perception of the content validity of the assessment. To

address this, we added an additional response option in which the behavior of E(z << R)

corresponded to this incorrect idea. As the difference between this graph and the correct

one is subtle, the R2 grading scheme offers close to full credit (3.5 out of 4 pts) for selecting

this distractor.

Overall, the expert reviewers expressed enthusiasm for the CMR CUE and offered no cri-

tiques that questioned the overall validity of the new format. However, several of the review-

ers did point out that, as with all multiple-choice formats, this new format only requires stu-

dents to recognize a correct answer, which is a potentially easier task than requiring them to

generate it. Ideally, the research-generated distractors combined with the multiple-response

format reduce the potential for students to simply recognize correct answers, particularly on

the Method/Reasoning type questions where the individual reasoning elements rarely repre-

sent complete justifications. In Chapter V, we present empirical evidence that, on average,

our students do not score higher when asked to select the correct answers/justifications on

the CMR version than when asked to generate answers/justifications on the FR version.

With respect to the expert-guided ACER framework described in Chapters II & III, the

CUE offers a much clearer measure of student performance in the Activation component than

is typical of standard exam and homework questions. Alternatively, the Construction and

Execution components are largely missing from the CUE. This was, in part, an intentional

feature of the original CUE as it was specifically designed to target aspects of problem solv-

ing not captured by traditional exams which target primarily Construction and Execution.
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Reflection is also not explicitly targeted by the CUE; however, the use of reflective checks

would likely facilitate student performance on a number of questions.

2. Student Validation

Content validity not only requires that the content, format, and language of an assessment

is clear and understandable to experts, but also to the targeted student population [104].

Think-aloud validation interviews in which individual students work through the diagnostic

while explaining their reasoning helps to ensure that students are interpreting the questions,

formatting, instructions, and distractors as intended. For the CMR CUE student interviews

were also crucial because we were concerned that the ‘select ALL that apply’ format might

be unfamiliar or confusing. We performed thirteen interviews with the full 16 question CMR

CUE and three interviews with a 7 question subset of the full instrument to demonstrate

the validity of the new format. All interview participants had completed an upper-division

electrostatics course one to four weeks prior to the interview with final course grades ranging

from A to C. During these interviews, participants were first allowed to complete the assess-

ment without input from the interviewer. After completing the assessment, the interviewer

probed the students in more detail where it was unclear why they selected or rejected certain

distractors.

The student validation interviews were analyzed with a particular focus on identifying

instances where the phrasing of an item caused students to select responses that were in-

consistent with the reasoning they articulated verbally, or where students interacted with

the new format in a way that caused an artificial inflation (e.g., selecting answers based on

superficial similarities in wording) or deflation of their score (e.g., not following directions or

not reading all the reasoning elements). Minor wording changes were made to several of the

prompts and reasoning elements as a result of these interviews. For example, the prompt to

one question (Q14) originally asked for students to comment on the value of
⇀

Enet inside a

capacitor filled with linear dielectric; however, we found that a number of students in inter-
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views responded to this question as if it was asking for the electric field from the dielectric

only despite clearly recognizing that the superposition of the fields from the dielectric and

capacitor would result in zero electric field inside. To counter this, we modified the prompt

to explicitly express the net electric field as the superposition of the field from the capacitor

and dielectric (i.e.,
⇀

Enet =
⇀

Eplates +
⇀

Edielectric).

The interviews also informed several changes to the grading scheme. For example, some

items contain reasoning elements that are true but irrelevant statements. These were typ-

ically included because they appeared as a common justification for an incorrect method

selection on the FR version. We found in interviews that students who knew the correct

method often selected these reasoning elements simply because they were true statements.

To account for this, we modified the R2 grading rubric so students who did this would not

be penalized or rewarded for selecting a true reasoning element that did not directly support

their choice of method.

A concern raised by one faculty reviewer was that students who did not know how to start

a problem might figure out the correct approach by examining the given reasoning elements.

This possibility also relates to the validity of the CUE in terms of achieving an unambiguous

measure of the Activation component of the ACER framework. We did observe instances

in the interviews where students would explicitly refer to the reasoning elements in order

to inform their choice of method. However, this technique seemed most useful to students

with higher overall CUE and course scores, and, in all such cases, the student provided

additional reasoning that clearly demonstrated their understanding of the correct method.

Alternatively, some students in the interviews were led down the wrong path by focusing

on an inappropriate reasoning element. This suggests that using the reasoning elements to

figure out the correct method does not result in a significant inflation of scores.
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V. CHAPTER V: STATISTICAL VALIDATION OF THE CMR

CUE

A. Comparing the Multiple-response and Free-response Versions

Following the initial development and validation of the CMR (coupled multiple-response)

version of the CUE, we began classroom testing in order to produce measures of the statistical

validity and reliability of the instrument across a range of student populations. As part of

this process, we also performed a side-by-side comparison of the new version with the original

FR (free-response) version.

1. Methods

Comparison data were collected during two semesters of the E&M 1 course at CU, the

first of which was taught by a PER faculty member (SJP) who incorporated a number of

materials designed to promote interactive engagement, such as in-class tutorials and clicker

questions [10]. The second semester was taught by a visiting professor who utilized primarily

traditional lecture with some minimal interactive engagement interspersed.

To make a direct comparison of the two versions of the CUE, each semester of the E&M 1

course was split and half the students were given the CMR version and half the FR version.

The two groups were preselected to be matched based on average midterm exam score but

were otherwise randomly assigned. Attendance on the day of the diagnostic was typical in

both semesters and ultimately a total of 45 students took the CMR version and 49 students

took the FR version of the CUE (75% response rate overall). The analysis presented in

the remainder of this section will focus exclusively on the comparisons of the FR and CMR

versions of the CUE; Sec. V B will report on the larger scale validation of the CMR CUE for

independent implementation using data from different instructors and additional institutions.

The majority of Section V A is taken from Ref. [51] on which BRW is first author. All text taken verbatim

from this publication was written by BRW.
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2. Results: Statistical Comparison

This section presents the quantitative comparison of test statistics from both versions of

the CUE. These test statistics are pulled exclusively from Classical Test Theory (see Sec.

IV A 3). Using the nuanced R2 grading rubric described in Sec. IV B 2, the average score

on the CMR version, 54.3 ± 2.8% (σ = 19.1%), was not significantly different (Student’s

t-test [117], p = 0.9) from the average on the FR version, 54.6 ± 2.8% (σ = 19.6%). Score

distributions for both versions (Fig. 19) were nearly normal (Anderson-Darling test [118],

CMR: p = 0.9, FR: p = 0.6) and had similar variances (Brown-Forsythe test [119], p = 0.9).

The average score on the CMR version from the simpler grading scheme (R1, see Sec.

IV B 2) was 50.1±2.9% (σ = 19.7). This score, while lower, does not differ statistically from

the average scores on either the FR version or the R2 grading scheme (p = 0.3). We found

this result to be somewhat surprising given the significant differences between the two grading

rubrics. R1 gives no partial credit but also does not penalize inconsistent reasoning/method
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FIG. 19. Distributions of scores on the CMR (N=45) and FR (N=49) CUE for the E&M 1 course

at CU. There is no statistically significant difference between averages for the two the distributions

(Student’s t-test, p = 0.9).
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selections. A concern with R1 is that students who simply selected many or all reasoning

elements could still get full credit. However, we find that, both in the test semesters and in

interviews, our students rarely select more than 1-3 reasoning elements. On the other hand,

R2 offers significant partial credit and penalizes inconsistent selections. While individual

student’s scores sometimes shift significantly from one rubric to the other, on average the

opportunity for partial credit and the penalty for inconsistency balance out to give similar

average scores on R2 as R1. The more nuanced grading of R2 was also designed to better

reflect subtle differences in levels of understanding between students, and it may be that the

size of this initial sample was not large enough to highlight these differences.

To further investigate the impact of different grading rubrics on the agreement between

these two versions, we also scored the CMR CUE using a strict right/wrong rubric. In this

grading scheme, students receive full credit for selecting the correct method and all the nec-

essary reasoning elements. Not selecting one or more of the important reasoning elements

or selecting inconsistent reasoning elements both result in zero points on the reasoning por-

tion of that item. Using this ‘perfect’ scoring rubric, the score on the CMR version falls

to 42.8 ± 2.8% (σ = 18.5%). The difference between this score and the average on the FR

version is statistically significant (Student’s t-test, p < 0.01). This finding suggests that a

nuanced grading rubric designed to reflect different levels of student understanding does im-

prove agreement between multiple-choice and free-response formats. Because it more closely

matches the FR rubric and our higher level learning goals for the course, the remainder of

this section exclusively utilizes scores from the R2 grading scheme.

The start and stop time of each student was also recorded. On average, students spent

a comparable amount of time on the CMR version, 35.0 ± 1 min (σ = 7.5 min), as on the

FR version, 34.8± 1 min (σ = 7.9 min). The average time spent on both versions was also

the same for the two semesters individually. We were initially concerned that the multiple-

response format might encourage students to go through the CMR version quickly and

carelessly. Given the amount of writing required on the FR version, the fact that students
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took the same amount of time to complete the CMR CUE suggests that they were reading

the distractors carefully and putting thought into their responses.

Criterion Validity

Another property of the CMR CUE is how well its scores correlate with other, related

measures of student understanding. The most straightforward comparison is with the more

traditional, long-answer course exam scores. Students in both semesters of E&M 1 took two

midterm exams and one final exam. The CMR CUE scores correlate strongly with aggregate

exam scores (Pearson Correlation Coefficient [111] r = 0.79, p < 0.05). For comparison, the

correlation for the 49 students who took the FR version was also high (r = 0.79, p < 0.05).

Similarly the scores for both versions are strongly correlated with final course score which

includes roughly 30% homework and participation (CMR: r = 0.76, FR: r = 0.73). To

account for differences between the average exam, course, and CUE scores between the

two semesters, the correlations above are based on standardized scores (z-scores) calculated

separately for each class using the class mean and standard deviation. These correlations

are not statistically different from the correlation, r = 0.6 (p = 0.8, determined using the

procedure described in [120]), reported previously for the FR CUE [27].

Item Difficulty

In addition to looking at the overall performance of students on the CMR and FR versions

of the CUE, we examined their performance on individual items. Fig. 20 shows the average

scores on both versions for each question (item numbers are consistent with the CMR ver-

sion). The score given for Q11 on the FR version is an average of the scores from two items

originally numbered 11 and 15 on the FR version (see Sec. IV B 1). Differences between the

scores are significant for 3 of 16 items (Mann-Whitney U-test [121], p < 0.05; see Fig. 20).

In all three cases, the difficulty went down for the new version. The decrease in difficulty in

these three questions is balanced by a marginal (but not statistically significant) increase in

difficulty on several of the remaining question; thus the whole-test average is the same for

both versions.
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FIG. 20. Average scores on each item on the CUE. Statistically significant differences between the

CMR and FR versions are indicated by an asterisk (Mann-Whitney, p < 0.05). See Appendix H for

the questions on the CMR version and Ref. [31] for the FR version. Item numbering is consistent

with the CMR version.

The FR versions of two of the items with statistically significant differences (Q9 and Q15,

see Appendix H) were particularly challenging to adapt to the new format and, ultimately,

underwent the most significant modification of all questions. Student interviews suggest

that for Q15 the decrease in difficulty arises because the FR version contains an explanation

component that was eliminated on the CMR version. Alternatively, on Q9 interviewees often

recognized the appropriate justifications among the given reasoning elements even when they

did not generate them which may account for the decreased difficulty. For the remaining

item (Q3, Fig. 18), we had no a priori reason to expect that the CMR version would be

significantly different than the FR version. However, student interviews suggest that, for

this item, one particularly tempting reasoning element (‘b’) can help students to determine

the correct method (‘D’). See Sec. V A 3 for more discussion of Q3.

Discrimination

We also examined how well performance on each item compares to performance on the

rest of the test (i.e., how well each item discriminates between high and low performing
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students). Item-test correlations were between 0.24 and 0.71 for all items on the CMR and

FR CUE with the exception of the CMR version of Q15 (r = 0.17, see Fig. 21). Q15 was also

the only item that had a statistically significant difference between the item-test correlations

for the CMR and FR versions. As stated previously, Q15 was modified significantly for

the CMR version. A common criterion for acceptable item-test correlations is r ≥ 0.2 [26];

however, for N = 45, correlation coefficients less than 0.24 are not statistically significant.

Q15 on the CMR CUE is the only item on either version that falls below the cutoff for

acceptability or statistical significance.

To look more closely at the source of this anomalously low correlation, we can break

this out by course. The correlation is stronger and statistically significant for one of the two

semesters (r = 0.44, p = 0.02, N=25); whereas the correlation is negative but not statistically

significant in the other semester (r = −0.11, p = 0.6, N=20). A scatterplot of item score vs.

test score for Q15 shows that the low correlation is due to a large amount of scatter in the

scores rather than one or two outliers. This may indicate that this topic (dipole moments)
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FIG. 21. Comparison of item-test correlations as a measure of item discrimination on the CMR

and FR versions of the CUE. The conventional cutoff for an acceptable correlation (0.2) is marked

with a bold line. Statistically significant differences between the two versions are indicated by an

asterisk (p < 0.05, determined using the procedure described in [120]).
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was not covered as effectively in this semester as compared to the other semester. Sec. V B 2

will show that the low correlation demonstrated by this one course is not representative of

the broader student population.

As a whole-test measure of the discriminatory power of the CMR CUE, we calculate

Ferguson’s Delta [105]. Ferguson’s Delta is a measure of how well scores are distributed

over the full range of possible point values (total points: CMR - 93, FR - 118). It can take

on values between [0,1] and any value greater than 0.9 indicates good discriminatory power

[26]. For this student population, Ferguson’s Delta for both the CMR and FR versions of

the CUE is 0.98. This is similar to the previously reported FR value of 0.99 [27].

Internal Consistency

The consistency of scores on individual items is another important property of an assess-

ment. To examine this, we calculate Cronbach’s Alpha for both versions of the test as a

whole. Cronbach’s Alpha can be interpreted as the average correlation of all possible split-

half exams [112]. Using the point value of each item to calculate alpha, we find α = 0.82 for

the CMR version and α = 0.85 for the FR version. Again, this is consistent with the value

of 0.82 reported historically for the FR CUE [27]. For a unidimensional test the commonly

accepted criteria for an acceptable value is α ≥ 0.8 [122]. While we have no a priori reason

to assume that the CUE measures a single construct, multidimensionality will tend to drive

alpha downward [112]; thus we argue Cronbach’s Alpha provides a conservative measure of

the internal consistency of the instrument.

3. Results: Reasoning Comparison

The previous section demonstrated a high degree of consistency between the CMR and

FR versions on the CUE in terms of scores and a variety of test statistics. However, one of

the primary goals of the CUE’s original creators was to gain insight into student thinking

and the nature of common student difficulties with electrostatics [27]. Gauging how much

of this insight is preserved in the new CMR version requires a comparison of what students

110



wrote/selected on each version. To do this we performed a qualitative analysis of student

responses to a subset of the CUE questions, Q1-Q7. We focused on these seven items because

they represent all the Method/Reasoning type questions (see Figs. 17 & 18) and typically

elicit the richest and most detailed explanations on the FR version.

Method Selection

We started by comparing just the students’ method selections on both versions of the

CUE. This approach required coding student responses to the FR version into one of the

method options offered on the CMR version. The method coding process was relatively

straightforward because the FR version directly prompts the students to select a solution

method and provides them a list of methods at the beginning of the exam that matches

the list provided on the CMR version. In a few cases, some interpretation was necessary

to assign a method selection to students who did not use the precise name of the method

in their response (e.g., ‘use the multipole expansion’ vs. ‘use a dipole approximation’).

Inter-rater reliability was established by two people independently coding 20% of the FR

tests. Agreement on the coded method selection was 96% before discussion and 100% after

discussion.

A comparison of the method selections of students taking the CMR and FR versions of

one question (Q2) is given in Fig. 22 (See Appendix J for comparisons for all 7 questions).

Visually, the two distributions are strikingly similar, and this trend is representative of five of

the seven questions. The remaining two questions showed greater variation (see Fig. 23). To

quantitatively compare the two versions, we constructed 2x9 contingency tables detailing the

number of students in each group who selected each method for each of the seven questions.

While χ2 is a common statistic for determining statistical significance from contingency

tables, it loses considerable statistical power when cells have N < 5 [123]. As many of

the cells in our tables fell below this cutoff, statistical significance was determined using

Fisher’s Exact Test [124, 125]. Fisher’s Exact Test determines the probability of obtaining

the observed contingency table given that the two variables in the table have no association.
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FIG. 22. Percent of students who selected each method on Q2 for each version of the CUE. The left

chart represents student selections from the CMR version (N=45), while the right chart represents

coded method selections from the FR version (N=49). The difference between the two distributions

is not statistically significant (Fisher’s exact test, p = 0.9).

It then sums the probability of the observed table along with all more extreme tables to

return a p-value for having observed that particular table given the null hypothesis.

Ultimately, only the two questions with visually different distributions had statistically

significant differences (p < 0.05) between the method selections of students taking the CMR

and FR CUE. For one of these two questions (Q3, see Fig. 23), students taking the CMR

version were more likely to select the correct method (Multipole Expansion) and less likely to

select the possible but harder method (Direct Integration). This trend is consistent with the

decrease in difficulty observed for this item (see Sec. V A 2). As stated earlier, this shift may

be attributable to the presence of a particularly tempting correct reasoning element. For the

second of the two questions identified by Fisher’s Exact Test (Q5), students were less likely

to select the correct method (Superposition) and more likely to select a common incorrect

method (Gauss’s Law) on the CMR version. In this case, student interviews suggest that

this trend may be due to the presence of a particularly tempting, but this time incorrect,

reasoning element justifying the use of Gauss’s Law.
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FIG. 23. Percent of students who selected each method on Q3 (see Fig. 18) for each version of the

CUE. The left chart represents student selections from the CMR version (N=45), while the right

chart represents coded method selections from the FR version (N=49). The difference between the

two distributions is statistically significant (Fisher’s exact test, p = 0.02).

Reasoning Selection

The reasoning portion of the FR questions was more challenging to code than the method

portion because students are no longer constrained to a finite list of methods and are free to

justify their answer in any way they choose. We started by coding students’ free responses

using the reasoning elements provided on the CMR version. We also identified aspects

of student responses that did not match one of the available reasoning elements. These

aspects were coded into two ‘other’ categories: satisfactory and unsatisfactory. Satisfactory

codes were given to elements of students’ justifications that represented correct physical

statements that supported the choice of method but that did not get coded into one of the

CMR categories. Unsatisfactory codes were given to elements that represented incorrect or

irrelevant statements. Students could receive multiple codes, meaning that a student could

be awarded an ‘other’ code even if some elements of their response fit into one of the CMR

categories.

Due to the higher degree of difficulty inherent in coding the reasoning portion, inter-rater
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reliability was established in two stages. Additionally, because the coding on the reason-

ing portion allows for multiple codes for each student, we determined inter-rater reliability

statistics for both complete agreement (i.e., no missing or additional codes) and partial

agreement (i.e., at least 1 overlapping code). First stage reliability statistics were generated

from independent coding of 20% of the FR exams. For this initial set, complete agreement

was 65% before discussion and 94% after discussion, and partial agreement was 79% before

discussion and 96% after discussion. In the second stage, an additional 10% of the FR exams

were independently coded, and both complete and partial agreement before discussion rose

to 89%. There is not a well-accepted threshold for an acceptable percent agreement because

this cutoff must account for the possibility of chance agreement and thus depends on the

number of coding categories [126]. However, given our large number (7-10) of non-exclusive

coding categories, the potential for complete agreement by chance is low. Thus, we consider

89% agreement to be acceptable for the general comparisons made here.

Ultimately, an average of 74% of FR students who did not leave the reasoning portion

blank were coded as having one or more of the CMR reasoning elements per question.

The remaining 26% received only ‘other’ codes (11% satisfactory and 15% unsatisfactory)

meaning that no aspect of their justification matched one of the CMR reasoning elements.

Overall, 33% of students who took the FR version received ‘other’ codes, including those

who also received one or more CMR codes. In other words, one third of the information on

students’ reasoning that is accessed by the FR version is forfeit on the CMR version. This

result is not surprising as it is not possible to capture the full range of student reasoning

with a finite number of predetermined response options.

This section presented an analysis of student responses to the Method/Reasoning type

questions on both versions of the CUE. We found that the two versions elicited matching

Method selections for five of seven questions. On the remaining two questions, there was a

statistically significant shift in the fraction of students selecting each of the two most common

method choices. In both cases, this shift may be attributable to the presence of a particularly
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attractive reasoning element. Additionally, we find that roughly three-quarters of responses

to the FR version contained elements that matched one or more of the reasoning options

provided on the CMR CUE. However, roughly a third of these responses also contained

elements that did not match the CMR reasoning options; thus, the logistical advantages of

our CMR assessment come at the cost of reduced insight into student reasoning.

B. Validating the CMR CUE

1. Methods

Following the initial comparison of the CMR and FR versions of the CUE, we set out

to more robustly establish the validity and reliability of the new version as an independent

instrument. To do this, we expanded our data collection with an emphasis on including

additional students and instructors at multiple institutions. We recruited instructors to

pilot the CMR CUE in several ways including soliciting participants during talks and posters

presenting the results of the initial comparison study at professional meetings and workshops

(e.g., the American Association of Physic Teachers summer meetings). The new version was

also uploaded to the online materials repository (see [31]) where it can be accessed by any

physics instructor interested in using our transformed course materials. We also contacted a

number of colleagues working in PER who facilitated putting us in contact with the instructor

in their department who was teaching electrostatics.

Ultimately, we collected post-test CUE data from 14 courses spanning 9 institutions and

12 instructors. Institution and course characteristics are shown in Table IX. We also have

pretest data from 12 of these courses. Pretests were administered in the first week of class

as either 20 min in-class activities (N=6) or as an out-of-class online survey (N=6). For all

courses but one, post-tests were administered in the last week of class as a 50 min in-class

activity. In one case, the post-test was given as an out-of-class online survey.

To what extent in-class implementations of the pre and post-tests can be compared to out-
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TABLE IX. General characteristics of each institution where we collected post-test CMR CUE

data. N indicates the number of responses rather than the total number of students enrolled.

* Highest degree offered directly by the Physics Department.

**These courses include the 2 semesters in which we conducted the comparison study described in

Sec. V A. Only data from students who took the CMR version is included in the total N.
† The post-test was taken online at this institution.

Institution Institution Highest Size Number N

Code Type Degree* (undergraduates) of courses

R1-A Public Ph.D. 25,000 4** 145

R1-C Public Ph.D. 37,000 1 40

R1-D Public Ph.D. 40,000 1 30

R1-E Public Ph.D. 29,000 1† 67

R2-A Public Ph.D. 19,000 2 33

BG-B Private B.S. 4,000 2 23

BG-C Private B.A. 3,000 1 8

BG-E Private B.S. 2,000 1 8

BG-F Private B.S. 3,000 1 19

of-class, online implementations is still an open question that we will not attempt to robustly

answer here. However, pretest data from CU show an average score of 31.0± 1.7% when the

pretest was taken online (N=78) compared to 30.5±2.2% when taken in-class (N=56). This

indicates that, for the pretest, in-class and online implementations are likely comparable.

The post-test, however, is a considerably longer and harder instrument, and it may be that

scores on a 50 min assessment administered online and in-class are not directly comparable.

However, for the single course where the post-test was given online, the average score and

standard deviation were consistent with that from in-class implementations. Moreover, the

inclusion of this course does not significantly change any of the statistics or conclusions

reported in the rest of this section. As such, we have opted to include these data in the

following analysis in order to realize greater statistical power.

2. Results: Statistical Validation

This section presents the statistical validation of the CMR CUE independent of the FR

version. As before, our analysis will be guided by Classical Test Theory (see Sec. IV A 3).
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Using the nuanced R2 grading rubric (Sec. IV B 2), the overall average on the CMR CUE

is 51.4 ± 1% when treating students as data points. The distribution of N=373 scores are

shown in Fig. 24 and can be treated as normal (Anderson-Darling test [118], p = 0.2).

Averaging by students differentially weights impact of large courses, which, in these data,

come exclusively from large research institutions (Table IX). This effect can be offset by

considering performance by course, rather than students. Taking the mean of the average

scores for each course, the overall performance on the CMR CUE is 49.5 ± 2.5%. With

only N=14 courses, the difference between the by course and by student averages is not

statistically significant; however, we argue that a difference of 2% is also not of practical

significance.

The overall average (by students) falls to 48.0 ± 1% when using the simpler R1 scoring

rubric (Sec. IV B 2). Using the ‘perfect’ scoring rubric, this average drops again to 41.0±0.9%.

This is consistent with the findings from the comparison study (Sec. V A 2). Additionally, the

internal consistency students’ scores as measured by Cronbach’s Alpha [112] fall to 0.78 and
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FIG. 24. Distributions of scores (N=373) on the CMR CUE from 14 courses at the institutions

described in Table IX. These data passed a statistical test for normality (Anderson-Darling test,

p = 0.2).
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0.77 using the R1 and perfect rubric respectively. Given the increased internal consistency

and overall consistency with the FR version offered by the more nuanced R2 grading scheme

(Sec. V A 2), we will exclusively utilize the R2 rubric for the remainder of this section.

Criterion Validity

To establish the extent to which scores on the CMR CUE are consistent with other,

related learning outcomes, we would ideally correlate these scores with final course grades

and/or aggregate exam scores for all students in our sample. Unfortunately, we only have

access to final course and exam scores for a subset of the students at CU and for none of

the external institutions. Sec. V A 2 reported a high correlation of CMR CUE scores with

aggregate exam score (Pearson’s Correlation Coefficient [111] r = 0.79) as well as final course

score (r = 0.76). This finding establishes the criterion validity of the CUE for the student

population at CU; however, we are not able to extend this conclusion to external institutions

with the available data.

Item Difficulty

To characterize the difficulty of each item, we look at the average score by question

(Fig. 25). Item difficulties for all questions fall between 30-75%. We are not aware of a

well-established range of acceptable values for item difficulty on polytomously scored items.

However, for dichotomously scored items where item difficulty is measured as the percent

of students who answer each item correctly [26], it is typically argued that ideal values

should fall half-way between 100% and the percent expected by random guessing [127]. This

maximizes the potential discriminatory power of each item. Since not all items will achieve

this ideal, one standard range for acceptable values is 30-90% [26]. Extending this same logic

of maximizing the potential discriminatory power of each item as well as the test as a whole,

we argue item difficulties for our polytomously scored items fall within an acceptable range,

with no single item being too easy or too hard to contribute to the overall discrimination of

the test.

Scores on each individual item are rarely normally distributed. This is in part an artifact
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FIG. 25. Average scores for each item on the CMR CUE (N=373). Error bars represent a 95%

confidence interval (double the standard error on the mean). Score distributions for each individual

item are not necessarily normally distributed.

of the grading scheme in which there are a finite number of potential point combinations

(typically between 0-5 pts in 0.5-1 pt intervals). For this reason, the median score on each

item is often different from the average score. In two cases (Q1 and Q5, see Appendix H),

the median score for this population of students is 0pts. For Q1, this is because there is

only one possible solution path and any student who does not select the correct method

receives zero points on the question. For Q5, the low median score is instead explained by

the presence of a tempting incorrect method that receives no credit but is selected by nearly

half the students.

Discrimination

One preliminary indication of the whole-test discrimination of the CMR CUE comes from

the overall spread in the distribution of students’ scores (Fig. 24). These scores span nearly

the full range of possible scores (from 0-100%) with a minimum score of 4.3% and a maximum

score of 91.9%. Thus the students are well distributed across the range of possible scores. As

another measure of the whole-test discrimination of the CMR CUE, we again use Ferguson’s
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Delta [105]. For the full population of students, Ferguson’s Delta is 0.99. Recall, Delta can

take on values between [0,1] and anything above 0.9 indicates good discriminator power [26].

We also examine the discrimination of each individual item by comparing a student’s score

on that item to their performance on the rest of the test. Item-test correlations for all 16 items

are shown in Fig. 26, and all correlation coefficients fall between 0.25-0.55 and are statistically

significant given N=373 [128]. As has been done before [27], we adopt the standard cutoff of

r = 0.2 used for dichotomously scored items [26] to argue that all items on the CMR CUE

demonstrate acceptable discriminatory power. Note that this includes Q15, which previously

demonstrated a lower item-test correlation (r = 0.17, see Sec. V A 2). Ultimately, only three

courses (including the one in the initial comparison study) demonstrated lower item-test

correlation on this item; however all other courses showed significant positive correlations,

resulting in overall positive discrimination for this item.

Consistency

Once again, we utilize Cronbach’s Alpha as a conservative measure of the internal consis-
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FIG. 26. Item-test correlations (as measured by Pearson’s r) for each of the items on the CMR

CUE. For N=373 any correlation greater than 0.1 is significant at the p < 0.05 level [128], thus item-

test correlations are statistically significant for all items. The conventional cutoff for an acceptable

correlation (0.2) is marked as a bold line.
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tency of the CMR CUE as a whole. For our population of students, we calculate a value of

α = 0.81. Recall that, for a test used to assess individuals rather than just groups, the com-

monly accepted threshold is α > 0.8 [104]. Thus the CMR CUE demonstrates an acceptable

level of internal consistency.

In terms of the new CMR format, there is another aspect of consistency that is important

to consider. As the name implies, the majority of the questions on the coupled multiple-

response CUE have several subparts whose scores and/or content are coupled, either explicit

(as with the Method/Reasoning type items, Fig. 18) or implicitly (i.e., there is an opportunity

for a student to be consistent or inconsistent in their responses to consecutive subparts). For

example, the distribution of method selections for the item shown in Fig. 18 are given in Fig.

27(a). The two most common methods are Direct Integration and Multipole Expansion, both

of which are possible solution paths in this case, though Multipole expansion is considerably

easier. Fig. 27(b) breaks down the reasoning choices for students who selected each of these

methods. There is a clear qualitative difference between the reasoning elements selected
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FIG. 27. (a) Method selections for N=373 students on Q3 (Fig. 18). (b) Reasoning selections for

the subset of students who selected each of the two most common Methods: Direct Integration

and Multipole Expansion (N=288). Each distribution is normalized with respect to the number

of students who selected that method; however, students can select multiple reasoning elements so

each distribution need not integrate to 1.
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by these two sets of students. Students who chose Multipole were more likely to select

reasoning elements ‘b’ and ‘e’, which represent the two elements required to fully justify

Multipole expansion as the easiest method. Alternatively, students who selected Integration

were more likely to select reasoning elements ‘a’ and ‘f’. Both of these elements are the

commonly expressed justifications for using Direct Integration to solve this problem.

While Fig. 27 qualitatively suggests a certain degree of consistency between students’

method and reasoning selections, we also wanted to get a more quantitative sense of students’

consistency. To do this, we assigned a consistency code to students’ response to each question

(excluding Q8, Q11, Q14, & Q15 which have no consistency check). Students were coded as

‘consistent’ if they selected at least one of the reasoning elements that supported their specific

choice of method/answer and no inconsistent elements. Alternatively, if they selected any

reasoning elements that were directly inconsistent with their choice of method, they were

coded as ‘inconsistent’ regardless of whether they also selected some consistent reasoning

elements. The remaining subset of students were coded as ‘neither’, meaning they left one

of the two parts blank, chose the ‘None of These’ method option, or selected only reasoning

elements that were neither directly consistent nor inconsistent with their choice of method.

For example, on Q3 (Fig. 18), the combinations (Method, Reasoning)=(B,d) or (A,af) would

both be coded as ‘consistent’, whereas the combinations (B,bd) or (A,bf), would be coded

as ‘inconsistent, and the combinations (B,e) or (A,f) would be coded as ‘neither.’

The breakdown of the fraction of students receiving each consistency code is given in Fig.

28. On all questions but one, the fraction of consistent students is ≥0.5, and the fraction of

inconsistent student is ≤0.3. Consistency between Q12 subparts iii and iv is noticeably lower

than on other questions. These two subparts ask for qualitative graphs of Ez and V from a

finite disk of charge and, for any given response to subpart iii, there is, at most, one consistent

response to subpart iv. The relatively small number of potential consistent response patterns

and the fact that consistency between these subparts is not explicit in the problem statement

both contribute to the greater degree of inconsistency on this question. For all questions,
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FIG. 28. Fraction of students coded as ‘consistent’ (at least one consistent reasoning element and

no inconsistent ones), ‘inconsistent’ (any inconsistent reasoning elements), or ‘neither’ (neither

consistent nor inconsistent reasoning elements) on each of the questions that have consistency

checks. Note, there are no consistency checks on Q’s 8, 11, 14 & 15, but there are two possible

consistency checks in Q12: one between subparts ii and iii, and one between subparts iii and iv.

consistent responses do not come exclusively from correct responses. In other words, many

students are consistent even when they are incorrect. We take this as an indication that the

majority of students are connecting their answers and reasoning selections in reasonable and

meaningful ways rather than randomly guessing. This finding further supports the overall

validity of the multiple-response format.

C. Accessing Student Difficulties with the CMR CUE

The previous sections have established the validity and reliability of the CMR CUE ac-

cording to Classical Test Theory. However, in addition to providing a quantitative measure

of student outcomes, the CUE also presents an opportunity to gain insight into student

difficulties. For example, we utilized student responses to several CMR CUE questions in

our investigations of student difficulties with the Dirac delta-function (Sec. III C) and sep-

aration of variables (Sec. III D). In this section, we focus on one additional question (Q5)
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as an example of using the CMR CUE to think about student difficulties. The distributions

of student responses to the remaining questions are given in Appendix K but will not be

discussed in further detail here.

Q5 (Fig. 29) presents students with a solid sphere with an off-center, spherical cavity

carved out of it and asks for the easiest method to find
⇀

E or V outside the sphere. The

correct response is Superposition (‘G’) because you can treat this situation as two oppositely

charged spheres (‘e’) and superpose the electric fields (‘g’) from each uniform sphere (‘c’)

individually to determine the total electric field at point P. It is also possible, though much

more difficult, to solve this problem through Direct Integration (‘A’) via Coulomb’s Law

(‘a’). The distribution of method selections from this population of students is shown in Fig.

30(a). Almost half of the students (41%, N=156 of 373) correctly selected Superposition as

Q5 - A charged, insulating solid sphere of radius R with a uniform volume charge
density ρo, with an off-center spherical cabity of radius r carved out of it (see Figure).

Find
⇀

E or V at point P, a distance 4R from the sphere.

Select only one: The easiest method would be ...
A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � the cube will look like a dipole; approximate with
⇀

E or V for an ideal dipole

c. �
⇀

E or V outside a uniform sphere is the same as from a point charge at the center

d. � the location of the cavity doesn’t matter, you just need Qenclosed to calculate
⇀

E
e. � you can treat this as two uniform spheres, one with charge density ρo and on

with charge density −ρo
f. � this will be the same as a uniform sphere with total charge 4

3
π(R3 − r3)ρo

g. � electric fields from multiple sources can be combined through a vector sum
h. � ∇2V = 0 outside the cube and you can solve for V using Fourier Series

FIG. 29. Q5 from the CMR CUE. See Appendix I for the rubric and scoring materials.
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FIG. 30. (a) Method selections selections for N=373 students on Q5 (Fig. 29). (b) Reasoning

selections for the subset of students who selected each of the three most common Methods: Direct

Integration (N=24), Gauss’s Law (N=164), and Superposition (N=154). The relative number of

student selecting each reasoning element is represented by the area of the circle.

the easiest method, and only a small number (7%, N=24 of 373) selected the more difficult

method, Integration. Of the remaining students, the overwhelming majority (44%, N=164

of 373) selected Gauss’s Law.

There are at least two possible reasoning paths that could lead a student to select Gauss’s

law as the method for this question. First, they are imagining using a single large Gaussian

sphere centered on the origin of the solid sphere (not the cavity) to calculate
⇀

E from Qenclosed

(consistent with reasoning elements ‘d’ and ‘f’). Alternatively, they could be imagining using

two Gaussian spheres, one centered on a solid, uniform sphere and one on a solid, negatively
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charged sphere in place of the cavity (consistent with reasoning elements ‘e’ and ‘g’). The

latter strategy is correct while the former is fundamentally incorrect.

To distinguish between these two lines of reasoning, we must examine the reasoning

selections of those students who selected Gauss’s law (Fig. 30(b)). The two most common

reasoning elements selected by these students are ‘d’ and ‘f’, which supports the conclusion

that the majority of these students were following the first (incorrect) line of reasoning.

Indeed, of the students who selected Gauss’s law, only a tenth (10%, N=16 of 164) did not

select one or both of reasoning elements ‘d’ or ‘f’. Only 6 of the remaining students selected

both reasoning elements ‘e’ and ‘g,’ suggesting that they were using the second (correct)

line of reasoning. This finding is consistent with previous research [18] and our own findings

(Sec. III B 4) that suggest students often misapply Gauss’s law. In this case, the majority of

students have argued that the location of the cavity does not matter, suggesting that either

they have not recognized that the asymmetrical location of the cavity breaks the symmetry

of the electric field, or that they have not recognized the asymmetry of the electric field

eliminates Gauss’s law as a potential solution method. However, it is not possible to decide

which of these two issues is at play for a particular student given only their response to this

question.

As Superposition is the correct response to this question, it is tempting to assume that

any student selecting method ‘G’ understands the correct solution method. This conclu-

sion is generally supported by the observation that the most common reasoning elements

selected by these students are ‘e’ and ‘g.’ However, more than a tenth of students who

selected Superposition (16%, N=25 of 154) also selected one or both of reasoning elements

‘d’ and ‘f’, suggesting that these students were thinking only about superposition of charges

(i.e., Qlarge − Qsmall) rather than fields (i.e.,
⇀

Elarge −
⇀

Esmall). This distinction between su-

perposition of charges rather than fields was also observed in previous research examining

student responses to the free-response version of the CUE [129]. Both this result and the

finding that a small number of students (N=6) selected Gauss’s Law along with reasoning
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elements that suggest a correct strategy, underscore the importance of asking students to

express their reasoning to avoid misinterpreting student responses.

D. Summary and Discussion

We have created a multiple-response version of an existing upper-division conceptual

assessment, the CUE. Using student responses to the original free-response version of the

instrument along with existing research on student difficulties, we crafted multiple-response

options that reflected elements of common student ideas. This new version utilizes a novel

approach to multiple-choice questions that allows students to select multiple reasoning ele-

ments in order to construct a complete justification for their answers. By awarding points

based on the accuracy and consistency of students’ selections, this assessment has the poten-

tial to produce scores that represent a more fine-grained measure of students’ understanding

of electrostatics than a standard multiple-choice test.

Direct comparison of the multiple-response and free-response versions of the CUE from

two large, upper-division electrostatics courses yielded the same average score when using a

nuanced grading scheme on both. The two versions also showed a high degree of consistency

on multiple measures of test validity and reliability. Student interviews and expert feedback

were used to establish the content validity of the CMR CUE for this comparison. Given

the agreement between scores on the two versions and the ease of grading afforded by this

new format, the CMR CUE is a considerably more viable tool for large-scale implementation.

Additionally, while the FR version elicits greater variation in student reasoning, nearly three-

quarters of students’ responses to the FR version contain one or more elements that match

the reasoning elements provided on the CMR version.

Moreover, we collected scores on the CMR CUE from multiple courses at multiple insti-

tutions. These data supported the validity and reliability of the instrument as measured by

various test statistics including item difficulty, item discrimination, and internal consistency.

We also examined the consistency of students’ responses on consecutive subparts of individ-
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ual questions. These data showed that the majority of students selected responses that were

internally consistent even when the overall response was incorrect. Additionally, as an ex-

ample of using the CMR CUE to gain insight into student difficulties, we demonstrated that

student responses to one question support the findings from previous research that students

tend to misapply Gauss’s law in non-symmetric situations.

Our findings suggest that the CMR format can provide valid and easily-graded questions

that produce scores that are consistent with scores from a FR format. We found this outcome

surprising. When we began developing the CMR CUE we were skeptical that it would be

possible to maintain more than a superficial level of consistency between the two versions.

However, construction of the reasoning elements for the CMR CUE items relied heavily on

the existence of data from student responses to the FR version. It is our opinion that,

without this resource, our CMR CUE would not have been as successful at matching the

FR CUE. An important limitation of the CMR format may be its reliance on pre-existing

data from a FR version of the item or test. Additionally, as with the majority of conceptual

assessments, the CMR CUE took several years to develop and validate even when building

off the already established FR CUE. This time requirement places significant constraint on

the development of similar assessments by instructors.

Another potential limitation of the CMR format comes from the relative complexity of

the prompts. It is important that students read the directions fully for each question in order

for an instructor to meaningfully interpret their response patterns. Interviews and overall

scores from the two electrostatics courses discussed here suggest that our students followed

directions and engaged with the question format as expected. However, these students were

all junior and senior-level physics students taking a course required for their major. More

experimentation is necessary to determine if the CMR format is viable for use with less

experienced students who are not as invested in the content (e.g., introductory students or

non-majors).

Additionally, not all questions easily lend themselves to the CMR format. For example,
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one question on the CUE (Q9) was particularly challenging to translate into a CMR format.

This item deals with determining the sign of the electric potential from a localized charge

distribution given an arbitrary zero point. Students can leverage multiple, equally valid ways

of determining the correct answer (e.g., by thinking about work, electric field, or shifting

the potential). Capturing all of the correct, incorrect, and partially correct ideas expressed

by students on the FR version of this question would have required a prohibitively large

number of reasoning elements. To avoid this, we crafted a smaller number of reasoning

elements with the goal of including each of the different types of justification (i.e., work,

electric field, potential); however, we recognized that these elements did not encompass the

variety of partially correct or incomplete ideas present in the FR version.
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VI. CHAPTER VI: DISCUSSION & FUTURE WORK

In the preceding chapters, we described the development and implementation of two

methodological tools designed to address our research questions and thus support efforts to

increase student learning in upper-division electrostatics. Here, we briefly summarize each

of these two tools and discuss future research directions associated with each.

In Chapter II, we presented an analytic framework – ACER – that is specifically targeted

towards characterizing student difficulties with mathematics in upper-division physics. The

ACER framework provides an organizing structure that focuses on important nodes in stu-

dents’ solutions to complex problems by providing a researcher-guided outline that lays

out the key elements of a well-articulated, complete solution. To account for the complex

and highly context-dependent nature of problem solving in advanced undergraduate physics,

ACER is designed to be operationalized for specific mathematical tools in different physics

contexts rather than as a general description. In Chapter III, we utilized the operationalized

ACER framework to inform and structure investigations of student difficulties with multi-

variable integration, the Dirac delta function, and separation of variables in upper-division

electrostatics. This allowed us to more clearly identify prevalent difficulties our students

demonstrated with each of these topics and to paint a more coherent picture of how these

difficulties are interrelated.

The difficulties identified in this thesis represent only a subset of the difficulties that

students may encounter when manipulating these specific mathematical tools. Future work

could involve leveraging ACER to investigate students’ difficulties with specific mathematical

tools in multiple contexts. For example, our investigation of multivariable integration focused

exclusively on calculating the electric potential; however, the Coulomb’s law integral for the

electric field uses many of the same ideas. Extending our investigation to target the electric

field could potentially give us additional insight into student difficulties with multivariable

integration and allow us to capture difficulties that arise when integrating vector quantities.
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Similarly, multivariable integration appears again in the calculation of both the magnetic field

and vector potential via the Biot-Savart law providing additional opportunities to explore

the context-dependent aspects of student difficulties.

ACER could also be used to explore the evolution of students’ difficulties over time and

across topical areas. For example, Newton’s law of gravity for extended bodies is mathemat-

ically very similar to the use of Coulomb’s Law for continuous charge distributions but is

typically encountered in sophomore physics. Similarly, both the Dirac delta function and sep-

aration of variables are important mathematical tools used in quantum mechanics (typically

taken after completing electrostatics). Identifying students’ difficulties with these mathe-

matical tools in courses taken earlier or later in the undergraduate sequence and comparing

them to the difficulties described here in junior electrostatics would allow us to investigate

how these difficulties change (or not) as students advance through the curriculum.

Future work with the ACER framework might also include investigation of new mathe-

matical tools and techniques such as vector calculus (div, grad, curl), line integrals, complex

exponentials, etc. Investigation of new tools in new topical areas also provides opportunities

to clarify the integration of representation in the framework. For example, students are often

expected to work with multiple representations when dealing with complex exponentials in

the context of electromagnetic waves. These representations include symbolic expressions,

phasor diagrams, and vector diagrams in which the vectors represent polarizations of dif-

ferent fields. ACER could provide a useful framework to help determine which of these

representations is most useful or difficult for students at different points in the problem

solving process (i.e., Activation, Construction, Execution, Reflection).

The ACER framework was designed to be a tool not only for researchers but instructors

as well. We have discussed a number of suggestions for instructors that may help students

avoid or overcome the difficulties we identified. However, ACER can also be used to critique

and design problems. Examining the prompt of a question can identify which components

of the framework the problem targets and which ones it might short circuit (e.g., bypassing
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Activation by instructing the student to use a Taylor series to approximate a function). This

can help instructors to produce homework sets and exams that offer a balanced and complete

assessment of all aspects of students’ problem solving.

In Chapter IV, we presented the development and validation of another methodologi-

cal tool: a novel, multiple response version of an existing free-response conceptual assess-

ment targeting upper-division electrostatics (the CUE). This new CMR version of the CUE

presents students with multiple response options of which they are allowed to select all that

are relevant and awards points based on both the accuracy and consistency of their selec-

tions. In Chapter V, we demonstrated the validity and reliability of the CMR CUE using

data from multiple institutions, and showed that student performance on the new version is

statistically and, to a large degree, qualitatively comparable to student performance on the

original free-response version.

Ongoing work with the CMR CUE includes continued data collection both at CU and

other institutions in order to increase statistical power and broaden the student population

for which the assessment has been validated. As we continue to aggregate additional data

from multiple instructors and courses, it may also become possible to examine the impact of

different curricular materials and/or pedagogical techniques on student performance on the

CMR CUE. This information would help to guide instructors and researchers interested in

improving student learning in electrostatics. The CMR CUE could also be used as a baseline

assessment of graduate students both in terms of establishing their incoming preparation and

measuring the impact of graduate E&M courses on student performance.

While it would be inappropriate to use the CMR CUE itself in any other context than

upper-division electrostatics, the coupled multiple-response format could likely be adapted

for use in other courses. Future work could include developing CMR versions of CU’s other

upper-division assessments which target, for example, electrodynamics or classical mechan-

ics. Additionally, cross-disciplinary collaborations with education researchers from other

scientific disciplines (e.g., biology or chemistry) could help to determine if the CMR for-
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mat is appropriate for assessment within other fields. It would also be valuable to explore

the viability of this format for the broader student populations including introductory and

non-major students in physics courses. However, implementing the multiple-response format

in larger introductory courses would require fully automating the scoring of the assessment

using machine grading. Additional research would be necessary to ensure that the multiple-

response format remained valid and reliable when student responses were collected on a

multiple-choice bubble-sheet.

A significant part of the motivation for developing both the ACER framework and the

CMR CUE was so that these tools might eventually support efforts to improve student

learning through course transformations and materials development. Future work of this

type might include developing and testing tutorial activities designed to specifically target

student difficulties identified through ACER and/or the CUE. For example, a tutorial de-

signed to guide students through the process of constructing the integral form of Coulomb’s

law by modeling a continuous charge distribution as a sum of many point charges could

help overcome student difficulties with customizing both r and dq for specific charge distri-

butions. Similarly, a separation of variables tutorial that experiments with different types

of boundary conditions could to help students to recognize both need for the infinite sum

and which strategy for determining unknown constants is most efficient (i.e., Fourier’s trick

vs. term matching) depending on the boundary conditions. Moreover, both the CUE and

ACER framework could also help to identify questions and content areas in which it could

be particularly valuable to specifically target Activation and/or promote Reflection through

modified homework problems, in-class activities, or concept tests.

Despite being influenced by CU’s consensus and meta-level learning goals, both the ACER

framework and the CUE diagnostic are still heavily content focused. Yet, there are many

skills and characteristics related to a student’s development as a physicist that extend be-

yond content knowledge and are rarely, if ever, assessed directly. For example, the capacity

for independent learning, the ability to read and write scientific publications, and the ability
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to work collaboratively are just a few characteristics of successful physicists that we ulti-

mately want our physics majors to internalize. We argue that operationalizing and assessing

these implicit goals represents an important outstanding issue for us and the broader PER

community to consider. An open question is, can we begin to craft methodological tools

that more accurately reflect and assess the full range of learning outcomes we value for our

physics majors?

Both of the methodological tools described in this thesis were intentionally designed to be

used either by education researchers to support research efforts investigating student learning

or developing new curricular materials, or by traditional physics faculty and instructors to

support less formal assessment and development within their classroom. In this way, we

believe that these tools have the potential to support efforts to improve student learning

over a wide range of scales, from individual classrooms all the way to broader transformation

efforts that impact multiple courses and institutions.
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A. Exam Questions Targeting Multivariable Integration

Below are the three versions of the canonical Coulomb’s Law question used on midterm

exams in the E&M 1 course at CU during the four semesters from which data were collected.

Version 1

You have a flat insulating disk in the x-y plane: radius

a, with a non-uniform charge density σ = σocos(φ/4)

(where φ is the usual azimuthal angle in the x-y plane,

as shown, and σo > 0.)

Please assume, as usual, that V (∞) = 0

i) Describe briefly in words and/or pictures what this charge distribution “looks like”.

- What do you expect for the sign of V at the origin? (Physically, why?)

- Also, what do you expect for the limiting behavior of V (z) along the z-axis, as z gets very

large? (Why?) (Don’t just say “it goes to zero” - HOW does it go to zero?)

(IMPORTANT: you will not need to explicitly check that your result, which you will obtain

in the next part, behaves this way, to get full credit here!)

ii) Find the voltage, V (0, 0, z), for points along the z-axis. (Express your answer in terms

of given constants, namely z, a, and σo.)

Version 2 - Used twice

You have a flat insulating disk in the x-y plane: radius

a, with a non-uniform charge density σ = σocos(φ/4)

(where φ is the usual azimuthal angle in the x-y plane,

as shown, and σo > 0.)

i) What is the total charge of this plate (in terms of σo and a?)

ii) Find the voltage, V (z), along the z-axis.
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Version 3

A disk of radius R, in the xy-plane, centered on the

origin, has surface charge density σ = σocos
2(φ).

A) Show with a sketch what this charge distribution

looks like. Your sketch should show clearly where

charges are located and whether the disk has a net

charge.

B) Write down an explicit integral expression for the total charge Q of the disk. You do

not have to perform the integral, but the integral must be in a form that is ready to be

computed by Mathematica or a math student.

C) Write down an explicit integral expression for the voltage at a point on the x-axis.

Assume V = 0 at infinity. Again, do not perform the integral, but the integral must be in

a form that is ready to be computed by a Math student who knows no physics.
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B. Interview Questions Targeting Multivariable Integration

Below are the two interview protocols targeting multivariable integration.

Interview Protocol 1 - Implemented prior to the development of the ACER framework.

Two thin circular disks of radius R are separated by a

distance a. There is a uniform charge density +σo on

the top disk and −σo on the bottom disk. The origin

is between the two disks, as in the figure (so e.g. the

top disk is at z = +a/2).

Equation Sheet - provided along with prompt

V (
⇀
r) = 1

4πεo

∫∫∫ ρ(
⇀
r′)
r
dτ ′

⇀

E(
⇀
r) = 1

4πεo

∫∫∫ ρ(
⇀
r′)
r
2 r̂ dτ ′

Interview Protocol 2 - Designed after the development of the ACER framework to target

aspects of the framework not captured by the first set of interviews. Interviewees were asked

this question after a set of 4 questions targeting the Dirac delta function (see Appendix D).

Q1. Calculate the electric potential on the z-axis from a charge distribution with volume

charge density ρ(
⇀
r) = σcos2(θ)δ(r −R).

Q2. You have a friend taking E&M 1 who has asked for your help. Your friend tells

you he is solving several separate problems asking for the potential from static, localized

charge distributions with positive total charge Q. He shows you his answers (below) and

several pages of work. You really don’t want to look through all his work. Is there any

way you can still help him? What questions might you want to ask?

1.
a

2ε0
(
√
r2 + d2 − r)

2.
b

4πε0

d

r2

3.
c

2ε0

d

r

144



C. Exam Questions Targeting the Dirac Delta Function

Below are the four versions of delta-function questions used on midterm exams in the E&M

1 course at CU during the seven semesters of in which data were collected.

Version 1 - Used three times

Make a 3-D sketch the charge distribution: ρ(x, y, z) = cδ(x)δ(z − 2)

Describe it in words too. What are the units of c?

Version 2 - Used twice

Make a 3-D sketch the charge distribution: ρ(x, y, z) = aδ(y − 2) + cδ(x)δ(y)δ(z − 1)

Describe it in words too. What are the units of a and c?

Version 3

Consider the charge density ρ(
⇀
r) =

3∑
i=1

qiδ
3(

⇀
r − ⇀

ri) where q1 = 1e, q2 = 2e, q3 = 3e, and

⇀
r1 = (x = −1, y = 1, z = 0),

⇀
r1 = (1, 0, 0), and

⇀
r1 = (2, 2, 0).

A) Clearly describe this charge distribution with words and a sketch

B) What is the value of the volume integral
∫
x>0

ρdτ (the integral is over the half-space

x > 0)?

Version 4

A charge density is given as ρ(x, y, z) = aδ(x+ 2)δ(y − 3). What does this charge

density physically represent?

a) A point charge at x = −2, y = 3, and z = 0

b) An infinitely long line or wire charge at x = −2 and y = 3

c) An infinitely long line or wire charge at x = 2 and y = −3

d) An infinitely large plane charge at y = 3

e) An infinitely large plane charge at x = 3
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D. Interview Questions Targeting the Dirac delta function

Below are the two interview protocols targeting the Dirac delta function.

Interview Protocol 1

Q1. What is the volume charge density for an infinitely long linear charge distribution

running parallel to the z-axis and passing through the point (1,2,0). Be sure to define

any new symbols you introduce.

Sketch this charge distribution.

Q2. Sketch the following charge distribution: ρ(
⇀
r) = αδ(z − 2).

Describe the distribution in words.

What are the units of α?

Q3. Sketch the following charge distribution: ρ(
⇀
r) = βδ(z)δ(x+ 1).

Describe the distribution in words.

What are the units of β?

Q4. Make a 3-D sketch of the following charge distribution: ρ(
⇀
r) = γδ(r − 2).

Describe the distribution in words.

What is the total charge?

Interview Protocol 2 -

Q1. Using delta functions, provide a mathematical expression for the volume charge

density, ρ(
⇀
r), of an infinite line of charge running parallel to the z-axis and passing

through the point (1,2,0). Be sure to define any new symbols you introduce.

Q2. Sketch the following charge distribution: ρ(
⇀
r) = βδ(y − 2)δ(x− 1).

Describe the distribution in words.

What are the units of β?
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Q3. Using your expression for the volume charge

density, ρ(
⇀
r), calculate the total charge enclosed in the

cube given below.

Q4. Calculate the following:

a)
−∞∫
∞
δ(x)dx

b)
−∞∫
∞
xδ(x)dx

c)
10∫
0

[aδ(x− 1) + bδ(x+ 2) + cδ(x− 3)]dx

d)
∫∫∫

aδ(r − r′)r2sin(θ)drdφdθ
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E. Exam Questions Targeting Cartesian Separation of Variables

Below are the four versions of Cartesian SoV questions used on midterm and final exams in

the E&M 1 course at CU during the 3 semesters in which data were collected.

Version 1

A rectangular pipe, running parallel to the z-axis, extending from −∞ to ∞, has three

grounded metal sides at y = b, x = 0, y = a, the fourth side at y = 0 is set to a constant

potential Vo.

Find the potential inside the pipe.

Version 2

A square rectangular pipe (sides of length a) runs

parallel to the z-axis (from −∞ to ∞). The 4 sides

are maintained with boundary conditions given in the

figure. (Each of the 4 sides is insulated from the

others at the corners).

Find the potential V (x, y) at all points in this pipe. You need to write down the relevant

equations, boundary conditions and solution procedures.

Version 3

A square rectangular pipe (sides of length a) runs

parallel to the z-axis (from −∞ to ∞). The 4 sides

are maintained with boundary conditions given in the

figure. (Each of the 4 sides is insulated from the

others at the corners).

A) Write down the relevant differential equation and boundary conditions for V (x, y).

B) Find the potential V (x, y) at all points in this pipe. You need to write down the

solution procedures.
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Version 4

a) Consider a gutter which extends to infinity in the

±z-direction and to infinity in the +y-direction, as

shown in the figure. The two metal plates at x = 0

and x = a are grounded. The base at y = 0 is

maintained at a specific potential Vo(x). Assume that

the potential drops to zero at y =∞.

Using separation of variables in Cartesian coordinates, the potential inside the gutter can

be written as V (x, y) = X(x)Y (y). Which of the following expression for V (x, y) is correct

for this set-up? Circle your answer, you do not need to explain your reasoning.

(i) V (x, y) = [Axexp(kx) +Bxexp(−kx)][Aysin(ky) +Bycos(ky)]

(ii) V (x, y) = [Aysin(kx) +Bycos(kx)][Axexp(ky) +Bxexp(−ky)]

where Ax, Ay, Bx, By, k are unknown constants.

b) Use your expression from part a) together with the three boundary conditions for the

grounded plates at x = 0 and x = a and y =∞ and determine as many of the constants

Ax, Ay, Bx, By, k as possible.

(Note: I do not ask you to use the fourth boundary conditions V (x, y = 0) = Vo(x). Thus,

you won’t be able to solve for all of the constants.)
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F. Exam Questions Targeting Spherical Separation of Variables

Below are the nine distinct versions of spherical SoV questions used on midterm and final

exams in the E&M 1 course at CU during the 9 semesters in which data were collected.

Version 1

The potential on the surface of a sphere with radius R is set as V = VoP9(cos θ)

Find the potential inside/outside the sphere. Hint: keep all your answers in terms of

Legendre polynomials.

Version 2

The potential on the surface of a sphere with radius R depends only on the (polar) angle

θ and is given by VR(r = R, θ). Inside and outside the sphere there is vacuum and we

assume, as usual, that V (r →∞) = 0.

a) Starting from the expression for the general formula for the separation of variables in

spherical coordinates:

V (r, θ) =
∞∑
l=0

(Alr
l + Bl

rl+1 )Pl(cos θ)

obtain expressions for the unknowns Al and Bl for the potential outside the sphere.

b) Now and for this part only, suppose that the potential at the surface has the special

form VR(r = R, θ) = Vocos
2(θ), where Vo is a constant with appropriate units. Calculate

the potential inside the sphere.

Version 3 - Used twice

A non-conducting spherical shell of radius R has a complicated potential on its surface

V (r = R, θ) = 3cos2θ + 1 (in Volts). Assume V (r →∞) = 0, and that all charges reside

only on the surface of the shell at r = R.

a) Find the potential V (r, θ) everywhere (inside and outside this sphere)

b) Why might you expect the leading term in the potential V (r > R) to depend on 1/r?
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Version 4

A hollow spherical shell of radius R and negligible thickness is centered on the origin

and has voltage V = Vocos θ on its surface. (θ is th usual spherical coordinate)

Solve for the voltage in the interior of the shell (r < R).

Version 5

A spherical shell (radius R) has a known voltage at its surface: V (r = R, θ) = Vo(1+cos θ)

There are no charges outside the shell and we assume as usual that V (∞) = 0.

Find the voltage V (r, θ) for all points outside this shell. (Very briefly, show your work).

Version 6

Consider a non-conducting sphere of radius R centered on the origin. The voltage on its

surface is fixed to be V (r = R, θ) = Vosin
2θ. We can also assume V (r →∞) = 0)

a) Write the potential on the sphere in terms of Legendre polynomials. (given Pl)

b) Solve for the voltage V (r, θ) everywhere outside the sphere: give your answer as an

explicit function of r and θ. Indicate each BC used.

Version 7

A non-conducting sphere of radius R has a voltage on its surface given by V = Vo(1/2 +

3/2cos2θ).

a) Solve for the voltage V everywhere outside the shell

b) By considering the form of your solution V in the limit of r >> R, solve for the total

charge on the sphere and the dipole moment of the sphere. Explain your reasoning.

Version 8 - Used twice

A thin spherical shell of radius R has the potential V = 3Vo/2cos
2θ on the surface.

Find the voltage outside the sphere. If your answer requires an infinite number of terms,

describe how the coefficients of each term would be determined; if the solution only has

a finite number of terms, proceed to determine the coefficients.
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Version 9

The potential on the surface of a sphere with radius R has the special form

VR(r = R, θ) = Vo(cos θ + cos2θ). Inside and outside the sphere there is vacuum and we

assume, as usual, that V (r →∞) = 0. Using separation of variables in spherical

coordinates we can write the general solution for the potential in the form:

V (r, θ) =
∞∑
l=0

(Alr
l + Bl

rl+1 )Pl(cos θ)

a) We want to determine the potential inside the sphere for r < R. For this case you can

conclude that (circle your answer, you do not have to explain your reasoning)

(i) All Al’s have to be zero due to the boundary condition: V (r =∞) = 0

(ii) All Al’s have to be zero due to the boundary condition: V is finite at r = 0

(iii) All Bl’s have to be zero due to the boundary condition: V (r =∞) = 0

(iv) All Bl’s have to be zero due to the boundary condition: V is finite at r = 0

b) Based on your answer in part a) calculate all the remaining unknowns (i.e., either

Al’s or Bl’s) in terms of R and Vo.
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G. Interview Questions Targeting Separation of Variables

Below are the two interview protocols targeting separation of variables in both spherical and

Cartesian coordinates.

Interview Protocol 1

Q1. A semi-infinite plane with width 1cm is shown below.

The bottom of the plate is held at some constant voltage Vo.

The other three sides are held at V = 0.

Assuming the temperature inside the plate obeys Laplace’s

equation, find an expression for the steady-state voltage

inside the plate.

Interview Protocol 2

Q1. A hollow spherical shell of radius R and negligible thickness is centered at the

origin and has a voltage on its surface, V (R, θ) = Vo(1 + cos θ). Solve for the voltage in

all space

Q2. An infinite rectangular pipe running parallel to the z-axis has three grounded metal

sides at x = 0, y = b, and y = 0. The fourth side x = a is held at constant potential Vo.

Find the potential inside the pipe.
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H. The Coupled Multiple-Response CUE Instrument

This copy of the CMR CUE is provided for reference only.

Please visit per.colorado.edu/Electrostatics for the most recent version of the assessment

along with all scoring materials.

Junior-level Electrostatics Content Review

Please fill out the following exam to the best of your ability. This will
not count towards your final grade in the course. Do your best to get all
the questions on the test.

When asked to provide your reasoning, select the responses that best
explain your choice.

We are still interested in incorrect answers if they are accompanied by
consistent reasoning.

If you have no idea how to answer a question, leave it blank. Do not
guess.

Version 9

Name:
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For questions 1-7, select the EASIEST method that you would
use to solve the problem and the reason for your selection.

You may select as many of the ‘because ...’ options as you would like.

Q1 - A hollow, insulating spherical shell with radius R, with a voltage on its surface,

V (θ) = kcos(3θ).

Find
⇀

E or V inside the sphere at point P.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � symmetry allows you to calculate
⇀

E using a spherical Gaussian surface

c. � the boundary conditions is azimuthally symmetric (i.e., symmetric in φ)

d. � there is not appropriate symmetry to use other methods

e. � you can use
⇀

E(
⇀
r) = −

⇀

∇(kcos 3θ) and evaluate this at point P

f. � ∇2V = 0 inside the sphere and you can solve for V using Legendre Polynomials

(Optional) If you would like to elaborate further, please do so in the box below
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Q2 - A solid, neutral, non-conducting cube, centered on the origin, with side length a. It

has a charge density that depends on the distance z from the origin, ρ(z) = kz, so that the

top of the cube is strongly positive and the bottom is strongly negative, as in the figure.

Find
⇀

E or V at point P, on the z-axis, at a distance a from the cube.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � the cube will look like a dipole; approximate with
⇀

E or V for an ideal dipole

c. � symmetry allows you to calculate
⇀

E using a cubical Gaussian surface

d. � symmetry allows you to calculate
⇀

E using a spherical Gaussian surface

e. � the observation point is close to the cube

f. � there is not appropriate symmetry to use other methods

g. � ∇2V = 0 outside the cube and you can solve for V using Fourier Series

(Optional) If you would like to elaborate further, please do so in the box below
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Q3 - The same neutral, non-conducting cube as above, with ρ(z) = kz.

Find
⇀

E or V at point P, where P is off-axis, at a distance 50a from the cube.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � the cube will look like a dipole; approximate with
⇀

E or V for an ideal dipole

c. � symmetry allows you to calculate
⇀

E using a cubical Gaussian surface

d. � symmetry allows you to calculate
⇀

E using a spherical Gaussian surface

e. � the observation point is far from the cube

f. � there is not appropriate symmetry to use other methods

g. � ∇2V = 0 outside the cube and you can solve for V using Fourier Series

(Optional) If you would like to elaborate further, please do so in the box below
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Q4 - A grounded conducting plane with a positive point charge Q at a distance a to the

left of the plane.

Find
⇀

E or V at point P.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � charges on the wall create the same field at P as a point charge a distance a behind

the surface

c. � symmetry allows you to calculate
⇀

E using a Gaussian pillbox

d. � this method exploits the boundary condition

e. � there is not appropriate symmetry to use other methods

f. � ∇2V = 0 on the left side of the wall and you can solve for V using Fourier Series

(Optional) If you would like to elaborate further, please do so in the box below
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Q5 - A charged insulating solid sphere of radius R with a uniform volume charge density

ρo, with an off-center spherical cavity of radius r carved out of it (see figure).

Find
⇀

E or V at point P, a distance 4R from the sphere.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � the sphere will look like a dipole; approximate with
⇀

E or V for an ideal dipole

c. �
⇀

E or V outside a uniform sphere is the same as from a point charge at the center

d. � the location of the cavity doesn’t matter, you just need Qenclosed to calculate
⇀

E

e. � you can treat this as two uniform spheres, one with charge density ρo and one with

charge density -ρo

f. � this will be the same as a uniform sphere with total charge 4/3π(R3 − r3)ρo
g. � electric fields from multiple sources can be combined through a vector sum

h. � ∇2V = 0 inside the sphere and you can solve for V using Legendre Polynomials

(Optional) If you would like to elaborate further, please do so in the box below
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Q6 - A current loop of radius a that carries a constant current I.

Find
⇀

B at point P, where P is off-axis, at a distance r=100a.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

B using the Biot-Savart Law

b. � the ring will look like a dipole; approximate with
⇀

B for an ideal dipole

c. � symmetry allows you to calculate
⇀

B using an Amperian loop centered on the origin

d. � symmetry allows you to calculate
⇀

B using an Amperian loop centered on the line of

current

e. � the observation point is far from the ring

f. � there is not appropriate symmetry to use other methods

g. � it is straightforward to calculate
⇀

A and use
⇀

B =
⇀

∇x
⇀

A = 0

(Optional) If you would like to elaborate further, please do so in the box below
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Q7 - A solid non-conducting sphere, centered on the origin, with a non-uniform charge

density that depends on the distance form the origin, ρ(r) = ρoe
−r2/a2 where a is a constant.

Find
⇀

E or V inside at point P a distance s from the center.

Select only one: The easiest method would be ...

A. Direct Integration
B. Gauss’s Law
C. Separation of Variables
D. Multipole Expansion
E. Ampere’s Law
F. Method of Images
G. Superposition
H. None of these

because ... (select ALL that support your choice of method)

a. � you can calculate
⇀

E or V using the integral form of Coulomb’s Law

b. � |
⇀

E| is constant at all points where r = s

c. �
⇀

E is the same as a point charge at the origin with total charge Q = 4
3
πs3ρ(r)

d. � there is a non-uniform charge distribution

e. �
⇀

E is perpendicular to a spherical surface of radius s centered on the origin

f. � there is not appropriate symmetry to use other methods

g. � you can use Legendre polynomials to express
⇀

E or V inside and evaluate this at the

point P

(Optional) If you would like to elaborate further, please do so in the box below
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Q8 - A mass density is given by ρ(
⇀
r) = m1δ

3(
⇀
r − ⇀

r1) +m2δ
3(

⇀
r − ⇀

r2), where m1 and m2 are

constants.

i. What is the value of
∫
all space

ρ(
⇀
r)dτ?

a) m1δ
3(

⇀
r − ⇀

r1) +m2δ
3(

⇀
r − ⇀

r2)

b) m1δ
3(

⇀
r1) +m2δ

3(
⇀
r2)

c) m1 +m2

d) m1
⇀
r1 +m2

⇀
r2

e) m1r1 +m2r2

f) m1r1
2 +m2r2

2

(Optional) If you would like to elaborate further, please do so in the box below

ii. What physical situation does this mass density represent?

a) Two solid spheres of radius r1 and r2

b) Two concentric spherical shells of radius r1 and r2

c) Two nested cylindrical shells with radius r1 and r2 (i.e., a coaxial cable)

d) Two point masses located at
⇀
r1 and

⇀
r2

e) Two spheres of non-zero radius located at
⇀
r1 and

⇀
r2 (i.e., a dumbbell)

(Optional) If you would like to elaborate further, please do so in the box below
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Q9 - You are given a problem involving a non-conducting sphere centered at the origin.

The sphere has a non-uniform, positive and finite volume charge density ρ(r). You notice

that a classmate has se the reference point for the voltage (V) such that V=0 at the center

of the sphere V(r=0)=0.

What would V=0 at r=0 imply about the sign of the potential at r→∞?

A. V(r→∞) is positive (+)

B. V(r→∞) is negative (-)

C. V(r→∞) is zero

D. It depends

Select ALL of the following statements which support your choice

a. � It takes positive external work to bring a positive test charge in from infinity and

W = q∆V

b. � It takes negative external work to bring a positive test charge in from infinity and

W = q∆V

c. � V goes as 1
r

for positive charges and must go to zero as r →∞
d. � V decreases as you follow

⇀

E field lines and for positive charges the field lines point

outward

e. � V increases as you follow
⇀

E field lines and for positive charges the field lines point

outward

f. � The potential is arbitrary up to the addition of a constant

g. � We need to know more about he functional dependence of ρ(r)

(Optional) If you would like to elaborate further, please do so in the box below
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Q10 - You are given an infinite solid, conducting cylinder whose vertical axis runs along

the z direction, that is placed in an external electric field, Eoŷ, as in the figure to the right.

The cylinder extends infinitely in the +z and -z directions.

i. Which of the following sketches best represents the resulting charge distribution?

Select only one.
a)

c)

e)

g)

b)

d)

f)

h)

i) None of these

(please elaborate

in the space below)
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Recall, we are considering a solid, conducting cylinder in the presence of a uniform external

electric field,
⇀

Eexternal = Eoŷ.

ii. Which of the following sketches best represents the electric field everywhere?

Select only one. (
⇀

E = 0 only where explicitly stated)

a)

c)

e)

g)

b)

d)

f)

h)

i) None of these

(please elaborate

in the space below)
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Q11 - For the conducting cylinder with radius a given in the previous problem (also shown

below), we want to use the method of separation variables to solve for:

(a) the potential everywhere AND (b) the surface charge density, σ

i. What are the boundary conditions on V at the surface (s = a)

needed to do this? Here, s and φ ar the usual cylindrical variables.

Select ALL that are suitable.

a) � Vin = Vout at s = a

b) � Vout →∞ at s = a

c) � Vout = 0 (or a non-zero constant) at s = a

d) � ∂Vout
∂s
|a − ∂Vin

∂s
|a = − σ

εo

e) � ∂Vout
∂s
|a − ∂Vin

∂s
|a = 0

f) � 1
s
∂Vout
∂φ
|a − 1

s
∂Vin
∂φ
|a = − σ

εo

(Optional) If you would like to elaborate further, please do so in the box below

ii. What are the boundary conditions on E at the surface (s = a) needed to do this?

Select ALL that are suitable.

a) �
⇀

Ein =
⇀

Eout at s = a

b) �
⇀

Eout →∞ at s = a

c) �
⇀

Eout = 0 at s = a

d) � E
‖
out − E

‖
in = σ

εo

e) � E
‖
out = E

‖
in

f) � E⊥out − E⊥in = σ
εo

g) � E⊥out = E⊥in

(Optional) If you would like to elaborate further, please do so in the box below
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Q12 - The following set of problems refer to the uniform flat, infinitely thin disk of radius

R carrying uniform positive surface charge density +σo as in the figure.

i. How does the z-component of the electric field along the z-axis

(Ez) behave as you get very far from the disk (z >> R).

Select only one.

a) Ez goes to an arbitrary constant
b) Ez goes to σo/2εo
c) Ez goes to σo/εo
d) Ez goes to ∞
e) Ez varies as 1/z
f) Ez varies as 1/z2

g) Ez varies as 1/zn where n is a positive integer other than 1 or 2
h) Ez = 0

(Optional) If you would like to elaborate further, please do so in the box below

ii. How does Ez behave very near the origin (R >> z > 0)?

Select only one.

a) Ez goes to an arbitrary constant
b) Ez goes to σo/2εo
c) Ez goes to σo/εo
d) Ez goes to ∞
e) Ez varies as 1/z
f) Ez varies as 1/z2

g) Ez varies as 1/zn where n is a positive integer other than 1 or 2
h) Ez = 0

(Optional) If you would like to elaborate further, please do so in the box below
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iii. Which one of the following qualitative graphs best represents the relative

sign and magnitude of Ez as you move away from the disk along the z-axis?

a)

c)

e)

g)

b)

d)

f)

h) None of these

(please explain in the space

below)
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iv. Which one of the following qualitative graphs best represents the relative

sign and magnitude of V as you move away from the disk along the z-axis?

a)

c)

e)

g)

b)

d)

f)

h) None of these

(please explain in the space

below)
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Q13 - You are given a 2-D box with potentials specified on the boudary as indicated in the

figure below. Inside the box, the voltage obeys Laplace’s equation, ∇2V = 0.

To solve for V inside the box by separation of variables, which form of the

solution should you choose? Here k is a positive and real constant.

Select only one.

A. V(x,y) = (A eky +B e−ky)(̇C sin kx+D cos kx)

B. V(x,y) = (A sin ky +B cos ky)(̇C ekx +D e−kx)

C. V(x,y) = (A sin ky +B cos ky)(̇C sin kx+D cos kx)

D. V(x,y) = (A eky +B e−ky)(̇C ekx +D e−kx)

E. More than one of these could be used

because ... (select ALL that support your choice of method)

a. � it is harder (but not impossible) to fit the boundary conditions on x with exponentials

b. � it is harder (but not impossible) to fit the boundary conditions on y with exponentials

c. � oscillatory solutions cannot fit the boundary conditions on x

d. � oscillatory solutions cannot fit the boundary conditions on y

e. � exponential solutions cannot fit the boundary conditions on x

f. � exponential solutions cannot fit the boundary conditions on y

(Optional) If you would like to elaborate further, please do so in the box below
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Q14 - A linear, neutral, and isotropic dielectric is inserted

into an isolated but charged infinite parallel place capacitor,

as shown. The dielectric fills the space without quite touching

the plates, which are fixed in position.

i. What happens to the dielectric (both in the bulk and at the surfaces) when it is inserted

into the capacitor?

Select ALL that apply.

a) � Nothing, since it is non-conducting the dielectric is not affected by the capacitor

b) � A polarization, P, is induced in the dielectric resulting in a +σb on the top surface

and -σb on the bottom surface

c) � A polarization, P, is induced in the dielectric resulting in a -σb on the top surface

and +σb on the bottom surface

d) � A polarization, P, is induced in the dielectric resulting in a non-zero ρb in the bulk

e) � Free + and - charges in the dielectric move to the surfaces resulting in a +σf on

the top surface and -σf on the bottom surface

f) � Free + and - charges in the dielectric move to the surfaces resulting in a -σf on

the top surface and +σf on the bottom surface

(Optional) If you would like to elaborate further, please do so in the box below
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iii. In the limit that the dielectric is infinitely polarizable (i.e.,

the electric susceptibility, χe → ∞) what would be the lim-

iting value of the magnitude of the charge densities in

the dielectric?

Select ALL that apply.

a. � |σb| on the surfaces → 0
b. � |σb| on the surfaces →∞
c. � |σb| on the surfaces → σ
d. � |ρb| on the surfaces → 0
e. � |ρb| on the surfaces →∞

(Optional) If you would like to elaborate further, please do so in the box below

iv. In the limit that the dielectric is infinitely polarizable (i.e., the electric susceptibility,

χe → ∞) what would be the limiting value of the net electric field in the dielectric,
⇀

ENET =
⇀

Eplates +
⇀

Edielectric?

Select only one.

a)
⇀

ENET → 0
b)

⇀

ENET →∞ pointing upwards
c)

⇀

ENET →∞ pointing downwards
d)

⇀

ENET → σ/εo pointing upwards
e)

⇀

ENET → σ/εo pointing downwards
f)

⇀

ENET → σ/2εo pointing upwards
g)

⇀

ENET → σ/2εo pointing downwards

(Optional) If you would like to elaborate further, please do so in the box below
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Q15 - You are given the following charge distributions made of point charges; each located

a distance a from the x- and/or y-axis.

Given our choice of origin, which of the following charge distributions have a non-zero

dipole moment?

Select ALL that apply.

a. �

c. �

e. � None of these

b. �

d. �
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Q16 - Consider an infinite, non-magnetizable cylinder with a uniform volume current

density J (as in the figure).

Select only one: Where is the B field maximum?

A. At the center of the cylinder

B. Somewhere between the center and edge of the cylinder

C. At the edge of the cylinder

D. Somewhere between the edge of the cylinder and r →∞
E. At r →∞
F. B is maximum at more than one radius

because ... (select ALL that support your choice)

a. � B is constant outside because the cylinder is infinite
b. � you can use the right-hand rule
c. � you can use Ampere’s law
d. � the current enclosed in maximum
e. � the circumference of a circular loop increases as r
f. � B is proportional to 1

r
for all r > 0

(Optional) If you would like to elaborate further, please do so in the box below

How seriously did you just take this diagnostic exam?

(a) I pretty much blew it off, didn’t think much about a lot of the answers.

(b) I took it sort of seriously, but when I didn’t know an answer I didn’t think very hard

about it

(c) I took it seriously, and thought about my answers

If you imagine getting a letter grade on the portion of this test that you were able to

complete within the time limit, what do you think that grade would be?

Any other comments?
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I. Detailed R2 Grading Scheme for the CMR CUE

Full nuanced grading scheme for CMR CUE (v9)

Calculation of Scores

Total score on questions 1-7 is broken into 3pts for Method and 2pts for Reasoning. The

scores on the Reasoning section are conditional on the selection in the Method section.

For the Reasoning sections, add together the points for each reasoning element given the

selection of method. If the total is negative, give no points for Reasoning (0/2) and if the

total is greater than 2pts, give full credit for Reasoning (2/2). Any reasoning element (RE)

not listed gets + 0pts.

Q1. Separation of Variables (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

C +3 c +1.0

f +1.0

a,b, or e -2.0

D,H +0 c&f +2.0

A,B,E,F, or G +0 Any +0

Q2. Cube Close (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

A +3 a +2.0

e +0.5

f +0.5

b,c,d, or g -2.0

D +0.5 (with RE b) b +0.5

+0 (without RE b) a,c,d,e or g -3.0

B,C,E,F,G or H +0 Any +0
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Q3. Cube Far (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

A +1 a +0.5

b,c,d or g -0.5

D +3 (with RE b) b +1.0

+2 (without RE b) e +1.5

f +0.5

a,c,d or g -3.0

H +0 b +1.0

b& e +2.0

B,C,E,F or G +0 Any +0

Q4. Method of Images (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

F +3 b +1.0

d +1.0

a,c or f -2.0

G +2 (with RE b) b +1.0

+0 (without RE b) d +1.0

A,B,C,D,E or H +0 Any +0
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Q5. Superposition (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

A +1 a +0.5

e +1.0

g +1.0

b,d,f or h -2.5

B or BG +3 (with RE e&g) ceg +2.0

+0 (without RE e&g) eg +2.0

a,b,d,f or h -2.0

D +0.5 (with RE b) b +0.5

+0 (without RE b) a or h -2.0

G +3 (without RE d or f) c +0.5

+1 (with RE d or f) e +1.0

g +1.0

a,b or h -2.5

C,E,F or H +0 Any +0

Q6. Loop (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

A +1 a +0.5

b,c,d or g -0.5

D +3 (with RE b) b +1.0

+2 (without RE b) e +1.5

f +0.5

a,c,d or g -3.0

H +0 b +1.0

b& e +2.0

B,C,E,F or G +0 Any +0
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Q7. Gauss (5pts)

Method Points Reasoning Points

Selection (3pt max) Selection (2pt max, 0pt min)

A +1 a +0.5

c or g -0.5

B +3 b +1.0

e +1.0

a,c or g -2.0

C,D,E,F,G or H +0 Any +0

Q8. Delta (5pts)

Part Selection Points

i (3pt max) c +3

a,b,c or d -0

ii (2pt max) e +2

a,b,c or d +0

Q9. Reference point for V (5pts)

Method Points Reasoning Points

Selection (1pt max) Selection (4pt max, 0pt min)

A +0 a (without b) +1.0

a (with b) +0

d (without e) +1.0

d (with e) +0

b,c,e or g -0.5

B +1 a (without b) +4.0

a (with b) +0

d (without e) +4.0

d (with e) +0

b,c,e or g -3.0

C +0 a (without b) +1.0

a (with b) +0

d (without e) +1.0

d (with e) +0

b,c,e or g -0.5

D +0 Any +0
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Q10. Cylinder (8pts)

Part Selection Points

Choice Consistency

i (3pt max) f +3 -

h +2.5 -

d or e +1.0 -

b,c or g +0.5 -

ii (5pt max- a +1 +0

4pts choice, b +0 +1 (with part i b,d,f or h)

1pt consistency) c +1 +1 (with part i a,c,e or g)

d +1 +1 (with part i b,d,f or h)

e +4 +1 (with part i b,d,f or h)

f +1 +1 (with part i b,d,f or h)

g +0 +0

h +0 +0

Q11. BC’s on E and V (6pts)

Part Selection Points

i (3pt max) a (without b) +1

a (with b) +0

c (without b) +0.5

c (with b) +0

d (without e or f) +1.5

d (with e or f) +0

ii (3pt max) e (without d) +1.5

e (with d) +0

f (without g) +1.5

f (with g) +0

a,b or c -1.5
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Q12. Disk (14pts)

Part Selection Points

Choice Consistency

i (2pt max) f +2 -

ii (2pt max) a +0.5 -

b +2.0 -

c +1.0 -

iii (5pt max- a +0.5 +1 (with part ii a,b or c)

4pts choice, b +0 +1 (with part ii a,b or c)

1pt consistency) c +0 +1 (with part ii d,e,f or g)

d +0.5 +1 (with part ii d,e,f or g)

e +4 +1 (with part ii a,b orc)

f +3.5 +1 (with part ii a,b or c)

g +0.5 +1 (with part ii h)

iv (5pt max- a +4 +1 (with part iii e))

4pts choice, b +3.5 +1 (with part iii g)

1pt consistency) c +0.5 +1 (with part iii d)

d +0 +1 (with part iii c)

e +0.5 +1 (with part iii b or a)

f +0.5 +0

g +0 +0

Q13. Cartesian SoV (5pts)

Answer Points Reasoning Points

Selection (2pt max) Selection (3pt max, 0pt min)

A +2 e +3.0

d -1.0

a,c or f -3.0

B,C,D or E +0 Any +0
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Q14. Polarization (6pts)

Part Selection Points

i (2pt max) b (without e) +2

b (with e) +0.5

e +0.5

d -1.0

a,c or f -2.0

ii (2pt max) c +2

a,b or e -2

iii (2pt max) a +2

Q15. Dipole (4pts)

Selection Points

b +3

c +1

a or d -3

e -4

Q16. Ampere (5pts)

Answer Points Reasoning Points

Selection (1pt max) Selection (4pt max, 0pt min)

C +1 c +1.0

d +1.5

e +1.5

a -4.0

f -3.0

A,B,D,E or F +0 Any +0
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J. Method Selections for Q1-7 on the CMR and FR CUE

Side-by-side comparison of students’ method selections on the CMR and FR versions of the

CUE. FR selections were coded from students’ responses to the FR version during the

2-semester comparison study (Sec. V A 3).

Question 1 - Separation of Variables

20% 

16% 

51% 

7% 

4% 
2% 

CMR Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

Blank 

19% 

10% 

55% 

2% 

8% 

6% 

Coded FR 

The difference between Q1 distributions is not statistically significant, p = 0.1.

Question 2 - Cube Close

53% 

10% 

4% 

15% 

6% 

8% 
2% 2% 

Coded FR 

47% 

9% 
5% 

20% 

11% 

4% 
2% 2% 

CMR Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

Blank 

The difference between Q2 distributions is not statistically significant, p = 0.9.
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Question 3 - Cube far

27% 

2% 

4% 

45% 

2% 

2% 

4% 

14% 

Coded FR 

11% 

2% 

70% 

6% 

9% 
2% 

CMR Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

Blank 

The difference between Q3 distributions is statistically significant, p = 0.02.

Question 4 - Method of Images

7% 

11% 

71% 

9% 
2% 

CMR Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

Blank 

6% 

12% 

78% 

4% 

Coded FR 

The difference between Q4 distributions is not statistically significant, p = 0.8.
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Question 5 - Superposition

53% 

42% 

5% 

CMR Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

Blank 

6% 

27% 

53% 

14% 

Coded FR 

The difference between Q5 distributions is statistically significant, p = 0.02.

Question 6 - Loop

27% 
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CMR Integration 
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Images 
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None 
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The difference between Q6 distributions is not statistically significant, p = 0.7.
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Question 7 - Gauss

25% 

62% 

2% 

2% 
2% 

7% 

CMR Integration 
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Sep. of Vars. 
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The difference between Q7 distributions is not statistically significant, p = 0.8.
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K. Student Responses to All Questions on the CMR CUE

Distributions of N=373 student responses to questions 1-16 on the CMR CUE. Data

represent the full pool of available CMR CUE data from all institutions and courses

described in Sec. V B. Only methods/answers that received greater than 5% of the overall

votes are given reasoning element breakdowns.

Question 1 - Separation of Variables

(b)  Reasoning Selection 
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(a)   Method Selection 
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Other

           

a                b                c                 d                e                 f             Blank   

(a) Distribution of method selections for Q1. Separation of variables is the easiest and only

possible method. (b) Reasoning selections for the most common method selections: Direct

Integration (N=46), Gauss’s law (N=90), Separation of Variables (N=180), Multipole

Expansion (N=32), and other (N=25). Number of responses for each reasoning element is

proportional to the area of the circle.
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Question 2 - Cube Close

(b)  Reasoning Selection 
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a              b              c            d              e              f              g          Blank   

(a) Distribution of method selections for Q2. Direct integration is the easiest and only

completely correct method. (b) Reasoning selections for the most common method

selections: Direct Integration (N=162), Gauss’s law (N=42), Multipole Expansion (N=95),

Method of Images (N=27), and other (N=47). Number of responses for each reasoning

element is proportional to the area of the circle.
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Question 3 - Cube Far

(b)  Reasoning Selection 

(a)   Method Selection 12% 
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a              b              c            d              e              f             g           Blank   

(a) Distribution of method selections for Q3. Multipole expansion is the correct method;

however, Direct integration is also possible. (b) Reasoning selections for the most common

method selections: Direct Integration (N=44), Multipole Expansion (N=244), and other

(N=85). Number of responses for each reasoning element is proportional to the area of the

circle.
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Question 4 - Images

(b)  Reasoning Selection 

(a)   Method Selection 5% 
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a                b               c                d                 e                f             Blank   

(a) Distribution of method selections for Q4. Method of images is the easiest and only

possible method. (b) Reasoning selections for the most common method selections:

Method of images (N=302), and other (N=71). Number of responses for each reasoning

element is proportional to the area of the circle.
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Question 5 - Superposition
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(b)  Reasoning Selection 

(a) Distribution of method selections for Q5. Superposition is the easiest method; however,

Direct integration is also possible. (b) Reasoning selections for the most common method

selections: Direct integration (N=24), Gauss’s Law (N=164), Superposition (N=154), and

other (N=31). Number of responses for each reasoning element is proportional to the area

of the circle.
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Question 6 - Loop

(b)  Reasoning Selection 

(a)   Method Selection 
20% 

1% 
1% 

34% 

26% 

2% 

1% 

7% 

8% 
Integration 

Gauss 

Sep. of Vars. 

Multipole 

Ampere 

Images 

Superposition 

None 

blank 

Reasoning Element 

Integration

Multipole

Ampere

Other
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(a) Distribution of method selections for Q6. Multipole expansion is the correct method;

however, Direct integration is also possible. (b) Reasoning selections for the most common

method selections: Direct integration (N=75), Multipole Expansion (N=128), Ampere

(N=98), and other (N=72). Number of responses for each reasoning element is

proportional to the area of the circle.
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Question 7 - Gauss

(b)  Reasoning Selection 
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(a) Distribution of method selections for Q7. Gauss’s Law is the correct method; however,

Direct integration is also possible. (b) Reasoning selections for the most common method

selections: Direct integration (N=70), Gauss’s Law (N=251), and other (N=52). Number

of responses for each reasoning element is proportional to the area of the circle.
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Question 8 - Delta
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Distribution of N=373 responses to subparts i and ii on Q8; correct responses are c and d

respectively.
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Question 9 - Reference point for V
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(ii)  Interpretation 
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a             b              c             d              e              f              g          Blank   

(i) Distribution of answer selections for Q9. The correct value for the potential at infinity

is negative. (ii) Reasoning selections for the most commonly selected values: positive

(N=54), negative (N=226), zero (N=58), and other (N=35). Number of responses for each

reasoning element is proportional to the area of the circle.
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Question 10 - Cylinder
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60% 
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Part ii: E-field 

Distribution of N=373 responses to subparts i and ii on Q10; correct responses are f and e

receptively.

Question 11 - Boundary Conditions on E and V
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50 
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21 

57 

134 
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49 

39 

Part ii: E-field 

Distribution of N=373 responses to subparts i and ii on Q11; correct responses are a, c, &

d on part i, e & f on part ii. Values for each option are number of responses rather than

percent as students can select more than one option.
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Question 12 - Finite Disk
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Part iv: Graph V 

Distribution of responses to subparts i-iv on Q12; correct responses are f, b, e, and a

receptively. Parts i and ii represent the full N=373 responses; however, the version of the

CMR CUE used during the first semester of data collection included different response

options that following semesters. Thus the distributions for parts iii and iv represent only a

N=348 student subset.
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Question 12 - Finite Disk

(a)   Part iii given part ii 

(b)  Part iv given part iii 

Reasoning Element 
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d

other

           

a            b            c            d            e            f            g         none     blank   

a

b
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d

e

f

g

           a              b              c              d              e              f               g           none        blank   

(a) Part iii selections for the most commonly selected responses to part ii: b (N=191), c

(N=66), d (N=32), and other (N=84). (b) Part iv selections for the most commonly

selected responses to part iii: a (N=50), b (N=40), c (N=34), d (N=50), e (N=69), f

(N=65), and g (N=26). Number of responses for each reasoning element is proportional to

the area of the circle. Responses represent the N=348 students who took the final version

of Q12.
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Question 13 - Cartesian SoV
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a              b              c            d              e              f             g           Blank   

(a) Distribution of answer selections for Q13; the correct response is option A. (b)

Reasoning selections for the most commonly selected values: A (N=225), B (N=51), C

(N=46), and other (N=51). Number of responses for each reasoning element is

proportional to the area of the circle.
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Question 14 - Polarization
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Distribution of responses to subparts i-iii on Q14; correct responses are b on part i, c on

part ii, and a on part iii. Values for each option on parts i and ii are number of responses

rather than percent as students can select more than one option. Values part iii are given

in percent. Responses for parts i and iii are of N=373, while the distributions for part ii

represent only the N=348 students who took the final version of the CMR CUE.
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Question 15 - Dipole
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23 
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Answer Selection 
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Distribution of N=373 responses to Q15; correct responses are b & c. Values for each option

are number of responses rather than percent as students can select more than one option.
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Question 16 - Ampere

(a)   Answer Selection 
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a                b                c               d                e                f            Blank   

(a) Distribution of answer selections for Q16; the correct response is that the B-field is

maximum at the Edge. (b) Reasoning selections for the most commonly selected locations:

Center (N=41), Edge (N=246), and other (N=86). Number of responses for each reasoning

element is proportional to the area of the circle.
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