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Arctic sea ice extent has continued to decline in recent years, and the fractional coverage of

multi-year sea ice has decreased significantly during this period. These changes impact the hardiness

of the ice pack against future climate forcing, and will affect the future evolution of the Arctic ice

cover. These changes will also have substantial effects on Arctic inhabitants, military operations,

commercial exploration, and global climate. There exist many sources of remotely sensed Arctic

data that can be used to study these changes and determine which predictors account for much of

the change in the Arctic ice cover. This thesis assesses the impact of several remotely sensed sea

ice parameters on the survival of sea ice in the summer melt season.

A Lagrangian track-based sea ice data product that combines sea ice parcel locations with

coincident satellite-derived data is described herein. This database is used in conjunction with

several statistical learning classifiers to determine the optimal technique for predicting sea ice

extent at the end of the melt season. These statistical learning classifiers are then used to assess

which remotely sensed sea ice parameters have the greatest impact on sea ice survival for the pan-

Arctic domain. These methods are further combined with airborne data from NASA’s Operation

IceBridge to investigate sea ice survival in the Beaufort Sea from 2009-2016.

It is shown that sea ice parcel latitude and thickness prior to the onset of melt are the most

important variables in estimating parcel survival. As the melt season progresses, broadband albedo

becomes the greatest predictor of summer survival. Additionally, downwelling longwave radiation

is observed to contribute to melt onset and the triggering of the sea ice albedo feedback in the

Beaufort Sea. Coincident airborne ice thickness and snow depth offer less conclusive results, with

some years exhibiting higher mean thicknesses and depths in the melted population. The statistical

learning techniques described herein are relatively underutilized methods that will prove valuable



iv

in future studies of changing predictor importance in the Arctic.
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Executive Summary

This thesis focuses on using statistical learning techniques to assess which factors most in-

fluence the survival of sea ice during the summer melt season. Arctic sea ice has been declining in

extent over the past several decades, and the areal share of older ice has also declined during this

period. This decline will impact plans for future resource extraction, military operations, native

communities, and the global climate as a whole. While there have been many field expeditions to

obtain in-situ data in the Arctic, the large size of the Arctic domain and coverage of field exper-

iments have prevented these observations from capturing larger scale variation. Remotely sensed

measurements from satellites offer a means through which researchers, policy makers, and analysts

can view Arctic change over time.

Remote sensing of sea ice has been growing since the earliest satellite images were obtained of

sea ice in 1964. Observations from satellite-based sensors have provided time histories of numerous

surface characteristics of the Arctic ice cover. These data suggest that the Arctic is undergoing

rapid and drastic changes that will have lasting impacts on the future of ice in the Arctic. Deter-

mining which parameters most strongly influence sea ice survival will help scientists focus future

modeling and remote sensing efforts.

This thesis investigates which remotely sensed sea ice parameters most influence sea ice sur-

vival during the summer melt season. This is accomplished through the development of a new

Lagrangian track-based sea ice data product and the use of several statistical learning techniques.

These statistical learning techniques are used to estimate which sea ice ”parcels” survive a given

summer melt season. The importance of predictors in determining which parcels melt is also de-
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rived from these methods. Lastly, the major factors influencing the survival of sea ice parcels in the

Beaufort Sea are investigated using these statistical learning techniques and coincident airborne

data from NASA’s Operation IceBridge.

The data product developed in this thesis combines sea ice motion vectors with ancillary

satellite data products to form a database that contains weekly sea ice parcel positions and their

co-located data. The product is available from 2001-2016 on a 12.5km EASE-Grid through the

Pangaea Data Publisher. The co-located data tracked for each parcel include ice thickness, ice

surface temperature, ice concentration, convergence values, downwelling longwave/shortwave radi-

ation, albedo, and age. Each parcel is also issued a unique ID that allows it to be tracked between

years. The process through which this database is generated is described in this thesis, along

with background information on each ancillary product. Further discussion of how each product is

converted to the 12.5km EASE-Grid is also included in an appendix. This database serves as the

foundation of the rest of the thesis, which takes the approach of discovery from data.

Four statistical learning techniques are explored in this thesis for short term prediction of

summer ice survival: support vector machines, binary tree-based classification, random forests,

and neural networks. These techniques were tested by splitting data from the Lagrangian tracking

database into training and testing sets. Splitting the data in this manner allowed for training and

testing to be performed using the same overall set of tracks during this study. We observe that the

random forest and neural network yield the greatest short term prediction accuracies: 96% and 94%

respectively. We also determine that the optimal random forest design includes 100 trees, while

the optimal neural network is made up of two ten-node layers. It is also determined that when

predicting summer sea ice survival, the inclusion of more data during training serves to increase the

prediction accuracy. This implies that short term predictive work would benefit best from using

random forests and neural networks with at least five to ten years of training data.

The random forest and neural network are used to determine the relative importance of seven

predictors from the Lagrangian tracking database: latitude, ice surface temperature, ice thickness,

albedo, downwelling longwave/shortwave radiation, and age. These predictors are ranked using
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one-factor-at-a-time removal in the neural network, and the Gini index in the random forest. The

results from this study suggest that latitude and ice thickness during the spring are the most impor-

tant predictors in determining which parcels survive summer melt. During the summer melt season

the Gini index-derived importance of albedo grows, and is near those of latitude and thickness.

Seasonal changes in relative predictor importance are more apparent in the random forest, which

indicate that it is more suited for this type of analysis. As a result, the random forest was chosen

to be used in the Beaufort Sea ice survival case study.

Lagrangian track data and coincident airborne data from Operation IceBridge are compared

for parcels in the Beaufort Sea from 2009-2016. In addition, a random forest is used to determine

weekly predictor importance values for these data as a point of comparison against more traditional

statistical techniques. The results of this case study suggest that initial latitude and thickness of

parcels prior to melt onset best separate melted and surviving parcels during the summer melt

season. This agrees with results from the random forest, which also implicates these variables dur-

ing melt onset. Change in albedo most negatively correlates with change in sea ice concentration

in these data, which underscores the importance of the sea ice albedo feedback during summer

melt. Parcels with IceBridge data offer mixed results, with melted parcels often having greater ice

thicknesses and snow depths than their surviving counterparts.

The development of a Lagrangian tracking database and statistical learning techniques to

study it has opened up new avenues for sea ice research. It is the hope of the author that the

database described herein will continue to be applied to future sea ice research that can benefit

from studying ice parcel histories. In addition, the statistical learning techniques will potentially

improve short term sea ice forecasting while offering readily available predictor importance values

that can be used to direct future studies.



Chapter 1

Introduction

The energy balance of Arctic sea ice is governed by an interconnected budget that is driven

by several competing feedbacks. The exploration of these feedbacks and the parameters that govern

them have been identified as grand challenges in the cryospheric sciences. This thesis focuses on

the use of discriminative classifiers to assess which remotely sensed sea ice parameters most impact

sea ice survival during the summer melt season. It does this through the application of statistical

learning techniques that are not utilized in a widespread manner in cryospheric studies.

During this research project, the use of discriminative classifiers in short term prediction of

summer sea ice extent has been investigated. These techniques were applied to assessing which

remotely sensed parameters had the greatest impact on sea ice survival during the Arctic melt

season. A case study in the Beaufort Sea is also explored, with a focus on the major characteristics

of parcels that do and do not survive summer melt. In this case study the results from a random

forest are compared against more traditional statistical methods. These techniques demonstrate

new ways in which relationships between sea ice characteristics and survival can be investigated.
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1.1 Background: Sea Ice in the Arctic

Arctic sea ice has been recognized as an important component of the global climate system,

and has been well studied throughout the modern era [5, 59, 77, 174, 175]. Changes in ice cover

throughout the Arctic Basin are expected to have a lasting impact on both the Arctic and global

climate [152, 180]. Seasonal and annual changes in the ice pack influence shipping efforts, military

operations, resource extraction, local weather, and biological processes in the Arctic [33,37,103,104].

Recent changes during the summer melt season have been the focus of many research efforts, as the

Arctic ice cover continues to decline in extent, age, and thickness (Figures 1.1 & 1.2) [84, 91, 129].

Significant effort has been put forth to better understand and predict changes in ice extent, ice

properties, and characteristics of the summer melt season [144].

The melt of Arctic sea ice during the summer is controlled by a large set of properties and

processes that serve to input energy into an individual sea ice floe. The net surface flux in the

Arctic can be represented by:

Fsfc = −(Rsfc +QH +QE) (1.1)

where Rsfc is the net radiation at the surface while QH & QE are turbulent sensible (H) and

latent (E) heat fluxes that are driven by conduction and turbulent eddies in the atmosphere. In

this convention, Fsfc is positive upward while Rsfc, QH , and QE are positive downward. The net

surface flux can be further partitioned into three major terms:

Fsfc = −(M + C +B) (1.2)

where M represents melted ice, C represents conduction of heat in/out of the underlying column,

and B represents bulk absorption in the column.

The Rsfc term is defined as the sum of the net shortwave (SW) and longwave (LW) radiation

components at the surface:

Rsfc = SWdown(1− α) + LWdown − εσT 4
s (1.3)
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where α represents the surface albedo, ε represents the surface emissivity, and Ts represents the

surface temperature. The quantity εσT 4
s is the upwelling longwave term LWup. During the Arctic

winter when there is no direct sunlight the SWdown term is effectively zero. During the summer

the downwelling shortwave term is an appreciable source of energy input at the surface due to

seasonal changes in albedo, the presence of clouds, and solar zenith angle [16, 137, 178]. Albedos

over dry snow during the spring can be 0.7-0.8, while accumulation of melt ponds and exposure of

bare ice can degrade the albedo to 0.4-0.5 [6, 76, 122]. Albedo can be further impacted by surface

morphology [16]. The emissivity of sea ice and snow are relatively constant near 0.98 [128]. The

net longwave portion of Rsfc is typically negative, but it can be positive in the presence of low,

warm cloud cover [137].

When Rsfc is positive there is energy input into the surface. This energy input serves to melt

snow and ice at the surface, and can contribute to the bulk absorption term B in open water areas.

This causes the formation of melt ponds during summer melt, which further contribute to melting

the ice cover [41,134]. Areas of open water that form near ice allow for absorption of energy at the

ocean surface that is conducted into the ice cover through bottom and lateral melt [161]. This cre-

ates more open water areas that contribute to the sea ice albedo feedback [27,121]. Properties and

processes such as surface temperature, albedo, ice thickness, and downwelling longwave/shortwave

radiation, along with parcel location, can contribute to the parcel’s potential survival or extinction

during summer melt. It is valuable to obtain data describing these collective sea ice parameters so

that their impact on sea ice survival can be assessed.

Given the large areal coverage of Arctic sea ice, it is desirable to obtain data from satellite-

based remote sensing. Such observations can be further augmented by airborne remote sensing

and in-situ observations from a variety of platforms and missions. The earliest images of sea ice

from satellites were obtained in 1964 via the Nimbus 1 satellite [102]. The next major milestone

in remote sensing came with the launch of Nimbus-7 and the scanning multichannel microwave

radiometer (SMMR) in 1978. This was followed by the SSM/I and SSMIS sensors, which have

formed a 35-year record of daily global sea ice observations [165]. The advantage of these passive
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microwave sensors is that they can sense emission in the presence of clouds and at night. These

observations provide a long-term record of sea ice extent and concentration from which studies of

changes in the Arctic climate system and their impacts on sea ice can be observed.

Additional satellite sensors have been launched throughout the past several decades that have

helped gather Arctic data, such as the Advanced Very High Resolution Radiometer (AVHRR), the

Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Ra-

diometer Suite (VIIRS). These instruments gather optical and infrared data that have been used to

derive ice concentration [32,36], melt pond fraction [95,173], surface temperature [49,71], and other

sea ice properties. Observations of concentration and melt pond fraction have proven valuable, as

they have aided in determining concentration from microwave measurements [23, 24]. Data from

these and other instruments have served as inputs to models that provide estimates of other Arctic

surface properties and processes [75].

During the 1980s and 1990s it was recognized from satellite data that the Arctic was un-

dergoing changes in ice composition, age, and thickness [20, 46, 100, 119]. Arctic ice extent in the

summer was found to have declined -0.6%/ each year from 1978-1995, with an overall loss of 6%

of area that was previously occupied by ice [100]. Multi-year ice was found to have reduced by

14% in winter areal coverage between 1978 and 1998 [62]. Change in ice age was also found to be

correlated with substantial changes in ice thickness [62]. It was suggested that these changes in the

ice cover would lead to different ice regimes in the Arctic that would have lasting impacts on heat

and momentum exchanges in the region.

Arctic sea ice continued to decline in age and extent throughout the 2000s and 2010s [22,99,

114, 120, 132, 148], with ten of the lowest record sea ice extent years occurring between 2006 and

2017 (Figure 1.1) [120]. In 2017 the September monthly average trend in sea ice extent for the

Arctic had reached -13% per decade relative to the 1981-2010 average, with a -2.7% per decade

trend in March [129]. This loss of extent has coincided with a significant reduction in the areal

fraction of older sea ice in the Arctic (Figure 1.2) [99,129]. The extent of ice older than four years of

age has decreased from 2.54 million km2 to 0.13 million km2 from March 1985 to March 2017 [129].
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The loss of perennial sea ice further weakens the ice cover against future warming, as older ice is

typically thicker and more likely to survive summer melt [170].

The Arctic climate system is driven by a large number of feedbacks that range from strongly

positive to strongly negative [56, 68, 96, 115, 117, 126]. While remotely sensed data cannot capture

all of the parameters that influence these feedbacks and the melt of Arctic sea ice, they can offer

insights into surface changes that can aid in further development and testing of models. The change

in the surface energy balance required to explain the loss of ice cover over the past several decades

is only 1Wm−2 [89], so the attribution of this additional heat is meaningful [56]. Future Arctic

research and modeling efforts will benefit from additional remotely sensed sources of Arctic data,

and from additional tools through which these data can be analyzed. Identifying the major causes

of sea ice loss in the Arctic has been identified as a ”grand challenge” of climate science [56, 67].

Therefore, further exploration of the parameters that drive the Arctic energy budget and its as-

sociated feedbacks is warranted. The investigation of the impact of changing surface processes,

atmospheric processes, and sea ice properties on sea ice survivability can be aided through the

novel application of tools from the field of statistical (machine) learning. These tools can aid in

both short term prediction for efforts like the Sea Ice Prediction Network and further inference of

predictor importance from remotely sensed data.
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Figure 1.1: Arctic sea ice extent for 2012-2017 with 1981-2010 interquartile & interdecile ranges [1]



10

Figure 1.2: (a) Sea ice age coverage by year 1984-2017. Sea ice age coverage maps for March 1984
(b) and 2017 (c) [129]
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1.2 Background: Statistical Learning Techniques

In this dissertation the effectiveness of several statistical learning techniques in classifying

sea ice parcels into melted and survived categories is assessed. Further inference of the importance

of individual predictor variables is also studied. These techniques are leveraged to create test cases

in which predictor importance can be compared against more traditional statistical techniques for

studying Arctic sea ice parcels.

The field of statistical learning is made up of a broad set of tools that are used in under-

standing data. These tools generally fit into two major categories: supervised and unsupervised

learning. In the supervised case, the data are composed of observations xi, i = 1, ..., n and asso-

ciated responses yi, i = 1, ..., n that can be utilized in training an algorithm to generate responses

from input observations. The algorithm seeks to form the relationship:

Y = f(X) + ε (1.4)

where f represents the systematic information that X provides about Y , and ε represents the error

terms. Typically this relationship f is used either in prediction or inference. Prediction seeks to

generate an f that is used to generate predictions Y
′

from new inputs X
′
, while inference seeks

to determine how Y is affected as the X values change. Examples of supervised learning include

support vector machines (SVM), neural networks, and forest/tree methods. In the unsupervised

case, the observations xi, i = 1, ..., n do not have associated responses, and the algorithms instead

seek to describe relationships between the variables or between observations. For example, in the

case of clustering the algorithm seeks to determine whether X contains relatively distinct groups

that can be formed using differences between the data points in X. The results provide a means

through which the difference between clusters can be inferred with respect to some property of in-

terest in X. Examples of these types of statistical learning techniques include k-means clustering,

k-nearest neighbors, and fuzzy clustering.

The beginning of statistical learning could be considered to be the point at which Legendre

and Gauss first published papers on the subject of least squares, which was an early form of lin-



12

ear regression [140, 142]. This approach was employed primarily in predicting quantitative values,

but was not applied to qualitative values. The prediction of qualitative values was addressed by

Fisher’s Linear Discriminant Analysis (LDA) technique in 1936 [39]. The alternative approach of

logistic regression was further developed throughout the 1940’s [7, 40, 94]. In the early 1970’s the

term generalized linear models was coined by Nelder and Wedderburn to cover statistical learning

methods that include both linear and logistic regression as special cases [113].

Until the 1980’s computing technology could not fit non-linear relationships due to compu-

tational restraints. During the 1980’s technology improved to the extent that classification and

regression trees were possible. This improvement in computational power led to the introduction

of these methods by Breiman, Friedman, Stone, and Olshen [13]. Their work was among the first

to demonstrate the implementation of cross-validation for model selection. Work by Hastie and

Tibshirani in 1986 further coined the term ”generalized additive models” to encompass non-linear

extensions to generalized linear models [53].

Access to statistical learning methods has increased with the advent of more powerful per-

sonal and research computers. Major programming languages such as Matlab, Python, and R are

provided with toolboxes that can perform many statistical learning tasks that were unfeasible a

few decades ago. The modern toolset of statistical learning is made up of a variety of techniques

for analyzing data based on the quantity and type of data available (Figure 1.3).

Techniques that classify data into one or more categories are valuable for remote sensing and

scientific applications [3,8,45,110]. Much of the current Arctic research focuses on classification of

surface types from remote sensing data using statistical learning classifiers [4,29,51,90,111,116,138].

There has been some exploration of using statistical learning techniques for prediction of sea ice

extent [21], but there exist many areas in which this research can be expanded and improved upon.

These techniques have not been applied to Lagrangian tracking algorithms, which offers a new

avenue from which melt season states can be investigated. Additionally, the effectiveness of short

term prediction through the use of various classifiers has not been explored. The use of ranking

predictors through methods like the Gini index [54,61] also provides a valuable tool that has been
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utilized successfully in other fields [10].
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1.3 Project Overview

Initial investigation into the Arctic studies discussed in Section 1.1 and the statistical learning

techniques discussed in Section 1.2 revealed several areas of research that could be explored through

the novel application of specialized statistical learning techniques to the investigation of Arctic sea

ice. This investigation assesses the impact of remotely sensed sea ice parameters on

the survival of sea ice in the summer melt season. To address this, the following science

questions are pursued:

(1) Which sets of remotely sensed data are both available and appropriate for

studying sea ice survival in the Arctic?

There are numerous satellite-based data products that provide records of different ice sur-

face properties and sources of energy input available for use in Arctic studies. Lagrangian

tracking can serve to combine these measurements with positions of parcels throughout a

given year to form a combined data product that includes a representative set of data for

use in the study of sea ice survivability. The dataset described herein contains a variety of

properties, parameters, and processes that influence sea ice in the Arctic. The data product

spans 2001-2016, and was created in order to combine ice surface temperature (IST), mod-

eled ice thickness, ice concentration, ice age, convergence, downwelling shortwave/longwave,

and albedo data with Lagrangian tracks of sea ice parcels. The generation of this product

and the resulting database is accomplished in Chapter 2, and further information on the

data products is included in Appendix C.

(2) Does a particular statistical learning technique perform best in short-term pre-

diction of sea ice survival during the summer melt season?

Many prior studies of sea ice that utilized statistical learning techniques focus on surface

classification, but the techniques used in those studies can also be utilized for classifying

sea ice parcels into melted and surviving categories to form predictions. Each classifier’s

resulting prediction accuracy can be influenced both by the structure of the data and by
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the parameters chosen to optimize the classifier. Statistical learning classifiers are broadly

separated into generative and discriminative categories. Generative classifiers seek to use

assumptions about underlying distributions in datasets to classify points after training.

The results from these classifiers are more robust in the presence of outliers, are more in-

terpretable, and are capable of accounting more for the underlying uncertainties in the data

used during training and testing. Discriminative classifiers instead seek to learn decision

boundaries directly from the data used in training, and are more likely to yield an accurate

decision boundary after training as compared to generative classifiers. Four discriminative

classifiers were chosen in order to determine the optimal statistical learning technique to

use for short-term prediction of sea ice survival. The prediction accuracy and optimal

parameters for support vector machines, binary tree-based classification, random forests,

and neural networks are obtained in Chapter 3. The two most accurate techniques were a

random forest and neural network. These techniques were further utilized to study sea ice

survivability throughout the rest of this thesis.

(3) How does the importance of predictors change during summer melt, and do

different statistical learning techniques report different results?

The melt of Arctic sea ice is driven by a large number of factors that have associated

feedbacks. Statistical learning techniques and predictor importance derived from these

factors can provide additional insight into their changing importance in determining which

sea ice parcels will survive a given melt season. Measures of importance, derived using

the random forest Gini index and neural network OFAT analysis, are compared for both

the start and end of the melt season in Chapter 4. The changing importance of predictors

between these two points of comparison are also discussed in the context of changes in the

ice cover during the melt season.

(4) Which predictors of sea ice survival in the Beaufort Sea during summer are

ranked as most important, and how do these results compare to results from
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other statistical techniques?

The Beaufort Sea has acted as a sink for sea ice over the past decade, as it has accounted

for a significant portion of the total areal loss of sea ice each year [43, 57]. The region

is also the extinction location for many of the multi-year ice floes that advect from the

Canadian Archipelago [44, 83]. The Lagrangian tracking database described in Chapter 2

is utilized to investigate differences between melted and surviving populations of sea ice

parcels in the Beaufort Sea from 2009 to 2016 in Chapter 5. Additional airborne data

from NASA’s Operation IceBridge are also considered, along with correlations between

major satellite-derived data and change in sea ice concentration. The statistical learning

techniques developed in Chapters 3 & 4 of this thesis are also applied to the data and

compared against the initial results of the case study to assess the performance of these

classifiers against more traditional techniques.

This research is divided into six chapters. Chapter 1 has provided background on Arctic

sea ice and statistical learning, the major motivation of this work, and the research questions

selected to address the motivating hypotheses. Chapter 2 describes a Lagrangian tracking sea ice

parcel database, its contents, and how it is produced. This chapter serves to introduce the data

product that is utilized throughout the rest of the study. Chapter 3 contains a discussion of four

major discriminative classifiers used in prediction, the optimization of these classifiers, and their

prediction accuracy. Chapter 4 is a discussion of predictor importance for Arctic sea ice parcels

from 2002-2016 as derived from the statistical learning techniques discussed in Chapter 3. Chapter

5 presents an analysis of Beaufort sea ice parcels from 2009-2016 using the Lagrangian tracking

database described in Chapter 2 and coincident NASA Operation IceBridge observations. This

chapter also presents results from applying the statistical learning techniques discussed in Chapter

3 & 4 to the product described in Chapter 2, and compares them with the results of the initial case

study. This document is then concluded with a summary of the research results, major findings,

and future research possibilities in Chapter 6.



Chapter 2

Lagrangian Tracking of Sea Ice Parcels

This chapter provides an overview of a Lagrangian tracking database of sea ice parcel positions

and associated satellite data. The database was developed at the University of Colorado by M.

Tooth and M. Tschudi, and is further discussed in [158]. The majority of the chapter details the

methods behind the creation of the data product, and provides an overview of its contents. The

data products included in the Lagrangian tracking database are further discussed in Appendix C.

This chapter is adapted from Tooth M. and Tschudi M., 2017 [158].

2.1 Motivation and Previous Work

The near-continual movement of most sea ice parcels in the Arctic exposes them to different

regimes and climate conditions throughout a given year. This creates a need to better quantify

how the ice responds to the variable conditions it encounters in order to improve forecasts and to

better understand changing ice conditions in specific regions. Lagrangian tracking of key variables

that influence the survivability and conditions of the sea ice will help quantify the effects of these

changing regimes on ice conditions. This is particularly of interest in regions such as the Beaufort

Sea, which has become a sink for sea ice in the summer [79, 127, 145], and is of economic and

political interest [33].

Early ancillary data product tracking was performed by Chuck Fowler for use in Tschudi et al

(Figure 2.1) [163]. There was significant merit in continuing to produce these tracks and ancillary

data files, which led to interest in continuing this work through research led by M. Tschudi.
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Figure 2.1: Tracked sea ice characteristics from [163] (Figures 5 and 6)

Initial work on this project focused on sea ice ”gate” codes that were developed by J. Maslanik

at the University of Colorado Boulder. These codes used sea ice motion fields to estimate the flux

of sea ice across user-defined boundaries in the Arctic in order to derive estimates of the inflow

and outflow of ice. Interest expressed by Jinlun Zhang at the University of Washington led to

the development of code for tracking parcel concentrations, positions, and thicknesses that was

eventually developed into a fully fledged tracking program under the direction of M. Tschudi. This

code has used to generate the database described in this chapter. Further information on the

development history of the tracking product code is provided in Appendix E.

2.2 Parcel Tracking Overview

The result of this work was the production of a sea ice parcel tracking database that com-

bines ancillary thermodynamic and dynamic variables with sea ice parcel positions. The database

contains individually identified sea ice parcels and their locations on the EASE-Grid with weekly

ancillary data values when they are available. These tracks provide a means through which changes

in parcel features and ancillary data can be tracked through time for both individual parcels and

regions of interest. An example motion field that demonstrates the successful storage of parcel

tracks is shown in Figure 2.2. Motion patterns such as the Trans-polar Drift Stream and Beaufort

Gyre are present in the motion field.
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2.3 Parcel Database Description

The variables included in the parcel tracking database are summarized in Table 1. An-

cillary data products include EASE-Grid Sea Ice Motion Vectors [165], MODIS Terra ice surface

temperature (IST) [50], SSM/I & SSMIS ice concentration [19], PIOMAS ice thickness [136], EASE-

Grid convergence values in the u & v directions, APP-X all-sky broadband albedo, APP-X all-sky

shortwave up/downwelling radiation, APP-X all-sky longwave up/downwelling radiation [75], and

EASE-Grid Sea Ice Yearly Age values [164]. Further information on each of these data products is

provided in Appendix C. Weekly values of each variable are stored for individually tracked parcels

on a 12.5km EASE-Grid. Data that are available on daily timescales are averaged for each week,

and data that are not provided on EASE-Grid are converted to a 12.5km EASE-Grid as described

in Appendix D.

The data are archived through the Pangaea Data Publisher, and are separated by year from

the start of 2001 to the end of 2016 [156]. Each year’s data have been separated into individual

files containing parcel IDs, grid positions, and variable data to keep file sizes below 100MB. Fur-

ther information on how to read the data files and example Python 2.7 codes are available in the

product’s Pangaea archive [156]. Fill values of 9999 and 9999.0 have been used for missing data,

and a fill value of 9998.0 has been used for the pole-hole present in some products.
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Figure 2.2: Example of sea ice parcel tracks derived from the Lagrangian tracking database.
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Table 2.1: Data contained in the Lagrangian tracking database

Variable Type Units
Parcel ID Int N/A

Parcel Age Int Weeks
EASE-Grid Ice Age Product Int Years

u Position Int 12.5km EASE-Grid Cell
v Position Int 12.5km EASE-Grid Cell
U Vector Float cm/s
V Vector Float cm/s

Ice Surface Temperature Float Kelvin
Ice Concentration Float Percentage

Model Ice Thickness Float Meters
Convergence in V Direction Float cm/s
Convergence in U Direction Float cm/s

Albedo, Morning Float N/A
Albedo, Afternoon Float N/A

Shortwave Downwelling Radiation, Morning Float W/m2

Shortwave Downwelling Radiation, Afternoon Float W/m2

Shortwave Upwelling Radiation, Morning Float W/m2

Shortwave Upwelling Radiation, Afternoon Float W/m2

Longwave Downwelling Radiation, Morning Float W/m2

Longwave Downwelling Radiation, Afternoon Float W/m2

Longwave Upwelling Radiation, Morning Float W/m2

Longwave Upwelling Radiation, Afternoon Float W/m2
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2.4 Methods

The parcel database is generated using weekly mean motion vectors available from the Na-

tional Snow and Ice Data Center (NSIDC) [165]. An initial field is sampled for the first week of

January, and then weekly changes in the position of parcels are stored along with available ancillary

data for the parcel’s location for the rest of the year through December 31st. Newly frozen parcels

are also accounted for, along with parcels that have melted during a weekly time step. The main

flow of the program is shown in Figure 2.3.

Figure 2.3: Procedural flow for generating a year of parcel tracks with ancillary data.

2.4.1 Initialization of Field

In order to initialize the ice parcel field, the program begins by searching for sea ice parcels

that are of greater than 15% sea ice concentration in week one of the year. Parcels that meet these

criteria are assigned a parcel ID and are given space in a Python dictionary object. The initial

fields for the ancillary variables are also stored in the initialization phase for week one.
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2.4.2 Weekly Data Acquisition

After the initialization steps are completed, the program loops through every week of the year

to save the weekly ancillary data for each parcel. It begins by verifying that data are available, and

loading in maps for each ancillary data product for that week. Once these maps are loaded, and

any averaging of daily values to weekly values is performed, the program enters a loop that goes

through each parcel to save their ancillary data.

2.4.3 Storing Parcel Data

After the ancillary data are loaded, the program loops through each parcel in the database

in order to update each parcel’s position and ancillary data values. The previous week’s sea ice

motion vectors are applied to the parcel’s EASE-Grid location, which provides a new location for

the current week. Once this new location is saved, the grid coordinates are used to find and store

ancillary data for that particular parcel. If data are missing, a fill value is assigned. After the

ancillary parcel data are stored, the program also increments the weekly age value of the parcel by

one. This incremented age value is separate from the EASE-Grid age product hosted at NSIDC,

which is generated through a different process [164].

2.4.4 Melting and Formation of Parcels

During the parcel sub-loop in the program, a check is performed for parcels that have dropped

below 15% sea ice concentration. At that point the parcel is considered melted, and is assigned

fill values in lieu of ancillary data values. Another data field stores the week in which that parcel

melted for verification after the product run. In addition to searching for melted parcels, the

program checks parcel positions against a landmask and terminates parcels that make landfall.

In order to account for parcel formation later in the year, the program checks for new parcels

in areas that are not occupied during the year’s freeze-up period. After the minimum extent week

is reached for a particular year, the program begins to search all non-occupied locations for sea

ice parcels that contain greater than 15% sea ice concentration. These newly frozen parcels are
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assigned a space in the parcel database, and are tracked in subsequent weeks. In order to maintain

the proper database size and spacing, weeks prior to the formation of the particular parcel are filled

with fill values for the ancillary variables and locations.

2.4.5 Production of Final Database

Once all of the weeks have been sampled, and the database has been composed, the product

saves the data in a combined comma-separated value (CSV) file for the year. Further steps break

this file up into smaller files for individual ancillary variables in order to maintain the 100MB size

limit set by Pangaea.

2.4.6 Example Outputs From Database

An example of tracks and ancillary data from the 2014 data is shown in Figure 2.4. The major

motion patterns of the Arctic are visible from the drifts of the example parcels in the left panel

of the figure, while the right panel contains the ice surface temperature (IST) and concentration

history for an individual parcel that advected from the Canadian Archipelago region toward the

Beaufort Sea. As the melt season began, the IST of this parcel rose to the melting point, which led

to some of the parcel melting away and a corresponding decrease in concentration. This database

enables quick searches for relationships like these for individual tracks and different variables from

the beginning of 2001 to the end of 2016.

Another example use of this database to gather bulk regional statistics for 2014 is shown

in Figure 2.5. The left panel shows a user-defined Beaufort Sea region highlighted in red, while

the right panel is a scatter plot of the ice surface temperatures of parcels in that region for the

duration of 2014. Parcels that melted (red) experienced higher temperatures than their surviving

counterparts (blue) prior to the start of the melt season, which may have played a role in their

survivability during the summer. Searching regions like the one shown in Figure 2.5 enables users

to examine relationships between different cohorts of parcels in areas of their own interest.

An example of using this database to study inter-annual changes in parcel properties is shown
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Figure 2.4: Selected example parcel drift tracks from 2014 with IST and concentration for the
parcel indicated by an asterisk in the left panel.

in Figure 2.6. The top left panel shows the positions of four parcels as they advect through the

Arctic from 2001-2004. The upper right panel shows the changing ice surface temperatures during

each year as they rise and fall with each melt season. The lower left panel shows the trends in ice

concentration for each year. Lastly, the lower right panel shows changes in thickness over time for

each of these parcels as they seasonally gain and lose ice each year.
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Figure 2.5: Beaufort Sea example region with associated parcel temperatures for 2014. Red scatter
points indicate parcels that melted, while blue points indicate parcels that survived to the end of
the year.
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Figure 2.6: Tracks for four parcels from 2001-2004 with associated ancillary data.
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2.5 Publication of Database

The Pangaea Data Archive had several requirements that differed from the original file format

of the parcel database output, so codes were developed to re-format the files to fit the Pangaea

specifications. Files were to be stored in tab delimited format text files that did not exceed 100MB

each. In order stay below the file size limits the parcel data were separated into individual variable

files for the year. Each file contained the U and V positions of parcels along with a single variable

such as IST or concentration. This both solved the size issue and simplified access for users wishing

to investigate a subset of the data contained in the parcel database. The original Pangaea release

in March 2016 contained NaN values, a small error in PIOMAS data, and spanned 2001-2015. The

second release in March 2018 included 2001-2016, fixed the error in the PIOMAS data, and updated

fill values to the new standards described above. It is also important to note that the Pangaea

releases contain integer positions, while the database natively uses float positions.

In addition to the release of the data, codes were supplied in the Pangaea repository for

users to access the data from the files provided. These codes were provided in Python, C++,

and Matlab for the convenience of potential users. Additional updates, such as the inclusion of

2016-2017 data, are possible through updating the Pangaea link without a change to the data DOI

that was originally assigned by Pangaea. This will ensure that users are able to continually find

and utilize the data as it is improved, updated, and re-released.

2.6 Potential Future Expansion of Database

One of the major strengths of this database is that it is modular, and can be expanded to

include more data products or alternate sources of data products. Desired data products can be

added through the use of additional read/write functions, and the code that generates the parcel

database has been constructed in a way that makes it easy to do so. This enables future runs of the

database to include these alternatives at the discretion of those running the code. Some potential

future products include snow depth, surface winds, and alternative ice thickness sources.
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2.7 Discussion of Error

Work by Szanyi et al [150] argued that there are small error contributions in the underlying

sea ice motion data that come about as a result of the weighting scheme used to combine the various

motion sources used in the generation of the motion product [165]. These ”buoy-affected-domains”

can contribute to errors in motion tracks that are used in the generation of this database. The use

of weekly sea ice motion data mitigates the effect of this error on the motion data however, and

enabled the publication of the database with minimal influence from the buoy-affected domains. An

update to the underlying motion tracks has resolved this issue as of Fall 2017 [165]. Comparisons of

parcel tracks with IABP buoys [130], CRREL buoys [34, 125], and the SHEBA track [143] yielded

errors on the order of those found in [163].

Due to the nature of how the database and the weekly data products are published, each

week of ancillary data should be considered independent with regard to error. The individual error

for each data product field does not depend on the previous week’s state, and therefore enables

careful use of the data in this product with consideration of the error present in each individual data

product. Further information about the error present in these products can be found in Appendix

C.

2.8 Summary

The near continual movement of Arctic sea ice can expose individual ice parcels to varying

conditions throughout the year. Several satellite-based sources of sea ice data were combined with

Lagrangian track derived positions in this chapter to yield a database of ice parcel positions with

coincident data. The satellite data chosen capture key properties, processes, and parameters of

sea ice in the Arctic that are used to investigate sea ice survivability throughout this manuscript.

Chapter 3 will use the product developed here to investigate the optimal statistical learning tools

for assessing which of the parameters described here most impact sea ice survival. Chapter 4

further utilizes these data to determine predictor importances using statistical learning techniques.
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Chapter 5 compares these data against Operation IceBridge data in the Beaufort Sea.



Chapter 3

Applying Statistical Learning to Predicting Arctic Sea Ice Survival

This chapter provides background on statistical learning-based classification, and the process

through which four statistical learning techniques were selected for this study. The optimization

and parameter selection for each classification technique is discussed, along with the underlying

theory behind each algorithm. Classification accuracies are also presented, with a discussion of the

optimal combination of training data to use during analyses. Section 3.1 introduces the classifiers,

while Sections 3.2, 3.3, 3.4, and 3.5 provide additional information about each of the four classifiers.

A discussion of the results is provided in Section 3.7, in which we determine that the random forest

and neural network classifiers are the optimal tools for this work. The techniques described and

explored in this section are utilized further in Chapters 4 and 5 to derive the relative importance

of predictors from the database described in Chapter 2.

This chapter is partially adapted from Tooth, M.; Tschudi, M.; and Matsuo, T. 2018 [160].

3.1 Introduction

Over the past several decades statistical learning techniques have become more widely used

with the advent of more powerful computers and accessible methods. These efforts have focused

primarily on surface type classification, dimensionality reduction, and image feature classification

using discriminative classifiers [3,8,45,110]. Arctic work using these techniques often falls into these

categories, as these classifiers are valuable tools for remote sensing data analysis [51,90,106,138].

Recent efforts toward utilizing statistical learning to form summer ice extent predictions have
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outperformed other methods [21], which indicates that further exploration of these techniques is

warranted. Statistical techniques yielded the most accurate estimates for the 2017 Sea Ice Pre-

diction Network (SIPN) outlook, but these methods were made up of regression and correlation

based estimates [144]. The application of statistical learning techniques to prediction of summer ice

extent will provide additional tools for the sea ice community that may serve to improve estimates

such as those made for the SIPN outlook.

This study utilizes the Lagrangian parcel track database described in Chapter 2, along with

sea ice age data from NSIDC (Appendix C) [164] to compare the prediction accuracy of four sta-

tistical learning classifiers in the pan-Arctic domain. The predictors chosen for use in classification

are:

(1) Latitude

(2) IST

(3) Thickness

(4) Albedo

(5) Downwelling Shortwave Radiation

(6) Downwelling Longwave Radiation

(7) Ice Age

where these predictors are supplemented by the addition of a binary value, Y, that represents

whether a parcel melted (0) or survived (1) in a given melt season. Data are assembled from the

Lagrangian tracking database for years 2002-2016 and exclude parcels that were not present at the

start of their respective year. The total number of 12.5km by 12.5km EASE-Grid parcels, along

with the number of melted and surviving parcels, are shown in Table 3.1. These data were used

to predict summer sea ice survival based on snapshots of values at each study week in order to

demonstrate the utility of these techniques.



34

Table 3.1: Number of parcels utilized by classifiers in years 2002-2016

Year Melted Survived Total Percent Survived

2002 8854 24288 33142 73
2003 8442 24560 33002 74
2004 8180 23564 31744 74
2005 8445 19297 27742 70
2006 8647 24439 33086 74
2007 10192 16855 27047 62
2008 10045 21449 31494 68
2009 10054 22857 32911 69
2010 9710 18040 27750 65
2011 11419 23019 34438 67
2012 12435 18075 30510 59
2013 8650 17363 26013 67
2014 9501 20401 29902 68
2015 10168 23644 33812 70
2016 14477 17630 32107 55

The goal of this analysis is to utilize the truth data present in the Lagrangian tracking

database to train classifiers to predict whether a given sea ice parcel in the database would melt

or survive during the melt season. The classifiers were chosen after a preliminary investigation of

available techniques in the broad field of statistical learning (Figure 3.1). The presence of truth data

eliminated clustering and other unsupervised methods from consideration, which focused this study

on supervised classification. Four discriminative classifiers were chosen in order to directly learn

decision boundaries from the datasets studied. The chosen classifiers were: support vector machines,

binary tree-based classifiers, random forests, and neural networks. These methods were chosen for

both their predictive capability, and their associated use in inference about the relationship between

predictors (X) and class (Y) after training [61]. Time is expressed in weeks throughout this chapter,

as the underlying Lagrangian tracking data have a weekly temporal resolution. A table showing

the dates of several weeks in the study period has been included for the reader’s reference (Table

3.2).

Each classifier chosen for this study offers a different way of analyzing the data, but none

of them rely on an underlying statistical distribution in the data. The support vector machine
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method is a useful tool for finding non-linear boundaries in a dataset, and attempts to minimize

how well the determined boundary fits the data. The neural network is a very flexible technique

that aims to minimize mean squared prediction error with respect to the training data. The binary

tree-based classifier is fast and easily interpreted, but it is not considered comparatively accurate

or portable. The random forest provides greater tree-based accuracy through growing an ensemble

of decorrelated trees that use bootstrap samples of the original dataset and restricting the number

of parameters that can be used at each split in a tree. The work presented in this chapter seeks

to determine which of the four chosen classifiers works best with the Lagrangian tracking data we

utilize herein.

Table 3.2: Calendar dates of weeks in a non-leap year.

Week DOY Calendar Date

10 63 Mar 4 - Mar 10
15 98 Apr 8 - Apr 14
20 133 May 13 - May 19
25 168 Jun 17 - Jun 23
30 203 Jul 22 - Jul 28
35 238 Aug 26 - Sep 1

3.2 Support Vector Machine Approach

The support vector machine algorithm is a classifier that is an extension of the maximum

margin classifier and the support vector classifier [25, 61]. It is capable of creating non-linear

decision boundaries in a dataset through the use of the ”kernel trick” which enables the algorithm

to operate in a vector space where linear relations exist between the data. This provides a means

by which linear algorithms can be applied to data with non-linear relationships. The linear results

obtained in the transformed space are used to form non-linear boundaries in the original space that

are difficult to calculate in the original data space.

In the linear case, separation of data that are composed of two classes can be attained

through placing a linear boundary between points on a plot. This is not unique however, as there
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Figure 3.1: Broad categories of statistical learning with some examples from subcategories shown.
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exist a large set of suboptimal lines that divide a dataset. The maximum margin classifier seeks

to estimate a decision boundary such that the distance of the nearest data points to the linear

boundary are maximized for both classes (Figure 3.2) [9,61]. This provides a means through which

the subset of data that are closest to the boundary are used to classify new points without a need for

considering the entire dataset. The subset of points that define the decision boundary are referred

to as ”support vectors”. When data are not linearly separable, the kernel trick is applied in order

to produce a nonlinear decision boundary [61,107,149].

3.2.1 Methods: Support Vector Machine

The support vector machine technique is implemented using the Matlab fitcscvm() function.

The effect of varying the portion of the original dataset utilized in training is assessed for the cases

of a quarter and a half of the available training data. Due to the computational complexity of

the algorithm, the tests are limited to the year 2010, which was chosen as the first year for initial

testing. In addition, several kernel functions are tested to find an optimal choice for classification

of parcels into melted and survived categories. These included a Gaussian, linear, and quadratic

kernel. These tests are also limited to the year 2010 due to computation time, which was on the

order of six hours for each week of each study year.

Figure 3.2: Linear support vector separation (left), Radial SVM separation (center), and Polynomial
of degree 4 separation (right) [54]
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3.2.2 Results: Support Vector Machine

Peak survival prediction accuracy of parcel survival is obtained in week 18, with an accuracy

near 78% for both training portion cases (Figure 3.3). This peak is followed by a gradual decline

toward accuracies in the 60% range later in the melt season. This is likely a result of the increase

in missing data values as the melt season progresses. Varying the portion of data utilized during

training has a minimal effect on the classification accuracy for the SVM technique. Increasing

from a quarter to a half of the data increases peak accuracy in week 18 by less than 1%, while

causing several drops in accuracy during weeks 16 and 24. This suggests that utilizing a quarter of

available training data is sufficient to form a decision boundary, and that increasing the amount of

data included in training does not offer the algorithm additional information that can be utilized

for classification.

Varying the kernel function used to form the boundary during training has a significant impact

on the classification accuracy, but does not yield superior results as compared to the Gaussian case

(Figure 3.4). The Gaussian test case peaks in accuracy during both weeks 12 and 18, with peaks

near 80%. The linear kernel function yields a peak accuracy in week 17, with a peak near 77%.

The quadratic kernel significantly reduces overall accuracy, and yields a peak near 65% accuracy

in weeks 10 and 33. The Gaussian and linear cases exhibit the general behavior of peaking early

in the season, and declining later in the melt season, while the quadratic case resembles a bathtub

curve. This suggests that the Gaussian kernel function is the optimal choice, as it yields higher

accuracies than its counterparts.

Varying input training years for testing of prediction is not shown for the SVM technique due

to low accuracies found during initial tests and computational cost. The classifiers described in the

following sections outperform the SVM technique in all cases, and perform better in the presence

of missing data than SVM.
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Figure 3.3: 2010 SVM accuracy with varying training portions and a radial basis function kernel
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Figure 3.4: 2010 SVM accuracy with varying kernel functions
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3.3 Binary Decision Tree Classifier

The binary decision tree classifier is a tree-based method that seeks to classify points through

dividing data into M rectangular regions:

R1, R2, ..., Rm, ..., RM (3.1)

where each region Rm is known as a terminal node in the tree, or as a leaf. This process is performed

iteratively, with the dataset being split at internal nodes along the tree analogue [13,61]. The end

result is a set of regions that are labeled as one of K classes: cm ∈ 1, ...,K.

In an example with training data (xi, yi); i = 1, ..., n; where yi ∈ (1, ...,K) are class labels;

suppose a given region Rm contains nm points. Then the predicted class probability of class k ∈ K

is given by:

pk(Rm) =
1

nm

∑
xi∈Rm

1(yi = k) (3.2)

The predicted class in Rm is determined by:

cm = max(pk(Rm)), k ∈ K (3.3)

The tree building process takes a top-down, ”greedy”, approach. The algorithm begins with

the entire dataset and subdivides it through successive splits in the tree, with each split forming

two new branches in feature space. The algorithm is considered greedy due to it choosing the

optimal split at each step instead of choosing the split that would most optimally split the tree in

future steps. This process is repeated until a large tree is grown that can later be pruned at the

end of the creation of the tree [61, 93]. An example tree grown using week 12 of 2016 as training

data is shown in Figure 3.5. Individual splits in the tree are formed based on underlying data. For

example, the top split in Figure 3.5 is formed using a boundary of 76◦ of latitude, with a successive

split to the left that uses 75.7◦ as the boundary (Figure 3.6). This second split is followed by a

node that uses thickness to split along a boundary of 2.16m thickness. The values that form these

splits were determined by the classification tree during training.
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Split criterion in growing classification trees can be defined in various ways, but they are

based on node impurity. Two example measures of impurity are:

(1) Misclassification error:

1− pk(Rm) (3.4)

where pk is the class probability of region Rm as defined in Equation 3.2.

(2) The Gini index, which is a measure of total variance:

K∑
k=1

pk(Rm)(1− pk(Rm)) (3.5)

Criterion such as the Gini index and misclassification error seek to greedily maximize the purity of

a given split. Each subsequent split in the tree continues until a tree T0 with T terminal nodes is

grown. A final process called pruning seeks to form a subtree T ⊂ T0 that minimizes:

|T |∑
m=1

(1− pcm(Rm)) + αT (3.6)

where α is a tuning parameter that controls the size of the tree that is typically chosen through

k-fold cross-validation. Individual leaves are removed starting with the ”weakest” leaf at a time

until the desired tree T is obtained.

Classification trees provide structures that are easily displayed graphically, and are considered

interpretable in comparison with other methods. The computational complexity of generating a

tree is low, which lends toward fast training and classification of large datasets. Classification trees

suffer from lower predictive accuracy as compared to other methods however, and they are not

considered portable. Small changes in the data utilized in training lead to large changes in the

resulting structure of the tree. These drawbacks can be corrected for however, as is discussed in

Section 3.4.

3.3.1 Methods: Binary Decision Tree

Binary tree-based classifiers are generated using the Matlab function fitctree() for this anal-

ysis. The impact of varying the portion of data used in training is assessed for 25, 50, and 75% of
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available data. Additional cases assess the impact of including additional years of training data on

the resulting classification accuracy.

3.3.2 Results: Binary Decision Tree

Survived/melted class classification accuracy peaks early in the year, with a maximum value

occurring near week 12 (Figure 3.7). The addition of more data in training leads to a higher

prediction accuracy in all cases, and leads to an increase in peak accuracy from 86% in the 25% of

training data case to an accuracy of 88% in the 75% of training data case. These results lead to

the use of week 12 and 75% of training data for the remainder of work with this classifier.

The impact of varying input training years on the binary tree-based classifier is assessed using

predictions during week 12 for years 2012-2016 (Table 3.3). Test cases include the prior ten years,

prior five years, and same year for the three test cases, with 75% of the available data being used

for training. The inclusion of the prior ten years of data outperforms the prior five years of data

for 2012-2014. In year 2015 and 2016 the prior five year cases are more accurate than the prior

ten year case by 0.4% and 3.4% respectively. Training with the same year of data outperforms all

cases with prior data for years 2012-2016.

Table 3.3: Binary tree-based classifier week 12 prediction accuracies for validation years 2012-2016
and various training years

Validation Year Prior 10 Prior 5 Same Year

2012 76.2 74.7 88.3
2013 75.3 73.2 90.0
2014 73.2 69.2 85.9
2015 75.7 76.1 88.0
2016 66.0 67.4 82.1

3.4 Random Forest Approach

The binary tree-based classification approach described in Section 3.3 can be improved upon

through the use of the bagging and random forest techniques [11,12,54,55,61,118]. These techniques
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Figure 3.7: Mean binary tree-based classifier accuracy with varying training portions
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help control the variance present in the binary tree-based classifier, and stabilize predictions made

by the classifier [12,92]. This is done through growing an ensemble of trees from the training data

and combining the predictions of individual trees in the ensemble. Two common techniques that

do this are known as bagging and random forests.

In the case of bagging (bootstrap aggregation), the algorithm averages predictions from clas-

sification trees over a collection of B bootstrap samples. Given training data (xi, yi), i = 1, ..., n,

and b = 1, ..., B; n samples (xbi , y
b
i ), i = 1, ..., n are drawn from the data to fit a classification tree

f tree,b. After generating B trees from the data, the algorithm chooses either the class with the

most votes:

f bag(x) = maximumk=1,...,K

B∑
b=1

ptree,b(x) (3.7)

or the class with the highest probability:

f bag(x) = maximumk=1,...,K
1

B

B∑
b=1

ptree,b(x) (3.8)

The bagging technique works by reducing the probability of misclassification with an increase

in B when the classifiers considered are independent. The classifiers are not independent in practice

however, as they are fit using samples drawn from the same training set. This leads to poor

performance in the case where the base classifier is poor, and improved performance when the base

classifier performs well in terms of prediction error.

The random forest technique improves upon the bagging technique by de-correlating the trees

in the ensemble. An ensemble of decision trees is constructed in the same manner as in bagging,

but at each split in the constructed trees a random selection mr of the predictors is chosen for

consideration in the split. The most common number of predictors is mr ≈
√
D, where D is the

total number of predictors. In the case where all of the predictors are used (mr = D) the random

forest is made equivalent to bagging [54,61,93].

While bagging and random forests can increase the classification accuracy of the algorithm,

they produce opaque results as compared to a single classification tree. Graphically representing

the final decision tree is not possible in the ensemble case, which complicates interpretation of
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Figure 3.8: Two example trees with associated decision regions (left, center), and a forest ensemble
with example member decision regions (right) [52]
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the result. Additionally, the computational complexity increases from N splits to N ∗ B splits

during training. In big data applications with lower accuracy requirements the binary classification

tree may offer superior performance as compared to random forests and bagging depending on the

project requirements.

3.4.1 Methods: Random Forest

The random forest technique is implemented in Matlab through the use of the treebagger()

training function. The parameters of the random forest are selected through testing various com-

binations of forest size, minimum leaf size, and training data portions. Further work assesses the

impact of varying the training input years on classification accuracy for years 2012-2016.

3.4.2 Results: Random Forest

The impact of varying the portion of data used in training is assessed using 25, 50, and

75% of available training data for all years 2002-2016 using a random forest of 100 trees (Figure

3.9). Peak melted/survived class prediction accuracies from 95-96% are attained in weeks 25-35

for all three test cases, with typical accuracy values from 92-95% throughout weeks 10-35. The

classification accuracy is typically stable between weeks 28 and 32, so week 30 was chosen as the

optimal prediction time for further testing of the classifier.

The effect of varying the number of trees utilized in the random forest classifier is also assessed

(Table 3.4). Week 30 prediction accuracies are derived through the use of 50% of available training

data for years 2002-2016 with varying numbers of trees in the random forest. Average accuracy

gradually increases with the addition of more trees in the forest, and a peak accuracy near 96.7%

is attained at and above a forest size of 100 trees.

Test cases are formulated to determine whether the inclusion of additional years of data during

training has an impact on week 30 classification accuracy for the random forest implementation. A

random forest of 100 trees is trained using 50% of available training data for the validation years

of 2012-2016. The test cases incorporate the same year of data, the prior five years of data, and
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Figure 3.9: 2002-2016 mean random forest classification accuracy with varying training portions.
Dashed lines indicate one standard deviation away from the main curve.
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Table 3.4: Mean random forest classification accuracy for various numbers of trees in the forest

Number of Trees Mean Week 30 Accuracy (%)

10 96.4
15 96.4
20 96.5
25 96.5
50 96.6
75 96.6
100 96.7
150 96.6
200 96.6
250 96.6

the prior ten years of data for the validation years (Table 3.5). The classification accuracy of the

prior ten-year trained case outperforms the prior five-year trained case for years 2012-2014, with

differences between 0.2% and 1.2%. In 2016 there is no difference in classification accuracy between

the two cases, and in 2015 the prior five-year trained case accuracy exceeds the prior-ten case by

0.3%. The same-year accuracy exceeds both of the prior year inclusion cases in all of the study

years by up to 16%.

3.5 Neural Networks

The neural network classifier seeks to learn nonlinear decision boundaries in a dataset [9].

The algorithm is inspired by biological neural networks, and is composed of a set of basic units

that act as neurons in the network [3,9,45,61]. A typical network receives a vector of inputs, feeds

these inputs into units (activation), and continues feeding forward in the network until the inputs

reach the output unit(s). Any number of layers can be used between the input and output nodes,

and each layer can contain any number of nodes. The layers between the inputs and outputs are

known as ”hidden units/layers”, and receive a net input a according to:

a =
∑

ωixi (3.9)
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Table 3.5: Random forest week 30 prediction accuracies for validation years 2012-2016 and various
training years

Validation Year Prior 10 Prior 5 Same Year

2012 84.8 84.5 96.1
2013 84.5 83.4 94.0
2014 88.3 85.5 93.5
2015 92.7 93.0 97.2
2016 82.0 82.0 96.4

where ωi represents a weight applied to the input value xi. Each unit sums the inputs and weights

to obtain a, and inputs the result to an activation function f(a). The result is then fed forward in

the neural network until outputs are determined at the output nodes [47, 61]. The neural network

technique can exhibit many exotic structures and combinations of nodes, which provides a means

for customization of the technique for specific applications.

3.5.1 Methods: Neural Network

Two feed-forward neural networks are implemented in order to compare the two techniques.

The first is a pattern recognition neural network, and the second is a fitting neural network. The

pattern recognition network is implemented through the use of the Matlab routine patternnet(),

which produces a network with sigmoid hidden layers and a softmax output layer (Figure 3.10).

The fitting network is implemented using the Matlab routine fitnet(), which produces a network

with sigmoid hidden layers and a linear output layer. These networks are trained with a variety

of training data portions, and several ranges of input years. Additional analysis determines an

optimal number of layers and an optimal number of nodes in each layer. The networks are provided

with an input vector of seven sea ice parameters, and they output a binary Nx2 vector indicating

the melted/survived class membership of parcel n ∈ N . Training is carried out using the scaled

conjugate gradient and Levenberg-Marquardt backpropogation algorithms [47,112].
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Figure 3.10: Two-layer pattern recognition neural network representation created using a Matlab
network training tool
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3.5.2 Results: Neural Network

The impact of varying the training data portion between 25%, 50%, and 75% is assessed for

both the pattern and fitting neural network (Figure 3.11). We observe a less than 2% increase in

survived/melted class prediction accuracy from the 25% case to the 75% case, with greater accuracy

being found in the fitting network case. Accuracies from 80-85% are observed between weeks 10

and 20, with steadily increasing accuracy toward the end of the study period. Peak accuracies of

87% for the pattern network and 89% for the fitting network are attained near week 30.

The hidden layer size in both networks is varied to determine if there is an optimal number

of hidden nodes to use during classification. Classification accuracy increases between 5 and 10

layers, but decreases with increasing numbers of nodes in the layer. This is likely due to there being

sufficient freedom with a layer size of ten, and too much freedom in networks with larger layers.

The optimal layer size of ten is utilized for the remainder of this analysis.

Table 3.6: Neural network peak classification accuracy for various hidden layer sizes

Hidden Layer Size Peak Accuracy (%)

5 92.8
10 93.2
20 92.7
40 92.7
60 92.9
80 91.6
100 92.7

The effect of varying the number of hidden layers on classification accuracy is tested for

both the pattern recognition network and the fitting network (Table 3.7). Four cases are tested

for each method with a hidden layer size of ten and varying layer depths of 1-4 layers. The mean

2002-2016 accuracy at week 30 is assessed for each case in order to determine if there is an optimal

combination. There are modest increases in accuracy with increasing layer size for the pattern

net, with four 10-node layers being the optimal setup. The fitting network reaches peak accuracy

with only two layers, and outperforms the peak pattern net results by 1%. This suggests that a
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Figure 3.11: Mean pattern (1) and fitting (2) neural network accuracies with varying training
portions
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fitting network with two ten-node layers is the optimal tool for this analysis, and it is used in the

remainder of this study.

Table 3.7: Neural network peak classification accuracy for various numbers of hidden layers of size
10

Network Type Number of Hidden Layers Week 30 Accuracy (%)

Pattern net 1 92.7
Pattern net 2 92.9
Pattern net 3 92.7
Pattern net 4 93.3

Fit net 1 93.9
Fit net 2 94.6
Fit net 3 94.5
Fit net 4 94.6

The impact of varying training years on the fitting network prediction accuracy is assessed for

several cases: the prior ten years, prior five years, and same year of data (Table 3.8). This is done

using 75% of available training data and a two-layer network. We observe little difference between

the prior ten and prior five year cases outside of 2016. In 2016 the prior ten year case outperforms

the prior five by 4%. In all years outside of 2015 the same-year accuracy is significantly greater

than the prior year accuracies, while in 2015 the same-year accuracy exceeds the prior-year case by

only 1%.
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Table 3.8: Neural network week 30 prediction accuracies for validation years 2012-2016 and various
training years

Validation Year Prior 10 Prior 5 Same Year

2012 79.3 79.1 93.0
2013 80.1 81.4 90.0
2014 85.1 85.4 94.4
2015 93.0 93.1 94.7
2016 83.5 79.5 90.6

3.6 SIPN Example Case

An example use these classifiers for predicting September sea ice extent is shown using a

random forest. This test case is performed in order to demonstrate the utility of the random forest

in predicting September sea ice extent for efforts like the Sea Ice Prediction Network’s Sea Ice

Outlook. The results presented here are distinct from the previous results in that extent is being

predicted in lieu of predicting survival of a summer melt season. The aim is to predict September

ice extent in the first week of June, July, and August from 2008-2017. Work is carried out using

a random forest of 100 trees that is trained using the prior five years of data as truth. The data

consist of 25km EASE-Grid values of concentration, albedo, and ice thickness that are further

described in Appendix C.

An example of the predicted extent maps obtained from this case study is shown in Figure

3.12. The spatial match accuracy of the random forest typically increases from June to August, with

matches ranging from 75-91% agreement with truth without including land (Table 3.9). August

predictions of extent are also within 0.5 million square kilometers of truth for most years. These

results indicate that there is significant merit in the continued study of using this technique to form

short-term predictions like those pursued by the SIPN team each summer. The results of this case

study are comparable with other efforts to predict spatial maps, and are within 2% accuracy of

other published work [51].
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Figure 3.12: Predictions of September sea ice extent in 2017 made during (A) June, (B) July, (C)
August. The true extent is shown in (D).
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Table 3.9: Spatial match percentages between random forest predictions and truth for 2008-2017.

Year June July August

2008 75.38 80.13 86.31
2009 82.32 87.94 89.49
2010 82.62 86.52 88.80
2011 81.23 87.36 91.17
2012 78.45 86.79 89.95
2013 84.89 82.73 89.90
2014 79.38 82.63 84.95
2015 80.64 84.96 87.87
2016 79.19 84.09 88.74
2017 76.60 84.02 90.26

3.7 Discussion

For the SVM classifier we observe that a quarter of the available data in the database is

sufficient for training, and that peak performance near 80% accuracy is obtained using a gaussian

kernel function. Computational cost, along with low accuracy, led to the abandonment of this

classifier as a potential source of both prediction and inference. The method is also hampered by

missing data, which is common during the melt season due to an increase in cloud cover [137].

The binary classification tree achieved peak accuracy in week 12 near 88% while utilizing 75% of

available data, with decreasing accuracy as the melt season progressed. This technique was also

hampered by the presence of missing data.

The random forest technique achieved peak accuracies up to 96% in weeks 25-35 with a forest

of 100 trees while using 75% of available training data. Varying the number of trees in the forest

served to increase accuracy initially, but the addition of more trees in the forest did not further

increase classification accuracy. The random forest was capable of accurate predictions during the

melt season due to its use of surrogate splits. A fitting neural network with two hidden layers of

size ten achieved peak accuracies of 94% near week 30, and outperformed its pattern recognition

network counterpart by up to 2% in some cases.

The addition of more years during training served to lower the accuracy in all three test cases
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as compared to the same-year accuracy. The same-year case outperformed prior-ten and prior-five

year cases by up to 15% in some experiments. We observe that the addition of more years during

training does serve to increase classification accuracy in most cases however, as the prior-ten cases

outperformed the prior-five cases in most tests. When predicting summer extent the same year of

data isn’t available as truth data, so this implies that problems of prediction would most benefit

from inclusion of as many years of data as are available. Studies focusing on inference of predictor

importance should be trained using the same year of data to maximize prediction accuracy.

We observe that the random forest and fitting neural network techniques are the optimal

classifiers in this study. This is due to their high prediction accuracies and ability to work in the

presence of missing data. Peak accuracies were achieved during the melt season, but the techniques

yield high accuracies near week 20 when melt typically starts. Future work utilizing these data

for forecasting summer ice extent should be refined by further testing and optimization of these

techniques. Additional data sources such as those considered in [64, 65] and others may also serve

to improve the prediction accuracy of these techniques.

It is important to note that the values considered in this chapter are weekly snapshots of

conditions on the ice. Variables like downwelling radiation and surface temperature can exhibit

large changes on a weekly basis, which makes these values poor predictors of whether a given

parcel will survive a melt season. Future work using these techniques should address this is-

sue by including cumulative values when available, such as total cumulative absorbed radiation.

This would strengthen conclusions made using these data in prediction, and would likely increase

predictive accuracy. Another variable that would provide context for future work is cumulative

convergence/divergence. These values would provide an additional means through which changes

in concentration and survival could be studied.

3.8 Summary

This chapter sought to demonstrate the implementation and testing of four discriminative

classifiers with the aim of determining if there was an optimal technique for predicting sea ice
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survival in the pan-Arctic domain. Further, it explored optimal weeks for prediction of survival,

and sought to determine if the addition of more years of data would serve to increase classification

accuracy.

Of the four techniques studied, we observe that the random forest and neural network tech-

niques are the most optimal for prediction of summer melt, with prediction of melted/survived

parcel class accuracies in the 80-95% for predictions made during the spring and summer. We have

also obtained optimal tuning parameters for the neural network and random forest that are applied

to the predictor importance estimates explored in Chapter 4. We find that peak survived/melted

class prediction accuracies for the random forest and neural network were obtained from the start

of the melt season to the end of melt, with peak accuracies later in the season. These techniques

have proven to be stable in the presence of missing data, and we observe that the inclusion of

training data from additional prior years is desirable.



Chapter 4

Relative Importance of Predictors in the Statistical Learning Analysis

This chapter details the methods through which pan-Arctic predictor importance values

were determined from predicting whether parcels melted or survived, and the resulting predictor

ranks. The work detailed herein utilizes the random forest and neural network techniques that

were introduced in Chapter 3 and the data product described in Chapter 2. Predictor ranks for the

neural network are determined through one-factor-at-a-time (OFAT) removal by using prediction

accuracy as a benchmark. Random forest predictor ranks are determined through the use of the

Gini impurity index, which provides readily available predictor ranks. These results are followed

by a discussion of the predictor ranks obtained throughout the melt season, in which we determine

that latitude, thickness, and albedo have the greatest impact on survival in the pan-Arctic case.

The techniques used in this chapter are utilized as a part of the analysis presented in Chapter 5.

This chapter is partially adapted from Tooth, M.; Tschudi, M.; and Matsuo, T., 2018 [160].

4.1 Introduction

Chapter 3 focuses on using statistical learning techniques for classification and prediction,

and the optimal times and parameters for those predictions. Additional techniques enable the

inference of predictor importance from several of the classifiers discussed. These inferred values of

predictor importance can provide additional context for Arctic sea ice analyses through providing

quantitative measures of the importance of specific variables in determining whether a given 12.5km

by 12.5km EASE-Grid parcel will melt or survive during the summer melt season.
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The random forest and fitting neural network techniques were chosen for use in this inference

study due to their performance as outlined in Chapter 3. The random forest provides a means

through which predictor importance can be determined through the use of the Gini index, while

the neural network is studied through the use of OFAT analysis. The objective of this study is

to determine if there is a predictor that accounts for the bulk of the decision boundary in the

statistical learning techniques, and if there is another predictor that does not account for very

much of the boundary. The study also seeks to determine the effect of the removal of the least and

most important predictors on survival classification accuracy.

4.2 Predictor Importance in the Random Forest

Determination of predictor importance in the random forest is done through the use of the

Gini index, which is a measure of the change in risk due to splits on each predictor considered in

the forest. The Gini Impurity Index is defined as:

1−
∑
i

pi(1− pi) (4.1)

where classes i ∈ [1, 2] represent the melted and survived classes, and pi represents the observed

fraction of data in class i at a node. Predictor importance is calculated at each split by taking the

difference between the indices of the parent and child nodes. The resulting values are averaged for

each split in the forest that involve the predictor in question to determine a Gini index for that

predictor.

4.2.1 Methods: Predictor Importance in Random Forest

The Gini index is calculated for each predictor in a random forest of 100 trees from 2002-2016.

A forest size of 100 trees was chosen based on the results presented in Chapter 3. The resulting

values are used to compute predictor ranks in each year, and the mean predictor rank in the overall

2002-2016 case for each of the seven predictors is considered. Cases in which various factors are

removed from training and testing are also investigated to determine if the removal of the most
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or least important predictors had a strong impact on classification accuracy. These cases remove

up to the three most important and three least important factors from the analysis, and use the

resulting data to form predictions that are compared against a baseline case that includes all of

the predictors. Additional Gini indices are computed for each week 10-35 of years 2002-2016. This

forms a weekly set of ranks from which changes in predictor importance throughout a given year

are investigated.

4.2.2 Results: Predictor Importance in Random Forest

Yearly predictor importance ranks are determined using the Gini index for 2002-2016 (Tables

4.1 & 4.2). Average predictor importance rank values are also computed, where a score of 1 indicates

that the predictor is most important in a given year.

During week 20 the latitude and thickness of a sea ice parcel are ranked as the most important

predictors in the forest, with average ranks of 1.4 and 2.0 respectively. Albedo is also highly ranked,

with an average rank of 2.9. Parcel age, IST, and downwelling shortwave radiation are ranked

lowest by the forest during this week. At week 30 parcel albedo and latitude are ranked as the

most important predictors in the random forest, with an average rank of 1.6 and 1.9 respectively.

Parcel thickness is also highly ranked, with an average predictor rank of 2.5. IST and age are the

lowest ranked predictors in the forest, with ranks of 6.8 and 5.8 respectively.

Weekly mean predictor importance values for years 2002-2016 are also calculated (Figure

4.1). Latitude is typically ranked as the most important predictor between weeks 10 and 25. Parcel

thickness is the second highest ranked predictor in weeks 10 to 25, with a brief period of being more

highly ranked in the forest than latitude. Albedo exhibits a steadily rising prediction importance

leading into week 25 as the melt season continues to degrade the ice surface, and it continues to be

ranked within the top three predictors from week 25 to 35. While there is separation between IST,

longwave, shortwave, and age at the start of the sample period, the importance of IST steadily

declines throughout the study period as surface temperatures reach uniform melt temperature. The

difference between longwave and shortwave decreases toward week 20, with longwave continuing to
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be ranked higher than shortwave in weeks 20-35. The importance of parcel age is reported as being

low consistently throughout the study period until IST falls below it in week 20.

Test cases that removed up to the most important and least important three variables are

formed to examine the impact of removing those predictors on classification accuracy (Table 4.3).

A baseline test with all predictors included in the forest is also performed, with a resulting week

30 accuracy of 96.2% for years 2002-2016. The removal of all predictors except albedo leads to a

decrease of 3.2% from the baseline accuracy of 96.2%. The inclusion of the next most important

predictor - latitude - leads to a further increase to 94.9% accuracy. The inclusion of the third most

important predictor - thickness - yields an accuracy of 0.5% greater than in the baseline case.

In the case where all predictors are included excepting the lowest ranked predictor - IST - we

observe an increase of 0.3% accuracy as compared to the baseline case. Further elimination of sea

ice age increases the accuracy to 0.6% above baseline, and 0.1% above the case of including only

the top three predictors. The last test case also removes downwelling longwave. This leads to a

slight decrease in accuracy to 0.4% above baseline.



65

1
0

1
5

2
0

2
5

3
0

3
5

W
e
e
k

0123456789

1
0

Gini Index

W
e
e
k
ly

 M
e
a
n

 P
re

d
ic

to
r 

Im
p

o
rt

a
n

c
e

L
a
ti

tu
d

e

IS
T

T
h

ic
k
n

e
s
s

A
lb

e
d

o

L
o

n
g

w
a
v
e

S
h

o
rt

w
a
v
e

A
g

e

F
ig

u
re

4.
1:

W
ee

k
ly

m
ea

n
p

re
d

ic
to

r
im

p
or

ta
n

ce
in

th
e

ra
n

d
om

fo
re

st
fo

r
ye

ar
s

20
02

-2
01

6



66

Table 4.1: 2001-2016 pan-Arctic week 20 Gini index rank for predictors in the random forest
classifier

Year Latitude IST Thickness Albedo Longwave Shortwave Age

2002 1 2 3 4 5 6 7
2003 2 7 1 3 6 5 4
2004 1 6 3 2 5 4 7
2005 1 7 2 3 5 6 4
2006 2 7 1 3 6 5 4
2007 1 3 2 4 5 6 7
2008 1 6 2 3 4 7 5
2009 1 6 2 3 4 5 7
2010 1 7 2 3 5 6 4
2011 1 4 2 3 6 7 5
2012 1 6 2 3 5 4 7
2013 2 6 1 4 5 7 3
2014 2 7 4 1 5 3 6
2015 1 6 2 3 4 5 7
2016 2 4 1 3 5 6 7

Avg 1.4 5.7 2.0 2.9 4.9 5.4 5.6

Table 4.2: 2001-2016 pan-Arctic week 30 Gini index rank for predictors in the random forest
classifier

Year Latitude IST Thickness Albedo Longwave Shortwave Age

2002 2 4 3 1 7 5 6
2003 3 7 2 1 5 4 6
2004 2 7 3 1 5 4 6
2005 2 7 3 1 5 4 6
2006 1 7 3 2 6 4 5
2007 3 7 1 2 5 4 6
2008 2 7 3 1 5 4 6
2009 2 7 3 1 6 5 4
2010 2 7 1 3 5 4 6
2011 3 7 2 1 4 5 6
2012 1 7 3 2 6 5 4
2013 2 7 4 1 3 5 6
2014 1 7 2 3 4 5 6
2015 3 7 2 1 4 5 6
2016 1 6 2 3 5 4 7

Avg 2.0 6.7 2.5 1.6 5 4.5 5.7
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Table 4.3: Table of variables included in random forest test cases and their mean 2002-2016 accu-
racies. 1 indicates that the variable was included in a test, while 0 indicates that it was excluded.

Case Latitude IST Thickness Albedo LW SW Age Accuracy %

1 1 1 1 1 1 1 1 96.2

2 1 0 0 0 0 0 0 93.0
3 1 0 0 1 0 0 0 94.9
4 1 0 1 1 0 0 0 96.7

5 1 0 1 1 1 1 1 96.5
6 1 0 1 1 1 1 0 96.8
7 1 0 1 1 0 1 0 96.6
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4.3 Predictor Importance in the Neural Network

Predictor importance in the neural network was determined through the use of OFAT analysis

[28]. This led to changes in prediction accuracy that were utilized as proxies for the readily available

predictor importance measures that were shown for the random forest classifier.

4.3.1 Methods: Predictor Importance in the Neural Network

OFAT Test cases are formed that remove one of the seven predictors from consideration dur-

ing each case. This work utilizes a fitting neural network with two ten-node layers that is trained

on half of each year’s available training data. A baseline prediction accuracy is determined utilizing

all seven parameters for each year, and is used to compute changes in prediction accuracy with

the removal of each factor. The algorithm then repeats the accuracy estimation for each year and

every case of removing one factor from the analysis. Changes in prediction accuracy are computed,

and ranks are formed from the parameters that have the highest negative impact on prediction

accuracy.

Additional multi-factor test cases are also formed. These seek to determine the impact of re-

moving the most and least important factors on classification accuracy for the neural network. Test

cases are formed that utilize the ranks described above to remove up to the three most important

and three least important factors from consideration during training and testing. The resulting

accuracies for week 30 are computed, and are further discussed in the results and discussion.

Additional tests with the neural network seek to determine what changes in predictor im-

portance occurred with time. Change in prediction accuracy is calculated for each OFAT case for

weeks 10-35 of years 2002-2016.

4.3.2 Results: Predictor Importance in the Neural Network

OFAT analysis is utilized to determine yearly changes in week 20 & 30 accuracy for each

predictor that is provided to the neural network (Tables 4.4 & 4.5). Average change in accuracy
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is then calculated for each predictor, and a rank is assigned based on each predictor’s impact on

the overall classification accuracy. A rank of 1 indicates that the predictor is the most important

predictor.

In week 20 we observe that latitude and thickness are ranked as the highest predictors, with

net changes in accuracy of -1.09 and -0.69% respectively. Albedo is ranked third, with a change in

accuracy of -0.62% that is similar to the change for thickness. Parcel age, downwelling shortwave,

and IST are the lowest ranked predictors, with net positive changes in accuracy with their exclusion.

At week 30 we observe that latitude is ranked as the highest predictor, with an average change

in accuracy that is 1.5 times larger than the next highest predictors. Albedo and thickness are

ranked as second and third respectively, but are very close in their average impact on the network’s

performance. IST is the next highest ranked predictor, with a change in accuracy that is nearly a

tenth of the value of the prior two ranked predictors. Downwelling longwave was the last predictor

to have the effect of improving mean accuracy, but the change is minimal at -0.01%. Downwelling

shortwave and age are the two lowest ranked predictors, with average increases in accuracy with

their exclusion.

Test cases that remove up to the most important and least important three variables are

formed to examine the impact of removing those predictors on classification accuracy (Table 4.6).

A baseline test with all predictors included in the neural network is also performed, with a resulting

week 30 accuracy of 94.2% for years 2002-2016. Removing all predictors excepting the most impor-

tant - latitude - results in a decrease of 6.4% as compared to the baseline. The addition of albedo

increases accuracy to 1.2% below baseline. Running the network with the top three variables yields

an accuracy that is 0.3% more accurate than the baseline case.

In the case where all predictors are included excepting the lowest ranked predictor - age - we

observe an increase in accuracy of 0.1%. Further removal of the next lowest predictor - downwelling

shortwave - yields an accuracy equal to the baseline case. The additional exclusion of downwelling

longwave yields an accuracy that is 0.2% greater than the baseline case.

Weekly mean predictor importance values for years 2002-2016 are computed for the neural
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network (Figure 4.2). OFAT removal of latitude results in the highest change in accuracy for

all weeks 10-35. The next highest ranked predictors, thickness and albedo, follow similar trends

throughout the study period, with typical changes in accuracy near 0.6-0.8%. All three of the top

predictors are grouped similarly, and are well separated from the bottom four predictors.

IST, downwelling longwave, downwelling shortwave, and age exhibit similar behavior from

weeks 10-35; with little change in rank between them throughout the study period. Age is typically

ranked the lowest, with the network showing improvement in accuracy with its removal in all

but three of the study weeks. IST, shortwave, and longwave fluctuate around the zero change in

accuracy boundary, with little overall change in their impact on the classification accuracy. All

three exhibit positive changes in accuracy during a significant portion of the study period, which

indicates that their inclusion in training serves to confuse the neural network.
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Table 4.4: OFAT change in accuracy when removing specified variable during neural network
prediction in week 20

Year Latitude IST Thickness Albedo LW SW Age

2002 0.24 0.12 -0.06 -0.41 0.09 0.3 0.3
2003 -0.36 0 -0.54 -0.21 -0.12 -0.12 0.08
2004 -0.36 0.57 -0.08 0.05 0.15 0.16 0.57
2005 -0.53 0.79 0.21 -0.05 -0.29 -0.45 0.21
2006 -1.15 -0.04 -0.23 -0.48 -0.34 -0.36 -0.08
2007 -0.83 0.31 -1.76 0.35 1.85 0.92 1.3
2008 -1.3 0.02 -0.61 -1.38 -0.64 -1 -0.32
2009 -1.37 -0.36 -1.29 -1.3 -0.37 -0.53 0.24
2010 -1.7 -0.29 -0.75 -0.08 0.79 0.79 1.29
2011 -0.91 -0.48 -1.27 -1.41 -0.3 -0.32 -0.05
2012 -3.78 0.13 0.21 -1.37 0.5 0.76 0.06
2013 -1.25 0.11 -1.16 -2.84 -0.09 0 -0.22
2014 -2.05 -0.73 -1.41 -1.68 0 0.02 -0.57
2015 -0.36 0 -1.05 -0.34 -0.44 -0.04 -0.14
2016 -0.76 1.51 -0.48 1.81 0.87 2.09 0.29

Avg. -1.09 0.109 -0.69 -0.62 0.111 0.15 0.19
Rank 1 5 2 3 4 6 7

Table 4.5: OFAT change in accuracy when removing specified variable during neural network
prediction in week 30

Year Latitude IST Thickness Albedo LW SW Age

2002 0 -0.09 -0.68 -0.18 -0.26 -0.2 0.11
2003 -0.73 -0.28 -0.51 -0.5 -0.47 -0.16 -0.37
2004 -0.74 -0.3 -0.45 -0.42 -0.45 -0.2 0.12
2005 -0.47 -0.03 0.34 -1.1 0.21 -0.97 0.71
2006 -0.92 0.72 0.08 0.1 0.07 -0.3 0.04
2007 -1.36 -1.28 -1.69 -0.84 -0.26 -1.21 -0.06
2008 -0.35 0.84 0.2 -0.22 0.73 0.54 0.89
2009 -0.7 -0.5 -0.32 -0.52 -0.04 0.77 0.4
2010 -1.52 0.52 -0.73 -1 0.98 0.62 0.77
2011 -0.35 -0.52 -1.04 -1.28 -0.17 0.19 0.23
2012 -3.03 0.46 -0.25 -1.87 -1.03 0.36 -0.11
2013 -1.51 -0.95 -1.29 -1.74 -0.04 0.22 -0.26
2014 -2.23 0.33 -0.93 -0.79 0.53 -0.18 -0.09
2015 0.25 -0.1 -0.92 -0.8 -0.05 0.35 -0.27
2016 -3.15 0.15 -2.53 0.24 0.08 0.83 1.09

Avg. -1.12 -0.07 -0.72 -0.73 -0.01 0.04 0.21
Rank 1 4 3 2 5 6 7
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Table 4.6: Table of variables included in neural network test cases and their mean 2002-2016
accuracies. 1 indicates that the variable was included in a test, while 0 indicates that it was
excluded.

Case Latitude IST Thickness Albedo LW SW Age Accuracy %

1 1 1 1 1 1 1 1 94.2

2 1 0 0 0 0 0 0 87.8
3 1 0 0 1 0 0 0 93.0
4 1 0 1 1 0 0 0 94.5

5 1 1 1 1 1 1 0 94.3
6 1 1 1 1 1 0 0 94.2
7 1 1 1 1 0 0 0 94.4
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4.4 Discussion

In the random forest results we observe that latitude, ice parcel thickness, and albedo are

the highest ranked predictors for separating surviving and melted parcels. Latitude and thick-

ness exhibit the greatest Gini indices prior to the onset of melt, and continue to be highly ranked

throughout the remainder of the melt season. This is likely caused by more favorable surface condi-

tions at higher latitudes and the greater mass of ice that must be ablated to melt a thicker parcel.

The Gini index of albedo increases during the summer melt season to be nearly equal to the indices

of latitude and thickness. This growth in the relative importance of albedo is a result of the sea

ice albedo feedback, as parcels with lower albedos in the summer are susceptible to additional melt

and continuation of the feedback cycle [27,121].

We note that, while downwelling longwave and shortwave radiation are known to play an im-

portant role in melt onset [64,65,109,137], their Gini indices and ranks are fairly low in comparison

to other variables. While springtime radiative anomalies and related processes are well linked with

melt onset [65], these effects are difficult for the random forest to discriminate. Parcels that melted

during the summer had greater spring ISTs than those that survived summer melt, which leads to

a higher Gini index in the spring than in the summer. The Gini index of IST in the summer is low

due to both the melted and surviving populations of parcels being at melting temperature. While

sea ice parcel age is recognized as being linked with ice thickness and survival [98,170], we observe

that the Gini index of parcel age is comparatively low. We do observe the expected link between

age and ice thickness described in [170] in these data however (Figure 4.3). The low Gini index for

age is likely a result of the thickness data accounting for the increased chance of survival for older

ice.

In the neural network we observe that latitude has the greatest impact on prediction accuracy

in the OFAT analysis for weeks 10-35. Thickness and albedo are the next highest ranked predictors,

with similar changes in prediction accuracy throughout the year. The OFAT analysis appears to

fail to sense seasonal variation, as each variable shows little change in ∆Accuracy throughout the
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year. The order of ranks agrees well with the random forest ranks however, which suggests that

latitude and thickness are still the main controlling factors in classifying a parcel as melted or

surviving.

We observe that downwelling longwave/shortwave and IST have an equal impact on clas-

sification accuracy throughout the year in the neural network, with little seasonal change. The

age of parcels serves to confuse the network, as removing it has a positive impact on classification

accuracy. These predictors likely have a negative effect on the neural network accuracy due to

the relatively small separation between the melted and surviving populations in the data space.

There are larger separations in albedo, thickness, and latitude that provide more information for

the network to make decisions based on, so they have a greater impact on the network’s accuracy.

We note that the removal of the lowest ranked variables during training served to increase

the predictive accuracy of both the random forest and neural network as compared to their baseline

cases. Peak predictive accuracy was attained for the random forest by excluding the age and IST

of parcels, which served to confuse the forest during classification. The neural network performed

best when all but the top three predictors - latitude, thickness, and albedo - were removed. This

suggests that predictive work using these methods should focus on these variables. Future research

may benefit from testing other sources of the lower ranked data products, and other available

surface parameters.
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PIOMAS Ice Thickness vs Age
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Figure 4.3: Mean PIOMAS thickness for parcels of different age classes
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4.5 Summary

This chapter sought to use Gini index values derived from a random forest and OFAT neural

network values to determine which predictors are most important in classifying sea ice parcels as

surviving or melted at the end of the summer melt season. The work utilized the Lagrangian data

product described in Chapter 2 and methods from Chapter 3 to study predictor ranks in these

data.

While there is relative agreement between the random forest and neural network, the Gini

indices derived from the random forest appear to be most suitable for determining predictor impor-

tance. The random forest was able to capture seasonal variation in these data that agree with other

sea ice studies that were not present in the neural network results. The random forest method,

and the readily available Gini indices derived from it, are valuable tools for future predictive work,

operational planning, and investigations of predictor importance [66]. A random forest is used in

Chapter 5 in order to compare these results with more traditional statistical methods in a case

study of Beaufort Sea ice parcels from 2009-2016.



Chapter 5

Study of Beaufort Sea Ice Parcels from 2009-2016

Arctic sea ice extent has continued to decline in recent years, and the fractional coverage of

multi-year sea ice has decreased significantly during this period [129]. The Beaufort Sea region has

been the site of much of the loss of multi-year sea ice, and it continues to play a large role in the ex-

tinction of ice during the melt season. This chapter presents an analysis of the influence of satellite-

derived ice surface temperature, ice thickness, albedo, and downwelling longwave/shortwave radia-

tion as well as latitude and airborne snow depth estimates on the change in sea ice concentration in

the Beaufort Sea from 2009 to 2016 using the Lagrangian tracking database described in Chapter

2. The predictor importance values described in Chapter 4 are also derived for these variables.

Results from this analysis indicate that parcels that melt during summer in the Beaufort Sea reside

at lower latitudes and have lower ice thickness at the beginning of the melt season in most cases.

The influence of sea ice thickness and snow depth observed by IceBridge offers less conclusive re-

sults, with some years exhibiting higher thicknesses/depths for melted parcels. Parcels that melted

along IceBridge tracks do exhibit lower latitudes and ice thicknesses, however, which indicates that

earlier melt and breakup of ice may contribute to a greater likelihood of extinction of parcels in

the summer.

This chapter is partially adapted from Tooth M. and Tschudi M., 2018 [159].
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5.1 Introduction

Arctic sea ice continues to decline in extent as a result of changes in global climate [129].

This reduction in ice contributes to changes in freshwater balances, the region’s biosphere, energy

input at the surface, and the future hardiness of the ice pack against climatic forcing [146]. A re-

duction of the extent of multi-year sea ice has coincided with this loss of total ice extent, which has

led to weakening of the Arctic ice pack [99]. Further study of the major variables influencing these

changes in the Arctic is of significant interest to governments, commercial entities, and regional

stakeholders [33,37,104].

The Beaufort Sea region of the Arctic in particular has acted as a “sink” for sea ice over

the past decade, and it accounts for a significant portion of the total areal loss of sea ice each

year [57,79,127,141,145]. The region is the extinction location for many of the multi-year ice floes

that advect from the Canadian Archipelago. The loss of multi-year sea ice further weakens the

Arctic ice cover against future warming, as older ice floes are typically thicker and stronger than

younger floes [170], which can help increase their odds of surviving the summer melt season. Given

this region’s relative importance in sea ice loss, it is valuable to explore the factors leading to the

survival and/or extinction of ice parcels that reside there.

Through the use of Lagrangian tracking methods, the trajectory of sea ice parcels in the

Arctic can be tracked and recorded. These sea ice parcel positions provide a means by which

parcels that inhabit a specific region such as the Beaufort Sea can be sorted and analyzed. Further,

coincident airborne and satellite data products can be tracked with these parcels over time.

We examine the influence of IST, ice thickness, surface albedo, downwelling longwave/shortwave

radiation, and snow depth on the change in ice concentration in the Beaufort Sea from 2009 to

2016. Our analysis utilizes a Lagrangian tracking database developed in Chapter 2 that matches

12.5km by 12.5km EASE-Grid sea ice parcel locations with ice surface temperature, albedo, and

downwelling longwave and shortwave radiation from satellite-based datasets, and ice thickness from

a sea ice model [158]. Furthermore, we compare individual sea ice parcel ice thickness and snow
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depth as estimated along flight tracks during NASA’s Operation IceBridge [82]. The use of La-

grangian tracked data provides a means by which changes in the health of individual sea ice parcels

can be observed over time, with additional initial conditions provided by the airborne observations.

5.2 Study Area and Data Sources

The Beaufort Sea study region mask utilized in this study is shown in Figure 5.1. This

region contains roughly 6000 12.5 km EASE-Grid cells that formed the study area for this analysis.

The landward boundaries of the study region were also conservatively masked in order to prevent

the inclusion of parcels that made landfall in this analysis. Sea ice parcel positions were compared

against the final Beaufort Sea region mask to determine weeks in which they were present during

the study period.

This analysis utilizes six surface products derived from satellite measurements that are

built into the Lagrangian tracking sea ice product described in Chapter 2 and [156, 158]. Ad-

ditional airborne data from NASA’s Operation IceBridge campaigns were also incorporated into

the study [82]. Data from CULPIS-X and BESST were also considered, but they proved unsuitable

for this analysis. Further information about these instruments is included in Appendix F.

5.2.1 Lagrangian Tracking Product

The database of pan-Arctic Lagrangian tracked ice parcel locations with ancillary sea ice

property datasets described in Chapter 2 was utilized for this study [156, 158]. The database

provides weekly sea ice parcel positions in the Arctic that were used to determine whether particular

parcels inhabited the study region. Parcel positions are determined using EASE-Grid sea ice motion

vectors [163,165]. This study utilized weekly snapshot values of EASE-Grid Sea Ice Motion Vectors

[163,165], MODIS Terra IST [50], SSM/I and SSMIS ice concentration [19], Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS) ice thickness [136, 182], Extended AVHRR Polar

Pathfinder (APP-X) albedo, APP-X shortwave up/downwelling radiation, and APP-X longwave

up/downwelling radiation [70, 75]. Additional information about these data products and their
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uncertainties is provided in Appendix C.

5.2.2 Operation IceBridge Data

Airborne data from spring NASA Operation IceBridge Campaigns were also incorporated

into this analysis for years 2009-2016 [82]. The 40m level-4 airborne data were obtained from the

National Snow and Ice Data Center (NSIDC), and are further described in their related documen-

tation page [82]. The data include KT-19 infrared pyrometer IST values [78], snow depth estimates

retrieved using the University of Kansas’ snow radar [63, 86, 133], Digital Mapping System (DMS)

derived open water concentrations [30], and Airborne Topographic Mapper (ATM) derived thick-

ness and freeboard estimates [15, 31, 85]. Additional information about these data is provided in

Appendix C.
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Figure 5.1: Beaufort Sea study region shaded in black.
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5.3 Methodology

A set of sea ice parcel tracks for 2009–2016 was generated by searching the parcel database

files for parcels that resided in the Beaufort Sea study region during any part of each analysis

year. Parcels were sorted into two categories containing those that melted during the study year,

and those that survived that year’s melt season through the use of a melting threshold of 15% sea

ice concentration. Additional checks removed parcels that were considered lost when they coincided

with the shore of a land-mask, as these parcels could introduce potentially misleading results into

the analysis. The result was a set of weekly observations for parcels that inhabited the Beaufort Sea

study area during the years of study. An example of the behavior of the populations in 2009 demon-

strates some of the general relationships between the melted and surviving populations present in

this data set, such as lower average albedos and ice thickness in the melted parcels (Figure 5.2).

Weekly averages for values of IST, concentration, thickness, albedo, latitude, and short-

wave/longwave energy input were then computed for both the melted and surviving populations

of parcels, with sample sizes shown in Table 5.1. These values were used to determine Pearson

Correlations (measures of the linear relationship) between major variables and change in sea ice

concentration. The results of this branch of the analysis are further discussed in Section 5.4.

The Operation IceBridge airborne data were processed by converting the provided latitude

and longitude coordinates to EASE-Grid coordinates through the use of the Python Basemap

package. Once grid coordinates were obtained, the Operation IceBridge data points were compared

against the Beaufort Sea region mask to determine which observations were obtained in the study

region. These observations were binned and averaged for each cell with data, and were stored in

separate files for use in generating statistics.

The IceBridge flights available in the Beaufort Sea region were sorted by week, and combined

to form weekly observation files for each year of study (Table 5.2). The data used in this analysis

included averages of snow depth, concentration, IST, and thickness for each overflown cell along the

tracks shown in Figure 5.3. Parcels with coincident Operation IceBridge data during the weeks of
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Table 5.1: Number of melted and surviving parcels analyzed for each year of study.

Year Surviving Parcels Melted Parcels Total

2009 967 1204 2171
2010 94 1116 1210
2011 583 1776 2359
2012 394 1809 2203
2013 946 1263 2209
2014 982 934 1916
2015 636 1966 2602
2016 518 1421 1939

observation were separated into their own distinct melted and surviving populations for the second

thrust of this analysis, which is further described in Section 5.5.
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Table 5.2: Weeks of IceBridge data for years 2009–2016.

Year Flights Over Beaufort Sea Week(s) Covered

2009 2 14
2010 3 14 and 16
2011 2 11 and 12
2012 3 11 and 12
2013 2 12 and 13
2014 6 11 and 12
2015 5 13 and 14
2016 3 16 and 17

Figure 5.2: Example plots of four studied variables for melted (red) and surviving (black) parcels
during 2009. Dotted lines indicate one standard deviation away from the main curve.
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5.4 Results of Analysis of Satellite Data

5.4.1 Parcel Ages

The percentages of parcels in each age class (1–5+ years) in the Beaufort Sea from 2009–

2016 are shown in Figure 5.4. During years 2009 and 2010, the studied ice parcel population was

comprised of approximately 30% old ice (5+ years) that melted. Twenty-five percent of the studied

population in 2009 was older ice that survived the transit through the Beaufort Sea, while only 2%

of parcels in 2010 were surviving older ice. Years 2011–2016 show a general trend of large losses of

first-year sea ice parcels in the Beaufort Sea, with varying losses in the older age classes. In 2013

and 2014, there was an increase in surviving ice aged 5+ years (8% and 11%, respectively), but this

increase was followed by an 8% increase in melted older ice during 2015. In 2016, the amount of

surviving and melted older ice decreased, with a corresponding rise in melted and surviving young

ice (1–2 years). Melted first-year ice made up the largest percent share of ice in all years excepting

2009, in which a large section of multi-year ice had advected into, and melted in, the Beaufort Sea.

We observe that in most cases a higher fraction of multi-year ice survives over first-year ice.

The percent areal share of older ice in the Arctic has been declining over recent decades as

measured by the EASE-Grid Sea Ice Age Product [99,164]. The extent of ice older than four years of

age has decreased from 2.54 million km2 to 0.13 million km2 from March 1985 to March 2017 [129].

We observe significant loss of older (5+ years) ice during 2009 and 2010 in the Beaufort Sea, with

a large reduction in ice that survived the transit through the region between the two years. While

there was a slight recovery in surviving older ice during 2013 and 2014, the following years 2015

and 2016 returned to the general trend of more older ice being extinguished than surviving. The

Beaufort Sea has accounted for much of the loss of older ice in previous years [99], and these data

suggest that it has continued to play a role in the reduction of older ice in the Arctic due to the

advection of older ice from the Canadian Archipelago into the Beaufort Sea.
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5.4.2 Ice Surface Temperatures

Weekly mean ISTs obtained from MODIS data [50] for the melted and surviving parcels

in this study are shown in Figure 5.5. Temperatures for the melted population of sea ice parcels

exceeded those of the surviving population for every year of study by an average of 1.8 ◦C. This gap

in mean temperatures persisted until the melt season, during which the ice surface is uniformly at

its melting temperature. The warmer IST for melted parcels is likely due to the melted population

having lower average latitudes, which typically exhibit higher spring temperatures due to greater

downwelling shortwave flux and/or advection of warm air masses [131,137].

5.4.3 Ice Thickness

Mean weekly sea ice thickness for the melted and surviving parcel populations were obtained

from the the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) for years 2009–

2016 (Figure 5.6) [136, 177]. Parcels that survived a melt season were 0.5 m thicker on average

than their melted counterparts in a given study year. Thicker sea ice parcels should be more likely

to survive the melt season due to the larger mass of ice that must be melted to bring the sea ice

parcel to the melted threshold of 15%, and their greater ability to resist breakup during collisions.

In 2009, we observe an increase in mean thickness for melted parcels near the end of the study

period. This is due to a smaller population of thicker parcels surviving at that point in the year.

5.4.4 Mean Latitudes

The mean latitudes of the sea ice parcels, which are shown in Figure 5.7, had a strong

influence on the probability of survival in all years of study. Surviving parcels were typically 2–3◦

higher in latitude than melted parcels prior to the onset of melt. As the melt season progressed,

the mean latitude of melted parcels progresses northward with the retreating ice edge, but this is

a typical seasonal pattern of ice retreat.
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Figure 5.4: Percent of population in age categories 1–5+ years for surviving (black) and melted
(red) ice parcels in the Beaufort Sea during 2009–2016.
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Figure 5.5: Ice surface temperature trends for melted (red) and surviving (black) parcels during
2009–2016.
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Figure 5.6: PIOMAS model ice thickness of melted (red) and surviving (black) sea ice parcels
during 2009–2016.
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Figure 5.7: Mean latitudes of sea ice parcel populations during 2009–2016. Melted parcels are
shown in red, surviving parcels are shown in black.



91

5.4.5 Downwelling Radiative Fluxes

Weekly snapshot values of downwelling shortwave and longwave radiative fluxes were obtained

from the APP-x dataset [70]. Mean downwelling shortwave radiative fluxes for melted and surviving

parcels were very similar for all years in the study period (Figure 5.8). The melted population

typically received 10–15 W/m2 more downwelling shortwave flux during the first part of the year,

but after Week 20 the surviving population received up to 20 W/m2 more downwelling flux. Mean

downwelling longwave radiative fluxes were also very similar for both the surviving and melted

parcels, with periods of up to 10 W/m2 greater downwelling flux for the melted parcel population

(Figure 5.9). The relationship of greater downwelling longwave flux for melted parcels typically

held during later parts of the study years.
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Figure 5.8: Mean downwelling shortwave radiation in W/m2 for surviving (black) and melted
(red) parcels during 2009–2016.

5.4.6 Surface Albedos

The mean APP-x [70] albedos of the melted and surviving parcels in this study are shown in

Figure 5.10. The albedos in the melted populations were lower than the surviving parcel population
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means, which led to greater energy input for equal radiative forcing at the surface in the melted

population. The mean difference was typically 0.1, which represents a significant difference in

available shortwave radiation during the melt season.

5.4.7 Pearson Correlations between Major Variables and Concentration Change

Pearson correlations were calculated to explore the linear relationship between the major

thermodynamic variables discussed above, and the change in sea ice parcel concentration obtained

from SSMI/SSMI-S [19] for the overall sample population in each year (Table 5.3). Due to the use of

total change in parcel concentration as the variable to compare against, positive correlations imply

that an increase in the variable will lead to an increase in melt rate, while negative correlations

imply that an increase in the variable will lead to a decrease in melt rate. Table 5.3 values in black

have high significance, values in blue have slightly lower significance, and orange values have low

significance.

Table 5.3: Pearson correlations between studied variables and total change in concentration for
2009–2016. Values with p ∈ (0.05, 0.3] are shown in blue. Values with p ∈ (0.3, 1] are shown in
orange

Variable 2009 2010 2011 2012 2013 2014 2015 2016

Temperature 0.60 0.61 0.65 0.47 0.47 0.51 0.76 0.69
Latitude 0.39 0.31 0.52 0.29 0.24 0.38 −0.18 −0.66

Downwelling LW 0.68 0.71 0.77 0.72 0.53 0.77 0.84 0.95
Downwelling SW −0.67 −0.71 −0.28 −0.26 −0.39 −0.15 −0.10 −0.82

Thickness −0.75 −0.95 −0.64 −0.69 −0.74 −0.69 −0.64 −0.91
Albedo −0.93 −0.91 −0.93 −0.85 −0.84 −0.84 −0.87 −0.89
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Figure 5.9: Mean downwelling longwave radiation in W/m2 for surviving (black) and melted (red)
parcels during 2009-2016

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2009

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2010

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2011

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2012

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2013

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2014

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2015

10 20 30

Week

0

0.2

0.4

0.6

0.8

1

A
lb

e
d

o

2016

Figure 5.10: Mean albedo for melted (red) and surviving (black) parcels during 2009–2016.
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5.5 Results for Parcels With Coincident Operation IceBridge Data

The Operation IceBridge data analyzed in this study were comprised of twenty-six separate

flights over the Beaufort Sea study region during the analysis period. Files containing coincident

data for a given week were combined to form weekly observation files for use in computing mean

surface conditions for each year (Table 5.4). The year 2009 featured one week of data, while the

years 2010–2016 each had two weeks of data to use as a point of comparison (Table 5.2). These

data provided initial values for parcels prior to the onset of melt.

Ice surface temperature measurements from Operation IceBridge were available in the region

of study for all observation years except 2009, 2011, and 2016 [78]. These data showed an average

IST difference between melting and surviving populations of 5.8◦C. The relationship of higher

average temperatures for melted parcels as compared to surviving parcels held for all years in

this analysis. This relationship is also present in the satellite IST means for this subset of parcels.

These results match those described in the previous section, where the population of melted parcels

endured higher surface temperatures than the surviving population during the spring. IST can

change quickly from day to day however, so these results are limited due to their sparse sampling.

Snow depth was also considered in this analysis, as its higher albedo and negative heat flux

contribution can help prevent the loss of an ice parcel by delaying melt [123]. Snow depths were

greater in the surviving sea ice parcel population for all years except 2010 and 2016. Outside of

years 2010 and 2016, the surviving parcels possessed an average of 5 cm greater snow depths than

their melted counterparts.

Results from Operation IceBridge ice thickness estimates and PIOMAS model thicknesses

yield contrasting results. In the IceBridge data, the melted parcels had an average of 27 cm greater

mean ice thickness than surviving parcels in 2009, while melted parcels in 2010 and 2012 were

an average of 4.5 cm thicker than surviving parcels. In 2014, the average thickness of surviving

parcels exceeded that of melted parcels by 48 cm, and surviving parcels were an average of 10.5 cm

thicker than melted parcels in 2015 and 2016. Coincident PIOMAS thickness data for these parcels



95

indicate that surviving parcels were thicker in every year by an average of 30 cm.

IceBridge concentration data for all years in which they were available indicate that sea ice

parcels in both populations were near 100% sea ice concentration. SSMI sea ice concentrations

along the flight tracks were also at or near 100%. While lower ice concentrations are possible in

some regions during the spring, there weren’t parcels lower then 100% present in the IceBridge

estimates used in this study.
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5.6 Predictor Importance in the Beaufort Sea

Predictor importance ranks for the satellite-based data used in this study are obtained via

the use of the Gini index procedure described in Chapter 4. A random forest of 100 trees is used

to generate mean week 20 ranks for all years excepting 2010 and 2016, which do not have a large

enough surviving population to produce Gini index ranks (Table 5.5).

The week 20 ranks in Table 4 represent the ranking of predictors during or near the onset

of melt in the Beaufort Sea. Latitude and thickness are the two highest ranked parameters, with

average ranks of 1.8 and 2.3 respectively. These are followed by the age of a sea ice parcel, with

a rank of 3.8. Albedo, downwelling longwave, and downwelling shortwave are equivalent in rank

during melt onset. IST, which is typically near the melting temperature at week 20, is ranked as

the least important predictor.

Weekly values of the Gini index were also produced for weeks 10-35 (Figure 5.11). We observe

that latitude and thickness have the highest Gini indices throughout the late spring and summer.

These values steadily decline after melt onset, and are nearly equal to the Gini index of albedo later

in the summer. The Gini index of albedo declines slightly as the melt season progresses, but it is

ranked near thickness between weeks 25 and 35. The Gini index of age remains relatively constant

throughout the year, with little change in value. The Gini indices of shortwave/longwave and IST

decline steadily from week 20 to 35 as the melt season starts and progresses.

Table 5.5: Week 20 predictor importance in the Beaufort Sea

Year Latitude IST Thickness Albedo Longwave Shortwave Age

2009 3 7 1 4 5 2 6
2010
2011 1 7 3 5 6 2 4
2012 1 6 2 3 5 7 4
2013 1 7 4 5 3 6 2
2014 2 7 3 4 5 6 1
2015 3 2 1 7 4 5 6
2016
Avg 1.8 6.0 2.3 4.7 4.7 4.7 3.8
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5.7 Discussion

For the satellite data studied from 2009–2016, we observe that albedo exhibited the strongest

negative Pearson correlation with change in ice concentration. This is likely a result of the ice

albedo feedback [27,121]. The downwelling longwave radiative flux had the highest positive Pearson

correlation with change in ice concentration. These results agree well with other studies that

have found that greater downwelling longwave radiation in the spring, and other linked processes,

contribute to earlier melt onset and lower end of season ice extent [64, 65, 109]. We note that

downwelling shortwave flux correlated negatively with change in ice concentration, but this is

likely due to the observed seasonal decline in downwelling shortwave radiation (Figure 5.8) while

melt continues at the end of the melt season [137]. Other studies have suggested that longwave

radiation anomalies have a greater impact on melt onset, while shortwave radiation anomalies act

as an amplifying feedback once melt has started [64].

We observe that melted parcels are located at lower latitudes and are thinner than surviving

ice parcels prior to the onset of melt. These parcels are more likely to break up due to their lower

ice thickness, which further contributes to their extinction due to increased lateral melt from the

surrounding ocean [161]. We also observe that first year ice comprised the majority of melted ice

in all years except 2009. The predominance of younger ice in the melted population is linked to

the thickness of the ice, as older parcels are generally thicker than younger ones [170].

For the subset of parcels that had IceBridge data available during 2009–2016, we observe

that spring snow depth may influence the survival of ice parcels in the Beaufort Sea, but these

results are inconclusive. Sea ice parcels that survived a summer melt season had an average of

5 cm of additional snow cover when compared against those that did not survive the melt season.

Snow depth data from two of the study years exhibited greater average snow depth for the melted

parcel population however, so there isn’t conclusive evidence that snow depth directly contributes to

survival. This inconclusive result is likely due to the high uncertainty of the IceBridge snow depth

estimates (Appendix C). The potential importance of snow is linked with our previous discussion
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of albedo, as snow on the sea ice surface helps to delay melt onset by protecting the ice from

further energy input through its higher albedo [122, 123]. This is limited to the summer melt

season however, as snow can dampen sea ice growth during the fall and winter seasons [105].

We observe that IceBridge parcels had mixed results for parcel ice thickness throughout the

study period, with half of the years exhibiting greater mean ice thickness in the melted population.

The mean latitude of melted parcels was 2.5◦ lower than that of the surviving parcels, which may

have contributed to the extinction of thicker parcels during years in which mean thicknesses in

the melted population exceeded those of the survivors. PIOMAS model data for these parcels

show that surviving parcels were thicker than melted parcels in all study years. The reported

uncertainties for PIOMAS model thicknesses and IceBridge thickness estimates were similar for

this study. The difference between the IceBridge and PIOMAS results may be a result of the

smaller 40 m footprint of IceBridge observations as compared to the 12.5 km PIOMAS values. This

difference in sampling size causes IceBridge tracks to report thicknesses for a much smaller region

of ice as compared to the PIOMAS averages over entire EASE-Grid cells, which could lead to the

mixed results that we observe for IceBridge thicknesses.

Gini index ranks obtained from a random forest for week 20 and weeks 10-35 also indicate that

latitude and thickness are most linked to the survival of sea ice during the summer melt season prior

to the onset of melt. The Gini index derived importance of these variables decreases as summer

melt progresses, but continue to best separate the data through most of the year. The Gini index

of albedo increases as summer melt continues as a result of the sea ice albedo feedback. We do not

observe an increase in the Gini index of downwelling shortwave as [65] may indicate. This is likely

a result of seasonal changes in downwelling shortwave radiation and decreased albedo during the

summer. We also observe that downwelling longwave is more highly ranked than shortwave prior

to melt onset, which agrees well with the discussion of longwave driving melt onset earlier in the

year in [64, 65]. In contrast with the pan-Arctic results described in Chapter 4, we note that the

Gini index derived rank of age is higher than downwelling shortwave/longwave and IST for much

of the summer melt season. This suggests that older parcels in the Beaufort Sea are more likely to
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survive a summer transit, and is likely a result of the large population of melted first year parcels

observed in this study (Figure 5.4). The increased Gini index of ice age may also be linked to older

parcels generally being thicker, and more likely to survive a summer melt season [170].

We note that, while this study has demonstrated the use of Lagrangian tracks to study sea

ice parcel histories in a region of interest, its results are limited by several key factors. This analysis

excludes ocean surface temperatures under the ice, which are an important factor during the melt

season [124]. Dynamic variables such as surface winds and their impact on the deformation and

further breakup of sea ice were also not considered. In addition, the variables considered in this

work, such as snow cover and albedo, are not independent [6], and there are other factors that

influence the extinction of ice in the Beaufort Sea. The results from this study do suggest that

albedo, initial latitude, and thickness are the strongest predictors of ice survival for the variables

studied. Results for snow are less conclusive, but snow on sea ice is an ongoing area of study

[17, 87, 105, 123]. Future sources of snow data should help to further clarify its influence on the

survival of sea ice parcels in the Beaufort Sea.

5.8 Summary

Major variables influencing the survival of sea ice in the Beaufort Sea during 2009–2016 have

been considered through the combined use of the Lagrangian tracking database of sea ice parcels

described in Chapter 2 and coincident Operation IceBridge airborne observations. The parcels have

been sorted into melted and survived categories, and their weekly average values of IST, albedo,

latitude, and downwelling longwave/shortwave radiation have been compared against weekly con-

centration change. Additional average values of snow depth, thickness, IST, and concentrations

estimates from NASA’s Operation IceBridge flights during the spring have also been compared.

The results of this study indicate that albedo appears to linearly correlate most with percent

change in sea ice concentration, and thus survival, of sea ice parcels in the Beaufort Sea. Parcels

that survived the summer melt had consistently higher initial albedos than those that melted. The

Pearson correlation between albedo and change in concentration was found to have the strongest
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negative correlation of the variables studied, while downwelling longwave radiative flux was most

positively correlated with change in concentration.

We also observe that melted parcels were located at lower latitudes earlier in the year, and

were thinner than their surviving counterparts. This led to earlier reduction in sea ice concentration

that likely contributed to the extinction of these sea ice parcels. Melted parcels with coincident

IceBridge data were located at lower latitudes than surviving parcels, but there were several years

in which melted parcels had greater mean ice thickness. This is in contrast with PIOMAS model

data along the flight tracks, which exhibit greater mean thicknesses for surviving parcels in all years.

We conclude that the disagreement between the IceBridge and PIOMAS data is likely due to the

limited footprint of the IceBridge observations, which can misrepresent the overall thickness of a

12.5 km EASE-Grid cell due to sampling limitations. Results from IceBridge snow radar estimates

are inconclusive, as melted and surviving parcels did not exclusively exhibit higher or lower depths

in all cases.

Gini indices derived for the satellite-derived data also indicate that latitude and thickness

were valuable predictors for determining if sea ice parcels survived a melt season. These indices

dropped as the melt season continued, and were nearly equal to the Gini index of albedo later in the

summer. We also observe the relationships between downwelling longwave, downwelling shortwave,

and melt onset described in [64, 65]. The Gini index results for parcel age are also interesting, as

they may suggest that older parcels are more likely to survive summer melt in the Beaufort Sea.

Additional research with more sources of snow data throughout the spring are warranted.

The inclusion of more thermodynamic and dynamic data sources to this analysis would also help

provide context for possible breakup of ice and input of additional energy at the surface and from

the underlying ocean. The use of statistical learning techniques on additional airborne data may

also be of future interest for addressing these relationships.



Chapter 6

Conclusions

This thesis investigated the impact of remotely sensed parameters on sea ice survival during

the summer melt season. The extensive work within this thesis lays the groundwork for future Arctic

investigation through the use of statistical learning techniques, and enhances the community’s

understanding of the major factors that drive summer melt in the Beaufort Sea and throughout

the Arctic Basin. From a data science standpoint, a new data product has been introduced that

provides researchers a means through which parcel histories can be examined in future studies.

From an Arctic science standpoint, the major factors impacting sea ice survival in the Beaufort

Sea have been examined. The Arctic research community will also benefit from the exploration of

underutilized statistical learning techniques that were used in this manuscript. The results from this

work confirm findings from previous studies, and provide new areas of focus for future work. This

investigation has addressed its overarching research goal by assessing the impact of remotely

sensed sea ice parameters on the survival of sea ice in the summer melt season. In

doing so, the following science questions were answered:

(1) Which sets of remotely sensed data are both available and appropriate for

studying sea ice survival in the Arctic?

(2) Does a particular statistical learning technique perform best in short-term pre-

diction of sea ice survival during the summer melt season?

(3) How does the importance of predictors change during summer melt, and do
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different statistical learning techniques report different results?

(4) Which predictors of sea ice survival in the Beaufort Sea during summer are

ranked as most important, and how do these results compare to results from

other statistical techniques?

6.1 Major Findings

A data product combining Lagrangian tracks with coincident satellite data was developed in

Chapter 2 to address the first research question. The database is comprised of weekly measurements

of ice surface temperature, ice concentration, modeled ice thickness, convergence, downwelling

shortwave/longwave radiation, and albedo on the 12.5km EASE-Grid. These data products are

further described in Appendix C, and the grids they are provided on are described in Appendix D.

Data were obtained from 2001-2016, and have been archived at the Pangaea Earth Science Data

Publisher [156]. Additional information regarding the creation and formatting of this database

is provided in its related publication [158]. The data contained in the parcel tracking database

represent a set of remotely sensed properties, processes, and parameters that can be used to study

Arctic sea ice survivability. The database does not contain products that describe the ocean surface,

lower atmosphere, and cloud cover, but the database has been constructed in a way that allows

for future inclusion of other sources of data. This database includes a set of available variables

that can be used for the study of sea ice survival, and it formed the basis of the rest of the cases

explored in this manuscript.

The short-term predictive capability of four discriminative classifiers was assessed in Chapter

3. Implementations of SVM, binary tree-based classification, a random forest, and a neural network

were tested in cases where the classifiers were trained using the Lagrangian track data described

in Chapter 2. These cases found that same-year prediction accuracy was greatest for the random

forest and the neural network, with accuracies of 96% and 94% respectively. Further testing of

the random forest determined that using 75% of available data during training was optimal, with
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peak accuracies being obtained using forests with 75 or more trees. The fitting neural network was

found to perform best using two ten-node layers while using 50% of available data during training.

Further tests of prediction using the random forest and neural network were performed with

training data from prior years to demonstrate their utility in forecasting. These test cases included

the prior five and prior ten years of data during training, and compared predictive accuracy with

the values obtained from same-year training tests. We observe that training with the prior ten years

of data outperforms the prior five case in most cases. This implies that work aimed at maximizing

predictive accuracy would benefit from the addition of as much data as possible during training.

The tests developed in Chapter 3 imply that, of the statistical learning techniques studied, the

random forest and neural network perform the best in short-term prediction of sea ice survival

during the summer melt season.

Chapter 4 determined predictor importance using both a random forest and a neural network

for the entire Arctic domain. The importance values were determined through the use of OFAT

analysis for the neural network, and the Gini index for the random forest. These techniques used

the optimal parameters determined in Chapter 3 and were trained using the same year of data

as the test year. Weekly importance values were calculated throughout the year, with particular

focus on weeks 20 & 30 for years 2002-2016. Both the random forest and the neural network report

that latitude, thickness, and albedo are the top three ranked predictors. The initial latitude of a

sea ice parcel is best at predicting survival during the spring, and declines with the onset of melt.

The parcel thickness follows a similar trend to latitude, and is ranked highly due to the greater

mass of ice to melt in thicker parcels. The predictor importance of albedo grows with the onset

of melt and continuation of the melt season due to worsening surface conditions and the sea ice

albedo feedback. The random forest was more effective than the neural network in separating the

importance of downwelling longwave during the spring and melt onset, and the growing relative

importance of downwelling shortwave later in the melt season. In addition, the importance of

IST declined after melt onset, when both melted and surviving parcels were uniformly at melting

temperature. The neural network failed to capture these changes, and did not strongly distinguish
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between the lowest-ranked predictors later in the melt season.

Further tests sought to determine if there was an optimal combination of predictors for peak

classification accuracy in the random forest and neural network. The results of these tests show

that the classifiers perform best when all but the top three predictors - latitude, thickness, and

albedo - are removed during training and prediction. Additional analysis of the weekly change in

predictor importance determined that the random forest was more capable of capturing seasonal

changes in predictor importance, as its results contained more variation in rank during the melt

season. As a result, the random forest was chosen for further use in Chapter 5.

Chapter 5 sought to determine which variables most influence sea ice survival in the Beaufort

Sea domain through the use of both statistical learning techniques and other statistical techniques.

This was accomplished by comparing satellite data with coincident IceBridge tracks in the Beaufort

Sea from 2009-2016. Comparison of weekly satellite-derived data for melted and surviving parcels

determined that the parcels that survived a given melt season were located at higher latitude and

were thicker than their melted counterparts. Gini indices calculated using a random forest for week

20 also ranked latitude and thickness as the most important variables in predicting parcel survival.

Pearson correlations between change in sea ice concentration and other parameters indicated that

albedo had the strongest negative correlation with change in sea ice concentration. Downwelling

longwave was found to have the most positive correlation with change in ice concentration. While

the random forest ranked albedo as being less important for prediction in the spring, the Gini

index values for albedo were closer to those of latitude and thickness during the melt season.

Downwelling longwave was ranked higher in the forest than downwelling shortwave, IST, and age

during the spring, but declined during the summer. These results suggest that there is relative

agreement between the random forest and the other techniques used in Chapter 5.

For the subset of parcels with IceBridge data we observe mixed results from snow depth and

ice thickness data. While melted parcels in the IceBridge subset were typically at lower latitudes

than their surviving counterparts, the melted population exhibited higher spring ice thicknesses and

snow depths in several years. Coincident PIOMAS data for these parcels agree with the broader
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satellite results where surviving parcels have greater spring thicknesses. The difference between

the IceBridge and satellite-based measurements is likely a result of the difference in their footprint

sizes. The results of this study indicate that initial latitude and ice thickness prior to melt onset

stand out as the most important predictors in determining summer melt season survival.

6.2 Potential Future Advancement

These results provide both data and techniques that may prove valuable in future Arctic

studies. The Lagrangian data track product described in Chapter 2 provides the community with

an accessible way to track sea ice parcel histories over time that can be used in a variety of ap-

plications. Through the use of the unique parcel IDs, the changing properties of parcels can be

viewed in context throughout that parcel’s lifetime in the Arctic. Additional work could investigate

how summer melt conditions impact spring parcel properties during the next year. In particular,

correspondence with a group of Arctic researchers indicates that there is interest in using these

data for the tracking of polar bear dens. Further study of how summer conditions impact future

spring conditions using IceBridge data has also been discussed with a researcher from Oregon State

University and their colleagues at NOAA. A group at NASA Goddard has also expressed interest

in using these data.

The statistical learning techniques described in Chapter 3 can be applied to short term pre-

dictive work that utilizes sea ice extent and other variables to estimate sea ice concentration at

the end of a given melt season. Future studies could continue to refine work using random forests

and neural networks to form predictions for efforts like the Sea Ice Prediction Network’s Sea Ice

Outlook [144]. Similar studies have shown promising results that may be improved through better

neural network design or the incorporation of tree-based methods [21]. A researcher at NSIDC has

also expressed interest in using the methods described in this thesis in a future proposal.

The predictor importance values explored in Chapter 4 and utilized in Chapter 5 are poten-

tially useful for a broad set of research efforts. Work involving the comparison of several factors and

the determination of remote sensing priorities could use these techniques to rank predictors. These
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ranks can help indicate which parameters warrant further study while also assisting researchers

with forming groups in datasets. The extension of these techniques to the multi-class case will also

greatly expand their potential in future research work such as inter-comparisons of predictor ranks

based on ice age.

Continued work should include cumulative values that represent the history of sea ice parcels

in the Arctic. This is particularly valuable when discussing values like IST and surface radiation,

which can vary greatly from week to week. The variables used throughout this thesis are not in-

dependent, but were used to demonstrate the utility of these techniques in studying Arctic data.

Future work could benefit from the removal of latitude and further investigation of the processes

and conditions that are dependent on it. Future studies would also benefit from exploring genera-

tive classifiers that could use statistical relationships that are present in the data. These types of

techniques could produce more robust and interpretable predictions that would allow researchers

to continue to refine and study these results in future work.
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Acronyms

AGU American Geophysical Union

APP-x The Extended AVHRR Polar Pathfinder Product

ATM Airborne Topographic Mapper

AVHRR Advanced Very High Resolution Radiometer

BESST Ball Experimental Sea Surface Radiometer

CCAR Colorado Center for Astrodynamics Research

CDR Climate Data Record Program

CSV Comma Separated Value

CU University of Colorado Boulder

CULPIS-X CU-Laser Profiling Instrument - Extended

DAAC Distributed Active Archive Center

DMS Digital Mapping Sensor

EASE Equal Area Scalable Earth Grid

GOCC Generalized Orthogonal Curvilinear Coordinate
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GPS Global Positioning System

IABP International Arctic Buoy Programme

IC Ice Concentration

IMU Inertial Measurement System

IR Infra-Red

IST Ice Surface Temperature

LDA Linear Discriminant Analysis

LIDAR Light Detection and Ranging

LW Longwave Radiation

MIZ Marginal Ice Zone

MODIS Moderate Resolution Imaging Spectroradiometer

MST Mountain Standard Time

NOAA National Oceanic and Atmospheric Administration

NN Neural Network

NSIDC National Snow and Ice Data Center

ONR Office of Naval Research

PIOMAS Pan-Arctic Ice Ocean Modeling and Assimilation System

RF Random Forest

SHEBA Surface Heat Budget of the Arctic Ocean (Campaign)

SIPN Sea Ice Prediction Network
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SIZ Seasonal Ice Zone

SIZRS Seasonal Ice Zone Reconnaissance Survey

SSMI Special Sensor Microwave Imager

SSMI/S Special Sensor Microwave Imager Sounder

SVM Support Vector Machine

SW Shortwave Radiation

UAS Unmanned Aerial Systems, Commonly referred to as UAVs

ULS Universal Laser Systems

USCG United States Coast Guard

VIIRS Visible Infrared Imaging Radiometer Suite



Appendix C

Ancillary Data Product Descriptions

This appendix provides additional background on the ancillary data products utilized in the

Lagrangian tracking database discussed in Chapter 2 and utilized throughout this study in other

chapters. Discussions of the sources of each product are included in each section along with relevant

background and error papers. Further discussion of the grids that these products are provided on,

and the conversion between them, is included in Appendix D.

C.1 EASE-Grid Sea Ice Motion

C.1.1 Product Description

Polar Pathfinder equal area scalable Earth (EASE) Grid sea ice motion vectors produced at

the University of Colorado Boulder are used in this product, and they serve as the foundation of

determining ice parcel positions for each week. The data are hosted at NSIDC, and are further

described on their documentation page [165]. The data are provided on a 25km EASE-Grid, and

are incorporated into this database’s 12.5km grid through the use of a two-dimensional linear inter-

polation scheme. The product is based on ice motion products derived from satellite measurements,

buoy drift tracks, and NCEP/NCAR wind data. Weekly mean motion fields are generated by merg-

ing motion fields from the various sources by using the expected accuracy of each source field as the

weight during the merging process. The database described in this paper utilizes the weekly mean

motions computed using those merged fields, as the weekly mean data reduce the contribution from

noise present in each individual source. The individual motion field sources have RMS errors that



129

range from 1-6cm/s [153,166,167,168,169], which yield annual displacement errors of 50-100km in

some cases [163]. Further discussion of the error in the merged motion vector product can be found

in [163] and the product’s documentation page [165].

C.1.2 Processing Steps

Ice motion vector files are obtained via HTTPS from the NSIDC website [165]. These weekly

files are in a space-delimited ASCII text format, and are named with the convention of icemo-

tion.grid.week.YYYY.WW.n.v3.bin. The weekly data files are are processed into .CSV files prior

to their use in the parcel tracking program. The conversion from .bin files to .CSV files is accom-

plished through the use of a Python script that:

(1) Loads the U and V fields from the original .bin file

(2) Scales the motion fields

(3) Masks the values using a pre-made landmask file

(4) Saves two separate .CSV files for the U and V fields

The result is two .CSV files containing the 361x361 grids of the U and V vector fields. These files

are saved with the naming convention of motion YYYY WW vec.csv, where vec represents u or v

for the respective files. These motion files were the original data utilized in parcel tracking runs,

but additional 722x722 files are also generated for use in later versions of the program. These

files are generated by loading the 361x361 grid motion data files into a Matlab script that uses a

two-dimensional linear interpolation scheme to produce a 722x722 grid for each U and V field [158].

These data are saved in a separate folder under the same naming convention as the other .CSV

files, and are used in current runs of the sea ice parcel tracking product.
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C.2 EASE-Grid Sea Ice Age

C.2.1 Product Description

EASE-Grid Sea Ice Age fields produced at the University of Colorado are also incorporated

into the parcel database, and serve as context for analyses of sea ice survivability. The data are

hosted at NSIDC, and are further described in their associated documentation page [164]. The sea

ice age data are based on the NSIDC sea ice motion product [165]. Sea ice age is calculated by

initially assigning all ice as first-year ice and then, as the model spins up over five simulated years,

adding one year of age to each ice parcel that survives the summer melt. The data are available

on a 12.5km EASE-Grid through the NSIDC from 1984-2016 [164]. It is important to note that

when ice of different ages occupy the same EASE-Grid cell the cell is assigned the age of the oldest

ice. Open water cells in this product are those that contain 15% sea ice concentration or less.

Additional information about the product can be found in its associated NSIDC documentation

page [164] and its related publications [42,99,132,163].

C.2.2 Processing Steps

Ice age files are obtained from NSIDC via HTTPS [164]. The data files are provided as weekly

binary files with a specified format that are named with the convention of

iceage.grid.week.YYYY.WW.n.v3.bin. Once the binary data files are obtained from NSIDC they

are processed into usable .CSV files using a Python script that loads the age field, masks the field

using a land mask, and saves the field using the naming convention of age YYYY WW.csv. The

resulting files contain 722x722 EASE-grid sea ice age data that are incorporated into the Lagrangian

tracking database.
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C.3 SSMI/SSMI-S Sea Ice Concentration Product

C.3.1 Product Description

SSM/I & SSMIS sea ice concentration values [19] are utilized by the product to determine

when parcels are considered melted, and to search for new parcels later in the year. Changes

in concentration are additionally useful for tracking the degradation of ice health during the melt

season. The data are provided on a 25km Polar-Stereographic grid, and are re-gridded to fit a 25km

EASE-Grid before use in this product. Each 25km EASE-Grid cell is then quartered into 12.5km

EASE-Grid cells with equal values in order to fit the 12.5km EASE-Grid. The concentration data

are less accurate in the presence of thin sea ice, melt ponds, and near the ice edge where some

ocean and atmospheric effects can be mistaken for sea ice. The seasonality of these error-producing

conditions lends to a +/ − 5% accuracy during the winter and a +/ − 15% accuracy during the

summer [19]. Further discussion of the error and performance of the product can be found in [2,58].

Concentrations in this combined database range from 15% to 100%, with other values masked to

9999.0 and the pole-hole masked to 9998.0.

C.3.2 Processing Steps

The sea ice concentration data are provided in formatted binary files, and are obtained

from NSIDC through their HTTPS system [19]. These daily concentration files contain the polar

stereographic gridded data, and are named with the convention of

nt YYYYMMDD.SSS.v1.1 n.bin; where SSS represents the source of the data contained in the file.

Once the files are obtained from NSIDC, the data are processed into .CSV files using a Python

script that:

(1) Loads the 304x448 polar stereographic data

(2) Scales the data

(3) Utilizes Basemap to find usable grid locations
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(4) Masks land and the pole-hole

(5) Performs averaging to fill the converted grid’s gaps

(6) Saves the files in a .CSV format

The data are saved as .CSV files with the naming convention of YYYY DOY concentration.csv.

These files contain 361x361 grids of ice concentration on a 25km EASE-Grid that utilize the 9999.0

and 9999.8 masks for land and the pole-hole respectively. The data are re-gridded to the 12.5km

EASE-Grid by splitting each 25km grid cell into four equal valued cells [158]. These files are used

by the sea ice tracking program, and are averaged into weekly means during runtime.

C.4 PIOMAS Sea Ice Thicknesses

C.4.1 Product Description

The PIOMAS ice thickness model data are incorporated into the product to provide volume

loss estimates, and to enable tracking of changes in ice health. The data are provided in a curvilinear

coordinate system that is re-gridded to the 12.5km EASE-Grid prior to use in this database. The

product is validated using submarine, mooring, and satellite observations in order to compare

its model output to available data sources. An estimated RMS difference between the model

output and independent submarine tracks is stated as 0.78m. The model is known to overestimate

thin ice thickness and underestimate thick ice thickness [136]. The product is provided on a

stretched generalized orthogonal curvilinear coordinate (GOCC) grid with a displaced north pole

that is located in Greenland. The mean resolution of the grid is stated as 4–5◦, with the greatest

resolutions and accuracies being found in the Greenland Sea, Baffin Bay, and the Eastern Canadian

Archipelago [182]. Further information about the product and error measurements can be found

in [136,182].
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C.4.2 Processing Steps

PIOMAS data are provided in formatted binary files obtained from the University of Wash-

ington Polar Science Center website [136]. The files contain GOCC model thickness data for each

day of a year, and are named with the convention of hiday.HYYYY. The data are re-gridded to

the EASE-Grid and saved in .CSV file format through the use of a Python script that:

(1) Loads and parses scale factors from the original file

(2) Applies several scaling factors to the 365 daily data slices

(3) Performs weekly averaging of the thickness data

(4) Utilizes Basemap to find usable grid locations

(5) Masks the data using a landmask

(6) Performs averaging to fill the converted grid’s gaps

(7) Saves the data in a .CSV format

The resulting files contain weekly thickness values on the 722x722 EASE-Grid, and are named

with the convention of YYYY wkWW.csv. These files are directly loaded into the parcel tracking

program during runs, and do not require further processing or averaging.

C.5 MODIS Ice Surface Temperatures

C.5.1 Product Description

ISTs from the MODIS instrument aboard NASA’s Terra satellite are incorporated in this

parcel database. The temperatures indicate when individual ice parcels are at melting temperature,

and are provided as context for changes in other variables that are tracked. MODIS ISTs are

provided through the National Snow and Ice Data Center (NSIDC) on a 4 km EASE-Grid [50],

and are re-gridded to fit the 12.5 km EASE-Grid via a two-dimensional interpolation scheme [158].
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Comparisons with other IST sources and in-situ measurements have yielded estimated accuracies

of 1–3 Kelvin under ideal conditions [48]. The accuracy of the IST data degrades in the presence

of clouds and water vapor, which lends to seasonally lower accuracy during the summer [135,139].

Valid ranges for this data product are 210K to 313.2K, pole-hole points are masked to 9999.8, and

all other values are masked to 9999.0. It is important to note that while other products may be

available outside of the 2001 to 2016 date range, these data form a complete year starting in 2001.

This limits the current version of the parcel database to years including and after 2001 due to its

use of these data.

C.5.2 Processing Steps

Ice surface temperature data are obtained from the NSIDC via HTTPS [50]. Each daily file

is provided in HDF-EOS format with the naming convention of

MOD[PID].A[YYYY][DDD].[VVV].[yyyy][ddd][hhmmss].hdf; where PID represents the product

ID, VVV represents the version number, and the lower-case dates represent the processing date

and time. The files are converted to .CSV format through the use of a Matlab script that:

(1) Loads the HDF file and obtains the northern IST field

(2) Applies a scaling factor to the data

(3) Crops the data field to fit our analysis region

(4) Utilizes a two-dimensional linear interpolation scheme to obtain a new grid

(5) Saves the new grid to a .CSV format file

The resulting files contain daily IST data on the 722x722 EASE-Grid named with the convention

of YYYY DOY.csv. These files are read and averaged to obtain weekly values during runtime.
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C.6 APP-x Atmospheric Products

C.6.1 Product Description

Broadband albedo, downwelling shortwave, and downwelling longwave are obtained from the

AVHRR Polar Pathfinder-Extended (APP-x) dataset [70, 75]. The data are provided on a 25 km

EASE-Grid that is re-gridded to a 12.5 km grid by splitting each 25 km grid cell into four equal-

valued cells [158]. Albedo is corrected for clouds, and is derived through the procedures described

in [76]. Comparisons of APP-x albedos with SHEBA measurements yielded a bias of −0.05 and an

RMSE of 0.1 [70]. Downwelling shortwave and longwave fluxes at the surface are computed using

FluxNet: a neural network that was trained to simulate a radiative model [73]. Comparisons of

downwelling shortwave radiation with SHEBA campaign measurements obtained a bias of 9.8 W
m2

and an RMSE of 34.4 W
m2 . Comparisons between downwelling longwave and Surface Heat Budget of

the Arctic Ocean (SHEBA) Campaign values yielded a bias of 2.1 W
m2 and an RMSE of 22.4 W

m2 [70].

C.6.2 Processing Steps

APP-x data are obtained from the NOAA Climate Data Record Program site via direct

download [75]. The data are provided as NetCDF files with the naming convention of Polar-APP-

X VerNumRevNum Nhem TTTT dYYYYMMDD cyyyymmdd.nc; where lowercase dates repre-

sent the date the data were processed and released on the CDR site. The data are re-formatted

and split into separate .CSV files through the use of a Matlab script that:

(1) Loads the .nc file data

(2) Parses the shortwave, longwave, and albedo variables

(3) Saves the fields as separate .CSV files

The resulting individual files contain daily values of each variable with the naming convention

of YYYY DOY TTTT var.csv, where var represents a coded name for each of the five variables

tracked. These data are averaged into weekly mean values during runtime.
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C.7 IceBridge Airborne Data

C.7.1 Product Description

Airborne data from spring NASA Operation IceBridge Campaigns were also incorporated

into this analysis for years 2009–2016 [82]. The level-4 airborne data were obtained from NSIDC

on a 40 m length scale, and are further described in their related documentation page and publi-

cation [80, 82]. The data include KT-19 infrared pyrometer IST values [78], snow depth estimates

retrieved using the University of Kansas’ snow radar [63, 88, 133], Digital Mapping System (DMS)

derived open water concentrations [30], and Airborne Topographic Mapper (ATM) derived thick-

ness estimates [15,31,85].

IceBridge thickness data rely on ATM estimates of freeboard and retrieval of snow depth

from radar measurements [80, 82]. Freeboard measurements are further refined through the use of

DMS measurements to detect leads that are used as surface tie points [80], and final thickness is

determined through the use of the hydrostatic balance equation [82]. The mean uncertainty of the

thickness data used in this study was 0.82m, and was obtained by averaging the provided uncer-

tainty in each measurement utilized in this analysis. This value is highly variable however, as it

depends on several factors that can change in flight [81]. The uncertainty in snow depth estimates

is cited as 5.7–5.8 cm [38,80,181].

C.7.2 Processing Steps

IceBridge data files were obtained for all available flight lines in the Arctic from 2009-2016.

Examples of a flight line and associated snow thickness data are shown in Figure C.2. The

data are downloaded through the HTTPS system, and are named with the convention of ID-

CSI4 YYYYMMDD.txt. A Python script was developed to sort these data into files that contain

flight line data from major regions of the Arctic (Figure C.1). The 40m observations were averaged

for each 12.5km EASE-Grid cell to obtain mean value of thickness, snow depth, concentration, and

surface temperature for each cell. These EASE-Grid IceBridge files were combined into weekly files
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for each region for use in this manuscript.

C.8 Sea Ice Convergence Fields from EASE-Grid Sea Ice Motion Data

Convergence values for the u and v EASE-Grid axes are produced using the weekly motion

vectors described in Section C.1. In order to compute a convergence value in each direction,

an individual EASE-Grid cell’s motion vector components are compared to the motion vector

components of directly adjacent cells. The boundary convergence calculations are performed using

the equations C.1 & C.2 for the v direction, and equations C.3 & C.4 for the u direction:

Ctop = V − Vabove (C.1)

Cbottom = Vbelow − V (C.2)

Cright = U − Uright (C.3)

Cleft = Uleft − U, (C.4)

where Ctop & Cbottom represent the convergence between the parcel of interest and the parcels above

and below it, and Cleft & Cright represent the convergence between the parcel of interest and the

parcels to the left and right of it. The U and V terms represent the x and y grid velocity components

of each parcel respectively.

The location of each of these equation elements, along with a representation of the parcels

used in the calculation, are shown in Figure C.3. In this grid system V vectors represent the vertical

component and are positive-upward, while U vectors represent the horizontal component and are

positive-right. It is important to note that the u and v coordinates are 0,0 at the top left corner of

the grid, which lends to the V vectors being inverted with respect to the grid coordinates. Total

convergence values for the cell in the u and v directions are then derived by summing the obtained

boundary values on each axis:

Cv = Ctop + Cbottom = Vbelow − Vabove (C.5)
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Figure C.1: Arctic regions used for IceBridge data

Figure C.2: IceBridge flight track from April 5th, 2009 with corresponding snow thickness data.
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Cu = Cleft + Cright = Uleft − Uright (C.6)

The resulting numbers represent the speed at which a parcel is approaching its neighboring

parcels, where larger positive values of C represent more convergent motion. This number serves as

an indicator of greater potential for ice collision and deformation due to this convergence. Negative

values of C indicate that the neighboring parcels are receding, and that other processes such as

lead formation may be more likely for that parcel. These data are provided to aid researchers in

determining where relationships like these may occur.

Figure C.3: EASE-Grid cell with vector components used to compute convergence values shown
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Map Coordinate Systems

This appendix describes the grids on which the products discussed in Appendix C are pro-

vided. These include the EASE-Grid, Polar Stereographic Grid, and Generalized Orthogonal Curvi-

linear Coordinate Grid. The procedure through which data products were re-gridded to fit the

EASE-Grid is also provided, along with a brief discussion of filling gaps in data caused by warping

during conversion.

D.1 EASE-Grid 2.0

The Equal Area Scalable Earth (EASE) Grid 2.0 grid format was defined in 2011, and is

the follow-on to the NSIDC’s EASE-Grid 1.0 format [14] (Figure D.1). The map projection has

been updated to rely on the WGS84 ellipsoid, which offers improvement over the spherical Earth

ellipsoid used in EASE-Grid 1.0. The pole is located at the intersection of four cells in EASE-Grid

2.0, and the 12.5km and 25km grids are 722x722 and 361x361 cells in dimension respectively. Many

of the data products used in this work are natively hosted on EASE-Grid. Products obtained on

other grids were converted to the EASE-Grid through the use of the Python Basemap package.

D.2 Polar Stereographic Grid

The Polar Stereographic grid is a projection that specifies a grid tangent to the surface of

Earth at 70◦, and is defined using an Earth radius of 6378.273km and an eccentricity of 0.081816153

(Figure D.2. The data products used from the Polar Stereographic grid were provided at 25km
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Figure D.1: EASE-Grid 2.0 map of the Arctic, generated using the Python Basemap package
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resolution (304x448 cells). Data provided on the Polar Stereographic Grid were converted using

latitude/longitude coordinates provided by NSIDC through the use of the Python Basemap package.

D.3 Generalized Orthogonal Curvilinear Coordinate Grid System

PIOMAS sea ice thickness data are provided in a 120x360 generalized orthogonal curvilinear

coordinate grid system (GOCC) that covers latitudes 45◦-90◦ (Figure D.3). Cells in the grid vary

in size, with the greatest resolutions and stated accuracies being found near the artificial pole over

Greenland. PIOMAS data were converted to EASE-Grid through the use of latitude/longitude files

that were provided with the data [136].

D.4 Converting Between Grid Coordinates

The EASE-Grid was chosen as a common grid for use in this manuscript, as the sea ice

motion data product that formed the basis of this work is provided on a 25km EASE-Grid [165].

Conversion between the various source grids to the EASE-Grid was carried out through the use of

the Python Basemap package, and the procedures used to do so are detailed further in the following

sections.

D.4.1 Converting Grids With Coordinate Locations

Conversion to EASE-Grid utilized the Basemap parameters described in Table D.1. EASE-

Grid coordinates were generated with the map instance in Table D.1 using the provided lati-

tude/longitude coordinates for each non-EASE-Grid product (Figures D.4 & D.5). Once map

coordinates were obtained the products were converted to EASE-Grid prior to use in generating

the Lagrangian tracking database described in Chapter 2.
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Figure D.2: Polar Stereographic map of the Arctic, generated using Basemap.

Figure D.3: Representation of the PIOMAS GOCC grid
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Figure D.4: PIOMAS model coordinates plotted on EASE-Grid

Figure D.5: Polar Stereographic coordinates plotted on EASE-Grid
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Table D.1: Basemap instance parameters for grid conversions

Variable 2016

ellps WGS84
resolution l
projection laea

lat ts 90
lat 0 90
lon 0 0
width 9025000
height 9025000

area thresh 10000

D.4.2 Filling Empty Grid Cells After Converting Coordinates

Warping of grid coordinates during conversion to EASE-Grid yielded empty cells in some

data products that were not present in their native grids (Figure D.6). Averaging was applied to

the converted grid data to rectify this issue during which empty cells with at least three adjacent

cells with data were filled with the average of their neighboring cells (Figure D.7).



146

Figure D.6: Un-filled sea ice concentration field for August 30th, 2014
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Figure D.7: Filled sea ice concentration field for August 30th, 2014



Appendix E

Additional Information on Tracking Product

E.1 History of Product Development

The Lagrangian tracking product described in Chapter 2 has gone through many iterations

from the start of development to its present release state. The initial code was developed in Fall

2015 as a standalone Matlab script. This initial release included EASE-Grid sea ice motion vectors,

MODIS ice surface temperatures, and SSMI/SSMI-S ice concentration data that was used to present

preliminary results at AGU in Fall 2015 [155]. The version history of this Matlab program branch

is included below for the reader’s reference:

• Version 1.0

∗ Formed main program loop

∗ Created structure to store weekly parcel positions

• Version 1.2

∗ Added ice concentration and surface temperature tracking

• Version 2.0

∗ Added ability to loop through multiple years of data

∗ Added ability to save data at transition between years

• Version 2.2
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∗ Added ability to track parcels during freeze-up

• Version 2.4

∗ Finalized logic of tracking parcel formation and extinction

∗ Began preliminary work toward creating Python branch

A Python version of the code was developed in Spring 2016, and came to relative maturity

in Summer 2016 [157]. This new branch of the code was created to facilitate modularizing the

code, creating well commented work for research heritage, and to ensure compatibility with several

Python re-gridding utilities.

The Python branch of the code was continually updated through 2016, and a release-ready

set of database files were produced in Spring 2017. Further upgrades were aimed at making the

code more accessible and practical to use. The version history notes from the code are included

below for the reader’s reference:

• Version 0 1

∗ Initial Translation to Python from Matlab

• Version 0 2

∗ Inclusion of IST and Concentration Products

∗ New Vector and Age Files

∗ Ability to Save Data to File

• Version 0 4

∗ Inclusion of Freeze-Up and Melting Detection

∗ Creation of Main Function Layout

• Version 0 6
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∗ Inclusion of PIOMAS Data

• Version 0 8

∗ Inclusion of APP-X Data

∗ Tracking of Float Parcel Positions in Lieu of Integers

∗ New Mask Value for Pole-Hole in Concentration Data

∗ Updated Initial Search to use Concentration in Lieu of Age Field

∗ Began Work on Transition Between Years Code

• Version 0 9

∗ Allowed Transition Between Years (Without Saving)

∗ Re-Gridded Motion fields to 12.5km Grid

• Version 1 0

∗ Release Version - Used to Generate 2001-2015 Files

• Version 2 0

∗ Swapped NaN Fill Values with 9999

∗ Added Pole-Hole Fill Values of 9998

∗ Created and Included Convergence Fields

∗ Added New Weekly Product Age Field

• Version 2 1

∗ Completed Inter-Annual Transition Code

∗ Corrected Error in PIOMAS Data

∗ Updated Files to Allow Runs Through 2016

∗ Second Release Version for Pangaea 2001-2016



Appendix F

Additional Aiborne Data Sources in the Beaufort Sea

Airborne observations carried out at the University of Colorado yielded data in the Beaufort

Sea that were considered for use in Chapter 5. This appendix describes the Ball Experimental Sea

Surface Temperature (BESST) radiometer and some preliminary results obtained by the instrument

during two separate NASA campaigns in 2013 and 2016. The CU-Laser Profiling Instrument

Extended (CULPIS-X) is also described, along with results from Arctic Domain Awareness flights

carried out during 2016.

F.1 BESST

The Ball Experimental Sea Surface Temperature (BESST) radiometer is an IR instrument

that obtains images of ocean and ice surfaces (Figure F.1). It samples in the 8-11µm range, and

is calibrated throughout flight [35, 154]. Calibration and image acquisition are performed through

the use of a rotating internal fold mirror that offers views of nadir, an ambient blackbody, zenith,

and a hot blackbody. Zenith and blackbody measurements are obtained periodically for use in

post-processing.

The BESST instrument was flown during the NASA 2013 Marginal Ice Zone Processes EX-

periment (MIZOPEX) and 2016 IceBridge campaigns in order to obtain IR data for the ice-ocean

surface [97]. Attempts were made to compare the resulting data with coincident satellite data for

further use in the Beaufort Sea study, but they were hampered by data processing issues and missing

data. Scheduling issues and instrument drift led to limited BESST data during MIZOPEX, and also
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yielded unrealistically high surface temperatures as observed by the instrument. Post-processing

testing failed to determine the cause of this issue, which prevented the use of these data in Chapter

5. During the IceBridge campaign the instrument was situated ahead of a pressure bulkhead in

the P3 radome, which caused the control computer to fail once the temperature dropped below

0◦C at altitude. This led to there being limited data during the campaign, with none of the valid

acquisitions being located in the Beaufort Sea. The failure of BESST during the 2016 IceBridge

campaign is also the cause of the missing IST measurements for 2016 in Table 5.4.

F.2 CULPIS-X

F.2.1 Instrument Package Overview

The CU Laser Profiling InStrument - eXtended (CULPIS-X) instrument package was de-

ployed on Arctic research flights with the US Coast Guard (USCG) as part of the 2016 Seasonal

Ice Zone Reconnisance Survey (SIZRS) Campaign [26,108,162,171]. The instrument package con-

tains a profiling LIDAR, an IR sensor, a multi-spectral instrument, and a visible camera. These

components are mounted in an instrument box on the rear cargo door of a C-130 via a sled that is

secured to the interior of a flare tube (Figure F.2).

After initial on-ground testing in 2015, the instrument package was successfully flight tested

at USCG Air Station Sacramento via a transit down the California coast from Sacramento to Point

Mugu Naval Air Station in Spring 2016. This test was followed by five successful Arctic deploy-

ments in June, July, August, September, and October of 2016 via USCG Air Station Kodiak. These

flights yielded visible camera data that were considered for use in determining sea ice concentration

along the flight tracks for comparison against coincident satellite observations (Figure F.3). Initial

investigation of these data aimed to implement k-means clustering and other statistical learning

techniques on the data, but these efforts were hampered by instrument timing issues and GPS

inaccuracy (Figure F.4). These issues led to these data being unsuitable for the work discussed in

Chapter 5.
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Figure F.1: Assembled BESST instrument [35]

Figure F.2: CULPIS-X Package installed in a flare tube prior to a June 2016 Arctic Flight
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Figure F.3: CULPIS-X flight track with coincident ice concentration data from June 15th, 2016
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