
Cooperative Robot Localization Using Event-Triggered

Estimation

by

David I. Iglesias Echevarria

B.S., Polytechnic University of Catalonia, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Aerospace Engineering Sciences

2017

This thesis entitled:
Cooperative Robot Localization Using Event-Triggered Estimation

written by David I. Iglesias Echevarria
has been approved for the Department of Aerospace Engineering Sciences

Prof. Nisar R. Ahmed

Prof. Eric W. Frew

Prof. Jay W. McMahon

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Iglesias Echevarria, David I. (M.S., Aerospace Engineering)

Cooperative Robot Localization Using Event-Triggered Estimation

Thesis directed by Prof. Nisar R. Ahmed

It is known that multiple robot systems that need to cooperate to perform certain activities

or tasks incur in high energy costs that hinder their autonomous functioning and limit the benefits

provided to humans by these kinds of platforms. This work presents a communications-based

method for cooperative robot localization. Implementing concepts from event-triggered estimation,

used with success in the field of wireless sensor networks but rarely to do robot localization, agents

are able to only send measurements to their neighbors when the expected novelty in this information

is high. Since all agents know the condition that triggers a measurement to be sent or not, the

lack of a measurement is therefore informative and fused into state estimates. In the case agents

do not receive either direct nor indirect measurements of all others, the agents employ a covariance

intersection fusion rule in order to keep the local covariance error metric bounded. A comprehensive

analysis of the proposed algorithm and its estimation performance in a variety of scenarios is

performed, and the algorithm is compared to similar cooperative localization approaches. Extensive

simulations are performed that illustrate the effectiveness of this method.

Dedication

To my parents, for helping me be who I am today. To my partner, for lighting the way when it

was dark, and our love-hate relationship for pizzas.

This thesis is more yours than mine.

Proposition 1:

Somewhere, something incredible is waiting to be known.

Carl Sagan

Proposition 2:

This is all very confusing.

Student in the Aerospace Grad Lounge

Corollary:

Even if things get tough we will keep pushing, for the reward is worth it.

v

Acknowledgements

I want to express my deepest gratitude, first and foremost, to my advisor, Prof. Nisar

Ahmed. He has not only proved to be an endless source of technical knowledge, but has also

offered, in countless meetings and conversations, the kind of guidance and wisdom that deeply

impact one’s personal development. I will always be grateful to him for the many opportunities he

has given me during my time as a graduate student.

Secondly, I want to thank all the professors that I have had here at the University of Colorado

at Boulder for providing a first-class education that is both thorough and deeply humane. A special

thanks to the members of my committee, for kindly accepting to review this work and for their

support.

Finally, I want to wholeheartedly thank the Balsells Foundation, the Generalitat de Catalunya

and the University of Colorado at Boulder for the once-in-a-lifetime opportunity to pursue graduate

studies in the United States through the Balsells Fellowship Program. A lot of people are involved

in this program and go out of their way to make sure that everything works smoothly year after

year, so it would be impossible to thank all of them individually. However, I can not continue

without mentioning a few of them. First, Mr. Pere Balsells, the forefather of this truly amazing

community, for a life of giving and generosity that inspires me beyond words; Prof. Robert Davis,

for taking care of each one of us even while he was appointed as Dean of the College of Engineering

and Applied Science; and finally, Ms. Sharon Powers, former Dean’s Assistant, for making this

place home for us, even when home is thousands of miles away.

vi

Contents

Chapter

1 Introduction 1

1.1 The quest for autonomy . 1

1.2 The importance of robot localization . 2

1.3 Towards increased battery life . 3

1.4 Thesis goals and overview . 5

2 Background and related work 7

2.1 Concepts in estimation . 7

2.2 Related work . 10

2.2.1 Cooperative localization . 10

2.2.2 Event-based estimation . 12

3 The cooperative localization problem 13

3.1 Notation . 14

3.2 Problem statement . 15

3.3 Why cooperative localization? . 17

3.4 Centralized versus decentralized CL . 20

4 Proposed solution 22

4.1 Assumptions . 22

vii

4.2 Proposed event-based algorithm . 24

4.2.1 Observations . 25

4.2.2 Communications . 27

4.2.3 Measurement update . 28

4.2.4 Covariance intersection . 32

4.2.5 Prediction . 34

5 Simulations 37

5.1 Study parameters . 39

5.2 Performance metrics . 42

5.3 Simulations setup . 44

6 Results 49

6.1 2-agent simulations . 49

6.1.1 Effects of innovation threshold . 50

6.1.2 Effects of communication success probability 52

6.1.3 Effects of vehicle motion . 59

6.2 6-agent simulations . 60

6.2.1 Effects of communication graph . 61

7 Conclusions 69

7.1 Summary of contributions . 69

7.2 Future work . 71

Bibliography 74

viii

Tables

Table

5.1 Table with the values of the parameters that are common for all simulations. 47

5.2 Table with the values of the parameters that are common only for the 2-agent sim-

ulations. 47

5.3 Table with the values of the parameters that are common only for the 6-agent sim-

ulations. 48

ix

Figures

Figure

2.1 Diagram showing a classification of some of the most known estimation algorithms. 9

3.1 Example of CL. The 4 agents are static and have a specific position and orientation

in the reference frame shown. Communicating agents are indicated by the yellow

lines between them. 18

4.1 Representation of typical scenario where the robots exchange a combination of ex-

plicit and implicit information. 23

4.2 Block diagram showing the fundamental elements of the event-based algorithm . . . 26

4.3 If the innovation associated to a measurement falls in the blue region, that measure-

ment will not be sent, but rather shared implicitly. Innovations that fall in the white

region are considered large enough to be sent. 31

4.4 Example of covariance intersection in 2D. The blue and green ellipsoids represent

the two original covariances, whereas the red ellipsoid represents the final covariance

after the fusion, corresponding to the ω parameter that optimizes the problem. The

dotted lines are solution candidates. Modified from [1]. 33

5.1 . 40

6.1 This figure shows the averaged communication rate between the 2 agents as a function

of the innovation threshold, δ. 51

x

6.2 This figure illustrates that there is no apparent loss of consistency as we increase δ.

For both agents’ states, and for all components, the mean squared error matches the

predicted covariance. 52

6.3 This figure depicts our event-based filter against an event-based filter that does not

fuse negative information. One can see that, as the threshold parameter δ increases,

our filter steadily explicitly sends fewer measurements while not increasing squared

error much above the full EKF (δ = 0) . 53

6.4 Consistency loss for a scenario with 50% communication rate. 55

6.5 Sum of the components of the mean squared error for different CP values, as a

function of δ. 56

6.6 Trace of the covariance matrix associated with the state of the network in (a) agent

1 and (b) agent 2, at the final time step for different innovation threshold values. . . 56

6.7 Ratio of incorrectly fused measurements over total shared measurements for different

CP values as a function of δ. Agent 1 is shown in blue, and agent 2 in orange. . . . 57

6.8 Comparison between MSE and variance for different δ values, for a communica-

tion probability of 40%. We can see that the smallest gap between MSE and vari-

ance is associated with intermediate innovation thresholds (green and orange). The

diamond-shaped markers correspond to the baseline, the centralized EKF. 58

6.9 Comparison between the mean squared errors of the two event-based filters analyzed. 59

6.10 The three main motion types analyzed. For the circular concentric case (shown here

in the middle), two different configurations exist: one with low velocities and one

with high velocities. 60

6.11 . 61

6.12 Vehicle motion and the 3 different communication models (star, bridge, chain) used

in the 6-agent simulations. 62

xi

6.13 Comparison of agent 3’s resulting state estimates between (a) a case where just agent

4 has GPS, and (b) a case where multiple agents have GPS. Both plots correspond

to the chain graph. 64

6.14 Sample simulation results showing component-wise variances as predicted by agent

5 in the chain graph. Sudden drops or increases are an effect of CI, a method that

acts instantly on states and covariance matrices. 66

6.15 Sample simulation results showing component-wise variances as predicted by agent

5 in the star graph. With the same CI threshold as in the chain graph, the better

connected graph results in CI not triggering. 68

Chapter 1

Introduction

1.1 The quest for autonomy

In recent years, there has been an increasing number of research activities in the subject of

robotic vehicle networks, propelled by the miniaturization of electromechanical components (sensor

suites, actuators, etc.), lower acquisition costs and improvement of wireless ad hoc networks. Nowa-

days, mobile robots can be found in a myriad of environments and sectors, ranging from domestic

services (e.g. cleaning robots), intelligent transportation and construction and environmental mon-

itoring, to scientific exploration (e.g. the different Mars rovers) and military (e.g. surveillance

drones). This vast set of applications imposes that there is not one ideal platform to perform them

all – whereas in some cases a unique, more powerful, well-equipped and expensive robot may be

desirable, in others it may be more suited to deploy a fleet of less advanced units that, on the other

hand, are able to sense, communicate and cooperate with one another.

This interest has been not just accompanied, but also fostered by crucial advances in the field

of artificial intelligence and its most immediate effect on robot systems, autonomy. What we define

by autonomy is somewhat elusive and abstract at a technical level, although a practical, high-level

way to describe it is as the ability of a system to make its own decisions, without any need for

human input or guidance in the process. This is of great interest by both academia and industry,

and from both a theoretical and practical standpoint, since increasingly autonomous systems have

a potentially huge effect on our economy, society and the way we live in general. Autonomous robot

systems can not only outperform humans at some tasks, but also enable us to pursue entirely new

2

endeavors.

1.2 The importance of robot localization

Precise localization is one of the main requirements for autonomy in mobile robot autonomous

systems. Many of the tasks these autonomous robots are to perform rely on accurate knowledge

of their position and orientation in space. Localization, in the context of mobile robots, can

be seen as a problem of coordinate transformation between the robot’s reference frame and the

world’s reference frame. Traditionally, robots use a combination of proprioceptive and exteroceptive

measurements to compute estimates of their poses (composed by both position and orientation).

The former refers to measurements taken to the measuring robot only (e.g. those obtained from

the wheel encoder or the inertial measurement unit), while the latter refers to measurements taken

between the measuring robot and the environment (e.g. relative range to a landmark, environment

perception through camera), or between the measuring robot and other robots in the network (e.g.

relative range and bearing between robots).

Although for some applications robots can benefit from access to GPS for accurate absolute

positioning, in many others, such as in indoor environments and planetary exploration missions,

they can not. We can consider yet a third scenario, in which robots can only sporadically get

absolute position information, subsequently having to perform their goal tasks relying on this low-

frequency, scarce knowledge combined with higher-frequency relative measurements and odometry.

An example of this are underwater robots, which have to resurface often to get a GPS fix for their

estimates, due to the inherent limitations of dead reckoning. This poses the problem of how to

have a system that remains operational and useful under these challenging circumstances.

There is a variety of ways by which robot systems are able to localize the agents in the

network. Most methods in the last couple of decades, including this work, have followed what

we call a probabilistic view of the field. Probabilistic robotics is the study of robots and their

interactions with the environment by understanding the role and modeling the effects that the

inherent uncertainties that robots encounter play. Traditional approaches within this subfield

3

consider that the robots are equipped with sensors of different kinds with which they perceive the

world around them and find estimates of their position in it.

While that is perfectly valid, a new conception of localization for multiple-robot systems

emerged with strength a few years ago. This strategy to deal with the multi-robot localization

problem is what in the literature is referred to as cooperative localization (CL), and will be discussed

extensively in following sections since it is the minimal problem that encompasses this thesis. The

main idea behind CL is to use relative measurements from vehicle to vehicle to jointly estimate

the poses of all team members, which results in increased accuracy for all agents [2]. The principle

behind CL is to exploit correlations existing between the robots’ states (in this case, the poses) by

taking and fusing relative measurements. Because of this coupling between states, sporadic access

to accurate position/orientation information by one agent directly benefits the estimate for the

entire network, thanks to the ability to pin down that particular agent.

1.3 Towards increased battery life

In a robotic system, there are many activities that the vehicles carry out and that require

energy; moving around, communications, processing and storing data are only a few examples.

Being able to accurately localizing a team of mobile robots is different to doing so efficiently. Here,

the word efficient is used in the most generic sense, meaning that the system incurs in little energy

costs. As intuition suggests, efficient systems translate to longer deployment times, less demanding

sensor, bandwidth and processing requirements and, in turn, less costly hardware, thus making

the robot platform more versatile. In some cases, the difference between having an algorithm

that handles data more efficiently than another is the ability to adequately perform the mission

itself, as seen, for example, in [3]. While advances in battery technology and embedded systems

are promising and have already had a vast effect in the way we imagine and use robots, having

a limited usage time will always be a hurdle to overcome, thus making the study of algorithms a

topic of perpetual interest.

Robot systems are comprised of, put very simply, two main elements that interact with

4

each other: hardware and software. The design of a system for a specific application will involve

a back and forth process in which some hardware components will be fixed, the software will

be incorporated, the system will be tested and, based on the performance and requirements of

the problem, the process will be repeated, hopefully with less unknowns. As one can expect,

the differences concerning power, processor speed, sensor quality, etc., between working with a

platform that is equipped with state-of-the-art components and one that is inexpensive, light and

commercially accessible are not minor. In spite of that, a behemoth robot is rarely the solution in

mobile robotics, for obvious reasons. For example, in aerospace applications lightweight vehicles

are preferred since weight is a severely limiting factor when it comes to things that fly. The

specifications of the hardware will therefore play a crucial role on the capabilities of our system.

Within the boundaries and stringent conditions set by hardware, however, software will need to be

implemented in such a way that our robots are as useful and able to perform the task at hand as

possible. Several approaches have been developed to further push the edge of what is possible for

robotic systems that are constrained by the components they use or by the application they are

designed for.

In this work, a communications-based method is developed and studied. The method pro-

posed stems from the fact that in cooperative localization, a lot of data is sent and received by

the agents. While this is beneficial for localization purposes, it brings about communication costs

that do not scale well with the network size. With the goal of reducing these costs, the approach

taken builds on the idea that the value of observations agents take can somehow be measured. In

particular, agents can decide that if some piece of information is not useful enough, as determined

by a threshold, it will not be sent. The agent that is meant to receive that information then uses its

knowledge of this threshold to infer something about the original data, thus still benefiting from the

lack of explicit information. This notion of sending data whenever a condition is met or an event

takes place is known in the literature as event-based estimation, and allows for significant energy

savings and can reduce communication bandwidth in networked control systems and wireless sensor

networks [4].

5

As stated, this is one of many way that pushes us forward to fully autonomous systems.

Robotics and autonomy being two of the topics that are receiving most attention and scrutiny

worldwide, the hope is that this work will be of service for future endeavors.

1.4 Thesis goals and overview

This work is born with the main objective of understanding cooperative localization a little

better by answering perhaps the most fundamental question to be solved, which is how can we

perform cooperative localization in an accurate, consistent, scalable, robust and energy-efficient

way? In order to do that, many subquestions need to be posed and answered as well, for which

a good grasp of current methods and research tendencies is necessary. Given the finding that in

wireless ad hoc networks a lot of energy is spent on data sharing, this work focuses on a solution

that deals with the problem of making a better use of that data. With that in mind, we attempt to

address issues such as the sensitivity of estimation performance to the measurement sharing rate, to

data packets losses, to network topology, or to sensor types; the algorithm failure modes; the range

of safe applicability of the filter, given that the system is nonlinear and there are no guarantees that

it will work properly; and the performance of our proposed method when compared to a baseline

method, among others.

This thesis is organized as follows: Chapter 2 gives a short summary of basic concepts and

outlines some well known algorithms in estimation. Additionally, we perform a review of related

work on cooperative robot localization. Chapter 3 formally introduces the problem of cooperative

localization, which is the central topic of this work. Different approaches to the problem are

presented, together with their strengths and shortcomings, in order to help the reader build a

mental map of the state of the field. In Chapter 4, our proposed solution to the cooperative

localization problem is examined in detail, trying to justify its relevance and interest. Chapter 5

provides a detailed look at the computer simulations that have been performed to better understand

the performance of our algorithm, since they play a crucial role. Continuing with that, in Chapter 6

the results of the simulations are presented and discussed. Finally, Chapter 7 is comprised of the

6

conclusions from all experiments and discussions, and a section with recommendations for future

work in the topic.

Chapter 2

Background and related work

In this section, we introduce a brief review of basic concepts in state estimation and we

present related work other research groups and institutions have done in robot localization. The

basic concepts of probability are not developed here for the sake of brevity, but they can be found

in any introductory probability textbook. The reader that is familiar with the basics of estimation

theory can safely skip Section 2.1 and go directly to Section 2.2.

2.1 Concepts in estimation

In state estimation, we use the laws of statistics and probability to develop frameworks that

allow us to infer quantities that are not directly observable from noisy data. In particular, in robot

localization we usually care about the position and orientation of the robots with respect to their

environment. Probabilistic methods have proven really useful, since with them we can model the

different uncertainties that exist in our systems.

One of the most popular approaches to state estimation in robotics is the Bayes filter. The

Bayes filter is, essentially, an algorithm that uses Bayes’ theorem to develop an expression to

recursively compute the state’s probability density function taking into account observations and

the system’s properties, such as how (if it does) the state evolves with time and to inputs.

The Bayes filter is a theoretical model, a framework that allows us to derive the fundamental

expressions to do recursive estimation. In reality, we need ways to describe and compute numerically

the probability distributions that appear in the Bayes filter equations, in a lot of cases having to

8

make assumptions to make our problem more tractable. There are different approaches to do

this. One of them are Gaussian filters, which represent the probability distributions with normal

distributions described by two parameters, mean and covariance. This type of filters is useful in

a lot of practical situations, but the properties of normal distributions limit the applicability of

Gaussian filters. One issue is that normal distributions are unimodal, that is, they have one (and

only one) maximum. As an example of a situation that is not apt for a Gaussian filter, let us

imagine that a robotic vehicle is moving along a road and it encounters a fork. At this point, we

most likely need to model the state’s posterior with a multimodal distribution, since at least at the

beginning, there is some uncertainty as to which one of the paths the vehicle is on. Despite their

shortcomings, Gaussian filters are successfully used in a variety of tracking applications in which

the posterior is centered around the true state with some uncertainty.

The Kalman filter (KF) is perhaps the most widely used Gaussian filter, and its origin can be

traced back to both [5] and [6]. The KF is used for continuous state spaces, and assumes that the

probability that models how states evolve in time given some dynamics and control inputs (called

state transition probability) is a linear function with added Gaussian noise. It also assumes that

the probability that models how a state affects an observation (called observation or measurement

probability) is a linear function with Gaussian noise added to it. If the system verifies these

conditions, then the Kalman filter is the optimal minimum mean squared error (MMSE) estimator.

However, because of the assumptions of linearity in both the dynamics and observations, this

approach is severely limited, given that very few things in real life are truly linear. This raises the

next question: how can we perform estimation in nonlinear systems?

Multiple approaches have been developed to do nonlinear estimation. One of these approaches

is what we call the extended Kalman filter (EKF). The EKF acknowledges that the transition

and measurement probabilities will usually not be linear functions of the state, and relaxes this

assumption. In an EKF, both these probabilities are nonlinear functions. However, the equations

derived for the KF no longer hold without the linearity assumption. In order to deal with that,

the EKF approximates the true nonlinear model with a linear one by linearizing these functions

9

Estimation methods

Bayes’ filters

Gaussian filters
Kalman filter (KF),
extended KF (EKF),

unscented KF (UKF),
information filter...

Non-parametric
filters

Particle filter,
histogram filter...

Non-bayesian
filters

Figure 2.1: Diagram showing a classification of some of the most known estimation algorithms.

10

around a particular point. This implies that, unlike the KF, the EKF is an approximate solution

and does not offer any guarantees that the output will be correct.

The performance of the EKF depends chiefly on two aspects: the degree of nonlinearity

around the linearization point of the approximated functions, and the degree of uncertainty in

our estimates. The first one is due to the fact that we are approximating mappings with linear

transformations; the more nonlinear the original function is, the less accurate our representation

will be. The second one stems from the first one. The higher the uncertainty in the estimate, the

wider its probability density function will be, thus being more distant from the point of linearization

and more affected by the transformation. Despite being an approximate solution, the EKF works

remarkably well in a lot of scenarios in which the nonlinear effects are not very pronounced, and has

been in fact used repeatedly in the robotics industry due to the relative simplicity of the algorithm,

both conceptually and computationally. The present work uses an EKF framework all throughout

for the already mentioned reasons.

2.2 Related work

2.2.1 Cooperative localization

The idea of exploiting vehicle-to-vehicle measurements to perform robot localization can

be traced back to [7] and its follow-up works, [8, 9]. In them, the authors propose a method

for localization in systems with multiple robots that results in lower positioning error than dead

reckoning when no landmarks are available. They achieve that by dividing the team into two

groups that take turns while moving in an environment until they reach the destination point. In

this process, the group that remains stopped acts as a landmark for the other team.

Since then, cooperative localization has received extensive interest from different communi-

ties, including those of robotics and wireless communications. A few years after that first work,

one of the first probabilistic approaches using a Markov localization algorithm (which can be found

in [10, 11, 12, 13]) was detailed in [14], where robots use odometry and environment measurements

11

to update their own local belief function when they can not detect other robots. When two robots

are close enough to detect each other, they take relative measurements that are transformed into

density trees that are used to refine the estimates. A considerable amount of relatively similar

work along those lines has been developed more recently, where agents use of a combination of

proprioceptive and exteroceptive measurements to compute their localization. In [15], the authors

describe what became one of the first approaches to CL that is within a Kalman filter framework.

The paper considers a group of vehicles that move in an environment and that can sense one an-

other. The algorithm is also decentralized, hence being more rebust and scaling better than its

centralized equivalents, and each vehicle only keeps an estimate of its own state and uses odometric

measurements to compute its localization. Only when two agents are at a sufficiently small distance

do they measure each other and exchange this information. Their results show a significant im-

provement in position accuracy when relative measurements used, even if only intermitently. One

of the limitations of this latter paper, however, is that vehicles use relative pose measurements,

which are not common in many real-life situations. Within the last half decade, [16] has proposed a

similar decentralized CL approach that uses covariance intersection (CI) as its main fusion method

instead of a KF. Their proposed method aims at reducing communication and processing complex-

ity in large networks of robots, and is provably consistent (see [17]), even though decentralized CI

has the disadvantage of giving suboptimal results (see [18]). Additionally, this paper uses a model

for the observations that is not commonplace, its interest hence being more limited considering

our purposes. Breaking a lot of these assumptions we can find [19], where the observations are

nonlinear, data transmission is asynchronous and lossy and the initial poses are not known. The

authors use a particle filter to compute the estimates. A shortcoming that is shared by all these

works is the fact that, even though they study multi-agent systems, the number of vehicles always

stays small, thus not considering the effects that different communication strategies have on the

performance of the algorithm.

12

2.2.2 Event-based estimation

The idea of event-based estimation is newer than that of cooperative localization and, to

the best of our knowledge, all the references date from the last 10 years. The main idea of event-

based algorithms is to limit the amount of data transmitted in wireless sensor networks (WSNs) by

just sharing information when an event (for example, a certain signal exceeding a predetermined

threshold) occurs. In [20], the authors propose a general centralized state estimation algorithm that

can process event-based measurements and that is based on a Gaussian mixture model (GMM) to

make it more computationally tractable. Results show that, using a hybrid strategy where both

received and not received measurement data is used for update through different algorithms, the

covariance matrix remains bounded even when no measurements are received anymore. A similar

algorithm can be found in [21], where a Kalman filtering framework is used instead of a GMM.

[22] characterized the effects of multiple sensors with each sensor channel having its own event-

triggering condition on the MMSE estimates. In particular, the paper shows that the estimates are

determined by the conditional mean and covariance of the innovations. However, these results are

valid for the case with linear processes and observations.

While most previous endeavors have been focused on finding analytic solutions to the problem

of event-triggered measurement fusion in WSNs, thus assuming simplified system models, we feel

that not enough work has been done on studying the implementation and performance of these

algorithms to more realistic scenarios. Our work tries to answer some of the natural questions that

follow from an engineering perspective by proposing an approximate method and relaxing many of

the previous assumptions.

Chapter 3

The cooperative localization problem

In general terms, cooperative localization is the problem of determining the poses (position

and orientation) in a given environment of a set of points based on a series of relative measurements

between these points. For us, these points are robots (also called agents) that have both communi-

cation and sensing capabilities, and that move in the environment, so the problem transforms into

mobile cooperative localization. The robots measure one another and share these measurements

either with other agents or with a fusion center that does all the data processing, so that we are

able to localize them. Mobile cooperative localization is an instance of the general localization

problem, which is one of the fundamental problems in robotic perception [23].

As we have seen, robots are equipped with sensors that they use to measure themselves (what

we call proprioceptive measurements) or to measure other vehicles or the world around them (what

we call exteroceptive measurements). The main difficulty with robot localization is that the thing

that we are trying to determine, in this case the poses of the agents in our system, can generally

not be measured directly by the sensors. On top of not measuring directly the quantities that we

are interested in knowing, the data points provided by sensors are noisy. These two issues make it

necessary, in the vast majority of cases, to use numerous data points, and in fact, the more data

points we use to estimate the desired quantity, the more confident we will be in our results. This

is where probabilistic filters, such as the Kalman filter, prove to be so useful.

14

3.1 Notation

Here, we introduce some useful notation and concepts from probability theory. Let R be

the set of real numbers, and R≥0 the set of real numbers that are zero or positive. For a vector

v ∈ Rd, let diag(v) ∈ Rd×d the diagonal matrix made with the values of v. Both elem(v, k) and

(v)k designate the k-th component of v. Let |v| be the `2 norm of v. For a matrix M ∈ Rd×d,

let diag(M) be the vector made with the diagonal elements of M . The k-th row of a matrix M is

row(M,k) and the column k is col(M,k). The matrix I is the identity matrix of the pertinent

size.

Let z ∈ Rd be a random variable, and f : Rd → R≥0 its probability density function

(pdf). Let E(z) =
∫
zf(z)dz be its expected value, and Cov(z) = E[(z − E(z))(z − E(z))T] be its

covariance. Given z with pdf f(z) and a subset Ω ⊆ Rd, we define a conditional pdf fΩ : Rd → R

as fΩ(z) = f(z | z ∈ Ω); that is, fΩ(z) = f(z)1Ω(z)
P (Ω) , where 1Ω is the indicator function and P is the

probability mass of Ω, which is computed using f(Z). The conditional random variable with pdf fΩ

is referred to as the f -distributed random variable z with truncated support Ω. The one-dimensional

normal probability density function, φ : R→ R≥0, is defined as φ(z) = 1√
2π

exp(−1
2z

2), z ∈ R. The

normal distribution’s tail probability, that is, the probability that the random variable is larger

than a quantity Z, is denoted by Q : R→ [0, 1], and defined as Q(Z) =
∫ +∞
Z φ(x)dx.

The state of the network at time step k, which is the same as the state of each one of the

agents in the network in one big vector, is denoted by xall(k). Vehicles in the network are identified

by natural numbers, and their states are sorted according to their number in the network state

vector. In a network made up of N agents, each agent will have a number i belonging to the set

G = {1, ..., N}. Agent i’s state (composed by position and orientation) at time step k is denoted

by xi(k) = [xi yi θi]T . Since this is not an estimate, but the true state, there is no covariance

associated to it. The network state can be expressed as the vectors of all states in the network

piled up:

15

xall(k) =

x1(k)

...

xN (k)

We denote agent i’s estimate of the state of the network at time step k by

x̂alli (k) = [x1
i y1

i θ1
i ... xNi yNi θNi]T

and the associated covariance by Pall
i (k). For every other agent j that i communicates with, i

keeps a mutual estimate denoted by x̂ij(k) and associated covariance Pij(k). Agent i’s estimate of

agent’s j state (that is, agent i’s estimate of agent j’s pose, composed by position and orientation)

is denoted by x̂ji (k), and the associated covariance by Pj
i (k). As a rule of thumb, one should think

of the subscripts as denoting the owner of the estimate (or the vehicle where the estimates live in)

and the superscripts as denoting the agent/s that are being estimated.

3.2 Problem statement

We now formalize the problem. Let us consider a team of N robots moving in a 2D non-

changing environment E . 1 Their dynamics (or motion model) are described by a discrete-time,

time-varying system, such that at each time step k

xi(k + 1) = fi(x
i(k),ui(k)) + wi(k) (3.1)

where xi(k) ∈ Rd represents the state of robot i at time k, and ui(k) ∈ Rn is its control input. For

all robots in the network, that is for i = 1, ..., N , the state xi(k) is the main quantity that is being

estimated, and is composed by the position and orientation of robot i. The process noise, wi(k), is

assumed to follow a normal distribution with zero mean and covariance Qi(k), and uncorrelated in

time. For each robot pair in the network, their process noises are assumed to be uncorrelated with

1 In our case, it does not matter if the environment is static or dynamic, since robots do not measure it in any
way, nor do they build a map. In other scenarios the difference would be important, though.

16

one another. Since we are working within a Kalman filter framework, Equation 3.1 is linearized to

obtain

xi(k + 1) = Ai(k)xi(k) +Bi(k)ui(k) + wi(k) (3.2)

where Ai(k) = ∂fi
∂xi

(x̂ii(k)) ∈ Rd×d and Bi(k) = ∂fi
∂ui

(x̂ii(k)) ∈ Rn×d are the Jacobian matrices. Here

and onward, the hat symbol (ˆ) over a variable represents an estimate after having been updated

with data at the current time step, the bar symbol (¯) represents an estimate before having been

updated at the current time step, and no symbol represents the true value.

At time k, robot i can take a combination of mi local and global measurements, which are

stacked into yi(k) ∈ Rmi . Local measurements include range and bearing to other vehicles, whereas

global measurements are absolute pose measurements from GPS. Let xall(k) ∈ RNd be the vector

of all vehicles’ states. The measurement model is

yi(k) = hi(x
all(k)) + vi(k) (3.3)

This can be linearized, which yields

yi(k) = Ci(k)xall(k) + vi(k) (3.4)

where Ci(k) = ∂hi
∂xall

(x̂alli (k)) ∈ Rmi×Nd. The measurement noise, vi(k), is assumed to be normally

distributed, with zero mean and diagonal covariance Ri(k), and uncorrelated in time. The mea-

surement noise associated with a robot is uncorrelated to the process noise, as well as to other

robots’ measurement noises.

In decentralized CL such as the one we propose here, agents share some or all their local

measurements with neighboring agents in order to keep the trace of their covariance matrix as

low as possible. 2 In a centralized approach, on the other hand, the measurements are not sent

2 We are careful here not to talk about minimization, since this is not a formal minimization problem with a
defined cost function where the primary goal is to have a covariance matrix trace that is as small as possible.

17

between agents but to a fusion center for processing instead. An explanation of the main differences

between centralized and decentralized approaches can be found in Section 3.4.

3.3 Why cooperative localization?

The problem has been now formally set up. In this section, we discuss more in detail what

exactly makes CL an interesting approach that has been used extensively in the literature to solve

the kinds of problems we are interested in, and what are possible downsides to using it.

The main strength of cooperative localization resides in the fact that agents can take relative

measurements to one another and send them to other agents, thus making it possible to exploit

the coupling that exists between agents states through the measurement model. In particular,

sending relative measurements between agents causes the covariance matrix to become populated

in its non-diagonal elements, so when one agent receives an absolute position measurement, the

cross-correlations allow the network to improve their own state estimates as well. Let us now see

a simple CL example.

Imagine we have a team of N = 4 robots on a plane that are not moving, as illustrated in

Figure 3.1. Vehicle motion makes the problem harder to solve, but for the intents of this example it

is not needed since it does not change the problem fundamentally. The pose of one arbitrary agent

is assumed known, with some degree of uncertainty (we can imagine that this particular agent has

a GPS receiver, or detects a feature in the environment that allows it to situate itself with respect

to the global frame). However, for the rest of the agents, we have to rely on the measurements they

take to find their poses.

Let us first assume a non-cooperative approach is being used. In this scenario, agents detect

features or landmarks in the environment whose location is known in the global reference frame

to localize themselves. In this case, it is easy to see that even if agents share these kinds of

measurements with one another, there is zero benefit from doing so. In other words, an agent can

not really use the information of where another agent is to localize itself better. This is a key aspect;

information of where other agents are in the world may indeed be beneficial in a lot of applications.

18

2

4

3

1

x

y

Figure 3.1: Example of CL. The 4 agents are static and have a specific position and orientation in
the reference frame shown. Communicating agents are indicated by the yellow lines between them.

19

However, it is not in the process of localizing oneself, since agents have no way of sensing each

other. Hence, regardless of whether a centralized or decentralized approach is used, the estimates

are computed with measurements from the agents to the environment.

On the other hand we have the cooperative way. Here, the vehicles take relative measure-

ments to other vehicles. Vehicles can also, as seen in the non-cooperative approach, detect the

environment, although in this case it is not necessary for all of them to do so (this is, in fact, one

of the strengths of CL, as explained next). If we focus on what happens to an arbitrary agent,

we see that these relative measurements that it is taking, by themselves, are not more useful than

detecting features in the environment, as done in the previous case, when it comes to localizing

itself. However, when all these measurements taken by all agents are put together, whether that is

in a central estimator or by sharing them between agents, the problem will be highly constrained.

In other words, the value of some observations will provide information about the value of other

observations. Additionally, being able to pin down one of the agents will positively impact the

whole network, since the relative configuration will be estimated with high accuracy.

The ability to jointly estimate the state of the network makes CL a method that is not only

more accurate than other methods thanks to the coupling that is created between agents, but also

more robust. In the event that an agent were to lose power, other agents would still be able to

measure it and figure out where it is. Additionally, in CL sporadic access to accurate information

by one of the team members results in a net benefit for the rest of the team.

There are other advantages associated with CL that are not directly related to estimation

performance. One feature is that in general there will not be any data association problems, since

the robots can be equipped with distinctive features or identifiers that other robots can use to

uniquely identify them. Another positive aspect is the lack of need for existing infrastructure;

cooperative localization can work using the usual operational components that robotic platforms

are equipped with. Finally, CL can easily be used together with other types of measurements

to increase the accuracy in the estimates, as we have briefly mentioned already. Sometimes, the

lack of environmental features, low light conditions, low-quality and noisy odometric sensors and

20

other elements will make estimation more challenging. In such cases, because CL does not depend

on any of these, it can be use to augment the estimation capabilities of the system and improve

performance.

There are downsides associated with the use of CL that we can not neglect. The main one

is that there are higher communication, memory and processing costs that have to be dealt with.

Given the limitations of hardware platforms at the moment, many approaches, including the work

in this thesis, focus on thinking of new ways to implement a CL algorithm cost-effectively such that

it can be used in affordable platforms with low power.

3.4 Centralized versus decentralized CL

There are two main approaches to the implementation of a cooperative localization algorithm:

centralized (CCL) and decentralized (DCL).

In a centralized scheme, agents take relative measurements to each other and afterwards

send them to what is called the fusion center (FC), which can be either a leader robot or a computer

that is not physically part of the robot network. This fusion center gathers and processes informa-

tion from all team members at every time step. Since the measurements are properly identified, the

FC does not have to worry about double-counting or incorrectly fusing the data. Once the data at

the current time step has been processed, the FC broadcasts the estimates back to the team. The

centralized approach is generally more costly than the decentralized one; the processing costs are

high, since all agents’ measurements are taken into account in the fusion step. In most scenarios

that is a problem, since all vehicles rely on their batteries. Communication costs will often be

comparable to those for the decentralized approach; this is due to the fact that even though agents

have to send their measurements only once every time step to the FC, this may be farther away

than the average neighbor agent in the decentralized case. Additionally, the centralized scheme

will be less robust than the decentralized counterpart, since a failure at the FC will compromise

the entire network.

In a decentralized scheme, robots communicate and share their relative measurements. The

21

data fusion process is, therefore, performed by each robot independently, based on all the data that

it has gathered. In consequence, depending on the communication graph, the estimates computed

by an arbitrary robot will be more or less accurate, since an agent may be communicating directly

with another agent that has access to accurate localization information or, on the other hand, it

may be several communication links apart. Positive aspects of DCL when compared to CCL are

its lower processing costs, since vehicles will generally fuse only a subset of all the data gather by

all agents; increased robustness, since each agent keeps its own estimate; increased flexibility, since

an agent may be added to or taken out of the network at any moment. The big challenge in DCL

is to design algorithms that maintain consistent estimates by keeping account of all correlations

between the agents’ states [24]. There are many different ways to do this, and we talk about some

of them in the Chapter 2.

Chapter 4

Proposed solution

In Chapter 3 we have formally stated the problem that we are interested in solving and seen

a landscape of the main general ways to frame a solution. In this chapter, we address the particular

solution that we have developed. We begin by describing the notation, which admittedly can get

cumbersome at times, so that the reader can refer to it in later sections; we then outline and justify

the assumptions we have taken while developing our method; finally, we give a detailed look at the

algorithm itself, including boxes with pseudocode, diagrams and written explanations.

4.1 Assumptions

Cooperative localization is a vast and complex topic, and we think it is important to first

establish the assumptions to properly set up our problem of interest. These assumptions are

dictated, firstly, by our particular goals and what we are trying to accomplish, and secondly, by the

current knowledge of the field. We strive to achieve a middle ground between being too optimistic

and having a very hard problem to solve and being too conformist and not bringing any relevant

contributions.

In decentralized CL, each robot has the ability to communicate with other robots in the

network. A protocol is assumed to be running on the network that allows each robot to know

which other robots it can communicate with. The subset of agents that i can communicate with

is denoted as Ni, and does not change in time. We assume that communications are bidirectional,

that is, if robot i can communicate with robot j, then j can communicate with i.

23

We first assume that each robot i ∈ {1, ..., N} keeps an estimate of the states of all agents

in the network (we also refer to this as the state of the network for brevity) and the associated

covariance matrix at each time k, {x̂alli (k),Pall
i (k)} ∈ RNd,RNd×Nd. Additionally, for each other

agent j that i shares measurements with, i keeps a common or mutual estimate and the associated

covariance, {x̂ij(k),Pij(k)} ∈ RNd,RNd×Nd. These can be interpreted as agent i’s estimate of agent

j’s estimate of the state of the network at time k, and their purpose is to be used as conservative

estimates in the process of deciding what measurements to send from i to j, as will be detailed

later. The reason these are conservative is that only measurements shared between i and j will

be used to update them, whereas all measurements taken by i and received from other agents,

explicitly and implicitly, will be used to update {x̂alli (k),Pall
i (k)} and {x̂allj (k),Pall

j (k)}. Also, since

all information exchanged between i and j (sent and received from both agents) is used to update

these shared estimates, then x̂ij(k) = x̂ji(k) and Pij(k) = Pji(k) for all pairs i, j and all time

steps.

Figure 4.1: Representation of typical scenario where the robots exchange a combination of explicit
and implicit information.

Agents move according to some laws and following the controls that we feed the system with.

Since every agent keeps an estimate of the entire network’s state, we assume that these control

inputs for all agents are known to every agent. Agents also rely on relative measurements to other

vehicles to compute their estimates. If vehicles’ onboard clocks can be precisely synchronized, and

24

their oscillators can maintain the time through the duration of the mission, then the relative range

can be calculated using the one way travel time of flight [25]. Finally, it is assumed that the data

transmitted between vehicles is always uniquely identified, and its origin is always perfectly known.

Additionally, data can be dropped for different reasons, but a data packet that is destined to a

particular agent will never be delivered to a different agent.

Assumptions summary

We now summarize the assumptions made for the reader’s convenience:

- Communications between robots are bidirectional and instantaneous (zero latency).

- Agents’ internal clocks are synchronized.

- Correspondence communications-measurements: if a robot can sense another robot, it can also

share measurements with it.

- No data association problems: each data packet is uniquely identified and can not be mistaken

for another packet.

- Non-changing neighbor sets: agents always communicate with the same subset of the team after

deployment.

- Equivalent sensing, communication and processing capabilities among robots.

- Control inputs are known to all agents.

4.2 Proposed event-based algorithm

The algorithm proposed takes its main inspiration from [26], which in turn is an adaptation

to a decentralized, multi-agent scenario of [22]. Our approach goes beyond the limitations of these

works, which assume linear dynamics and measurements, being interesting on a conceptual level

but lacking the applicability we are looking for. The key idea behind the method we propose here is

the ability to trade-off between the quality of the estimates and the communication costs associated

with sending measurements, by means of the innovation threshold parameter. At every time step,

each agent i updates its own estimate of the current state of the network as well as its estimate of

25

each other agent j’s estimate of the network (where j 6= i and j ∈ Ni).

For a robot to minimize the communication cost of transmitting its measurements at every

time step, it is desirable to employ an event-triggered strategy to be used within a Kalman filtering

framework. As we have seen, agents have the ability to share measurements, although there is

a cost associated with that which depends on the number of measurements sent. In order to

reduce the communication costs associated with the sharing process, we propose an event-based

strategy that allows us to send just the measurements (or more specifically, the components of the

measurement vector) that are considered innovative enough for the receiving agent. Thus, at time

k robot i will send the `-th component of the measurement vector yi(k), elem(yi(k), `), only if the

absolute value of the innovation for that component is larger than a fixed value, which we call the

innovation threshold, δ. In other words, we know that measurements that have small innovations

associated to them will not affect the state estimate by much. Expressed more formally, we will

check if elem(|yi(k)− hi(x̂ij(k))|, `) is greater than δ, and send elem(yi(k), `) if the condition is

met. If the condition is not met, then that component is not sent, and robot j receives an empty

measurement. However, since the innovation threshold is known to all agents in the network, the

absence of a measurement component gives implicit information about that very measurement

component, and robot j is able to fuse that information into its state estimate using a modified

Kalman filter update.

The following sections provide detailed information about our proposed method. Figure 4.2

shows a block diagram that is meant to help in acquiring a conceptual understanding of the algo-

rithm.

4.2.1 Observations

In our model, the agents that any given agent can measure (and communicate with) are

fixed and do not change during the execution of the algorithm. Another possible model is that in

which the agents can only communicate with neighbors that are within a certain radius from the

measuring agent. Although both are perfectly valid, we find the former more useful when studying

26

Check if any
measurements

available

No

Prediction
step

Yes Check
measurement

source

Explicit

Received

Kalman filter
update own

estimate

Implicit
measurement
update own

estimate

Compute
predicted
innovation
component

Share
explicitly

Share
implicitly

Check
measurement

type

Own Implicit

Kalman filter
update shared

estimate

Implicit
measurement
update shared

estimate

Initialize

Figure 4.2: Block diagram showing the fundamental elements of the event-based algorithm

27

the performance of our event-based algorithm, since we can have control over the communication

graph regardless of the motions of the agents and the trajectories they follow.

The agents, hence, move describing certain paths in an environment. The environment, even

though can have objects, walls, borders and additional features, is not observed by the agents,

that is, agents can just observe other agents. We assume there are no beacons or landmarks for

the agents to position themselves, and agents have to rely on relative measurements and rare GPS

measurements. At each time step k, each robot i obtains a series of observations from its sensor

suite that are grouped to form the measurement vector yi(k) ∈ Rmi . This vector will be used by

i to update its state estimate. Also, after some processing, a modification of vector will also be

shared with all agents j ∈ Ni.

4.2.2 Communications

Once each agent i has gathered the measurement vector at the current time step it will run

a series of processes to determine what particular components should be sent to the rest of the

agents that i communicates with. It will do that by using its a priori common estimate with each

other agent j ∈ Ni to determine which, if any, components of its measurement vector to send

to each neighbor based on the innovation threshold parameter δ. 1 The importance of these

shared common estimates is crucial; the process to decide whether to send a specific component

of the observations vector could be performed using each agent’s own estimate. However, the

shared estimates are specifically tailored for that purpose, since they are updated only with the

measurements exchanged between the two agents that share them, hence being more conservative

and leading to the triggering condition being met in the right circumstances. After the components

that will be shared explicitly and implicitly have been determined, the measurements are sent

directly to the robot that is meant to receive them. The measurement vector sent by agent i to

agent j will be different, in general, for each j, and different as well from the original measurement

1 Nothing forces the innovation parameter to be the same across the network, although that is the case in all
simulations and analyses in this work, hence the use of δ instead of δi.

28

vector, yi(k). As a side note, we do not consider the possibility that the messages can be sent to

the wrong agent, nor are there data association problems that can lead agents to think that a data

packet comes from an agent that is not the original sending agent.

The complementary process to sending measurements is receiving them. Since communica-

tions are assumed to be symmetric, for each agent j that i sends data to, it will also receive data

from. Agent i will process two kinds of measurements. First, those from its sensor suite, which

will be used to perform a Kalman filter update to its own posterior state estimate. Second, those

it receives from other agents in either explicit or implicit form. Implicit measurements are defined

to be the knowledge gained when a measurement is not sent (i.e. when the innovation was smaller

than the threshold). Explicit measurements are fused using a Gaussian measurement model via

a Kalman filter update, while implicit measurement updates are performed using Gaussian mo-

ment matching approximations for set-based measurement updates. All measurements are used

to update x̂alli (k),Pall
i (k), whereas only measurements sent between i and j (explicitly and implic-

itly) are used to update xij(k),Pij(k). While the shared estimates are not what we are looking

for per se, they are necessary to determine which measurements will be shared between any two

communicating agents.

4.2.3 Measurement update

Agent i, after sending the measurements it has taken with its sensor suite to its neighbors

(agents that it communicates with), will check its inbox to get the measurements its neighbors

have sent to it and process them. As we have seen, these will be a combination of explicit and

implicit measurements. Explicit measurements will show as the actual value of that measurement

component, whereas implicit ones will show as a non-existing value (which is different than having

a measurement that takes the 0 value). Explicit and implicit data will be fused differently, as the

next two sections detail.

Explicit information fusion

29

Each explicit measurement component ` agent i receives from each other agent j ∈ Ni,

and the row of the observation model Jacobian that corresponds to the `-th measurement compo-

nent, row(Ci(k), `), will be used to perform an element-wise Kalman update on its own estimate,

{x̂alli (k),Pall
i (k)}, as well as on the corresponding estimate between i and j, {xij(k),Pij(k)}, as Al-

gorithm 1 shows. Additionally, from the measurement vector taken by i (that is, not received from

other agents), the whole vector will be used to update its own estimate and covariance, whereas

only the components shared explicitly between i and each other agent j ∈ Ni will be fused explicitly

into the shared estimates.

Algorithm 1 Extended Kalman Filter Measurement Update

Require: x̂(k),P(k), C(k), R,y(k)
1: K = P(k)C(k)T (C(k)P(k)C(k)T +R)−1

2: z = y(k)− h(x̂(k))
3: x̂(k) = x̂(k) +Kz
4: P (k) = (I−KC(k))P(k)
5: return x̂(k),P(k)

Implicit information fusion

As mentioned before, an implicit measurement looks to the receiving agents as if nothing

was sent for a specific component (which is known) of the measurement vector. Similarly to the

explicit fusion process, each implicit measurement component ` agent i receives from each other

agent j ∈ Ni is used to perform an implicit update on its own estimate, {x̂alli (k),Pall
i (k)}, as well as

on the estimate that is shared between i and j, {xij(k),Pij(k)}. The components shared implicitly

between i and each other agent j ∈ Ni will also be fused implicitly into the shared estimates. This

brings about savings in communication costs, since there is no need for any bits to be allocated

on an implicit measurement. Information extraction from this lack of explicit data is still possible

thanks to the knowledge by all agents of the innovation parameter.

The derivation of the mathematical expressions that let us fuse implicit information together

with explicit information into our estimates consists of two main problems that we cover next.

Bayes’ theorem allows us to express the posterior distribution as a function of the prior

30

distribution and a likelihood model. In the case of a general state estimation problem, we can write

p(x(k)|y(k), ..., y(1), u(k), ..., u(1)) =

=
p(x(k)|y(k − 1), ..., y(1), u(k), ..., u(1))p(y(k)|x(k), y(k − 1), ..., y(1), u(k), ..., u(1)

p(y(k)|y(k − 1), ..., y(1), u(k), ..., u(1))
(4.1)

And the posterior distribution will be Gaussian if both the prior and the likelihood function are

Gaussian too.

In the case of implicit measurement fusion, we only know the measurement is within some

boundaries, i.e. y ∈ Θ, not its exact value. In other words, it is not point-valued but set-valued.

Therefore, we write Bayes’ theorem as

p(x(k)|y(k), ..., y(1), u(k), ..., u(1)) =

=
p(x(k)|y(k − 1), ..., y(1), u(k), ..., u(1))

∫
Θ p(y(k)|x(k), y(k − 1), ..., y(1), u(k), ..., u(1)dy∫

Θ p(y(k)|y(k − 1), ..., y(1), u(k), ..., u(1))dy
(4.2)

However, here the posterior will not be Gaussian. The proposed approach operates under the

assumption that this distribution can be approximated by a Gaussian with its same mean and

covariance.

The previous assumption allows us to formulate the problem recursively and within a Kalman

filter framework (see Appendix in [22] for formal proofs). However, when processing implicit mea-

surements we need to deal with truncated Gaussian distributions for which we need to calculate

mean and covariance. This is due to the fact that the likelihood function in Equation 4.2 is an

integral over the set of possible values y can take, Θ. Fortunately, the first and second moment

evaluations of truncated Gaussian distributions have analytic expressions and have been studied

extensively, for example in [27, 28]. These results enable the fusion of measurements that are both

explicit and implicit into our estimates. Algorithm 2 shows the computational steps needed to

31

Figure 4.3: If the innovation associated to a measurement falls in the blue region, that measurement
will not be sent, but rather shared implicitly. Innovations that fall in the white region are considered
large enough to be sent.

perform implicit measurement fusion. This shows the estimates for a generic agent, and xref is the

common or shared estimate with the corresponding communicating agent.

Algorithm 2 Implicit Measurement Update

Require: x̄(k), P̄(k), x̂(k),P(k),xref, C(k), R, δ
1: µ = C(k)(x̂(k)− x̄(k))
2: α = C(k)(xref − x̄(k))
3: Qe = C(k)P̄(k)C(k)T +R

4: z̄ =
φ(−δ+α−µ√

Qe
)−φ(δ+α−µ√

Qe
)

Q(−δ+α−µ√
Qe

)−Q(δ+α−µ√
Qe

)

√
Qe

5: ϑ =
(φ(−δ+α−µ√

Qe
)−φ(δ+α−µ√

Qe
)

Q(−δ+α−µ√
Qe

)−Q(δ+α−µ√
Qe

)

)2
−

(−δ+α−µ√
Qe

)φ(−δ+α−µ√
Qe

)−(δ+α−µ√
Qe

)φ(δ+α−µ√
Qe

)

Q(−δ+α−µ√
Qe

)−Q(δ+α−µ√
Qe

)

6: K = P(k)C(k)T (C(k)P(k)C(k)T +R)−1

7: x̂(k) = x̂(k) +Kz̄
8: P(k) = (I− ϑKC(k))P(k)
9: return x̂(k),P(k)

32

4.2.4 Covariance intersection

In specific scenarios, it may be desirable to keep the uncertainty in the estimates bounded

so that we get an idea of how large the errors are, provided that the filter is consistent. For

certain communication graphs it may happen that, even if the covariances start off at small values,

the lack of information about an agent to another agent causes the associated elements in both

covariance matrices to grow indefinitely. That will happen, in fact, whenever any two agents can

not measure each other and there is no third agent that can act as a link by measuring both of them

and sharing those measurements with them. To deal with this problem, we introduce an event-

triggered covariance intersection fusion method as a way for agents to improve their estimates of

other agents that they cannot receive measurements about.

The covariance intersection algorithm for data fusion was first introduced in [17]. In contrast

to the measurement updates we perform using the Kalman and implicit methods we have already

presented, covariance intersection (CI) offers a way to fuse two state estimates into a new state

estimate which bears the information contained in the two original estimates and their associated

covariance matrices (see Figure 4.4).

Covariance intersection requires a parameter ω ∈ R≥0 that determines the relative weight

that each of the two estimates has in the computation of the final estimate, based on the quality

of each estimate. Then, this parameter is solved for in an optimization process in which the cost

function is the trace of the resulting covariance matrix, which of course, depends on ω. Algorithm 3

describes this process in more detail.

Some of the characteristics of CI are its ability to preserve consistency in the filter and

the facts that it is a conservative method, prevents double-counting of measurements, and it

is done in an ad-hoc manner between any two agents. However, despite being a convenient tool

in certain situations, there are certain issues associated with covariance intersection that make it

impractical as the primary estimate update method. An example of an algorithm that uses CI as

its main update method can be found in [16], where agents take relative measurements to neighbors

33

Figure 4.4: Example of covariance intersection in 2D. The blue and green ellipsoids represent
the two original covariances, whereas the red ellipsoid represents the final covariance after the
fusion, corresponding to the ω parameter that optimizes the problem. The dotted lines are solution
candidates. Modified from [1].

and then update their own estimates without sending or receiving other agents’ measurements. The

cross-correlations between agents’ states are introduced by the CI method through the combina-

tion of the respective covariance matrices. However, there are many drawbacks when doing this.

One is that sending estimates (which include the estimated state and associated covariance) over

the communication channel is more energy-consuming than it is to send measurements to other

agents [26]. Second, the costs of computation are greater than when a Kalman filter update is

performed, due to the additional optimization problem that needs to be solved in order to find the

weighting parameter (see Algorithm 3). Finally, in decentralized scenarios CI produces suboptimal

fusion results [18], since it is a conservative process that discards new information. On the other

hand, the method we propose here can achieve the performance of a centralized algorithm more

closely.

34

Event-triggered CI algorithm

Algorithm 3 Covariance Intersection Algorithm

Require: µ1, P1, µ2, P2, β
1: ω∗ = argminω∈[0,1] trace((ωP−1

1 + (1− ω)P−1
2)−1diag(β))

2: Pnew = (ω∗P−1
1 + (1− ω∗)P−1

2)−1

3: µnew = Pnew(ω∗P−1
1 µ1 + (1− ω∗)P−1

2 µ2)
4: return µnew, Pnew

4.2.5 Prediction

After each vehicle has fused the measurements from its own sensor and those received from

neighbor agents and, if the conditions are met, after covariance intersection has been performed,

all team members will proceed to propagate the state estimates and covariances forward in time,

until the next measurement is taken and the estimates can be updated again.

The estimate for an arbitrary vehicle’s state at time step k will be denoted by x̂(k), and

consists of a 2-dimensional position and orientation vector in a global reference frame for said

vehicle.

x̂(k) = [x y θ]T (4.3)

The predicted estimate for an arbitrary vehicle’s state at time step k + 1 will be denoted by

x̄(k + 1):

x̄(k + 1) = [x′ y′ θ′]T (4.4)

The notation here is purposely generic, since we are not modeling a particular agent but rather the

state of any vehicle in the network.

For all team members, the Dubin’s motion model (or velocity motion model) is used, which

assumes we can control a vehicle through two velocities, a translational one, v and a rotational one,

35

ω. Then, the control input vector is at time step k is

u(k) = [v ω]T (4.5)

We establish that a positive rotational velocity induces a counterclockwise rotation from a

top view of the plane, and a positive translational velocity induces a forward motion. We assume

that the dynamics and control inputs are perfectly known within each agent, with the exception

of some process noise that acts on all vehicles in the same way but is not modeled. Equation 4.6

expresses the predicted state of a vehicle at time step k + 1 as a function of the state at time k

assuming ω 6= 0:

x′ = x− v
ω sin(θ) + v

ω sin(θ + ωdt)

y′ = y + v
ω cos(θ)− v

ω cos(θ + ωdt)

θ′ = θ + ωdt

(4.6)

Vehicles can use its own processors to integrate the motions of all team members to compute

the prior estimates and covariances for the next time step. Algorithm 4 details how this is done

for one vehicle at a time. In other words, Algorithm 4 is run within each agent for every team

member at each time step in which we are predicting the state of the network for the next time

step. Therefore, the inputs x̂(k) and u(k) are generally different for every vehicle’s state we are

running the algorithm for.

Algorithm 4 Time Update Algorithm

Require: x̂(k) = [x y θ]T , P (k), Q(k),u(k) = [v ω]T

1: Solve Equation 4.6 for x̄(k + 1)
2: Solve Equation 4.8 for Φ and Γ
3: Solve Equation 4.7 using Φ and Γ for P̄(k + 1)
4: return x̄(k + 1), P̄(k + 1)

On top of predicting the state estimates for all agents at the next time step, the associated

covariance matrix needs to be determined as well. We know that it can be computed by means of

36

the following expression:

P̄(t) = Φ(t, k)P(k)ΦT (t, k) + Γ(t, k)Q(k)ΓT (t, k) (4.7)

where Φ(t, k)
∆
= ∂x(t)

∂x(k) is the state transition matrix between the initial time step k and the final

desired time t for each agent’s state, and Γ(t, k)
∆
= ∂x(t)

∂w(k) is the process noise transition matrix.

These are computed solving the following system of differential equations:

Φ̇(t, k) = A(t)Φ(t, k)

Γ̇(t, k) = A(t)Γ(t, k) +D

(4.8)

where A(t) = ∂f
∂x(t)(x̂(k)) is the Jacobian of the corresponding agent’s dynamics, and D = I3×3.

Analytic solutions to this system in general do not exist, so it is usually solved by numerical

integration.

Chapter 5

Simulations

We now present the organization of the simulations that have been performed to test the

proposed event-based estimation algorithm.

To this day, event-based algorithms using the implicit measurement update that our algorithm

uses have not considered non-linear effects, hence not using realistic measurement and dynamics and

controls models. The work carried out for this thesis emerges as the natural next step to take after

previous work done by other members in academia and industry with linear systems, given that

one of the main goals of the community working on robot localization is to study the applicability

of these algorithms to realistic scenarios. Whenever there is a new method whose performance we

want to compare to other state-of-the-art methods and whose characteristics are poorly known,

simulations can offer clear insight. Computer simulations are often a vital tool by which to predict,

to an extent that will depend on our ability to model and represent a part of the real world (our

system), the behavior of the actual platform we are trying to design and build. Hence, the main

motivation behind simulations is to somehow be able to study all the different phenomena that

are happening simultaneously and achieve a better understanding of what parameters trigger what

behaviors in our algorithm. Even though they are not sufficient, in and of themselves, in this

work we understand that the results obtained are only a first approximation towards successfully

implementing our algorithm on a real system.

These simulations are by themselves one of the contributions of this work, since the results

throw a lot of light not also to motivating the interest of the proposed method, but also to thinking

38

about future research activities.

We need to be precise when talking about comparing the performances of different Kalman-

based filters. Here, by performance we refer to a series of characteristics of the filter that make

it more desirable to be implemented in specific configurations than other filters. A narrow look

at the performance would only consider aspects such as state errors and consistency. However,

we understand that the design of an estimation algorithm for multi-robot localization has to take

into account other features, such as associated communication costs, computational complexity,

robustness or scalability. Accordingly, a view that tries to be as holistic as possible (with the

obvious limitations associated with limited time and scope) is adopted.

The performance of the algorithms will obviously be dependent on the values of the system

parameters and the specific conditions of use. Hence, we need to do a study that considers the

most relevant parameters and how the estimation capabilities change as these parameters take on

different values.

Our goals, then, are two-fold:

(1) Identify all the relevant user- and environment-dependent parameters that, when altered,

translate into changes in the performance of our filter, as measured by pre-established

metrics and indicators. These can be knobs that are either chosen by the user at the time

of setting up the fleet of robots for deployment, like the innovation threshold, imposed by

the environment, like the communication probability, or imposed by the hardware platform,

like sensor noise or processor speed.

(2) Perform an exhaustive analysis of the performance of our event-based filter with the purpose

of using the results to provide guidelines of usage. More specifically, the goal is to deter-

mine a set of specific conditions under which this algorithm can be used with an expected

accuracy and consistency. This will be explored in order to get a thorough insight into the

intrinsic characteristics of the event-based filter and to derive more generalist trends which

are situation-independent.

39

5.1 Study parameters

We begin by identifying the key parameters of our problem. Arguably, the most important

and distinctive aspect of our event-based filter is the innovation threshold, δ, which is used as a

tool to regulate the amount of bits in the data packets that vehicles exchange in their attempt to

find the state of the network. The larger this threshold is, the more ”innovative” the measurements

will have to be in order to be shared explicitly with other agents and the lower communication costs

will be, as Figure 5.1a shows. However, this comes at a cost – there is obviously a tradeoff between

the amount of messages that are shared explicitly and how the filter performs, at least intuitively.

When measurements roam within the two innovation bounds set by δ, the implicit update will

have a smaller impact on both the state estimate and covariance than the explicit update would.

The lack of a received explicit measurement, combined with the vehicles’ knowledge of the value

of δ, allows team members to extract some information from these situations, but the amount of

knowledge will decrease as the innovation threshold becomes larger. In the limit case, where δ

would be arbitrarily large, no measurements would be explicitly shared at all, and the filter would

eventually diverge.

By scrutinizing the performance of the filter under a wide range of innovation threshold

values, our intention is to gather the necessary information to determine what is happening and

why it is happening.

While intuition is an important notion in general, in science it needs to always be backed by

evidence. Even though it seems natural to think that the larger the innovation threshold, the larger

the mean value of the error, this has to be verified. Additionally, intuition offers a good starting

point for study, but the specific questions we want to answer are far more elusive. Here, we are

not only interested in sketching out the isolated effects of increasing or decreasing the innovation

threshold, but also on finding numbers to perform a quantitative analysis and, especially, on how

this relates to the bigger problem we are trying to tackle, where many other aspects come into play.

It is for this reason that the analysis performed here considers the interaction between different

40

parameters.

δ

Communication rate

Communication costs

0 ∞

0100%

lowesthighest

(a) Here we see the qualitative relationship between
innovation threshold, communication rate and com-
munication costs. The direction of the arrows repre-
sents an increase in the associated quantity.

(b) Possible communication topologies. The number
of links between agents, and the access of these agents
to privileged information, are elements that affect the
performance achieved in the estimates.

Figure 5.1

When thinking about realistic scenarios (those in which multi-agent systems usually have to

carry out their tasks), there are some changes we need to include in our models with respect to

idealistic or more simplified cases. One issue encountered very often in real-life applications that

can seriously compromise the performance of the proposed event-based filter is that of imperfect

communications. There may be several causes for this, from walls or other objects interfering with

the signal, to low reliability due to environment type and bandwidth limitations. Regardless of

the nature of this phenomenon, we think it is crucial to account for these imperfections due to the

potential impact they have on filter performance. There are two main sources of errors. Firstly, our

algorithm, by definition, is a method for cooperative localization, which implies that it relies heavily

on agent-to-agent measurements and communications. By compromising these, the filter loses to

some extent its strength, which is derived from the correlations between vehicles’ states. Secondly,

our particular approach uses implicit information (that is, the assumption that a measurement that

has not been received was intentionally not sent), which makes it vulnerable to lost measurements.

41

Essentially, this means the receiving agent will incorrectly fuse a lost measurement as an implicit

one, leading to errors and inconsistencies in the estimates. In all the different simulations, the

reach of these effects is what we pursue to know. Ultimately, we want to answer questions such

as how safe is it to use our event-based filter in low-reliability scenarios (e.g. underwater), how

quickly and abruptly do estimates degrade, or if there are any preventive measures to take to

shield against negative effects, for instance adaptive thresholding. For the reasons stated above,

the second parameter studied will be the communication success probability.

To motivate the decision for the third study parameter, let us imagine two different scenarios.

In the first one, a team of ground robots carries a heavy metal plate used in a construction project.

The vehicles move slowly and, whenever possible, in a straight line, since dropping it could result

in damage to the plate, robots, other elements or even people. In the second scenario, a team of

UAV’s is on a search and rescue mission in a forest. The motion here is faster and less predictable

than in the first case, due to the nature of the mission and the capabilities of the hardware platform.

In both scenarios, the robots cooperate with one another, and they could be using our event-based

algorithm to incur in fewer communication costs. However, if we assume that the clocks of the

robots in both cases operate at the same frequency, and that measurements and communications

happen at that same frequency, it seems clear that the second scenario will be more challenging.

In order to see the performance of our filter and how much it changes in different situations, the

type of motion will be studied in the simulations.

Finally, we know cooperative localization happens, by definition, in teams of robots that

measure and communicate with one another. With the exception of the 2-agent case, where the

vehicles either communicate or not, in any multi-agent system there are different ways to establish

the communications between agents. This is what we know as the communication topology, that

is, the model that specifies which vehicle talks to which at any given time. While some topologies

may be more adequate for cases where the goal is to compute estimates very accurately, there is

a trade-off, again, between the amount of data that is transmitted and the performance achieved.

In short, what different topologies will do is allow for information to spread faster in the network;

42

hence, if a vehicle can pin down its own location, the vehicles that communicate with it directly

will gain the benefits as well. In turn, other vehicles that communicate with these vehicles will

be able to benefit, although less directly. In the same way that with the innovation threshold we

attempt to be more energy-efficient by just using valuable information, here too some topologies

may be better than others, and this is what the simulations will explore.

A few examples of communication topologies can be seen in Figure 5.1b. The graph in the

top left is a case of ”all-to-all”, where each vehicle communicates with every other team member;

although ideal for estimation performance, this approach is not very energy-efficient since a lot

of power goes into transmitting the data to neighbors. Additionally, it also scales very poorly as

the team size increases. Top right shows a graph where one of the agents acts as a hub, and the

others rely on this central agent; this is a convenient configuration when one of the vehicles receives

accurate information about its location, since it benefits all the team immediately, although it

is quite sensitive to communication failures. Bottom left shows a line graph; in some practical

situations where robots can only transmit data and detect up to a certain distance and the robots

are physically semi-aligned, this may be the configuration we have to use. The main challenge

about this graph is that information can take a long time to travel from edge to edge if the network

is large. Finally, bottom right shows a circular diagram, which is similar to the line graph but with

no edges; the behavior of the last two would in general be similar, although the travel distance

would be significantly reduced in the latter, if we assume the same network size.

5.2 Performance metrics

When it comes to evaluating the performance of our algorithm, some metrics need to be

chosen and defined. This section outlines the fundamental aspects that are used in the performance

analysis of our algorithm, although other, more circumstantial, aspects that will be defined and

explained as needed later may also be considered on top.

One of the most relevant quantities is the mean squared error (MSE), since it gives us

an idea of how large the errors are on average. Here, we will use the MSE as a way to compare

43

different algorithms and parameter combinations, focusing more on the relative differences than in

the values themselves. 1

MSE =
1

n

n∑
s=1

(x̂s − xs)
2 (5.1)

where x̂s is the predicted at the time step of interest for simulation s, xs is the true value at the

same time step for the same simulation, and n is the total number of independent simulations.

The second metric we will consider is the covariance matrix, in particular the diagonal

elements. This will not only provide an idea of the level of uncertainty in our estimates, but also,

when compared to the MSE over a sufficiently large number of simulation runs, it will tell us how

well the two match and, thus, how consistent the estimates are.

Another quantity used will be the communication rate, which relates the number of explicit

measurements received with the total number of measurements. The communication rate (or CR)

is a defined as the ratio between the total number of measurements that a given agent has sent to

another agent and the total number of measurements that the sender has taken. 2 We note that

the CR is not a rate in a time-wise sense, or a measure of how often data packets are sent. Rather,

the communication rate is meant to be a direct measure of the amount of bytes sent and, in turn,

of the power used by robots in doing so. Hence, the communication rate between agents i and j is:

CRij =
sent

taken
(5.2)

This value is an indicator of how much information an agent is trying to communicate with another

agent, and is a direct measure of communication costs.

Along the same lines, we will also make use of the transmission rate, which is different to

the communication rate. The transmission rate is defined as the ratio between the total number

1 Of course, keeping an eye on the values is always crucial, and we must make sure that they make sense in the
context of our problem. In the simulations, we work with ground robots that move at speeds of 1 m/s and that
are separated by distances of 15 m at most. With this information and other problem parameters, we can get an
approximation of the errors we should be getting.

2 We make a distinction between taking a measurement and receiving a measurement. The first one refers to all
measurements that a vehicle gets from its sensor suite, and in general include GPS and range/bearing. The second
one refers to all measurements that a vehicle has received from other agents through the communication channel.

44

of measurements that an agent receives from another agent and the total number of measurements

that the sender has taken. The transmission rate between agents i and j is:

TRij =
received

taken
(5.3)

In perfect communications scenarios, these two quantities are always the same, since no measure-

ments are dropped or lost. However, the distinction is crucial in our case due to the fact that we

work with simulations in which data packets can be sent but not received, and the study of the

algorithm performance has to take that into consideration. Another remark is that both commu-

nication and transmission rate are defined between two agents. This is different for the innovation

threshold, which is defined for a particular agent regardless of other team members.

Finally, we note that the communication rate depends on the value of δ; although there is a

clear relationship between the two (an increase in the innovation parameter will generally cause a

decrease in the communication rate, which is the main metric we use to quantify communication

costs), in our approach the former is computed heuristically based on the results which have the

latter as one of the parameters. In other words, we fix δ and a posteriori we compute the CR

using the simulations’ results. The values of the CR as a function of δ will be problem-dependent,

and accordingly, for a new problem, we will have to try a range of innovation threshold values and

build the function heuristically. An analytic expression relating these two quantities for a much

simpler system, with one sensor and one estimator and where all the processes are linear, can be

found in [21].

5.3 Simulations setup

As described in the previous section, 4 main study parameters have been chosen: innovation

threshold, communication success probability, type of motion, and communication topology. For

each of these 4 parameters, a grid representing a discrete set of values will be created. The values

in this grid are not selected randomly, but rather to cover the widest possible range of practically

45

sound situations and applications. For example, when studying the effect of the motion, we will just

consider dynamic models that are attainable for commercial robots, or when considering innovation

threshold values we will not reach the point where no messages are sent at all. This ensures that

as little computer time as possible is spent on non-relevant simulations.

For the innovation threshold, in the 2-agent simulations the values chosen are

δall = {0, 0.05, 0.11, 0.17, 0.25, 0.31, 0.40, 0.60, 0.85, 1.15, 1.50}

δ adopts the units of the innovation, which implies it has no specific units (for the range component

it will have distance units, for the bearing component it will have angle units, etc.). These values

have been chosen so that the associated communication rates range from 100% to 5% in small equal

increments. Therefore, the associated set of CR values is

CRall = {100, 90, 80, 70, 60, 50, 45, 35, 25, 15, 5}

The communication rate is expressed in percent.

For the communication success probability, the values are

CPall = {100, 80, 60, 40, 20}

which are also expressed in percent.

The vehicle motion is determined by the control input that is applied to the agents in the

network. We study 4 main types of motion:

MTall =

{circular concentric,

slow circular non-concentric,

fast circular non-concentric,

fast non-circular}

Finally, we study 4 main classes of communication graphs. The first type is a fully connected,

2-agent graph, where both agents measure and communicate with each other. This allows us to

46

analyze the performance of our event-based filter in a simpler scenario, where network effects do

not play a big role. Then, the effects of a more complex network topology can be separated in

subsequent simulations, where more agents and other ways to communicate are introduced. In

order to do that, a bigger network of 6 agents is analyzed, with 3 different graphs: a star graph,

where one agent (called central agent) is connected to all other agents, and all other agents are

only connected to the central agent; a bridge graph, with 2 cliques of 3 agents each that are fully

connected, and with just one link between the cliques; and a chain (or line) graph, where each agent

is only connected to the next and previous agents. The first graph is supposed to be a realistic

baseline we can compare the rest of results with. This configuration, with one agent acting as a

hub, is safe, does not incur on high communication costs, and can be used in a variety of real-life

applications. The next graph we study, with 2 cliques and 1 bridge, has the additional complication

that one of the cliques is more links away to the agent with accurate positioning; we expect to see

different behaviors between the 2 cliques under some circumstances. The line graph is yet more

challenging, in the sense that any communication failure will render one entire group of agents

blind to accurate information.

A total of n = 30 i.i.d. runs are performed for each single parameter combination.3 To

generate all parameter combinations, all parameters but one are fixed, and the one that is not

adopts all the values previously determined. Once all values have been used for the first parameter,

the second parameter will be changed to the next value, and the first parameter will again adopt

all possible values. This process will be repeated until all possible combinations have been realized.

If we have vpi possible values for parameter i, then the total number of combinations is

ntotal =

np∏
i=1

vpi

where np is the number of different parameters considered, in our case 4.

General parameter values for the simulations, both with 2 agents and 6 agents, can be found

3 This number is generally considered the smallest one to use for the law of large numbers to apply, and due
to limited computer time is the one we will use, since we are mainly trying to obtain the mean values of different
magnitudes.

47

in the following tables.

Table 5.1: Table with the values of the parameters that are common for all simulations.

Parameter Value

Duration of simulations, T 10s

Time step, dt 0.1s

Process noise covariance matrix, Q

0.01 0 0
0 0.01 0
0 0 0.001

Range error variance, ρr 0.05m2

Bearing error variance, ρb 0.05rad2

GPS-position variance, ρGPSpos 1m2

GPS-heading variance, ρGPShd 1rad2

Table 5.2: Table with the values of the parameters that are common only for the 2-agent simulations.

Parameter Value

Initial state, X̂†0

 −2m 0
12m 5

2π/3rad −π/2

Initial covariance, P ‡0 I3×3

Control input, u(k)∗ Motion 1:

[
1m/s 1

1rad/s 0.5

]
Motion 2:

[
2m/s 2

1rad/s 1

]
Motion 3:

[
1m/s 0.5

1rad/s 0.5

]
Motion 4:

[
1m/s 1

sin(0.5 t(k) + π)rad/s sin(0.1 t(k))

]
† Each column represents the state of an agent.
‡ Covariance matrix associated to each state.

∗ Each column represents the control input for an agent.

48

Table 5.3: Table with the values of the parameters that are common only for the 6-agent simulations.

Parameter Value

Initial state, X̂†0

 0m −5 5 5 −5 0
0m 7 12 −12 −7 17

0rad π/2 π/2 0 0 −π/2

Initial covariance, P ‡0

1m2 0 0
0 1m2 0
0 0 0.1rad2

Control input, u(k)∗

[
1m/s 0.5 1 0.5 0.7 0.5

0.5rad/s 1 1 0.5 0.1 0.5

]
† Each column represents the state of an agent.
‡ Covariance matrix associated to each state.

∗ Each column represents the control input for an agent.

Chapter 6

Results

In this section, results from all simulation runs are presented and discussed. Results are first

divided into two subsections that, even though present a lot of similarities, differ in the level of

complexity and number of phenomena involved. In the 2-agent simulations, inherent characteristics

of the event-based algorithm manifest in a more isolated way, therefore being easier to analyze these

cases and draw conclusions. Conversely, 6-agent simulations have an added layer of complexity, since

we are introducing network topology effects, non-ubiquitous GPS measurements and covariance

intersection. By first outlining and discussing 2-agent simulations and subsequently transitioning

to 6-agent simulations, we hope to introduce the results in an order that makes sense and that is

as clear as possible.

6.1 2-agent simulations

We use simulations with N = 2 to study the effects of the following parameters: 1) the

innovation threshold, indicated by δ, which directly correlates with a more intuitive metric that is

the communication rate, 2) the communication success probability, indicated by CP , and 3) the

type of motion that the vehicles follow, indicated by MT . The parameters used in the simulations

for 2 agents are shown in Table 5.2, Chapter 5.

50

6.1.1 Effects of innovation threshold

When studying algorithms whose main goal is to help reduce communication costs in a robot

network, a straightforward metric is the amount of data that is taken, processed and shared between

agents.

In this section we show the effects on filter performance and consistency of the innovation

threshold, δ for perfect communication scenarios, that is, when the communication success proba-

bility CP is 1.

In Figure 6.2, we can see one of the most important characteristics of this filter, which is its

ability to maintain consistency in perfect communication scenarios. This figure shows the result of

agent 1 tracking both its own and agent 2’s pose in a 2-agent setup, where there is no apparent loss

of consistency as we increase δ (thus decreasing the average explicit communication rate) because

the mean squared error matches the predicted covariance showing that even with the nonlinear

dynamics and measurement models, our algorithm remains consistent. For reference, we can look

at Figure 6.1 to see that, for the largest value of the innovation threshold considered, δ = 1.5,

the communication rate is CR(δ = 1.5) = 9%, and a communication rate of 50% corresponds to

δ = 0.3.

We also compare the MSE of our event-based algorithm (referred to as full EBF hereafter)

with an event-based filter where implicit measurements are not fused (referred to as EBFni from

now on) in Figure 6.3 for a 2-agent configuration. The two filters are set up to run in parallel

with the same data and initial conditions. This means the conditions to decide whether to send

a measurement or not were computed only once and provided the same trigger for the two filters;

in the event that the measurement was to be sent (shared explicitly), both filters performed the

traditional Kalman update, but if the measurement was to not be sent (shared implicitly), then

the full filter performed an implicit update and the filter with no implicit information did nothing.

We can see that, as δ increases and fewer measurements are sent, our algorithm steadily

outperforms the version without the implicit information. This clearly shows that fusing implicit

51

0 0.5 1 1.5

0

20

40

60

80

100

Figure 6.1: This figure shows the averaged communication rate between the 2 agents as a function
of the innovation threshold, δ.

information in the measurements not sent improves performance. Furthermore, for small δ values,

both filter’s performances will be very close to an EKF that fuses all measurements explicitly. This

is a point worth underlining – for the scenarios tried in the 2-agent simulations, the performance

of the full event-based filter is barely worse than that of a centralized EKF for communication

rates as low as 50%, both in terms of MSE and of the matching between MSE and covariance. For

larger δ values, our algorithm has moderate increases in MSE for the benefit of requiring much

fewer measurements sent, and manages to keep up with the EKF until the communication rate

drops below 10%, where the performance drops significantly. Another characteristic observed that

is desirable is the fact that performance degrades gracefully, keeping consistency throughout most

of the innovation threshold spectrum.

52

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

MSE, =0.05

Variance, =0.05

MSE, =0.31

Variance, =0.31

MSE, =0.85

Variance, =0.85

MSE, =1.50

Variance, =1.50

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

MSE, =0.05

Variance, =0.05

MSE, =0.31

Variance, =0.31

MSE, =0.85

Variance, =0.85

MSE, =1.50

Variance, =1.50

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

MSE, =0.05

Variance, =0.05

MSE, =0.31

Variance, =0.31

MSE, =0.85

Variance, =0.85

MSE, =1.50

Variance, =1.50

(a) Agent 1 tracking its own pose.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

MSE, =0.05

Variance, =0.05

MSE, =0.31

Variance, =0.31

MSE, =0.85

Variance, =0.85

MSE, =1.50

Variance, =1.50

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MSE, =0.05

Variance, =0.05

MSE, =0.31

Variance, =0.31

MSE, =0.85

Variance, =0.85

MSE, =1.50

Variance, =1.50

(b) Agent 1 tracking agent 2’s pose.

Figure 6.2: This figure illustrates that there is no apparent loss of consistency as we increase δ.
For both agents’ states, and for all components, the mean squared error matches the predicted
covariance.

6.1.2 Effects of communication success probability

The event-based algorithm fuses information into its state estimates in two main ways (three

if we include covariance intersection, although this method does not fuse measurements but states

and covariances and is not implemented in the 2-agents simulations): explicit measurements are

used to update the state estimate using a traditional Kalman filter, and implicit measurements are

fused using the implicit algorithm defined in previous sections, which in turn uses the knowledge

about the innovation threshold. A potential source of problems is, therefore, the loss of data

packets through the communication channel, since the algorithm relies on the knowledge that

a measurement which was not received was deliberately censored. Whenever this happens, the

receiving agent will process the lost measurement component implicitly, which may or may not

be the case. Here, we investigate the robustness of our algorithm to imperfect communication

53

Figure 6.3: This figure depicts our event-based filter against an event-based filter that does not fuse
negative information. One can see that, as the threshold parameter δ increases, our filter steadily
explicitly sends fewer measurements while not increasing squared error much above the full EKF
(δ = 0)

channels, specifically looking at filter accuracy and consistency for different communication success

probabilities.

Figure 6.4 shows the performance of two agents in a case where 50% measurements are being

explicitly sent on average, and different percentages of those sent are dropped due to imperfections

in the communication channel. This percentage is what we refer to as the communication success

probability, or just communication probability, CP . 6.4 (a) shows agent 1’s estimate of its own x

coordinate, x1
1. Since absolute pose measurements are readily available at every time step for both

agents, the estimates of the agents’ own states are not expected to be sensitive at all on CP , which

is seen in the plot. However, 6.4 (b) and (c), show that agent 1’s estimate of agent 2’s x location, x2
1,

54

as well as agent 2’s estimate of agent 1’s x location, x1
2, are both dependent on CP . One may argue

that neither agent actually needs the other agent’s proprioceptive measurements (obtained through

GPS), since by getting proprioceptive measurements of itself (which provide information about the

pose in an absolute reference frame) and relative measurements to the other agent, all states can

be recovered. While that is true, let us keep in mind that the assumption is that measurements

are being shared between team members. As such, a received measurement will be fused explicitly,

and a non-received one will be fused implicitly, while ignoring measurements is not considered. By

fusing implicit information, the algorithm assumes that the original measurement was within some

bounds. At the same time, a measurement that has been sent is, by definition, outside of these

bounds. The problem comes when a measurement is sent but not received, since then it is assume

to contain some information when in reality it contains other information. Filter inconsistency is,

therefore, an inevitable consequence when data packets are dropped, and we see that as we increase

communication failure rates there is an increasing gap between the predicted covariance and the

true MSE.

Figure 6.5 depicts the final sum of the MSE for both agents for several communication

probabilities, showing that the error increases as more measurements are dropped. 6.6 shows the

predicted trace of the covariance matrix. One thing to note is the difference in scale between the

two plots, 6.5 and 6.6. If we focus on curves corresponding to large CP values, we see that the

points match quite well, which at a first glance indicates a consistent filter. However, as we decrease

CP we see what appears to be as the filter being overconfident in the filter’s estimates. The lowest

value of the communication probability shown in the MSE plots is 40%, since 20% are too large to

fit in the frame.

One of the key factors causing this mismatch between predicted and actual errors is the filter

interpreting dropped measurements as implicit measurements, which leads to incorrectly fusing

observations. Only messages shared explicitly can be misinterpreted. That is, a message that has

been sent but not received is an explicit message that has been fused implicitly, but a message that

was intentionally shared implicitly will never be fused explicitly, since the value of the measurement

55

0 2 4 6 8 10
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x 11 e
rr

or
 s

qu
ar

ed
 (

m
2)

MSE-Covariance, Communication Rate = 50%

MSE, CP=100%
Variance, CP=100%
MSE, CP=60%
Variance, CP=60%
MSE, CP=20%
Variance, CP=20%
MSE Centralized EKF
Variance Centralized EKF

(a) Agent 1’s estimate of its own x coordinate.

0 2 4 6 8 10
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x 12 e
rr

or
 s

qu
ar

ed
 (

m
2)

MSE-Covariance, Communication Rate = 50%

(b) Agent 1’s estimate of agent 2’s x coordinate.

0 2 4 6 8 10
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x 21 e
rr

or
 s

qu
ar

ed
 (

m
2)

MSE-Covariance, Communication Rate = 50%

(c) Agent 2’s estimate of agent 1’s x coordinate.

Figure 6.4: Consistency loss for a scenario with 50% communication rate.

56

(a) Sum of the components of the mean squared
error in agent 1’s estimate, corresponding to
agent 2’s state.

0 0.5 1 1.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Agent 2

(b) Sum of the components of the mean squared
error in agent 2’s estimate, corresponding to
agent 1’s state.

Figure 6.5: Sum of the components of the mean squared error for different CP values, as a function
of δ.

(a)

0 0.5 1 1.5

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

(b)

Figure 6.6: Trace of the covariance matrix associated with the state of the network in (a) agent 1
and (b) agent 2, at the final time step for different innovation threshold values.

will not be available to the receiving agent to begin with. As δ increases, more measurements are

57

sent implicitly and fewer explicitly. Accordingly, fewer measurements can be dropped (in absolute

terms. The percentage of dropped measurements is fixed), which results in fewer measurements

being incorrectly fused.

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ratio of incorrectly fused measurements

Figure 6.7: Ratio of incorrectly fused measurements over total shared measurements for different
CP values as a function of δ. Agent 1 is shown in blue, and agent 2 in orange.

In order to explain numerically this particular behavior of the filter, we look at the relative

amount of measurements of messages that are not fused correctly (by not fused correctly, we refer

to messages that are fused as if they were implicit but that were actually explicit). This quantity,

which we refer to as the incorrectly classified ratio (ICR), is equal to the number of measurements

that a vehicle has incorrectly classified over the total number of measurements that the same vehicle

has received from other agents and fused (Equation 6.1). Intuitively, the this ratio seems like a

good candidate to explain the origin of the filter’s overconfidence (the state error distribution does

not agree with that predicted by the covariance matrix, and in particular errors are larger than the

covariance matrix suggests). However, Figure 6.8 suggests that, even though up to a certain point,

as the ratio of incorrectly fused measurements decreases, the actual and predicted errors get closer

to one another, they start diverging again for larger innovation threshold values. This can be due

58

to the fact that, even if for larger δ values this ratio is lower (as seen in Figure 6.7), the filter is

more sensitive to an explicit measurement drop, since most of the measurements it is receiving are

in the form of implicit information.

ICRij =
measurements dropped

total measurements
(6.1)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

Figure 6.8: Comparison between MSE and variance for different δ values, for a communication
probability of 40%. We can see that the smallest gap between MSE and variance is associated with
intermediate innovation thresholds (green and orange). The diamond-shaped markers correspond
to the baseline, the centralized EKF.

Figure 6.9 compares our event-based filter (EBF − EKF) with one where no information

is fused when our filter would have sent an implicit measurement (Full EBF − EBFni) when

the communication probability (CP) is low. This contrasts with Figure 6.3 that highlights the

improved performance of fusing the implicit information when CP = 100%. Figure 6.9 (a) and (b)

both shows a limitations of our event-based filter. Here, the communication probability is only 20%

and, accordingly, some of the messages are in the form of explicit measurements that are dropped,

even though our filter interprets them as having been implicitly sent, as seen in Figure 6.7. This

59

leads to larger errors in Full EBF − EKF and smaller errors when implicit information (real implicit

information or dropped measurements) is ignored (Full EBF − EBFni). 6.9 (a) also implies that for

low communication probability, increasing the innovation parameter δ improves the performance.

This seems to be explained by the fact that increasing δ decreases the chance that an explicit

measurement is dropped, and therefore, misinterpreted as an implicit measurement, as seen above

in 6.7.

0 0.5 1 1.5
0

2

4

6
10

-3

0 0.5 1 1.5
0

0.005

0.01

0.015

0 0.5 1 1.5
0.01

0.02

0.03

0.04

Full EBF

EBFni

(a) Mean squared errors for the two filters, the
full EBF and the EBF with no implicit informa-
tion, as a function of δ.

0 2 4 6 8 10

-0.2

0

0.2

Agent 1 (Full EBF - EKF)

Agent 2 (Full EBF - EKF)

Agent 1 (Full EBF - EBFni)

Agent 2 (Full EBF - EBFni)

0 2 4 6 8 10

-0.1

0

0.1

0 2 4 6 8 10
-0.5

0

0.5

(b) Mean squared errors for the two EBF filters
and the centralized EKF, as a function of time.

Figure 6.9: Comparison between the mean squared errors of the two event-based filters analyzed.

6.1.3 Effects of vehicle motion

Intuitively, we would expect the states of agents that are moving following more aggressive

maneuvering, including sharp turns and larger acceleration values, to be harder to estimate for the

event-based filter. It is important to remember that the EBF is based on the extended Kalman filter,

which is in turn not guaranteed to work in non-linear cases and can even diverge. By introducing the

implicit update algorithm in our code, the filter becomes more vulnerable to nonlinearities. Here,

60

4 different types of vehicle motion with varying degrees of non-linearity are considered; circular

concentric, slow circular non-concentric, fast circular non-concentric and aggressive maneuvering,

as can be seen in Figure 6.10.

2

1

2

1

2

1

Figure 6.10: The three main motion types analyzed. For the circular concentric case (shown here in
the middle), two different configurations exist: one with low velocities and one with high velocities.

6.2 6-agent simulations

In this section, we perform simulations with a larger network where N = 6 in order to study

the performance of the event-based filter for a larger network with different communication topology

models. Since our ultimate goal is to see the accuracy and consistency of this algorithm in scenarios

which are as realistic as possible, here we get one step closer to that by introducing multiple agents,

different communication graphs and non-ubiquitous GPS in the simulations. Figure 6.12 depicts

the 6-agent simulations for the three different graphs or topologies: star, bridge and line. The

parameters used in the simulations for 2 agents are shown in Table 5.3, Chapter 5.

The most noteworthy characteristic we can infer from the results is that the motion type

does not seem to cause any significant differences in the general behavior of the filter. Even though

the specific numbers for different metric are slightly different and in general slower motions show

lower MSE values, the same trends are observed across the different motions. This explains the

fact that we have chosen that all figures in previous sections only depict the motion type in which

61

the agents move more aggressively. This gives us the confidence that, when showing any specific

effect and quantifying it, we know it will also hold, and most likely to a lesser extent, for other

motion types. In Figure 6.11 (a) we show that, for a communication probability of 40%, the filter

performs significantly better when estimating vehicles that follow a slower, more uniform motion

than when estimation vehicles that move aggressively. Figure 6.11 (b) measures the effects of the

motion type on the MSE, and the MSE for the centralized EKF is included as a reference.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Comparison between MSE and variance for
different δ values, for a communication probabil-
ity of 40%, for a circular non-concentric motion.
This can be directly compared with Figure 6.8,
which shows the same for the motion with ag-
gressive maneuvering.

0 0.5 1 1.5
0.008

0.01

0.012

0.014

0.016

0.018

0.02
Agressive maneuvering
Circular motion
Centralized EKF

(b) Mean squared errors for two motion types
(circular non-concentic, which shows the lower
MSE, and aggressive maneuvering, which shows
the higher MSE) and the centralized EKF, as a
function of the innovation parameter.

Figure 6.11

6.2.1 Effects of communication graph

The simulations results show that communication topology plays an important role in the

performance of the algorithm. In this section, the performance of the event-based filter for a

larger network consisting of 6 agents is studied. Since our ultimate goal is to see the accuracy and

consistency of this algorithm in scenarios which are as realistic as possible, additional elements

such as multiple agents, different communication graphs and non-ubiquitous GPS are added in the

62

6

2

3

5

1

4

bridge
star

line

Figure 6.12: Vehicle motion and the 3 different communication models (star, bridge, chain) used
in the 6-agent simulations.

simulations. Figure 6.12 depicts the 6-agent simulations for the three different graphs or topologies:

star, bridge and line.

Two main aspects of the 6-agents simulations, observability and covariance intersection ef-

fects, are considered next: observability issues and covariance intersection effects.

1. Observability issues

Depending on the communication topology and GPS availability to the agents, the state of the

whole network in an absolute reference frame may be impossible to determine. The ability to pin

down a subset of agents does not necessarily lead to the ability to do so for all team members. In

our algorithm, measurements are shared between communicating pairs of agents, but they are not

passed over to additional members.

Observability of the full network state is heavily dependent on the measurement sharing

topology. For instance, in the bridge topology the 2 subsets of agents have full communication

internally (every agent talks with the rest of the agents in the subset), but there is only one link

between the two groups. This means if that link fails or is lost, the two groups become blind to

63

one another. A more extreme case is the chain topology, where the network diameter is largest.

For this graph, if information is desired to go from the agent at one edge to the agent at the other

edge, all agents in between have to successfully receive and transmit that information at some

point, which takes time and makes the system more vulnerable to data drops. An example of

such valuable information that would potentially be shared among all agents is GPS localization,

since the problem of interest is that of robot localization in a global reference frame. On the other

side, the star graph has a smaller network diameter, which benefits the system as a whole, but

is dangerous for agents individually, since if one of the links breaks, an agent becomes isolated.

Complexity increases in situations where GPS is limited or restricted to certain agents and, overall,

the particular application dictates which topology should be used, and different communication

graphs work better in different scenarios.

There are different ways to cope with observability issues. Well connected networks present

fewer problems when it comes to this thanks to more links existing between agents, at the expenses

of having increased communication costs and, possibly, having to use higher bandwidths and more

expensive hardware. Another option is to have GPS or other forms of absolute positioning available

to more agents, or to agents in strategical positions of the network. As an example, let us examine a

case with a chain-shaped graph. Here, it can be seen that even if the agent with GPS access changes,

most agents are still going to be out of reach, not being able to benefit from that information. For

the chain graph, Figure 6.13 (a) shows a case where only one of the agents (agent 4, in the edge

of the graph) gets GPS measurements. Here, the y component of the estimated state drifts and

the filter is unable to correct it if only one agent gets GPS measurements. In (b) this behavior is

corrected by adding additional agents (agents 1 and 6) that receive GPS measurements as well.

However, in some cases, such as for unmanned underwater vehicles, this may be impractical,

since vehicles have to surface to get absolute measurements, thus incurring in additional energy

consumption and losing valuable mission time. In more extreme scenarios this practice is not even

possible, depending on mission requirements, GPS signal availability or hardware used. The third

method, which is studied in the present paper, is covariance intersection (or CI), and allows agent

64

0 2 4 6 8 10
0

0.5

1
Sq

ua
re

d
er

ro
r (

m
2)

Agent 3, =0

0 2 4 6 8 10
0

0.5

1

Sq
ua

re
d

er
ro

r (
m

2)

0 2 4 6 8 10
Time (s)

0

0.01

0.02

Sq
ua

re
d

er
ro

r (
ra

d
2)

(a)

0 2 4 6 8 10
0

0.5

1

Sq
ua

re
d

er
ro

r (
m

2)

Agent 3, multi-GPS, =0

0 2 4 6 8 10
0

0.5

1

Sq
ua

re
d

er
ro

r (
m

2)

0 2 4 6 8 10
Time (s)

0

0.02

0.04

Sq
ua

re
d

er
ro

r (
ra

d
2)

(b)

Figure 6.13: Comparison of agent 3’s resulting state estimates between (a) a case where just agent
4 has GPS, and (b) a case where multiple agents have GPS. Both plots correspond to the chain
graph.

pairs to fuse their state estimates and covariances with the goal of reducing uncertainty and ob-

taining an estimate that outperforms the other two. In this way, accurate state estimates from an

agent that benefits from absolute measurements flow through the network.

2. Effect of covariance intersection

Covariance intersection is used as a way for agents to sync their estimates and reduce their covari-

ance matrices. It is worth noting that CI involves higher communication and computational costs

than performing a traditional Kalman measurement update, so it is not used as the main method

for data sharing and fusion, but rather to overcome the problems associated with less observable

networks by triggering it when the trace of the covariance matrix for a particular robot exceeds

a certain threshold. The value of this threshold is design choice in which different metrics and

problem requirements have to be considered.

65

Figure 6.14 shows the effect that performing CI has on diagonal elements of the covariance

matrix of an arbitrary agent. The sinusoidal shape of the curves is caused by the circular motion

of the robots. This figure depicts a simulation where the agents communicate with one another

following a chain-shaped (or line) graph, as can be seen in Figure 6.12. By introducing additional

correlations between agents’ states, the resulting covariance matrix is generally filled with non-zero

values in corresponding off-diagonal elements. CI effects manifest by generally sudden jumps in the

covariance values, as can be seen around t = 4s or t = 5.2s. These correlations are passed from agent

to agent every time that CI is performed. However, states corresponding to two agents that are

separated by several links in the communication graph will not become correlated instantaneously.

Instead, it will take intermediate agents to perform CI successively for a few time steps. Delays in

the propagation of covariance intersection correlations are hard to see in these simulations, since

the network is relatively small.

Another interesting aspect of these simulations is the fact that the covariance matrix hits an

upper bound even in cases where there are very sparse or no measurements containing information

about specific agents. Then, every time covariance intersection is performed new correlations

between states are added, which reflects in this bound adopting a different value. Figure 6.14

shows the variances of the states of all agents, as estimated by agent 5. As can be seen, there

is a direct correlation between the number of links separating agent 5 and the other agents and

how large the variances are – for example, agent 6 is the farthest away from 5 (in terms of links

or connections) and the associated variance for 6 is the largest, whereas agent 2 is measured by 5

directly, so its covariance is small.

Covariance intersection is not needed in networks where all agents’ states are measured by or

shared between one another, since if the filter is properly tuned it will eventually converge. Figure

6.15, where agents communicate following a star-shaped graph, shows that because the only agent

that is receiving GPS measurements (agent 1) acts as a hub and is able to share them with the

rest of the network, all other states can be uniquely estimated by virtue of pinning down agent 1.

On the other hand, if GPS measurements were provided only to one of the agents that act as leaf

66

(a)

0 2 4 6 8 10

Time (s)

0

0.5

1

1.5

2

2.5

3

V
a

ri
a

n
c
e

 (
m

2
)

Diagonal elements of P
5
 - Chain graph

y
5

1

y
5

2

y
5

3

y
5

4

y
5

5

y
5

6

(b)

0 2 4 6 8 10

Time (s)

0

0.2

0.4

0.6

0.8

1

V
a

ri
a

n
c
e

 (
ra

d
2
)

Diagonal elements of P
5
 - Chain graph

5

1

5

2

5

3

5

4

5

5

5

6

(c)

Figure 6.14: Sample simulation results showing component-wise variances as predicted by agent 5
in the chain graph. Sudden drops or increases are an effect of CI, a method that acts instantly on
states and covariance matrices.

67

nodes (that is, all agents except for agent 1), it would become necessary to perform CI to prevent

the estimates from drifting away from the true states.

One important conclusion in multiple agent scenarios is that the number of agents that have

access to GPS measurements, as well as their position and ability to communicate with other

agents, affects the overall performance of the filter. Additionally, in view of the results it becomes

clear that CI plays a dominant role in cooperative localization, and correlations between agents

states introduced early on in the simulations have a long-lasting effect that allows a reduction in

communication costs without strong penalties on filter performance. This is particularly useful in

poorly connected graphs, although it comes at a price – performing CI more often brings about

higher communication costs, which is counterproductive, so an optimal combination of these two

values needs to be obtained. This is a problem of its own that would be worth studying in future

works.

68

0 2 4 6 8 10
Time (s)

0

0.2

0.4

0.6

0.8

1

Va
ria

nc
e

(m
2)

Diagonal elements of P 5 - Star graph

x5
1

x5
2

x5
3

x5
4

x5
5

x5
6

(a)

0 2 4 6 8 10
Time (s)

0

0.2

0.4

0.6

0.8

1

Va
ria

nc
e

(m
2)

Diagonal elements of P 5 - Star graph

y5
1

y5
2

y5
3

y5
4

y5
5

y5
6

(b)

0 2 4 6 8 10
Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

Va
ria

nc
e

(ra
d2)

Diagonal elements of P 5 - Star graph

5
1

5
2

5
3

5
4

5
5

5
6

(c)

Figure 6.15: Sample simulation results showing component-wise variances as predicted by agent 5
in the star graph. With the same CI threshold as in the chain graph, the better connected graph
results in CI not triggering.

Chapter 7

Conclusions

7.1 Summary of contributions

A novel algorithm that implements an event-based approach in a Kalman filter framework for

cooperative localization problems has been proposed, described and studied. The algorithm does

not make many of the assumptions that other works have made in the past and that, according to

the author, greatly limit their applicability to actual robotic platforms. The method at hand offers

vehicles that cooperate to localize themselves in an environment the possibility to check the value

of information before sending it to other agents. This is made possible by adapting an event-based

estimation approach to a decentralized cooperative localization problem, where each one of the

vehicles does the sending, broadcasting and the fusion processes at the same time.

Prior work has been done with event-based estimation algorithms on simple systems where

agents do not move at all, or move following very simple trajectories with linear dynamics models.

The poses of the agents, which are the quantities to estimate, are observed directly too. In these

situations, it is known that a Kalman filter is the optimal minimum variance estimator, and there

are guarantees that it will work. However, real applications are not as simple as the models in these

previous studies, and the performance of event-based filters remains unknown, for the most part.

This work addresses some of the fundamental questions in the topic and constitutes a first step

towards assessing the usefulness of event-based algorithms in the context of nonlinear cooperative

localization.

Simulations have been performed for a variety of parameter values and scenarios to study the

70

most significant aspects of the proposed method. One of these aspects is the ability to maintain

consistency. Results show that the amount of data that is sent between communicating agents does

not affect consistency in perfect communications scenarios; even in the cases where the communi-

cation rate, which directly measures what percentage of observations are shared explicitly, is below

10%, the updates do not result in optimistic or pessimistic error predictions, and the actual and

predicted errors match well. The algorithm’s MSE is compared to that of a centralized EKF, and

it is found that communication rate can be decreased significantly before the MSE’s for the two

filters diverge significantly.

Imperfect communications are considered. Based on the results, the effects of inadvertently

dropping data packets are tightly coupled with those of the communication rate. Specifically, while

on high values of the communication rate the system is particularly sensitive to data losses, the

extent of this is minimized as the communication rate decreases. This is partially explained by

the rate of incorrectly fused data packets, which is much higher at high communication rates when

a vehicle expects most of the data packets to be shared explicitly. A brief discussion on how to

counteract these negative effects is included.

To the best of our knowledge, network topology effects have typically not been considered

previously for decentralized event-triggered algorithms. In this work, 2 different network sizes

are considered, one with 2 agents and another one with 6 agents. In the latter case, different

communication models are studied and it is seen that, in situations where only one of the agents

has access to absolute positioning information, the connectivity of this agent is crucial for the

rest of the network to immediately benefit from that accurate information. Additionally, the

way the network is globally structured also affects the rate at which privileged measurements

reach all agents. It is seen that covariance intersection, a conservative fusion algorithm, can help

introduce correlations between agents that increase the rate at which accurate information spreads.

Covariance intersection can also be used sporadically as a tool to keep these correlations large

enough so that the covariance matrices of agents remain bounded.

Finally, vehicle motion is also studied. Different types of nonlinear motion, with different

71

speeds and turning rates, are looked into. Although the algorithm performs quantitatively worse

in the cases where nonlinearities are larger, the overall effects and tendencies are the same, which

is a very positive feature. Although no guarantees can be given as to the proper functioning of the

algorithm in every situation, since it is based on an approximate solution, the different scenarios

simulated here suggest that the algorithm is robust enough for a lot of practical situations.

One of the important contributions of this work is the fact that extensive Monte Carlo runs

are performed to back the results with enough and meaningful data. As many technical details as

possible (always advised by common sense and the precaution of not making this document too

lengthy) are given so that other groups or individuals can reproduce the results obtained here.

On the whole, the event-based cooperative localization algorithm has proved to significantly

reduce communication costs while compromising little on estimation performance. The performance

degrades gracefully, as long as the linearity assumptions hold. Lossy communication scenarios

should be handled with caution, and from an engineering perspective this should be one of the

foremost issues to address in future works. In large networks, the presence of an algorithm such as

covariance intersection is vital to keep the correlations of the agents large enough that the whole

network benefits from access by one of the agents to accurate absolute positioning data.

7.2 Future work

Further immediate work could be done on changing or limiting the measurement types that

vehicles are using in the current model to study the performance of the algorithm in yet more

challenging situations. For example, making the GPS measurements more sporadic, or using only

range instead of range and bearing. Another interesting issue would be to more formally quantify

the communication and processing costs associated with running the algorithm, since the ultimate

goal is to develop a method that is energy-efficient in real robot teams. Finally, variants of the

current covariance intersection implementation promise to be more efficient computationally and

have almost no differences in terms of result, for example by only fusing subsets of interest of the

state vector [29].

72

The proposed event-based algorithm attempts to primarily reduce communication costs by

not communicating information indiscriminately, regardless of its predicted value. This makes the

algorithm more computationally complex in certain aspects; the need to keep and update multiple

estimates for communicating agents, to compute predicted innovations with the shared estimates

or to perform the implicit update per se, which is more costly than a regular EKF measurement

update, supposes an added layer of complexity in the algorithm. We found that, in a lot of

scenarios, the communication needs are quite more stringent for the hardware platform being used

than the processing ones. For example, in underwater scenarios data is usually sent acoustically,

which requires an amount of power at least an order of magnitude higher than that associated

with computations. A more formal metric to quantify this tradeoff is nonetheless recommended

in future works. Additionally, throughout this work, communication rate is used as a measure of

communication costs. The next natural step would be to be more specific in quantifying these costs.

Knowing that the measurements vehicles take are in double, we can translate the bytes required to

send these doubles to expected bandwidth.

The innovation threshold correlates to the communication costs directly, and is here defined

by a value. From an engineering perspective, these values do not convey us much information

about the communication costs. A more intuitive way to define the innovation threshold would be

in terms of standard deviations, using our knowledge of the distribution of the innovation.

In the current model, vehicles keep an estimate of the states of all agents in the network.

This was added in the event that the communications topology changes mid-simulation, in an ad

hoc manner, and vehicles communicated with whatever other vehicles they ran into. A better way

to deal with this situation would be that the vehicles exchanged states when they first encountered

another vehicle they know nothing about, instead of keeping an estimate that does not contain any

information, neither from direct measurements nor from measurements received from other agents.

Another possibility is exploring the robustness of the proposed algorithm to different sources

of imperfections. One might be model errors; we have assumed some levels of process noise added

to a perfect model, but in a lot of cases that does not hold, and the dynamics or control models have

73

errors that could compromise the quality of the estimates. Another potential source of problems

is robot failure or kidnapping; how is the system affected by the sudden loss of a robot? How

many can be lost before the system is seriously compromised? Can the system recover if a robot is

suddenly placed somewhere else and does not know it?

Requiring more thought and study, one relevant issue to address is finding a method for agents

to handle the communication failures that ultimately lead to filter inconsistencies. It has been seen

that the effect these inconsistencies play on the estimates depends upon other parameters, but in the

worst cases it can lead to severe malfunctioning and underperformance of the filter. An idea is that

agents take into account that it is unlikely to have a packet be completely censored by the event-

triggering criterion. Then, an empty packet is almost certainly due to communication losses, rather

than it not being sent intentionally. Another possibility is to exploit the knowledge of the vehicles’

motions. For example, if for two agents, their heading angles do not change (we can imagine that

they are moving in a straight fashion but in different directions), then the range measurements

would be more innovative, since they contain information about the x and y coordinates of both

agents, which do change, but the bearing measurements would not, since the angles between are a

stationary quantity.

In the current work, the innovation parameter is user-fixed. In reality, predicting the system’s

response to a specific value of this parameter can be hard. We propose using heuristics to determine

the correlation between the innovation parameter and the communication rates, since it depends

of the system’s properties such as dynamics, sensor specifications and environment. However, a

significantly better solution would be for the system to adapt the value of the innovation parameter

on the go, possibly using a reinforcement learning framework. In this way, based on the user’s

desired performance and energy consumption, the system would find an optimal value for the

parameter based on rewards. Different modes could be used, for example, where these modes

designate a ”high-energy” or ”low-energy” configuration.

Bibliography

[1] S. J. Julier and J. K. Uhlmann, “Using covariance intersection for slam,” Robotics and
Autonomous Systems, vol. 55, no. 1, pp. 3–20, 2007.

[2] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,”
Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[3] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed navigation in cluttered en-
vironments,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),
2015.

[4] J. Sandee, W. Heemels, and P. Van Den Bosch, “Case studies in event-driven control,” Lecture
Notes in Computer Science, vol. 4416, p. 762, 2007.

[5] P. Swerling, “First-order error propagation in a stagewise smoothing procedure for satellite
observations,” 1959.

[6] R. E. Kalman et al., “A new approach to linear filtering and prediction problems,” Journal of
basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[7] R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with multiple robots,”
in Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,
pp. 1250–1257, IEEE, 1994.

[8] R. Kurazume, S. Hirose, S. Nagata, and N. Sashida, “Study on cooperative positioning sys-
tem (basic principle and measurement experiment),” in Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, vol. 2, pp. 1421–1426, IEEE, 1996.

[9] R. Kurazume and S. Hirose, “Study on cooperative positioning system: optimum moving
strategies for cps-iii,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, vol. 4, pp. 2896–2903, IEEE, 1998.

[10] I. Nourbakhsh, R. Powers, and S. Birchfield, “Dervish an office-navigating robot,” AI magazine,
vol. 16, no. 2, p. 53, 1995.

[11] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially observable environ-
ments,” in IJCAI, vol. 95, pp. 1080–1087, 1995.

[12] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under uncertainty: Discrete
bayesian models for mobile-robot navigation,” in Intelligent Robots and Systems’ 96, IROS
96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol. 2, pp. 963–972, IEEE,
1996.

75

[13] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, “Estimating the absolute position of a mobile
robot using position probability grids,” in Proceedings of the national conference on artificial
intelligence, pp. 896–901, 1996.

[14] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach to collaborative
multi-robot localization,” Autonomous robots, vol. 8, no. 3, pp. 325–344, 2000.

[15] S. I. Roumeliotis and G. A. Bekey, “Distributed multi-robot localization,” in Proceedings
of the International Symposium on Distributed Autonomous Robotic Systems (DARS 2000),
pp. 179–188, 2000.

[16] L. C. Carrillo-Arce, E. D. Nerurkar, J. L. Gordillo, and S. I. Roumeliotis, “Decentralized
multi-robot cooperative localization using covariance intersection,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 1412–1417, IEEE, 2013.

[17] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm in the presence of
unknown correlations,” in American Control Conference, 1997. Proceedings of the 1997, vol. 4,
pp. 2369–2373, IEEE, 1997.

[18] B. Noack, M. Baum, and U. D. Hanebeck, “Covariance intersection in nonlinear estimation
based on pseudo gaussian densities,” in Information Fusion (FUSION), 2011 Proceedings of
the 14th International Conference on, pp. 1–8, IEEE, 2011.

[19] A. Prorok and A. Martinoli, “A reciprocal sampling algorithm for lightweight distributed multi-
robot localization,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pp. 3241–3247, IEEE, 2011.

[20] J. Sijs and M. Lazar, “On event based state estimation.,” in HSCC, pp. 336–350, Springer,
2009.

[21] J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor data scheduling: Trade-
off between communication rate and estimation quality,” IEEE Transactions on automatic
control, vol. 58, no. 4, pp. 1041–1046, 2013.

[22] D. Shi, T. Chen, and L. Shi, “An event-triggered approach to state estimation with multiple
point-and set-valued measurements,” Automatica, vol. 50, no. 6, pp. 1641–1648, 2014.

[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[24] S. S. Kia, S. Rounds, and S. Martinez, “Cooperative localization for mobile agents: A recursive
decentralized algorithm based on kalman-filter decoupling,” IEEE Control Systems, vol. 36,
no. 2, pp. 86–101, 2016.

[25] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Advances in single-beacon
one-way-travel-time acoustic navigation for underwater vehicles,” The International Journal
of Robotics Research, vol. 31, no. 8, pp. 935–950, 2012.

[26] M. Ouimet, N. Ahmed, and S. Mart́ınez, “Event-based cooperative localization using implicit
and explicit measurements,” in Multisensor Fusion and Integration for Intelligent Systems
(MFI), 2015 IEEE International Conference on, pp. 246–251, IEEE, 2015.

76

[27] S. Wilhelm et al., “Moments calculation for the doubly truncated multivariate normal density,”
arXiv preprint arXiv:1206.5387, 2012.

[28] G. M. Tallis, “The moment generating function of the truncated multi-normal distribution,”
Journal of the Royal Statistical Society. Series B (Methodological), pp. 223–229, 1961.

[29] S. J. Julier and J. K. Uhlmann, “Simultaneous localisation and map building using split co-
variance intersection,” in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 3, pp. 1257–1262, IEEE, 2001.

[30] G. A. Bekey, Autonomous robots: from biological inspiration to implementation and control.
MIT press, 2005.

[31] I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot collaboration for robust exploration,”
Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 7–40, 2001.

